diff options
Diffstat (limited to 'llvm/lib/CodeGen/LiveInterval.cpp')
-rw-r--r-- | llvm/lib/CodeGen/LiveInterval.cpp | 1417 |
1 files changed, 1417 insertions, 0 deletions
diff --git a/llvm/lib/CodeGen/LiveInterval.cpp b/llvm/lib/CodeGen/LiveInterval.cpp new file mode 100644 index 000000000000..54ac46f2e7ce --- /dev/null +++ b/llvm/lib/CodeGen/LiveInterval.cpp @@ -0,0 +1,1417 @@ +//===- LiveInterval.cpp - Live Interval Representation --------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the LiveRange and LiveInterval classes. Given some +// numbering of each the machine instructions an interval [i, j) is said to be a +// live range for register v if there is no instruction with number j' >= j +// such that v is live at j' and there is no instruction with number i' < i such +// that v is live at i'. In this implementation ranges can have holes, +// i.e. a range might look like [1,20), [50,65), [1000,1001). Each +// individual segment is represented as an instance of LiveRange::Segment, +// and the whole range is represented as an instance of LiveRange. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/LiveInterval.h" +#include "LiveRangeUtils.h" +#include "RegisterCoalescer.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/iterator_range.h" +#include "llvm/CodeGen/LiveIntervals.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/SlotIndexes.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/MC/LaneBitmask.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <iterator> +#include <utility> + +using namespace llvm; + +namespace { + +//===----------------------------------------------------------------------===// +// Implementation of various methods necessary for calculation of live ranges. +// The implementation of the methods abstracts from the concrete type of the +// segment collection. +// +// Implementation of the class follows the Template design pattern. The base +// class contains generic algorithms that call collection-specific methods, +// which are provided in concrete subclasses. In order to avoid virtual calls +// these methods are provided by means of C++ template instantiation. +// The base class calls the methods of the subclass through method impl(), +// which casts 'this' pointer to the type of the subclass. +// +//===----------------------------------------------------------------------===// + +template <typename ImplT, typename IteratorT, typename CollectionT> +class CalcLiveRangeUtilBase { +protected: + LiveRange *LR; + +protected: + CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {} + +public: + using Segment = LiveRange::Segment; + using iterator = IteratorT; + + /// A counterpart of LiveRange::createDeadDef: Make sure the range has a + /// value defined at @p Def. + /// If @p ForVNI is null, and there is no value defined at @p Def, a new + /// value will be allocated using @p VNInfoAllocator. + /// If @p ForVNI is null, the return value is the value defined at @p Def, + /// either a pre-existing one, or the one newly created. + /// If @p ForVNI is not null, then @p Def should be the location where + /// @p ForVNI is defined. If the range does not have a value defined at + /// @p Def, the value @p ForVNI will be used instead of allocating a new + /// one. If the range already has a value defined at @p Def, it must be + /// same as @p ForVNI. In either case, @p ForVNI will be the return value. + VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator *VNInfoAllocator, + VNInfo *ForVNI) { + assert(!Def.isDead() && "Cannot define a value at the dead slot"); + assert((!ForVNI || ForVNI->def == Def) && + "If ForVNI is specified, it must match Def"); + iterator I = impl().find(Def); + if (I == segments().end()) { + VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator); + impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI)); + return VNI; + } + + Segment *S = segmentAt(I); + if (SlotIndex::isSameInstr(Def, S->start)) { + assert((!ForVNI || ForVNI == S->valno) && "Value number mismatch"); + assert(S->valno->def == S->start && "Inconsistent existing value def"); + + // It is possible to have both normal and early-clobber defs of the same + // register on an instruction. It doesn't make a lot of sense, but it is + // possible to specify in inline assembly. + // + // Just convert everything to early-clobber. + Def = std::min(Def, S->start); + if (Def != S->start) + S->start = S->valno->def = Def; + return S->valno; + } + assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def"); + VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator); + segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI)); + return VNI; + } + + VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use) { + if (segments().empty()) + return nullptr; + iterator I = + impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr)); + if (I == segments().begin()) + return nullptr; + --I; + if (I->end <= StartIdx) + return nullptr; + if (I->end < Use) + extendSegmentEndTo(I, Use); + return I->valno; + } + + std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs, + SlotIndex StartIdx, SlotIndex Use) { + if (segments().empty()) + return std::make_pair(nullptr, false); + SlotIndex BeforeUse = Use.getPrevSlot(); + iterator I = impl().findInsertPos(Segment(BeforeUse, Use, nullptr)); + if (I == segments().begin()) + return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse)); + --I; + if (I->end <= StartIdx) + return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse)); + if (I->end < Use) { + if (LR->isUndefIn(Undefs, I->end, BeforeUse)) + return std::make_pair(nullptr, true); + extendSegmentEndTo(I, Use); + } + return std::make_pair(I->valno, false); + } + + /// This method is used when we want to extend the segment specified + /// by I to end at the specified endpoint. To do this, we should + /// merge and eliminate all segments that this will overlap + /// with. The iterator is not invalidated. + void extendSegmentEndTo(iterator I, SlotIndex NewEnd) { + assert(I != segments().end() && "Not a valid segment!"); + Segment *S = segmentAt(I); + VNInfo *ValNo = I->valno; + + // Search for the first segment that we can't merge with. + iterator MergeTo = std::next(I); + for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo) + assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); + + // If NewEnd was in the middle of a segment, make sure to get its endpoint. + S->end = std::max(NewEnd, std::prev(MergeTo)->end); + + // If the newly formed segment now touches the segment after it and if they + // have the same value number, merge the two segments into one segment. + if (MergeTo != segments().end() && MergeTo->start <= I->end && + MergeTo->valno == ValNo) { + S->end = MergeTo->end; + ++MergeTo; + } + + // Erase any dead segments. + segments().erase(std::next(I), MergeTo); + } + + /// This method is used when we want to extend the segment specified + /// by I to start at the specified endpoint. To do this, we should + /// merge and eliminate all segments that this will overlap with. + iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) { + assert(I != segments().end() && "Not a valid segment!"); + Segment *S = segmentAt(I); + VNInfo *ValNo = I->valno; + + // Search for the first segment that we can't merge with. + iterator MergeTo = I; + do { + if (MergeTo == segments().begin()) { + S->start = NewStart; + segments().erase(MergeTo, I); + return I; + } + assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); + --MergeTo; + } while (NewStart <= MergeTo->start); + + // If we start in the middle of another segment, just delete a range and + // extend that segment. + if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) { + segmentAt(MergeTo)->end = S->end; + } else { + // Otherwise, extend the segment right after. + ++MergeTo; + Segment *MergeToSeg = segmentAt(MergeTo); + MergeToSeg->start = NewStart; + MergeToSeg->end = S->end; + } + + segments().erase(std::next(MergeTo), std::next(I)); + return MergeTo; + } + + iterator addSegment(Segment S) { + SlotIndex Start = S.start, End = S.end; + iterator I = impl().findInsertPos(S); + + // If the inserted segment starts in the middle or right at the end of + // another segment, just extend that segment to contain the segment of S. + if (I != segments().begin()) { + iterator B = std::prev(I); + if (S.valno == B->valno) { + if (B->start <= Start && B->end >= Start) { + extendSegmentEndTo(B, End); + return B; + } + } else { + // Check to make sure that we are not overlapping two live segments with + // different valno's. + assert(B->end <= Start && + "Cannot overlap two segments with differing ValID's" + " (did you def the same reg twice in a MachineInstr?)"); + } + } + + // Otherwise, if this segment ends in the middle of, or right next + // to, another segment, merge it into that segment. + if (I != segments().end()) { + if (S.valno == I->valno) { + if (I->start <= End) { + I = extendSegmentStartTo(I, Start); + + // If S is a complete superset of a segment, we may need to grow its + // endpoint as well. + if (End > I->end) + extendSegmentEndTo(I, End); + return I; + } + } else { + // Check to make sure that we are not overlapping two live segments with + // different valno's. + assert(I->start >= End && + "Cannot overlap two segments with differing ValID's"); + } + } + + // Otherwise, this is just a new segment that doesn't interact with + // anything. + // Insert it. + return segments().insert(I, S); + } + +private: + ImplT &impl() { return *static_cast<ImplT *>(this); } + + CollectionT &segments() { return impl().segmentsColl(); } + + Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); } +}; + +//===----------------------------------------------------------------------===// +// Instantiation of the methods for calculation of live ranges +// based on a segment vector. +//===----------------------------------------------------------------------===// + +class CalcLiveRangeUtilVector; +using CalcLiveRangeUtilVectorBase = + CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator, + LiveRange::Segments>; + +class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase { +public: + CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {} + +private: + friend CalcLiveRangeUtilVectorBase; + + LiveRange::Segments &segmentsColl() { return LR->segments; } + + void insertAtEnd(const Segment &S) { LR->segments.push_back(S); } + + iterator find(SlotIndex Pos) { return LR->find(Pos); } + + iterator findInsertPos(Segment S) { return llvm::upper_bound(*LR, S.start); } +}; + +//===----------------------------------------------------------------------===// +// Instantiation of the methods for calculation of live ranges +// based on a segment set. +//===----------------------------------------------------------------------===// + +class CalcLiveRangeUtilSet; +using CalcLiveRangeUtilSetBase = + CalcLiveRangeUtilBase<CalcLiveRangeUtilSet, LiveRange::SegmentSet::iterator, + LiveRange::SegmentSet>; + +class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase { +public: + CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {} + +private: + friend CalcLiveRangeUtilSetBase; + + LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; } + + void insertAtEnd(const Segment &S) { + LR->segmentSet->insert(LR->segmentSet->end(), S); + } + + iterator find(SlotIndex Pos) { + iterator I = + LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr)); + if (I == LR->segmentSet->begin()) + return I; + iterator PrevI = std::prev(I); + if (Pos < (*PrevI).end) + return PrevI; + return I; + } + + iterator findInsertPos(Segment S) { + iterator I = LR->segmentSet->upper_bound(S); + if (I != LR->segmentSet->end() && !(S.start < *I)) + ++I; + return I; + } +}; + +} // end anonymous namespace + +//===----------------------------------------------------------------------===// +// LiveRange methods +//===----------------------------------------------------------------------===// + +LiveRange::iterator LiveRange::find(SlotIndex Pos) { + // This algorithm is basically std::upper_bound. + // Unfortunately, std::upper_bound cannot be used with mixed types until we + // adopt C++0x. Many libraries can do it, but not all. + if (empty() || Pos >= endIndex()) + return end(); + iterator I = begin(); + size_t Len = size(); + do { + size_t Mid = Len >> 1; + if (Pos < I[Mid].end) { + Len = Mid; + } else { + I += Mid + 1; + Len -= Mid + 1; + } + } while (Len); + return I; +} + +VNInfo *LiveRange::createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc) { + // Use the segment set, if it is available. + if (segmentSet != nullptr) + return CalcLiveRangeUtilSet(this).createDeadDef(Def, &VNIAlloc, nullptr); + // Otherwise use the segment vector. + return CalcLiveRangeUtilVector(this).createDeadDef(Def, &VNIAlloc, nullptr); +} + +VNInfo *LiveRange::createDeadDef(VNInfo *VNI) { + // Use the segment set, if it is available. + if (segmentSet != nullptr) + return CalcLiveRangeUtilSet(this).createDeadDef(VNI->def, nullptr, VNI); + // Otherwise use the segment vector. + return CalcLiveRangeUtilVector(this).createDeadDef(VNI->def, nullptr, VNI); +} + +// overlaps - Return true if the intersection of the two live ranges is +// not empty. +// +// An example for overlaps(): +// +// 0: A = ... +// 4: B = ... +// 8: C = A + B ;; last use of A +// +// The live ranges should look like: +// +// A = [3, 11) +// B = [7, x) +// C = [11, y) +// +// A->overlaps(C) should return false since we want to be able to join +// A and C. +// +bool LiveRange::overlapsFrom(const LiveRange& other, + const_iterator StartPos) const { + assert(!empty() && "empty range"); + const_iterator i = begin(); + const_iterator ie = end(); + const_iterator j = StartPos; + const_iterator je = other.end(); + + assert((StartPos->start <= i->start || StartPos == other.begin()) && + StartPos != other.end() && "Bogus start position hint!"); + + if (i->start < j->start) { + i = std::upper_bound(i, ie, j->start); + if (i != begin()) --i; + } else if (j->start < i->start) { + ++StartPos; + if (StartPos != other.end() && StartPos->start <= i->start) { + assert(StartPos < other.end() && i < end()); + j = std::upper_bound(j, je, i->start); + if (j != other.begin()) --j; + } + } else { + return true; + } + + if (j == je) return false; + + while (i != ie) { + if (i->start > j->start) { + std::swap(i, j); + std::swap(ie, je); + } + + if (i->end > j->start) + return true; + ++i; + } + + return false; +} + +bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP, + const SlotIndexes &Indexes) const { + assert(!empty() && "empty range"); + if (Other.empty()) + return false; + + // Use binary searches to find initial positions. + const_iterator I = find(Other.beginIndex()); + const_iterator IE = end(); + if (I == IE) + return false; + const_iterator J = Other.find(I->start); + const_iterator JE = Other.end(); + if (J == JE) + return false; + + while (true) { + // J has just been advanced to satisfy: + assert(J->end >= I->start); + // Check for an overlap. + if (J->start < I->end) { + // I and J are overlapping. Find the later start. + SlotIndex Def = std::max(I->start, J->start); + // Allow the overlap if Def is a coalescable copy. + if (Def.isBlock() || + !CP.isCoalescable(Indexes.getInstructionFromIndex(Def))) + return true; + } + // Advance the iterator that ends first to check for more overlaps. + if (J->end > I->end) { + std::swap(I, J); + std::swap(IE, JE); + } + // Advance J until J->end >= I->start. + do + if (++J == JE) + return false; + while (J->end < I->start); + } +} + +/// overlaps - Return true if the live range overlaps an interval specified +/// by [Start, End). +bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const { + assert(Start < End && "Invalid range"); + const_iterator I = std::lower_bound(begin(), end(), End); + return I != begin() && (--I)->end > Start; +} + +bool LiveRange::covers(const LiveRange &Other) const { + if (empty()) + return Other.empty(); + + const_iterator I = begin(); + for (const Segment &O : Other.segments) { + I = advanceTo(I, O.start); + if (I == end() || I->start > O.start) + return false; + + // Check adjacent live segments and see if we can get behind O.end. + while (I->end < O.end) { + const_iterator Last = I; + // Get next segment and abort if it was not adjacent. + ++I; + if (I == end() || Last->end != I->start) + return false; + } + } + return true; +} + +/// ValNo is dead, remove it. If it is the largest value number, just nuke it +/// (and any other deleted values neighboring it), otherwise mark it as ~1U so +/// it can be nuked later. +void LiveRange::markValNoForDeletion(VNInfo *ValNo) { + if (ValNo->id == getNumValNums()-1) { + do { + valnos.pop_back(); + } while (!valnos.empty() && valnos.back()->isUnused()); + } else { + ValNo->markUnused(); + } +} + +/// RenumberValues - Renumber all values in order of appearance and delete the +/// remaining unused values. +void LiveRange::RenumberValues() { + SmallPtrSet<VNInfo*, 8> Seen; + valnos.clear(); + for (const Segment &S : segments) { + VNInfo *VNI = S.valno; + if (!Seen.insert(VNI).second) + continue; + assert(!VNI->isUnused() && "Unused valno used by live segment"); + VNI->id = (unsigned)valnos.size(); + valnos.push_back(VNI); + } +} + +void LiveRange::addSegmentToSet(Segment S) { + CalcLiveRangeUtilSet(this).addSegment(S); +} + +LiveRange::iterator LiveRange::addSegment(Segment S) { + // Use the segment set, if it is available. + if (segmentSet != nullptr) { + addSegmentToSet(S); + return end(); + } + // Otherwise use the segment vector. + return CalcLiveRangeUtilVector(this).addSegment(S); +} + +void LiveRange::append(const Segment S) { + // Check that the segment belongs to the back of the list. + assert(segments.empty() || segments.back().end <= S.start); + segments.push_back(S); +} + +std::pair<VNInfo*,bool> LiveRange::extendInBlock(ArrayRef<SlotIndex> Undefs, + SlotIndex StartIdx, SlotIndex Kill) { + // Use the segment set, if it is available. + if (segmentSet != nullptr) + return CalcLiveRangeUtilSet(this).extendInBlock(Undefs, StartIdx, Kill); + // Otherwise use the segment vector. + return CalcLiveRangeUtilVector(this).extendInBlock(Undefs, StartIdx, Kill); +} + +VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) { + // Use the segment set, if it is available. + if (segmentSet != nullptr) + return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill); + // Otherwise use the segment vector. + return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill); +} + +/// Remove the specified segment from this range. Note that the segment must +/// be in a single Segment in its entirety. +void LiveRange::removeSegment(SlotIndex Start, SlotIndex End, + bool RemoveDeadValNo) { + // Find the Segment containing this span. + iterator I = find(Start); + assert(I != end() && "Segment is not in range!"); + assert(I->containsInterval(Start, End) + && "Segment is not entirely in range!"); + + // If the span we are removing is at the start of the Segment, adjust it. + VNInfo *ValNo = I->valno; + if (I->start == Start) { + if (I->end == End) { + if (RemoveDeadValNo) { + // Check if val# is dead. + bool isDead = true; + for (const_iterator II = begin(), EE = end(); II != EE; ++II) + if (II != I && II->valno == ValNo) { + isDead = false; + break; + } + if (isDead) { + // Now that ValNo is dead, remove it. + markValNoForDeletion(ValNo); + } + } + + segments.erase(I); // Removed the whole Segment. + } else + I->start = End; + return; + } + + // Otherwise if the span we are removing is at the end of the Segment, + // adjust the other way. + if (I->end == End) { + I->end = Start; + return; + } + + // Otherwise, we are splitting the Segment into two pieces. + SlotIndex OldEnd = I->end; + I->end = Start; // Trim the old segment. + + // Insert the new one. + segments.insert(std::next(I), Segment(End, OldEnd, ValNo)); +} + +/// removeValNo - Remove all the segments defined by the specified value#. +/// Also remove the value# from value# list. +void LiveRange::removeValNo(VNInfo *ValNo) { + if (empty()) return; + segments.erase(remove_if(*this, [ValNo](const Segment &S) { + return S.valno == ValNo; + }), end()); + // Now that ValNo is dead, remove it. + markValNoForDeletion(ValNo); +} + +void LiveRange::join(LiveRange &Other, + const int *LHSValNoAssignments, + const int *RHSValNoAssignments, + SmallVectorImpl<VNInfo *> &NewVNInfo) { + verify(); + + // Determine if any of our values are mapped. This is uncommon, so we want + // to avoid the range scan if not. + bool MustMapCurValNos = false; + unsigned NumVals = getNumValNums(); + unsigned NumNewVals = NewVNInfo.size(); + for (unsigned i = 0; i != NumVals; ++i) { + unsigned LHSValID = LHSValNoAssignments[i]; + if (i != LHSValID || + (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) { + MustMapCurValNos = true; + break; + } + } + + // If we have to apply a mapping to our base range assignment, rewrite it now. + if (MustMapCurValNos && !empty()) { + // Map the first live range. + + iterator OutIt = begin(); + OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]]; + for (iterator I = std::next(OutIt), E = end(); I != E; ++I) { + VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]]; + assert(nextValNo && "Huh?"); + + // If this live range has the same value # as its immediate predecessor, + // and if they are neighbors, remove one Segment. This happens when we + // have [0,4:0)[4,7:1) and map 0/1 onto the same value #. + if (OutIt->valno == nextValNo && OutIt->end == I->start) { + OutIt->end = I->end; + } else { + // Didn't merge. Move OutIt to the next segment, + ++OutIt; + OutIt->valno = nextValNo; + if (OutIt != I) { + OutIt->start = I->start; + OutIt->end = I->end; + } + } + } + // If we merge some segments, chop off the end. + ++OutIt; + segments.erase(OutIt, end()); + } + + // Rewrite Other values before changing the VNInfo ids. + // This can leave Other in an invalid state because we're not coalescing + // touching segments that now have identical values. That's OK since Other is + // not supposed to be valid after calling join(); + for (Segment &S : Other.segments) + S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]]; + + // Update val# info. Renumber them and make sure they all belong to this + // LiveRange now. Also remove dead val#'s. + unsigned NumValNos = 0; + for (unsigned i = 0; i < NumNewVals; ++i) { + VNInfo *VNI = NewVNInfo[i]; + if (VNI) { + if (NumValNos >= NumVals) + valnos.push_back(VNI); + else + valnos[NumValNos] = VNI; + VNI->id = NumValNos++; // Renumber val#. + } + } + if (NumNewVals < NumVals) + valnos.resize(NumNewVals); // shrinkify + + // Okay, now insert the RHS live segments into the LHS. + LiveRangeUpdater Updater(this); + for (Segment &S : Other.segments) + Updater.add(S); +} + +/// Merge all of the segments in RHS into this live range as the specified +/// value number. The segments in RHS are allowed to overlap with segments in +/// the current range, but only if the overlapping segments have the +/// specified value number. +void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS, + VNInfo *LHSValNo) { + LiveRangeUpdater Updater(this); + for (const Segment &S : RHS.segments) + Updater.add(S.start, S.end, LHSValNo); +} + +/// MergeValueInAsValue - Merge all of the live segments of a specific val# +/// in RHS into this live range as the specified value number. +/// The segments in RHS are allowed to overlap with segments in the +/// current range, it will replace the value numbers of the overlaped +/// segments with the specified value number. +void LiveRange::MergeValueInAsValue(const LiveRange &RHS, + const VNInfo *RHSValNo, + VNInfo *LHSValNo) { + LiveRangeUpdater Updater(this); + for (const Segment &S : RHS.segments) + if (S.valno == RHSValNo) + Updater.add(S.start, S.end, LHSValNo); +} + +/// MergeValueNumberInto - This method is called when two value nubmers +/// are found to be equivalent. This eliminates V1, replacing all +/// segments with the V1 value number with the V2 value number. This can +/// cause merging of V1/V2 values numbers and compaction of the value space. +VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) { + assert(V1 != V2 && "Identical value#'s are always equivalent!"); + + // This code actually merges the (numerically) larger value number into the + // smaller value number, which is likely to allow us to compactify the value + // space. The only thing we have to be careful of is to preserve the + // instruction that defines the result value. + + // Make sure V2 is smaller than V1. + if (V1->id < V2->id) { + V1->copyFrom(*V2); + std::swap(V1, V2); + } + + // Merge V1 segments into V2. + for (iterator I = begin(); I != end(); ) { + iterator S = I++; + if (S->valno != V1) continue; // Not a V1 Segment. + + // Okay, we found a V1 live range. If it had a previous, touching, V2 live + // range, extend it. + if (S != begin()) { + iterator Prev = S-1; + if (Prev->valno == V2 && Prev->end == S->start) { + Prev->end = S->end; + + // Erase this live-range. + segments.erase(S); + I = Prev+1; + S = Prev; + } + } + + // Okay, now we have a V1 or V2 live range that is maximally merged forward. + // Ensure that it is a V2 live-range. + S->valno = V2; + + // If we can merge it into later V2 segments, do so now. We ignore any + // following V1 segments, as they will be merged in subsequent iterations + // of the loop. + if (I != end()) { + if (I->start == S->end && I->valno == V2) { + S->end = I->end; + segments.erase(I); + I = S+1; + } + } + } + + // Now that V1 is dead, remove it. + markValNoForDeletion(V1); + + return V2; +} + +void LiveRange::flushSegmentSet() { + assert(segmentSet != nullptr && "segment set must have been created"); + assert( + segments.empty() && + "segment set can be used only initially before switching to the array"); + segments.append(segmentSet->begin(), segmentSet->end()); + segmentSet = nullptr; + verify(); +} + +bool LiveRange::isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const { + ArrayRef<SlotIndex>::iterator SlotI = Slots.begin(); + ArrayRef<SlotIndex>::iterator SlotE = Slots.end(); + + // If there are no regmask slots, we have nothing to search. + if (SlotI == SlotE) + return false; + + // Start our search at the first segment that ends after the first slot. + const_iterator SegmentI = find(*SlotI); + const_iterator SegmentE = end(); + + // If there are no segments that end after the first slot, we're done. + if (SegmentI == SegmentE) + return false; + + // Look for each slot in the live range. + for ( ; SlotI != SlotE; ++SlotI) { + // Go to the next segment that ends after the current slot. + // The slot may be within a hole in the range. + SegmentI = advanceTo(SegmentI, *SlotI); + if (SegmentI == SegmentE) + return false; + + // If this segment contains the slot, we're done. + if (SegmentI->contains(*SlotI)) + return true; + // Otherwise, look for the next slot. + } + + // We didn't find a segment containing any of the slots. + return false; +} + +void LiveInterval::freeSubRange(SubRange *S) { + S->~SubRange(); + // Memory was allocated with BumpPtr allocator and is not freed here. +} + +void LiveInterval::removeEmptySubRanges() { + SubRange **NextPtr = &SubRanges; + SubRange *I = *NextPtr; + while (I != nullptr) { + if (!I->empty()) { + NextPtr = &I->Next; + I = *NextPtr; + continue; + } + // Skip empty subranges until we find the first nonempty one. + do { + SubRange *Next = I->Next; + freeSubRange(I); + I = Next; + } while (I != nullptr && I->empty()); + *NextPtr = I; + } +} + +void LiveInterval::clearSubRanges() { + for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) { + Next = I->Next; + freeSubRange(I); + } + SubRanges = nullptr; +} + +/// For each VNI in \p SR, check whether or not that value defines part +/// of the mask describe by \p LaneMask and if not, remove that value +/// from \p SR. +static void stripValuesNotDefiningMask(unsigned Reg, LiveInterval::SubRange &SR, + LaneBitmask LaneMask, + const SlotIndexes &Indexes, + const TargetRegisterInfo &TRI) { + // Phys reg should not be tracked at subreg level. + // Same for noreg (Reg == 0). + if (!Register::isVirtualRegister(Reg) || !Reg) + return; + // Remove the values that don't define those lanes. + SmallVector<VNInfo *, 8> ToBeRemoved; + for (VNInfo *VNI : SR.valnos) { + if (VNI->isUnused()) + continue; + // PHI definitions don't have MI attached, so there is nothing + // we can use to strip the VNI. + if (VNI->isPHIDef()) + continue; + const MachineInstr *MI = Indexes.getInstructionFromIndex(VNI->def); + assert(MI && "Cannot find the definition of a value"); + bool hasDef = false; + for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { + if (!MOI->isReg() || !MOI->isDef()) + continue; + if (MOI->getReg() != Reg) + continue; + if ((TRI.getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) + continue; + hasDef = true; + break; + } + + if (!hasDef) + ToBeRemoved.push_back(VNI); + } + for (VNInfo *VNI : ToBeRemoved) + SR.removeValNo(VNI); + + // If the subrange is empty at this point, the MIR is invalid. Do not assert + // and let the verifier catch this case. +} + +void LiveInterval::refineSubRanges( + BumpPtrAllocator &Allocator, LaneBitmask LaneMask, + std::function<void(LiveInterval::SubRange &)> Apply, + const SlotIndexes &Indexes, const TargetRegisterInfo &TRI) { + LaneBitmask ToApply = LaneMask; + for (SubRange &SR : subranges()) { + LaneBitmask SRMask = SR.LaneMask; + LaneBitmask Matching = SRMask & LaneMask; + if (Matching.none()) + continue; + + SubRange *MatchingRange; + if (SRMask == Matching) { + // The subrange fits (it does not cover bits outside \p LaneMask). + MatchingRange = &SR; + } else { + // We have to split the subrange into a matching and non-matching part. + // Reduce lanemask of existing lane to non-matching part. + SR.LaneMask = SRMask & ~Matching; + // Create a new subrange for the matching part + MatchingRange = createSubRangeFrom(Allocator, Matching, SR); + // Now that the subrange is split in half, make sure we + // only keep in the subranges the VNIs that touch the related half. + stripValuesNotDefiningMask(reg, *MatchingRange, Matching, Indexes, TRI); + stripValuesNotDefiningMask(reg, SR, SR.LaneMask, Indexes, TRI); + } + Apply(*MatchingRange); + ToApply &= ~Matching; + } + // Create a new subrange if there are uncovered bits left. + if (ToApply.any()) { + SubRange *NewRange = createSubRange(Allocator, ToApply); + Apply(*NewRange); + } +} + +unsigned LiveInterval::getSize() const { + unsigned Sum = 0; + for (const Segment &S : segments) + Sum += S.start.distance(S.end); + return Sum; +} + +void LiveInterval::computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs, + LaneBitmask LaneMask, + const MachineRegisterInfo &MRI, + const SlotIndexes &Indexes) const { + assert(Register::isVirtualRegister(reg)); + LaneBitmask VRegMask = MRI.getMaxLaneMaskForVReg(reg); + assert((VRegMask & LaneMask).any()); + const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); + for (const MachineOperand &MO : MRI.def_operands(reg)) { + if (!MO.isUndef()) + continue; + unsigned SubReg = MO.getSubReg(); + assert(SubReg != 0 && "Undef should only be set on subreg defs"); + LaneBitmask DefMask = TRI.getSubRegIndexLaneMask(SubReg); + LaneBitmask UndefMask = VRegMask & ~DefMask; + if ((UndefMask & LaneMask).any()) { + const MachineInstr &MI = *MO.getParent(); + bool EarlyClobber = MO.isEarlyClobber(); + SlotIndex Pos = Indexes.getInstructionIndex(MI).getRegSlot(EarlyClobber); + Undefs.push_back(Pos); + } + } +} + +raw_ostream& llvm::operator<<(raw_ostream& OS, const LiveRange::Segment &S) { + return OS << '[' << S.start << ',' << S.end << ':' << S.valno->id << ')'; +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void LiveRange::Segment::dump() const { + dbgs() << *this << '\n'; +} +#endif + +void LiveRange::print(raw_ostream &OS) const { + if (empty()) + OS << "EMPTY"; + else { + for (const Segment &S : segments) { + OS << S; + assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo"); + } + } + + // Print value number info. + if (getNumValNums()) { + OS << " "; + unsigned vnum = 0; + for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e; + ++i, ++vnum) { + const VNInfo *vni = *i; + if (vnum) OS << ' '; + OS << vnum << '@'; + if (vni->isUnused()) { + OS << 'x'; + } else { + OS << vni->def; + if (vni->isPHIDef()) + OS << "-phi"; + } + } + } +} + +void LiveInterval::SubRange::print(raw_ostream &OS) const { + OS << " L" << PrintLaneMask(LaneMask) << ' ' + << static_cast<const LiveRange&>(*this); +} + +void LiveInterval::print(raw_ostream &OS) const { + OS << printReg(reg) << ' '; + super::print(OS); + // Print subranges + for (const SubRange &SR : subranges()) + OS << SR; + OS << " weight:" << weight; +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void LiveRange::dump() const { + dbgs() << *this << '\n'; +} + +LLVM_DUMP_METHOD void LiveInterval::SubRange::dump() const { + dbgs() << *this << '\n'; +} + +LLVM_DUMP_METHOD void LiveInterval::dump() const { + dbgs() << *this << '\n'; +} +#endif + +#ifndef NDEBUG +void LiveRange::verify() const { + for (const_iterator I = begin(), E = end(); I != E; ++I) { + assert(I->start.isValid()); + assert(I->end.isValid()); + assert(I->start < I->end); + assert(I->valno != nullptr); + assert(I->valno->id < valnos.size()); + assert(I->valno == valnos[I->valno->id]); + if (std::next(I) != E) { + assert(I->end <= std::next(I)->start); + if (I->end == std::next(I)->start) + assert(I->valno != std::next(I)->valno); + } + } +} + +void LiveInterval::verify(const MachineRegisterInfo *MRI) const { + super::verify(); + + // Make sure SubRanges are fine and LaneMasks are disjunct. + LaneBitmask Mask; + LaneBitmask MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg) + : LaneBitmask::getAll(); + for (const SubRange &SR : subranges()) { + // Subrange lanemask should be disjunct to any previous subrange masks. + assert((Mask & SR.LaneMask).none()); + Mask |= SR.LaneMask; + + // subrange mask should not contained in maximum lane mask for the vreg. + assert((Mask & ~MaxMask).none()); + // empty subranges must be removed. + assert(!SR.empty()); + + SR.verify(); + // Main liverange should cover subrange. + assert(covers(SR)); + } +} +#endif + +//===----------------------------------------------------------------------===// +// LiveRangeUpdater class +//===----------------------------------------------------------------------===// +// +// The LiveRangeUpdater class always maintains these invariants: +// +// - When LastStart is invalid, Spills is empty and the iterators are invalid. +// This is the initial state, and the state created by flush(). +// In this state, isDirty() returns false. +// +// Otherwise, segments are kept in three separate areas: +// +// 1. [begin; WriteI) at the front of LR. +// 2. [ReadI; end) at the back of LR. +// 3. Spills. +// +// - LR.begin() <= WriteI <= ReadI <= LR.end(). +// - Segments in all three areas are fully ordered and coalesced. +// - Segments in area 1 precede and can't coalesce with segments in area 2. +// - Segments in Spills precede and can't coalesce with segments in area 2. +// - No coalescing is possible between segments in Spills and segments in area +// 1, and there are no overlapping segments. +// +// The segments in Spills are not ordered with respect to the segments in area +// 1. They need to be merged. +// +// When they exist, Spills.back().start <= LastStart, +// and WriteI[-1].start <= LastStart. + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +void LiveRangeUpdater::print(raw_ostream &OS) const { + if (!isDirty()) { + if (LR) + OS << "Clean updater: " << *LR << '\n'; + else + OS << "Null updater.\n"; + return; + } + assert(LR && "Can't have null LR in dirty updater."); + OS << " updater with gap = " << (ReadI - WriteI) + << ", last start = " << LastStart + << ":\n Area 1:"; + for (const auto &S : make_range(LR->begin(), WriteI)) + OS << ' ' << S; + OS << "\n Spills:"; + for (unsigned I = 0, E = Spills.size(); I != E; ++I) + OS << ' ' << Spills[I]; + OS << "\n Area 2:"; + for (const auto &S : make_range(ReadI, LR->end())) + OS << ' ' << S; + OS << '\n'; +} + +LLVM_DUMP_METHOD void LiveRangeUpdater::dump() const { + print(errs()); +} +#endif + +// Determine if A and B should be coalesced. +static inline bool coalescable(const LiveRange::Segment &A, + const LiveRange::Segment &B) { + assert(A.start <= B.start && "Unordered live segments."); + if (A.end == B.start) + return A.valno == B.valno; + if (A.end < B.start) + return false; + assert(A.valno == B.valno && "Cannot overlap different values"); + return true; +} + +void LiveRangeUpdater::add(LiveRange::Segment Seg) { + assert(LR && "Cannot add to a null destination"); + + // Fall back to the regular add method if the live range + // is using the segment set instead of the segment vector. + if (LR->segmentSet != nullptr) { + LR->addSegmentToSet(Seg); + return; + } + + // Flush the state if Start moves backwards. + if (!LastStart.isValid() || LastStart > Seg.start) { + if (isDirty()) + flush(); + // This brings us to an uninitialized state. Reinitialize. + assert(Spills.empty() && "Leftover spilled segments"); + WriteI = ReadI = LR->begin(); + } + + // Remember start for next time. + LastStart = Seg.start; + + // Advance ReadI until it ends after Seg.start. + LiveRange::iterator E = LR->end(); + if (ReadI != E && ReadI->end <= Seg.start) { + // First try to close the gap between WriteI and ReadI with spills. + if (ReadI != WriteI) + mergeSpills(); + // Then advance ReadI. + if (ReadI == WriteI) + ReadI = WriteI = LR->find(Seg.start); + else + while (ReadI != E && ReadI->end <= Seg.start) + *WriteI++ = *ReadI++; + } + + assert(ReadI == E || ReadI->end > Seg.start); + + // Check if the ReadI segment begins early. + if (ReadI != E && ReadI->start <= Seg.start) { + assert(ReadI->valno == Seg.valno && "Cannot overlap different values"); + // Bail if Seg is completely contained in ReadI. + if (ReadI->end >= Seg.end) + return; + // Coalesce into Seg. + Seg.start = ReadI->start; + ++ReadI; + } + + // Coalesce as much as possible from ReadI into Seg. + while (ReadI != E && coalescable(Seg, *ReadI)) { + Seg.end = std::max(Seg.end, ReadI->end); + ++ReadI; + } + + // Try coalescing Spills.back() into Seg. + if (!Spills.empty() && coalescable(Spills.back(), Seg)) { + Seg.start = Spills.back().start; + Seg.end = std::max(Spills.back().end, Seg.end); + Spills.pop_back(); + } + + // Try coalescing Seg into WriteI[-1]. + if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) { + WriteI[-1].end = std::max(WriteI[-1].end, Seg.end); + return; + } + + // Seg doesn't coalesce with anything, and needs to be inserted somewhere. + if (WriteI != ReadI) { + *WriteI++ = Seg; + return; + } + + // Finally, append to LR or Spills. + if (WriteI == E) { + LR->segments.push_back(Seg); + WriteI = ReadI = LR->end(); + } else + Spills.push_back(Seg); +} + +// Merge as many spilled segments as possible into the gap between WriteI +// and ReadI. Advance WriteI to reflect the inserted instructions. +void LiveRangeUpdater::mergeSpills() { + // Perform a backwards merge of Spills and [SpillI;WriteI). + size_t GapSize = ReadI - WriteI; + size_t NumMoved = std::min(Spills.size(), GapSize); + LiveRange::iterator Src = WriteI; + LiveRange::iterator Dst = Src + NumMoved; + LiveRange::iterator SpillSrc = Spills.end(); + LiveRange::iterator B = LR->begin(); + + // This is the new WriteI position after merging spills. + WriteI = Dst; + + // Now merge Src and Spills backwards. + while (Src != Dst) { + if (Src != B && Src[-1].start > SpillSrc[-1].start) + *--Dst = *--Src; + else + *--Dst = *--SpillSrc; + } + assert(NumMoved == size_t(Spills.end() - SpillSrc)); + Spills.erase(SpillSrc, Spills.end()); +} + +void LiveRangeUpdater::flush() { + if (!isDirty()) + return; + // Clear the dirty state. + LastStart = SlotIndex(); + + assert(LR && "Cannot add to a null destination"); + + // Nothing to merge? + if (Spills.empty()) { + LR->segments.erase(WriteI, ReadI); + LR->verify(); + return; + } + + // Resize the WriteI - ReadI gap to match Spills. + size_t GapSize = ReadI - WriteI; + if (GapSize < Spills.size()) { + // The gap is too small. Make some room. + size_t WritePos = WriteI - LR->begin(); + LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment()); + // This also invalidated ReadI, but it is recomputed below. + WriteI = LR->begin() + WritePos; + } else { + // Shrink the gap if necessary. + LR->segments.erase(WriteI + Spills.size(), ReadI); + } + ReadI = WriteI + Spills.size(); + mergeSpills(); + LR->verify(); +} + +unsigned ConnectedVNInfoEqClasses::Classify(const LiveRange &LR) { + // Create initial equivalence classes. + EqClass.clear(); + EqClass.grow(LR.getNumValNums()); + + const VNInfo *used = nullptr, *unused = nullptr; + + // Determine connections. + for (const VNInfo *VNI : LR.valnos) { + // Group all unused values into one class. + if (VNI->isUnused()) { + if (unused) + EqClass.join(unused->id, VNI->id); + unused = VNI; + continue; + } + used = VNI; + if (VNI->isPHIDef()) { + const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); + assert(MBB && "Phi-def has no defining MBB"); + // Connect to values live out of predecessors. + for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), + PE = MBB->pred_end(); PI != PE; ++PI) + if (const VNInfo *PVNI = LR.getVNInfoBefore(LIS.getMBBEndIdx(*PI))) + EqClass.join(VNI->id, PVNI->id); + } else { + // Normal value defined by an instruction. Check for two-addr redef. + // FIXME: This could be coincidental. Should we really check for a tied + // operand constraint? + // Note that VNI->def may be a use slot for an early clobber def. + if (const VNInfo *UVNI = LR.getVNInfoBefore(VNI->def)) + EqClass.join(VNI->id, UVNI->id); + } + } + + // Lump all the unused values in with the last used value. + if (used && unused) + EqClass.join(used->id, unused->id); + + EqClass.compress(); + return EqClass.getNumClasses(); +} + +void ConnectedVNInfoEqClasses::Distribute(LiveInterval &LI, LiveInterval *LIV[], + MachineRegisterInfo &MRI) { + // Rewrite instructions. + for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg), + RE = MRI.reg_end(); RI != RE;) { + MachineOperand &MO = *RI; + MachineInstr *MI = RI->getParent(); + ++RI; + const VNInfo *VNI; + if (MI->isDebugValue()) { + // DBG_VALUE instructions don't have slot indexes, so get the index of + // the instruction before them. The value is defined there too. + SlotIndex Idx = LIS.getSlotIndexes()->getIndexBefore(*MI); + VNI = LI.Query(Idx).valueOut(); + } else { + SlotIndex Idx = LIS.getInstructionIndex(*MI); + LiveQueryResult LRQ = LI.Query(Idx); + VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined(); + } + // In the case of an <undef> use that isn't tied to any def, VNI will be + // NULL. If the use is tied to a def, VNI will be the defined value. + if (!VNI) + continue; + if (unsigned EqClass = getEqClass(VNI)) + MO.setReg(LIV[EqClass-1]->reg); + } + + // Distribute subregister liveranges. + if (LI.hasSubRanges()) { + unsigned NumComponents = EqClass.getNumClasses(); + SmallVector<unsigned, 8> VNIMapping; + SmallVector<LiveInterval::SubRange*, 8> SubRanges; + BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); + for (LiveInterval::SubRange &SR : LI.subranges()) { + // Create new subranges in the split intervals and construct a mapping + // for the VNInfos in the subrange. + unsigned NumValNos = SR.valnos.size(); + VNIMapping.clear(); + VNIMapping.reserve(NumValNos); + SubRanges.clear(); + SubRanges.resize(NumComponents-1, nullptr); + for (unsigned I = 0; I < NumValNos; ++I) { + const VNInfo &VNI = *SR.valnos[I]; + unsigned ComponentNum; + if (VNI.isUnused()) { + ComponentNum = 0; + } else { + const VNInfo *MainRangeVNI = LI.getVNInfoAt(VNI.def); + assert(MainRangeVNI != nullptr + && "SubRange def must have corresponding main range def"); + ComponentNum = getEqClass(MainRangeVNI); + if (ComponentNum > 0 && SubRanges[ComponentNum-1] == nullptr) { + SubRanges[ComponentNum-1] + = LIV[ComponentNum-1]->createSubRange(Allocator, SR.LaneMask); + } + } + VNIMapping.push_back(ComponentNum); + } + DistributeRange(SR, SubRanges.data(), VNIMapping); + } + LI.removeEmptySubRanges(); + } + + // Distribute main liverange. + DistributeRange(LI, LIV, EqClass); +} |