diff options
Diffstat (limited to 'llvm/lib/CodeGen/MachineInstr.cpp')
| -rw-r--r-- | llvm/lib/CodeGen/MachineInstr.cpp | 2196 | 
1 files changed, 2196 insertions, 0 deletions
| diff --git a/llvm/lib/CodeGen/MachineInstr.cpp b/llvm/lib/CodeGen/MachineInstr.cpp new file mode 100644 index 000000000000..fec20b2b1a05 --- /dev/null +++ b/llvm/lib/CodeGen/MachineInstr.cpp @@ -0,0 +1,2196 @@ +//===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Methods common to all machine instructions. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/FoldingSet.h" +#include "llvm/ADT/Hashing.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallBitVector.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/Loads.h" +#include "llvm/Analysis/MemoryLocation.h" +#include "llvm/CodeGen/GlobalISel/RegisterBank.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineInstrBundle.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/PseudoSourceValue.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/ModuleSlotTracker.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Value.h" +#include "llvm/MC/MCInstrDesc.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/MC/MCSymbol.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/LowLevelTypeImpl.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetIntrinsicInfo.h" +#include "llvm/Target/TargetMachine.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <cstring> +#include <iterator> +#include <utility> + +using namespace llvm; + +static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { +  if (const MachineBasicBlock *MBB = MI.getParent()) +    if (const MachineFunction *MF = MBB->getParent()) +      return MF; +  return nullptr; +} + +// Try to crawl up to the machine function and get TRI and IntrinsicInfo from +// it. +static void tryToGetTargetInfo(const MachineInstr &MI, +                               const TargetRegisterInfo *&TRI, +                               const MachineRegisterInfo *&MRI, +                               const TargetIntrinsicInfo *&IntrinsicInfo, +                               const TargetInstrInfo *&TII) { + +  if (const MachineFunction *MF = getMFIfAvailable(MI)) { +    TRI = MF->getSubtarget().getRegisterInfo(); +    MRI = &MF->getRegInfo(); +    IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); +    TII = MF->getSubtarget().getInstrInfo(); +  } +} + +void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { +  if (MCID->ImplicitDefs) +    for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; +           ++ImpDefs) +      addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); +  if (MCID->ImplicitUses) +    for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; +           ++ImpUses) +      addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); +} + +/// MachineInstr ctor - This constructor creates a MachineInstr and adds the +/// implicit operands. It reserves space for the number of operands specified by +/// the MCInstrDesc. +MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, +                           DebugLoc dl, bool NoImp) +    : MCID(&tid), debugLoc(std::move(dl)) { +  assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); + +  // Reserve space for the expected number of operands. +  if (unsigned NumOps = MCID->getNumOperands() + +    MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { +    CapOperands = OperandCapacity::get(NumOps); +    Operands = MF.allocateOperandArray(CapOperands); +  } + +  if (!NoImp) +    addImplicitDefUseOperands(MF); +} + +/// MachineInstr ctor - Copies MachineInstr arg exactly +/// +MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) +    : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()) { +  assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); + +  CapOperands = OperandCapacity::get(MI.getNumOperands()); +  Operands = MF.allocateOperandArray(CapOperands); + +  // Copy operands. +  for (const MachineOperand &MO : MI.operands()) +    addOperand(MF, MO); + +  // Copy all the sensible flags. +  setFlags(MI.Flags); +} + +/// getRegInfo - If this instruction is embedded into a MachineFunction, +/// return the MachineRegisterInfo object for the current function, otherwise +/// return null. +MachineRegisterInfo *MachineInstr::getRegInfo() { +  if (MachineBasicBlock *MBB = getParent()) +    return &MBB->getParent()->getRegInfo(); +  return nullptr; +} + +/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in +/// this instruction from their respective use lists.  This requires that the +/// operands already be on their use lists. +void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { +  for (MachineOperand &MO : operands()) +    if (MO.isReg()) +      MRI.removeRegOperandFromUseList(&MO); +} + +/// AddRegOperandsToUseLists - Add all of the register operands in +/// this instruction from their respective use lists.  This requires that the +/// operands not be on their use lists yet. +void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { +  for (MachineOperand &MO : operands()) +    if (MO.isReg()) +      MRI.addRegOperandToUseList(&MO); +} + +void MachineInstr::addOperand(const MachineOperand &Op) { +  MachineBasicBlock *MBB = getParent(); +  assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); +  MachineFunction *MF = MBB->getParent(); +  assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); +  addOperand(*MF, Op); +} + +/// Move NumOps MachineOperands from Src to Dst, with support for overlapping +/// ranges. If MRI is non-null also update use-def chains. +static void moveOperands(MachineOperand *Dst, MachineOperand *Src, +                         unsigned NumOps, MachineRegisterInfo *MRI) { +  if (MRI) +    return MRI->moveOperands(Dst, Src, NumOps); + +  // MachineOperand is a trivially copyable type so we can just use memmove. +  std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); +} + +/// addOperand - Add the specified operand to the instruction.  If it is an +/// implicit operand, it is added to the end of the operand list.  If it is +/// an explicit operand it is added at the end of the explicit operand list +/// (before the first implicit operand). +void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { +  assert(MCID && "Cannot add operands before providing an instr descriptor"); + +  // Check if we're adding one of our existing operands. +  if (&Op >= Operands && &Op < Operands + NumOperands) { +    // This is unusual: MI->addOperand(MI->getOperand(i)). +    // If adding Op requires reallocating or moving existing operands around, +    // the Op reference could go stale. Support it by copying Op. +    MachineOperand CopyOp(Op); +    return addOperand(MF, CopyOp); +  } + +  // Find the insert location for the new operand.  Implicit registers go at +  // the end, everything else goes before the implicit regs. +  // +  // FIXME: Allow mixed explicit and implicit operands on inline asm. +  // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as +  // implicit-defs, but they must not be moved around.  See the FIXME in +  // InstrEmitter.cpp. +  unsigned OpNo = getNumOperands(); +  bool isImpReg = Op.isReg() && Op.isImplicit(); +  if (!isImpReg && !isInlineAsm()) { +    while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { +      --OpNo; +      assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); +    } +  } + +#ifndef NDEBUG +  bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata || +                   Op.getType() == MachineOperand::MO_MCSymbol; +  // OpNo now points as the desired insertion point.  Unless this is a variadic +  // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). +  // RegMask operands go between the explicit and implicit operands. +  assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || +          OpNo < MCID->getNumOperands() || isDebugOp) && +         "Trying to add an operand to a machine instr that is already done!"); +#endif + +  MachineRegisterInfo *MRI = getRegInfo(); + +  // Determine if the Operands array needs to be reallocated. +  // Save the old capacity and operand array. +  OperandCapacity OldCap = CapOperands; +  MachineOperand *OldOperands = Operands; +  if (!OldOperands || OldCap.getSize() == getNumOperands()) { +    CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); +    Operands = MF.allocateOperandArray(CapOperands); +    // Move the operands before the insertion point. +    if (OpNo) +      moveOperands(Operands, OldOperands, OpNo, MRI); +  } + +  // Move the operands following the insertion point. +  if (OpNo != NumOperands) +    moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, +                 MRI); +  ++NumOperands; + +  // Deallocate the old operand array. +  if (OldOperands != Operands && OldOperands) +    MF.deallocateOperandArray(OldCap, OldOperands); + +  // Copy Op into place. It still needs to be inserted into the MRI use lists. +  MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); +  NewMO->ParentMI = this; + +  // When adding a register operand, tell MRI about it. +  if (NewMO->isReg()) { +    // Ensure isOnRegUseList() returns false, regardless of Op's status. +    NewMO->Contents.Reg.Prev = nullptr; +    // Ignore existing ties. This is not a property that can be copied. +    NewMO->TiedTo = 0; +    // Add the new operand to MRI, but only for instructions in an MBB. +    if (MRI) +      MRI->addRegOperandToUseList(NewMO); +    // The MCID operand information isn't accurate until we start adding +    // explicit operands. The implicit operands are added first, then the +    // explicits are inserted before them. +    if (!isImpReg) { +      // Tie uses to defs as indicated in MCInstrDesc. +      if (NewMO->isUse()) { +        int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); +        if (DefIdx != -1) +          tieOperands(DefIdx, OpNo); +      } +      // If the register operand is flagged as early, mark the operand as such. +      if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) +        NewMO->setIsEarlyClobber(true); +    } +  } +} + +/// RemoveOperand - Erase an operand  from an instruction, leaving it with one +/// fewer operand than it started with. +/// +void MachineInstr::RemoveOperand(unsigned OpNo) { +  assert(OpNo < getNumOperands() && "Invalid operand number"); +  untieRegOperand(OpNo); + +#ifndef NDEBUG +  // Moving tied operands would break the ties. +  for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) +    if (Operands[i].isReg()) +      assert(!Operands[i].isTied() && "Cannot move tied operands"); +#endif + +  MachineRegisterInfo *MRI = getRegInfo(); +  if (MRI && Operands[OpNo].isReg()) +    MRI->removeRegOperandFromUseList(Operands + OpNo); + +  // Don't call the MachineOperand destructor. A lot of this code depends on +  // MachineOperand having a trivial destructor anyway, and adding a call here +  // wouldn't make it 'destructor-correct'. + +  if (unsigned N = NumOperands - 1 - OpNo) +    moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); +  --NumOperands; +} + +void MachineInstr::dropMemRefs(MachineFunction &MF) { +  if (memoperands_empty()) +    return; + +  // See if we can just drop all of our extra info. +  if (!getPreInstrSymbol() && !getPostInstrSymbol()) { +    Info.clear(); +    return; +  } +  if (!getPostInstrSymbol()) { +    Info.set<EIIK_PreInstrSymbol>(getPreInstrSymbol()); +    return; +  } +  if (!getPreInstrSymbol()) { +    Info.set<EIIK_PostInstrSymbol>(getPostInstrSymbol()); +    return; +  } + +  // Otherwise allocate a fresh extra info with just these symbols. +  Info.set<EIIK_OutOfLine>( +      MF.createMIExtraInfo({}, getPreInstrSymbol(), getPostInstrSymbol())); +} + +void MachineInstr::setMemRefs(MachineFunction &MF, +                              ArrayRef<MachineMemOperand *> MMOs) { +  if (MMOs.empty()) { +    dropMemRefs(MF); +    return; +  } + +  // Try to store a single MMO inline. +  if (MMOs.size() == 1 && !getPreInstrSymbol() && !getPostInstrSymbol()) { +    Info.set<EIIK_MMO>(MMOs[0]); +    return; +  } + +  // Otherwise create an extra info struct with all of our info. +  Info.set<EIIK_OutOfLine>( +      MF.createMIExtraInfo(MMOs, getPreInstrSymbol(), getPostInstrSymbol())); +} + +void MachineInstr::addMemOperand(MachineFunction &MF, +                                 MachineMemOperand *MO) { +  SmallVector<MachineMemOperand *, 2> MMOs; +  MMOs.append(memoperands_begin(), memoperands_end()); +  MMOs.push_back(MO); +  setMemRefs(MF, MMOs); +} + +void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { +  if (this == &MI) +    // Nothing to do for a self-clone! +    return; + +  assert(&MF == MI.getMF() && +         "Invalid machine functions when cloning memory refrences!"); +  // See if we can just steal the extra info already allocated for the +  // instruction. We can do this whenever the pre- and post-instruction symbols +  // are the same (including null). +  if (getPreInstrSymbol() == MI.getPreInstrSymbol() && +      getPostInstrSymbol() == MI.getPostInstrSymbol()) { +    Info = MI.Info; +    return; +  } + +  // Otherwise, fall back on a copy-based clone. +  setMemRefs(MF, MI.memoperands()); +} + +/// Check to see if the MMOs pointed to by the two MemRefs arrays are +/// identical. +static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, +                             ArrayRef<MachineMemOperand *> RHS) { +  if (LHS.size() != RHS.size()) +    return false; + +  auto LHSPointees = make_pointee_range(LHS); +  auto RHSPointees = make_pointee_range(RHS); +  return std::equal(LHSPointees.begin(), LHSPointees.end(), +                    RHSPointees.begin()); +} + +void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, +                                      ArrayRef<const MachineInstr *> MIs) { +  // Try handling easy numbers of MIs with simpler mechanisms. +  if (MIs.empty()) { +    dropMemRefs(MF); +    return; +  } +  if (MIs.size() == 1) { +    cloneMemRefs(MF, *MIs[0]); +    return; +  } +  // Because an empty memoperands list provides *no* information and must be +  // handled conservatively (assuming the instruction can do anything), the only +  // way to merge with it is to drop all other memoperands. +  if (MIs[0]->memoperands_empty()) { +    dropMemRefs(MF); +    return; +  } + +  // Handle the general case. +  SmallVector<MachineMemOperand *, 2> MergedMMOs; +  // Start with the first instruction. +  assert(&MF == MIs[0]->getMF() && +         "Invalid machine functions when cloning memory references!"); +  MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end()); +  // Now walk all the other instructions and accumulate any different MMOs. +  for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) { +    assert(&MF == MI.getMF() && +           "Invalid machine functions when cloning memory references!"); + +    // Skip MIs with identical operands to the first. This is a somewhat +    // arbitrary hack but will catch common cases without being quadratic. +    // TODO: We could fully implement merge semantics here if needed. +    if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands())) +      continue; + +    // Because an empty memoperands list provides *no* information and must be +    // handled conservatively (assuming the instruction can do anything), the +    // only way to merge with it is to drop all other memoperands. +    if (MI.memoperands_empty()) { +      dropMemRefs(MF); +      return; +    } + +    // Otherwise accumulate these into our temporary buffer of the merged state. +    MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end()); +  } + +  setMemRefs(MF, MergedMMOs); +} + +void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { +  MCSymbol *OldSymbol = getPreInstrSymbol(); +  if (OldSymbol == Symbol) +    return; +  if (OldSymbol && !Symbol) { +    // We're removing a symbol rather than adding one. Try to clean up any +    // extra info carried around. +    if (Info.is<EIIK_PreInstrSymbol>()) { +      Info.clear(); +      return; +    } + +    if (memoperands_empty()) { +      assert(getPostInstrSymbol() && +             "Should never have only a single symbol allocated out-of-line!"); +      Info.set<EIIK_PostInstrSymbol>(getPostInstrSymbol()); +      return; +    } + +    // Otherwise fallback on the generic update. +  } else if (!Info || Info.is<EIIK_PreInstrSymbol>()) { +    // If we don't have any other extra info, we can store this inline. +    Info.set<EIIK_PreInstrSymbol>(Symbol); +    return; +  } + +  // Otherwise, allocate a full new set of extra info. +  // FIXME: Maybe we should make the symbols in the extra info mutable? +  Info.set<EIIK_OutOfLine>( +      MF.createMIExtraInfo(memoperands(), Symbol, getPostInstrSymbol())); +} + +void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { +  MCSymbol *OldSymbol = getPostInstrSymbol(); +  if (OldSymbol == Symbol) +    return; +  if (OldSymbol && !Symbol) { +    // We're removing a symbol rather than adding one. Try to clean up any +    // extra info carried around. +    if (Info.is<EIIK_PostInstrSymbol>()) { +      Info.clear(); +      return; +    } + +    if (memoperands_empty()) { +      assert(getPreInstrSymbol() && +             "Should never have only a single symbol allocated out-of-line!"); +      Info.set<EIIK_PreInstrSymbol>(getPreInstrSymbol()); +      return; +    } + +    // Otherwise fallback on the generic update. +  } else if (!Info || Info.is<EIIK_PostInstrSymbol>()) { +    // If we don't have any other extra info, we can store this inline. +    Info.set<EIIK_PostInstrSymbol>(Symbol); +    return; +  } + +  // Otherwise, allocate a full new set of extra info. +  // FIXME: Maybe we should make the symbols in the extra info mutable? +  Info.set<EIIK_OutOfLine>( +      MF.createMIExtraInfo(memoperands(), getPreInstrSymbol(), Symbol)); +} + +void MachineInstr::cloneInstrSymbols(MachineFunction &MF, +                                     const MachineInstr &MI) { +  if (this == &MI) +    // Nothing to do for a self-clone! +    return; + +  assert(&MF == MI.getMF() && +         "Invalid machine functions when cloning instruction symbols!"); + +  setPreInstrSymbol(MF, MI.getPreInstrSymbol()); +  setPostInstrSymbol(MF, MI.getPostInstrSymbol()); +} + +uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { +  // For now, the just return the union of the flags. If the flags get more +  // complicated over time, we might need more logic here. +  return getFlags() | Other.getFlags(); +} + +uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) { +  uint16_t MIFlags = 0; +  // Copy the wrapping flags. +  if (const OverflowingBinaryOperator *OB = +          dyn_cast<OverflowingBinaryOperator>(&I)) { +    if (OB->hasNoSignedWrap()) +      MIFlags |= MachineInstr::MIFlag::NoSWrap; +    if (OB->hasNoUnsignedWrap()) +      MIFlags |= MachineInstr::MIFlag::NoUWrap; +  } + +  // Copy the exact flag. +  if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I)) +    if (PE->isExact()) +      MIFlags |= MachineInstr::MIFlag::IsExact; + +  // Copy the fast-math flags. +  if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) { +    const FastMathFlags Flags = FP->getFastMathFlags(); +    if (Flags.noNaNs()) +      MIFlags |= MachineInstr::MIFlag::FmNoNans; +    if (Flags.noInfs()) +      MIFlags |= MachineInstr::MIFlag::FmNoInfs; +    if (Flags.noSignedZeros()) +      MIFlags |= MachineInstr::MIFlag::FmNsz; +    if (Flags.allowReciprocal()) +      MIFlags |= MachineInstr::MIFlag::FmArcp; +    if (Flags.allowContract()) +      MIFlags |= MachineInstr::MIFlag::FmContract; +    if (Flags.approxFunc()) +      MIFlags |= MachineInstr::MIFlag::FmAfn; +    if (Flags.allowReassoc()) +      MIFlags |= MachineInstr::MIFlag::FmReassoc; +  } + +  return MIFlags; +} + +void MachineInstr::copyIRFlags(const Instruction &I) { +  Flags = copyFlagsFromInstruction(I); +} + +bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const { +  assert(!isBundledWithPred() && "Must be called on bundle header"); +  for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { +    if (MII->getDesc().getFlags() & Mask) { +      if (Type == AnyInBundle) +        return true; +    } else { +      if (Type == AllInBundle && !MII->isBundle()) +        return false; +    } +    // This was the last instruction in the bundle. +    if (!MII->isBundledWithSucc()) +      return Type == AllInBundle; +  } +} + +bool MachineInstr::isIdenticalTo(const MachineInstr &Other, +                                 MICheckType Check) const { +  // If opcodes or number of operands are not the same then the two +  // instructions are obviously not identical. +  if (Other.getOpcode() != getOpcode() || +      Other.getNumOperands() != getNumOperands()) +    return false; + +  if (isBundle()) { +    // We have passed the test above that both instructions have the same +    // opcode, so we know that both instructions are bundles here. Let's compare +    // MIs inside the bundle. +    assert(Other.isBundle() && "Expected that both instructions are bundles."); +    MachineBasicBlock::const_instr_iterator I1 = getIterator(); +    MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); +    // Loop until we analysed the last intruction inside at least one of the +    // bundles. +    while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { +      ++I1; +      ++I2; +      if (!I1->isIdenticalTo(*I2, Check)) +        return false; +    } +    // If we've reached the end of just one of the two bundles, but not both, +    // the instructions are not identical. +    if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) +      return false; +  } + +  // Check operands to make sure they match. +  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { +    const MachineOperand &MO = getOperand(i); +    const MachineOperand &OMO = Other.getOperand(i); +    if (!MO.isReg()) { +      if (!MO.isIdenticalTo(OMO)) +        return false; +      continue; +    } + +    // Clients may or may not want to ignore defs when testing for equality. +    // For example, machine CSE pass only cares about finding common +    // subexpressions, so it's safe to ignore virtual register defs. +    if (MO.isDef()) { +      if (Check == IgnoreDefs) +        continue; +      else if (Check == IgnoreVRegDefs) { +        if (!Register::isVirtualRegister(MO.getReg()) || +            !Register::isVirtualRegister(OMO.getReg())) +          if (!MO.isIdenticalTo(OMO)) +            return false; +      } else { +        if (!MO.isIdenticalTo(OMO)) +          return false; +        if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) +          return false; +      } +    } else { +      if (!MO.isIdenticalTo(OMO)) +        return false; +      if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) +        return false; +    } +  } +  // If DebugLoc does not match then two debug instructions are not identical. +  if (isDebugInstr()) +    if (getDebugLoc() && Other.getDebugLoc() && +        getDebugLoc() != Other.getDebugLoc()) +      return false; +  return true; +} + +const MachineFunction *MachineInstr::getMF() const { +  return getParent()->getParent(); +} + +MachineInstr *MachineInstr::removeFromParent() { +  assert(getParent() && "Not embedded in a basic block!"); +  return getParent()->remove(this); +} + +MachineInstr *MachineInstr::removeFromBundle() { +  assert(getParent() && "Not embedded in a basic block!"); +  return getParent()->remove_instr(this); +} + +void MachineInstr::eraseFromParent() { +  assert(getParent() && "Not embedded in a basic block!"); +  getParent()->erase(this); +} + +void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { +  assert(getParent() && "Not embedded in a basic block!"); +  MachineBasicBlock *MBB = getParent(); +  MachineFunction *MF = MBB->getParent(); +  assert(MF && "Not embedded in a function!"); + +  MachineInstr *MI = (MachineInstr *)this; +  MachineRegisterInfo &MRI = MF->getRegInfo(); + +  for (const MachineOperand &MO : MI->operands()) { +    if (!MO.isReg() || !MO.isDef()) +      continue; +    Register Reg = MO.getReg(); +    if (!Reg.isVirtual()) +      continue; +    MRI.markUsesInDebugValueAsUndef(Reg); +  } +  MI->eraseFromParent(); +} + +void MachineInstr::eraseFromBundle() { +  assert(getParent() && "Not embedded in a basic block!"); +  getParent()->erase_instr(this); +} + +unsigned MachineInstr::getNumExplicitOperands() const { +  unsigned NumOperands = MCID->getNumOperands(); +  if (!MCID->isVariadic()) +    return NumOperands; + +  for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { +    const MachineOperand &MO = getOperand(I); +    // The operands must always be in the following order: +    // - explicit reg defs, +    // - other explicit operands (reg uses, immediates, etc.), +    // - implicit reg defs +    // - implicit reg uses +    if (MO.isReg() && MO.isImplicit()) +      break; +    ++NumOperands; +  } +  return NumOperands; +} + +unsigned MachineInstr::getNumExplicitDefs() const { +  unsigned NumDefs = MCID->getNumDefs(); +  if (!MCID->isVariadic()) +    return NumDefs; + +  for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { +    const MachineOperand &MO = getOperand(I); +    if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) +      break; +    ++NumDefs; +  } +  return NumDefs; +} + +void MachineInstr::bundleWithPred() { +  assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); +  setFlag(BundledPred); +  MachineBasicBlock::instr_iterator Pred = getIterator(); +  --Pred; +  assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); +  Pred->setFlag(BundledSucc); +} + +void MachineInstr::bundleWithSucc() { +  assert(!isBundledWithSucc() && "MI is already bundled with its successor"); +  setFlag(BundledSucc); +  MachineBasicBlock::instr_iterator Succ = getIterator(); +  ++Succ; +  assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); +  Succ->setFlag(BundledPred); +} + +void MachineInstr::unbundleFromPred() { +  assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); +  clearFlag(BundledPred); +  MachineBasicBlock::instr_iterator Pred = getIterator(); +  --Pred; +  assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); +  Pred->clearFlag(BundledSucc); +} + +void MachineInstr::unbundleFromSucc() { +  assert(isBundledWithSucc() && "MI isn't bundled with its successor"); +  clearFlag(BundledSucc); +  MachineBasicBlock::instr_iterator Succ = getIterator(); +  ++Succ; +  assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); +  Succ->clearFlag(BundledPred); +} + +bool MachineInstr::isStackAligningInlineAsm() const { +  if (isInlineAsm()) { +    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); +    if (ExtraInfo & InlineAsm::Extra_IsAlignStack) +      return true; +  } +  return false; +} + +InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { +  assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); +  unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); +  return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); +} + +int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, +                                       unsigned *GroupNo) const { +  assert(isInlineAsm() && "Expected an inline asm instruction"); +  assert(OpIdx < getNumOperands() && "OpIdx out of range"); + +  // Ignore queries about the initial operands. +  if (OpIdx < InlineAsm::MIOp_FirstOperand) +    return -1; + +  unsigned Group = 0; +  unsigned NumOps; +  for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; +       i += NumOps) { +    const MachineOperand &FlagMO = getOperand(i); +    // If we reach the implicit register operands, stop looking. +    if (!FlagMO.isImm()) +      return -1; +    NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); +    if (i + NumOps > OpIdx) { +      if (GroupNo) +        *GroupNo = Group; +      return i; +    } +    ++Group; +  } +  return -1; +} + +const DILabel *MachineInstr::getDebugLabel() const { +  assert(isDebugLabel() && "not a DBG_LABEL"); +  return cast<DILabel>(getOperand(0).getMetadata()); +} + +const DILocalVariable *MachineInstr::getDebugVariable() const { +  assert(isDebugValue() && "not a DBG_VALUE"); +  return cast<DILocalVariable>(getOperand(2).getMetadata()); +} + +const DIExpression *MachineInstr::getDebugExpression() const { +  assert(isDebugValue() && "not a DBG_VALUE"); +  return cast<DIExpression>(getOperand(3).getMetadata()); +} + +bool MachineInstr::isDebugEntryValue() const { +  return isDebugValue() && getDebugExpression()->isEntryValue(); +} + +const TargetRegisterClass* +MachineInstr::getRegClassConstraint(unsigned OpIdx, +                                    const TargetInstrInfo *TII, +                                    const TargetRegisterInfo *TRI) const { +  assert(getParent() && "Can't have an MBB reference here!"); +  assert(getMF() && "Can't have an MF reference here!"); +  const MachineFunction &MF = *getMF(); + +  // Most opcodes have fixed constraints in their MCInstrDesc. +  if (!isInlineAsm()) +    return TII->getRegClass(getDesc(), OpIdx, TRI, MF); + +  if (!getOperand(OpIdx).isReg()) +    return nullptr; + +  // For tied uses on inline asm, get the constraint from the def. +  unsigned DefIdx; +  if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) +    OpIdx = DefIdx; + +  // Inline asm stores register class constraints in the flag word. +  int FlagIdx = findInlineAsmFlagIdx(OpIdx); +  if (FlagIdx < 0) +    return nullptr; + +  unsigned Flag = getOperand(FlagIdx).getImm(); +  unsigned RCID; +  if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || +       InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || +       InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && +      InlineAsm::hasRegClassConstraint(Flag, RCID)) +    return TRI->getRegClass(RCID); + +  // Assume that all registers in a memory operand are pointers. +  if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) +    return TRI->getPointerRegClass(MF); + +  return nullptr; +} + +const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( +    Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, +    const TargetRegisterInfo *TRI, bool ExploreBundle) const { +  // Check every operands inside the bundle if we have +  // been asked to. +  if (ExploreBundle) +    for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; +         ++OpndIt) +      CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( +          OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); +  else +    // Otherwise, just check the current operands. +    for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) +      CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); +  return CurRC; +} + +const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( +    unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, +    const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { +  assert(CurRC && "Invalid initial register class"); +  // Check if Reg is constrained by some of its use/def from MI. +  const MachineOperand &MO = getOperand(OpIdx); +  if (!MO.isReg() || MO.getReg() != Reg) +    return CurRC; +  // If yes, accumulate the constraints through the operand. +  return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); +} + +const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( +    unsigned OpIdx, const TargetRegisterClass *CurRC, +    const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { +  const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); +  const MachineOperand &MO = getOperand(OpIdx); +  assert(MO.isReg() && +         "Cannot get register constraints for non-register operand"); +  assert(CurRC && "Invalid initial register class"); +  if (unsigned SubIdx = MO.getSubReg()) { +    if (OpRC) +      CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); +    else +      CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); +  } else if (OpRC) +    CurRC = TRI->getCommonSubClass(CurRC, OpRC); +  return CurRC; +} + +/// Return the number of instructions inside the MI bundle, not counting the +/// header instruction. +unsigned MachineInstr::getBundleSize() const { +  MachineBasicBlock::const_instr_iterator I = getIterator(); +  unsigned Size = 0; +  while (I->isBundledWithSucc()) { +    ++Size; +    ++I; +  } +  return Size; +} + +/// Returns true if the MachineInstr has an implicit-use operand of exactly +/// the given register (not considering sub/super-registers). +bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const { +  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { +    const MachineOperand &MO = getOperand(i); +    if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) +      return true; +  } +  return false; +} + +/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of +/// the specific register or -1 if it is not found. It further tightens +/// the search criteria to a use that kills the register if isKill is true. +int MachineInstr::findRegisterUseOperandIdx( +    Register Reg, bool isKill, const TargetRegisterInfo *TRI) const { +  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { +    const MachineOperand &MO = getOperand(i); +    if (!MO.isReg() || !MO.isUse()) +      continue; +    Register MOReg = MO.getReg(); +    if (!MOReg) +      continue; +    if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg))) +      if (!isKill || MO.isKill()) +        return i; +  } +  return -1; +} + +/// readsWritesVirtualRegister - Return a pair of bools (reads, writes) +/// indicating if this instruction reads or writes Reg. This also considers +/// partial defines. +std::pair<bool,bool> +MachineInstr::readsWritesVirtualRegister(Register Reg, +                                         SmallVectorImpl<unsigned> *Ops) const { +  bool PartDef = false; // Partial redefine. +  bool FullDef = false; // Full define. +  bool Use = false; + +  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { +    const MachineOperand &MO = getOperand(i); +    if (!MO.isReg() || MO.getReg() != Reg) +      continue; +    if (Ops) +      Ops->push_back(i); +    if (MO.isUse()) +      Use |= !MO.isUndef(); +    else if (MO.getSubReg() && !MO.isUndef()) +      // A partial def undef doesn't count as reading the register. +      PartDef = true; +    else +      FullDef = true; +  } +  // A partial redefine uses Reg unless there is also a full define. +  return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); +} + +/// findRegisterDefOperandIdx() - Returns the operand index that is a def of +/// the specified register or -1 if it is not found. If isDead is true, defs +/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it +/// also checks if there is a def of a super-register. +int +MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap, +                                        const TargetRegisterInfo *TRI) const { +  bool isPhys = Register::isPhysicalRegister(Reg); +  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { +    const MachineOperand &MO = getOperand(i); +    // Accept regmask operands when Overlap is set. +    // Ignore them when looking for a specific def operand (Overlap == false). +    if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) +      return i; +    if (!MO.isReg() || !MO.isDef()) +      continue; +    Register MOReg = MO.getReg(); +    bool Found = (MOReg == Reg); +    if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) { +      if (Overlap) +        Found = TRI->regsOverlap(MOReg, Reg); +      else +        Found = TRI->isSubRegister(MOReg, Reg); +    } +    if (Found && (!isDead || MO.isDead())) +      return i; +  } +  return -1; +} + +/// findFirstPredOperandIdx() - Find the index of the first operand in the +/// operand list that is used to represent the predicate. It returns -1 if +/// none is found. +int MachineInstr::findFirstPredOperandIdx() const { +  // Don't call MCID.findFirstPredOperandIdx() because this variant +  // is sometimes called on an instruction that's not yet complete, and +  // so the number of operands is less than the MCID indicates. In +  // particular, the PTX target does this. +  const MCInstrDesc &MCID = getDesc(); +  if (MCID.isPredicable()) { +    for (unsigned i = 0, e = getNumOperands(); i != e; ++i) +      if (MCID.OpInfo[i].isPredicate()) +        return i; +  } + +  return -1; +} + +// MachineOperand::TiedTo is 4 bits wide. +const unsigned TiedMax = 15; + +/// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. +/// +/// Use and def operands can be tied together, indicated by a non-zero TiedTo +/// field. TiedTo can have these values: +/// +/// 0:              Operand is not tied to anything. +/// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). +/// TiedMax:        Tied to an operand >= TiedMax-1. +/// +/// The tied def must be one of the first TiedMax operands on a normal +/// instruction. INLINEASM instructions allow more tied defs. +/// +void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { +  MachineOperand &DefMO = getOperand(DefIdx); +  MachineOperand &UseMO = getOperand(UseIdx); +  assert(DefMO.isDef() && "DefIdx must be a def operand"); +  assert(UseMO.isUse() && "UseIdx must be a use operand"); +  assert(!DefMO.isTied() && "Def is already tied to another use"); +  assert(!UseMO.isTied() && "Use is already tied to another def"); + +  if (DefIdx < TiedMax) +    UseMO.TiedTo = DefIdx + 1; +  else { +    // Inline asm can use the group descriptors to find tied operands, but on +    // normal instruction, the tied def must be within the first TiedMax +    // operands. +    assert(isInlineAsm() && "DefIdx out of range"); +    UseMO.TiedTo = TiedMax; +  } + +  // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). +  DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); +} + +/// Given the index of a tied register operand, find the operand it is tied to. +/// Defs are tied to uses and vice versa. Returns the index of the tied operand +/// which must exist. +unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { +  const MachineOperand &MO = getOperand(OpIdx); +  assert(MO.isTied() && "Operand isn't tied"); + +  // Normally TiedTo is in range. +  if (MO.TiedTo < TiedMax) +    return MO.TiedTo - 1; + +  // Uses on normal instructions can be out of range. +  if (!isInlineAsm()) { +    // Normal tied defs must be in the 0..TiedMax-1 range. +    if (MO.isUse()) +      return TiedMax - 1; +    // MO is a def. Search for the tied use. +    for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { +      const MachineOperand &UseMO = getOperand(i); +      if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) +        return i; +    } +    llvm_unreachable("Can't find tied use"); +  } + +  // Now deal with inline asm by parsing the operand group descriptor flags. +  // Find the beginning of each operand group. +  SmallVector<unsigned, 8> GroupIdx; +  unsigned OpIdxGroup = ~0u; +  unsigned NumOps; +  for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; +       i += NumOps) { +    const MachineOperand &FlagMO = getOperand(i); +    assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); +    unsigned CurGroup = GroupIdx.size(); +    GroupIdx.push_back(i); +    NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); +    // OpIdx belongs to this operand group. +    if (OpIdx > i && OpIdx < i + NumOps) +      OpIdxGroup = CurGroup; +    unsigned TiedGroup; +    if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) +      continue; +    // Operands in this group are tied to operands in TiedGroup which must be +    // earlier. Find the number of operands between the two groups. +    unsigned Delta = i - GroupIdx[TiedGroup]; + +    // OpIdx is a use tied to TiedGroup. +    if (OpIdxGroup == CurGroup) +      return OpIdx - Delta; + +    // OpIdx is a def tied to this use group. +    if (OpIdxGroup == TiedGroup) +      return OpIdx + Delta; +  } +  llvm_unreachable("Invalid tied operand on inline asm"); +} + +/// clearKillInfo - Clears kill flags on all operands. +/// +void MachineInstr::clearKillInfo() { +  for (MachineOperand &MO : operands()) { +    if (MO.isReg() && MO.isUse()) +      MO.setIsKill(false); +  } +} + +void MachineInstr::substituteRegister(Register FromReg, Register ToReg, +                                      unsigned SubIdx, +                                      const TargetRegisterInfo &RegInfo) { +  if (Register::isPhysicalRegister(ToReg)) { +    if (SubIdx) +      ToReg = RegInfo.getSubReg(ToReg, SubIdx); +    for (MachineOperand &MO : operands()) { +      if (!MO.isReg() || MO.getReg() != FromReg) +        continue; +      MO.substPhysReg(ToReg, RegInfo); +    } +  } else { +    for (MachineOperand &MO : operands()) { +      if (!MO.isReg() || MO.getReg() != FromReg) +        continue; +      MO.substVirtReg(ToReg, SubIdx, RegInfo); +    } +  } +} + +/// isSafeToMove - Return true if it is safe to move this instruction. If +/// SawStore is set to true, it means that there is a store (or call) between +/// the instruction's location and its intended destination. +bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const { +  // Ignore stuff that we obviously can't move. +  // +  // Treat volatile loads as stores. This is not strictly necessary for +  // volatiles, but it is required for atomic loads. It is not allowed to move +  // a load across an atomic load with Ordering > Monotonic. +  if (mayStore() || isCall() || isPHI() || +      (mayLoad() && hasOrderedMemoryRef())) { +    SawStore = true; +    return false; +  } + +  if (isPosition() || isDebugInstr() || isTerminator() || +      mayRaiseFPException() || hasUnmodeledSideEffects()) +    return false; + +  // See if this instruction does a load.  If so, we have to guarantee that the +  // loaded value doesn't change between the load and the its intended +  // destination. The check for isInvariantLoad gives the targe the chance to +  // classify the load as always returning a constant, e.g. a constant pool +  // load. +  if (mayLoad() && !isDereferenceableInvariantLoad(AA)) +    // Otherwise, this is a real load.  If there is a store between the load and +    // end of block, we can't move it. +    return !SawStore; + +  return true; +} + +bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other, +                            bool UseTBAA) const { +  const MachineFunction *MF = getMF(); +  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); +  const MachineFrameInfo &MFI = MF->getFrameInfo(); + +  // If neither instruction stores to memory, they can't alias in any +  // meaningful way, even if they read from the same address. +  if (!mayStore() && !Other.mayStore()) +    return false; + +  // Let the target decide if memory accesses cannot possibly overlap. +  if (TII->areMemAccessesTriviallyDisjoint(*this, Other)) +    return false; + +  // FIXME: Need to handle multiple memory operands to support all targets. +  if (!hasOneMemOperand() || !Other.hasOneMemOperand()) +    return true; + +  MachineMemOperand *MMOa = *memoperands_begin(); +  MachineMemOperand *MMOb = *Other.memoperands_begin(); + +  // The following interface to AA is fashioned after DAGCombiner::isAlias +  // and operates with MachineMemOperand offset with some important +  // assumptions: +  //   - LLVM fundamentally assumes flat address spaces. +  //   - MachineOperand offset can *only* result from legalization and +  //     cannot affect queries other than the trivial case of overlap +  //     checking. +  //   - These offsets never wrap and never step outside +  //     of allocated objects. +  //   - There should never be any negative offsets here. +  // +  // FIXME: Modify API to hide this math from "user" +  // Even before we go to AA we can reason locally about some +  // memory objects. It can save compile time, and possibly catch some +  // corner cases not currently covered. + +  int64_t OffsetA = MMOa->getOffset(); +  int64_t OffsetB = MMOb->getOffset(); +  int64_t MinOffset = std::min(OffsetA, OffsetB); + +  uint64_t WidthA = MMOa->getSize(); +  uint64_t WidthB = MMOb->getSize(); +  bool KnownWidthA = WidthA != MemoryLocation::UnknownSize; +  bool KnownWidthB = WidthB != MemoryLocation::UnknownSize; + +  const Value *ValA = MMOa->getValue(); +  const Value *ValB = MMOb->getValue(); +  bool SameVal = (ValA && ValB && (ValA == ValB)); +  if (!SameVal) { +    const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); +    const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); +    if (PSVa && ValB && !PSVa->mayAlias(&MFI)) +      return false; +    if (PSVb && ValA && !PSVb->mayAlias(&MFI)) +      return false; +    if (PSVa && PSVb && (PSVa == PSVb)) +      SameVal = true; +  } + +  if (SameVal) { +    if (!KnownWidthA || !KnownWidthB) +      return true; +    int64_t MaxOffset = std::max(OffsetA, OffsetB); +    int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB; +    return (MinOffset + LowWidth > MaxOffset); +  } + +  if (!AA) +    return true; + +  if (!ValA || !ValB) +    return true; + +  assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); +  assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); + +  int64_t OverlapA = KnownWidthA ? WidthA + OffsetA - MinOffset +                                 : MemoryLocation::UnknownSize; +  int64_t OverlapB = KnownWidthB ? WidthB + OffsetB - MinOffset +                                 : MemoryLocation::UnknownSize; + +  AliasResult AAResult = AA->alias( +      MemoryLocation(ValA, OverlapA, +                     UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), +      MemoryLocation(ValB, OverlapB, +                     UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); + +  return (AAResult != NoAlias); +} + +/// hasOrderedMemoryRef - Return true if this instruction may have an ordered +/// or volatile memory reference, or if the information describing the memory +/// reference is not available. Return false if it is known to have no ordered +/// memory references. +bool MachineInstr::hasOrderedMemoryRef() const { +  // An instruction known never to access memory won't have a volatile access. +  if (!mayStore() && +      !mayLoad() && +      !isCall() && +      !hasUnmodeledSideEffects()) +    return false; + +  // Otherwise, if the instruction has no memory reference information, +  // conservatively assume it wasn't preserved. +  if (memoperands_empty()) +    return true; + +  // Check if any of our memory operands are ordered. +  return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { +    return !MMO->isUnordered(); +  }); +} + +/// isDereferenceableInvariantLoad - Return true if this instruction will never +/// trap and is loading from a location whose value is invariant across a run of +/// this function. +bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const { +  // If the instruction doesn't load at all, it isn't an invariant load. +  if (!mayLoad()) +    return false; + +  // If the instruction has lost its memoperands, conservatively assume that +  // it may not be an invariant load. +  if (memoperands_empty()) +    return false; + +  const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); + +  for (MachineMemOperand *MMO : memoperands()) { +    if (!MMO->isUnordered()) +      // If the memory operand has ordering side effects, we can't move the +      // instruction.  Such an instruction is technically an invariant load, +      // but the caller code would need updated to expect that. +      return false; +    if (MMO->isStore()) return false; +    if (MMO->isInvariant() && MMO->isDereferenceable()) +      continue; + +    // A load from a constant PseudoSourceValue is invariant. +    if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) +      if (PSV->isConstant(&MFI)) +        continue; + +    if (const Value *V = MMO->getValue()) { +      // If we have an AliasAnalysis, ask it whether the memory is constant. +      if (AA && +          AA->pointsToConstantMemory( +              MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) +        continue; +    } + +    // Otherwise assume conservatively. +    return false; +  } + +  // Everything checks out. +  return true; +} + +/// isConstantValuePHI - If the specified instruction is a PHI that always +/// merges together the same virtual register, return the register, otherwise +/// return 0. +unsigned MachineInstr::isConstantValuePHI() const { +  if (!isPHI()) +    return 0; +  assert(getNumOperands() >= 3 && +         "It's illegal to have a PHI without source operands"); + +  Register Reg = getOperand(1).getReg(); +  for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) +    if (getOperand(i).getReg() != Reg) +      return 0; +  return Reg; +} + +bool MachineInstr::hasUnmodeledSideEffects() const { +  if (hasProperty(MCID::UnmodeledSideEffects)) +    return true; +  if (isInlineAsm()) { +    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); +    if (ExtraInfo & InlineAsm::Extra_HasSideEffects) +      return true; +  } + +  return false; +} + +bool MachineInstr::isLoadFoldBarrier() const { +  return mayStore() || isCall() || hasUnmodeledSideEffects(); +} + +/// allDefsAreDead - Return true if all the defs of this instruction are dead. +/// +bool MachineInstr::allDefsAreDead() const { +  for (const MachineOperand &MO : operands()) { +    if (!MO.isReg() || MO.isUse()) +      continue; +    if (!MO.isDead()) +      return false; +  } +  return true; +} + +/// copyImplicitOps - Copy implicit register operands from specified +/// instruction to this instruction. +void MachineInstr::copyImplicitOps(MachineFunction &MF, +                                   const MachineInstr &MI) { +  for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); +       i != e; ++i) { +    const MachineOperand &MO = MI.getOperand(i); +    if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) +      addOperand(MF, MO); +  } +} + +bool MachineInstr::hasComplexRegisterTies() const { +  const MCInstrDesc &MCID = getDesc(); +  for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { +    const auto &Operand = getOperand(I); +    if (!Operand.isReg() || Operand.isDef()) +      // Ignore the defined registers as MCID marks only the uses as tied. +      continue; +    int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); +    int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; +    if (ExpectedTiedIdx != TiedIdx) +      return true; +  } +  return false; +} + +LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, +                                 const MachineRegisterInfo &MRI) const { +  const MachineOperand &Op = getOperand(OpIdx); +  if (!Op.isReg()) +    return LLT{}; + +  if (isVariadic() || OpIdx >= getNumExplicitOperands()) +    return MRI.getType(Op.getReg()); + +  auto &OpInfo = getDesc().OpInfo[OpIdx]; +  if (!OpInfo.isGenericType()) +    return MRI.getType(Op.getReg()); + +  if (PrintedTypes[OpInfo.getGenericTypeIndex()]) +    return LLT{}; + +  LLT TypeToPrint = MRI.getType(Op.getReg()); +  // Don't mark the type index printed if it wasn't actually printed: maybe +  // another operand with the same type index has an actual type attached: +  if (TypeToPrint.isValid()) +    PrintedTypes.set(OpInfo.getGenericTypeIndex()); +  return TypeToPrint; +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void MachineInstr::dump() const { +  dbgs() << "  "; +  print(dbgs()); +} +#endif + +void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, +                         bool SkipDebugLoc, bool AddNewLine, +                         const TargetInstrInfo *TII) const { +  const Module *M = nullptr; +  const Function *F = nullptr; +  if (const MachineFunction *MF = getMFIfAvailable(*this)) { +    F = &MF->getFunction(); +    M = F->getParent(); +    if (!TII) +      TII = MF->getSubtarget().getInstrInfo(); +  } + +  ModuleSlotTracker MST(M); +  if (F) +    MST.incorporateFunction(*F); +  print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII); +} + +void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, +                         bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, +                         bool AddNewLine, const TargetInstrInfo *TII) const { +  // We can be a bit tidier if we know the MachineFunction. +  const MachineFunction *MF = nullptr; +  const TargetRegisterInfo *TRI = nullptr; +  const MachineRegisterInfo *MRI = nullptr; +  const TargetIntrinsicInfo *IntrinsicInfo = nullptr; +  tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); + +  if (isCFIInstruction()) +    assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); + +  SmallBitVector PrintedTypes(8); +  bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies(); +  auto getTiedOperandIdx = [&](unsigned OpIdx) { +    if (!ShouldPrintRegisterTies) +      return 0U; +    const MachineOperand &MO = getOperand(OpIdx); +    if (MO.isReg() && MO.isTied() && !MO.isDef()) +      return findTiedOperandIdx(OpIdx); +    return 0U; +  }; +  unsigned StartOp = 0; +  unsigned e = getNumOperands(); + +  // Print explicitly defined operands on the left of an assignment syntax. +  while (StartOp < e) { +    const MachineOperand &MO = getOperand(StartOp); +    if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) +      break; + +    if (StartOp != 0) +      OS << ", "; + +    LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; +    unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); +    MO.print(OS, MST, TypeToPrint, /*PrintDef=*/false, IsStandalone, +             ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); +    ++StartOp; +  } + +  if (StartOp != 0) +    OS << " = "; + +  if (getFlag(MachineInstr::FrameSetup)) +    OS << "frame-setup "; +  if (getFlag(MachineInstr::FrameDestroy)) +    OS << "frame-destroy "; +  if (getFlag(MachineInstr::FmNoNans)) +    OS << "nnan "; +  if (getFlag(MachineInstr::FmNoInfs)) +    OS << "ninf "; +  if (getFlag(MachineInstr::FmNsz)) +    OS << "nsz "; +  if (getFlag(MachineInstr::FmArcp)) +    OS << "arcp "; +  if (getFlag(MachineInstr::FmContract)) +    OS << "contract "; +  if (getFlag(MachineInstr::FmAfn)) +    OS << "afn "; +  if (getFlag(MachineInstr::FmReassoc)) +    OS << "reassoc "; +  if (getFlag(MachineInstr::NoUWrap)) +    OS << "nuw "; +  if (getFlag(MachineInstr::NoSWrap)) +    OS << "nsw "; +  if (getFlag(MachineInstr::IsExact)) +    OS << "exact "; +  if (getFlag(MachineInstr::FPExcept)) +    OS << "fpexcept "; + +  // Print the opcode name. +  if (TII) +    OS << TII->getName(getOpcode()); +  else +    OS << "UNKNOWN"; + +  if (SkipOpers) +    return; + +  // Print the rest of the operands. +  bool FirstOp = true; +  unsigned AsmDescOp = ~0u; +  unsigned AsmOpCount = 0; + +  if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { +    // Print asm string. +    OS << " "; +    const unsigned OpIdx = InlineAsm::MIOp_AsmString; +    LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; +    unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); +    getOperand(OpIdx).print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone, +                            ShouldPrintRegisterTies, TiedOperandIdx, TRI, +                            IntrinsicInfo); + +    // Print HasSideEffects, MayLoad, MayStore, IsAlignStack +    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); +    if (ExtraInfo & InlineAsm::Extra_HasSideEffects) +      OS << " [sideeffect]"; +    if (ExtraInfo & InlineAsm::Extra_MayLoad) +      OS << " [mayload]"; +    if (ExtraInfo & InlineAsm::Extra_MayStore) +      OS << " [maystore]"; +    if (ExtraInfo & InlineAsm::Extra_IsConvergent) +      OS << " [isconvergent]"; +    if (ExtraInfo & InlineAsm::Extra_IsAlignStack) +      OS << " [alignstack]"; +    if (getInlineAsmDialect() == InlineAsm::AD_ATT) +      OS << " [attdialect]"; +    if (getInlineAsmDialect() == InlineAsm::AD_Intel) +      OS << " [inteldialect]"; + +    StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; +    FirstOp = false; +  } + +  for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { +    const MachineOperand &MO = getOperand(i); + +    if (FirstOp) FirstOp = false; else OS << ","; +    OS << " "; + +    if (isDebugValue() && MO.isMetadata()) { +      // Pretty print DBG_VALUE instructions. +      auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); +      if (DIV && !DIV->getName().empty()) +        OS << "!\"" << DIV->getName() << '\"'; +      else { +        LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; +        unsigned TiedOperandIdx = getTiedOperandIdx(i); +        MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone, +                 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); +      } +    } else if (isDebugLabel() && MO.isMetadata()) { +      // Pretty print DBG_LABEL instructions. +      auto *DIL = dyn_cast<DILabel>(MO.getMetadata()); +      if (DIL && !DIL->getName().empty()) +        OS << "\"" << DIL->getName() << '\"'; +      else { +        LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; +        unsigned TiedOperandIdx = getTiedOperandIdx(i); +        MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone, +                 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); +      } +    } else if (i == AsmDescOp && MO.isImm()) { +      // Pretty print the inline asm operand descriptor. +      OS << '$' << AsmOpCount++; +      unsigned Flag = MO.getImm(); +      switch (InlineAsm::getKind(Flag)) { +      case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break; +      case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break; +      case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; +      case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break; +      case InlineAsm::Kind_Imm:                OS << ":[imm"; break; +      case InlineAsm::Kind_Mem:                OS << ":[mem"; break; +      default: OS << ":[??" << InlineAsm::getKind(Flag); break; +      } + +      unsigned RCID = 0; +      if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && +          InlineAsm::hasRegClassConstraint(Flag, RCID)) { +        if (TRI) { +          OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); +        } else +          OS << ":RC" << RCID; +      } + +      if (InlineAsm::isMemKind(Flag)) { +        unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); +        switch (MCID) { +        case InlineAsm::Constraint_es: OS << ":es"; break; +        case InlineAsm::Constraint_i:  OS << ":i"; break; +        case InlineAsm::Constraint_m:  OS << ":m"; break; +        case InlineAsm::Constraint_o:  OS << ":o"; break; +        case InlineAsm::Constraint_v:  OS << ":v"; break; +        case InlineAsm::Constraint_Q:  OS << ":Q"; break; +        case InlineAsm::Constraint_R:  OS << ":R"; break; +        case InlineAsm::Constraint_S:  OS << ":S"; break; +        case InlineAsm::Constraint_T:  OS << ":T"; break; +        case InlineAsm::Constraint_Um: OS << ":Um"; break; +        case InlineAsm::Constraint_Un: OS << ":Un"; break; +        case InlineAsm::Constraint_Uq: OS << ":Uq"; break; +        case InlineAsm::Constraint_Us: OS << ":Us"; break; +        case InlineAsm::Constraint_Ut: OS << ":Ut"; break; +        case InlineAsm::Constraint_Uv: OS << ":Uv"; break; +        case InlineAsm::Constraint_Uy: OS << ":Uy"; break; +        case InlineAsm::Constraint_X:  OS << ":X"; break; +        case InlineAsm::Constraint_Z:  OS << ":Z"; break; +        case InlineAsm::Constraint_ZC: OS << ":ZC"; break; +        case InlineAsm::Constraint_Zy: OS << ":Zy"; break; +        default: OS << ":?"; break; +        } +      } + +      unsigned TiedTo = 0; +      if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) +        OS << " tiedto:$" << TiedTo; + +      OS << ']'; + +      // Compute the index of the next operand descriptor. +      AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); +    } else { +      LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; +      unsigned TiedOperandIdx = getTiedOperandIdx(i); +      if (MO.isImm() && isOperandSubregIdx(i)) +        MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); +      else +        MO.print(OS, MST, TypeToPrint, /*PrintDef=*/true, IsStandalone, +                 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); +    } +  } + +  // Print any optional symbols attached to this instruction as-if they were +  // operands. +  if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { +    if (!FirstOp) { +      FirstOp = false; +      OS << ','; +    } +    OS << " pre-instr-symbol "; +    MachineOperand::printSymbol(OS, *PreInstrSymbol); +  } +  if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { +    if (!FirstOp) { +      FirstOp = false; +      OS << ','; +    } +    OS << " post-instr-symbol "; +    MachineOperand::printSymbol(OS, *PostInstrSymbol); +  } + +  if (!SkipDebugLoc) { +    if (const DebugLoc &DL = getDebugLoc()) { +      if (!FirstOp) +        OS << ','; +      OS << " debug-location "; +      DL->printAsOperand(OS, MST); +    } +  } + +  if (!memoperands_empty()) { +    SmallVector<StringRef, 0> SSNs; +    const LLVMContext *Context = nullptr; +    std::unique_ptr<LLVMContext> CtxPtr; +    const MachineFrameInfo *MFI = nullptr; +    if (const MachineFunction *MF = getMFIfAvailable(*this)) { +      MFI = &MF->getFrameInfo(); +      Context = &MF->getFunction().getContext(); +    } else { +      CtxPtr = std::make_unique<LLVMContext>(); +      Context = CtxPtr.get(); +    } + +    OS << " :: "; +    bool NeedComma = false; +    for (const MachineMemOperand *Op : memoperands()) { +      if (NeedComma) +        OS << ", "; +      Op->print(OS, MST, SSNs, *Context, MFI, TII); +      NeedComma = true; +    } +  } + +  if (SkipDebugLoc) +    return; + +  bool HaveSemi = false; + +  // Print debug location information. +  if (const DebugLoc &DL = getDebugLoc()) { +    if (!HaveSemi) { +      OS << ';'; +      HaveSemi = true; +    } +    OS << ' '; +    DL.print(OS); +  } + +  // Print extra comments for DEBUG_VALUE. +  if (isDebugValue() && getOperand(e - 2).isMetadata()) { +    if (!HaveSemi) { +      OS << ";"; +      HaveSemi = true; +    } +    auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata()); +    OS << " line no:" <<  DV->getLine(); +    if (auto *InlinedAt = debugLoc->getInlinedAt()) { +      DebugLoc InlinedAtDL(InlinedAt); +      if (InlinedAtDL && MF) { +        OS << " inlined @[ "; +        InlinedAtDL.print(OS); +        OS << " ]"; +      } +    } +    if (isIndirectDebugValue()) +      OS << " indirect"; +  } +  // TODO: DBG_LABEL + +  if (AddNewLine) +    OS << '\n'; +} + +bool MachineInstr::addRegisterKilled(Register IncomingReg, +                                     const TargetRegisterInfo *RegInfo, +                                     bool AddIfNotFound) { +  bool isPhysReg = Register::isPhysicalRegister(IncomingReg); +  bool hasAliases = isPhysReg && +    MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); +  bool Found = false; +  SmallVector<unsigned,4> DeadOps; +  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { +    MachineOperand &MO = getOperand(i); +    if (!MO.isReg() || !MO.isUse() || MO.isUndef()) +      continue; + +    // DEBUG_VALUE nodes do not contribute to code generation and should +    // always be ignored. Failure to do so may result in trying to modify +    // KILL flags on DEBUG_VALUE nodes. +    if (MO.isDebug()) +      continue; + +    Register Reg = MO.getReg(); +    if (!Reg) +      continue; + +    if (Reg == IncomingReg) { +      if (!Found) { +        if (MO.isKill()) +          // The register is already marked kill. +          return true; +        if (isPhysReg && isRegTiedToDefOperand(i)) +          // Two-address uses of physregs must not be marked kill. +          return true; +        MO.setIsKill(); +        Found = true; +      } +    } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) { +      // A super-register kill already exists. +      if (RegInfo->isSuperRegister(IncomingReg, Reg)) +        return true; +      if (RegInfo->isSubRegister(IncomingReg, Reg)) +        DeadOps.push_back(i); +    } +  } + +  // Trim unneeded kill operands. +  while (!DeadOps.empty()) { +    unsigned OpIdx = DeadOps.back(); +    if (getOperand(OpIdx).isImplicit() && +        (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) +      RemoveOperand(OpIdx); +    else +      getOperand(OpIdx).setIsKill(false); +    DeadOps.pop_back(); +  } + +  // If not found, this means an alias of one of the operands is killed. Add a +  // new implicit operand if required. +  if (!Found && AddIfNotFound) { +    addOperand(MachineOperand::CreateReg(IncomingReg, +                                         false /*IsDef*/, +                                         true  /*IsImp*/, +                                         true  /*IsKill*/)); +    return true; +  } +  return Found; +} + +void MachineInstr::clearRegisterKills(Register Reg, +                                      const TargetRegisterInfo *RegInfo) { +  if (!Register::isPhysicalRegister(Reg)) +    RegInfo = nullptr; +  for (MachineOperand &MO : operands()) { +    if (!MO.isReg() || !MO.isUse() || !MO.isKill()) +      continue; +    Register OpReg = MO.getReg(); +    if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) +      MO.setIsKill(false); +  } +} + +bool MachineInstr::addRegisterDead(Register Reg, +                                   const TargetRegisterInfo *RegInfo, +                                   bool AddIfNotFound) { +  bool isPhysReg = Register::isPhysicalRegister(Reg); +  bool hasAliases = isPhysReg && +    MCRegAliasIterator(Reg, RegInfo, false).isValid(); +  bool Found = false; +  SmallVector<unsigned,4> DeadOps; +  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { +    MachineOperand &MO = getOperand(i); +    if (!MO.isReg() || !MO.isDef()) +      continue; +    Register MOReg = MO.getReg(); +    if (!MOReg) +      continue; + +    if (MOReg == Reg) { +      MO.setIsDead(); +      Found = true; +    } else if (hasAliases && MO.isDead() && +               Register::isPhysicalRegister(MOReg)) { +      // There exists a super-register that's marked dead. +      if (RegInfo->isSuperRegister(Reg, MOReg)) +        return true; +      if (RegInfo->isSubRegister(Reg, MOReg)) +        DeadOps.push_back(i); +    } +  } + +  // Trim unneeded dead operands. +  while (!DeadOps.empty()) { +    unsigned OpIdx = DeadOps.back(); +    if (getOperand(OpIdx).isImplicit() && +        (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) +      RemoveOperand(OpIdx); +    else +      getOperand(OpIdx).setIsDead(false); +    DeadOps.pop_back(); +  } + +  // If not found, this means an alias of one of the operands is dead. Add a +  // new implicit operand if required. +  if (Found || !AddIfNotFound) +    return Found; + +  addOperand(MachineOperand::CreateReg(Reg, +                                       true  /*IsDef*/, +                                       true  /*IsImp*/, +                                       false /*IsKill*/, +                                       true  /*IsDead*/)); +  return true; +} + +void MachineInstr::clearRegisterDeads(Register Reg) { +  for (MachineOperand &MO : operands()) { +    if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) +      continue; +    MO.setIsDead(false); +  } +} + +void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) { +  for (MachineOperand &MO : operands()) { +    if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) +      continue; +    MO.setIsUndef(IsUndef); +  } +} + +void MachineInstr::addRegisterDefined(Register Reg, +                                      const TargetRegisterInfo *RegInfo) { +  if (Register::isPhysicalRegister(Reg)) { +    MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo); +    if (MO) +      return; +  } else { +    for (const MachineOperand &MO : operands()) { +      if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && +          MO.getSubReg() == 0) +        return; +    } +  } +  addOperand(MachineOperand::CreateReg(Reg, +                                       true  /*IsDef*/, +                                       true  /*IsImp*/)); +} + +void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, +                                         const TargetRegisterInfo &TRI) { +  bool HasRegMask = false; +  for (MachineOperand &MO : operands()) { +    if (MO.isRegMask()) { +      HasRegMask = true; +      continue; +    } +    if (!MO.isReg() || !MO.isDef()) continue; +    Register Reg = MO.getReg(); +    if (!Reg.isPhysical()) +      continue; +    // If there are no uses, including partial uses, the def is dead. +    if (llvm::none_of(UsedRegs, +                      [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); })) +      MO.setIsDead(); +  } + +  // This is a call with a register mask operand. +  // Mask clobbers are always dead, so add defs for the non-dead defines. +  if (HasRegMask) +    for (ArrayRef<Register>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); +         I != E; ++I) +      addRegisterDefined(*I, &TRI); +} + +unsigned +MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { +  // Build up a buffer of hash code components. +  SmallVector<size_t, 8> HashComponents; +  HashComponents.reserve(MI->getNumOperands() + 1); +  HashComponents.push_back(MI->getOpcode()); +  for (const MachineOperand &MO : MI->operands()) { +    if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg())) +      continue;  // Skip virtual register defs. + +    HashComponents.push_back(hash_value(MO)); +  } +  return hash_combine_range(HashComponents.begin(), HashComponents.end()); +} + +void MachineInstr::emitError(StringRef Msg) const { +  // Find the source location cookie. +  unsigned LocCookie = 0; +  const MDNode *LocMD = nullptr; +  for (unsigned i = getNumOperands(); i != 0; --i) { +    if (getOperand(i-1).isMetadata() && +        (LocMD = getOperand(i-1).getMetadata()) && +        LocMD->getNumOperands() != 0) { +      if (const ConstantInt *CI = +              mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { +        LocCookie = CI->getZExtValue(); +        break; +      } +    } +  } + +  if (const MachineBasicBlock *MBB = getParent()) +    if (const MachineFunction *MF = MBB->getParent()) +      return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); +  report_fatal_error(Msg); +} + +MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, +                                  const MCInstrDesc &MCID, bool IsIndirect, +                                  Register Reg, const MDNode *Variable, +                                  const MDNode *Expr) { +  assert(isa<DILocalVariable>(Variable) && "not a variable"); +  assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); +  assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && +         "Expected inlined-at fields to agree"); +  auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug); +  if (IsIndirect) +    MIB.addImm(0U); +  else +    MIB.addReg(0U, RegState::Debug); +  return MIB.addMetadata(Variable).addMetadata(Expr); +} + +MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, +                                  const MCInstrDesc &MCID, bool IsIndirect, +                                  MachineOperand &MO, const MDNode *Variable, +                                  const MDNode *Expr) { +  assert(isa<DILocalVariable>(Variable) && "not a variable"); +  assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); +  assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && +         "Expected inlined-at fields to agree"); +  if (MO.isReg()) +    return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr); + +  auto MIB = BuildMI(MF, DL, MCID).add(MO); +  if (IsIndirect) +    MIB.addImm(0U); +  else +    MIB.addReg(0U, RegState::Debug); +  return MIB.addMetadata(Variable).addMetadata(Expr); + } + +MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, +                                  MachineBasicBlock::iterator I, +                                  const DebugLoc &DL, const MCInstrDesc &MCID, +                                  bool IsIndirect, Register Reg, +                                  const MDNode *Variable, const MDNode *Expr) { +  MachineFunction &MF = *BB.getParent(); +  MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); +  BB.insert(I, MI); +  return MachineInstrBuilder(MF, MI); +} + +MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, +                                  MachineBasicBlock::iterator I, +                                  const DebugLoc &DL, const MCInstrDesc &MCID, +                                  bool IsIndirect, MachineOperand &MO, +                                  const MDNode *Variable, const MDNode *Expr) { +  MachineFunction &MF = *BB.getParent(); +  MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr); +  BB.insert(I, MI); +  return MachineInstrBuilder(MF, *MI); +} + +/// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. +/// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. +static const DIExpression *computeExprForSpill(const MachineInstr &MI) { +  assert(MI.getOperand(0).isReg() && "can't spill non-register"); +  assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && +         "Expected inlined-at fields to agree"); + +  const DIExpression *Expr = MI.getDebugExpression(); +  if (MI.isIndirectDebugValue()) { +    assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); +    Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); +  } +  return Expr; +} + +MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, +                                          MachineBasicBlock::iterator I, +                                          const MachineInstr &Orig, +                                          int FrameIndex) { +  const DIExpression *Expr = computeExprForSpill(Orig); +  return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()) +      .addFrameIndex(FrameIndex) +      .addImm(0U) +      .addMetadata(Orig.getDebugVariable()) +      .addMetadata(Expr); +} + +void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) { +  const DIExpression *Expr = computeExprForSpill(Orig); +  Orig.getOperand(0).ChangeToFrameIndex(FrameIndex); +  Orig.getOperand(1).ChangeToImmediate(0U); +  Orig.getOperand(3).setMetadata(Expr); +} + +void MachineInstr::collectDebugValues( +                                SmallVectorImpl<MachineInstr *> &DbgValues) { +  MachineInstr &MI = *this; +  if (!MI.getOperand(0).isReg()) +    return; + +  MachineBasicBlock::iterator DI = MI; ++DI; +  for (MachineBasicBlock::iterator DE = MI.getParent()->end(); +       DI != DE; ++DI) { +    if (!DI->isDebugValue()) +      return; +    if (DI->getOperand(0).isReg() && +        DI->getOperand(0).getReg() == MI.getOperand(0).getReg()) +      DbgValues.push_back(&*DI); +  } +} + +void MachineInstr::changeDebugValuesDefReg(Register Reg) { +  // Collect matching debug values. +  SmallVector<MachineInstr *, 2> DbgValues; + +  if (!getOperand(0).isReg()) +    return; + +  unsigned DefReg = getOperand(0).getReg(); +  auto *MRI = getRegInfo(); +  for (auto &MO : MRI->use_operands(DefReg)) { +    auto *DI = MO.getParent(); +    if (!DI->isDebugValue()) +      continue; +    if (DI->getOperand(0).isReg() && +        DI->getOperand(0).getReg() == DefReg){ +      DbgValues.push_back(DI); +    } +  } + +  // Propagate Reg to debug value instructions. +  for (auto *DBI : DbgValues) +    DBI->getOperand(0).setReg(Reg); +} + +using MMOList = SmallVector<const MachineMemOperand *, 2>; + +static unsigned getSpillSlotSize(MMOList &Accesses, +                                 const MachineFrameInfo &MFI) { +  unsigned Size = 0; +  for (auto A : Accesses) +    if (MFI.isSpillSlotObjectIndex( +            cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) +                ->getFrameIndex())) +      Size += A->getSize(); +  return Size; +} + +Optional<unsigned> +MachineInstr::getSpillSize(const TargetInstrInfo *TII) const { +  int FI; +  if (TII->isStoreToStackSlotPostFE(*this, FI)) { +    const MachineFrameInfo &MFI = getMF()->getFrameInfo(); +    if (MFI.isSpillSlotObjectIndex(FI)) +      return (*memoperands_begin())->getSize(); +  } +  return None; +} + +Optional<unsigned> +MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const { +  MMOList Accesses; +  if (TII->hasStoreToStackSlot(*this, Accesses)) +    return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); +  return None; +} + +Optional<unsigned> +MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const { +  int FI; +  if (TII->isLoadFromStackSlotPostFE(*this, FI)) { +    const MachineFrameInfo &MFI = getMF()->getFrameInfo(); +    if (MFI.isSpillSlotObjectIndex(FI)) +      return (*memoperands_begin())->getSize(); +  } +  return None; +} + +Optional<unsigned> +MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const { +  MMOList Accesses; +  if (TII->hasLoadFromStackSlot(*this, Accesses)) +    return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); +  return None; +} | 
