diff options
Diffstat (limited to 'llvm/lib/CodeGen/ModuloSchedule.cpp')
| -rw-r--r-- | llvm/lib/CodeGen/ModuloSchedule.cpp | 2022 | 
1 files changed, 2022 insertions, 0 deletions
| diff --git a/llvm/lib/CodeGen/ModuloSchedule.cpp b/llvm/lib/CodeGen/ModuloSchedule.cpp new file mode 100644 index 000000000000..7ce3c5861801 --- /dev/null +++ b/llvm/lib/CodeGen/ModuloSchedule.cpp @@ -0,0 +1,2022 @@ +//===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/ModuloSchedule.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/CodeGen/LiveIntervals.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineLoopUtils.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/MC/MCContext.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" + +#define DEBUG_TYPE "pipeliner" +using namespace llvm; + +void ModuloSchedule::print(raw_ostream &OS) { +  for (MachineInstr *MI : ScheduledInstrs) +    OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI; +} + +//===----------------------------------------------------------------------===// +// ModuloScheduleExpander implementation +//===----------------------------------------------------------------------===// + +/// Return the register values for  the operands of a Phi instruction. +/// This function assume the instruction is a Phi. +static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, +                       unsigned &InitVal, unsigned &LoopVal) { +  assert(Phi.isPHI() && "Expecting a Phi."); + +  InitVal = 0; +  LoopVal = 0; +  for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) +    if (Phi.getOperand(i + 1).getMBB() != Loop) +      InitVal = Phi.getOperand(i).getReg(); +    else +      LoopVal = Phi.getOperand(i).getReg(); + +  assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); +} + +/// Return the Phi register value that comes from the incoming block. +static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { +  for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) +    if (Phi.getOperand(i + 1).getMBB() != LoopBB) +      return Phi.getOperand(i).getReg(); +  return 0; +} + +/// Return the Phi register value that comes the loop block. +static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { +  for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) +    if (Phi.getOperand(i + 1).getMBB() == LoopBB) +      return Phi.getOperand(i).getReg(); +  return 0; +} + +void ModuloScheduleExpander::expand() { +  BB = Schedule.getLoop()->getTopBlock(); +  Preheader = *BB->pred_begin(); +  if (Preheader == BB) +    Preheader = *std::next(BB->pred_begin()); + +  // Iterate over the definitions in each instruction, and compute the +  // stage difference for each use.  Keep the maximum value. +  for (MachineInstr *MI : Schedule.getInstructions()) { +    int DefStage = Schedule.getStage(MI); +    for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { +      MachineOperand &Op = MI->getOperand(i); +      if (!Op.isReg() || !Op.isDef()) +        continue; + +      Register Reg = Op.getReg(); +      unsigned MaxDiff = 0; +      bool PhiIsSwapped = false; +      for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), +                                             EI = MRI.use_end(); +           UI != EI; ++UI) { +        MachineOperand &UseOp = *UI; +        MachineInstr *UseMI = UseOp.getParent(); +        int UseStage = Schedule.getStage(UseMI); +        unsigned Diff = 0; +        if (UseStage != -1 && UseStage >= DefStage) +          Diff = UseStage - DefStage; +        if (MI->isPHI()) { +          if (isLoopCarried(*MI)) +            ++Diff; +          else +            PhiIsSwapped = true; +        } +        MaxDiff = std::max(Diff, MaxDiff); +      } +      RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); +    } +  } + +  generatePipelinedLoop(); +} + +void ModuloScheduleExpander::generatePipelinedLoop() { +  LoopInfo = TII->analyzeLoopForPipelining(BB); +  assert(LoopInfo && "Must be able to analyze loop!"); + +  // Create a new basic block for the kernel and add it to the CFG. +  MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); + +  unsigned MaxStageCount = Schedule.getNumStages() - 1; + +  // Remember the registers that are used in different stages. The index is +  // the iteration, or stage, that the instruction is scheduled in.  This is +  // a map between register names in the original block and the names created +  // in each stage of the pipelined loop. +  ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; +  InstrMapTy InstrMap; + +  SmallVector<MachineBasicBlock *, 4> PrologBBs; + +  // Generate the prolog instructions that set up the pipeline. +  generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs); +  MF.insert(BB->getIterator(), KernelBB); + +  // Rearrange the instructions to generate the new, pipelined loop, +  // and update register names as needed. +  for (MachineInstr *CI : Schedule.getInstructions()) { +    if (CI->isPHI()) +      continue; +    unsigned StageNum = Schedule.getStage(CI); +    MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum); +    updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap); +    KernelBB->push_back(NewMI); +    InstrMap[NewMI] = CI; +  } + +  // Copy any terminator instructions to the new kernel, and update +  // names as needed. +  for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), +                                   E = BB->instr_end(); +       I != E; ++I) { +    MachineInstr *NewMI = MF.CloneMachineInstr(&*I); +    updateInstruction(NewMI, false, MaxStageCount, 0, VRMap); +    KernelBB->push_back(NewMI); +    InstrMap[NewMI] = &*I; +  } + +  NewKernel = KernelBB; +  KernelBB->transferSuccessors(BB); +  KernelBB->replaceSuccessor(BB, KernelBB); + +  generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, +                       InstrMap, MaxStageCount, MaxStageCount, false); +  generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap, +               MaxStageCount, MaxStageCount, false); + +  LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); + +  SmallVector<MachineBasicBlock *, 4> EpilogBBs; +  // Generate the epilog instructions to complete the pipeline. +  generateEpilog(MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs); + +  // We need this step because the register allocation doesn't handle some +  // situations well, so we insert copies to help out. +  splitLifetimes(KernelBB, EpilogBBs); + +  // Remove dead instructions due to loop induction variables. +  removeDeadInstructions(KernelBB, EpilogBBs); + +  // Add branches between prolog and epilog blocks. +  addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap); + +  delete[] VRMap; +} + +void ModuloScheduleExpander::cleanup() { +  // Remove the original loop since it's no longer referenced. +  for (auto &I : *BB) +    LIS.RemoveMachineInstrFromMaps(I); +  BB->clear(); +  BB->eraseFromParent(); +} + +/// Generate the pipeline prolog code. +void ModuloScheduleExpander::generateProlog(unsigned LastStage, +                                            MachineBasicBlock *KernelBB, +                                            ValueMapTy *VRMap, +                                            MBBVectorTy &PrologBBs) { +  MachineBasicBlock *PredBB = Preheader; +  InstrMapTy InstrMap; + +  // Generate a basic block for each stage, not including the last stage, +  // which will be generated in the kernel. Each basic block may contain +  // instructions from multiple stages/iterations. +  for (unsigned i = 0; i < LastStage; ++i) { +    // Create and insert the prolog basic block prior to the original loop +    // basic block.  The original loop is removed later. +    MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); +    PrologBBs.push_back(NewBB); +    MF.insert(BB->getIterator(), NewBB); +    NewBB->transferSuccessors(PredBB); +    PredBB->addSuccessor(NewBB); +    PredBB = NewBB; + +    // Generate instructions for each appropriate stage. Process instructions +    // in original program order. +    for (int StageNum = i; StageNum >= 0; --StageNum) { +      for (MachineBasicBlock::iterator BBI = BB->instr_begin(), +                                       BBE = BB->getFirstTerminator(); +           BBI != BBE; ++BBI) { +        if (Schedule.getStage(&*BBI) == StageNum) { +          if (BBI->isPHI()) +            continue; +          MachineInstr *NewMI = +              cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum); +          updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap); +          NewBB->push_back(NewMI); +          InstrMap[NewMI] = &*BBI; +        } +      } +    } +    rewritePhiValues(NewBB, i, VRMap, InstrMap); +    LLVM_DEBUG({ +      dbgs() << "prolog:\n"; +      NewBB->dump(); +    }); +  } + +  PredBB->replaceSuccessor(BB, KernelBB); + +  // Check if we need to remove the branch from the preheader to the original +  // loop, and replace it with a branch to the new loop. +  unsigned numBranches = TII->removeBranch(*Preheader); +  if (numBranches) { +    SmallVector<MachineOperand, 0> Cond; +    TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc()); +  } +} + +/// Generate the pipeline epilog code. The epilog code finishes the iterations +/// that were started in either the prolog or the kernel.  We create a basic +/// block for each stage that needs to complete. +void ModuloScheduleExpander::generateEpilog(unsigned LastStage, +                                            MachineBasicBlock *KernelBB, +                                            ValueMapTy *VRMap, +                                            MBBVectorTy &EpilogBBs, +                                            MBBVectorTy &PrologBBs) { +  // We need to change the branch from the kernel to the first epilog block, so +  // this call to analyze branch uses the kernel rather than the original BB. +  MachineBasicBlock *TBB = nullptr, *FBB = nullptr; +  SmallVector<MachineOperand, 4> Cond; +  bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); +  assert(!checkBranch && "generateEpilog must be able to analyze the branch"); +  if (checkBranch) +    return; + +  MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); +  if (*LoopExitI == KernelBB) +    ++LoopExitI; +  assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); +  MachineBasicBlock *LoopExitBB = *LoopExitI; + +  MachineBasicBlock *PredBB = KernelBB; +  MachineBasicBlock *EpilogStart = LoopExitBB; +  InstrMapTy InstrMap; + +  // Generate a basic block for each stage, not including the last stage, +  // which was generated for the kernel.  Each basic block may contain +  // instructions from multiple stages/iterations. +  int EpilogStage = LastStage + 1; +  for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { +    MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); +    EpilogBBs.push_back(NewBB); +    MF.insert(BB->getIterator(), NewBB); + +    PredBB->replaceSuccessor(LoopExitBB, NewBB); +    NewBB->addSuccessor(LoopExitBB); + +    if (EpilogStart == LoopExitBB) +      EpilogStart = NewBB; + +    // Add instructions to the epilog depending on the current block. +    // Process instructions in original program order. +    for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { +      for (auto &BBI : *BB) { +        if (BBI.isPHI()) +          continue; +        MachineInstr *In = &BBI; +        if ((unsigned)Schedule.getStage(In) == StageNum) { +          // Instructions with memoperands in the epilog are updated with +          // conservative values. +          MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); +          updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap); +          NewBB->push_back(NewMI); +          InstrMap[NewMI] = In; +        } +      } +    } +    generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, +                         InstrMap, LastStage, EpilogStage, i == 1); +    generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap, +                 LastStage, EpilogStage, i == 1); +    PredBB = NewBB; + +    LLVM_DEBUG({ +      dbgs() << "epilog:\n"; +      NewBB->dump(); +    }); +  } + +  // Fix any Phi nodes in the loop exit block. +  LoopExitBB->replacePhiUsesWith(BB, PredBB); + +  // Create a branch to the new epilog from the kernel. +  // Remove the original branch and add a new branch to the epilog. +  TII->removeBranch(*KernelBB); +  TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); +  // Add a branch to the loop exit. +  if (EpilogBBs.size() > 0) { +    MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); +    SmallVector<MachineOperand, 4> Cond1; +    TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); +  } +} + +/// Replace all uses of FromReg that appear outside the specified +/// basic block with ToReg. +static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, +                                    MachineBasicBlock *MBB, +                                    MachineRegisterInfo &MRI, +                                    LiveIntervals &LIS) { +  for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), +                                         E = MRI.use_end(); +       I != E;) { +    MachineOperand &O = *I; +    ++I; +    if (O.getParent()->getParent() != MBB) +      O.setReg(ToReg); +  } +  if (!LIS.hasInterval(ToReg)) +    LIS.createEmptyInterval(ToReg); +} + +/// Return true if the register has a use that occurs outside the +/// specified loop. +static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, +                            MachineRegisterInfo &MRI) { +  for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), +                                         E = MRI.use_end(); +       I != E; ++I) +    if (I->getParent()->getParent() != BB) +      return true; +  return false; +} + +/// Generate Phis for the specific block in the generated pipelined code. +/// This function looks at the Phis from the original code to guide the +/// creation of new Phis. +void ModuloScheduleExpander::generateExistingPhis( +    MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, +    MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, +    unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { +  // Compute the stage number for the initial value of the Phi, which +  // comes from the prolog. The prolog to use depends on to which kernel/ +  // epilog that we're adding the Phi. +  unsigned PrologStage = 0; +  unsigned PrevStage = 0; +  bool InKernel = (LastStageNum == CurStageNum); +  if (InKernel) { +    PrologStage = LastStageNum - 1; +    PrevStage = CurStageNum; +  } else { +    PrologStage = LastStageNum - (CurStageNum - LastStageNum); +    PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; +  } + +  for (MachineBasicBlock::iterator BBI = BB->instr_begin(), +                                   BBE = BB->getFirstNonPHI(); +       BBI != BBE; ++BBI) { +    Register Def = BBI->getOperand(0).getReg(); + +    unsigned InitVal = 0; +    unsigned LoopVal = 0; +    getPhiRegs(*BBI, BB, InitVal, LoopVal); + +    unsigned PhiOp1 = 0; +    // The Phi value from the loop body typically is defined in the loop, but +    // not always. So, we need to check if the value is defined in the loop. +    unsigned PhiOp2 = LoopVal; +    if (VRMap[LastStageNum].count(LoopVal)) +      PhiOp2 = VRMap[LastStageNum][LoopVal]; + +    int StageScheduled = Schedule.getStage(&*BBI); +    int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal)); +    unsigned NumStages = getStagesForReg(Def, CurStageNum); +    if (NumStages == 0) { +      // We don't need to generate a Phi anymore, but we need to rename any uses +      // of the Phi value. +      unsigned NewReg = VRMap[PrevStage][LoopVal]; +      rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def, +                            InitVal, NewReg); +      if (VRMap[CurStageNum].count(LoopVal)) +        VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; +    } +    // Adjust the number of Phis needed depending on the number of prologs left, +    // and the distance from where the Phi is first scheduled. The number of +    // Phis cannot exceed the number of prolog stages. Each stage can +    // potentially define two values. +    unsigned MaxPhis = PrologStage + 2; +    if (!InKernel && (int)PrologStage <= LoopValStage) +      MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); +    unsigned NumPhis = std::min(NumStages, MaxPhis); + +    unsigned NewReg = 0; +    unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; +    // In the epilog, we may need to look back one stage to get the correct +    // Phi name because the epilog and prolog blocks execute the same stage. +    // The correct name is from the previous block only when the Phi has +    // been completely scheduled prior to the epilog, and Phi value is not +    // needed in multiple stages. +    int StageDiff = 0; +    if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && +        NumPhis == 1) +      StageDiff = 1; +    // Adjust the computations below when the phi and the loop definition +    // are scheduled in different stages. +    if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) +      StageDiff = StageScheduled - LoopValStage; +    for (unsigned np = 0; np < NumPhis; ++np) { +      // If the Phi hasn't been scheduled, then use the initial Phi operand +      // value. Otherwise, use the scheduled version of the instruction. This +      // is a little complicated when a Phi references another Phi. +      if (np > PrologStage || StageScheduled >= (int)LastStageNum) +        PhiOp1 = InitVal; +      // Check if the Phi has already been scheduled in a prolog stage. +      else if (PrologStage >= AccessStage + StageDiff + np && +               VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) +        PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; +      // Check if the Phi has already been scheduled, but the loop instruction +      // is either another Phi, or doesn't occur in the loop. +      else if (PrologStage >= AccessStage + StageDiff + np) { +        // If the Phi references another Phi, we need to examine the other +        // Phi to get the correct value. +        PhiOp1 = LoopVal; +        MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); +        int Indirects = 1; +        while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { +          int PhiStage = Schedule.getStage(InstOp1); +          if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) +            PhiOp1 = getInitPhiReg(*InstOp1, BB); +          else +            PhiOp1 = getLoopPhiReg(*InstOp1, BB); +          InstOp1 = MRI.getVRegDef(PhiOp1); +          int PhiOpStage = Schedule.getStage(InstOp1); +          int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); +          if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && +              VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { +            PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; +            break; +          } +          ++Indirects; +        } +      } else +        PhiOp1 = InitVal; +      // If this references a generated Phi in the kernel, get the Phi operand +      // from the incoming block. +      if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) +        if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) +          PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); + +      MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); +      bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); +      // In the epilog, a map lookup is needed to get the value from the kernel, +      // or previous epilog block. How is does this depends on if the +      // instruction is scheduled in the previous block. +      if (!InKernel) { +        int StageDiffAdj = 0; +        if (LoopValStage != -1 && StageScheduled > LoopValStage) +          StageDiffAdj = StageScheduled - LoopValStage; +        // Use the loop value defined in the kernel, unless the kernel +        // contains the last definition of the Phi. +        if (np == 0 && PrevStage == LastStageNum && +            (StageScheduled != 0 || LoopValStage != 0) && +            VRMap[PrevStage - StageDiffAdj].count(LoopVal)) +          PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; +        // Use the value defined by the Phi. We add one because we switch +        // from looking at the loop value to the Phi definition. +        else if (np > 0 && PrevStage == LastStageNum && +                 VRMap[PrevStage - np + 1].count(Def)) +          PhiOp2 = VRMap[PrevStage - np + 1][Def]; +        // Use the loop value defined in the kernel. +        else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && +                 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) +          PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; +        // Use the value defined by the Phi, unless we're generating the first +        // epilog and the Phi refers to a Phi in a different stage. +        else if (VRMap[PrevStage - np].count(Def) && +                 (!LoopDefIsPhi || (PrevStage != LastStageNum) || +                  (LoopValStage == StageScheduled))) +          PhiOp2 = VRMap[PrevStage - np][Def]; +      } + +      // Check if we can reuse an existing Phi. This occurs when a Phi +      // references another Phi, and the other Phi is scheduled in an +      // earlier stage. We can try to reuse an existing Phi up until the last +      // stage of the current Phi. +      if (LoopDefIsPhi) { +        if (static_cast<int>(PrologStage - np) >= StageScheduled) { +          int LVNumStages = getStagesForPhi(LoopVal); +          int StageDiff = (StageScheduled - LoopValStage); +          LVNumStages -= StageDiff; +          // Make sure the loop value Phi has been processed already. +          if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { +            NewReg = PhiOp2; +            unsigned ReuseStage = CurStageNum; +            if (isLoopCarried(*PhiInst)) +              ReuseStage -= LVNumStages; +            // Check if the Phi to reuse has been generated yet. If not, then +            // there is nothing to reuse. +            if (VRMap[ReuseStage - np].count(LoopVal)) { +              NewReg = VRMap[ReuseStage - np][LoopVal]; + +              rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, +                                    Def, NewReg); +              // Update the map with the new Phi name. +              VRMap[CurStageNum - np][Def] = NewReg; +              PhiOp2 = NewReg; +              if (VRMap[LastStageNum - np - 1].count(LoopVal)) +                PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; + +              if (IsLast && np == NumPhis - 1) +                replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); +              continue; +            } +          } +        } +        if (InKernel && StageDiff > 0 && +            VRMap[CurStageNum - StageDiff - np].count(LoopVal)) +          PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; +      } + +      const TargetRegisterClass *RC = MRI.getRegClass(Def); +      NewReg = MRI.createVirtualRegister(RC); + +      MachineInstrBuilder NewPhi = +          BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), +                  TII->get(TargetOpcode::PHI), NewReg); +      NewPhi.addReg(PhiOp1).addMBB(BB1); +      NewPhi.addReg(PhiOp2).addMBB(BB2); +      if (np == 0) +        InstrMap[NewPhi] = &*BBI; + +      // We define the Phis after creating the new pipelined code, so +      // we need to rename the Phi values in scheduled instructions. + +      unsigned PrevReg = 0; +      if (InKernel && VRMap[PrevStage - np].count(LoopVal)) +        PrevReg = VRMap[PrevStage - np][LoopVal]; +      rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, +                            NewReg, PrevReg); +      // If the Phi has been scheduled, use the new name for rewriting. +      if (VRMap[CurStageNum - np].count(Def)) { +        unsigned R = VRMap[CurStageNum - np][Def]; +        rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R, +                              NewReg); +      } + +      // Check if we need to rename any uses that occurs after the loop. The +      // register to replace depends on whether the Phi is scheduled in the +      // epilog. +      if (IsLast && np == NumPhis - 1) +        replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); + +      // In the kernel, a dependent Phi uses the value from this Phi. +      if (InKernel) +        PhiOp2 = NewReg; + +      // Update the map with the new Phi name. +      VRMap[CurStageNum - np][Def] = NewReg; +    } + +    while (NumPhis++ < NumStages) { +      rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def, +                            NewReg, 0); +    } + +    // Check if we need to rename a Phi that has been eliminated due to +    // scheduling. +    if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) +      replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); +  } +} + +/// Generate Phis for the specified block in the generated pipelined code. +/// These are new Phis needed because the definition is scheduled after the +/// use in the pipelined sequence. +void ModuloScheduleExpander::generatePhis( +    MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, +    MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, +    unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { +  // Compute the stage number that contains the initial Phi value, and +  // the Phi from the previous stage. +  unsigned PrologStage = 0; +  unsigned PrevStage = 0; +  unsigned StageDiff = CurStageNum - LastStageNum; +  bool InKernel = (StageDiff == 0); +  if (InKernel) { +    PrologStage = LastStageNum - 1; +    PrevStage = CurStageNum; +  } else { +    PrologStage = LastStageNum - StageDiff; +    PrevStage = LastStageNum + StageDiff - 1; +  } + +  for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), +                                   BBE = BB->instr_end(); +       BBI != BBE; ++BBI) { +    for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { +      MachineOperand &MO = BBI->getOperand(i); +      if (!MO.isReg() || !MO.isDef() || +          !Register::isVirtualRegister(MO.getReg())) +        continue; + +      int StageScheduled = Schedule.getStage(&*BBI); +      assert(StageScheduled != -1 && "Expecting scheduled instruction."); +      Register Def = MO.getReg(); +      unsigned NumPhis = getStagesForReg(Def, CurStageNum); +      // An instruction scheduled in stage 0 and is used after the loop +      // requires a phi in the epilog for the last definition from either +      // the kernel or prolog. +      if (!InKernel && NumPhis == 0 && StageScheduled == 0 && +          hasUseAfterLoop(Def, BB, MRI)) +        NumPhis = 1; +      if (!InKernel && (unsigned)StageScheduled > PrologStage) +        continue; + +      unsigned PhiOp2 = VRMap[PrevStage][Def]; +      if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) +        if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) +          PhiOp2 = getLoopPhiReg(*InstOp2, BB2); +      // The number of Phis can't exceed the number of prolog stages. The +      // prolog stage number is zero based. +      if (NumPhis > PrologStage + 1 - StageScheduled) +        NumPhis = PrologStage + 1 - StageScheduled; +      for (unsigned np = 0; np < NumPhis; ++np) { +        unsigned PhiOp1 = VRMap[PrologStage][Def]; +        if (np <= PrologStage) +          PhiOp1 = VRMap[PrologStage - np][Def]; +        if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { +          if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) +            PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); +          if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) +            PhiOp1 = getInitPhiReg(*InstOp1, NewBB); +        } +        if (!InKernel) +          PhiOp2 = VRMap[PrevStage - np][Def]; + +        const TargetRegisterClass *RC = MRI.getRegClass(Def); +        Register NewReg = MRI.createVirtualRegister(RC); + +        MachineInstrBuilder NewPhi = +            BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), +                    TII->get(TargetOpcode::PHI), NewReg); +        NewPhi.addReg(PhiOp1).addMBB(BB1); +        NewPhi.addReg(PhiOp2).addMBB(BB2); +        if (np == 0) +          InstrMap[NewPhi] = &*BBI; + +        // Rewrite uses and update the map. The actions depend upon whether +        // we generating code for the kernel or epilog blocks. +        if (InKernel) { +          rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1, +                                NewReg); +          rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2, +                                NewReg); + +          PhiOp2 = NewReg; +          VRMap[PrevStage - np - 1][Def] = NewReg; +        } else { +          VRMap[CurStageNum - np][Def] = NewReg; +          if (np == NumPhis - 1) +            rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, +                                  NewReg); +        } +        if (IsLast && np == NumPhis - 1) +          replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); +      } +    } +  } +} + +/// Remove instructions that generate values with no uses. +/// Typically, these are induction variable operations that generate values +/// used in the loop itself.  A dead instruction has a definition with +/// no uses, or uses that occur in the original loop only. +void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB, +                                                    MBBVectorTy &EpilogBBs) { +  // For each epilog block, check that the value defined by each instruction +  // is used.  If not, delete it. +  for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), +                                     MBE = EpilogBBs.rend(); +       MBB != MBE; ++MBB) +    for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), +                                                   ME = (*MBB)->instr_rend(); +         MI != ME;) { +      // From DeadMachineInstructionElem. Don't delete inline assembly. +      if (MI->isInlineAsm()) { +        ++MI; +        continue; +      } +      bool SawStore = false; +      // Check if it's safe to remove the instruction due to side effects. +      // We can, and want to, remove Phis here. +      if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { +        ++MI; +        continue; +      } +      bool used = true; +      for (MachineInstr::mop_iterator MOI = MI->operands_begin(), +                                      MOE = MI->operands_end(); +           MOI != MOE; ++MOI) { +        if (!MOI->isReg() || !MOI->isDef()) +          continue; +        Register reg = MOI->getReg(); +        // Assume physical registers are used, unless they are marked dead. +        if (Register::isPhysicalRegister(reg)) { +          used = !MOI->isDead(); +          if (used) +            break; +          continue; +        } +        unsigned realUses = 0; +        for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), +                                               EI = MRI.use_end(); +             UI != EI; ++UI) { +          // Check if there are any uses that occur only in the original +          // loop.  If so, that's not a real use. +          if (UI->getParent()->getParent() != BB) { +            realUses++; +            used = true; +            break; +          } +        } +        if (realUses > 0) +          break; +        used = false; +      } +      if (!used) { +        LIS.RemoveMachineInstrFromMaps(*MI); +        MI++->eraseFromParent(); +        continue; +      } +      ++MI; +    } +  // In the kernel block, check if we can remove a Phi that generates a value +  // used in an instruction removed in the epilog block. +  for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), +                                   BBE = KernelBB->getFirstNonPHI(); +       BBI != BBE;) { +    MachineInstr *MI = &*BBI; +    ++BBI; +    Register reg = MI->getOperand(0).getReg(); +    if (MRI.use_begin(reg) == MRI.use_end()) { +      LIS.RemoveMachineInstrFromMaps(*MI); +      MI->eraseFromParent(); +    } +  } +} + +/// For loop carried definitions, we split the lifetime of a virtual register +/// that has uses past the definition in the next iteration. A copy with a new +/// virtual register is inserted before the definition, which helps with +/// generating a better register assignment. +/// +///   v1 = phi(a, v2)     v1 = phi(a, v2) +///   v2 = phi(b, v3)     v2 = phi(b, v3) +///   v3 = ..             v4 = copy v1 +///   .. = V1             v3 = .. +///                       .. = v4 +void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB, +                                            MBBVectorTy &EpilogBBs) { +  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); +  for (auto &PHI : KernelBB->phis()) { +    Register Def = PHI.getOperand(0).getReg(); +    // Check for any Phi definition that used as an operand of another Phi +    // in the same block. +    for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), +                                                 E = MRI.use_instr_end(); +         I != E; ++I) { +      if (I->isPHI() && I->getParent() == KernelBB) { +        // Get the loop carried definition. +        unsigned LCDef = getLoopPhiReg(PHI, KernelBB); +        if (!LCDef) +          continue; +        MachineInstr *MI = MRI.getVRegDef(LCDef); +        if (!MI || MI->getParent() != KernelBB || MI->isPHI()) +          continue; +        // Search through the rest of the block looking for uses of the Phi +        // definition. If one occurs, then split the lifetime. +        unsigned SplitReg = 0; +        for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), +                                    KernelBB->instr_end())) +          if (BBJ.readsRegister(Def)) { +            // We split the lifetime when we find the first use. +            if (SplitReg == 0) { +              SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); +              BuildMI(*KernelBB, MI, MI->getDebugLoc(), +                      TII->get(TargetOpcode::COPY), SplitReg) +                  .addReg(Def); +            } +            BBJ.substituteRegister(Def, SplitReg, 0, *TRI); +          } +        if (!SplitReg) +          continue; +        // Search through each of the epilog blocks for any uses to be renamed. +        for (auto &Epilog : EpilogBBs) +          for (auto &I : *Epilog) +            if (I.readsRegister(Def)) +              I.substituteRegister(Def, SplitReg, 0, *TRI); +        break; +      } +    } +  } +} + +/// Remove the incoming block from the Phis in a basic block. +static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { +  for (MachineInstr &MI : *BB) { +    if (!MI.isPHI()) +      break; +    for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) +      if (MI.getOperand(i + 1).getMBB() == Incoming) { +        MI.RemoveOperand(i + 1); +        MI.RemoveOperand(i); +        break; +      } +  } +} + +/// Create branches from each prolog basic block to the appropriate epilog +/// block.  These edges are needed if the loop ends before reaching the +/// kernel. +void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB, +                                         MBBVectorTy &PrologBBs, +                                         MachineBasicBlock *KernelBB, +                                         MBBVectorTy &EpilogBBs, +                                         ValueMapTy *VRMap) { +  assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); +  MachineBasicBlock *LastPro = KernelBB; +  MachineBasicBlock *LastEpi = KernelBB; + +  // Start from the blocks connected to the kernel and work "out" +  // to the first prolog and the last epilog blocks. +  SmallVector<MachineInstr *, 4> PrevInsts; +  unsigned MaxIter = PrologBBs.size() - 1; +  for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { +    // Add branches to the prolog that go to the corresponding +    // epilog, and the fall-thru prolog/kernel block. +    MachineBasicBlock *Prolog = PrologBBs[j]; +    MachineBasicBlock *Epilog = EpilogBBs[i]; + +    SmallVector<MachineOperand, 4> Cond; +    Optional<bool> StaticallyGreater = +        LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond); +    unsigned numAdded = 0; +    if (!StaticallyGreater.hasValue()) { +      Prolog->addSuccessor(Epilog); +      numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); +    } else if (*StaticallyGreater == false) { +      Prolog->addSuccessor(Epilog); +      Prolog->removeSuccessor(LastPro); +      LastEpi->removeSuccessor(Epilog); +      numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); +      removePhis(Epilog, LastEpi); +      // Remove the blocks that are no longer referenced. +      if (LastPro != LastEpi) { +        LastEpi->clear(); +        LastEpi->eraseFromParent(); +      } +      if (LastPro == KernelBB) { +        LoopInfo->disposed(); +        NewKernel = nullptr; +      } +      LastPro->clear(); +      LastPro->eraseFromParent(); +    } else { +      numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); +      removePhis(Epilog, Prolog); +    } +    LastPro = Prolog; +    LastEpi = Epilog; +    for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), +                                                   E = Prolog->instr_rend(); +         I != E && numAdded > 0; ++I, --numAdded) +      updateInstruction(&*I, false, j, 0, VRMap); +  } + +  if (NewKernel) { +    LoopInfo->setPreheader(PrologBBs[MaxIter]); +    LoopInfo->adjustTripCount(-(MaxIter + 1)); +  } +} + +/// Return true if we can compute the amount the instruction changes +/// during each iteration. Set Delta to the amount of the change. +bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) { +  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); +  const MachineOperand *BaseOp; +  int64_t Offset; +  if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI)) +    return false; + +  if (!BaseOp->isReg()) +    return false; + +  Register BaseReg = BaseOp->getReg(); + +  MachineRegisterInfo &MRI = MF.getRegInfo(); +  // Check if there is a Phi. If so, get the definition in the loop. +  MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); +  if (BaseDef && BaseDef->isPHI()) { +    BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); +    BaseDef = MRI.getVRegDef(BaseReg); +  } +  if (!BaseDef) +    return false; + +  int D = 0; +  if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) +    return false; + +  Delta = D; +  return true; +} + +/// Update the memory operand with a new offset when the pipeliner +/// generates a new copy of the instruction that refers to a +/// different memory location. +void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI, +                                               MachineInstr &OldMI, +                                               unsigned Num) { +  if (Num == 0) +    return; +  // If the instruction has memory operands, then adjust the offset +  // when the instruction appears in different stages. +  if (NewMI.memoperands_empty()) +    return; +  SmallVector<MachineMemOperand *, 2> NewMMOs; +  for (MachineMemOperand *MMO : NewMI.memoperands()) { +    // TODO: Figure out whether isAtomic is really necessary (see D57601). +    if (MMO->isVolatile() || MMO->isAtomic() || +        (MMO->isInvariant() && MMO->isDereferenceable()) || +        (!MMO->getValue())) { +      NewMMOs.push_back(MMO); +      continue; +    } +    unsigned Delta; +    if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { +      int64_t AdjOffset = Delta * Num; +      NewMMOs.push_back( +          MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); +    } else { +      NewMMOs.push_back( +          MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize)); +    } +  } +  NewMI.setMemRefs(MF, NewMMOs); +} + +/// Clone the instruction for the new pipelined loop and update the +/// memory operands, if needed. +MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI, +                                                 unsigned CurStageNum, +                                                 unsigned InstStageNum) { +  MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); +  // Check for tied operands in inline asm instructions. This should be handled +  // elsewhere, but I'm not sure of the best solution. +  if (OldMI->isInlineAsm()) +    for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { +      const auto &MO = OldMI->getOperand(i); +      if (MO.isReg() && MO.isUse()) +        break; +      unsigned UseIdx; +      if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) +        NewMI->tieOperands(i, UseIdx); +    } +  updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); +  return NewMI; +} + +/// Clone the instruction for the new pipelined loop. If needed, this +/// function updates the instruction using the values saved in the +/// InstrChanges structure. +MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr( +    MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) { +  MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); +  auto It = InstrChanges.find(OldMI); +  if (It != InstrChanges.end()) { +    std::pair<unsigned, int64_t> RegAndOffset = It->second; +    unsigned BasePos, OffsetPos; +    if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) +      return nullptr; +    int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); +    MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); +    if (Schedule.getStage(LoopDef) > (signed)InstStageNum) +      NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); +    NewMI->getOperand(OffsetPos).setImm(NewOffset); +  } +  updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); +  return NewMI; +} + +/// Update the machine instruction with new virtual registers.  This +/// function may change the defintions and/or uses. +void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI, +                                               bool LastDef, +                                               unsigned CurStageNum, +                                               unsigned InstrStageNum, +                                               ValueMapTy *VRMap) { +  for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { +    MachineOperand &MO = NewMI->getOperand(i); +    if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg())) +      continue; +    Register reg = MO.getReg(); +    if (MO.isDef()) { +      // Create a new virtual register for the definition. +      const TargetRegisterClass *RC = MRI.getRegClass(reg); +      Register NewReg = MRI.createVirtualRegister(RC); +      MO.setReg(NewReg); +      VRMap[CurStageNum][reg] = NewReg; +      if (LastDef) +        replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); +    } else if (MO.isUse()) { +      MachineInstr *Def = MRI.getVRegDef(reg); +      // Compute the stage that contains the last definition for instruction. +      int DefStageNum = Schedule.getStage(Def); +      unsigned StageNum = CurStageNum; +      if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { +        // Compute the difference in stages between the defintion and the use. +        unsigned StageDiff = (InstrStageNum - DefStageNum); +        // Make an adjustment to get the last definition. +        StageNum -= StageDiff; +      } +      if (VRMap[StageNum].count(reg)) +        MO.setReg(VRMap[StageNum][reg]); +    } +  } +} + +/// Return the instruction in the loop that defines the register. +/// If the definition is a Phi, then follow the Phi operand to +/// the instruction in the loop. +MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) { +  SmallPtrSet<MachineInstr *, 8> Visited; +  MachineInstr *Def = MRI.getVRegDef(Reg); +  while (Def->isPHI()) { +    if (!Visited.insert(Def).second) +      break; +    for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) +      if (Def->getOperand(i + 1).getMBB() == BB) { +        Def = MRI.getVRegDef(Def->getOperand(i).getReg()); +        break; +      } +  } +  return Def; +} + +/// Return the new name for the value from the previous stage. +unsigned ModuloScheduleExpander::getPrevMapVal( +    unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage, +    ValueMapTy *VRMap, MachineBasicBlock *BB) { +  unsigned PrevVal = 0; +  if (StageNum > PhiStage) { +    MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); +    if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) +      // The name is defined in the previous stage. +      PrevVal = VRMap[StageNum - 1][LoopVal]; +    else if (VRMap[StageNum].count(LoopVal)) +      // The previous name is defined in the current stage when the instruction +      // order is swapped. +      PrevVal = VRMap[StageNum][LoopVal]; +    else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) +      // The loop value hasn't yet been scheduled. +      PrevVal = LoopVal; +    else if (StageNum == PhiStage + 1) +      // The loop value is another phi, which has not been scheduled. +      PrevVal = getInitPhiReg(*LoopInst, BB); +    else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) +      // The loop value is another phi, which has been scheduled. +      PrevVal = +          getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), +                        LoopStage, VRMap, BB); +  } +  return PrevVal; +} + +/// Rewrite the Phi values in the specified block to use the mappings +/// from the initial operand. Once the Phi is scheduled, we switch +/// to using the loop value instead of the Phi value, so those names +/// do not need to be rewritten. +void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB, +                                              unsigned StageNum, +                                              ValueMapTy *VRMap, +                                              InstrMapTy &InstrMap) { +  for (auto &PHI : BB->phis()) { +    unsigned InitVal = 0; +    unsigned LoopVal = 0; +    getPhiRegs(PHI, BB, InitVal, LoopVal); +    Register PhiDef = PHI.getOperand(0).getReg(); + +    unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef)); +    unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal)); +    unsigned NumPhis = getStagesForPhi(PhiDef); +    if (NumPhis > StageNum) +      NumPhis = StageNum; +    for (unsigned np = 0; np <= NumPhis; ++np) { +      unsigned NewVal = +          getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); +      if (!NewVal) +        NewVal = InitVal; +      rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef, +                            NewVal); +    } +  } +} + +/// Rewrite a previously scheduled instruction to use the register value +/// from the new instruction. Make sure the instruction occurs in the +/// basic block, and we don't change the uses in the new instruction. +void ModuloScheduleExpander::rewriteScheduledInstr( +    MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum, +    unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg, +    unsigned PrevReg) { +  bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1); +  int StagePhi = Schedule.getStage(Phi) + PhiNum; +  // Rewrite uses that have been scheduled already to use the new +  // Phi register. +  for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), +                                         EI = MRI.use_end(); +       UI != EI;) { +    MachineOperand &UseOp = *UI; +    MachineInstr *UseMI = UseOp.getParent(); +    ++UI; +    if (UseMI->getParent() != BB) +      continue; +    if (UseMI->isPHI()) { +      if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) +        continue; +      if (getLoopPhiReg(*UseMI, BB) != OldReg) +        continue; +    } +    InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); +    assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); +    MachineInstr *OrigMI = OrigInstr->second; +    int StageSched = Schedule.getStage(OrigMI); +    int CycleSched = Schedule.getCycle(OrigMI); +    unsigned ReplaceReg = 0; +    // This is the stage for the scheduled instruction. +    if (StagePhi == StageSched && Phi->isPHI()) { +      int CyclePhi = Schedule.getCycle(Phi); +      if (PrevReg && InProlog) +        ReplaceReg = PrevReg; +      else if (PrevReg && !isLoopCarried(*Phi) && +               (CyclePhi <= CycleSched || OrigMI->isPHI())) +        ReplaceReg = PrevReg; +      else +        ReplaceReg = NewReg; +    } +    // The scheduled instruction occurs before the scheduled Phi, and the +    // Phi is not loop carried. +    if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi)) +      ReplaceReg = NewReg; +    if (StagePhi > StageSched && Phi->isPHI()) +      ReplaceReg = NewReg; +    if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) +      ReplaceReg = NewReg; +    if (ReplaceReg) { +      MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); +      UseOp.setReg(ReplaceReg); +    } +  } +} + +bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) { +  if (!Phi.isPHI()) +    return false; +  unsigned DefCycle = Schedule.getCycle(&Phi); +  int DefStage = Schedule.getStage(&Phi); + +  unsigned InitVal = 0; +  unsigned LoopVal = 0; +  getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); +  MachineInstr *Use = MRI.getVRegDef(LoopVal); +  if (!Use || Use->isPHI()) +    return true; +  unsigned LoopCycle = Schedule.getCycle(Use); +  int LoopStage = Schedule.getStage(Use); +  return (LoopCycle > DefCycle) || (LoopStage <= DefStage); +} + +//===----------------------------------------------------------------------===// +// PeelingModuloScheduleExpander implementation +//===----------------------------------------------------------------------===// +// This is a reimplementation of ModuloScheduleExpander that works by creating +// a fully correct steady-state kernel and peeling off the prolog and epilogs. +//===----------------------------------------------------------------------===// + +namespace { +// Remove any dead phis in MBB. Dead phis either have only one block as input +// (in which case they are the identity) or have no uses. +void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI, +                       LiveIntervals *LIS) { +  bool Changed = true; +  while (Changed) { +    Changed = false; +    for (auto I = MBB->begin(); I != MBB->getFirstNonPHI();) { +      MachineInstr &MI = *I++; +      assert(MI.isPHI()); +      if (MRI.use_empty(MI.getOperand(0).getReg())) { +        if (LIS) +          LIS->RemoveMachineInstrFromMaps(MI); +        MI.eraseFromParent(); +        Changed = true; +      } else if (MI.getNumExplicitOperands() == 3) { +        MRI.constrainRegClass(MI.getOperand(1).getReg(), +                              MRI.getRegClass(MI.getOperand(0).getReg())); +        MRI.replaceRegWith(MI.getOperand(0).getReg(), +                           MI.getOperand(1).getReg()); +        if (LIS) +          LIS->RemoveMachineInstrFromMaps(MI); +        MI.eraseFromParent(); +        Changed = true; +      } +    } +  } +} + +/// Rewrites the kernel block in-place to adhere to the given schedule. +/// KernelRewriter holds all of the state required to perform the rewriting. +class KernelRewriter { +  ModuloSchedule &S; +  MachineBasicBlock *BB; +  MachineBasicBlock *PreheaderBB, *ExitBB; +  MachineRegisterInfo &MRI; +  const TargetInstrInfo *TII; +  LiveIntervals *LIS; + +  // Map from register class to canonical undef register for that class. +  DenseMap<const TargetRegisterClass *, Register> Undefs; +  // Map from <LoopReg, InitReg> to phi register for all created phis. Note that +  // this map is only used when InitReg is non-undef. +  DenseMap<std::pair<unsigned, unsigned>, Register> Phis; +  // Map from LoopReg to phi register where the InitReg is undef. +  DenseMap<Register, Register> UndefPhis; + +  // Reg is used by MI. Return the new register MI should use to adhere to the +  // schedule. Insert phis as necessary. +  Register remapUse(Register Reg, MachineInstr &MI); +  // Insert a phi that carries LoopReg from the loop body and InitReg otherwise. +  // If InitReg is not given it is chosen arbitrarily. It will either be undef +  // or will be chosen so as to share another phi. +  Register phi(Register LoopReg, Optional<Register> InitReg = {}, +               const TargetRegisterClass *RC = nullptr); +  // Create an undef register of the given register class. +  Register undef(const TargetRegisterClass *RC); + +public: +  KernelRewriter(MachineLoop &L, ModuloSchedule &S, +                 LiveIntervals *LIS = nullptr); +  void rewrite(); +}; +} // namespace + +KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S, +                               LiveIntervals *LIS) +    : S(S), BB(L.getTopBlock()), PreheaderBB(L.getLoopPreheader()), +      ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()), +      TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) { +  PreheaderBB = *BB->pred_begin(); +  if (PreheaderBB == BB) +    PreheaderBB = *std::next(BB->pred_begin()); +} + +void KernelRewriter::rewrite() { +  // Rearrange the loop to be in schedule order. Note that the schedule may +  // contain instructions that are not owned by the loop block (InstrChanges and +  // friends), so we gracefully handle unowned instructions and delete any +  // instructions that weren't in the schedule. +  auto InsertPt = BB->getFirstTerminator(); +  MachineInstr *FirstMI = nullptr; +  for (MachineInstr *MI : S.getInstructions()) { +    if (MI->isPHI()) +      continue; +    if (MI->getParent()) +      MI->removeFromParent(); +    BB->insert(InsertPt, MI); +    if (!FirstMI) +      FirstMI = MI; +  } +  assert(FirstMI && "Failed to find first MI in schedule"); + +  // At this point all of the scheduled instructions are between FirstMI +  // and the end of the block. Kill from the first non-phi to FirstMI. +  for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) { +    if (LIS) +      LIS->RemoveMachineInstrFromMaps(*I); +    (I++)->eraseFromParent(); +  } + +  // Now remap every instruction in the loop. +  for (MachineInstr &MI : *BB) { +    if (MI.isPHI() || MI.isTerminator()) +      continue; +    for (MachineOperand &MO : MI.uses()) { +      if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit()) +        continue; +      Register Reg = remapUse(MO.getReg(), MI); +      MO.setReg(Reg); +    } +  } +  EliminateDeadPhis(BB, MRI, LIS); + +  // Ensure a phi exists for all instructions that are either referenced by +  // an illegal phi or by an instruction outside the loop. This allows us to +  // treat remaps of these values the same as "normal" values that come from +  // loop-carried phis. +  for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) { +    if (MI->isPHI()) { +      Register R = MI->getOperand(0).getReg(); +      phi(R); +      continue; +    } + +    for (MachineOperand &Def : MI->defs()) { +      for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) { +        if (MI.getParent() != BB) { +          phi(Def.getReg()); +          break; +        } +      } +    } +  } +} + +Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) { +  MachineInstr *Producer = MRI.getUniqueVRegDef(Reg); +  if (!Producer) +    return Reg; + +  int ConsumerStage = S.getStage(&MI); +  if (!Producer->isPHI()) { +    // Non-phi producers are simple to remap. Insert as many phis as the +    // difference between the consumer and producer stages. +    if (Producer->getParent() != BB) +      // Producer was not inside the loop. Use the register as-is. +      return Reg; +    int ProducerStage = S.getStage(Producer); +    assert(ConsumerStage != -1 && +           "In-loop consumer should always be scheduled!"); +    assert(ConsumerStage >= ProducerStage); +    unsigned StageDiff = ConsumerStage - ProducerStage; + +    for (unsigned I = 0; I < StageDiff; ++I) +      Reg = phi(Reg); +    return Reg; +  } + +  // First, dive through the phi chain to find the defaults for the generated +  // phis. +  SmallVector<Optional<Register>, 4> Defaults; +  Register LoopReg = Reg; +  auto LoopProducer = Producer; +  while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) { +    LoopReg = getLoopPhiReg(*LoopProducer, BB); +    Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB)); +    LoopProducer = MRI.getUniqueVRegDef(LoopReg); +    assert(LoopProducer); +  } +  int LoopProducerStage = S.getStage(LoopProducer); + +  Optional<Register> IllegalPhiDefault; + +  if (LoopProducerStage == -1) { +    // Do nothing. +  } else if (LoopProducerStage > ConsumerStage) { +    // This schedule is only representable if ProducerStage == ConsumerStage+1. +    // In addition, Consumer's cycle must be scheduled after Producer in the +    // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP +    // functions. +#ifndef NDEBUG // Silence unused variables in non-asserts mode. +    int LoopProducerCycle = S.getCycle(LoopProducer); +    int ConsumerCycle = S.getCycle(&MI); +#endif +    assert(LoopProducerCycle <= ConsumerCycle); +    assert(LoopProducerStage == ConsumerStage + 1); +    // Peel off the first phi from Defaults and insert a phi between producer +    // and consumer. This phi will not be at the front of the block so we +    // consider it illegal. It will only exist during the rewrite process; it +    // needs to exist while we peel off prologs because these could take the +    // default value. After that we can replace all uses with the loop producer +    // value. +    IllegalPhiDefault = Defaults.front(); +    Defaults.erase(Defaults.begin()); +  } else { +    assert(ConsumerStage >= LoopProducerStage); +    int StageDiff = ConsumerStage - LoopProducerStage; +    if (StageDiff > 0) { +      LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size() +                        << " to " << (Defaults.size() + StageDiff) << "\n"); +      // If we need more phis than we have defaults for, pad out with undefs for +      // the earliest phis, which are at the end of the defaults chain (the +      // chain is in reverse order). +      Defaults.resize(Defaults.size() + StageDiff, Defaults.empty() +                                                       ? Optional<Register>() +                                                       : Defaults.back()); +    } +  } + +  // Now we know the number of stages to jump back, insert the phi chain. +  auto DefaultI = Defaults.rbegin(); +  while (DefaultI != Defaults.rend()) +    LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg)); + +  if (IllegalPhiDefault.hasValue()) { +    // The consumer optionally consumes LoopProducer in the same iteration +    // (because the producer is scheduled at an earlier cycle than the consumer) +    // or the initial value. To facilitate this we create an illegal block here +    // by embedding a phi in the middle of the block. We will fix this up +    // immediately prior to pruning. +    auto RC = MRI.getRegClass(Reg); +    Register R = MRI.createVirtualRegister(RC); +    BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R) +        .addReg(IllegalPhiDefault.getValue()) +        .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect. +        .addReg(LoopReg) +        .addMBB(BB); // Block choice is arbitrary and has no effect. +    return R; +  } + +  return LoopReg; +} + +Register KernelRewriter::phi(Register LoopReg, Optional<Register> InitReg, +                             const TargetRegisterClass *RC) { +  // If the init register is not undef, try and find an existing phi. +  if (InitReg.hasValue()) { +    auto I = Phis.find({LoopReg, InitReg.getValue()}); +    if (I != Phis.end()) +      return I->second; +  } else { +    for (auto &KV : Phis) { +      if (KV.first.first == LoopReg) +        return KV.second; +    } +  } + +  // InitReg is either undef or no existing phi takes InitReg as input. Try and +  // find a phi that takes undef as input. +  auto I = UndefPhis.find(LoopReg); +  if (I != UndefPhis.end()) { +    Register R = I->second; +    if (!InitReg.hasValue()) +      // Found a phi taking undef as input, and this input is undef so return +      // without any more changes. +      return R; +    // Found a phi taking undef as input, so rewrite it to take InitReg. +    MachineInstr *MI = MRI.getVRegDef(R); +    MI->getOperand(1).setReg(InitReg.getValue()); +    Phis.insert({{LoopReg, InitReg.getValue()}, R}); +    MRI.constrainRegClass(R, MRI.getRegClass(InitReg.getValue())); +    UndefPhis.erase(I); +    return R; +  } + +  // Failed to find any existing phi to reuse, so create a new one. +  if (!RC) +    RC = MRI.getRegClass(LoopReg); +  Register R = MRI.createVirtualRegister(RC); +  if (InitReg.hasValue()) +    MRI.constrainRegClass(R, MRI.getRegClass(*InitReg)); +  BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R) +      .addReg(InitReg.hasValue() ? *InitReg : undef(RC)) +      .addMBB(PreheaderBB) +      .addReg(LoopReg) +      .addMBB(BB); +  if (!InitReg.hasValue()) +    UndefPhis[LoopReg] = R; +  else +    Phis[{LoopReg, *InitReg}] = R; +  return R; +} + +Register KernelRewriter::undef(const TargetRegisterClass *RC) { +  Register &R = Undefs[RC]; +  if (R == 0) { +    // Create an IMPLICIT_DEF that defines this register if we need it. +    // All uses of this should be removed by the time we have finished unrolling +    // prologs and epilogs. +    R = MRI.createVirtualRegister(RC); +    auto *InsertBB = &PreheaderBB->getParent()->front(); +    BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(), +            TII->get(TargetOpcode::IMPLICIT_DEF), R); +  } +  return R; +} + +namespace { +/// Describes an operand in the kernel of a pipelined loop. Characteristics of +/// the operand are discovered, such as how many in-loop PHIs it has to jump +/// through and defaults for these phis. +class KernelOperandInfo { +  MachineBasicBlock *BB; +  MachineRegisterInfo &MRI; +  SmallVector<Register, 4> PhiDefaults; +  MachineOperand *Source; +  MachineOperand *Target; + +public: +  KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI, +                    const SmallPtrSetImpl<MachineInstr *> &IllegalPhis) +      : MRI(MRI) { +    Source = MO; +    BB = MO->getParent()->getParent(); +    while (isRegInLoop(MO)) { +      MachineInstr *MI = MRI.getVRegDef(MO->getReg()); +      if (MI->isFullCopy()) { +        MO = &MI->getOperand(1); +        continue; +      } +      if (!MI->isPHI()) +        break; +      // If this is an illegal phi, don't count it in distance. +      if (IllegalPhis.count(MI)) { +        MO = &MI->getOperand(3); +        continue; +      } + +      Register Default = getInitPhiReg(*MI, BB); +      MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1) +                                            : &MI->getOperand(3); +      PhiDefaults.push_back(Default); +    } +    Target = MO; +  } + +  bool operator==(const KernelOperandInfo &Other) const { +    return PhiDefaults.size() == Other.PhiDefaults.size(); +  } + +  void print(raw_ostream &OS) const { +    OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in " +       << *Source->getParent(); +  } + +private: +  bool isRegInLoop(MachineOperand *MO) { +    return MO->isReg() && MO->getReg().isVirtual() && +           MRI.getVRegDef(MO->getReg())->getParent() == BB; +  } +}; +} // namespace + +MachineBasicBlock * +PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) { +  MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII); +  if (LPD == LPD_Front) +    PeeledFront.push_back(NewBB); +  else +    PeeledBack.push_front(NewBB); +  for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator(); +       ++I, ++NI) { +    CanonicalMIs[&*I] = &*I; +    CanonicalMIs[&*NI] = &*I; +    BlockMIs[{NewBB, &*I}] = &*NI; +    BlockMIs[{BB, &*I}] = &*I; +  } +  return NewBB; +} + +void PeelingModuloScheduleExpander::peelPrologAndEpilogs() { +  BitVector LS(Schedule.getNumStages(), true); +  BitVector AS(Schedule.getNumStages(), true); +  LiveStages[BB] = LS; +  AvailableStages[BB] = AS; + +  // Peel out the prologs. +  LS.reset(); +  for (int I = 0; I < Schedule.getNumStages() - 1; ++I) { +    LS[I] = 1; +    Prologs.push_back(peelKernel(LPD_Front)); +    LiveStages[Prologs.back()] = LS; +    AvailableStages[Prologs.back()] = LS; +  } + +  // Create a block that will end up as the new loop exiting block (dominated by +  // all prologs and epilogs). It will only contain PHIs, in the same order as +  // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property +  // that the exiting block is a (sub) clone of BB. This in turn gives us the +  // property that any value deffed in BB but used outside of BB is used by a +  // PHI in the exiting block. +  MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock(); + +  // Push out the epilogs, again in reverse order. +  // We can't assume anything about the minumum loop trip count at this point, +  // so emit a fairly complex epilog: +  //  K[0, 1, 2]     // Kernel runs stages 0, 1, 2 +  //  E0[2] <- P1    // Epilog runs stage 2 only, so the state after is [0]. +  //  E1[1, 2] <- P0 // Epilog 1 moves the last item from stage 0 to stage 2. +  // +  // This creates a single-successor single-predecessor sequence of blocks for +  // each epilog, which are kept this way for simplicity at this stage and +  // cleaned up by the optimizer later. +  for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) { +    Epilogs.push_back(nullptr); +    for (int J = Schedule.getNumStages() - 1; J >= I; --J) { +      LS.reset(); +      LS[J] = 1; +      Epilogs.back() = peelKernel(LPD_Back); +      LiveStages[Epilogs.back()] = LS; +      AvailableStages[Epilogs.back()] = AS; +    } +  } + +  // Now we've defined all the prolog and epilog blocks as a fallthrough +  // sequence, add the edges that will be followed if the loop trip count is +  // lower than the number of stages (connecting prologs directly with epilogs). +  auto PI = Prologs.begin(); +  auto EI = Epilogs.begin(); +  assert(Prologs.size() == Epilogs.size()); +  for (; PI != Prologs.end(); ++PI, ++EI) { +    MachineBasicBlock *Pred = *(*EI)->pred_begin(); +    (*PI)->addSuccessor(*EI); +    for (MachineInstr &MI : (*EI)->phis()) { +      Register Reg = MI.getOperand(1).getReg(); +      MachineInstr *Use = MRI.getUniqueVRegDef(Reg); +      if (Use && Use->getParent() == Pred) +        Reg = getEquivalentRegisterIn(Reg, *PI); +      MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false)); +      MI.addOperand(MachineOperand::CreateMBB(*PI)); +    } +  } + +  // Create a list of all blocks in order. +  SmallVector<MachineBasicBlock *, 8> Blocks; +  llvm::copy(PeeledFront, std::back_inserter(Blocks)); +  Blocks.push_back(BB); +  llvm::copy(PeeledBack, std::back_inserter(Blocks)); + +  // Iterate in reverse order over all instructions, remapping as we go. +  for (MachineBasicBlock *B : reverse(Blocks)) { +    for (auto I = B->getFirstInstrTerminator()->getReverseIterator(); +         I != std::next(B->getFirstNonPHI()->getReverseIterator());) { +      MachineInstr *MI = &*I++; +      rewriteUsesOf(MI); +    } +  } +  // Now all remapping has been done, we're free to optimize the generated code. +  for (MachineBasicBlock *B : reverse(Blocks)) +    EliminateDeadPhis(B, MRI, LIS); +  EliminateDeadPhis(ExitingBB, MRI, LIS); +} + +MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() { +  MachineFunction &MF = *BB->getParent(); +  MachineBasicBlock *Exit = *BB->succ_begin(); +  if (Exit == BB) +    Exit = *std::next(BB->succ_begin()); + +  MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); +  MF.insert(std::next(BB->getIterator()), NewBB); + +  // Clone all phis in BB into NewBB and rewrite. +  for (MachineInstr &MI : BB->phis()) { +    auto RC = MRI.getRegClass(MI.getOperand(0).getReg()); +    Register OldR = MI.getOperand(3).getReg(); +    Register R = MRI.createVirtualRegister(RC); +    SmallVector<MachineInstr *, 4> Uses; +    for (MachineInstr &Use : MRI.use_instructions(OldR)) +      if (Use.getParent() != BB) +        Uses.push_back(&Use); +    for (MachineInstr *Use : Uses) +      Use->substituteRegister(OldR, R, /*SubIdx=*/0, +                              *MRI.getTargetRegisterInfo()); +    MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R) +        .addReg(OldR) +        .addMBB(BB); +    BlockMIs[{NewBB, &MI}] = NI; +    CanonicalMIs[NI] = &MI; +  } +  BB->replaceSuccessor(Exit, NewBB); +  Exit->replacePhiUsesWith(BB, NewBB); +  NewBB->addSuccessor(Exit); + +  MachineBasicBlock *TBB = nullptr, *FBB = nullptr; +  SmallVector<MachineOperand, 4> Cond; +  bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond); +  (void)CanAnalyzeBr; +  assert(CanAnalyzeBr && "Must be able to analyze the loop branch!"); +  TII->removeBranch(*BB); +  TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB, +                    Cond, DebugLoc()); +  TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc()); +  return NewBB; +} + +Register +PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg, +                                                       MachineBasicBlock *BB) { +  MachineInstr *MI = MRI.getUniqueVRegDef(Reg); +  unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg); +  return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg(); +} + +void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) { +  if (MI->isPHI()) { +    // This is an illegal PHI. The loop-carried (desired) value is operand 3, +    // and it is produced by this block. +    Register PhiR = MI->getOperand(0).getReg(); +    Register R = MI->getOperand(3).getReg(); +    int RMIStage = getStage(MRI.getUniqueVRegDef(R)); +    if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage)) +      R = MI->getOperand(1).getReg(); +    MRI.setRegClass(R, MRI.getRegClass(PhiR)); +    MRI.replaceRegWith(PhiR, R); +    if (LIS) +      LIS->RemoveMachineInstrFromMaps(*MI); +    MI->eraseFromParent(); +    return; +  } + +  int Stage = getStage(MI); +  if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 || +      LiveStages[MI->getParent()].test(Stage)) +    // Instruction is live, no rewriting to do. +    return; + +  for (MachineOperand &DefMO : MI->defs()) { +    SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; +    for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { +      // Only PHIs can use values from this block by construction. +      // Match with the equivalent PHI in B. +      assert(UseMI.isPHI()); +      Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), +                                             MI->getParent()); +      Subs.emplace_back(&UseMI, Reg); +    } +    for (auto &Sub : Subs) +      Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, +                                    *MRI.getTargetRegisterInfo()); +  } +  if (LIS) +    LIS->RemoveMachineInstrFromMaps(*MI); +  MI->eraseFromParent(); +} + +void PeelingModuloScheduleExpander::fixupBranches() { +  std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> Info = +      TII->analyzeLoopForPipelining(BB); +  assert(Info); + +  // Work outwards from the kernel. +  bool KernelDisposed = false; +  int TC = Schedule.getNumStages() - 1; +  for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend(); +       ++PI, ++EI, --TC) { +    MachineBasicBlock *Prolog = *PI; +    MachineBasicBlock *Fallthrough = *Prolog->succ_begin(); +    MachineBasicBlock *Epilog = *EI; +    SmallVector<MachineOperand, 4> Cond; +    TII->removeBranch(*Prolog); +    Optional<bool> StaticallyGreater = +        Info->createTripCountGreaterCondition(TC, *Prolog, Cond); +    if (!StaticallyGreater.hasValue()) { +      LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n"); +      // Dynamically branch based on Cond. +      TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc()); +    } else if (*StaticallyGreater == false) { +      LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n"); +      // Prolog never falls through; branch to epilog and orphan interior +      // blocks. Leave it to unreachable-block-elim to clean up. +      Prolog->removeSuccessor(Fallthrough); +      for (MachineInstr &P : Fallthrough->phis()) { +        P.RemoveOperand(2); +        P.RemoveOperand(1); +      } +      TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc()); +      KernelDisposed = true; +    } else { +      LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n"); +      // Prolog always falls through; remove incoming values in epilog. +      Prolog->removeSuccessor(Epilog); +      for (MachineInstr &P : Epilog->phis()) { +        P.RemoveOperand(4); +        P.RemoveOperand(3); +      } +    } +  } + +  if (!KernelDisposed) { +    Info->adjustTripCount(-(Schedule.getNumStages() - 1)); +    Info->setPreheader(Prologs.back()); +  } else { +    Info->disposed(); +  } +} + +void PeelingModuloScheduleExpander::rewriteKernel() { +  KernelRewriter KR(*Schedule.getLoop(), Schedule); +  KR.rewrite(); +} + +void PeelingModuloScheduleExpander::expand() { +  BB = Schedule.getLoop()->getTopBlock(); +  Preheader = Schedule.getLoop()->getLoopPreheader(); +  LLVM_DEBUG(Schedule.dump()); + +  rewriteKernel(); +  peelPrologAndEpilogs(); +  fixupBranches(); +} + +void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() { +  BB = Schedule.getLoop()->getTopBlock(); +  Preheader = Schedule.getLoop()->getLoopPreheader(); + +  // Dump the schedule before we invalidate and remap all its instructions. +  // Stash it in a string so we can print it if we found an error. +  std::string ScheduleDump; +  raw_string_ostream OS(ScheduleDump); +  Schedule.print(OS); +  OS.flush(); + +  // First, run the normal ModuleScheduleExpander. We don't support any +  // InstrChanges. +  assert(LIS && "Requires LiveIntervals!"); +  ModuloScheduleExpander MSE(MF, Schedule, *LIS, +                             ModuloScheduleExpander::InstrChangesTy()); +  MSE.expand(); +  MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel(); +  if (!ExpandedKernel) { +    // The expander optimized away the kernel. We can't do any useful checking. +    MSE.cleanup(); +    return; +  } +  // Before running the KernelRewriter, re-add BB into the CFG. +  Preheader->addSuccessor(BB); + +  // Now run the new expansion algorithm. +  KernelRewriter KR(*Schedule.getLoop(), Schedule); +  KR.rewrite(); +  peelPrologAndEpilogs(); + +  // Collect all illegal phis that the new algorithm created. We'll give these +  // to KernelOperandInfo. +  SmallPtrSet<MachineInstr *, 4> IllegalPhis; +  for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) { +    if (NI->isPHI()) +      IllegalPhis.insert(&*NI); +  } + +  // Co-iterate across both kernels. We expect them to be identical apart from +  // phis and full COPYs (we look through both). +  SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs; +  auto OI = ExpandedKernel->begin(); +  auto NI = BB->begin(); +  for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) { +    while (OI->isPHI() || OI->isFullCopy()) +      ++OI; +    while (NI->isPHI() || NI->isFullCopy()) +      ++NI; +    assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!"); +    // Analyze every operand separately. +    for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin(); +         OOpI != OI->operands_end(); ++OOpI, ++NOpI) +      KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis), +                        KernelOperandInfo(&*NOpI, MRI, IllegalPhis)); +  } + +  bool Failed = false; +  for (auto &OldAndNew : KOIs) { +    if (OldAndNew.first == OldAndNew.second) +      continue; +    Failed = true; +    errs() << "Modulo kernel validation error: [\n"; +    errs() << " [golden] "; +    OldAndNew.first.print(errs()); +    errs() << "          "; +    OldAndNew.second.print(errs()); +    errs() << "]\n"; +  } + +  if (Failed) { +    errs() << "Golden reference kernel:\n"; +    ExpandedKernel->print(errs()); +    errs() << "New kernel:\n"; +    BB->print(errs()); +    errs() << ScheduleDump; +    report_fatal_error( +        "Modulo kernel validation (-pipeliner-experimental-cg) failed"); +  } + +  // Cleanup by removing BB from the CFG again as the original +  // ModuloScheduleExpander intended. +  Preheader->removeSuccessor(BB); +  MSE.cleanup(); +} + +//===----------------------------------------------------------------------===// +// ModuloScheduleTestPass implementation +//===----------------------------------------------------------------------===// +// This pass constructs a ModuloSchedule from its module and runs +// ModuloScheduleExpander. +// +// The module is expected to contain a single-block analyzable loop. +// The total order of instructions is taken from the loop as-is. +// Instructions are expected to be annotated with a PostInstrSymbol. +// This PostInstrSymbol must have the following format: +//  "Stage=%d Cycle=%d". +//===----------------------------------------------------------------------===// + +namespace { +class ModuloScheduleTest : public MachineFunctionPass { +public: +  static char ID; + +  ModuloScheduleTest() : MachineFunctionPass(ID) { +    initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry()); +  } + +  bool runOnMachineFunction(MachineFunction &MF) override; +  void runOnLoop(MachineFunction &MF, MachineLoop &L); + +  void getAnalysisUsage(AnalysisUsage &AU) const override { +    AU.addRequired<MachineLoopInfo>(); +    AU.addRequired<LiveIntervals>(); +    MachineFunctionPass::getAnalysisUsage(AU); +  } +}; +} // namespace + +char ModuloScheduleTest::ID = 0; + +INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test", +                      "Modulo Schedule test pass", false, false) +INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) +INITIALIZE_PASS_DEPENDENCY(LiveIntervals) +INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test", +                    "Modulo Schedule test pass", false, false) + +bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) { +  MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); +  for (auto *L : MLI) { +    if (L->getTopBlock() != L->getBottomBlock()) +      continue; +    runOnLoop(MF, *L); +    return false; +  } +  return false; +} + +static void parseSymbolString(StringRef S, int &Cycle, int &Stage) { +  std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_"); +  std::pair<StringRef, StringRef> StageTokenAndValue = +      getToken(StageAndCycle.first, "-"); +  std::pair<StringRef, StringRef> CycleTokenAndValue = +      getToken(StageAndCycle.second, "-"); +  if (StageTokenAndValue.first != "Stage" || +      CycleTokenAndValue.first != "_Cycle") { +    llvm_unreachable( +        "Bad post-instr symbol syntax: see comment in ModuloScheduleTest"); +    return; +  } + +  StageTokenAndValue.second.drop_front().getAsInteger(10, Stage); +  CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle); + +  dbgs() << "  Stage=" << Stage << ", Cycle=" << Cycle << "\n"; +} + +void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) { +  LiveIntervals &LIS = getAnalysis<LiveIntervals>(); +  MachineBasicBlock *BB = L.getTopBlock(); +  dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n"; + +  DenseMap<MachineInstr *, int> Cycle, Stage; +  std::vector<MachineInstr *> Instrs; +  for (MachineInstr &MI : *BB) { +    if (MI.isTerminator()) +      continue; +    Instrs.push_back(&MI); +    if (MCSymbol *Sym = MI.getPostInstrSymbol()) { +      dbgs() << "Parsing post-instr symbol for " << MI; +      parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]); +    } +  } + +  ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle), +                    std::move(Stage)); +  ModuloScheduleExpander MSE( +      MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy()); +  MSE.expand(); +  MSE.cleanup(); +} + +//===----------------------------------------------------------------------===// +// ModuloScheduleTestAnnotater implementation +//===----------------------------------------------------------------------===// + +void ModuloScheduleTestAnnotater::annotate() { +  for (MachineInstr *MI : S.getInstructions()) { +    SmallVector<char, 16> SV; +    raw_svector_ostream OS(SV); +    OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI); +    MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str()); +    MI->setPostInstrSymbol(MF, Sym); +  } +} | 
