diff options
Diffstat (limited to 'llvm/lib/CodeGen/PeepholeOptimizer.cpp')
-rw-r--r-- | llvm/lib/CodeGen/PeepholeOptimizer.cpp | 2114 |
1 files changed, 2114 insertions, 0 deletions
diff --git a/llvm/lib/CodeGen/PeepholeOptimizer.cpp b/llvm/lib/CodeGen/PeepholeOptimizer.cpp new file mode 100644 index 000000000000..54f1d38ed106 --- /dev/null +++ b/llvm/lib/CodeGen/PeepholeOptimizer.cpp @@ -0,0 +1,2114 @@ +//===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Perform peephole optimizations on the machine code: +// +// - Optimize Extensions +// +// Optimization of sign / zero extension instructions. It may be extended to +// handle other instructions with similar properties. +// +// On some targets, some instructions, e.g. X86 sign / zero extension, may +// leave the source value in the lower part of the result. This optimization +// will replace some uses of the pre-extension value with uses of the +// sub-register of the results. +// +// - Optimize Comparisons +// +// Optimization of comparison instructions. For instance, in this code: +// +// sub r1, 1 +// cmp r1, 0 +// bz L1 +// +// If the "sub" instruction all ready sets (or could be modified to set) the +// same flag that the "cmp" instruction sets and that "bz" uses, then we can +// eliminate the "cmp" instruction. +// +// Another instance, in this code: +// +// sub r1, r3 | sub r1, imm +// cmp r3, r1 or cmp r1, r3 | cmp r1, imm +// bge L1 +// +// If the branch instruction can use flag from "sub", then we can replace +// "sub" with "subs" and eliminate the "cmp" instruction. +// +// - Optimize Loads: +// +// Loads that can be folded into a later instruction. A load is foldable +// if it loads to virtual registers and the virtual register defined has +// a single use. +// +// - Optimize Copies and Bitcast (more generally, target specific copies): +// +// Rewrite copies and bitcasts to avoid cross register bank copies +// when possible. +// E.g., Consider the following example, where capital and lower +// letters denote different register file: +// b = copy A <-- cross-bank copy +// C = copy b <-- cross-bank copy +// => +// b = copy A <-- cross-bank copy +// C = copy A <-- same-bank copy +// +// E.g., for bitcast: +// b = bitcast A <-- cross-bank copy +// C = bitcast b <-- cross-bank copy +// => +// b = bitcast A <-- cross-bank copy +// C = copy A <-- same-bank copy +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetOpcodes.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/MC/LaneBitmask.h" +#include "llvm/MC/MCInstrDesc.h" +#include "llvm/Pass.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include <cassert> +#include <cstdint> +#include <memory> +#include <utility> + +using namespace llvm; +using RegSubRegPair = TargetInstrInfo::RegSubRegPair; +using RegSubRegPairAndIdx = TargetInstrInfo::RegSubRegPairAndIdx; + +#define DEBUG_TYPE "peephole-opt" + +// Optimize Extensions +static cl::opt<bool> +Aggressive("aggressive-ext-opt", cl::Hidden, + cl::desc("Aggressive extension optimization")); + +static cl::opt<bool> +DisablePeephole("disable-peephole", cl::Hidden, cl::init(false), + cl::desc("Disable the peephole optimizer")); + +/// Specifiy whether or not the value tracking looks through +/// complex instructions. When this is true, the value tracker +/// bails on everything that is not a copy or a bitcast. +static cl::opt<bool> +DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false), + cl::desc("Disable advanced copy optimization")); + +static cl::opt<bool> DisableNAPhysCopyOpt( + "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false), + cl::desc("Disable non-allocatable physical register copy optimization")); + +// Limit the number of PHI instructions to process +// in PeepholeOptimizer::getNextSource. +static cl::opt<unsigned> RewritePHILimit( + "rewrite-phi-limit", cl::Hidden, cl::init(10), + cl::desc("Limit the length of PHI chains to lookup")); + +// Limit the length of recurrence chain when evaluating the benefit of +// commuting operands. +static cl::opt<unsigned> MaxRecurrenceChain( + "recurrence-chain-limit", cl::Hidden, cl::init(3), + cl::desc("Maximum length of recurrence chain when evaluating the benefit " + "of commuting operands")); + + +STATISTIC(NumReuse, "Number of extension results reused"); +STATISTIC(NumCmps, "Number of compares eliminated"); +STATISTIC(NumImmFold, "Number of move immediate folded"); +STATISTIC(NumLoadFold, "Number of loads folded"); +STATISTIC(NumSelects, "Number of selects optimized"); +STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized"); +STATISTIC(NumRewrittenCopies, "Number of copies rewritten"); +STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed"); + +namespace { + + class ValueTrackerResult; + class RecurrenceInstr; + + class PeepholeOptimizer : public MachineFunctionPass { + const TargetInstrInfo *TII; + const TargetRegisterInfo *TRI; + MachineRegisterInfo *MRI; + MachineDominatorTree *DT; // Machine dominator tree + MachineLoopInfo *MLI; + + public: + static char ID; // Pass identification + + PeepholeOptimizer() : MachineFunctionPass(ID) { + initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry()); + } + + bool runOnMachineFunction(MachineFunction &MF) override; + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesCFG(); + MachineFunctionPass::getAnalysisUsage(AU); + AU.addRequired<MachineLoopInfo>(); + AU.addPreserved<MachineLoopInfo>(); + if (Aggressive) { + AU.addRequired<MachineDominatorTree>(); + AU.addPreserved<MachineDominatorTree>(); + } + } + + /// Track Def -> Use info used for rewriting copies. + using RewriteMapTy = SmallDenseMap<RegSubRegPair, ValueTrackerResult>; + + /// Sequence of instructions that formulate recurrence cycle. + using RecurrenceCycle = SmallVector<RecurrenceInstr, 4>; + + private: + bool optimizeCmpInstr(MachineInstr &MI); + bool optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB, + SmallPtrSetImpl<MachineInstr*> &LocalMIs); + bool optimizeSelect(MachineInstr &MI, + SmallPtrSetImpl<MachineInstr *> &LocalMIs); + bool optimizeCondBranch(MachineInstr &MI); + bool optimizeCoalescableCopy(MachineInstr &MI); + bool optimizeUncoalescableCopy(MachineInstr &MI, + SmallPtrSetImpl<MachineInstr *> &LocalMIs); + bool optimizeRecurrence(MachineInstr &PHI); + bool findNextSource(RegSubRegPair RegSubReg, RewriteMapTy &RewriteMap); + bool isMoveImmediate(MachineInstr &MI, + SmallSet<unsigned, 4> &ImmDefRegs, + DenseMap<unsigned, MachineInstr*> &ImmDefMIs); + bool foldImmediate(MachineInstr &MI, SmallSet<unsigned, 4> &ImmDefRegs, + DenseMap<unsigned, MachineInstr*> &ImmDefMIs); + + /// Finds recurrence cycles, but only ones that formulated around + /// a def operand and a use operand that are tied. If there is a use + /// operand commutable with the tied use operand, find recurrence cycle + /// along that operand as well. + bool findTargetRecurrence(unsigned Reg, + const SmallSet<unsigned, 2> &TargetReg, + RecurrenceCycle &RC); + + /// If copy instruction \p MI is a virtual register copy, track it in + /// the set \p CopySrcRegs and \p CopyMIs. If this virtual register was + /// previously seen as a copy, replace the uses of this copy with the + /// previously seen copy's destination register. + bool foldRedundantCopy(MachineInstr &MI, + SmallSet<unsigned, 4> &CopySrcRegs, + DenseMap<unsigned, MachineInstr *> &CopyMIs); + + /// Is the register \p Reg a non-allocatable physical register? + bool isNAPhysCopy(unsigned Reg); + + /// If copy instruction \p MI is a non-allocatable virtual<->physical + /// register copy, track it in the \p NAPhysToVirtMIs map. If this + /// non-allocatable physical register was previously copied to a virtual + /// registered and hasn't been clobbered, the virt->phys copy can be + /// deleted. + bool foldRedundantNAPhysCopy(MachineInstr &MI, + DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs); + + bool isLoadFoldable(MachineInstr &MI, + SmallSet<unsigned, 16> &FoldAsLoadDefCandidates); + + /// Check whether \p MI is understood by the register coalescer + /// but may require some rewriting. + bool isCoalescableCopy(const MachineInstr &MI) { + // SubregToRegs are not interesting, because they are already register + // coalescer friendly. + return MI.isCopy() || (!DisableAdvCopyOpt && + (MI.isRegSequence() || MI.isInsertSubreg() || + MI.isExtractSubreg())); + } + + /// Check whether \p MI is a copy like instruction that is + /// not recognized by the register coalescer. + bool isUncoalescableCopy(const MachineInstr &MI) { + return MI.isBitcast() || + (!DisableAdvCopyOpt && + (MI.isRegSequenceLike() || MI.isInsertSubregLike() || + MI.isExtractSubregLike())); + } + + MachineInstr &rewriteSource(MachineInstr &CopyLike, + RegSubRegPair Def, RewriteMapTy &RewriteMap); + }; + + /// Helper class to hold instructions that are inside recurrence cycles. + /// The recurrence cycle is formulated around 1) a def operand and its + /// tied use operand, or 2) a def operand and a use operand that is commutable + /// with another use operand which is tied to the def operand. In the latter + /// case, index of the tied use operand and the commutable use operand are + /// maintained with CommutePair. + class RecurrenceInstr { + public: + using IndexPair = std::pair<unsigned, unsigned>; + + RecurrenceInstr(MachineInstr *MI) : MI(MI) {} + RecurrenceInstr(MachineInstr *MI, unsigned Idx1, unsigned Idx2) + : MI(MI), CommutePair(std::make_pair(Idx1, Idx2)) {} + + MachineInstr *getMI() const { return MI; } + Optional<IndexPair> getCommutePair() const { return CommutePair; } + + private: + MachineInstr *MI; + Optional<IndexPair> CommutePair; + }; + + /// Helper class to hold a reply for ValueTracker queries. + /// Contains the returned sources for a given search and the instructions + /// where the sources were tracked from. + class ValueTrackerResult { + private: + /// Track all sources found by one ValueTracker query. + SmallVector<RegSubRegPair, 2> RegSrcs; + + /// Instruction using the sources in 'RegSrcs'. + const MachineInstr *Inst = nullptr; + + public: + ValueTrackerResult() = default; + + ValueTrackerResult(unsigned Reg, unsigned SubReg) { + addSource(Reg, SubReg); + } + + bool isValid() const { return getNumSources() > 0; } + + void setInst(const MachineInstr *I) { Inst = I; } + const MachineInstr *getInst() const { return Inst; } + + void clear() { + RegSrcs.clear(); + Inst = nullptr; + } + + void addSource(unsigned SrcReg, unsigned SrcSubReg) { + RegSrcs.push_back(RegSubRegPair(SrcReg, SrcSubReg)); + } + + void setSource(int Idx, unsigned SrcReg, unsigned SrcSubReg) { + assert(Idx < getNumSources() && "Reg pair source out of index"); + RegSrcs[Idx] = RegSubRegPair(SrcReg, SrcSubReg); + } + + int getNumSources() const { return RegSrcs.size(); } + + RegSubRegPair getSrc(int Idx) const { + return RegSrcs[Idx]; + } + + unsigned getSrcReg(int Idx) const { + assert(Idx < getNumSources() && "Reg source out of index"); + return RegSrcs[Idx].Reg; + } + + unsigned getSrcSubReg(int Idx) const { + assert(Idx < getNumSources() && "SubReg source out of index"); + return RegSrcs[Idx].SubReg; + } + + bool operator==(const ValueTrackerResult &Other) { + if (Other.getInst() != getInst()) + return false; + + if (Other.getNumSources() != getNumSources()) + return false; + + for (int i = 0, e = Other.getNumSources(); i != e; ++i) + if (Other.getSrcReg(i) != getSrcReg(i) || + Other.getSrcSubReg(i) != getSrcSubReg(i)) + return false; + return true; + } + }; + + /// Helper class to track the possible sources of a value defined by + /// a (chain of) copy related instructions. + /// Given a definition (instruction and definition index), this class + /// follows the use-def chain to find successive suitable sources. + /// The given source can be used to rewrite the definition into + /// def = COPY src. + /// + /// For instance, let us consider the following snippet: + /// v0 = + /// v2 = INSERT_SUBREG v1, v0, sub0 + /// def = COPY v2.sub0 + /// + /// Using a ValueTracker for def = COPY v2.sub0 will give the following + /// suitable sources: + /// v2.sub0 and v0. + /// Then, def can be rewritten into def = COPY v0. + class ValueTracker { + private: + /// The current point into the use-def chain. + const MachineInstr *Def = nullptr; + + /// The index of the definition in Def. + unsigned DefIdx = 0; + + /// The sub register index of the definition. + unsigned DefSubReg; + + /// The register where the value can be found. + unsigned Reg; + + /// MachineRegisterInfo used to perform tracking. + const MachineRegisterInfo &MRI; + + /// Optional TargetInstrInfo used to perform some complex tracking. + const TargetInstrInfo *TII; + + /// Dispatcher to the right underlying implementation of getNextSource. + ValueTrackerResult getNextSourceImpl(); + + /// Specialized version of getNextSource for Copy instructions. + ValueTrackerResult getNextSourceFromCopy(); + + /// Specialized version of getNextSource for Bitcast instructions. + ValueTrackerResult getNextSourceFromBitcast(); + + /// Specialized version of getNextSource for RegSequence instructions. + ValueTrackerResult getNextSourceFromRegSequence(); + + /// Specialized version of getNextSource for InsertSubreg instructions. + ValueTrackerResult getNextSourceFromInsertSubreg(); + + /// Specialized version of getNextSource for ExtractSubreg instructions. + ValueTrackerResult getNextSourceFromExtractSubreg(); + + /// Specialized version of getNextSource for SubregToReg instructions. + ValueTrackerResult getNextSourceFromSubregToReg(); + + /// Specialized version of getNextSource for PHI instructions. + ValueTrackerResult getNextSourceFromPHI(); + + public: + /// Create a ValueTracker instance for the value defined by \p Reg. + /// \p DefSubReg represents the sub register index the value tracker will + /// track. It does not need to match the sub register index used in the + /// definition of \p Reg. + /// If \p Reg is a physical register, a value tracker constructed with + /// this constructor will not find any alternative source. + /// Indeed, when \p Reg is a physical register that constructor does not + /// know which definition of \p Reg it should track. + /// Use the next constructor to track a physical register. + ValueTracker(unsigned Reg, unsigned DefSubReg, + const MachineRegisterInfo &MRI, + const TargetInstrInfo *TII = nullptr) + : DefSubReg(DefSubReg), Reg(Reg), MRI(MRI), TII(TII) { + if (!Register::isPhysicalRegister(Reg)) { + Def = MRI.getVRegDef(Reg); + DefIdx = MRI.def_begin(Reg).getOperandNo(); + } + } + + /// Following the use-def chain, get the next available source + /// for the tracked value. + /// \return A ValueTrackerResult containing a set of registers + /// and sub registers with tracked values. A ValueTrackerResult with + /// an empty set of registers means no source was found. + ValueTrackerResult getNextSource(); + }; + +} // end anonymous namespace + +char PeepholeOptimizer::ID = 0; + +char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID; + +INITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE, + "Peephole Optimizations", false, false) +INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) +INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) +INITIALIZE_PASS_END(PeepholeOptimizer, DEBUG_TYPE, + "Peephole Optimizations", false, false) + +/// If instruction is a copy-like instruction, i.e. it reads a single register +/// and writes a single register and it does not modify the source, and if the +/// source value is preserved as a sub-register of the result, then replace all +/// reachable uses of the source with the subreg of the result. +/// +/// Do not generate an EXTRACT that is used only in a debug use, as this changes +/// the code. Since this code does not currently share EXTRACTs, just ignore all +/// debug uses. +bool PeepholeOptimizer:: +optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB, + SmallPtrSetImpl<MachineInstr*> &LocalMIs) { + unsigned SrcReg, DstReg, SubIdx; + if (!TII->isCoalescableExtInstr(MI, SrcReg, DstReg, SubIdx)) + return false; + + if (Register::isPhysicalRegister(DstReg) || + Register::isPhysicalRegister(SrcReg)) + return false; + + if (MRI->hasOneNonDBGUse(SrcReg)) + // No other uses. + return false; + + // Ensure DstReg can get a register class that actually supports + // sub-registers. Don't change the class until we commit. + const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); + DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx); + if (!DstRC) + return false; + + // The ext instr may be operating on a sub-register of SrcReg as well. + // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit + // register. + // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of + // SrcReg:SubIdx should be replaced. + bool UseSrcSubIdx = + TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr; + + // The source has other uses. See if we can replace the other uses with use of + // the result of the extension. + SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs; + for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) + ReachedBBs.insert(UI.getParent()); + + // Uses that are in the same BB of uses of the result of the instruction. + SmallVector<MachineOperand*, 8> Uses; + + // Uses that the result of the instruction can reach. + SmallVector<MachineOperand*, 8> ExtendedUses; + + bool ExtendLife = true; + for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { + MachineInstr *UseMI = UseMO.getParent(); + if (UseMI == &MI) + continue; + + if (UseMI->isPHI()) { + ExtendLife = false; + continue; + } + + // Only accept uses of SrcReg:SubIdx. + if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx) + continue; + + // It's an error to translate this: + // + // %reg1025 = <sext> %reg1024 + // ... + // %reg1026 = SUBREG_TO_REG 0, %reg1024, 4 + // + // into this: + // + // %reg1025 = <sext> %reg1024 + // ... + // %reg1027 = COPY %reg1025:4 + // %reg1026 = SUBREG_TO_REG 0, %reg1027, 4 + // + // The problem here is that SUBREG_TO_REG is there to assert that an + // implicit zext occurs. It doesn't insert a zext instruction. If we allow + // the COPY here, it will give us the value after the <sext>, not the + // original value of %reg1024 before <sext>. + if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG) + continue; + + MachineBasicBlock *UseMBB = UseMI->getParent(); + if (UseMBB == &MBB) { + // Local uses that come after the extension. + if (!LocalMIs.count(UseMI)) + Uses.push_back(&UseMO); + } else if (ReachedBBs.count(UseMBB)) { + // Non-local uses where the result of the extension is used. Always + // replace these unless it's a PHI. + Uses.push_back(&UseMO); + } else if (Aggressive && DT->dominates(&MBB, UseMBB)) { + // We may want to extend the live range of the extension result in order + // to replace these uses. + ExtendedUses.push_back(&UseMO); + } else { + // Both will be live out of the def MBB anyway. Don't extend live range of + // the extension result. + ExtendLife = false; + break; + } + } + + if (ExtendLife && !ExtendedUses.empty()) + // Extend the liveness of the extension result. + Uses.append(ExtendedUses.begin(), ExtendedUses.end()); + + // Now replace all uses. + bool Changed = false; + if (!Uses.empty()) { + SmallPtrSet<MachineBasicBlock*, 4> PHIBBs; + + // Look for PHI uses of the extended result, we don't want to extend the + // liveness of a PHI input. It breaks all kinds of assumptions down + // stream. A PHI use is expected to be the kill of its source values. + for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) + if (UI.isPHI()) + PHIBBs.insert(UI.getParent()); + + const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); + for (unsigned i = 0, e = Uses.size(); i != e; ++i) { + MachineOperand *UseMO = Uses[i]; + MachineInstr *UseMI = UseMO->getParent(); + MachineBasicBlock *UseMBB = UseMI->getParent(); + if (PHIBBs.count(UseMBB)) + continue; + + // About to add uses of DstReg, clear DstReg's kill flags. + if (!Changed) { + MRI->clearKillFlags(DstReg); + MRI->constrainRegClass(DstReg, DstRC); + } + + Register NewVR = MRI->createVirtualRegister(RC); + MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(), + TII->get(TargetOpcode::COPY), NewVR) + .addReg(DstReg, 0, SubIdx); + // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set. + if (UseSrcSubIdx) { + Copy->getOperand(0).setSubReg(SubIdx); + Copy->getOperand(0).setIsUndef(); + } + UseMO->setReg(NewVR); + ++NumReuse; + Changed = true; + } + } + + return Changed; +} + +/// If the instruction is a compare and the previous instruction it's comparing +/// against already sets (or could be modified to set) the same flag as the +/// compare, then we can remove the comparison and use the flag from the +/// previous instruction. +bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr &MI) { + // If this instruction is a comparison against zero and isn't comparing a + // physical register, we can try to optimize it. + unsigned SrcReg, SrcReg2; + int CmpMask, CmpValue; + if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) || + Register::isPhysicalRegister(SrcReg) || + (SrcReg2 != 0 && Register::isPhysicalRegister(SrcReg2))) + return false; + + // Attempt to optimize the comparison instruction. + if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) { + ++NumCmps; + return true; + } + + return false; +} + +/// Optimize a select instruction. +bool PeepholeOptimizer::optimizeSelect(MachineInstr &MI, + SmallPtrSetImpl<MachineInstr *> &LocalMIs) { + unsigned TrueOp = 0; + unsigned FalseOp = 0; + bool Optimizable = false; + SmallVector<MachineOperand, 4> Cond; + if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable)) + return false; + if (!Optimizable) + return false; + if (!TII->optimizeSelect(MI, LocalMIs)) + return false; + MI.eraseFromParent(); + ++NumSelects; + return true; +} + +/// Check if a simpler conditional branch can be generated. +bool PeepholeOptimizer::optimizeCondBranch(MachineInstr &MI) { + return TII->optimizeCondBranch(MI); +} + +/// Try to find the next source that share the same register file +/// for the value defined by \p Reg and \p SubReg. +/// When true is returned, the \p RewriteMap can be used by the client to +/// retrieve all Def -> Use along the way up to the next source. Any found +/// Use that is not itself a key for another entry, is the next source to +/// use. During the search for the next source, multiple sources can be found +/// given multiple incoming sources of a PHI instruction. In this case, we +/// look in each PHI source for the next source; all found next sources must +/// share the same register file as \p Reg and \p SubReg. The client should +/// then be capable to rewrite all intermediate PHIs to get the next source. +/// \return False if no alternative sources are available. True otherwise. +bool PeepholeOptimizer::findNextSource(RegSubRegPair RegSubReg, + RewriteMapTy &RewriteMap) { + // Do not try to find a new source for a physical register. + // So far we do not have any motivating example for doing that. + // Thus, instead of maintaining untested code, we will revisit that if + // that changes at some point. + unsigned Reg = RegSubReg.Reg; + if (Register::isPhysicalRegister(Reg)) + return false; + const TargetRegisterClass *DefRC = MRI->getRegClass(Reg); + + SmallVector<RegSubRegPair, 4> SrcToLook; + RegSubRegPair CurSrcPair = RegSubReg; + SrcToLook.push_back(CurSrcPair); + + unsigned PHICount = 0; + do { + CurSrcPair = SrcToLook.pop_back_val(); + // As explained above, do not handle physical registers + if (Register::isPhysicalRegister(CurSrcPair.Reg)) + return false; + + ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, TII); + + // Follow the chain of copies until we find a more suitable source, a phi + // or have to abort. + while (true) { + ValueTrackerResult Res = ValTracker.getNextSource(); + // Abort at the end of a chain (without finding a suitable source). + if (!Res.isValid()) + return false; + + // Insert the Def -> Use entry for the recently found source. + ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair); + if (CurSrcRes.isValid()) { + assert(CurSrcRes == Res && "ValueTrackerResult found must match"); + // An existent entry with multiple sources is a PHI cycle we must avoid. + // Otherwise it's an entry with a valid next source we already found. + if (CurSrcRes.getNumSources() > 1) { + LLVM_DEBUG(dbgs() + << "findNextSource: found PHI cycle, aborting...\n"); + return false; + } + break; + } + RewriteMap.insert(std::make_pair(CurSrcPair, Res)); + + // ValueTrackerResult usually have one source unless it's the result from + // a PHI instruction. Add the found PHI edges to be looked up further. + unsigned NumSrcs = Res.getNumSources(); + if (NumSrcs > 1) { + PHICount++; + if (PHICount >= RewritePHILimit) { + LLVM_DEBUG(dbgs() << "findNextSource: PHI limit reached\n"); + return false; + } + + for (unsigned i = 0; i < NumSrcs; ++i) + SrcToLook.push_back(Res.getSrc(i)); + break; + } + + CurSrcPair = Res.getSrc(0); + // Do not extend the live-ranges of physical registers as they add + // constraints to the register allocator. Moreover, if we want to extend + // the live-range of a physical register, unlike SSA virtual register, + // we will have to check that they aren't redefine before the related use. + if (Register::isPhysicalRegister(CurSrcPair.Reg)) + return false; + + // Keep following the chain if the value isn't any better yet. + const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg); + if (!TRI->shouldRewriteCopySrc(DefRC, RegSubReg.SubReg, SrcRC, + CurSrcPair.SubReg)) + continue; + + // We currently cannot deal with subreg operands on PHI instructions + // (see insertPHI()). + if (PHICount > 0 && CurSrcPair.SubReg != 0) + continue; + + // We found a suitable source, and are done with this chain. + break; + } + } while (!SrcToLook.empty()); + + // If we did not find a more suitable source, there is nothing to optimize. + return CurSrcPair.Reg != Reg; +} + +/// Insert a PHI instruction with incoming edges \p SrcRegs that are +/// guaranteed to have the same register class. This is necessary whenever we +/// successfully traverse a PHI instruction and find suitable sources coming +/// from its edges. By inserting a new PHI, we provide a rewritten PHI def +/// suitable to be used in a new COPY instruction. +static MachineInstr & +insertPHI(MachineRegisterInfo &MRI, const TargetInstrInfo &TII, + const SmallVectorImpl<RegSubRegPair> &SrcRegs, + MachineInstr &OrigPHI) { + assert(!SrcRegs.empty() && "No sources to create a PHI instruction?"); + + const TargetRegisterClass *NewRC = MRI.getRegClass(SrcRegs[0].Reg); + // NewRC is only correct if no subregisters are involved. findNextSource() + // should have rejected those cases already. + assert(SrcRegs[0].SubReg == 0 && "should not have subreg operand"); + Register NewVR = MRI.createVirtualRegister(NewRC); + MachineBasicBlock *MBB = OrigPHI.getParent(); + MachineInstrBuilder MIB = BuildMI(*MBB, &OrigPHI, OrigPHI.getDebugLoc(), + TII.get(TargetOpcode::PHI), NewVR); + + unsigned MBBOpIdx = 2; + for (const RegSubRegPair &RegPair : SrcRegs) { + MIB.addReg(RegPair.Reg, 0, RegPair.SubReg); + MIB.addMBB(OrigPHI.getOperand(MBBOpIdx).getMBB()); + // Since we're extended the lifetime of RegPair.Reg, clear the + // kill flags to account for that and make RegPair.Reg reaches + // the new PHI. + MRI.clearKillFlags(RegPair.Reg); + MBBOpIdx += 2; + } + + return *MIB; +} + +namespace { + +/// Interface to query instructions amenable to copy rewriting. +class Rewriter { +protected: + MachineInstr &CopyLike; + unsigned CurrentSrcIdx = 0; ///< The index of the source being rewritten. +public: + Rewriter(MachineInstr &CopyLike) : CopyLike(CopyLike) {} + virtual ~Rewriter() {} + + /// Get the next rewritable source (SrcReg, SrcSubReg) and + /// the related value that it affects (DstReg, DstSubReg). + /// A source is considered rewritable if its register class and the + /// register class of the related DstReg may not be register + /// coalescer friendly. In other words, given a copy-like instruction + /// not all the arguments may be returned at rewritable source, since + /// some arguments are none to be register coalescer friendly. + /// + /// Each call of this method moves the current source to the next + /// rewritable source. + /// For instance, let CopyLike be the instruction to rewrite. + /// CopyLike has one definition and one source: + /// dst.dstSubIdx = CopyLike src.srcSubIdx. + /// + /// The first call will give the first rewritable source, i.e., + /// the only source this instruction has: + /// (SrcReg, SrcSubReg) = (src, srcSubIdx). + /// This source defines the whole definition, i.e., + /// (DstReg, DstSubReg) = (dst, dstSubIdx). + /// + /// The second and subsequent calls will return false, as there is only one + /// rewritable source. + /// + /// \return True if a rewritable source has been found, false otherwise. + /// The output arguments are valid if and only if true is returned. + virtual bool getNextRewritableSource(RegSubRegPair &Src, + RegSubRegPair &Dst) = 0; + + /// Rewrite the current source with \p NewReg and \p NewSubReg if possible. + /// \return True if the rewriting was possible, false otherwise. + virtual bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) = 0; +}; + +/// Rewriter for COPY instructions. +class CopyRewriter : public Rewriter { +public: + CopyRewriter(MachineInstr &MI) : Rewriter(MI) { + assert(MI.isCopy() && "Expected copy instruction"); + } + virtual ~CopyRewriter() = default; + + bool getNextRewritableSource(RegSubRegPair &Src, + RegSubRegPair &Dst) override { + // CurrentSrcIdx > 0 means this function has already been called. + if (CurrentSrcIdx > 0) + return false; + // This is the first call to getNextRewritableSource. + // Move the CurrentSrcIdx to remember that we made that call. + CurrentSrcIdx = 1; + // The rewritable source is the argument. + const MachineOperand &MOSrc = CopyLike.getOperand(1); + Src = RegSubRegPair(MOSrc.getReg(), MOSrc.getSubReg()); + // What we track are the alternative sources of the definition. + const MachineOperand &MODef = CopyLike.getOperand(0); + Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); + return true; + } + + bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { + if (CurrentSrcIdx != 1) + return false; + MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx); + MOSrc.setReg(NewReg); + MOSrc.setSubReg(NewSubReg); + return true; + } +}; + +/// Helper class to rewrite uncoalescable copy like instructions +/// into new COPY (coalescable friendly) instructions. +class UncoalescableRewriter : public Rewriter { + unsigned NumDefs; ///< Number of defs in the bitcast. + +public: + UncoalescableRewriter(MachineInstr &MI) : Rewriter(MI) { + NumDefs = MI.getDesc().getNumDefs(); + } + + /// \see See Rewriter::getNextRewritableSource() + /// All such sources need to be considered rewritable in order to + /// rewrite a uncoalescable copy-like instruction. This method return + /// each definition that must be checked if rewritable. + bool getNextRewritableSource(RegSubRegPair &Src, + RegSubRegPair &Dst) override { + // Find the next non-dead definition and continue from there. + if (CurrentSrcIdx == NumDefs) + return false; + + while (CopyLike.getOperand(CurrentSrcIdx).isDead()) { + ++CurrentSrcIdx; + if (CurrentSrcIdx == NumDefs) + return false; + } + + // What we track are the alternative sources of the definition. + Src = RegSubRegPair(0, 0); + const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx); + Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); + + CurrentSrcIdx++; + return true; + } + + bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { + return false; + } +}; + +/// Specialized rewriter for INSERT_SUBREG instruction. +class InsertSubregRewriter : public Rewriter { +public: + InsertSubregRewriter(MachineInstr &MI) : Rewriter(MI) { + assert(MI.isInsertSubreg() && "Invalid instruction"); + } + + /// \see See Rewriter::getNextRewritableSource() + /// Here CopyLike has the following form: + /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx. + /// Src1 has the same register class has dst, hence, there is + /// nothing to rewrite. + /// Src2.src2SubIdx, may not be register coalescer friendly. + /// Therefore, the first call to this method returns: + /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). + /// (DstReg, DstSubReg) = (dst, subIdx). + /// + /// Subsequence calls will return false. + bool getNextRewritableSource(RegSubRegPair &Src, + RegSubRegPair &Dst) override { + // If we already get the only source we can rewrite, return false. + if (CurrentSrcIdx == 2) + return false; + // We are looking at v2 = INSERT_SUBREG v0, v1, sub0. + CurrentSrcIdx = 2; + const MachineOperand &MOInsertedReg = CopyLike.getOperand(2); + Src = RegSubRegPair(MOInsertedReg.getReg(), MOInsertedReg.getSubReg()); + const MachineOperand &MODef = CopyLike.getOperand(0); + + // We want to track something that is compatible with the + // partial definition. + if (MODef.getSubReg()) + // Bail if we have to compose sub-register indices. + return false; + Dst = RegSubRegPair(MODef.getReg(), + (unsigned)CopyLike.getOperand(3).getImm()); + return true; + } + + bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { + if (CurrentSrcIdx != 2) + return false; + // We are rewriting the inserted reg. + MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); + MO.setReg(NewReg); + MO.setSubReg(NewSubReg); + return true; + } +}; + +/// Specialized rewriter for EXTRACT_SUBREG instruction. +class ExtractSubregRewriter : public Rewriter { + const TargetInstrInfo &TII; + +public: + ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII) + : Rewriter(MI), TII(TII) { + assert(MI.isExtractSubreg() && "Invalid instruction"); + } + + /// \see Rewriter::getNextRewritableSource() + /// Here CopyLike has the following form: + /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx. + /// There is only one rewritable source: Src.subIdx, + /// which defines dst.dstSubIdx. + bool getNextRewritableSource(RegSubRegPair &Src, + RegSubRegPair &Dst) override { + // If we already get the only source we can rewrite, return false. + if (CurrentSrcIdx == 1) + return false; + // We are looking at v1 = EXTRACT_SUBREG v0, sub0. + CurrentSrcIdx = 1; + const MachineOperand &MOExtractedReg = CopyLike.getOperand(1); + // If we have to compose sub-register indices, bail out. + if (MOExtractedReg.getSubReg()) + return false; + + Src = RegSubRegPair(MOExtractedReg.getReg(), + CopyLike.getOperand(2).getImm()); + + // We want to track something that is compatible with the definition. + const MachineOperand &MODef = CopyLike.getOperand(0); + Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); + return true; + } + + bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { + // The only source we can rewrite is the input register. + if (CurrentSrcIdx != 1) + return false; + + CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg); + + // If we find a source that does not require to extract something, + // rewrite the operation with a copy. + if (!NewSubReg) { + // Move the current index to an invalid position. + // We do not want another call to this method to be able + // to do any change. + CurrentSrcIdx = -1; + // Rewrite the operation as a COPY. + // Get rid of the sub-register index. + CopyLike.RemoveOperand(2); + // Morph the operation into a COPY. + CopyLike.setDesc(TII.get(TargetOpcode::COPY)); + return true; + } + CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg); + return true; + } +}; + +/// Specialized rewriter for REG_SEQUENCE instruction. +class RegSequenceRewriter : public Rewriter { +public: + RegSequenceRewriter(MachineInstr &MI) : Rewriter(MI) { + assert(MI.isRegSequence() && "Invalid instruction"); + } + + /// \see Rewriter::getNextRewritableSource() + /// Here CopyLike has the following form: + /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2. + /// Each call will return a different source, walking all the available + /// source. + /// + /// The first call returns: + /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx). + /// (DstReg, DstSubReg) = (dst, subIdx1). + /// + /// The second call returns: + /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). + /// (DstReg, DstSubReg) = (dst, subIdx2). + /// + /// And so on, until all the sources have been traversed, then + /// it returns false. + bool getNextRewritableSource(RegSubRegPair &Src, + RegSubRegPair &Dst) override { + // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc. + + // If this is the first call, move to the first argument. + if (CurrentSrcIdx == 0) { + CurrentSrcIdx = 1; + } else { + // Otherwise, move to the next argument and check that it is valid. + CurrentSrcIdx += 2; + if (CurrentSrcIdx >= CopyLike.getNumOperands()) + return false; + } + const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx); + Src.Reg = MOInsertedReg.getReg(); + // If we have to compose sub-register indices, bail out. + if ((Src.SubReg = MOInsertedReg.getSubReg())) + return false; + + // We want to track something that is compatible with the related + // partial definition. + Dst.SubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm(); + + const MachineOperand &MODef = CopyLike.getOperand(0); + Dst.Reg = MODef.getReg(); + // If we have to compose sub-registers, bail. + return MODef.getSubReg() == 0; + } + + bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { + // We cannot rewrite out of bound operands. + // Moreover, rewritable sources are at odd positions. + if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands()) + return false; + + MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); + MO.setReg(NewReg); + MO.setSubReg(NewSubReg); + return true; + } +}; + +} // end anonymous namespace + +/// Get the appropriated Rewriter for \p MI. +/// \return A pointer to a dynamically allocated Rewriter or nullptr if no +/// rewriter works for \p MI. +static Rewriter *getCopyRewriter(MachineInstr &MI, const TargetInstrInfo &TII) { + // Handle uncoalescable copy-like instructions. + if (MI.isBitcast() || MI.isRegSequenceLike() || MI.isInsertSubregLike() || + MI.isExtractSubregLike()) + return new UncoalescableRewriter(MI); + + switch (MI.getOpcode()) { + default: + return nullptr; + case TargetOpcode::COPY: + return new CopyRewriter(MI); + case TargetOpcode::INSERT_SUBREG: + return new InsertSubregRewriter(MI); + case TargetOpcode::EXTRACT_SUBREG: + return new ExtractSubregRewriter(MI, TII); + case TargetOpcode::REG_SEQUENCE: + return new RegSequenceRewriter(MI); + } +} + +/// Given a \p Def.Reg and Def.SubReg pair, use \p RewriteMap to find +/// the new source to use for rewrite. If \p HandleMultipleSources is true and +/// multiple sources for a given \p Def are found along the way, we found a +/// PHI instructions that needs to be rewritten. +/// TODO: HandleMultipleSources should be removed once we test PHI handling +/// with coalescable copies. +static RegSubRegPair +getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII, + RegSubRegPair Def, + const PeepholeOptimizer::RewriteMapTy &RewriteMap, + bool HandleMultipleSources = true) { + RegSubRegPair LookupSrc(Def.Reg, Def.SubReg); + while (true) { + ValueTrackerResult Res = RewriteMap.lookup(LookupSrc); + // If there are no entries on the map, LookupSrc is the new source. + if (!Res.isValid()) + return LookupSrc; + + // There's only one source for this definition, keep searching... + unsigned NumSrcs = Res.getNumSources(); + if (NumSrcs == 1) { + LookupSrc.Reg = Res.getSrcReg(0); + LookupSrc.SubReg = Res.getSrcSubReg(0); + continue; + } + + // TODO: Remove once multiple srcs w/ coalescable copies are supported. + if (!HandleMultipleSources) + break; + + // Multiple sources, recurse into each source to find a new source + // for it. Then, rewrite the PHI accordingly to its new edges. + SmallVector<RegSubRegPair, 4> NewPHISrcs; + for (unsigned i = 0; i < NumSrcs; ++i) { + RegSubRegPair PHISrc(Res.getSrcReg(i), Res.getSrcSubReg(i)); + NewPHISrcs.push_back( + getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources)); + } + + // Build the new PHI node and return its def register as the new source. + MachineInstr &OrigPHI = const_cast<MachineInstr &>(*Res.getInst()); + MachineInstr &NewPHI = insertPHI(*MRI, *TII, NewPHISrcs, OrigPHI); + LLVM_DEBUG(dbgs() << "-- getNewSource\n"); + LLVM_DEBUG(dbgs() << " Replacing: " << OrigPHI); + LLVM_DEBUG(dbgs() << " With: " << NewPHI); + const MachineOperand &MODef = NewPHI.getOperand(0); + return RegSubRegPair(MODef.getReg(), MODef.getSubReg()); + } + + return RegSubRegPair(0, 0); +} + +/// Optimize generic copy instructions to avoid cross register bank copy. +/// The optimization looks through a chain of copies and tries to find a source +/// that has a compatible register class. +/// Two register classes are considered to be compatible if they share the same +/// register bank. +/// New copies issued by this optimization are register allocator +/// friendly. This optimization does not remove any copy as it may +/// overconstrain the register allocator, but replaces some operands +/// when possible. +/// \pre isCoalescableCopy(*MI) is true. +/// \return True, when \p MI has been rewritten. False otherwise. +bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr &MI) { + assert(isCoalescableCopy(MI) && "Invalid argument"); + assert(MI.getDesc().getNumDefs() == 1 && + "Coalescer can understand multiple defs?!"); + const MachineOperand &MODef = MI.getOperand(0); + // Do not rewrite physical definitions. + if (Register::isPhysicalRegister(MODef.getReg())) + return false; + + bool Changed = false; + // Get the right rewriter for the current copy. + std::unique_ptr<Rewriter> CpyRewriter(getCopyRewriter(MI, *TII)); + // If none exists, bail out. + if (!CpyRewriter) + return false; + // Rewrite each rewritable source. + RegSubRegPair Src; + RegSubRegPair TrackPair; + while (CpyRewriter->getNextRewritableSource(Src, TrackPair)) { + // Keep track of PHI nodes and its incoming edges when looking for sources. + RewriteMapTy RewriteMap; + // Try to find a more suitable source. If we failed to do so, or get the + // actual source, move to the next source. + if (!findNextSource(TrackPair, RewriteMap)) + continue; + + // Get the new source to rewrite. TODO: Only enable handling of multiple + // sources (PHIs) once we have a motivating example and testcases for it. + RegSubRegPair NewSrc = getNewSource(MRI, TII, TrackPair, RewriteMap, + /*HandleMultipleSources=*/false); + if (Src.Reg == NewSrc.Reg || NewSrc.Reg == 0) + continue; + + // Rewrite source. + if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) { + // We may have extended the live-range of NewSrc, account for that. + MRI->clearKillFlags(NewSrc.Reg); + Changed = true; + } + } + // TODO: We could have a clean-up method to tidy the instruction. + // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0 + // => v0 = COPY v1 + // Currently we haven't seen motivating example for that and we + // want to avoid untested code. + NumRewrittenCopies += Changed; + return Changed; +} + +/// Rewrite the source found through \p Def, by using the \p RewriteMap +/// and create a new COPY instruction. More info about RewriteMap in +/// PeepholeOptimizer::findNextSource. Right now this is only used to handle +/// Uncoalescable copies, since they are copy like instructions that aren't +/// recognized by the register allocator. +MachineInstr & +PeepholeOptimizer::rewriteSource(MachineInstr &CopyLike, + RegSubRegPair Def, RewriteMapTy &RewriteMap) { + assert(!Register::isPhysicalRegister(Def.Reg) && + "We do not rewrite physical registers"); + + // Find the new source to use in the COPY rewrite. + RegSubRegPair NewSrc = getNewSource(MRI, TII, Def, RewriteMap); + + // Insert the COPY. + const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg); + Register NewVReg = MRI->createVirtualRegister(DefRC); + + MachineInstr *NewCopy = + BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(), + TII->get(TargetOpcode::COPY), NewVReg) + .addReg(NewSrc.Reg, 0, NewSrc.SubReg); + + if (Def.SubReg) { + NewCopy->getOperand(0).setSubReg(Def.SubReg); + NewCopy->getOperand(0).setIsUndef(); + } + + LLVM_DEBUG(dbgs() << "-- RewriteSource\n"); + LLVM_DEBUG(dbgs() << " Replacing: " << CopyLike); + LLVM_DEBUG(dbgs() << " With: " << *NewCopy); + MRI->replaceRegWith(Def.Reg, NewVReg); + MRI->clearKillFlags(NewVReg); + + // We extended the lifetime of NewSrc.Reg, clear the kill flags to + // account for that. + MRI->clearKillFlags(NewSrc.Reg); + + return *NewCopy; +} + +/// Optimize copy-like instructions to create +/// register coalescer friendly instruction. +/// The optimization tries to kill-off the \p MI by looking +/// through a chain of copies to find a source that has a compatible +/// register class. +/// If such a source is found, it replace \p MI by a generic COPY +/// operation. +/// \pre isUncoalescableCopy(*MI) is true. +/// \return True, when \p MI has been optimized. In that case, \p MI has +/// been removed from its parent. +/// All COPY instructions created, are inserted in \p LocalMIs. +bool PeepholeOptimizer::optimizeUncoalescableCopy( + MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) { + assert(isUncoalescableCopy(MI) && "Invalid argument"); + UncoalescableRewriter CpyRewriter(MI); + + // Rewrite each rewritable source by generating new COPYs. This works + // differently from optimizeCoalescableCopy since it first makes sure that all + // definitions can be rewritten. + RewriteMapTy RewriteMap; + RegSubRegPair Src; + RegSubRegPair Def; + SmallVector<RegSubRegPair, 4> RewritePairs; + while (CpyRewriter.getNextRewritableSource(Src, Def)) { + // If a physical register is here, this is probably for a good reason. + // Do not rewrite that. + if (Register::isPhysicalRegister(Def.Reg)) + return false; + + // If we do not know how to rewrite this definition, there is no point + // in trying to kill this instruction. + if (!findNextSource(Def, RewriteMap)) + return false; + + RewritePairs.push_back(Def); + } + + // The change is possible for all defs, do it. + for (const RegSubRegPair &Def : RewritePairs) { + // Rewrite the "copy" in a way the register coalescer understands. + MachineInstr &NewCopy = rewriteSource(MI, Def, RewriteMap); + LocalMIs.insert(&NewCopy); + } + + // MI is now dead. + MI.eraseFromParent(); + ++NumUncoalescableCopies; + return true; +} + +/// Check whether MI is a candidate for folding into a later instruction. +/// We only fold loads to virtual registers and the virtual register defined +/// has a single user. +bool PeepholeOptimizer::isLoadFoldable( + MachineInstr &MI, SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) { + if (!MI.canFoldAsLoad() || !MI.mayLoad()) + return false; + const MCInstrDesc &MCID = MI.getDesc(); + if (MCID.getNumDefs() != 1) + return false; + + Register Reg = MI.getOperand(0).getReg(); + // To reduce compilation time, we check MRI->hasOneNonDBGUser when inserting + // loads. It should be checked when processing uses of the load, since + // uses can be removed during peephole. + if (!MI.getOperand(0).getSubReg() && Register::isVirtualRegister(Reg) && + MRI->hasOneNonDBGUser(Reg)) { + FoldAsLoadDefCandidates.insert(Reg); + return true; + } + return false; +} + +bool PeepholeOptimizer::isMoveImmediate( + MachineInstr &MI, SmallSet<unsigned, 4> &ImmDefRegs, + DenseMap<unsigned, MachineInstr *> &ImmDefMIs) { + const MCInstrDesc &MCID = MI.getDesc(); + if (!MI.isMoveImmediate()) + return false; + if (MCID.getNumDefs() != 1) + return false; + Register Reg = MI.getOperand(0).getReg(); + if (Register::isVirtualRegister(Reg)) { + ImmDefMIs.insert(std::make_pair(Reg, &MI)); + ImmDefRegs.insert(Reg); + return true; + } + + return false; +} + +/// Try folding register operands that are defined by move immediate +/// instructions, i.e. a trivial constant folding optimization, if +/// and only if the def and use are in the same BB. +bool PeepholeOptimizer::foldImmediate(MachineInstr &MI, + SmallSet<unsigned, 4> &ImmDefRegs, + DenseMap<unsigned, MachineInstr *> &ImmDefMIs) { + for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI.getOperand(i); + if (!MO.isReg() || MO.isDef()) + continue; + // Ignore dead implicit defs. + if (MO.isImplicit() && MO.isDead()) + continue; + Register Reg = MO.getReg(); + if (!Register::isVirtualRegister(Reg)) + continue; + if (ImmDefRegs.count(Reg) == 0) + continue; + DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg); + assert(II != ImmDefMIs.end() && "couldn't find immediate definition"); + if (TII->FoldImmediate(MI, *II->second, Reg, MRI)) { + ++NumImmFold; + return true; + } + } + return false; +} + +// FIXME: This is very simple and misses some cases which should be handled when +// motivating examples are found. +// +// The copy rewriting logic should look at uses as well as defs and be able to +// eliminate copies across blocks. +// +// Later copies that are subregister extracts will also not be eliminated since +// only the first copy is considered. +// +// e.g. +// %1 = COPY %0 +// %2 = COPY %0:sub1 +// +// Should replace %2 uses with %1:sub1 +bool PeepholeOptimizer::foldRedundantCopy(MachineInstr &MI, + SmallSet<unsigned, 4> &CopySrcRegs, + DenseMap<unsigned, MachineInstr *> &CopyMIs) { + assert(MI.isCopy() && "expected a COPY machine instruction"); + + Register SrcReg = MI.getOperand(1).getReg(); + if (!Register::isVirtualRegister(SrcReg)) + return false; + + Register DstReg = MI.getOperand(0).getReg(); + if (!Register::isVirtualRegister(DstReg)) + return false; + + if (CopySrcRegs.insert(SrcReg).second) { + // First copy of this reg seen. + CopyMIs.insert(std::make_pair(SrcReg, &MI)); + return false; + } + + MachineInstr *PrevCopy = CopyMIs.find(SrcReg)->second; + + unsigned SrcSubReg = MI.getOperand(1).getSubReg(); + unsigned PrevSrcSubReg = PrevCopy->getOperand(1).getSubReg(); + + // Can't replace different subregister extracts. + if (SrcSubReg != PrevSrcSubReg) + return false; + + Register PrevDstReg = PrevCopy->getOperand(0).getReg(); + + // Only replace if the copy register class is the same. + // + // TODO: If we have multiple copies to different register classes, we may want + // to track multiple copies of the same source register. + if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg)) + return false; + + MRI->replaceRegWith(DstReg, PrevDstReg); + + // Lifetime of the previous copy has been extended. + MRI->clearKillFlags(PrevDstReg); + return true; +} + +bool PeepholeOptimizer::isNAPhysCopy(unsigned Reg) { + return Register::isPhysicalRegister(Reg) && !MRI->isAllocatable(Reg); +} + +bool PeepholeOptimizer::foldRedundantNAPhysCopy( + MachineInstr &MI, DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs) { + assert(MI.isCopy() && "expected a COPY machine instruction"); + + if (DisableNAPhysCopyOpt) + return false; + + Register DstReg = MI.getOperand(0).getReg(); + Register SrcReg = MI.getOperand(1).getReg(); + if (isNAPhysCopy(SrcReg) && Register::isVirtualRegister(DstReg)) { + // %vreg = COPY %physreg + // Avoid using a datastructure which can track multiple live non-allocatable + // phys->virt copies since LLVM doesn't seem to do this. + NAPhysToVirtMIs.insert({SrcReg, &MI}); + return false; + } + + if (!(Register::isVirtualRegister(SrcReg) && isNAPhysCopy(DstReg))) + return false; + + // %physreg = COPY %vreg + auto PrevCopy = NAPhysToVirtMIs.find(DstReg); + if (PrevCopy == NAPhysToVirtMIs.end()) { + // We can't remove the copy: there was an intervening clobber of the + // non-allocatable physical register after the copy to virtual. + LLVM_DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing " + << MI); + return false; + } + + Register PrevDstReg = PrevCopy->second->getOperand(0).getReg(); + if (PrevDstReg == SrcReg) { + // Remove the virt->phys copy: we saw the virtual register definition, and + // the non-allocatable physical register's state hasn't changed since then. + LLVM_DEBUG(dbgs() << "NAPhysCopy: erasing " << MI); + ++NumNAPhysCopies; + return true; + } + + // Potential missed optimization opportunity: we saw a different virtual + // register get a copy of the non-allocatable physical register, and we only + // track one such copy. Avoid getting confused by this new non-allocatable + // physical register definition, and remove it from the tracked copies. + LLVM_DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << MI); + NAPhysToVirtMIs.erase(PrevCopy); + return false; +} + +/// \bried Returns true if \p MO is a virtual register operand. +static bool isVirtualRegisterOperand(MachineOperand &MO) { + if (!MO.isReg()) + return false; + return Register::isVirtualRegister(MO.getReg()); +} + +bool PeepholeOptimizer::findTargetRecurrence( + unsigned Reg, const SmallSet<unsigned, 2> &TargetRegs, + RecurrenceCycle &RC) { + // Recurrence found if Reg is in TargetRegs. + if (TargetRegs.count(Reg)) + return true; + + // TODO: Curerntly, we only allow the last instruction of the recurrence + // cycle (the instruction that feeds the PHI instruction) to have more than + // one uses to guarantee that commuting operands does not tie registers + // with overlapping live range. Once we have actual live range info of + // each register, this constraint can be relaxed. + if (!MRI->hasOneNonDBGUse(Reg)) + return false; + + // Give up if the reccurrence chain length is longer than the limit. + if (RC.size() >= MaxRecurrenceChain) + return false; + + MachineInstr &MI = *(MRI->use_instr_nodbg_begin(Reg)); + unsigned Idx = MI.findRegisterUseOperandIdx(Reg); + + // Only interested in recurrences whose instructions have only one def, which + // is a virtual register. + if (MI.getDesc().getNumDefs() != 1) + return false; + + MachineOperand &DefOp = MI.getOperand(0); + if (!isVirtualRegisterOperand(DefOp)) + return false; + + // Check if def operand of MI is tied to any use operand. We are only + // interested in the case that all the instructions in the recurrence chain + // have there def operand tied with one of the use operand. + unsigned TiedUseIdx; + if (!MI.isRegTiedToUseOperand(0, &TiedUseIdx)) + return false; + + if (Idx == TiedUseIdx) { + RC.push_back(RecurrenceInstr(&MI)); + return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC); + } else { + // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx. + unsigned CommIdx = TargetInstrInfo::CommuteAnyOperandIndex; + if (TII->findCommutedOpIndices(MI, Idx, CommIdx) && CommIdx == TiedUseIdx) { + RC.push_back(RecurrenceInstr(&MI, Idx, CommIdx)); + return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC); + } + } + + return false; +} + +/// Phi instructions will eventually be lowered to copy instructions. +/// If phi is in a loop header, a recurrence may formulated around the source +/// and destination of the phi. For such case commuting operands of the +/// instructions in the recurrence may enable coalescing of the copy instruction +/// generated from the phi. For example, if there is a recurrence of +/// +/// LoopHeader: +/// %1 = phi(%0, %100) +/// LoopLatch: +/// %0<def, tied1> = ADD %2<def, tied0>, %1 +/// +/// , the fact that %0 and %2 are in the same tied operands set makes +/// the coalescing of copy instruction generated from the phi in +/// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and +/// %2 have overlapping live range. This introduces additional move +/// instruction to the final assembly. However, if we commute %2 and +/// %1 of ADD instruction, the redundant move instruction can be +/// avoided. +bool PeepholeOptimizer::optimizeRecurrence(MachineInstr &PHI) { + SmallSet<unsigned, 2> TargetRegs; + for (unsigned Idx = 1; Idx < PHI.getNumOperands(); Idx += 2) { + MachineOperand &MO = PHI.getOperand(Idx); + assert(isVirtualRegisterOperand(MO) && "Invalid PHI instruction"); + TargetRegs.insert(MO.getReg()); + } + + bool Changed = false; + RecurrenceCycle RC; + if (findTargetRecurrence(PHI.getOperand(0).getReg(), TargetRegs, RC)) { + // Commutes operands of instructions in RC if necessary so that the copy to + // be generated from PHI can be coalesced. + LLVM_DEBUG(dbgs() << "Optimize recurrence chain from " << PHI); + for (auto &RI : RC) { + LLVM_DEBUG(dbgs() << "\tInst: " << *(RI.getMI())); + auto CP = RI.getCommutePair(); + if (CP) { + Changed = true; + TII->commuteInstruction(*(RI.getMI()), false, (*CP).first, + (*CP).second); + LLVM_DEBUG(dbgs() << "\t\tCommuted: " << *(RI.getMI())); + } + } + } + + return Changed; +} + +bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) { + if (skipFunction(MF.getFunction())) + return false; + + LLVM_DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n"); + LLVM_DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n'); + + if (DisablePeephole) + return false; + + TII = MF.getSubtarget().getInstrInfo(); + TRI = MF.getSubtarget().getRegisterInfo(); + MRI = &MF.getRegInfo(); + DT = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr; + MLI = &getAnalysis<MachineLoopInfo>(); + + bool Changed = false; + + for (MachineBasicBlock &MBB : MF) { + bool SeenMoveImm = false; + + // During this forward scan, at some point it needs to answer the question + // "given a pointer to an MI in the current BB, is it located before or + // after the current instruction". + // To perform this, the following set keeps track of the MIs already seen + // during the scan, if a MI is not in the set, it is assumed to be located + // after. Newly created MIs have to be inserted in the set as well. + SmallPtrSet<MachineInstr*, 16> LocalMIs; + SmallSet<unsigned, 4> ImmDefRegs; + DenseMap<unsigned, MachineInstr*> ImmDefMIs; + SmallSet<unsigned, 16> FoldAsLoadDefCandidates; + + // Track when a non-allocatable physical register is copied to a virtual + // register so that useless moves can be removed. + // + // %physreg is the map index; MI is the last valid `%vreg = COPY %physreg` + // without any intervening re-definition of %physreg. + DenseMap<unsigned, MachineInstr *> NAPhysToVirtMIs; + + // Set of virtual registers that are copied from. + SmallSet<unsigned, 4> CopySrcRegs; + DenseMap<unsigned, MachineInstr *> CopySrcMIs; + + bool IsLoopHeader = MLI->isLoopHeader(&MBB); + + for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end(); + MII != MIE; ) { + MachineInstr *MI = &*MII; + // We may be erasing MI below, increment MII now. + ++MII; + LocalMIs.insert(MI); + + // Skip debug instructions. They should not affect this peephole optimization. + if (MI->isDebugInstr()) + continue; + + if (MI->isPosition()) + continue; + + if (IsLoopHeader && MI->isPHI()) { + if (optimizeRecurrence(*MI)) { + Changed = true; + continue; + } + } + + if (!MI->isCopy()) { + for (const MachineOperand &MO : MI->operands()) { + // Visit all operands: definitions can be implicit or explicit. + if (MO.isReg()) { + Register Reg = MO.getReg(); + if (MO.isDef() && isNAPhysCopy(Reg)) { + const auto &Def = NAPhysToVirtMIs.find(Reg); + if (Def != NAPhysToVirtMIs.end()) { + // A new definition of the non-allocatable physical register + // invalidates previous copies. + LLVM_DEBUG(dbgs() + << "NAPhysCopy: invalidating because of " << *MI); + NAPhysToVirtMIs.erase(Def); + } + } + } else if (MO.isRegMask()) { + const uint32_t *RegMask = MO.getRegMask(); + for (auto &RegMI : NAPhysToVirtMIs) { + unsigned Def = RegMI.first; + if (MachineOperand::clobbersPhysReg(RegMask, Def)) { + LLVM_DEBUG(dbgs() + << "NAPhysCopy: invalidating because of " << *MI); + NAPhysToVirtMIs.erase(Def); + } + } + } + } + } + + if (MI->isImplicitDef() || MI->isKill()) + continue; + + if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) { + // Blow away all non-allocatable physical registers knowledge since we + // don't know what's correct anymore. + // + // FIXME: handle explicit asm clobbers. + LLVM_DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to " + << *MI); + NAPhysToVirtMIs.clear(); + } + + if ((isUncoalescableCopy(*MI) && + optimizeUncoalescableCopy(*MI, LocalMIs)) || + (MI->isCompare() && optimizeCmpInstr(*MI)) || + (MI->isSelect() && optimizeSelect(*MI, LocalMIs))) { + // MI is deleted. + LocalMIs.erase(MI); + Changed = true; + continue; + } + + if (MI->isConditionalBranch() && optimizeCondBranch(*MI)) { + Changed = true; + continue; + } + + if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(*MI)) { + // MI is just rewritten. + Changed = true; + continue; + } + + if (MI->isCopy() && + (foldRedundantCopy(*MI, CopySrcRegs, CopySrcMIs) || + foldRedundantNAPhysCopy(*MI, NAPhysToVirtMIs))) { + LocalMIs.erase(MI); + MI->eraseFromParent(); + Changed = true; + continue; + } + + if (isMoveImmediate(*MI, ImmDefRegs, ImmDefMIs)) { + SeenMoveImm = true; + } else { + Changed |= optimizeExtInstr(*MI, MBB, LocalMIs); + // optimizeExtInstr might have created new instructions after MI + // and before the already incremented MII. Adjust MII so that the + // next iteration sees the new instructions. + MII = MI; + ++MII; + if (SeenMoveImm) + Changed |= foldImmediate(*MI, ImmDefRegs, ImmDefMIs); + } + + // Check whether MI is a load candidate for folding into a later + // instruction. If MI is not a candidate, check whether we can fold an + // earlier load into MI. + if (!isLoadFoldable(*MI, FoldAsLoadDefCandidates) && + !FoldAsLoadDefCandidates.empty()) { + + // We visit each operand even after successfully folding a previous + // one. This allows us to fold multiple loads into a single + // instruction. We do assume that optimizeLoadInstr doesn't insert + // foldable uses earlier in the argument list. Since we don't restart + // iteration, we'd miss such cases. + const MCInstrDesc &MIDesc = MI->getDesc(); + for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands(); + ++i) { + const MachineOperand &MOp = MI->getOperand(i); + if (!MOp.isReg()) + continue; + unsigned FoldAsLoadDefReg = MOp.getReg(); + if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) { + // We need to fold load after optimizeCmpInstr, since + // optimizeCmpInstr can enable folding by converting SUB to CMP. + // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and + // we need it for markUsesInDebugValueAsUndef(). + unsigned FoldedReg = FoldAsLoadDefReg; + MachineInstr *DefMI = nullptr; + if (MachineInstr *FoldMI = + TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) { + // Update LocalMIs since we replaced MI with FoldMI and deleted + // DefMI. + LLVM_DEBUG(dbgs() << "Replacing: " << *MI); + LLVM_DEBUG(dbgs() << " With: " << *FoldMI); + LocalMIs.erase(MI); + LocalMIs.erase(DefMI); + LocalMIs.insert(FoldMI); + if (MI->isCall()) + MI->getMF()->moveCallSiteInfo(MI, FoldMI); + MI->eraseFromParent(); + DefMI->eraseFromParent(); + MRI->markUsesInDebugValueAsUndef(FoldedReg); + FoldAsLoadDefCandidates.erase(FoldedReg); + ++NumLoadFold; + + // MI is replaced with FoldMI so we can continue trying to fold + Changed = true; + MI = FoldMI; + } + } + } + } + + // If we run into an instruction we can't fold across, discard + // the load candidates. Note: We might be able to fold *into* this + // instruction, so this needs to be after the folding logic. + if (MI->isLoadFoldBarrier()) { + LLVM_DEBUG(dbgs() << "Encountered load fold barrier on " << *MI); + FoldAsLoadDefCandidates.clear(); + } + } + } + + return Changed; +} + +ValueTrackerResult ValueTracker::getNextSourceFromCopy() { + assert(Def->isCopy() && "Invalid definition"); + // Copy instruction are supposed to be: Def = Src. + // If someone breaks this assumption, bad things will happen everywhere. + // There may be implicit uses preventing the copy to be moved across + // some target specific register definitions + assert(Def->getNumOperands() - Def->getNumImplicitOperands() == 2 && + "Invalid number of operands"); + assert(!Def->hasImplicitDef() && "Only implicit uses are allowed"); + + if (Def->getOperand(DefIdx).getSubReg() != DefSubReg) + // If we look for a different subreg, it means we want a subreg of src. + // Bails as we do not support composing subregs yet. + return ValueTrackerResult(); + // Otherwise, we want the whole source. + const MachineOperand &Src = Def->getOperand(1); + if (Src.isUndef()) + return ValueTrackerResult(); + return ValueTrackerResult(Src.getReg(), Src.getSubReg()); +} + +ValueTrackerResult ValueTracker::getNextSourceFromBitcast() { + assert(Def->isBitcast() && "Invalid definition"); + + // Bail if there are effects that a plain copy will not expose. + if (Def->mayRaiseFPException() || Def->hasUnmodeledSideEffects()) + return ValueTrackerResult(); + + // Bitcasts with more than one def are not supported. + if (Def->getDesc().getNumDefs() != 1) + return ValueTrackerResult(); + const MachineOperand DefOp = Def->getOperand(DefIdx); + if (DefOp.getSubReg() != DefSubReg) + // If we look for a different subreg, it means we want a subreg of the src. + // Bails as we do not support composing subregs yet. + return ValueTrackerResult(); + + unsigned SrcIdx = Def->getNumOperands(); + for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx; + ++OpIdx) { + const MachineOperand &MO = Def->getOperand(OpIdx); + if (!MO.isReg() || !MO.getReg()) + continue; + // Ignore dead implicit defs. + if (MO.isImplicit() && MO.isDead()) + continue; + assert(!MO.isDef() && "We should have skipped all the definitions by now"); + if (SrcIdx != EndOpIdx) + // Multiple sources? + return ValueTrackerResult(); + SrcIdx = OpIdx; + } + + // In some rare case, Def has no input, SrcIdx is out of bound, + // getOperand(SrcIdx) will fail below. + if (SrcIdx >= Def->getNumOperands()) + return ValueTrackerResult(); + + // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY + // will break the assumed guarantees for the upper bits. + for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(DefOp.getReg())) { + if (UseMI.isSubregToReg()) + return ValueTrackerResult(); + } + + const MachineOperand &Src = Def->getOperand(SrcIdx); + if (Src.isUndef()) + return ValueTrackerResult(); + return ValueTrackerResult(Src.getReg(), Src.getSubReg()); +} + +ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() { + assert((Def->isRegSequence() || Def->isRegSequenceLike()) && + "Invalid definition"); + + if (Def->getOperand(DefIdx).getSubReg()) + // If we are composing subregs, bail out. + // The case we are checking is Def.<subreg> = REG_SEQUENCE. + // This should almost never happen as the SSA property is tracked at + // the register level (as opposed to the subreg level). + // I.e., + // Def.sub0 = + // Def.sub1 = + // is a valid SSA representation for Def.sub0 and Def.sub1, but not for + // Def. Thus, it must not be generated. + // However, some code could theoretically generates a single + // Def.sub0 (i.e, not defining the other subregs) and we would + // have this case. + // If we can ascertain (or force) that this never happens, we could + // turn that into an assertion. + return ValueTrackerResult(); + + if (!TII) + // We could handle the REG_SEQUENCE here, but we do not want to + // duplicate the code from the generic TII. + return ValueTrackerResult(); + + SmallVector<RegSubRegPairAndIdx, 8> RegSeqInputRegs; + if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs)) + return ValueTrackerResult(); + + // We are looking at: + // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... + // Check if one of the operand defines the subreg we are interested in. + for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) { + if (RegSeqInput.SubIdx == DefSubReg) + return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg); + } + + // If the subreg we are tracking is super-defined by another subreg, + // we could follow this value. However, this would require to compose + // the subreg and we do not do that for now. + return ValueTrackerResult(); +} + +ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() { + assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) && + "Invalid definition"); + + if (Def->getOperand(DefIdx).getSubReg()) + // If we are composing subreg, bail out. + // Same remark as getNextSourceFromRegSequence. + // I.e., this may be turned into an assert. + return ValueTrackerResult(); + + if (!TII) + // We could handle the REG_SEQUENCE here, but we do not want to + // duplicate the code from the generic TII. + return ValueTrackerResult(); + + RegSubRegPair BaseReg; + RegSubRegPairAndIdx InsertedReg; + if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg)) + return ValueTrackerResult(); + + // We are looking at: + // Def = INSERT_SUBREG v0, v1, sub1 + // There are two cases: + // 1. DefSubReg == sub1, get v1. + // 2. DefSubReg != sub1, the value may be available through v0. + + // #1 Check if the inserted register matches the required sub index. + if (InsertedReg.SubIdx == DefSubReg) { + return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg); + } + // #2 Otherwise, if the sub register we are looking for is not partial + // defined by the inserted element, we can look through the main + // register (v0). + const MachineOperand &MODef = Def->getOperand(DefIdx); + // If the result register (Def) and the base register (v0) do not + // have the same register class or if we have to compose + // subregisters, bail out. + if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) || + BaseReg.SubReg) + return ValueTrackerResult(); + + // Get the TRI and check if the inserted sub-register overlaps with the + // sub-register we are tracking. + const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); + if (!TRI || + !(TRI->getSubRegIndexLaneMask(DefSubReg) & + TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)).none()) + return ValueTrackerResult(); + // At this point, the value is available in v0 via the same subreg + // we used for Def. + return ValueTrackerResult(BaseReg.Reg, DefSubReg); +} + +ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() { + assert((Def->isExtractSubreg() || + Def->isExtractSubregLike()) && "Invalid definition"); + // We are looking at: + // Def = EXTRACT_SUBREG v0, sub0 + + // Bail if we have to compose sub registers. + // Indeed, if DefSubReg != 0, we would have to compose it with sub0. + if (DefSubReg) + return ValueTrackerResult(); + + if (!TII) + // We could handle the EXTRACT_SUBREG here, but we do not want to + // duplicate the code from the generic TII. + return ValueTrackerResult(); + + RegSubRegPairAndIdx ExtractSubregInputReg; + if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg)) + return ValueTrackerResult(); + + // Bail if we have to compose sub registers. + // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0. + if (ExtractSubregInputReg.SubReg) + return ValueTrackerResult(); + // Otherwise, the value is available in the v0.sub0. + return ValueTrackerResult(ExtractSubregInputReg.Reg, + ExtractSubregInputReg.SubIdx); +} + +ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() { + assert(Def->isSubregToReg() && "Invalid definition"); + // We are looking at: + // Def = SUBREG_TO_REG Imm, v0, sub0 + + // Bail if we have to compose sub registers. + // If DefSubReg != sub0, we would have to check that all the bits + // we track are included in sub0 and if yes, we would have to + // determine the right subreg in v0. + if (DefSubReg != Def->getOperand(3).getImm()) + return ValueTrackerResult(); + // Bail if we have to compose sub registers. + // Likewise, if v0.subreg != 0, we would have to compose it with sub0. + if (Def->getOperand(2).getSubReg()) + return ValueTrackerResult(); + + return ValueTrackerResult(Def->getOperand(2).getReg(), + Def->getOperand(3).getImm()); +} + +/// Explore each PHI incoming operand and return its sources. +ValueTrackerResult ValueTracker::getNextSourceFromPHI() { + assert(Def->isPHI() && "Invalid definition"); + ValueTrackerResult Res; + + // If we look for a different subreg, bail as we do not support composing + // subregs yet. + if (Def->getOperand(0).getSubReg() != DefSubReg) + return ValueTrackerResult(); + + // Return all register sources for PHI instructions. + for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) { + const MachineOperand &MO = Def->getOperand(i); + assert(MO.isReg() && "Invalid PHI instruction"); + // We have no code to deal with undef operands. They shouldn't happen in + // normal programs anyway. + if (MO.isUndef()) + return ValueTrackerResult(); + Res.addSource(MO.getReg(), MO.getSubReg()); + } + + return Res; +} + +ValueTrackerResult ValueTracker::getNextSourceImpl() { + assert(Def && "This method needs a valid definition"); + + assert(((Def->getOperand(DefIdx).isDef() && + (DefIdx < Def->getDesc().getNumDefs() || + Def->getDesc().isVariadic())) || + Def->getOperand(DefIdx).isImplicit()) && + "Invalid DefIdx"); + if (Def->isCopy()) + return getNextSourceFromCopy(); + if (Def->isBitcast()) + return getNextSourceFromBitcast(); + // All the remaining cases involve "complex" instructions. + // Bail if we did not ask for the advanced tracking. + if (DisableAdvCopyOpt) + return ValueTrackerResult(); + if (Def->isRegSequence() || Def->isRegSequenceLike()) + return getNextSourceFromRegSequence(); + if (Def->isInsertSubreg() || Def->isInsertSubregLike()) + return getNextSourceFromInsertSubreg(); + if (Def->isExtractSubreg() || Def->isExtractSubregLike()) + return getNextSourceFromExtractSubreg(); + if (Def->isSubregToReg()) + return getNextSourceFromSubregToReg(); + if (Def->isPHI()) + return getNextSourceFromPHI(); + return ValueTrackerResult(); +} + +ValueTrackerResult ValueTracker::getNextSource() { + // If we reach a point where we cannot move up in the use-def chain, + // there is nothing we can get. + if (!Def) + return ValueTrackerResult(); + + ValueTrackerResult Res = getNextSourceImpl(); + if (Res.isValid()) { + // Update definition, definition index, and subregister for the + // next call of getNextSource. + // Update the current register. + bool OneRegSrc = Res.getNumSources() == 1; + if (OneRegSrc) + Reg = Res.getSrcReg(0); + // Update the result before moving up in the use-def chain + // with the instruction containing the last found sources. + Res.setInst(Def); + + // If we can still move up in the use-def chain, move to the next + // definition. + if (!Register::isPhysicalRegister(Reg) && OneRegSrc) { + MachineRegisterInfo::def_iterator DI = MRI.def_begin(Reg); + if (DI != MRI.def_end()) { + Def = DI->getParent(); + DefIdx = DI.getOperandNo(); + DefSubReg = Res.getSrcSubReg(0); + } else { + Def = nullptr; + } + return Res; + } + } + // If we end up here, this means we will not be able to find another source + // for the next iteration. Make sure any new call to getNextSource bails out + // early by cutting the use-def chain. + Def = nullptr; + return Res; +} |