summaryrefslogtreecommitdiff
path: root/llvm/lib/CodeGen/PeepholeOptimizer.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/CodeGen/PeepholeOptimizer.cpp')
-rw-r--r--llvm/lib/CodeGen/PeepholeOptimizer.cpp2114
1 files changed, 2114 insertions, 0 deletions
diff --git a/llvm/lib/CodeGen/PeepholeOptimizer.cpp b/llvm/lib/CodeGen/PeepholeOptimizer.cpp
new file mode 100644
index 000000000000..54f1d38ed106
--- /dev/null
+++ b/llvm/lib/CodeGen/PeepholeOptimizer.cpp
@@ -0,0 +1,2114 @@
+//===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Perform peephole optimizations on the machine code:
+//
+// - Optimize Extensions
+//
+// Optimization of sign / zero extension instructions. It may be extended to
+// handle other instructions with similar properties.
+//
+// On some targets, some instructions, e.g. X86 sign / zero extension, may
+// leave the source value in the lower part of the result. This optimization
+// will replace some uses of the pre-extension value with uses of the
+// sub-register of the results.
+//
+// - Optimize Comparisons
+//
+// Optimization of comparison instructions. For instance, in this code:
+//
+// sub r1, 1
+// cmp r1, 0
+// bz L1
+//
+// If the "sub" instruction all ready sets (or could be modified to set) the
+// same flag that the "cmp" instruction sets and that "bz" uses, then we can
+// eliminate the "cmp" instruction.
+//
+// Another instance, in this code:
+//
+// sub r1, r3 | sub r1, imm
+// cmp r3, r1 or cmp r1, r3 | cmp r1, imm
+// bge L1
+//
+// If the branch instruction can use flag from "sub", then we can replace
+// "sub" with "subs" and eliminate the "cmp" instruction.
+//
+// - Optimize Loads:
+//
+// Loads that can be folded into a later instruction. A load is foldable
+// if it loads to virtual registers and the virtual register defined has
+// a single use.
+//
+// - Optimize Copies and Bitcast (more generally, target specific copies):
+//
+// Rewrite copies and bitcasts to avoid cross register bank copies
+// when possible.
+// E.g., Consider the following example, where capital and lower
+// letters denote different register file:
+// b = copy A <-- cross-bank copy
+// C = copy b <-- cross-bank copy
+// =>
+// b = copy A <-- cross-bank copy
+// C = copy A <-- same-bank copy
+//
+// E.g., for bitcast:
+// b = bitcast A <-- cross-bank copy
+// C = bitcast b <-- cross-bank copy
+// =>
+// b = bitcast A <-- cross-bank copy
+// C = copy A <-- same-bank copy
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetOpcodes.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/MC/LaneBitmask.h"
+#include "llvm/MC/MCInstrDesc.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cassert>
+#include <cstdint>
+#include <memory>
+#include <utility>
+
+using namespace llvm;
+using RegSubRegPair = TargetInstrInfo::RegSubRegPair;
+using RegSubRegPairAndIdx = TargetInstrInfo::RegSubRegPairAndIdx;
+
+#define DEBUG_TYPE "peephole-opt"
+
+// Optimize Extensions
+static cl::opt<bool>
+Aggressive("aggressive-ext-opt", cl::Hidden,
+ cl::desc("Aggressive extension optimization"));
+
+static cl::opt<bool>
+DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
+ cl::desc("Disable the peephole optimizer"));
+
+/// Specifiy whether or not the value tracking looks through
+/// complex instructions. When this is true, the value tracker
+/// bails on everything that is not a copy or a bitcast.
+static cl::opt<bool>
+DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false),
+ cl::desc("Disable advanced copy optimization"));
+
+static cl::opt<bool> DisableNAPhysCopyOpt(
+ "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false),
+ cl::desc("Disable non-allocatable physical register copy optimization"));
+
+// Limit the number of PHI instructions to process
+// in PeepholeOptimizer::getNextSource.
+static cl::opt<unsigned> RewritePHILimit(
+ "rewrite-phi-limit", cl::Hidden, cl::init(10),
+ cl::desc("Limit the length of PHI chains to lookup"));
+
+// Limit the length of recurrence chain when evaluating the benefit of
+// commuting operands.
+static cl::opt<unsigned> MaxRecurrenceChain(
+ "recurrence-chain-limit", cl::Hidden, cl::init(3),
+ cl::desc("Maximum length of recurrence chain when evaluating the benefit "
+ "of commuting operands"));
+
+
+STATISTIC(NumReuse, "Number of extension results reused");
+STATISTIC(NumCmps, "Number of compares eliminated");
+STATISTIC(NumImmFold, "Number of move immediate folded");
+STATISTIC(NumLoadFold, "Number of loads folded");
+STATISTIC(NumSelects, "Number of selects optimized");
+STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized");
+STATISTIC(NumRewrittenCopies, "Number of copies rewritten");
+STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed");
+
+namespace {
+
+ class ValueTrackerResult;
+ class RecurrenceInstr;
+
+ class PeepholeOptimizer : public MachineFunctionPass {
+ const TargetInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ MachineRegisterInfo *MRI;
+ MachineDominatorTree *DT; // Machine dominator tree
+ MachineLoopInfo *MLI;
+
+ public:
+ static char ID; // Pass identification
+
+ PeepholeOptimizer() : MachineFunctionPass(ID) {
+ initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ AU.addRequired<MachineLoopInfo>();
+ AU.addPreserved<MachineLoopInfo>();
+ if (Aggressive) {
+ AU.addRequired<MachineDominatorTree>();
+ AU.addPreserved<MachineDominatorTree>();
+ }
+ }
+
+ /// Track Def -> Use info used for rewriting copies.
+ using RewriteMapTy = SmallDenseMap<RegSubRegPair, ValueTrackerResult>;
+
+ /// Sequence of instructions that formulate recurrence cycle.
+ using RecurrenceCycle = SmallVector<RecurrenceInstr, 4>;
+
+ private:
+ bool optimizeCmpInstr(MachineInstr &MI);
+ bool optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
+ SmallPtrSetImpl<MachineInstr*> &LocalMIs);
+ bool optimizeSelect(MachineInstr &MI,
+ SmallPtrSetImpl<MachineInstr *> &LocalMIs);
+ bool optimizeCondBranch(MachineInstr &MI);
+ bool optimizeCoalescableCopy(MachineInstr &MI);
+ bool optimizeUncoalescableCopy(MachineInstr &MI,
+ SmallPtrSetImpl<MachineInstr *> &LocalMIs);
+ bool optimizeRecurrence(MachineInstr &PHI);
+ bool findNextSource(RegSubRegPair RegSubReg, RewriteMapTy &RewriteMap);
+ bool isMoveImmediate(MachineInstr &MI,
+ SmallSet<unsigned, 4> &ImmDefRegs,
+ DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
+ bool foldImmediate(MachineInstr &MI, SmallSet<unsigned, 4> &ImmDefRegs,
+ DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
+
+ /// Finds recurrence cycles, but only ones that formulated around
+ /// a def operand and a use operand that are tied. If there is a use
+ /// operand commutable with the tied use operand, find recurrence cycle
+ /// along that operand as well.
+ bool findTargetRecurrence(unsigned Reg,
+ const SmallSet<unsigned, 2> &TargetReg,
+ RecurrenceCycle &RC);
+
+ /// If copy instruction \p MI is a virtual register copy, track it in
+ /// the set \p CopySrcRegs and \p CopyMIs. If this virtual register was
+ /// previously seen as a copy, replace the uses of this copy with the
+ /// previously seen copy's destination register.
+ bool foldRedundantCopy(MachineInstr &MI,
+ SmallSet<unsigned, 4> &CopySrcRegs,
+ DenseMap<unsigned, MachineInstr *> &CopyMIs);
+
+ /// Is the register \p Reg a non-allocatable physical register?
+ bool isNAPhysCopy(unsigned Reg);
+
+ /// If copy instruction \p MI is a non-allocatable virtual<->physical
+ /// register copy, track it in the \p NAPhysToVirtMIs map. If this
+ /// non-allocatable physical register was previously copied to a virtual
+ /// registered and hasn't been clobbered, the virt->phys copy can be
+ /// deleted.
+ bool foldRedundantNAPhysCopy(MachineInstr &MI,
+ DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs);
+
+ bool isLoadFoldable(MachineInstr &MI,
+ SmallSet<unsigned, 16> &FoldAsLoadDefCandidates);
+
+ /// Check whether \p MI is understood by the register coalescer
+ /// but may require some rewriting.
+ bool isCoalescableCopy(const MachineInstr &MI) {
+ // SubregToRegs are not interesting, because they are already register
+ // coalescer friendly.
+ return MI.isCopy() || (!DisableAdvCopyOpt &&
+ (MI.isRegSequence() || MI.isInsertSubreg() ||
+ MI.isExtractSubreg()));
+ }
+
+ /// Check whether \p MI is a copy like instruction that is
+ /// not recognized by the register coalescer.
+ bool isUncoalescableCopy(const MachineInstr &MI) {
+ return MI.isBitcast() ||
+ (!DisableAdvCopyOpt &&
+ (MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
+ MI.isExtractSubregLike()));
+ }
+
+ MachineInstr &rewriteSource(MachineInstr &CopyLike,
+ RegSubRegPair Def, RewriteMapTy &RewriteMap);
+ };
+
+ /// Helper class to hold instructions that are inside recurrence cycles.
+ /// The recurrence cycle is formulated around 1) a def operand and its
+ /// tied use operand, or 2) a def operand and a use operand that is commutable
+ /// with another use operand which is tied to the def operand. In the latter
+ /// case, index of the tied use operand and the commutable use operand are
+ /// maintained with CommutePair.
+ class RecurrenceInstr {
+ public:
+ using IndexPair = std::pair<unsigned, unsigned>;
+
+ RecurrenceInstr(MachineInstr *MI) : MI(MI) {}
+ RecurrenceInstr(MachineInstr *MI, unsigned Idx1, unsigned Idx2)
+ : MI(MI), CommutePair(std::make_pair(Idx1, Idx2)) {}
+
+ MachineInstr *getMI() const { return MI; }
+ Optional<IndexPair> getCommutePair() const { return CommutePair; }
+
+ private:
+ MachineInstr *MI;
+ Optional<IndexPair> CommutePair;
+ };
+
+ /// Helper class to hold a reply for ValueTracker queries.
+ /// Contains the returned sources for a given search and the instructions
+ /// where the sources were tracked from.
+ class ValueTrackerResult {
+ private:
+ /// Track all sources found by one ValueTracker query.
+ SmallVector<RegSubRegPair, 2> RegSrcs;
+
+ /// Instruction using the sources in 'RegSrcs'.
+ const MachineInstr *Inst = nullptr;
+
+ public:
+ ValueTrackerResult() = default;
+
+ ValueTrackerResult(unsigned Reg, unsigned SubReg) {
+ addSource(Reg, SubReg);
+ }
+
+ bool isValid() const { return getNumSources() > 0; }
+
+ void setInst(const MachineInstr *I) { Inst = I; }
+ const MachineInstr *getInst() const { return Inst; }
+
+ void clear() {
+ RegSrcs.clear();
+ Inst = nullptr;
+ }
+
+ void addSource(unsigned SrcReg, unsigned SrcSubReg) {
+ RegSrcs.push_back(RegSubRegPair(SrcReg, SrcSubReg));
+ }
+
+ void setSource(int Idx, unsigned SrcReg, unsigned SrcSubReg) {
+ assert(Idx < getNumSources() && "Reg pair source out of index");
+ RegSrcs[Idx] = RegSubRegPair(SrcReg, SrcSubReg);
+ }
+
+ int getNumSources() const { return RegSrcs.size(); }
+
+ RegSubRegPair getSrc(int Idx) const {
+ return RegSrcs[Idx];
+ }
+
+ unsigned getSrcReg(int Idx) const {
+ assert(Idx < getNumSources() && "Reg source out of index");
+ return RegSrcs[Idx].Reg;
+ }
+
+ unsigned getSrcSubReg(int Idx) const {
+ assert(Idx < getNumSources() && "SubReg source out of index");
+ return RegSrcs[Idx].SubReg;
+ }
+
+ bool operator==(const ValueTrackerResult &Other) {
+ if (Other.getInst() != getInst())
+ return false;
+
+ if (Other.getNumSources() != getNumSources())
+ return false;
+
+ for (int i = 0, e = Other.getNumSources(); i != e; ++i)
+ if (Other.getSrcReg(i) != getSrcReg(i) ||
+ Other.getSrcSubReg(i) != getSrcSubReg(i))
+ return false;
+ return true;
+ }
+ };
+
+ /// Helper class to track the possible sources of a value defined by
+ /// a (chain of) copy related instructions.
+ /// Given a definition (instruction and definition index), this class
+ /// follows the use-def chain to find successive suitable sources.
+ /// The given source can be used to rewrite the definition into
+ /// def = COPY src.
+ ///
+ /// For instance, let us consider the following snippet:
+ /// v0 =
+ /// v2 = INSERT_SUBREG v1, v0, sub0
+ /// def = COPY v2.sub0
+ ///
+ /// Using a ValueTracker for def = COPY v2.sub0 will give the following
+ /// suitable sources:
+ /// v2.sub0 and v0.
+ /// Then, def can be rewritten into def = COPY v0.
+ class ValueTracker {
+ private:
+ /// The current point into the use-def chain.
+ const MachineInstr *Def = nullptr;
+
+ /// The index of the definition in Def.
+ unsigned DefIdx = 0;
+
+ /// The sub register index of the definition.
+ unsigned DefSubReg;
+
+ /// The register where the value can be found.
+ unsigned Reg;
+
+ /// MachineRegisterInfo used to perform tracking.
+ const MachineRegisterInfo &MRI;
+
+ /// Optional TargetInstrInfo used to perform some complex tracking.
+ const TargetInstrInfo *TII;
+
+ /// Dispatcher to the right underlying implementation of getNextSource.
+ ValueTrackerResult getNextSourceImpl();
+
+ /// Specialized version of getNextSource for Copy instructions.
+ ValueTrackerResult getNextSourceFromCopy();
+
+ /// Specialized version of getNextSource for Bitcast instructions.
+ ValueTrackerResult getNextSourceFromBitcast();
+
+ /// Specialized version of getNextSource for RegSequence instructions.
+ ValueTrackerResult getNextSourceFromRegSequence();
+
+ /// Specialized version of getNextSource for InsertSubreg instructions.
+ ValueTrackerResult getNextSourceFromInsertSubreg();
+
+ /// Specialized version of getNextSource for ExtractSubreg instructions.
+ ValueTrackerResult getNextSourceFromExtractSubreg();
+
+ /// Specialized version of getNextSource for SubregToReg instructions.
+ ValueTrackerResult getNextSourceFromSubregToReg();
+
+ /// Specialized version of getNextSource for PHI instructions.
+ ValueTrackerResult getNextSourceFromPHI();
+
+ public:
+ /// Create a ValueTracker instance for the value defined by \p Reg.
+ /// \p DefSubReg represents the sub register index the value tracker will
+ /// track. It does not need to match the sub register index used in the
+ /// definition of \p Reg.
+ /// If \p Reg is a physical register, a value tracker constructed with
+ /// this constructor will not find any alternative source.
+ /// Indeed, when \p Reg is a physical register that constructor does not
+ /// know which definition of \p Reg it should track.
+ /// Use the next constructor to track a physical register.
+ ValueTracker(unsigned Reg, unsigned DefSubReg,
+ const MachineRegisterInfo &MRI,
+ const TargetInstrInfo *TII = nullptr)
+ : DefSubReg(DefSubReg), Reg(Reg), MRI(MRI), TII(TII) {
+ if (!Register::isPhysicalRegister(Reg)) {
+ Def = MRI.getVRegDef(Reg);
+ DefIdx = MRI.def_begin(Reg).getOperandNo();
+ }
+ }
+
+ /// Following the use-def chain, get the next available source
+ /// for the tracked value.
+ /// \return A ValueTrackerResult containing a set of registers
+ /// and sub registers with tracked values. A ValueTrackerResult with
+ /// an empty set of registers means no source was found.
+ ValueTrackerResult getNextSource();
+ };
+
+} // end anonymous namespace
+
+char PeepholeOptimizer::ID = 0;
+
+char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
+
+INITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE,
+ "Peephole Optimizations", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
+INITIALIZE_PASS_END(PeepholeOptimizer, DEBUG_TYPE,
+ "Peephole Optimizations", false, false)
+
+/// If instruction is a copy-like instruction, i.e. it reads a single register
+/// and writes a single register and it does not modify the source, and if the
+/// source value is preserved as a sub-register of the result, then replace all
+/// reachable uses of the source with the subreg of the result.
+///
+/// Do not generate an EXTRACT that is used only in a debug use, as this changes
+/// the code. Since this code does not currently share EXTRACTs, just ignore all
+/// debug uses.
+bool PeepholeOptimizer::
+optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
+ SmallPtrSetImpl<MachineInstr*> &LocalMIs) {
+ unsigned SrcReg, DstReg, SubIdx;
+ if (!TII->isCoalescableExtInstr(MI, SrcReg, DstReg, SubIdx))
+ return false;
+
+ if (Register::isPhysicalRegister(DstReg) ||
+ Register::isPhysicalRegister(SrcReg))
+ return false;
+
+ if (MRI->hasOneNonDBGUse(SrcReg))
+ // No other uses.
+ return false;
+
+ // Ensure DstReg can get a register class that actually supports
+ // sub-registers. Don't change the class until we commit.
+ const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
+ DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx);
+ if (!DstRC)
+ return false;
+
+ // The ext instr may be operating on a sub-register of SrcReg as well.
+ // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
+ // register.
+ // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
+ // SrcReg:SubIdx should be replaced.
+ bool UseSrcSubIdx =
+ TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
+
+ // The source has other uses. See if we can replace the other uses with use of
+ // the result of the extension.
+ SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
+ for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
+ ReachedBBs.insert(UI.getParent());
+
+ // Uses that are in the same BB of uses of the result of the instruction.
+ SmallVector<MachineOperand*, 8> Uses;
+
+ // Uses that the result of the instruction can reach.
+ SmallVector<MachineOperand*, 8> ExtendedUses;
+
+ bool ExtendLife = true;
+ for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
+ MachineInstr *UseMI = UseMO.getParent();
+ if (UseMI == &MI)
+ continue;
+
+ if (UseMI->isPHI()) {
+ ExtendLife = false;
+ continue;
+ }
+
+ // Only accept uses of SrcReg:SubIdx.
+ if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
+ continue;
+
+ // It's an error to translate this:
+ //
+ // %reg1025 = <sext> %reg1024
+ // ...
+ // %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
+ //
+ // into this:
+ //
+ // %reg1025 = <sext> %reg1024
+ // ...
+ // %reg1027 = COPY %reg1025:4
+ // %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
+ //
+ // The problem here is that SUBREG_TO_REG is there to assert that an
+ // implicit zext occurs. It doesn't insert a zext instruction. If we allow
+ // the COPY here, it will give us the value after the <sext>, not the
+ // original value of %reg1024 before <sext>.
+ if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
+ continue;
+
+ MachineBasicBlock *UseMBB = UseMI->getParent();
+ if (UseMBB == &MBB) {
+ // Local uses that come after the extension.
+ if (!LocalMIs.count(UseMI))
+ Uses.push_back(&UseMO);
+ } else if (ReachedBBs.count(UseMBB)) {
+ // Non-local uses where the result of the extension is used. Always
+ // replace these unless it's a PHI.
+ Uses.push_back(&UseMO);
+ } else if (Aggressive && DT->dominates(&MBB, UseMBB)) {
+ // We may want to extend the live range of the extension result in order
+ // to replace these uses.
+ ExtendedUses.push_back(&UseMO);
+ } else {
+ // Both will be live out of the def MBB anyway. Don't extend live range of
+ // the extension result.
+ ExtendLife = false;
+ break;
+ }
+ }
+
+ if (ExtendLife && !ExtendedUses.empty())
+ // Extend the liveness of the extension result.
+ Uses.append(ExtendedUses.begin(), ExtendedUses.end());
+
+ // Now replace all uses.
+ bool Changed = false;
+ if (!Uses.empty()) {
+ SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
+
+ // Look for PHI uses of the extended result, we don't want to extend the
+ // liveness of a PHI input. It breaks all kinds of assumptions down
+ // stream. A PHI use is expected to be the kill of its source values.
+ for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
+ if (UI.isPHI())
+ PHIBBs.insert(UI.getParent());
+
+ const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
+ for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
+ MachineOperand *UseMO = Uses[i];
+ MachineInstr *UseMI = UseMO->getParent();
+ MachineBasicBlock *UseMBB = UseMI->getParent();
+ if (PHIBBs.count(UseMBB))
+ continue;
+
+ // About to add uses of DstReg, clear DstReg's kill flags.
+ if (!Changed) {
+ MRI->clearKillFlags(DstReg);
+ MRI->constrainRegClass(DstReg, DstRC);
+ }
+
+ Register NewVR = MRI->createVirtualRegister(RC);
+ MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
+ TII->get(TargetOpcode::COPY), NewVR)
+ .addReg(DstReg, 0, SubIdx);
+ // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set.
+ if (UseSrcSubIdx) {
+ Copy->getOperand(0).setSubReg(SubIdx);
+ Copy->getOperand(0).setIsUndef();
+ }
+ UseMO->setReg(NewVR);
+ ++NumReuse;
+ Changed = true;
+ }
+ }
+
+ return Changed;
+}
+
+/// If the instruction is a compare and the previous instruction it's comparing
+/// against already sets (or could be modified to set) the same flag as the
+/// compare, then we can remove the comparison and use the flag from the
+/// previous instruction.
+bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr &MI) {
+ // If this instruction is a comparison against zero and isn't comparing a
+ // physical register, we can try to optimize it.
+ unsigned SrcReg, SrcReg2;
+ int CmpMask, CmpValue;
+ if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
+ Register::isPhysicalRegister(SrcReg) ||
+ (SrcReg2 != 0 && Register::isPhysicalRegister(SrcReg2)))
+ return false;
+
+ // Attempt to optimize the comparison instruction.
+ if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
+ ++NumCmps;
+ return true;
+ }
+
+ return false;
+}
+
+/// Optimize a select instruction.
+bool PeepholeOptimizer::optimizeSelect(MachineInstr &MI,
+ SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
+ unsigned TrueOp = 0;
+ unsigned FalseOp = 0;
+ bool Optimizable = false;
+ SmallVector<MachineOperand, 4> Cond;
+ if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable))
+ return false;
+ if (!Optimizable)
+ return false;
+ if (!TII->optimizeSelect(MI, LocalMIs))
+ return false;
+ MI.eraseFromParent();
+ ++NumSelects;
+ return true;
+}
+
+/// Check if a simpler conditional branch can be generated.
+bool PeepholeOptimizer::optimizeCondBranch(MachineInstr &MI) {
+ return TII->optimizeCondBranch(MI);
+}
+
+/// Try to find the next source that share the same register file
+/// for the value defined by \p Reg and \p SubReg.
+/// When true is returned, the \p RewriteMap can be used by the client to
+/// retrieve all Def -> Use along the way up to the next source. Any found
+/// Use that is not itself a key for another entry, is the next source to
+/// use. During the search for the next source, multiple sources can be found
+/// given multiple incoming sources of a PHI instruction. In this case, we
+/// look in each PHI source for the next source; all found next sources must
+/// share the same register file as \p Reg and \p SubReg. The client should
+/// then be capable to rewrite all intermediate PHIs to get the next source.
+/// \return False if no alternative sources are available. True otherwise.
+bool PeepholeOptimizer::findNextSource(RegSubRegPair RegSubReg,
+ RewriteMapTy &RewriteMap) {
+ // Do not try to find a new source for a physical register.
+ // So far we do not have any motivating example for doing that.
+ // Thus, instead of maintaining untested code, we will revisit that if
+ // that changes at some point.
+ unsigned Reg = RegSubReg.Reg;
+ if (Register::isPhysicalRegister(Reg))
+ return false;
+ const TargetRegisterClass *DefRC = MRI->getRegClass(Reg);
+
+ SmallVector<RegSubRegPair, 4> SrcToLook;
+ RegSubRegPair CurSrcPair = RegSubReg;
+ SrcToLook.push_back(CurSrcPair);
+
+ unsigned PHICount = 0;
+ do {
+ CurSrcPair = SrcToLook.pop_back_val();
+ // As explained above, do not handle physical registers
+ if (Register::isPhysicalRegister(CurSrcPair.Reg))
+ return false;
+
+ ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, TII);
+
+ // Follow the chain of copies until we find a more suitable source, a phi
+ // or have to abort.
+ while (true) {
+ ValueTrackerResult Res = ValTracker.getNextSource();
+ // Abort at the end of a chain (without finding a suitable source).
+ if (!Res.isValid())
+ return false;
+
+ // Insert the Def -> Use entry for the recently found source.
+ ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair);
+ if (CurSrcRes.isValid()) {
+ assert(CurSrcRes == Res && "ValueTrackerResult found must match");
+ // An existent entry with multiple sources is a PHI cycle we must avoid.
+ // Otherwise it's an entry with a valid next source we already found.
+ if (CurSrcRes.getNumSources() > 1) {
+ LLVM_DEBUG(dbgs()
+ << "findNextSource: found PHI cycle, aborting...\n");
+ return false;
+ }
+ break;
+ }
+ RewriteMap.insert(std::make_pair(CurSrcPair, Res));
+
+ // ValueTrackerResult usually have one source unless it's the result from
+ // a PHI instruction. Add the found PHI edges to be looked up further.
+ unsigned NumSrcs = Res.getNumSources();
+ if (NumSrcs > 1) {
+ PHICount++;
+ if (PHICount >= RewritePHILimit) {
+ LLVM_DEBUG(dbgs() << "findNextSource: PHI limit reached\n");
+ return false;
+ }
+
+ for (unsigned i = 0; i < NumSrcs; ++i)
+ SrcToLook.push_back(Res.getSrc(i));
+ break;
+ }
+
+ CurSrcPair = Res.getSrc(0);
+ // Do not extend the live-ranges of physical registers as they add
+ // constraints to the register allocator. Moreover, if we want to extend
+ // the live-range of a physical register, unlike SSA virtual register,
+ // we will have to check that they aren't redefine before the related use.
+ if (Register::isPhysicalRegister(CurSrcPair.Reg))
+ return false;
+
+ // Keep following the chain if the value isn't any better yet.
+ const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg);
+ if (!TRI->shouldRewriteCopySrc(DefRC, RegSubReg.SubReg, SrcRC,
+ CurSrcPair.SubReg))
+ continue;
+
+ // We currently cannot deal with subreg operands on PHI instructions
+ // (see insertPHI()).
+ if (PHICount > 0 && CurSrcPair.SubReg != 0)
+ continue;
+
+ // We found a suitable source, and are done with this chain.
+ break;
+ }
+ } while (!SrcToLook.empty());
+
+ // If we did not find a more suitable source, there is nothing to optimize.
+ return CurSrcPair.Reg != Reg;
+}
+
+/// Insert a PHI instruction with incoming edges \p SrcRegs that are
+/// guaranteed to have the same register class. This is necessary whenever we
+/// successfully traverse a PHI instruction and find suitable sources coming
+/// from its edges. By inserting a new PHI, we provide a rewritten PHI def
+/// suitable to be used in a new COPY instruction.
+static MachineInstr &
+insertPHI(MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
+ const SmallVectorImpl<RegSubRegPair> &SrcRegs,
+ MachineInstr &OrigPHI) {
+ assert(!SrcRegs.empty() && "No sources to create a PHI instruction?");
+
+ const TargetRegisterClass *NewRC = MRI.getRegClass(SrcRegs[0].Reg);
+ // NewRC is only correct if no subregisters are involved. findNextSource()
+ // should have rejected those cases already.
+ assert(SrcRegs[0].SubReg == 0 && "should not have subreg operand");
+ Register NewVR = MRI.createVirtualRegister(NewRC);
+ MachineBasicBlock *MBB = OrigPHI.getParent();
+ MachineInstrBuilder MIB = BuildMI(*MBB, &OrigPHI, OrigPHI.getDebugLoc(),
+ TII.get(TargetOpcode::PHI), NewVR);
+
+ unsigned MBBOpIdx = 2;
+ for (const RegSubRegPair &RegPair : SrcRegs) {
+ MIB.addReg(RegPair.Reg, 0, RegPair.SubReg);
+ MIB.addMBB(OrigPHI.getOperand(MBBOpIdx).getMBB());
+ // Since we're extended the lifetime of RegPair.Reg, clear the
+ // kill flags to account for that and make RegPair.Reg reaches
+ // the new PHI.
+ MRI.clearKillFlags(RegPair.Reg);
+ MBBOpIdx += 2;
+ }
+
+ return *MIB;
+}
+
+namespace {
+
+/// Interface to query instructions amenable to copy rewriting.
+class Rewriter {
+protected:
+ MachineInstr &CopyLike;
+ unsigned CurrentSrcIdx = 0; ///< The index of the source being rewritten.
+public:
+ Rewriter(MachineInstr &CopyLike) : CopyLike(CopyLike) {}
+ virtual ~Rewriter() {}
+
+ /// Get the next rewritable source (SrcReg, SrcSubReg) and
+ /// the related value that it affects (DstReg, DstSubReg).
+ /// A source is considered rewritable if its register class and the
+ /// register class of the related DstReg may not be register
+ /// coalescer friendly. In other words, given a copy-like instruction
+ /// not all the arguments may be returned at rewritable source, since
+ /// some arguments are none to be register coalescer friendly.
+ ///
+ /// Each call of this method moves the current source to the next
+ /// rewritable source.
+ /// For instance, let CopyLike be the instruction to rewrite.
+ /// CopyLike has one definition and one source:
+ /// dst.dstSubIdx = CopyLike src.srcSubIdx.
+ ///
+ /// The first call will give the first rewritable source, i.e.,
+ /// the only source this instruction has:
+ /// (SrcReg, SrcSubReg) = (src, srcSubIdx).
+ /// This source defines the whole definition, i.e.,
+ /// (DstReg, DstSubReg) = (dst, dstSubIdx).
+ ///
+ /// The second and subsequent calls will return false, as there is only one
+ /// rewritable source.
+ ///
+ /// \return True if a rewritable source has been found, false otherwise.
+ /// The output arguments are valid if and only if true is returned.
+ virtual bool getNextRewritableSource(RegSubRegPair &Src,
+ RegSubRegPair &Dst) = 0;
+
+ /// Rewrite the current source with \p NewReg and \p NewSubReg if possible.
+ /// \return True if the rewriting was possible, false otherwise.
+ virtual bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) = 0;
+};
+
+/// Rewriter for COPY instructions.
+class CopyRewriter : public Rewriter {
+public:
+ CopyRewriter(MachineInstr &MI) : Rewriter(MI) {
+ assert(MI.isCopy() && "Expected copy instruction");
+ }
+ virtual ~CopyRewriter() = default;
+
+ bool getNextRewritableSource(RegSubRegPair &Src,
+ RegSubRegPair &Dst) override {
+ // CurrentSrcIdx > 0 means this function has already been called.
+ if (CurrentSrcIdx > 0)
+ return false;
+ // This is the first call to getNextRewritableSource.
+ // Move the CurrentSrcIdx to remember that we made that call.
+ CurrentSrcIdx = 1;
+ // The rewritable source is the argument.
+ const MachineOperand &MOSrc = CopyLike.getOperand(1);
+ Src = RegSubRegPair(MOSrc.getReg(), MOSrc.getSubReg());
+ // What we track are the alternative sources of the definition.
+ const MachineOperand &MODef = CopyLike.getOperand(0);
+ Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
+ return true;
+ }
+
+ bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
+ if (CurrentSrcIdx != 1)
+ return false;
+ MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx);
+ MOSrc.setReg(NewReg);
+ MOSrc.setSubReg(NewSubReg);
+ return true;
+ }
+};
+
+/// Helper class to rewrite uncoalescable copy like instructions
+/// into new COPY (coalescable friendly) instructions.
+class UncoalescableRewriter : public Rewriter {
+ unsigned NumDefs; ///< Number of defs in the bitcast.
+
+public:
+ UncoalescableRewriter(MachineInstr &MI) : Rewriter(MI) {
+ NumDefs = MI.getDesc().getNumDefs();
+ }
+
+ /// \see See Rewriter::getNextRewritableSource()
+ /// All such sources need to be considered rewritable in order to
+ /// rewrite a uncoalescable copy-like instruction. This method return
+ /// each definition that must be checked if rewritable.
+ bool getNextRewritableSource(RegSubRegPair &Src,
+ RegSubRegPair &Dst) override {
+ // Find the next non-dead definition and continue from there.
+ if (CurrentSrcIdx == NumDefs)
+ return false;
+
+ while (CopyLike.getOperand(CurrentSrcIdx).isDead()) {
+ ++CurrentSrcIdx;
+ if (CurrentSrcIdx == NumDefs)
+ return false;
+ }
+
+ // What we track are the alternative sources of the definition.
+ Src = RegSubRegPair(0, 0);
+ const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx);
+ Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
+
+ CurrentSrcIdx++;
+ return true;
+ }
+
+ bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
+ return false;
+ }
+};
+
+/// Specialized rewriter for INSERT_SUBREG instruction.
+class InsertSubregRewriter : public Rewriter {
+public:
+ InsertSubregRewriter(MachineInstr &MI) : Rewriter(MI) {
+ assert(MI.isInsertSubreg() && "Invalid instruction");
+ }
+
+ /// \see See Rewriter::getNextRewritableSource()
+ /// Here CopyLike has the following form:
+ /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx.
+ /// Src1 has the same register class has dst, hence, there is
+ /// nothing to rewrite.
+ /// Src2.src2SubIdx, may not be register coalescer friendly.
+ /// Therefore, the first call to this method returns:
+ /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
+ /// (DstReg, DstSubReg) = (dst, subIdx).
+ ///
+ /// Subsequence calls will return false.
+ bool getNextRewritableSource(RegSubRegPair &Src,
+ RegSubRegPair &Dst) override {
+ // If we already get the only source we can rewrite, return false.
+ if (CurrentSrcIdx == 2)
+ return false;
+ // We are looking at v2 = INSERT_SUBREG v0, v1, sub0.
+ CurrentSrcIdx = 2;
+ const MachineOperand &MOInsertedReg = CopyLike.getOperand(2);
+ Src = RegSubRegPair(MOInsertedReg.getReg(), MOInsertedReg.getSubReg());
+ const MachineOperand &MODef = CopyLike.getOperand(0);
+
+ // We want to track something that is compatible with the
+ // partial definition.
+ if (MODef.getSubReg())
+ // Bail if we have to compose sub-register indices.
+ return false;
+ Dst = RegSubRegPair(MODef.getReg(),
+ (unsigned)CopyLike.getOperand(3).getImm());
+ return true;
+ }
+
+ bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
+ if (CurrentSrcIdx != 2)
+ return false;
+ // We are rewriting the inserted reg.
+ MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
+ MO.setReg(NewReg);
+ MO.setSubReg(NewSubReg);
+ return true;
+ }
+};
+
+/// Specialized rewriter for EXTRACT_SUBREG instruction.
+class ExtractSubregRewriter : public Rewriter {
+ const TargetInstrInfo &TII;
+
+public:
+ ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII)
+ : Rewriter(MI), TII(TII) {
+ assert(MI.isExtractSubreg() && "Invalid instruction");
+ }
+
+ /// \see Rewriter::getNextRewritableSource()
+ /// Here CopyLike has the following form:
+ /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx.
+ /// There is only one rewritable source: Src.subIdx,
+ /// which defines dst.dstSubIdx.
+ bool getNextRewritableSource(RegSubRegPair &Src,
+ RegSubRegPair &Dst) override {
+ // If we already get the only source we can rewrite, return false.
+ if (CurrentSrcIdx == 1)
+ return false;
+ // We are looking at v1 = EXTRACT_SUBREG v0, sub0.
+ CurrentSrcIdx = 1;
+ const MachineOperand &MOExtractedReg = CopyLike.getOperand(1);
+ // If we have to compose sub-register indices, bail out.
+ if (MOExtractedReg.getSubReg())
+ return false;
+
+ Src = RegSubRegPair(MOExtractedReg.getReg(),
+ CopyLike.getOperand(2).getImm());
+
+ // We want to track something that is compatible with the definition.
+ const MachineOperand &MODef = CopyLike.getOperand(0);
+ Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
+ return true;
+ }
+
+ bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
+ // The only source we can rewrite is the input register.
+ if (CurrentSrcIdx != 1)
+ return false;
+
+ CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg);
+
+ // If we find a source that does not require to extract something,
+ // rewrite the operation with a copy.
+ if (!NewSubReg) {
+ // Move the current index to an invalid position.
+ // We do not want another call to this method to be able
+ // to do any change.
+ CurrentSrcIdx = -1;
+ // Rewrite the operation as a COPY.
+ // Get rid of the sub-register index.
+ CopyLike.RemoveOperand(2);
+ // Morph the operation into a COPY.
+ CopyLike.setDesc(TII.get(TargetOpcode::COPY));
+ return true;
+ }
+ CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg);
+ return true;
+ }
+};
+
+/// Specialized rewriter for REG_SEQUENCE instruction.
+class RegSequenceRewriter : public Rewriter {
+public:
+ RegSequenceRewriter(MachineInstr &MI) : Rewriter(MI) {
+ assert(MI.isRegSequence() && "Invalid instruction");
+ }
+
+ /// \see Rewriter::getNextRewritableSource()
+ /// Here CopyLike has the following form:
+ /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2.
+ /// Each call will return a different source, walking all the available
+ /// source.
+ ///
+ /// The first call returns:
+ /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx).
+ /// (DstReg, DstSubReg) = (dst, subIdx1).
+ ///
+ /// The second call returns:
+ /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
+ /// (DstReg, DstSubReg) = (dst, subIdx2).
+ ///
+ /// And so on, until all the sources have been traversed, then
+ /// it returns false.
+ bool getNextRewritableSource(RegSubRegPair &Src,
+ RegSubRegPair &Dst) override {
+ // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc.
+
+ // If this is the first call, move to the first argument.
+ if (CurrentSrcIdx == 0) {
+ CurrentSrcIdx = 1;
+ } else {
+ // Otherwise, move to the next argument and check that it is valid.
+ CurrentSrcIdx += 2;
+ if (CurrentSrcIdx >= CopyLike.getNumOperands())
+ return false;
+ }
+ const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx);
+ Src.Reg = MOInsertedReg.getReg();
+ // If we have to compose sub-register indices, bail out.
+ if ((Src.SubReg = MOInsertedReg.getSubReg()))
+ return false;
+
+ // We want to track something that is compatible with the related
+ // partial definition.
+ Dst.SubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm();
+
+ const MachineOperand &MODef = CopyLike.getOperand(0);
+ Dst.Reg = MODef.getReg();
+ // If we have to compose sub-registers, bail.
+ return MODef.getSubReg() == 0;
+ }
+
+ bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
+ // We cannot rewrite out of bound operands.
+ // Moreover, rewritable sources are at odd positions.
+ if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands())
+ return false;
+
+ MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
+ MO.setReg(NewReg);
+ MO.setSubReg(NewSubReg);
+ return true;
+ }
+};
+
+} // end anonymous namespace
+
+/// Get the appropriated Rewriter for \p MI.
+/// \return A pointer to a dynamically allocated Rewriter or nullptr if no
+/// rewriter works for \p MI.
+static Rewriter *getCopyRewriter(MachineInstr &MI, const TargetInstrInfo &TII) {
+ // Handle uncoalescable copy-like instructions.
+ if (MI.isBitcast() || MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
+ MI.isExtractSubregLike())
+ return new UncoalescableRewriter(MI);
+
+ switch (MI.getOpcode()) {
+ default:
+ return nullptr;
+ case TargetOpcode::COPY:
+ return new CopyRewriter(MI);
+ case TargetOpcode::INSERT_SUBREG:
+ return new InsertSubregRewriter(MI);
+ case TargetOpcode::EXTRACT_SUBREG:
+ return new ExtractSubregRewriter(MI, TII);
+ case TargetOpcode::REG_SEQUENCE:
+ return new RegSequenceRewriter(MI);
+ }
+}
+
+/// Given a \p Def.Reg and Def.SubReg pair, use \p RewriteMap to find
+/// the new source to use for rewrite. If \p HandleMultipleSources is true and
+/// multiple sources for a given \p Def are found along the way, we found a
+/// PHI instructions that needs to be rewritten.
+/// TODO: HandleMultipleSources should be removed once we test PHI handling
+/// with coalescable copies.
+static RegSubRegPair
+getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
+ RegSubRegPair Def,
+ const PeepholeOptimizer::RewriteMapTy &RewriteMap,
+ bool HandleMultipleSources = true) {
+ RegSubRegPair LookupSrc(Def.Reg, Def.SubReg);
+ while (true) {
+ ValueTrackerResult Res = RewriteMap.lookup(LookupSrc);
+ // If there are no entries on the map, LookupSrc is the new source.
+ if (!Res.isValid())
+ return LookupSrc;
+
+ // There's only one source for this definition, keep searching...
+ unsigned NumSrcs = Res.getNumSources();
+ if (NumSrcs == 1) {
+ LookupSrc.Reg = Res.getSrcReg(0);
+ LookupSrc.SubReg = Res.getSrcSubReg(0);
+ continue;
+ }
+
+ // TODO: Remove once multiple srcs w/ coalescable copies are supported.
+ if (!HandleMultipleSources)
+ break;
+
+ // Multiple sources, recurse into each source to find a new source
+ // for it. Then, rewrite the PHI accordingly to its new edges.
+ SmallVector<RegSubRegPair, 4> NewPHISrcs;
+ for (unsigned i = 0; i < NumSrcs; ++i) {
+ RegSubRegPair PHISrc(Res.getSrcReg(i), Res.getSrcSubReg(i));
+ NewPHISrcs.push_back(
+ getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources));
+ }
+
+ // Build the new PHI node and return its def register as the new source.
+ MachineInstr &OrigPHI = const_cast<MachineInstr &>(*Res.getInst());
+ MachineInstr &NewPHI = insertPHI(*MRI, *TII, NewPHISrcs, OrigPHI);
+ LLVM_DEBUG(dbgs() << "-- getNewSource\n");
+ LLVM_DEBUG(dbgs() << " Replacing: " << OrigPHI);
+ LLVM_DEBUG(dbgs() << " With: " << NewPHI);
+ const MachineOperand &MODef = NewPHI.getOperand(0);
+ return RegSubRegPair(MODef.getReg(), MODef.getSubReg());
+ }
+
+ return RegSubRegPair(0, 0);
+}
+
+/// Optimize generic copy instructions to avoid cross register bank copy.
+/// The optimization looks through a chain of copies and tries to find a source
+/// that has a compatible register class.
+/// Two register classes are considered to be compatible if they share the same
+/// register bank.
+/// New copies issued by this optimization are register allocator
+/// friendly. This optimization does not remove any copy as it may
+/// overconstrain the register allocator, but replaces some operands
+/// when possible.
+/// \pre isCoalescableCopy(*MI) is true.
+/// \return True, when \p MI has been rewritten. False otherwise.
+bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr &MI) {
+ assert(isCoalescableCopy(MI) && "Invalid argument");
+ assert(MI.getDesc().getNumDefs() == 1 &&
+ "Coalescer can understand multiple defs?!");
+ const MachineOperand &MODef = MI.getOperand(0);
+ // Do not rewrite physical definitions.
+ if (Register::isPhysicalRegister(MODef.getReg()))
+ return false;
+
+ bool Changed = false;
+ // Get the right rewriter for the current copy.
+ std::unique_ptr<Rewriter> CpyRewriter(getCopyRewriter(MI, *TII));
+ // If none exists, bail out.
+ if (!CpyRewriter)
+ return false;
+ // Rewrite each rewritable source.
+ RegSubRegPair Src;
+ RegSubRegPair TrackPair;
+ while (CpyRewriter->getNextRewritableSource(Src, TrackPair)) {
+ // Keep track of PHI nodes and its incoming edges when looking for sources.
+ RewriteMapTy RewriteMap;
+ // Try to find a more suitable source. If we failed to do so, or get the
+ // actual source, move to the next source.
+ if (!findNextSource(TrackPair, RewriteMap))
+ continue;
+
+ // Get the new source to rewrite. TODO: Only enable handling of multiple
+ // sources (PHIs) once we have a motivating example and testcases for it.
+ RegSubRegPair NewSrc = getNewSource(MRI, TII, TrackPair, RewriteMap,
+ /*HandleMultipleSources=*/false);
+ if (Src.Reg == NewSrc.Reg || NewSrc.Reg == 0)
+ continue;
+
+ // Rewrite source.
+ if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) {
+ // We may have extended the live-range of NewSrc, account for that.
+ MRI->clearKillFlags(NewSrc.Reg);
+ Changed = true;
+ }
+ }
+ // TODO: We could have a clean-up method to tidy the instruction.
+ // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0
+ // => v0 = COPY v1
+ // Currently we haven't seen motivating example for that and we
+ // want to avoid untested code.
+ NumRewrittenCopies += Changed;
+ return Changed;
+}
+
+/// Rewrite the source found through \p Def, by using the \p RewriteMap
+/// and create a new COPY instruction. More info about RewriteMap in
+/// PeepholeOptimizer::findNextSource. Right now this is only used to handle
+/// Uncoalescable copies, since they are copy like instructions that aren't
+/// recognized by the register allocator.
+MachineInstr &
+PeepholeOptimizer::rewriteSource(MachineInstr &CopyLike,
+ RegSubRegPair Def, RewriteMapTy &RewriteMap) {
+ assert(!Register::isPhysicalRegister(Def.Reg) &&
+ "We do not rewrite physical registers");
+
+ // Find the new source to use in the COPY rewrite.
+ RegSubRegPair NewSrc = getNewSource(MRI, TII, Def, RewriteMap);
+
+ // Insert the COPY.
+ const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg);
+ Register NewVReg = MRI->createVirtualRegister(DefRC);
+
+ MachineInstr *NewCopy =
+ BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(),
+ TII->get(TargetOpcode::COPY), NewVReg)
+ .addReg(NewSrc.Reg, 0, NewSrc.SubReg);
+
+ if (Def.SubReg) {
+ NewCopy->getOperand(0).setSubReg(Def.SubReg);
+ NewCopy->getOperand(0).setIsUndef();
+ }
+
+ LLVM_DEBUG(dbgs() << "-- RewriteSource\n");
+ LLVM_DEBUG(dbgs() << " Replacing: " << CopyLike);
+ LLVM_DEBUG(dbgs() << " With: " << *NewCopy);
+ MRI->replaceRegWith(Def.Reg, NewVReg);
+ MRI->clearKillFlags(NewVReg);
+
+ // We extended the lifetime of NewSrc.Reg, clear the kill flags to
+ // account for that.
+ MRI->clearKillFlags(NewSrc.Reg);
+
+ return *NewCopy;
+}
+
+/// Optimize copy-like instructions to create
+/// register coalescer friendly instruction.
+/// The optimization tries to kill-off the \p MI by looking
+/// through a chain of copies to find a source that has a compatible
+/// register class.
+/// If such a source is found, it replace \p MI by a generic COPY
+/// operation.
+/// \pre isUncoalescableCopy(*MI) is true.
+/// \return True, when \p MI has been optimized. In that case, \p MI has
+/// been removed from its parent.
+/// All COPY instructions created, are inserted in \p LocalMIs.
+bool PeepholeOptimizer::optimizeUncoalescableCopy(
+ MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
+ assert(isUncoalescableCopy(MI) && "Invalid argument");
+ UncoalescableRewriter CpyRewriter(MI);
+
+ // Rewrite each rewritable source by generating new COPYs. This works
+ // differently from optimizeCoalescableCopy since it first makes sure that all
+ // definitions can be rewritten.
+ RewriteMapTy RewriteMap;
+ RegSubRegPair Src;
+ RegSubRegPair Def;
+ SmallVector<RegSubRegPair, 4> RewritePairs;
+ while (CpyRewriter.getNextRewritableSource(Src, Def)) {
+ // If a physical register is here, this is probably for a good reason.
+ // Do not rewrite that.
+ if (Register::isPhysicalRegister(Def.Reg))
+ return false;
+
+ // If we do not know how to rewrite this definition, there is no point
+ // in trying to kill this instruction.
+ if (!findNextSource(Def, RewriteMap))
+ return false;
+
+ RewritePairs.push_back(Def);
+ }
+
+ // The change is possible for all defs, do it.
+ for (const RegSubRegPair &Def : RewritePairs) {
+ // Rewrite the "copy" in a way the register coalescer understands.
+ MachineInstr &NewCopy = rewriteSource(MI, Def, RewriteMap);
+ LocalMIs.insert(&NewCopy);
+ }
+
+ // MI is now dead.
+ MI.eraseFromParent();
+ ++NumUncoalescableCopies;
+ return true;
+}
+
+/// Check whether MI is a candidate for folding into a later instruction.
+/// We only fold loads to virtual registers and the virtual register defined
+/// has a single user.
+bool PeepholeOptimizer::isLoadFoldable(
+ MachineInstr &MI, SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) {
+ if (!MI.canFoldAsLoad() || !MI.mayLoad())
+ return false;
+ const MCInstrDesc &MCID = MI.getDesc();
+ if (MCID.getNumDefs() != 1)
+ return false;
+
+ Register Reg = MI.getOperand(0).getReg();
+ // To reduce compilation time, we check MRI->hasOneNonDBGUser when inserting
+ // loads. It should be checked when processing uses of the load, since
+ // uses can be removed during peephole.
+ if (!MI.getOperand(0).getSubReg() && Register::isVirtualRegister(Reg) &&
+ MRI->hasOneNonDBGUser(Reg)) {
+ FoldAsLoadDefCandidates.insert(Reg);
+ return true;
+ }
+ return false;
+}
+
+bool PeepholeOptimizer::isMoveImmediate(
+ MachineInstr &MI, SmallSet<unsigned, 4> &ImmDefRegs,
+ DenseMap<unsigned, MachineInstr *> &ImmDefMIs) {
+ const MCInstrDesc &MCID = MI.getDesc();
+ if (!MI.isMoveImmediate())
+ return false;
+ if (MCID.getNumDefs() != 1)
+ return false;
+ Register Reg = MI.getOperand(0).getReg();
+ if (Register::isVirtualRegister(Reg)) {
+ ImmDefMIs.insert(std::make_pair(Reg, &MI));
+ ImmDefRegs.insert(Reg);
+ return true;
+ }
+
+ return false;
+}
+
+/// Try folding register operands that are defined by move immediate
+/// instructions, i.e. a trivial constant folding optimization, if
+/// and only if the def and use are in the same BB.
+bool PeepholeOptimizer::foldImmediate(MachineInstr &MI,
+ SmallSet<unsigned, 4> &ImmDefRegs,
+ DenseMap<unsigned, MachineInstr *> &ImmDefMIs) {
+ for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || MO.isDef())
+ continue;
+ // Ignore dead implicit defs.
+ if (MO.isImplicit() && MO.isDead())
+ continue;
+ Register Reg = MO.getReg();
+ if (!Register::isVirtualRegister(Reg))
+ continue;
+ if (ImmDefRegs.count(Reg) == 0)
+ continue;
+ DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg);
+ assert(II != ImmDefMIs.end() && "couldn't find immediate definition");
+ if (TII->FoldImmediate(MI, *II->second, Reg, MRI)) {
+ ++NumImmFold;
+ return true;
+ }
+ }
+ return false;
+}
+
+// FIXME: This is very simple and misses some cases which should be handled when
+// motivating examples are found.
+//
+// The copy rewriting logic should look at uses as well as defs and be able to
+// eliminate copies across blocks.
+//
+// Later copies that are subregister extracts will also not be eliminated since
+// only the first copy is considered.
+//
+// e.g.
+// %1 = COPY %0
+// %2 = COPY %0:sub1
+//
+// Should replace %2 uses with %1:sub1
+bool PeepholeOptimizer::foldRedundantCopy(MachineInstr &MI,
+ SmallSet<unsigned, 4> &CopySrcRegs,
+ DenseMap<unsigned, MachineInstr *> &CopyMIs) {
+ assert(MI.isCopy() && "expected a COPY machine instruction");
+
+ Register SrcReg = MI.getOperand(1).getReg();
+ if (!Register::isVirtualRegister(SrcReg))
+ return false;
+
+ Register DstReg = MI.getOperand(0).getReg();
+ if (!Register::isVirtualRegister(DstReg))
+ return false;
+
+ if (CopySrcRegs.insert(SrcReg).second) {
+ // First copy of this reg seen.
+ CopyMIs.insert(std::make_pair(SrcReg, &MI));
+ return false;
+ }
+
+ MachineInstr *PrevCopy = CopyMIs.find(SrcReg)->second;
+
+ unsigned SrcSubReg = MI.getOperand(1).getSubReg();
+ unsigned PrevSrcSubReg = PrevCopy->getOperand(1).getSubReg();
+
+ // Can't replace different subregister extracts.
+ if (SrcSubReg != PrevSrcSubReg)
+ return false;
+
+ Register PrevDstReg = PrevCopy->getOperand(0).getReg();
+
+ // Only replace if the copy register class is the same.
+ //
+ // TODO: If we have multiple copies to different register classes, we may want
+ // to track multiple copies of the same source register.
+ if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg))
+ return false;
+
+ MRI->replaceRegWith(DstReg, PrevDstReg);
+
+ // Lifetime of the previous copy has been extended.
+ MRI->clearKillFlags(PrevDstReg);
+ return true;
+}
+
+bool PeepholeOptimizer::isNAPhysCopy(unsigned Reg) {
+ return Register::isPhysicalRegister(Reg) && !MRI->isAllocatable(Reg);
+}
+
+bool PeepholeOptimizer::foldRedundantNAPhysCopy(
+ MachineInstr &MI, DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs) {
+ assert(MI.isCopy() && "expected a COPY machine instruction");
+
+ if (DisableNAPhysCopyOpt)
+ return false;
+
+ Register DstReg = MI.getOperand(0).getReg();
+ Register SrcReg = MI.getOperand(1).getReg();
+ if (isNAPhysCopy(SrcReg) && Register::isVirtualRegister(DstReg)) {
+ // %vreg = COPY %physreg
+ // Avoid using a datastructure which can track multiple live non-allocatable
+ // phys->virt copies since LLVM doesn't seem to do this.
+ NAPhysToVirtMIs.insert({SrcReg, &MI});
+ return false;
+ }
+
+ if (!(Register::isVirtualRegister(SrcReg) && isNAPhysCopy(DstReg)))
+ return false;
+
+ // %physreg = COPY %vreg
+ auto PrevCopy = NAPhysToVirtMIs.find(DstReg);
+ if (PrevCopy == NAPhysToVirtMIs.end()) {
+ // We can't remove the copy: there was an intervening clobber of the
+ // non-allocatable physical register after the copy to virtual.
+ LLVM_DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing "
+ << MI);
+ return false;
+ }
+
+ Register PrevDstReg = PrevCopy->second->getOperand(0).getReg();
+ if (PrevDstReg == SrcReg) {
+ // Remove the virt->phys copy: we saw the virtual register definition, and
+ // the non-allocatable physical register's state hasn't changed since then.
+ LLVM_DEBUG(dbgs() << "NAPhysCopy: erasing " << MI);
+ ++NumNAPhysCopies;
+ return true;
+ }
+
+ // Potential missed optimization opportunity: we saw a different virtual
+ // register get a copy of the non-allocatable physical register, and we only
+ // track one such copy. Avoid getting confused by this new non-allocatable
+ // physical register definition, and remove it from the tracked copies.
+ LLVM_DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << MI);
+ NAPhysToVirtMIs.erase(PrevCopy);
+ return false;
+}
+
+/// \bried Returns true if \p MO is a virtual register operand.
+static bool isVirtualRegisterOperand(MachineOperand &MO) {
+ if (!MO.isReg())
+ return false;
+ return Register::isVirtualRegister(MO.getReg());
+}
+
+bool PeepholeOptimizer::findTargetRecurrence(
+ unsigned Reg, const SmallSet<unsigned, 2> &TargetRegs,
+ RecurrenceCycle &RC) {
+ // Recurrence found if Reg is in TargetRegs.
+ if (TargetRegs.count(Reg))
+ return true;
+
+ // TODO: Curerntly, we only allow the last instruction of the recurrence
+ // cycle (the instruction that feeds the PHI instruction) to have more than
+ // one uses to guarantee that commuting operands does not tie registers
+ // with overlapping live range. Once we have actual live range info of
+ // each register, this constraint can be relaxed.
+ if (!MRI->hasOneNonDBGUse(Reg))
+ return false;
+
+ // Give up if the reccurrence chain length is longer than the limit.
+ if (RC.size() >= MaxRecurrenceChain)
+ return false;
+
+ MachineInstr &MI = *(MRI->use_instr_nodbg_begin(Reg));
+ unsigned Idx = MI.findRegisterUseOperandIdx(Reg);
+
+ // Only interested in recurrences whose instructions have only one def, which
+ // is a virtual register.
+ if (MI.getDesc().getNumDefs() != 1)
+ return false;
+
+ MachineOperand &DefOp = MI.getOperand(0);
+ if (!isVirtualRegisterOperand(DefOp))
+ return false;
+
+ // Check if def operand of MI is tied to any use operand. We are only
+ // interested in the case that all the instructions in the recurrence chain
+ // have there def operand tied with one of the use operand.
+ unsigned TiedUseIdx;
+ if (!MI.isRegTiedToUseOperand(0, &TiedUseIdx))
+ return false;
+
+ if (Idx == TiedUseIdx) {
+ RC.push_back(RecurrenceInstr(&MI));
+ return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
+ } else {
+ // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx.
+ unsigned CommIdx = TargetInstrInfo::CommuteAnyOperandIndex;
+ if (TII->findCommutedOpIndices(MI, Idx, CommIdx) && CommIdx == TiedUseIdx) {
+ RC.push_back(RecurrenceInstr(&MI, Idx, CommIdx));
+ return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
+ }
+ }
+
+ return false;
+}
+
+/// Phi instructions will eventually be lowered to copy instructions.
+/// If phi is in a loop header, a recurrence may formulated around the source
+/// and destination of the phi. For such case commuting operands of the
+/// instructions in the recurrence may enable coalescing of the copy instruction
+/// generated from the phi. For example, if there is a recurrence of
+///
+/// LoopHeader:
+/// %1 = phi(%0, %100)
+/// LoopLatch:
+/// %0<def, tied1> = ADD %2<def, tied0>, %1
+///
+/// , the fact that %0 and %2 are in the same tied operands set makes
+/// the coalescing of copy instruction generated from the phi in
+/// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and
+/// %2 have overlapping live range. This introduces additional move
+/// instruction to the final assembly. However, if we commute %2 and
+/// %1 of ADD instruction, the redundant move instruction can be
+/// avoided.
+bool PeepholeOptimizer::optimizeRecurrence(MachineInstr &PHI) {
+ SmallSet<unsigned, 2> TargetRegs;
+ for (unsigned Idx = 1; Idx < PHI.getNumOperands(); Idx += 2) {
+ MachineOperand &MO = PHI.getOperand(Idx);
+ assert(isVirtualRegisterOperand(MO) && "Invalid PHI instruction");
+ TargetRegs.insert(MO.getReg());
+ }
+
+ bool Changed = false;
+ RecurrenceCycle RC;
+ if (findTargetRecurrence(PHI.getOperand(0).getReg(), TargetRegs, RC)) {
+ // Commutes operands of instructions in RC if necessary so that the copy to
+ // be generated from PHI can be coalesced.
+ LLVM_DEBUG(dbgs() << "Optimize recurrence chain from " << PHI);
+ for (auto &RI : RC) {
+ LLVM_DEBUG(dbgs() << "\tInst: " << *(RI.getMI()));
+ auto CP = RI.getCommutePair();
+ if (CP) {
+ Changed = true;
+ TII->commuteInstruction(*(RI.getMI()), false, (*CP).first,
+ (*CP).second);
+ LLVM_DEBUG(dbgs() << "\t\tCommuted: " << *(RI.getMI()));
+ }
+ }
+ }
+
+ return Changed;
+}
+
+bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
+ if (skipFunction(MF.getFunction()))
+ return false;
+
+ LLVM_DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
+ LLVM_DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n');
+
+ if (DisablePeephole)
+ return false;
+
+ TII = MF.getSubtarget().getInstrInfo();
+ TRI = MF.getSubtarget().getRegisterInfo();
+ MRI = &MF.getRegInfo();
+ DT = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr;
+ MLI = &getAnalysis<MachineLoopInfo>();
+
+ bool Changed = false;
+
+ for (MachineBasicBlock &MBB : MF) {
+ bool SeenMoveImm = false;
+
+ // During this forward scan, at some point it needs to answer the question
+ // "given a pointer to an MI in the current BB, is it located before or
+ // after the current instruction".
+ // To perform this, the following set keeps track of the MIs already seen
+ // during the scan, if a MI is not in the set, it is assumed to be located
+ // after. Newly created MIs have to be inserted in the set as well.
+ SmallPtrSet<MachineInstr*, 16> LocalMIs;
+ SmallSet<unsigned, 4> ImmDefRegs;
+ DenseMap<unsigned, MachineInstr*> ImmDefMIs;
+ SmallSet<unsigned, 16> FoldAsLoadDefCandidates;
+
+ // Track when a non-allocatable physical register is copied to a virtual
+ // register so that useless moves can be removed.
+ //
+ // %physreg is the map index; MI is the last valid `%vreg = COPY %physreg`
+ // without any intervening re-definition of %physreg.
+ DenseMap<unsigned, MachineInstr *> NAPhysToVirtMIs;
+
+ // Set of virtual registers that are copied from.
+ SmallSet<unsigned, 4> CopySrcRegs;
+ DenseMap<unsigned, MachineInstr *> CopySrcMIs;
+
+ bool IsLoopHeader = MLI->isLoopHeader(&MBB);
+
+ for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end();
+ MII != MIE; ) {
+ MachineInstr *MI = &*MII;
+ // We may be erasing MI below, increment MII now.
+ ++MII;
+ LocalMIs.insert(MI);
+
+ // Skip debug instructions. They should not affect this peephole optimization.
+ if (MI->isDebugInstr())
+ continue;
+
+ if (MI->isPosition())
+ continue;
+
+ if (IsLoopHeader && MI->isPHI()) {
+ if (optimizeRecurrence(*MI)) {
+ Changed = true;
+ continue;
+ }
+ }
+
+ if (!MI->isCopy()) {
+ for (const MachineOperand &MO : MI->operands()) {
+ // Visit all operands: definitions can be implicit or explicit.
+ if (MO.isReg()) {
+ Register Reg = MO.getReg();
+ if (MO.isDef() && isNAPhysCopy(Reg)) {
+ const auto &Def = NAPhysToVirtMIs.find(Reg);
+ if (Def != NAPhysToVirtMIs.end()) {
+ // A new definition of the non-allocatable physical register
+ // invalidates previous copies.
+ LLVM_DEBUG(dbgs()
+ << "NAPhysCopy: invalidating because of " << *MI);
+ NAPhysToVirtMIs.erase(Def);
+ }
+ }
+ } else if (MO.isRegMask()) {
+ const uint32_t *RegMask = MO.getRegMask();
+ for (auto &RegMI : NAPhysToVirtMIs) {
+ unsigned Def = RegMI.first;
+ if (MachineOperand::clobbersPhysReg(RegMask, Def)) {
+ LLVM_DEBUG(dbgs()
+ << "NAPhysCopy: invalidating because of " << *MI);
+ NAPhysToVirtMIs.erase(Def);
+ }
+ }
+ }
+ }
+ }
+
+ if (MI->isImplicitDef() || MI->isKill())
+ continue;
+
+ if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) {
+ // Blow away all non-allocatable physical registers knowledge since we
+ // don't know what's correct anymore.
+ //
+ // FIXME: handle explicit asm clobbers.
+ LLVM_DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to "
+ << *MI);
+ NAPhysToVirtMIs.clear();
+ }
+
+ if ((isUncoalescableCopy(*MI) &&
+ optimizeUncoalescableCopy(*MI, LocalMIs)) ||
+ (MI->isCompare() && optimizeCmpInstr(*MI)) ||
+ (MI->isSelect() && optimizeSelect(*MI, LocalMIs))) {
+ // MI is deleted.
+ LocalMIs.erase(MI);
+ Changed = true;
+ continue;
+ }
+
+ if (MI->isConditionalBranch() && optimizeCondBranch(*MI)) {
+ Changed = true;
+ continue;
+ }
+
+ if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(*MI)) {
+ // MI is just rewritten.
+ Changed = true;
+ continue;
+ }
+
+ if (MI->isCopy() &&
+ (foldRedundantCopy(*MI, CopySrcRegs, CopySrcMIs) ||
+ foldRedundantNAPhysCopy(*MI, NAPhysToVirtMIs))) {
+ LocalMIs.erase(MI);
+ MI->eraseFromParent();
+ Changed = true;
+ continue;
+ }
+
+ if (isMoveImmediate(*MI, ImmDefRegs, ImmDefMIs)) {
+ SeenMoveImm = true;
+ } else {
+ Changed |= optimizeExtInstr(*MI, MBB, LocalMIs);
+ // optimizeExtInstr might have created new instructions after MI
+ // and before the already incremented MII. Adjust MII so that the
+ // next iteration sees the new instructions.
+ MII = MI;
+ ++MII;
+ if (SeenMoveImm)
+ Changed |= foldImmediate(*MI, ImmDefRegs, ImmDefMIs);
+ }
+
+ // Check whether MI is a load candidate for folding into a later
+ // instruction. If MI is not a candidate, check whether we can fold an
+ // earlier load into MI.
+ if (!isLoadFoldable(*MI, FoldAsLoadDefCandidates) &&
+ !FoldAsLoadDefCandidates.empty()) {
+
+ // We visit each operand even after successfully folding a previous
+ // one. This allows us to fold multiple loads into a single
+ // instruction. We do assume that optimizeLoadInstr doesn't insert
+ // foldable uses earlier in the argument list. Since we don't restart
+ // iteration, we'd miss such cases.
+ const MCInstrDesc &MIDesc = MI->getDesc();
+ for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands();
+ ++i) {
+ const MachineOperand &MOp = MI->getOperand(i);
+ if (!MOp.isReg())
+ continue;
+ unsigned FoldAsLoadDefReg = MOp.getReg();
+ if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) {
+ // We need to fold load after optimizeCmpInstr, since
+ // optimizeCmpInstr can enable folding by converting SUB to CMP.
+ // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
+ // we need it for markUsesInDebugValueAsUndef().
+ unsigned FoldedReg = FoldAsLoadDefReg;
+ MachineInstr *DefMI = nullptr;
+ if (MachineInstr *FoldMI =
+ TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) {
+ // Update LocalMIs since we replaced MI with FoldMI and deleted
+ // DefMI.
+ LLVM_DEBUG(dbgs() << "Replacing: " << *MI);
+ LLVM_DEBUG(dbgs() << " With: " << *FoldMI);
+ LocalMIs.erase(MI);
+ LocalMIs.erase(DefMI);
+ LocalMIs.insert(FoldMI);
+ if (MI->isCall())
+ MI->getMF()->moveCallSiteInfo(MI, FoldMI);
+ MI->eraseFromParent();
+ DefMI->eraseFromParent();
+ MRI->markUsesInDebugValueAsUndef(FoldedReg);
+ FoldAsLoadDefCandidates.erase(FoldedReg);
+ ++NumLoadFold;
+
+ // MI is replaced with FoldMI so we can continue trying to fold
+ Changed = true;
+ MI = FoldMI;
+ }
+ }
+ }
+ }
+
+ // If we run into an instruction we can't fold across, discard
+ // the load candidates. Note: We might be able to fold *into* this
+ // instruction, so this needs to be after the folding logic.
+ if (MI->isLoadFoldBarrier()) {
+ LLVM_DEBUG(dbgs() << "Encountered load fold barrier on " << *MI);
+ FoldAsLoadDefCandidates.clear();
+ }
+ }
+ }
+
+ return Changed;
+}
+
+ValueTrackerResult ValueTracker::getNextSourceFromCopy() {
+ assert(Def->isCopy() && "Invalid definition");
+ // Copy instruction are supposed to be: Def = Src.
+ // If someone breaks this assumption, bad things will happen everywhere.
+ // There may be implicit uses preventing the copy to be moved across
+ // some target specific register definitions
+ assert(Def->getNumOperands() - Def->getNumImplicitOperands() == 2 &&
+ "Invalid number of operands");
+ assert(!Def->hasImplicitDef() && "Only implicit uses are allowed");
+
+ if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
+ // If we look for a different subreg, it means we want a subreg of src.
+ // Bails as we do not support composing subregs yet.
+ return ValueTrackerResult();
+ // Otherwise, we want the whole source.
+ const MachineOperand &Src = Def->getOperand(1);
+ if (Src.isUndef())
+ return ValueTrackerResult();
+ return ValueTrackerResult(Src.getReg(), Src.getSubReg());
+}
+
+ValueTrackerResult ValueTracker::getNextSourceFromBitcast() {
+ assert(Def->isBitcast() && "Invalid definition");
+
+ // Bail if there are effects that a plain copy will not expose.
+ if (Def->mayRaiseFPException() || Def->hasUnmodeledSideEffects())
+ return ValueTrackerResult();
+
+ // Bitcasts with more than one def are not supported.
+ if (Def->getDesc().getNumDefs() != 1)
+ return ValueTrackerResult();
+ const MachineOperand DefOp = Def->getOperand(DefIdx);
+ if (DefOp.getSubReg() != DefSubReg)
+ // If we look for a different subreg, it means we want a subreg of the src.
+ // Bails as we do not support composing subregs yet.
+ return ValueTrackerResult();
+
+ unsigned SrcIdx = Def->getNumOperands();
+ for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx;
+ ++OpIdx) {
+ const MachineOperand &MO = Def->getOperand(OpIdx);
+ if (!MO.isReg() || !MO.getReg())
+ continue;
+ // Ignore dead implicit defs.
+ if (MO.isImplicit() && MO.isDead())
+ continue;
+ assert(!MO.isDef() && "We should have skipped all the definitions by now");
+ if (SrcIdx != EndOpIdx)
+ // Multiple sources?
+ return ValueTrackerResult();
+ SrcIdx = OpIdx;
+ }
+
+ // In some rare case, Def has no input, SrcIdx is out of bound,
+ // getOperand(SrcIdx) will fail below.
+ if (SrcIdx >= Def->getNumOperands())
+ return ValueTrackerResult();
+
+ // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY
+ // will break the assumed guarantees for the upper bits.
+ for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(DefOp.getReg())) {
+ if (UseMI.isSubregToReg())
+ return ValueTrackerResult();
+ }
+
+ const MachineOperand &Src = Def->getOperand(SrcIdx);
+ if (Src.isUndef())
+ return ValueTrackerResult();
+ return ValueTrackerResult(Src.getReg(), Src.getSubReg());
+}
+
+ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() {
+ assert((Def->isRegSequence() || Def->isRegSequenceLike()) &&
+ "Invalid definition");
+
+ if (Def->getOperand(DefIdx).getSubReg())
+ // If we are composing subregs, bail out.
+ // The case we are checking is Def.<subreg> = REG_SEQUENCE.
+ // This should almost never happen as the SSA property is tracked at
+ // the register level (as opposed to the subreg level).
+ // I.e.,
+ // Def.sub0 =
+ // Def.sub1 =
+ // is a valid SSA representation for Def.sub0 and Def.sub1, but not for
+ // Def. Thus, it must not be generated.
+ // However, some code could theoretically generates a single
+ // Def.sub0 (i.e, not defining the other subregs) and we would
+ // have this case.
+ // If we can ascertain (or force) that this never happens, we could
+ // turn that into an assertion.
+ return ValueTrackerResult();
+
+ if (!TII)
+ // We could handle the REG_SEQUENCE here, but we do not want to
+ // duplicate the code from the generic TII.
+ return ValueTrackerResult();
+
+ SmallVector<RegSubRegPairAndIdx, 8> RegSeqInputRegs;
+ if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs))
+ return ValueTrackerResult();
+
+ // We are looking at:
+ // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
+ // Check if one of the operand defines the subreg we are interested in.
+ for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) {
+ if (RegSeqInput.SubIdx == DefSubReg)
+ return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg);
+ }
+
+ // If the subreg we are tracking is super-defined by another subreg,
+ // we could follow this value. However, this would require to compose
+ // the subreg and we do not do that for now.
+ return ValueTrackerResult();
+}
+
+ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() {
+ assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) &&
+ "Invalid definition");
+
+ if (Def->getOperand(DefIdx).getSubReg())
+ // If we are composing subreg, bail out.
+ // Same remark as getNextSourceFromRegSequence.
+ // I.e., this may be turned into an assert.
+ return ValueTrackerResult();
+
+ if (!TII)
+ // We could handle the REG_SEQUENCE here, but we do not want to
+ // duplicate the code from the generic TII.
+ return ValueTrackerResult();
+
+ RegSubRegPair BaseReg;
+ RegSubRegPairAndIdx InsertedReg;
+ if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg))
+ return ValueTrackerResult();
+
+ // We are looking at:
+ // Def = INSERT_SUBREG v0, v1, sub1
+ // There are two cases:
+ // 1. DefSubReg == sub1, get v1.
+ // 2. DefSubReg != sub1, the value may be available through v0.
+
+ // #1 Check if the inserted register matches the required sub index.
+ if (InsertedReg.SubIdx == DefSubReg) {
+ return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg);
+ }
+ // #2 Otherwise, if the sub register we are looking for is not partial
+ // defined by the inserted element, we can look through the main
+ // register (v0).
+ const MachineOperand &MODef = Def->getOperand(DefIdx);
+ // If the result register (Def) and the base register (v0) do not
+ // have the same register class or if we have to compose
+ // subregisters, bail out.
+ if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) ||
+ BaseReg.SubReg)
+ return ValueTrackerResult();
+
+ // Get the TRI and check if the inserted sub-register overlaps with the
+ // sub-register we are tracking.
+ const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
+ if (!TRI ||
+ !(TRI->getSubRegIndexLaneMask(DefSubReg) &
+ TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)).none())
+ return ValueTrackerResult();
+ // At this point, the value is available in v0 via the same subreg
+ // we used for Def.
+ return ValueTrackerResult(BaseReg.Reg, DefSubReg);
+}
+
+ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() {
+ assert((Def->isExtractSubreg() ||
+ Def->isExtractSubregLike()) && "Invalid definition");
+ // We are looking at:
+ // Def = EXTRACT_SUBREG v0, sub0
+
+ // Bail if we have to compose sub registers.
+ // Indeed, if DefSubReg != 0, we would have to compose it with sub0.
+ if (DefSubReg)
+ return ValueTrackerResult();
+
+ if (!TII)
+ // We could handle the EXTRACT_SUBREG here, but we do not want to
+ // duplicate the code from the generic TII.
+ return ValueTrackerResult();
+
+ RegSubRegPairAndIdx ExtractSubregInputReg;
+ if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg))
+ return ValueTrackerResult();
+
+ // Bail if we have to compose sub registers.
+ // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
+ if (ExtractSubregInputReg.SubReg)
+ return ValueTrackerResult();
+ // Otherwise, the value is available in the v0.sub0.
+ return ValueTrackerResult(ExtractSubregInputReg.Reg,
+ ExtractSubregInputReg.SubIdx);
+}
+
+ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() {
+ assert(Def->isSubregToReg() && "Invalid definition");
+ // We are looking at:
+ // Def = SUBREG_TO_REG Imm, v0, sub0
+
+ // Bail if we have to compose sub registers.
+ // If DefSubReg != sub0, we would have to check that all the bits
+ // we track are included in sub0 and if yes, we would have to
+ // determine the right subreg in v0.
+ if (DefSubReg != Def->getOperand(3).getImm())
+ return ValueTrackerResult();
+ // Bail if we have to compose sub registers.
+ // Likewise, if v0.subreg != 0, we would have to compose it with sub0.
+ if (Def->getOperand(2).getSubReg())
+ return ValueTrackerResult();
+
+ return ValueTrackerResult(Def->getOperand(2).getReg(),
+ Def->getOperand(3).getImm());
+}
+
+/// Explore each PHI incoming operand and return its sources.
+ValueTrackerResult ValueTracker::getNextSourceFromPHI() {
+ assert(Def->isPHI() && "Invalid definition");
+ ValueTrackerResult Res;
+
+ // If we look for a different subreg, bail as we do not support composing
+ // subregs yet.
+ if (Def->getOperand(0).getSubReg() != DefSubReg)
+ return ValueTrackerResult();
+
+ // Return all register sources for PHI instructions.
+ for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) {
+ const MachineOperand &MO = Def->getOperand(i);
+ assert(MO.isReg() && "Invalid PHI instruction");
+ // We have no code to deal with undef operands. They shouldn't happen in
+ // normal programs anyway.
+ if (MO.isUndef())
+ return ValueTrackerResult();
+ Res.addSource(MO.getReg(), MO.getSubReg());
+ }
+
+ return Res;
+}
+
+ValueTrackerResult ValueTracker::getNextSourceImpl() {
+ assert(Def && "This method needs a valid definition");
+
+ assert(((Def->getOperand(DefIdx).isDef() &&
+ (DefIdx < Def->getDesc().getNumDefs() ||
+ Def->getDesc().isVariadic())) ||
+ Def->getOperand(DefIdx).isImplicit()) &&
+ "Invalid DefIdx");
+ if (Def->isCopy())
+ return getNextSourceFromCopy();
+ if (Def->isBitcast())
+ return getNextSourceFromBitcast();
+ // All the remaining cases involve "complex" instructions.
+ // Bail if we did not ask for the advanced tracking.
+ if (DisableAdvCopyOpt)
+ return ValueTrackerResult();
+ if (Def->isRegSequence() || Def->isRegSequenceLike())
+ return getNextSourceFromRegSequence();
+ if (Def->isInsertSubreg() || Def->isInsertSubregLike())
+ return getNextSourceFromInsertSubreg();
+ if (Def->isExtractSubreg() || Def->isExtractSubregLike())
+ return getNextSourceFromExtractSubreg();
+ if (Def->isSubregToReg())
+ return getNextSourceFromSubregToReg();
+ if (Def->isPHI())
+ return getNextSourceFromPHI();
+ return ValueTrackerResult();
+}
+
+ValueTrackerResult ValueTracker::getNextSource() {
+ // If we reach a point where we cannot move up in the use-def chain,
+ // there is nothing we can get.
+ if (!Def)
+ return ValueTrackerResult();
+
+ ValueTrackerResult Res = getNextSourceImpl();
+ if (Res.isValid()) {
+ // Update definition, definition index, and subregister for the
+ // next call of getNextSource.
+ // Update the current register.
+ bool OneRegSrc = Res.getNumSources() == 1;
+ if (OneRegSrc)
+ Reg = Res.getSrcReg(0);
+ // Update the result before moving up in the use-def chain
+ // with the instruction containing the last found sources.
+ Res.setInst(Def);
+
+ // If we can still move up in the use-def chain, move to the next
+ // definition.
+ if (!Register::isPhysicalRegister(Reg) && OneRegSrc) {
+ MachineRegisterInfo::def_iterator DI = MRI.def_begin(Reg);
+ if (DI != MRI.def_end()) {
+ Def = DI->getParent();
+ DefIdx = DI.getOperandNo();
+ DefSubReg = Res.getSrcSubReg(0);
+ } else {
+ Def = nullptr;
+ }
+ return Res;
+ }
+ }
+ // If we end up here, this means we will not be able to find another source
+ // for the next iteration. Make sure any new call to getNextSource bails out
+ // early by cutting the use-def chain.
+ Def = nullptr;
+ return Res;
+}