diff options
Diffstat (limited to 'llvm/lib/CodeGen/PeepholeOptimizer.cpp')
| -rw-r--r-- | llvm/lib/CodeGen/PeepholeOptimizer.cpp | 2114 | 
1 files changed, 2114 insertions, 0 deletions
| diff --git a/llvm/lib/CodeGen/PeepholeOptimizer.cpp b/llvm/lib/CodeGen/PeepholeOptimizer.cpp new file mode 100644 index 000000000000..54f1d38ed106 --- /dev/null +++ b/llvm/lib/CodeGen/PeepholeOptimizer.cpp @@ -0,0 +1,2114 @@ +//===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Perform peephole optimizations on the machine code: +// +// - Optimize Extensions +// +//     Optimization of sign / zero extension instructions. It may be extended to +//     handle other instructions with similar properties. +// +//     On some targets, some instructions, e.g. X86 sign / zero extension, may +//     leave the source value in the lower part of the result. This optimization +//     will replace some uses of the pre-extension value with uses of the +//     sub-register of the results. +// +// - Optimize Comparisons +// +//     Optimization of comparison instructions. For instance, in this code: +// +//       sub r1, 1 +//       cmp r1, 0 +//       bz  L1 +// +//     If the "sub" instruction all ready sets (or could be modified to set) the +//     same flag that the "cmp" instruction sets and that "bz" uses, then we can +//     eliminate the "cmp" instruction. +// +//     Another instance, in this code: +// +//       sub r1, r3 | sub r1, imm +//       cmp r3, r1 or cmp r1, r3 | cmp r1, imm +//       bge L1 +// +//     If the branch instruction can use flag from "sub", then we can replace +//     "sub" with "subs" and eliminate the "cmp" instruction. +// +// - Optimize Loads: +// +//     Loads that can be folded into a later instruction. A load is foldable +//     if it loads to virtual registers and the virtual register defined has +//     a single use. +// +// - Optimize Copies and Bitcast (more generally, target specific copies): +// +//     Rewrite copies and bitcasts to avoid cross register bank copies +//     when possible. +//     E.g., Consider the following example, where capital and lower +//     letters denote different register file: +//     b = copy A <-- cross-bank copy +//     C = copy b <-- cross-bank copy +//   => +//     b = copy A <-- cross-bank copy +//     C = copy A <-- same-bank copy +// +//     E.g., for bitcast: +//     b = bitcast A <-- cross-bank copy +//     C = bitcast b <-- cross-bank copy +//   => +//     b = bitcast A <-- cross-bank copy +//     C = copy A    <-- same-bank copy +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetOpcodes.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/MC/LaneBitmask.h" +#include "llvm/MC/MCInstrDesc.h" +#include "llvm/Pass.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include <cassert> +#include <cstdint> +#include <memory> +#include <utility> + +using namespace llvm; +using RegSubRegPair = TargetInstrInfo::RegSubRegPair; +using RegSubRegPairAndIdx = TargetInstrInfo::RegSubRegPairAndIdx; + +#define DEBUG_TYPE "peephole-opt" + +// Optimize Extensions +static cl::opt<bool> +Aggressive("aggressive-ext-opt", cl::Hidden, +           cl::desc("Aggressive extension optimization")); + +static cl::opt<bool> +DisablePeephole("disable-peephole", cl::Hidden, cl::init(false), +                cl::desc("Disable the peephole optimizer")); + +/// Specifiy whether or not the value tracking looks through +/// complex instructions. When this is true, the value tracker +/// bails on everything that is not a copy or a bitcast. +static cl::opt<bool> +DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false), +                  cl::desc("Disable advanced copy optimization")); + +static cl::opt<bool> DisableNAPhysCopyOpt( +    "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false), +    cl::desc("Disable non-allocatable physical register copy optimization")); + +// Limit the number of PHI instructions to process +// in PeepholeOptimizer::getNextSource. +static cl::opt<unsigned> RewritePHILimit( +    "rewrite-phi-limit", cl::Hidden, cl::init(10), +    cl::desc("Limit the length of PHI chains to lookup")); + +// Limit the length of recurrence chain when evaluating the benefit of +// commuting operands. +static cl::opt<unsigned> MaxRecurrenceChain( +    "recurrence-chain-limit", cl::Hidden, cl::init(3), +    cl::desc("Maximum length of recurrence chain when evaluating the benefit " +             "of commuting operands")); + + +STATISTIC(NumReuse, "Number of extension results reused"); +STATISTIC(NumCmps, "Number of compares eliminated"); +STATISTIC(NumImmFold, "Number of move immediate folded"); +STATISTIC(NumLoadFold, "Number of loads folded"); +STATISTIC(NumSelects, "Number of selects optimized"); +STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized"); +STATISTIC(NumRewrittenCopies, "Number of copies rewritten"); +STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed"); + +namespace { + +  class ValueTrackerResult; +  class RecurrenceInstr; + +  class PeepholeOptimizer : public MachineFunctionPass { +    const TargetInstrInfo *TII; +    const TargetRegisterInfo *TRI; +    MachineRegisterInfo *MRI; +    MachineDominatorTree *DT;  // Machine dominator tree +    MachineLoopInfo *MLI; + +  public: +    static char ID; // Pass identification + +    PeepholeOptimizer() : MachineFunctionPass(ID) { +      initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry()); +    } + +    bool runOnMachineFunction(MachineFunction &MF) override; + +    void getAnalysisUsage(AnalysisUsage &AU) const override { +      AU.setPreservesCFG(); +      MachineFunctionPass::getAnalysisUsage(AU); +      AU.addRequired<MachineLoopInfo>(); +      AU.addPreserved<MachineLoopInfo>(); +      if (Aggressive) { +        AU.addRequired<MachineDominatorTree>(); +        AU.addPreserved<MachineDominatorTree>(); +      } +    } + +    /// Track Def -> Use info used for rewriting copies. +    using RewriteMapTy = SmallDenseMap<RegSubRegPair, ValueTrackerResult>; + +    /// Sequence of instructions that formulate recurrence cycle. +    using RecurrenceCycle = SmallVector<RecurrenceInstr, 4>; + +  private: +    bool optimizeCmpInstr(MachineInstr &MI); +    bool optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB, +                          SmallPtrSetImpl<MachineInstr*> &LocalMIs); +    bool optimizeSelect(MachineInstr &MI, +                        SmallPtrSetImpl<MachineInstr *> &LocalMIs); +    bool optimizeCondBranch(MachineInstr &MI); +    bool optimizeCoalescableCopy(MachineInstr &MI); +    bool optimizeUncoalescableCopy(MachineInstr &MI, +                                   SmallPtrSetImpl<MachineInstr *> &LocalMIs); +    bool optimizeRecurrence(MachineInstr &PHI); +    bool findNextSource(RegSubRegPair RegSubReg, RewriteMapTy &RewriteMap); +    bool isMoveImmediate(MachineInstr &MI, +                         SmallSet<unsigned, 4> &ImmDefRegs, +                         DenseMap<unsigned, MachineInstr*> &ImmDefMIs); +    bool foldImmediate(MachineInstr &MI, SmallSet<unsigned, 4> &ImmDefRegs, +                       DenseMap<unsigned, MachineInstr*> &ImmDefMIs); + +    /// Finds recurrence cycles, but only ones that formulated around +    /// a def operand and a use operand that are tied. If there is a use +    /// operand commutable with the tied use operand, find recurrence cycle +    /// along that operand as well. +    bool findTargetRecurrence(unsigned Reg, +                              const SmallSet<unsigned, 2> &TargetReg, +                              RecurrenceCycle &RC); + +    /// If copy instruction \p MI is a virtual register copy, track it in +    /// the set \p CopySrcRegs and \p CopyMIs. If this virtual register was +    /// previously seen as a copy, replace the uses of this copy with the +    /// previously seen copy's destination register. +    bool foldRedundantCopy(MachineInstr &MI, +                           SmallSet<unsigned, 4> &CopySrcRegs, +                           DenseMap<unsigned, MachineInstr *> &CopyMIs); + +    /// Is the register \p Reg a non-allocatable physical register? +    bool isNAPhysCopy(unsigned Reg); + +    /// If copy instruction \p MI is a non-allocatable virtual<->physical +    /// register copy, track it in the \p NAPhysToVirtMIs map. If this +    /// non-allocatable physical register was previously copied to a virtual +    /// registered and hasn't been clobbered, the virt->phys copy can be +    /// deleted. +    bool foldRedundantNAPhysCopy(MachineInstr &MI, +        DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs); + +    bool isLoadFoldable(MachineInstr &MI, +                        SmallSet<unsigned, 16> &FoldAsLoadDefCandidates); + +    /// Check whether \p MI is understood by the register coalescer +    /// but may require some rewriting. +    bool isCoalescableCopy(const MachineInstr &MI) { +      // SubregToRegs are not interesting, because they are already register +      // coalescer friendly. +      return MI.isCopy() || (!DisableAdvCopyOpt && +                             (MI.isRegSequence() || MI.isInsertSubreg() || +                              MI.isExtractSubreg())); +    } + +    /// Check whether \p MI is a copy like instruction that is +    /// not recognized by the register coalescer. +    bool isUncoalescableCopy(const MachineInstr &MI) { +      return MI.isBitcast() || +             (!DisableAdvCopyOpt && +              (MI.isRegSequenceLike() || MI.isInsertSubregLike() || +               MI.isExtractSubregLike())); +    } + +    MachineInstr &rewriteSource(MachineInstr &CopyLike, +                                RegSubRegPair Def, RewriteMapTy &RewriteMap); +  }; + +  /// Helper class to hold instructions that are inside recurrence cycles. +  /// The recurrence cycle is formulated around 1) a def operand and its +  /// tied use operand, or 2) a def operand and a use operand that is commutable +  /// with another use operand which is tied to the def operand. In the latter +  /// case, index of the tied use operand and the commutable use operand are +  /// maintained with CommutePair. +  class RecurrenceInstr { +  public: +    using IndexPair = std::pair<unsigned, unsigned>; + +    RecurrenceInstr(MachineInstr *MI) : MI(MI) {} +    RecurrenceInstr(MachineInstr *MI, unsigned Idx1, unsigned Idx2) +      : MI(MI), CommutePair(std::make_pair(Idx1, Idx2)) {} + +    MachineInstr *getMI() const { return MI; } +    Optional<IndexPair> getCommutePair() const { return CommutePair; } + +  private: +    MachineInstr *MI; +    Optional<IndexPair> CommutePair; +  }; + +  /// Helper class to hold a reply for ValueTracker queries. +  /// Contains the returned sources for a given search and the instructions +  /// where the sources were tracked from. +  class ValueTrackerResult { +  private: +    /// Track all sources found by one ValueTracker query. +    SmallVector<RegSubRegPair, 2> RegSrcs; + +    /// Instruction using the sources in 'RegSrcs'. +    const MachineInstr *Inst = nullptr; + +  public: +    ValueTrackerResult() = default; + +    ValueTrackerResult(unsigned Reg, unsigned SubReg) { +      addSource(Reg, SubReg); +    } + +    bool isValid() const { return getNumSources() > 0; } + +    void setInst(const MachineInstr *I) { Inst = I; } +    const MachineInstr *getInst() const { return Inst; } + +    void clear() { +      RegSrcs.clear(); +      Inst = nullptr; +    } + +    void addSource(unsigned SrcReg, unsigned SrcSubReg) { +      RegSrcs.push_back(RegSubRegPair(SrcReg, SrcSubReg)); +    } + +    void setSource(int Idx, unsigned SrcReg, unsigned SrcSubReg) { +      assert(Idx < getNumSources() && "Reg pair source out of index"); +      RegSrcs[Idx] = RegSubRegPair(SrcReg, SrcSubReg); +    } + +    int getNumSources() const { return RegSrcs.size(); } + +    RegSubRegPair getSrc(int Idx) const { +      return RegSrcs[Idx]; +    } + +    unsigned getSrcReg(int Idx) const { +      assert(Idx < getNumSources() && "Reg source out of index"); +      return RegSrcs[Idx].Reg; +    } + +    unsigned getSrcSubReg(int Idx) const { +      assert(Idx < getNumSources() && "SubReg source out of index"); +      return RegSrcs[Idx].SubReg; +    } + +    bool operator==(const ValueTrackerResult &Other) { +      if (Other.getInst() != getInst()) +        return false; + +      if (Other.getNumSources() != getNumSources()) +        return false; + +      for (int i = 0, e = Other.getNumSources(); i != e; ++i) +        if (Other.getSrcReg(i) != getSrcReg(i) || +            Other.getSrcSubReg(i) != getSrcSubReg(i)) +          return false; +      return true; +    } +  }; + +  /// Helper class to track the possible sources of a value defined by +  /// a (chain of) copy related instructions. +  /// Given a definition (instruction and definition index), this class +  /// follows the use-def chain to find successive suitable sources. +  /// The given source can be used to rewrite the definition into +  /// def = COPY src. +  /// +  /// For instance, let us consider the following snippet: +  /// v0 = +  /// v2 = INSERT_SUBREG v1, v0, sub0 +  /// def = COPY v2.sub0 +  /// +  /// Using a ValueTracker for def = COPY v2.sub0 will give the following +  /// suitable sources: +  /// v2.sub0 and v0. +  /// Then, def can be rewritten into def = COPY v0. +  class ValueTracker { +  private: +    /// The current point into the use-def chain. +    const MachineInstr *Def = nullptr; + +    /// The index of the definition in Def. +    unsigned DefIdx = 0; + +    /// The sub register index of the definition. +    unsigned DefSubReg; + +    /// The register where the value can be found. +    unsigned Reg; + +    /// MachineRegisterInfo used to perform tracking. +    const MachineRegisterInfo &MRI; + +    /// Optional TargetInstrInfo used to perform some complex tracking. +    const TargetInstrInfo *TII; + +    /// Dispatcher to the right underlying implementation of getNextSource. +    ValueTrackerResult getNextSourceImpl(); + +    /// Specialized version of getNextSource for Copy instructions. +    ValueTrackerResult getNextSourceFromCopy(); + +    /// Specialized version of getNextSource for Bitcast instructions. +    ValueTrackerResult getNextSourceFromBitcast(); + +    /// Specialized version of getNextSource for RegSequence instructions. +    ValueTrackerResult getNextSourceFromRegSequence(); + +    /// Specialized version of getNextSource for InsertSubreg instructions. +    ValueTrackerResult getNextSourceFromInsertSubreg(); + +    /// Specialized version of getNextSource for ExtractSubreg instructions. +    ValueTrackerResult getNextSourceFromExtractSubreg(); + +    /// Specialized version of getNextSource for SubregToReg instructions. +    ValueTrackerResult getNextSourceFromSubregToReg(); + +    /// Specialized version of getNextSource for PHI instructions. +    ValueTrackerResult getNextSourceFromPHI(); + +  public: +    /// Create a ValueTracker instance for the value defined by \p Reg. +    /// \p DefSubReg represents the sub register index the value tracker will +    /// track. It does not need to match the sub register index used in the +    /// definition of \p Reg. +    /// If \p Reg is a physical register, a value tracker constructed with +    /// this constructor will not find any alternative source. +    /// Indeed, when \p Reg is a physical register that constructor does not +    /// know which definition of \p Reg it should track. +    /// Use the next constructor to track a physical register. +    ValueTracker(unsigned Reg, unsigned DefSubReg, +                 const MachineRegisterInfo &MRI, +                 const TargetInstrInfo *TII = nullptr) +        : DefSubReg(DefSubReg), Reg(Reg), MRI(MRI), TII(TII) { +      if (!Register::isPhysicalRegister(Reg)) { +        Def = MRI.getVRegDef(Reg); +        DefIdx = MRI.def_begin(Reg).getOperandNo(); +      } +    } + +    /// Following the use-def chain, get the next available source +    /// for the tracked value. +    /// \return A ValueTrackerResult containing a set of registers +    /// and sub registers with tracked values. A ValueTrackerResult with +    /// an empty set of registers means no source was found. +    ValueTrackerResult getNextSource(); +  }; + +} // end anonymous namespace + +char PeepholeOptimizer::ID = 0; + +char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID; + +INITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE, +                      "Peephole Optimizations", false, false) +INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) +INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) +INITIALIZE_PASS_END(PeepholeOptimizer, DEBUG_TYPE, +                    "Peephole Optimizations", false, false) + +/// If instruction is a copy-like instruction, i.e. it reads a single register +/// and writes a single register and it does not modify the source, and if the +/// source value is preserved as a sub-register of the result, then replace all +/// reachable uses of the source with the subreg of the result. +/// +/// Do not generate an EXTRACT that is used only in a debug use, as this changes +/// the code. Since this code does not currently share EXTRACTs, just ignore all +/// debug uses. +bool PeepholeOptimizer:: +optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB, +                 SmallPtrSetImpl<MachineInstr*> &LocalMIs) { +  unsigned SrcReg, DstReg, SubIdx; +  if (!TII->isCoalescableExtInstr(MI, SrcReg, DstReg, SubIdx)) +    return false; + +  if (Register::isPhysicalRegister(DstReg) || +      Register::isPhysicalRegister(SrcReg)) +    return false; + +  if (MRI->hasOneNonDBGUse(SrcReg)) +    // No other uses. +    return false; + +  // Ensure DstReg can get a register class that actually supports +  // sub-registers. Don't change the class until we commit. +  const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); +  DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx); +  if (!DstRC) +    return false; + +  // The ext instr may be operating on a sub-register of SrcReg as well. +  // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit +  // register. +  // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of +  // SrcReg:SubIdx should be replaced. +  bool UseSrcSubIdx = +      TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr; + +  // The source has other uses. See if we can replace the other uses with use of +  // the result of the extension. +  SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs; +  for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) +    ReachedBBs.insert(UI.getParent()); + +  // Uses that are in the same BB of uses of the result of the instruction. +  SmallVector<MachineOperand*, 8> Uses; + +  // Uses that the result of the instruction can reach. +  SmallVector<MachineOperand*, 8> ExtendedUses; + +  bool ExtendLife = true; +  for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { +    MachineInstr *UseMI = UseMO.getParent(); +    if (UseMI == &MI) +      continue; + +    if (UseMI->isPHI()) { +      ExtendLife = false; +      continue; +    } + +    // Only accept uses of SrcReg:SubIdx. +    if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx) +      continue; + +    // It's an error to translate this: +    // +    //    %reg1025 = <sext> %reg1024 +    //     ... +    //    %reg1026 = SUBREG_TO_REG 0, %reg1024, 4 +    // +    // into this: +    // +    //    %reg1025 = <sext> %reg1024 +    //     ... +    //    %reg1027 = COPY %reg1025:4 +    //    %reg1026 = SUBREG_TO_REG 0, %reg1027, 4 +    // +    // The problem here is that SUBREG_TO_REG is there to assert that an +    // implicit zext occurs. It doesn't insert a zext instruction. If we allow +    // the COPY here, it will give us the value after the <sext>, not the +    // original value of %reg1024 before <sext>. +    if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG) +      continue; + +    MachineBasicBlock *UseMBB = UseMI->getParent(); +    if (UseMBB == &MBB) { +      // Local uses that come after the extension. +      if (!LocalMIs.count(UseMI)) +        Uses.push_back(&UseMO); +    } else if (ReachedBBs.count(UseMBB)) { +      // Non-local uses where the result of the extension is used. Always +      // replace these unless it's a PHI. +      Uses.push_back(&UseMO); +    } else if (Aggressive && DT->dominates(&MBB, UseMBB)) { +      // We may want to extend the live range of the extension result in order +      // to replace these uses. +      ExtendedUses.push_back(&UseMO); +    } else { +      // Both will be live out of the def MBB anyway. Don't extend live range of +      // the extension result. +      ExtendLife = false; +      break; +    } +  } + +  if (ExtendLife && !ExtendedUses.empty()) +    // Extend the liveness of the extension result. +    Uses.append(ExtendedUses.begin(), ExtendedUses.end()); + +  // Now replace all uses. +  bool Changed = false; +  if (!Uses.empty()) { +    SmallPtrSet<MachineBasicBlock*, 4> PHIBBs; + +    // Look for PHI uses of the extended result, we don't want to extend the +    // liveness of a PHI input. It breaks all kinds of assumptions down +    // stream. A PHI use is expected to be the kill of its source values. +    for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) +      if (UI.isPHI()) +        PHIBBs.insert(UI.getParent()); + +    const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); +    for (unsigned i = 0, e = Uses.size(); i != e; ++i) { +      MachineOperand *UseMO = Uses[i]; +      MachineInstr *UseMI = UseMO->getParent(); +      MachineBasicBlock *UseMBB = UseMI->getParent(); +      if (PHIBBs.count(UseMBB)) +        continue; + +      // About to add uses of DstReg, clear DstReg's kill flags. +      if (!Changed) { +        MRI->clearKillFlags(DstReg); +        MRI->constrainRegClass(DstReg, DstRC); +      } + +      Register NewVR = MRI->createVirtualRegister(RC); +      MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(), +                                   TII->get(TargetOpcode::COPY), NewVR) +        .addReg(DstReg, 0, SubIdx); +      // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set. +      if (UseSrcSubIdx) { +        Copy->getOperand(0).setSubReg(SubIdx); +        Copy->getOperand(0).setIsUndef(); +      } +      UseMO->setReg(NewVR); +      ++NumReuse; +      Changed = true; +    } +  } + +  return Changed; +} + +/// If the instruction is a compare and the previous instruction it's comparing +/// against already sets (or could be modified to set) the same flag as the +/// compare, then we can remove the comparison and use the flag from the +/// previous instruction. +bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr &MI) { +  // If this instruction is a comparison against zero and isn't comparing a +  // physical register, we can try to optimize it. +  unsigned SrcReg, SrcReg2; +  int CmpMask, CmpValue; +  if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) || +      Register::isPhysicalRegister(SrcReg) || +      (SrcReg2 != 0 && Register::isPhysicalRegister(SrcReg2))) +    return false; + +  // Attempt to optimize the comparison instruction. +  if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) { +    ++NumCmps; +    return true; +  } + +  return false; +} + +/// Optimize a select instruction. +bool PeepholeOptimizer::optimizeSelect(MachineInstr &MI, +                            SmallPtrSetImpl<MachineInstr *> &LocalMIs) { +  unsigned TrueOp = 0; +  unsigned FalseOp = 0; +  bool Optimizable = false; +  SmallVector<MachineOperand, 4> Cond; +  if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable)) +    return false; +  if (!Optimizable) +    return false; +  if (!TII->optimizeSelect(MI, LocalMIs)) +    return false; +  MI.eraseFromParent(); +  ++NumSelects; +  return true; +} + +/// Check if a simpler conditional branch can be generated. +bool PeepholeOptimizer::optimizeCondBranch(MachineInstr &MI) { +  return TII->optimizeCondBranch(MI); +} + +/// Try to find the next source that share the same register file +/// for the value defined by \p Reg and \p SubReg. +/// When true is returned, the \p RewriteMap can be used by the client to +/// retrieve all Def -> Use along the way up to the next source. Any found +/// Use that is not itself a key for another entry, is the next source to +/// use. During the search for the next source, multiple sources can be found +/// given multiple incoming sources of a PHI instruction. In this case, we +/// look in each PHI source for the next source; all found next sources must +/// share the same register file as \p Reg and \p SubReg. The client should +/// then be capable to rewrite all intermediate PHIs to get the next source. +/// \return False if no alternative sources are available. True otherwise. +bool PeepholeOptimizer::findNextSource(RegSubRegPair RegSubReg, +                                       RewriteMapTy &RewriteMap) { +  // Do not try to find a new source for a physical register. +  // So far we do not have any motivating example for doing that. +  // Thus, instead of maintaining untested code, we will revisit that if +  // that changes at some point. +  unsigned Reg = RegSubReg.Reg; +  if (Register::isPhysicalRegister(Reg)) +    return false; +  const TargetRegisterClass *DefRC = MRI->getRegClass(Reg); + +  SmallVector<RegSubRegPair, 4> SrcToLook; +  RegSubRegPair CurSrcPair = RegSubReg; +  SrcToLook.push_back(CurSrcPair); + +  unsigned PHICount = 0; +  do { +    CurSrcPair = SrcToLook.pop_back_val(); +    // As explained above, do not handle physical registers +    if (Register::isPhysicalRegister(CurSrcPair.Reg)) +      return false; + +    ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, TII); + +    // Follow the chain of copies until we find a more suitable source, a phi +    // or have to abort. +    while (true) { +      ValueTrackerResult Res = ValTracker.getNextSource(); +      // Abort at the end of a chain (without finding a suitable source). +      if (!Res.isValid()) +        return false; + +      // Insert the Def -> Use entry for the recently found source. +      ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair); +      if (CurSrcRes.isValid()) { +        assert(CurSrcRes == Res && "ValueTrackerResult found must match"); +        // An existent entry with multiple sources is a PHI cycle we must avoid. +        // Otherwise it's an entry with a valid next source we already found. +        if (CurSrcRes.getNumSources() > 1) { +          LLVM_DEBUG(dbgs() +                     << "findNextSource: found PHI cycle, aborting...\n"); +          return false; +        } +        break; +      } +      RewriteMap.insert(std::make_pair(CurSrcPair, Res)); + +      // ValueTrackerResult usually have one source unless it's the result from +      // a PHI instruction. Add the found PHI edges to be looked up further. +      unsigned NumSrcs = Res.getNumSources(); +      if (NumSrcs > 1) { +        PHICount++; +        if (PHICount >= RewritePHILimit) { +          LLVM_DEBUG(dbgs() << "findNextSource: PHI limit reached\n"); +          return false; +        } + +        for (unsigned i = 0; i < NumSrcs; ++i) +          SrcToLook.push_back(Res.getSrc(i)); +        break; +      } + +      CurSrcPair = Res.getSrc(0); +      // Do not extend the live-ranges of physical registers as they add +      // constraints to the register allocator. Moreover, if we want to extend +      // the live-range of a physical register, unlike SSA virtual register, +      // we will have to check that they aren't redefine before the related use. +      if (Register::isPhysicalRegister(CurSrcPair.Reg)) +        return false; + +      // Keep following the chain if the value isn't any better yet. +      const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg); +      if (!TRI->shouldRewriteCopySrc(DefRC, RegSubReg.SubReg, SrcRC, +                                     CurSrcPair.SubReg)) +        continue; + +      // We currently cannot deal with subreg operands on PHI instructions +      // (see insertPHI()). +      if (PHICount > 0 && CurSrcPair.SubReg != 0) +        continue; + +      // We found a suitable source, and are done with this chain. +      break; +    } +  } while (!SrcToLook.empty()); + +  // If we did not find a more suitable source, there is nothing to optimize. +  return CurSrcPair.Reg != Reg; +} + +/// Insert a PHI instruction with incoming edges \p SrcRegs that are +/// guaranteed to have the same register class. This is necessary whenever we +/// successfully traverse a PHI instruction and find suitable sources coming +/// from its edges. By inserting a new PHI, we provide a rewritten PHI def +/// suitable to be used in a new COPY instruction. +static MachineInstr & +insertPHI(MachineRegisterInfo &MRI, const TargetInstrInfo &TII, +          const SmallVectorImpl<RegSubRegPair> &SrcRegs, +          MachineInstr &OrigPHI) { +  assert(!SrcRegs.empty() && "No sources to create a PHI instruction?"); + +  const TargetRegisterClass *NewRC = MRI.getRegClass(SrcRegs[0].Reg); +  // NewRC is only correct if no subregisters are involved. findNextSource() +  // should have rejected those cases already. +  assert(SrcRegs[0].SubReg == 0 && "should not have subreg operand"); +  Register NewVR = MRI.createVirtualRegister(NewRC); +  MachineBasicBlock *MBB = OrigPHI.getParent(); +  MachineInstrBuilder MIB = BuildMI(*MBB, &OrigPHI, OrigPHI.getDebugLoc(), +                                    TII.get(TargetOpcode::PHI), NewVR); + +  unsigned MBBOpIdx = 2; +  for (const RegSubRegPair &RegPair : SrcRegs) { +    MIB.addReg(RegPair.Reg, 0, RegPair.SubReg); +    MIB.addMBB(OrigPHI.getOperand(MBBOpIdx).getMBB()); +    // Since we're extended the lifetime of RegPair.Reg, clear the +    // kill flags to account for that and make RegPair.Reg reaches +    // the new PHI. +    MRI.clearKillFlags(RegPair.Reg); +    MBBOpIdx += 2; +  } + +  return *MIB; +} + +namespace { + +/// Interface to query instructions amenable to copy rewriting. +class Rewriter { +protected: +  MachineInstr &CopyLike; +  unsigned CurrentSrcIdx = 0;   ///< The index of the source being rewritten. +public: +  Rewriter(MachineInstr &CopyLike) : CopyLike(CopyLike) {} +  virtual ~Rewriter() {} + +  /// Get the next rewritable source (SrcReg, SrcSubReg) and +  /// the related value that it affects (DstReg, DstSubReg). +  /// A source is considered rewritable if its register class and the +  /// register class of the related DstReg may not be register +  /// coalescer friendly. In other words, given a copy-like instruction +  /// not all the arguments may be returned at rewritable source, since +  /// some arguments are none to be register coalescer friendly. +  /// +  /// Each call of this method moves the current source to the next +  /// rewritable source. +  /// For instance, let CopyLike be the instruction to rewrite. +  /// CopyLike has one definition and one source: +  /// dst.dstSubIdx = CopyLike src.srcSubIdx. +  /// +  /// The first call will give the first rewritable source, i.e., +  /// the only source this instruction has: +  /// (SrcReg, SrcSubReg) = (src, srcSubIdx). +  /// This source defines the whole definition, i.e., +  /// (DstReg, DstSubReg) = (dst, dstSubIdx). +  /// +  /// The second and subsequent calls will return false, as there is only one +  /// rewritable source. +  /// +  /// \return True if a rewritable source has been found, false otherwise. +  /// The output arguments are valid if and only if true is returned. +  virtual bool getNextRewritableSource(RegSubRegPair &Src, +                                       RegSubRegPair &Dst) = 0; + +  /// Rewrite the current source with \p NewReg and \p NewSubReg if possible. +  /// \return True if the rewriting was possible, false otherwise. +  virtual bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) = 0; +}; + +/// Rewriter for COPY instructions. +class CopyRewriter : public Rewriter { +public: +  CopyRewriter(MachineInstr &MI) : Rewriter(MI) { +    assert(MI.isCopy() && "Expected copy instruction"); +  } +  virtual ~CopyRewriter() = default; + +  bool getNextRewritableSource(RegSubRegPair &Src, +                               RegSubRegPair &Dst) override { +    // CurrentSrcIdx > 0 means this function has already been called. +    if (CurrentSrcIdx > 0) +      return false; +    // This is the first call to getNextRewritableSource. +    // Move the CurrentSrcIdx to remember that we made that call. +    CurrentSrcIdx = 1; +    // The rewritable source is the argument. +    const MachineOperand &MOSrc = CopyLike.getOperand(1); +    Src = RegSubRegPair(MOSrc.getReg(), MOSrc.getSubReg()); +    // What we track are the alternative sources of the definition. +    const MachineOperand &MODef = CopyLike.getOperand(0); +    Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); +    return true; +  } + +  bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { +    if (CurrentSrcIdx != 1) +      return false; +    MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx); +    MOSrc.setReg(NewReg); +    MOSrc.setSubReg(NewSubReg); +    return true; +  } +}; + +/// Helper class to rewrite uncoalescable copy like instructions +/// into new COPY (coalescable friendly) instructions. +class UncoalescableRewriter : public Rewriter { +  unsigned NumDefs;  ///< Number of defs in the bitcast. + +public: +  UncoalescableRewriter(MachineInstr &MI) : Rewriter(MI) { +    NumDefs = MI.getDesc().getNumDefs(); +  } + +  /// \see See Rewriter::getNextRewritableSource() +  /// All such sources need to be considered rewritable in order to +  /// rewrite a uncoalescable copy-like instruction. This method return +  /// each definition that must be checked if rewritable. +  bool getNextRewritableSource(RegSubRegPair &Src, +                               RegSubRegPair &Dst) override { +    // Find the next non-dead definition and continue from there. +    if (CurrentSrcIdx == NumDefs) +      return false; + +    while (CopyLike.getOperand(CurrentSrcIdx).isDead()) { +      ++CurrentSrcIdx; +      if (CurrentSrcIdx == NumDefs) +        return false; +    } + +    // What we track are the alternative sources of the definition. +    Src = RegSubRegPair(0, 0); +    const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx); +    Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); + +    CurrentSrcIdx++; +    return true; +  } + +  bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { +    return false; +  } +}; + +/// Specialized rewriter for INSERT_SUBREG instruction. +class InsertSubregRewriter : public Rewriter { +public: +  InsertSubregRewriter(MachineInstr &MI) : Rewriter(MI) { +    assert(MI.isInsertSubreg() && "Invalid instruction"); +  } + +  /// \see See Rewriter::getNextRewritableSource() +  /// Here CopyLike has the following form: +  /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx. +  /// Src1 has the same register class has dst, hence, there is +  /// nothing to rewrite. +  /// Src2.src2SubIdx, may not be register coalescer friendly. +  /// Therefore, the first call to this method returns: +  /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). +  /// (DstReg, DstSubReg) = (dst, subIdx). +  /// +  /// Subsequence calls will return false. +  bool getNextRewritableSource(RegSubRegPair &Src, +                               RegSubRegPair &Dst) override { +    // If we already get the only source we can rewrite, return false. +    if (CurrentSrcIdx == 2) +      return false; +    // We are looking at v2 = INSERT_SUBREG v0, v1, sub0. +    CurrentSrcIdx = 2; +    const MachineOperand &MOInsertedReg = CopyLike.getOperand(2); +    Src = RegSubRegPair(MOInsertedReg.getReg(), MOInsertedReg.getSubReg()); +    const MachineOperand &MODef = CopyLike.getOperand(0); + +    // We want to track something that is compatible with the +    // partial definition. +    if (MODef.getSubReg()) +      // Bail if we have to compose sub-register indices. +      return false; +    Dst = RegSubRegPair(MODef.getReg(), +                        (unsigned)CopyLike.getOperand(3).getImm()); +    return true; +  } + +  bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { +    if (CurrentSrcIdx != 2) +      return false; +    // We are rewriting the inserted reg. +    MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); +    MO.setReg(NewReg); +    MO.setSubReg(NewSubReg); +    return true; +  } +}; + +/// Specialized rewriter for EXTRACT_SUBREG instruction. +class ExtractSubregRewriter : public Rewriter { +  const TargetInstrInfo &TII; + +public: +  ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII) +      : Rewriter(MI), TII(TII) { +    assert(MI.isExtractSubreg() && "Invalid instruction"); +  } + +  /// \see Rewriter::getNextRewritableSource() +  /// Here CopyLike has the following form: +  /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx. +  /// There is only one rewritable source: Src.subIdx, +  /// which defines dst.dstSubIdx. +  bool getNextRewritableSource(RegSubRegPair &Src, +                               RegSubRegPair &Dst) override { +    // If we already get the only source we can rewrite, return false. +    if (CurrentSrcIdx == 1) +      return false; +    // We are looking at v1 = EXTRACT_SUBREG v0, sub0. +    CurrentSrcIdx = 1; +    const MachineOperand &MOExtractedReg = CopyLike.getOperand(1); +    // If we have to compose sub-register indices, bail out. +    if (MOExtractedReg.getSubReg()) +      return false; + +    Src = RegSubRegPair(MOExtractedReg.getReg(), +                        CopyLike.getOperand(2).getImm()); + +    // We want to track something that is compatible with the definition. +    const MachineOperand &MODef = CopyLike.getOperand(0); +    Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); +    return true; +  } + +  bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { +    // The only source we can rewrite is the input register. +    if (CurrentSrcIdx != 1) +      return false; + +    CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg); + +    // If we find a source that does not require to extract something, +    // rewrite the operation with a copy. +    if (!NewSubReg) { +      // Move the current index to an invalid position. +      // We do not want another call to this method to be able +      // to do any change. +      CurrentSrcIdx = -1; +      // Rewrite the operation as a COPY. +      // Get rid of the sub-register index. +      CopyLike.RemoveOperand(2); +      // Morph the operation into a COPY. +      CopyLike.setDesc(TII.get(TargetOpcode::COPY)); +      return true; +    } +    CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg); +    return true; +  } +}; + +/// Specialized rewriter for REG_SEQUENCE instruction. +class RegSequenceRewriter : public Rewriter { +public: +  RegSequenceRewriter(MachineInstr &MI) : Rewriter(MI) { +    assert(MI.isRegSequence() && "Invalid instruction"); +  } + +  /// \see Rewriter::getNextRewritableSource() +  /// Here CopyLike has the following form: +  /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2. +  /// Each call will return a different source, walking all the available +  /// source. +  /// +  /// The first call returns: +  /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx). +  /// (DstReg, DstSubReg) = (dst, subIdx1). +  /// +  /// The second call returns: +  /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). +  /// (DstReg, DstSubReg) = (dst, subIdx2). +  /// +  /// And so on, until all the sources have been traversed, then +  /// it returns false. +  bool getNextRewritableSource(RegSubRegPair &Src, +                               RegSubRegPair &Dst) override { +    // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc. + +    // If this is the first call, move to the first argument. +    if (CurrentSrcIdx == 0) { +      CurrentSrcIdx = 1; +    } else { +      // Otherwise, move to the next argument and check that it is valid. +      CurrentSrcIdx += 2; +      if (CurrentSrcIdx >= CopyLike.getNumOperands()) +        return false; +    } +    const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx); +    Src.Reg = MOInsertedReg.getReg(); +    // If we have to compose sub-register indices, bail out. +    if ((Src.SubReg = MOInsertedReg.getSubReg())) +      return false; + +    // We want to track something that is compatible with the related +    // partial definition. +    Dst.SubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm(); + +    const MachineOperand &MODef = CopyLike.getOperand(0); +    Dst.Reg = MODef.getReg(); +    // If we have to compose sub-registers, bail. +    return MODef.getSubReg() == 0; +  } + +  bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { +    // We cannot rewrite out of bound operands. +    // Moreover, rewritable sources are at odd positions. +    if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands()) +      return false; + +    MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); +    MO.setReg(NewReg); +    MO.setSubReg(NewSubReg); +    return true; +  } +}; + +} // end anonymous namespace + +/// Get the appropriated Rewriter for \p MI. +/// \return A pointer to a dynamically allocated Rewriter or nullptr if no +/// rewriter works for \p MI. +static Rewriter *getCopyRewriter(MachineInstr &MI, const TargetInstrInfo &TII) { +  // Handle uncoalescable copy-like instructions. +  if (MI.isBitcast() || MI.isRegSequenceLike() || MI.isInsertSubregLike() || +      MI.isExtractSubregLike()) +    return new UncoalescableRewriter(MI); + +  switch (MI.getOpcode()) { +  default: +    return nullptr; +  case TargetOpcode::COPY: +    return new CopyRewriter(MI); +  case TargetOpcode::INSERT_SUBREG: +    return new InsertSubregRewriter(MI); +  case TargetOpcode::EXTRACT_SUBREG: +    return new ExtractSubregRewriter(MI, TII); +  case TargetOpcode::REG_SEQUENCE: +    return new RegSequenceRewriter(MI); +  } +} + +/// Given a \p Def.Reg and Def.SubReg  pair, use \p RewriteMap to find +/// the new source to use for rewrite. If \p HandleMultipleSources is true and +/// multiple sources for a given \p Def are found along the way, we found a +/// PHI instructions that needs to be rewritten. +/// TODO: HandleMultipleSources should be removed once we test PHI handling +/// with coalescable copies. +static RegSubRegPair +getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII, +             RegSubRegPair Def, +             const PeepholeOptimizer::RewriteMapTy &RewriteMap, +             bool HandleMultipleSources = true) { +  RegSubRegPair LookupSrc(Def.Reg, Def.SubReg); +  while (true) { +    ValueTrackerResult Res = RewriteMap.lookup(LookupSrc); +    // If there are no entries on the map, LookupSrc is the new source. +    if (!Res.isValid()) +      return LookupSrc; + +    // There's only one source for this definition, keep searching... +    unsigned NumSrcs = Res.getNumSources(); +    if (NumSrcs == 1) { +      LookupSrc.Reg = Res.getSrcReg(0); +      LookupSrc.SubReg = Res.getSrcSubReg(0); +      continue; +    } + +    // TODO: Remove once multiple srcs w/ coalescable copies are supported. +    if (!HandleMultipleSources) +      break; + +    // Multiple sources, recurse into each source to find a new source +    // for it. Then, rewrite the PHI accordingly to its new edges. +    SmallVector<RegSubRegPair, 4> NewPHISrcs; +    for (unsigned i = 0; i < NumSrcs; ++i) { +      RegSubRegPair PHISrc(Res.getSrcReg(i), Res.getSrcSubReg(i)); +      NewPHISrcs.push_back( +          getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources)); +    } + +    // Build the new PHI node and return its def register as the new source. +    MachineInstr &OrigPHI = const_cast<MachineInstr &>(*Res.getInst()); +    MachineInstr &NewPHI = insertPHI(*MRI, *TII, NewPHISrcs, OrigPHI); +    LLVM_DEBUG(dbgs() << "-- getNewSource\n"); +    LLVM_DEBUG(dbgs() << "   Replacing: " << OrigPHI); +    LLVM_DEBUG(dbgs() << "        With: " << NewPHI); +    const MachineOperand &MODef = NewPHI.getOperand(0); +    return RegSubRegPair(MODef.getReg(), MODef.getSubReg()); +  } + +  return RegSubRegPair(0, 0); +} + +/// Optimize generic copy instructions to avoid cross register bank copy. +/// The optimization looks through a chain of copies and tries to find a source +/// that has a compatible register class. +/// Two register classes are considered to be compatible if they share the same +/// register bank. +/// New copies issued by this optimization are register allocator +/// friendly. This optimization does not remove any copy as it may +/// overconstrain the register allocator, but replaces some operands +/// when possible. +/// \pre isCoalescableCopy(*MI) is true. +/// \return True, when \p MI has been rewritten. False otherwise. +bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr &MI) { +  assert(isCoalescableCopy(MI) && "Invalid argument"); +  assert(MI.getDesc().getNumDefs() == 1 && +         "Coalescer can understand multiple defs?!"); +  const MachineOperand &MODef = MI.getOperand(0); +  // Do not rewrite physical definitions. +  if (Register::isPhysicalRegister(MODef.getReg())) +    return false; + +  bool Changed = false; +  // Get the right rewriter for the current copy. +  std::unique_ptr<Rewriter> CpyRewriter(getCopyRewriter(MI, *TII)); +  // If none exists, bail out. +  if (!CpyRewriter) +    return false; +  // Rewrite each rewritable source. +  RegSubRegPair Src; +  RegSubRegPair TrackPair; +  while (CpyRewriter->getNextRewritableSource(Src, TrackPair)) { +    // Keep track of PHI nodes and its incoming edges when looking for sources. +    RewriteMapTy RewriteMap; +    // Try to find a more suitable source. If we failed to do so, or get the +    // actual source, move to the next source. +    if (!findNextSource(TrackPair, RewriteMap)) +      continue; + +    // Get the new source to rewrite. TODO: Only enable handling of multiple +    // sources (PHIs) once we have a motivating example and testcases for it. +    RegSubRegPair NewSrc = getNewSource(MRI, TII, TrackPair, RewriteMap, +                                        /*HandleMultipleSources=*/false); +    if (Src.Reg == NewSrc.Reg || NewSrc.Reg == 0) +      continue; + +    // Rewrite source. +    if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) { +      // We may have extended the live-range of NewSrc, account for that. +      MRI->clearKillFlags(NewSrc.Reg); +      Changed = true; +    } +  } +  // TODO: We could have a clean-up method to tidy the instruction. +  // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0 +  // => v0 = COPY v1 +  // Currently we haven't seen motivating example for that and we +  // want to avoid untested code. +  NumRewrittenCopies += Changed; +  return Changed; +} + +/// Rewrite the source found through \p Def, by using the \p RewriteMap +/// and create a new COPY instruction. More info about RewriteMap in +/// PeepholeOptimizer::findNextSource. Right now this is only used to handle +/// Uncoalescable copies, since they are copy like instructions that aren't +/// recognized by the register allocator. +MachineInstr & +PeepholeOptimizer::rewriteSource(MachineInstr &CopyLike, +                                 RegSubRegPair Def, RewriteMapTy &RewriteMap) { +  assert(!Register::isPhysicalRegister(Def.Reg) && +         "We do not rewrite physical registers"); + +  // Find the new source to use in the COPY rewrite. +  RegSubRegPair NewSrc = getNewSource(MRI, TII, Def, RewriteMap); + +  // Insert the COPY. +  const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg); +  Register NewVReg = MRI->createVirtualRegister(DefRC); + +  MachineInstr *NewCopy = +      BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(), +              TII->get(TargetOpcode::COPY), NewVReg) +          .addReg(NewSrc.Reg, 0, NewSrc.SubReg); + +  if (Def.SubReg) { +    NewCopy->getOperand(0).setSubReg(Def.SubReg); +    NewCopy->getOperand(0).setIsUndef(); +  } + +  LLVM_DEBUG(dbgs() << "-- RewriteSource\n"); +  LLVM_DEBUG(dbgs() << "   Replacing: " << CopyLike); +  LLVM_DEBUG(dbgs() << "        With: " << *NewCopy); +  MRI->replaceRegWith(Def.Reg, NewVReg); +  MRI->clearKillFlags(NewVReg); + +  // We extended the lifetime of NewSrc.Reg, clear the kill flags to +  // account for that. +  MRI->clearKillFlags(NewSrc.Reg); + +  return *NewCopy; +} + +/// Optimize copy-like instructions to create +/// register coalescer friendly instruction. +/// The optimization tries to kill-off the \p MI by looking +/// through a chain of copies to find a source that has a compatible +/// register class. +/// If such a source is found, it replace \p MI by a generic COPY +/// operation. +/// \pre isUncoalescableCopy(*MI) is true. +/// \return True, when \p MI has been optimized. In that case, \p MI has +/// been removed from its parent. +/// All COPY instructions created, are inserted in \p LocalMIs. +bool PeepholeOptimizer::optimizeUncoalescableCopy( +    MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) { +  assert(isUncoalescableCopy(MI) && "Invalid argument"); +  UncoalescableRewriter CpyRewriter(MI); + +  // Rewrite each rewritable source by generating new COPYs. This works +  // differently from optimizeCoalescableCopy since it first makes sure that all +  // definitions can be rewritten. +  RewriteMapTy RewriteMap; +  RegSubRegPair Src; +  RegSubRegPair Def; +  SmallVector<RegSubRegPair, 4> RewritePairs; +  while (CpyRewriter.getNextRewritableSource(Src, Def)) { +    // If a physical register is here, this is probably for a good reason. +    // Do not rewrite that. +    if (Register::isPhysicalRegister(Def.Reg)) +      return false; + +    // If we do not know how to rewrite this definition, there is no point +    // in trying to kill this instruction. +    if (!findNextSource(Def, RewriteMap)) +      return false; + +    RewritePairs.push_back(Def); +  } + +  // The change is possible for all defs, do it. +  for (const RegSubRegPair &Def : RewritePairs) { +    // Rewrite the "copy" in a way the register coalescer understands. +    MachineInstr &NewCopy = rewriteSource(MI, Def, RewriteMap); +    LocalMIs.insert(&NewCopy); +  } + +  // MI is now dead. +  MI.eraseFromParent(); +  ++NumUncoalescableCopies; +  return true; +} + +/// Check whether MI is a candidate for folding into a later instruction. +/// We only fold loads to virtual registers and the virtual register defined +/// has a single user. +bool PeepholeOptimizer::isLoadFoldable( +    MachineInstr &MI, SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) { +  if (!MI.canFoldAsLoad() || !MI.mayLoad()) +    return false; +  const MCInstrDesc &MCID = MI.getDesc(); +  if (MCID.getNumDefs() != 1) +    return false; + +  Register Reg = MI.getOperand(0).getReg(); +  // To reduce compilation time, we check MRI->hasOneNonDBGUser when inserting +  // loads. It should be checked when processing uses of the load, since +  // uses can be removed during peephole. +  if (!MI.getOperand(0).getSubReg() && Register::isVirtualRegister(Reg) && +      MRI->hasOneNonDBGUser(Reg)) { +    FoldAsLoadDefCandidates.insert(Reg); +    return true; +  } +  return false; +} + +bool PeepholeOptimizer::isMoveImmediate( +    MachineInstr &MI, SmallSet<unsigned, 4> &ImmDefRegs, +    DenseMap<unsigned, MachineInstr *> &ImmDefMIs) { +  const MCInstrDesc &MCID = MI.getDesc(); +  if (!MI.isMoveImmediate()) +    return false; +  if (MCID.getNumDefs() != 1) +    return false; +  Register Reg = MI.getOperand(0).getReg(); +  if (Register::isVirtualRegister(Reg)) { +    ImmDefMIs.insert(std::make_pair(Reg, &MI)); +    ImmDefRegs.insert(Reg); +    return true; +  } + +  return false; +} + +/// Try folding register operands that are defined by move immediate +/// instructions, i.e. a trivial constant folding optimization, if +/// and only if the def and use are in the same BB. +bool PeepholeOptimizer::foldImmediate(MachineInstr &MI, +    SmallSet<unsigned, 4> &ImmDefRegs, +    DenseMap<unsigned, MachineInstr *> &ImmDefMIs) { +  for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { +    MachineOperand &MO = MI.getOperand(i); +    if (!MO.isReg() || MO.isDef()) +      continue; +    // Ignore dead implicit defs. +    if (MO.isImplicit() && MO.isDead()) +      continue; +    Register Reg = MO.getReg(); +    if (!Register::isVirtualRegister(Reg)) +      continue; +    if (ImmDefRegs.count(Reg) == 0) +      continue; +    DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg); +    assert(II != ImmDefMIs.end() && "couldn't find immediate definition"); +    if (TII->FoldImmediate(MI, *II->second, Reg, MRI)) { +      ++NumImmFold; +      return true; +    } +  } +  return false; +} + +// FIXME: This is very simple and misses some cases which should be handled when +// motivating examples are found. +// +// The copy rewriting logic should look at uses as well as defs and be able to +// eliminate copies across blocks. +// +// Later copies that are subregister extracts will also not be eliminated since +// only the first copy is considered. +// +// e.g. +// %1 = COPY %0 +// %2 = COPY %0:sub1 +// +// Should replace %2 uses with %1:sub1 +bool PeepholeOptimizer::foldRedundantCopy(MachineInstr &MI, +    SmallSet<unsigned, 4> &CopySrcRegs, +    DenseMap<unsigned, MachineInstr *> &CopyMIs) { +  assert(MI.isCopy() && "expected a COPY machine instruction"); + +  Register SrcReg = MI.getOperand(1).getReg(); +  if (!Register::isVirtualRegister(SrcReg)) +    return false; + +  Register DstReg = MI.getOperand(0).getReg(); +  if (!Register::isVirtualRegister(DstReg)) +    return false; + +  if (CopySrcRegs.insert(SrcReg).second) { +    // First copy of this reg seen. +    CopyMIs.insert(std::make_pair(SrcReg, &MI)); +    return false; +  } + +  MachineInstr *PrevCopy = CopyMIs.find(SrcReg)->second; + +  unsigned SrcSubReg = MI.getOperand(1).getSubReg(); +  unsigned PrevSrcSubReg = PrevCopy->getOperand(1).getSubReg(); + +  // Can't replace different subregister extracts. +  if (SrcSubReg != PrevSrcSubReg) +    return false; + +  Register PrevDstReg = PrevCopy->getOperand(0).getReg(); + +  // Only replace if the copy register class is the same. +  // +  // TODO: If we have multiple copies to different register classes, we may want +  // to track multiple copies of the same source register. +  if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg)) +    return false; + +  MRI->replaceRegWith(DstReg, PrevDstReg); + +  // Lifetime of the previous copy has been extended. +  MRI->clearKillFlags(PrevDstReg); +  return true; +} + +bool PeepholeOptimizer::isNAPhysCopy(unsigned Reg) { +  return Register::isPhysicalRegister(Reg) && !MRI->isAllocatable(Reg); +} + +bool PeepholeOptimizer::foldRedundantNAPhysCopy( +    MachineInstr &MI, DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs) { +  assert(MI.isCopy() && "expected a COPY machine instruction"); + +  if (DisableNAPhysCopyOpt) +    return false; + +  Register DstReg = MI.getOperand(0).getReg(); +  Register SrcReg = MI.getOperand(1).getReg(); +  if (isNAPhysCopy(SrcReg) && Register::isVirtualRegister(DstReg)) { +    // %vreg = COPY %physreg +    // Avoid using a datastructure which can track multiple live non-allocatable +    // phys->virt copies since LLVM doesn't seem to do this. +    NAPhysToVirtMIs.insert({SrcReg, &MI}); +    return false; +  } + +  if (!(Register::isVirtualRegister(SrcReg) && isNAPhysCopy(DstReg))) +    return false; + +  // %physreg = COPY %vreg +  auto PrevCopy = NAPhysToVirtMIs.find(DstReg); +  if (PrevCopy == NAPhysToVirtMIs.end()) { +    // We can't remove the copy: there was an intervening clobber of the +    // non-allocatable physical register after the copy to virtual. +    LLVM_DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing " +                      << MI); +    return false; +  } + +  Register PrevDstReg = PrevCopy->second->getOperand(0).getReg(); +  if (PrevDstReg == SrcReg) { +    // Remove the virt->phys copy: we saw the virtual register definition, and +    // the non-allocatable physical register's state hasn't changed since then. +    LLVM_DEBUG(dbgs() << "NAPhysCopy: erasing " << MI); +    ++NumNAPhysCopies; +    return true; +  } + +  // Potential missed optimization opportunity: we saw a different virtual +  // register get a copy of the non-allocatable physical register, and we only +  // track one such copy. Avoid getting confused by this new non-allocatable +  // physical register definition, and remove it from the tracked copies. +  LLVM_DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << MI); +  NAPhysToVirtMIs.erase(PrevCopy); +  return false; +} + +/// \bried Returns true if \p MO is a virtual register operand. +static bool isVirtualRegisterOperand(MachineOperand &MO) { +  if (!MO.isReg()) +    return false; +  return Register::isVirtualRegister(MO.getReg()); +} + +bool PeepholeOptimizer::findTargetRecurrence( +    unsigned Reg, const SmallSet<unsigned, 2> &TargetRegs, +    RecurrenceCycle &RC) { +  // Recurrence found if Reg is in TargetRegs. +  if (TargetRegs.count(Reg)) +    return true; + +  // TODO: Curerntly, we only allow the last instruction of the recurrence +  // cycle (the instruction that feeds the PHI instruction) to have more than +  // one uses to guarantee that commuting operands does not tie registers +  // with overlapping live range. Once we have actual live range info of +  // each register, this constraint can be relaxed. +  if (!MRI->hasOneNonDBGUse(Reg)) +    return false; + +  // Give up if the reccurrence chain length is longer than the limit. +  if (RC.size() >= MaxRecurrenceChain) +    return false; + +  MachineInstr &MI = *(MRI->use_instr_nodbg_begin(Reg)); +  unsigned Idx = MI.findRegisterUseOperandIdx(Reg); + +  // Only interested in recurrences whose instructions have only one def, which +  // is a virtual register. +  if (MI.getDesc().getNumDefs() != 1) +    return false; + +  MachineOperand &DefOp = MI.getOperand(0); +  if (!isVirtualRegisterOperand(DefOp)) +    return false; + +  // Check if def operand of MI is tied to any use operand. We are only +  // interested in the case that all the instructions in the recurrence chain +  // have there def operand tied with one of the use operand. +  unsigned TiedUseIdx; +  if (!MI.isRegTiedToUseOperand(0, &TiedUseIdx)) +    return false; + +  if (Idx == TiedUseIdx) { +    RC.push_back(RecurrenceInstr(&MI)); +    return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC); +  } else { +    // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx. +    unsigned CommIdx = TargetInstrInfo::CommuteAnyOperandIndex; +    if (TII->findCommutedOpIndices(MI, Idx, CommIdx) && CommIdx == TiedUseIdx) { +      RC.push_back(RecurrenceInstr(&MI, Idx, CommIdx)); +      return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC); +    } +  } + +  return false; +} + +/// Phi instructions will eventually be lowered to copy instructions. +/// If phi is in a loop header, a recurrence may formulated around the source +/// and destination of the phi. For such case commuting operands of the +/// instructions in the recurrence may enable coalescing of the copy instruction +/// generated from the phi. For example, if there is a recurrence of +/// +/// LoopHeader: +///   %1 = phi(%0, %100) +/// LoopLatch: +///   %0<def, tied1> = ADD %2<def, tied0>, %1 +/// +/// , the fact that %0 and %2 are in the same tied operands set makes +/// the coalescing of copy instruction generated from the phi in +/// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and +/// %2 have overlapping live range. This introduces additional move +/// instruction to the final assembly. However, if we commute %2 and +/// %1 of ADD instruction, the redundant move instruction can be +/// avoided. +bool PeepholeOptimizer::optimizeRecurrence(MachineInstr &PHI) { +  SmallSet<unsigned, 2> TargetRegs; +  for (unsigned Idx = 1; Idx < PHI.getNumOperands(); Idx += 2) { +    MachineOperand &MO = PHI.getOperand(Idx); +    assert(isVirtualRegisterOperand(MO) && "Invalid PHI instruction"); +    TargetRegs.insert(MO.getReg()); +  } + +  bool Changed = false; +  RecurrenceCycle RC; +  if (findTargetRecurrence(PHI.getOperand(0).getReg(), TargetRegs, RC)) { +    // Commutes operands of instructions in RC if necessary so that the copy to +    // be generated from PHI can be coalesced. +    LLVM_DEBUG(dbgs() << "Optimize recurrence chain from " << PHI); +    for (auto &RI : RC) { +      LLVM_DEBUG(dbgs() << "\tInst: " << *(RI.getMI())); +      auto CP = RI.getCommutePair(); +      if (CP) { +        Changed = true; +        TII->commuteInstruction(*(RI.getMI()), false, (*CP).first, +                                (*CP).second); +        LLVM_DEBUG(dbgs() << "\t\tCommuted: " << *(RI.getMI())); +      } +    } +  } + +  return Changed; +} + +bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) { +  if (skipFunction(MF.getFunction())) +    return false; + +  LLVM_DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n"); +  LLVM_DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n'); + +  if (DisablePeephole) +    return false; + +  TII = MF.getSubtarget().getInstrInfo(); +  TRI = MF.getSubtarget().getRegisterInfo(); +  MRI = &MF.getRegInfo(); +  DT  = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr; +  MLI = &getAnalysis<MachineLoopInfo>(); + +  bool Changed = false; + +  for (MachineBasicBlock &MBB : MF) { +    bool SeenMoveImm = false; + +    // During this forward scan, at some point it needs to answer the question +    // "given a pointer to an MI in the current BB, is it located before or +    // after the current instruction". +    // To perform this, the following set keeps track of the MIs already seen +    // during the scan, if a MI is not in the set, it is assumed to be located +    // after. Newly created MIs have to be inserted in the set as well. +    SmallPtrSet<MachineInstr*, 16> LocalMIs; +    SmallSet<unsigned, 4> ImmDefRegs; +    DenseMap<unsigned, MachineInstr*> ImmDefMIs; +    SmallSet<unsigned, 16> FoldAsLoadDefCandidates; + +    // Track when a non-allocatable physical register is copied to a virtual +    // register so that useless moves can be removed. +    // +    // %physreg is the map index; MI is the last valid `%vreg = COPY %physreg` +    // without any intervening re-definition of %physreg. +    DenseMap<unsigned, MachineInstr *> NAPhysToVirtMIs; + +    // Set of virtual registers that are copied from. +    SmallSet<unsigned, 4> CopySrcRegs; +    DenseMap<unsigned, MachineInstr *> CopySrcMIs; + +    bool IsLoopHeader = MLI->isLoopHeader(&MBB); + +    for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end(); +         MII != MIE; ) { +      MachineInstr *MI = &*MII; +      // We may be erasing MI below, increment MII now. +      ++MII; +      LocalMIs.insert(MI); + +      // Skip debug instructions. They should not affect this peephole optimization. +      if (MI->isDebugInstr()) +          continue; + +      if (MI->isPosition()) +        continue; + +      if (IsLoopHeader && MI->isPHI()) { +        if (optimizeRecurrence(*MI)) { +          Changed = true; +          continue; +        } +      } + +      if (!MI->isCopy()) { +        for (const MachineOperand &MO : MI->operands()) { +          // Visit all operands: definitions can be implicit or explicit. +          if (MO.isReg()) { +            Register Reg = MO.getReg(); +            if (MO.isDef() && isNAPhysCopy(Reg)) { +              const auto &Def = NAPhysToVirtMIs.find(Reg); +              if (Def != NAPhysToVirtMIs.end()) { +                // A new definition of the non-allocatable physical register +                // invalidates previous copies. +                LLVM_DEBUG(dbgs() +                           << "NAPhysCopy: invalidating because of " << *MI); +                NAPhysToVirtMIs.erase(Def); +              } +            } +          } else if (MO.isRegMask()) { +            const uint32_t *RegMask = MO.getRegMask(); +            for (auto &RegMI : NAPhysToVirtMIs) { +              unsigned Def = RegMI.first; +              if (MachineOperand::clobbersPhysReg(RegMask, Def)) { +                LLVM_DEBUG(dbgs() +                           << "NAPhysCopy: invalidating because of " << *MI); +                NAPhysToVirtMIs.erase(Def); +              } +            } +          } +        } +      } + +      if (MI->isImplicitDef() || MI->isKill()) +        continue; + +      if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) { +        // Blow away all non-allocatable physical registers knowledge since we +        // don't know what's correct anymore. +        // +        // FIXME: handle explicit asm clobbers. +        LLVM_DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to " +                          << *MI); +        NAPhysToVirtMIs.clear(); +      } + +      if ((isUncoalescableCopy(*MI) && +           optimizeUncoalescableCopy(*MI, LocalMIs)) || +          (MI->isCompare() && optimizeCmpInstr(*MI)) || +          (MI->isSelect() && optimizeSelect(*MI, LocalMIs))) { +        // MI is deleted. +        LocalMIs.erase(MI); +        Changed = true; +        continue; +      } + +      if (MI->isConditionalBranch() && optimizeCondBranch(*MI)) { +        Changed = true; +        continue; +      } + +      if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(*MI)) { +        // MI is just rewritten. +        Changed = true; +        continue; +      } + +      if (MI->isCopy() && +          (foldRedundantCopy(*MI, CopySrcRegs, CopySrcMIs) || +           foldRedundantNAPhysCopy(*MI, NAPhysToVirtMIs))) { +        LocalMIs.erase(MI); +        MI->eraseFromParent(); +        Changed = true; +        continue; +      } + +      if (isMoveImmediate(*MI, ImmDefRegs, ImmDefMIs)) { +        SeenMoveImm = true; +      } else { +        Changed |= optimizeExtInstr(*MI, MBB, LocalMIs); +        // optimizeExtInstr might have created new instructions after MI +        // and before the already incremented MII. Adjust MII so that the +        // next iteration sees the new instructions. +        MII = MI; +        ++MII; +        if (SeenMoveImm) +          Changed |= foldImmediate(*MI, ImmDefRegs, ImmDefMIs); +      } + +      // Check whether MI is a load candidate for folding into a later +      // instruction. If MI is not a candidate, check whether we can fold an +      // earlier load into MI. +      if (!isLoadFoldable(*MI, FoldAsLoadDefCandidates) && +          !FoldAsLoadDefCandidates.empty()) { + +        // We visit each operand even after successfully folding a previous +        // one.  This allows us to fold multiple loads into a single +        // instruction.  We do assume that optimizeLoadInstr doesn't insert +        // foldable uses earlier in the argument list.  Since we don't restart +        // iteration, we'd miss such cases. +        const MCInstrDesc &MIDesc = MI->getDesc(); +        for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands(); +             ++i) { +          const MachineOperand &MOp = MI->getOperand(i); +          if (!MOp.isReg()) +            continue; +          unsigned FoldAsLoadDefReg = MOp.getReg(); +          if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) { +            // We need to fold load after optimizeCmpInstr, since +            // optimizeCmpInstr can enable folding by converting SUB to CMP. +            // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and +            // we need it for markUsesInDebugValueAsUndef(). +            unsigned FoldedReg = FoldAsLoadDefReg; +            MachineInstr *DefMI = nullptr; +            if (MachineInstr *FoldMI = +                    TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) { +              // Update LocalMIs since we replaced MI with FoldMI and deleted +              // DefMI. +              LLVM_DEBUG(dbgs() << "Replacing: " << *MI); +              LLVM_DEBUG(dbgs() << "     With: " << *FoldMI); +              LocalMIs.erase(MI); +              LocalMIs.erase(DefMI); +              LocalMIs.insert(FoldMI); +              if (MI->isCall()) +                MI->getMF()->moveCallSiteInfo(MI, FoldMI); +              MI->eraseFromParent(); +              DefMI->eraseFromParent(); +              MRI->markUsesInDebugValueAsUndef(FoldedReg); +              FoldAsLoadDefCandidates.erase(FoldedReg); +              ++NumLoadFold; + +              // MI is replaced with FoldMI so we can continue trying to fold +              Changed = true; +              MI = FoldMI; +            } +          } +        } +      } + +      // If we run into an instruction we can't fold across, discard +      // the load candidates.  Note: We might be able to fold *into* this +      // instruction, so this needs to be after the folding logic. +      if (MI->isLoadFoldBarrier()) { +        LLVM_DEBUG(dbgs() << "Encountered load fold barrier on " << *MI); +        FoldAsLoadDefCandidates.clear(); +      } +    } +  } + +  return Changed; +} + +ValueTrackerResult ValueTracker::getNextSourceFromCopy() { +  assert(Def->isCopy() && "Invalid definition"); +  // Copy instruction are supposed to be: Def = Src. +  // If someone breaks this assumption, bad things will happen everywhere. +  // There may be implicit uses preventing the copy to be moved across +  // some target specific register definitions +  assert(Def->getNumOperands() - Def->getNumImplicitOperands() == 2 && +         "Invalid number of operands"); +  assert(!Def->hasImplicitDef() && "Only implicit uses are allowed"); + +  if (Def->getOperand(DefIdx).getSubReg() != DefSubReg) +    // If we look for a different subreg, it means we want a subreg of src. +    // Bails as we do not support composing subregs yet. +    return ValueTrackerResult(); +  // Otherwise, we want the whole source. +  const MachineOperand &Src = Def->getOperand(1); +  if (Src.isUndef()) +    return ValueTrackerResult(); +  return ValueTrackerResult(Src.getReg(), Src.getSubReg()); +} + +ValueTrackerResult ValueTracker::getNextSourceFromBitcast() { +  assert(Def->isBitcast() && "Invalid definition"); + +  // Bail if there are effects that a plain copy will not expose. +  if (Def->mayRaiseFPException() || Def->hasUnmodeledSideEffects()) +    return ValueTrackerResult(); + +  // Bitcasts with more than one def are not supported. +  if (Def->getDesc().getNumDefs() != 1) +    return ValueTrackerResult(); +  const MachineOperand DefOp = Def->getOperand(DefIdx); +  if (DefOp.getSubReg() != DefSubReg) +    // If we look for a different subreg, it means we want a subreg of the src. +    // Bails as we do not support composing subregs yet. +    return ValueTrackerResult(); + +  unsigned SrcIdx = Def->getNumOperands(); +  for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx; +       ++OpIdx) { +    const MachineOperand &MO = Def->getOperand(OpIdx); +    if (!MO.isReg() || !MO.getReg()) +      continue; +    // Ignore dead implicit defs. +    if (MO.isImplicit() && MO.isDead()) +      continue; +    assert(!MO.isDef() && "We should have skipped all the definitions by now"); +    if (SrcIdx != EndOpIdx) +      // Multiple sources? +      return ValueTrackerResult(); +    SrcIdx = OpIdx; +  } + +  // In some rare case, Def has no input, SrcIdx is out of bound, +  // getOperand(SrcIdx) will fail below. +  if (SrcIdx >= Def->getNumOperands()) +    return ValueTrackerResult(); + +  // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY +  // will break the assumed guarantees for the upper bits. +  for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(DefOp.getReg())) { +    if (UseMI.isSubregToReg()) +      return ValueTrackerResult(); +  } + +  const MachineOperand &Src = Def->getOperand(SrcIdx); +  if (Src.isUndef()) +    return ValueTrackerResult(); +  return ValueTrackerResult(Src.getReg(), Src.getSubReg()); +} + +ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() { +  assert((Def->isRegSequence() || Def->isRegSequenceLike()) && +         "Invalid definition"); + +  if (Def->getOperand(DefIdx).getSubReg()) +    // If we are composing subregs, bail out. +    // The case we are checking is Def.<subreg> = REG_SEQUENCE. +    // This should almost never happen as the SSA property is tracked at +    // the register level (as opposed to the subreg level). +    // I.e., +    // Def.sub0 = +    // Def.sub1 = +    // is a valid SSA representation for Def.sub0 and Def.sub1, but not for +    // Def. Thus, it must not be generated. +    // However, some code could theoretically generates a single +    // Def.sub0 (i.e, not defining the other subregs) and we would +    // have this case. +    // If we can ascertain (or force) that this never happens, we could +    // turn that into an assertion. +    return ValueTrackerResult(); + +  if (!TII) +    // We could handle the REG_SEQUENCE here, but we do not want to +    // duplicate the code from the generic TII. +    return ValueTrackerResult(); + +  SmallVector<RegSubRegPairAndIdx, 8> RegSeqInputRegs; +  if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs)) +    return ValueTrackerResult(); + +  // We are looking at: +  // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... +  // Check if one of the operand defines the subreg we are interested in. +  for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) { +    if (RegSeqInput.SubIdx == DefSubReg) +      return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg); +  } + +  // If the subreg we are tracking is super-defined by another subreg, +  // we could follow this value. However, this would require to compose +  // the subreg and we do not do that for now. +  return ValueTrackerResult(); +} + +ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() { +  assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) && +         "Invalid definition"); + +  if (Def->getOperand(DefIdx).getSubReg()) +    // If we are composing subreg, bail out. +    // Same remark as getNextSourceFromRegSequence. +    // I.e., this may be turned into an assert. +    return ValueTrackerResult(); + +  if (!TII) +    // We could handle the REG_SEQUENCE here, but we do not want to +    // duplicate the code from the generic TII. +    return ValueTrackerResult(); + +  RegSubRegPair BaseReg; +  RegSubRegPairAndIdx InsertedReg; +  if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg)) +    return ValueTrackerResult(); + +  // We are looking at: +  // Def = INSERT_SUBREG v0, v1, sub1 +  // There are two cases: +  // 1. DefSubReg == sub1, get v1. +  // 2. DefSubReg != sub1, the value may be available through v0. + +  // #1 Check if the inserted register matches the required sub index. +  if (InsertedReg.SubIdx == DefSubReg) { +    return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg); +  } +  // #2 Otherwise, if the sub register we are looking for is not partial +  // defined by the inserted element, we can look through the main +  // register (v0). +  const MachineOperand &MODef = Def->getOperand(DefIdx); +  // If the result register (Def) and the base register (v0) do not +  // have the same register class or if we have to compose +  // subregisters, bail out. +  if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) || +      BaseReg.SubReg) +    return ValueTrackerResult(); + +  // Get the TRI and check if the inserted sub-register overlaps with the +  // sub-register we are tracking. +  const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); +  if (!TRI || +      !(TRI->getSubRegIndexLaneMask(DefSubReg) & +        TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)).none()) +    return ValueTrackerResult(); +  // At this point, the value is available in v0 via the same subreg +  // we used for Def. +  return ValueTrackerResult(BaseReg.Reg, DefSubReg); +} + +ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() { +  assert((Def->isExtractSubreg() || +          Def->isExtractSubregLike()) && "Invalid definition"); +  // We are looking at: +  // Def = EXTRACT_SUBREG v0, sub0 + +  // Bail if we have to compose sub registers. +  // Indeed, if DefSubReg != 0, we would have to compose it with sub0. +  if (DefSubReg) +    return ValueTrackerResult(); + +  if (!TII) +    // We could handle the EXTRACT_SUBREG here, but we do not want to +    // duplicate the code from the generic TII. +    return ValueTrackerResult(); + +  RegSubRegPairAndIdx ExtractSubregInputReg; +  if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg)) +    return ValueTrackerResult(); + +  // Bail if we have to compose sub registers. +  // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0. +  if (ExtractSubregInputReg.SubReg) +    return ValueTrackerResult(); +  // Otherwise, the value is available in the v0.sub0. +  return ValueTrackerResult(ExtractSubregInputReg.Reg, +                            ExtractSubregInputReg.SubIdx); +} + +ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() { +  assert(Def->isSubregToReg() && "Invalid definition"); +  // We are looking at: +  // Def = SUBREG_TO_REG Imm, v0, sub0 + +  // Bail if we have to compose sub registers. +  // If DefSubReg != sub0, we would have to check that all the bits +  // we track are included in sub0 and if yes, we would have to +  // determine the right subreg in v0. +  if (DefSubReg != Def->getOperand(3).getImm()) +    return ValueTrackerResult(); +  // Bail if we have to compose sub registers. +  // Likewise, if v0.subreg != 0, we would have to compose it with sub0. +  if (Def->getOperand(2).getSubReg()) +    return ValueTrackerResult(); + +  return ValueTrackerResult(Def->getOperand(2).getReg(), +                            Def->getOperand(3).getImm()); +} + +/// Explore each PHI incoming operand and return its sources. +ValueTrackerResult ValueTracker::getNextSourceFromPHI() { +  assert(Def->isPHI() && "Invalid definition"); +  ValueTrackerResult Res; + +  // If we look for a different subreg, bail as we do not support composing +  // subregs yet. +  if (Def->getOperand(0).getSubReg() != DefSubReg) +    return ValueTrackerResult(); + +  // Return all register sources for PHI instructions. +  for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) { +    const MachineOperand &MO = Def->getOperand(i); +    assert(MO.isReg() && "Invalid PHI instruction"); +    // We have no code to deal with undef operands. They shouldn't happen in +    // normal programs anyway. +    if (MO.isUndef()) +      return ValueTrackerResult(); +    Res.addSource(MO.getReg(), MO.getSubReg()); +  } + +  return Res; +} + +ValueTrackerResult ValueTracker::getNextSourceImpl() { +  assert(Def && "This method needs a valid definition"); + +  assert(((Def->getOperand(DefIdx).isDef() && +           (DefIdx < Def->getDesc().getNumDefs() || +            Def->getDesc().isVariadic())) || +          Def->getOperand(DefIdx).isImplicit()) && +         "Invalid DefIdx"); +  if (Def->isCopy()) +    return getNextSourceFromCopy(); +  if (Def->isBitcast()) +    return getNextSourceFromBitcast(); +  // All the remaining cases involve "complex" instructions. +  // Bail if we did not ask for the advanced tracking. +  if (DisableAdvCopyOpt) +    return ValueTrackerResult(); +  if (Def->isRegSequence() || Def->isRegSequenceLike()) +    return getNextSourceFromRegSequence(); +  if (Def->isInsertSubreg() || Def->isInsertSubregLike()) +    return getNextSourceFromInsertSubreg(); +  if (Def->isExtractSubreg() || Def->isExtractSubregLike()) +    return getNextSourceFromExtractSubreg(); +  if (Def->isSubregToReg()) +    return getNextSourceFromSubregToReg(); +  if (Def->isPHI()) +    return getNextSourceFromPHI(); +  return ValueTrackerResult(); +} + +ValueTrackerResult ValueTracker::getNextSource() { +  // If we reach a point where we cannot move up in the use-def chain, +  // there is nothing we can get. +  if (!Def) +    return ValueTrackerResult(); + +  ValueTrackerResult Res = getNextSourceImpl(); +  if (Res.isValid()) { +    // Update definition, definition index, and subregister for the +    // next call of getNextSource. +    // Update the current register. +    bool OneRegSrc = Res.getNumSources() == 1; +    if (OneRegSrc) +      Reg = Res.getSrcReg(0); +    // Update the result before moving up in the use-def chain +    // with the instruction containing the last found sources. +    Res.setInst(Def); + +    // If we can still move up in the use-def chain, move to the next +    // definition. +    if (!Register::isPhysicalRegister(Reg) && OneRegSrc) { +      MachineRegisterInfo::def_iterator DI = MRI.def_begin(Reg); +      if (DI != MRI.def_end()) { +        Def = DI->getParent(); +        DefIdx = DI.getOperandNo(); +        DefSubReg = Res.getSrcSubReg(0); +      } else { +        Def = nullptr; +      } +      return Res; +    } +  } +  // If we end up here, this means we will not be able to find another source +  // for the next iteration. Make sure any new call to getNextSource bails out +  // early by cutting the use-def chain. +  Def = nullptr; +  return Res; +} | 
