diff options
Diffstat (limited to 'llvm/lib/CodeGen/RegAllocPBQP.cpp')
| -rw-r--r-- | llvm/lib/CodeGen/RegAllocPBQP.cpp | 942 | 
1 files changed, 942 insertions, 0 deletions
| diff --git a/llvm/lib/CodeGen/RegAllocPBQP.cpp b/llvm/lib/CodeGen/RegAllocPBQP.cpp new file mode 100644 index 000000000000..3c4a46b12f99 --- /dev/null +++ b/llvm/lib/CodeGen/RegAllocPBQP.cpp @@ -0,0 +1,942 @@ +//===- RegAllocPBQP.cpp ---- PBQP Register Allocator ----------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based +// register allocator for LLVM. This allocator works by constructing a PBQP +// problem representing the register allocation problem under consideration, +// solving this using a PBQP solver, and mapping the solution back to a +// register assignment. If any variables are selected for spilling then spill +// code is inserted and the process repeated. +// +// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned +// for register allocation. For more information on PBQP for register +// allocation, see the following papers: +// +//   (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with +//   PBQP. In Proceedings of the 7th Joint Modular Languages Conference +//   (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361. +// +//   (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular +//   architectures. In Proceedings of the Joint Conference on Languages, +//   Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York, +//   NY, USA, 139-148. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/RegAllocPBQP.h" +#include "RegisterCoalescer.h" +#include "Spiller.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/CodeGen/CalcSpillWeights.h" +#include "llvm/CodeGen/LiveInterval.h" +#include "llvm/CodeGen/LiveIntervals.h" +#include "llvm/CodeGen/LiveRangeEdit.h" +#include "llvm/CodeGen/LiveStacks.h" +#include "llvm/CodeGen/MachineBlockFrequencyInfo.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/PBQP/Graph.h" +#include "llvm/CodeGen/PBQP/Math.h" +#include "llvm/CodeGen/PBQP/Solution.h" +#include "llvm/CodeGen/PBQPRAConstraint.h" +#include "llvm/CodeGen/RegAllocRegistry.h" +#include "llvm/CodeGen/SlotIndexes.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/CodeGen/VirtRegMap.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Module.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/Pass.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/FileSystem.h" +#include "llvm/Support/Printable.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <limits> +#include <map> +#include <memory> +#include <queue> +#include <set> +#include <sstream> +#include <string> +#include <system_error> +#include <tuple> +#include <utility> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "regalloc" + +static RegisterRegAlloc +RegisterPBQPRepAlloc("pbqp", "PBQP register allocator", +                       createDefaultPBQPRegisterAllocator); + +static cl::opt<bool> +PBQPCoalescing("pbqp-coalescing", +                cl::desc("Attempt coalescing during PBQP register allocation."), +                cl::init(false), cl::Hidden); + +#ifndef NDEBUG +static cl::opt<bool> +PBQPDumpGraphs("pbqp-dump-graphs", +               cl::desc("Dump graphs for each function/round in the compilation unit."), +               cl::init(false), cl::Hidden); +#endif + +namespace { + +/// +/// PBQP based allocators solve the register allocation problem by mapping +/// register allocation problems to Partitioned Boolean Quadratic +/// Programming problems. +class RegAllocPBQP : public MachineFunctionPass { +public: +  static char ID; + +  /// Construct a PBQP register allocator. +  RegAllocPBQP(char *cPassID = nullptr) +      : MachineFunctionPass(ID), customPassID(cPassID) { +    initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); +    initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); +    initializeLiveStacksPass(*PassRegistry::getPassRegistry()); +    initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); +  } + +  /// Return the pass name. +  StringRef getPassName() const override { return "PBQP Register Allocator"; } + +  /// PBQP analysis usage. +  void getAnalysisUsage(AnalysisUsage &au) const override; + +  /// Perform register allocation +  bool runOnMachineFunction(MachineFunction &MF) override; + +  MachineFunctionProperties getRequiredProperties() const override { +    return MachineFunctionProperties().set( +        MachineFunctionProperties::Property::NoPHIs); +  } + +private: +  using LI2NodeMap = std::map<const LiveInterval *, unsigned>; +  using Node2LIMap = std::vector<const LiveInterval *>; +  using AllowedSet = std::vector<unsigned>; +  using AllowedSetMap = std::vector<AllowedSet>; +  using RegPair = std::pair<unsigned, unsigned>; +  using CoalesceMap = std::map<RegPair, PBQP::PBQPNum>; +  using RegSet = std::set<unsigned>; + +  char *customPassID; + +  RegSet VRegsToAlloc, EmptyIntervalVRegs; + +  /// Inst which is a def of an original reg and whose defs are already all +  /// dead after remat is saved in DeadRemats. The deletion of such inst is +  /// postponed till all the allocations are done, so its remat expr is +  /// always available for the remat of all the siblings of the original reg. +  SmallPtrSet<MachineInstr *, 32> DeadRemats; + +  /// Finds the initial set of vreg intervals to allocate. +  void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS); + +  /// Constructs an initial graph. +  void initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, Spiller &VRegSpiller); + +  /// Spill the given VReg. +  void spillVReg(unsigned VReg, SmallVectorImpl<unsigned> &NewIntervals, +                 MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM, +                 Spiller &VRegSpiller); + +  /// Given a solved PBQP problem maps this solution back to a register +  /// assignment. +  bool mapPBQPToRegAlloc(const PBQPRAGraph &G, +                         const PBQP::Solution &Solution, +                         VirtRegMap &VRM, +                         Spiller &VRegSpiller); + +  /// Postprocessing before final spilling. Sets basic block "live in" +  /// variables. +  void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS, +                     VirtRegMap &VRM) const; + +  void postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS); +}; + +char RegAllocPBQP::ID = 0; + +/// Set spill costs for each node in the PBQP reg-alloc graph. +class SpillCosts : public PBQPRAConstraint { +public: +  void apply(PBQPRAGraph &G) override { +    LiveIntervals &LIS = G.getMetadata().LIS; + +    // A minimum spill costs, so that register constraints can can be set +    // without normalization in the [0.0:MinSpillCost( interval. +    const PBQP::PBQPNum MinSpillCost = 10.0; + +    for (auto NId : G.nodeIds()) { +      PBQP::PBQPNum SpillCost = +        LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight; +      if (SpillCost == 0.0) +        SpillCost = std::numeric_limits<PBQP::PBQPNum>::min(); +      else +        SpillCost += MinSpillCost; +      PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId)); +      NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost; +      G.setNodeCosts(NId, std::move(NodeCosts)); +    } +  } +}; + +/// Add interference edges between overlapping vregs. +class Interference : public PBQPRAConstraint { +private: +  using AllowedRegVecPtr = const PBQP::RegAlloc::AllowedRegVector *; +  using IKey = std::pair<AllowedRegVecPtr, AllowedRegVecPtr>; +  using IMatrixCache = DenseMap<IKey, PBQPRAGraph::MatrixPtr>; +  using DisjointAllowedRegsCache = DenseSet<IKey>; +  using IEdgeKey = std::pair<PBQP::GraphBase::NodeId, PBQP::GraphBase::NodeId>; +  using IEdgeCache = DenseSet<IEdgeKey>; + +  bool haveDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId, +                               PBQPRAGraph::NodeId MId, +                               const DisjointAllowedRegsCache &D) const { +    const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs(); +    const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs(); + +    if (NRegs == MRegs) +      return false; + +    if (NRegs < MRegs) +      return D.count(IKey(NRegs, MRegs)) > 0; + +    return D.count(IKey(MRegs, NRegs)) > 0; +  } + +  void setDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId, +                              PBQPRAGraph::NodeId MId, +                              DisjointAllowedRegsCache &D) { +    const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs(); +    const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs(); + +    assert(NRegs != MRegs && "AllowedRegs can not be disjoint with itself"); + +    if (NRegs < MRegs) +      D.insert(IKey(NRegs, MRegs)); +    else +      D.insert(IKey(MRegs, NRegs)); +  } + +  // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required +  // for the fast interference graph construction algorithm. The last is there +  // to save us from looking up node ids via the VRegToNode map in the graph +  // metadata. +  using IntervalInfo = +      std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId>; + +  static SlotIndex getStartPoint(const IntervalInfo &I) { +    return std::get<0>(I)->segments[std::get<1>(I)].start; +  } + +  static SlotIndex getEndPoint(const IntervalInfo &I) { +    return std::get<0>(I)->segments[std::get<1>(I)].end; +  } + +  static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) { +    return std::get<2>(I); +  } + +  static bool lowestStartPoint(const IntervalInfo &I1, +                               const IntervalInfo &I2) { +    // Condition reversed because priority queue has the *highest* element at +    // the front, rather than the lowest. +    return getStartPoint(I1) > getStartPoint(I2); +  } + +  static bool lowestEndPoint(const IntervalInfo &I1, +                             const IntervalInfo &I2) { +    SlotIndex E1 = getEndPoint(I1); +    SlotIndex E2 = getEndPoint(I2); + +    if (E1 < E2) +      return true; + +    if (E1 > E2) +      return false; + +    // If two intervals end at the same point, we need a way to break the tie or +    // the set will assume they're actually equal and refuse to insert a +    // "duplicate". Just compare the vregs - fast and guaranteed unique. +    return std::get<0>(I1)->reg < std::get<0>(I2)->reg; +  } + +  static bool isAtLastSegment(const IntervalInfo &I) { +    return std::get<1>(I) == std::get<0>(I)->size() - 1; +  } + +  static IntervalInfo nextSegment(const IntervalInfo &I) { +    return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I)); +  } + +public: +  void apply(PBQPRAGraph &G) override { +    // The following is loosely based on the linear scan algorithm introduced in +    // "Linear Scan Register Allocation" by Poletto and Sarkar. This version +    // isn't linear, because the size of the active set isn't bound by the +    // number of registers, but rather the size of the largest clique in the +    // graph. Still, we expect this to be better than N^2. +    LiveIntervals &LIS = G.getMetadata().LIS; + +    // Interferenc matrices are incredibly regular - they're only a function of +    // the allowed sets, so we cache them to avoid the overhead of constructing +    // and uniquing them. +    IMatrixCache C; + +    // Finding an edge is expensive in the worst case (O(max_clique(G))). So +    // cache locally edges we have already seen. +    IEdgeCache EC; + +    // Cache known disjoint allowed registers pairs +    DisjointAllowedRegsCache D; + +    using IntervalSet = std::set<IntervalInfo, decltype(&lowestEndPoint)>; +    using IntervalQueue = +        std::priority_queue<IntervalInfo, std::vector<IntervalInfo>, +                            decltype(&lowestStartPoint)>; +    IntervalSet Active(lowestEndPoint); +    IntervalQueue Inactive(lowestStartPoint); + +    // Start by building the inactive set. +    for (auto NId : G.nodeIds()) { +      unsigned VReg = G.getNodeMetadata(NId).getVReg(); +      LiveInterval &LI = LIS.getInterval(VReg); +      assert(!LI.empty() && "PBQP graph contains node for empty interval"); +      Inactive.push(std::make_tuple(&LI, 0, NId)); +    } + +    while (!Inactive.empty()) { +      // Tentatively grab the "next" interval - this choice may be overriden +      // below. +      IntervalInfo Cur = Inactive.top(); + +      // Retire any active intervals that end before Cur starts. +      IntervalSet::iterator RetireItr = Active.begin(); +      while (RetireItr != Active.end() && +             (getEndPoint(*RetireItr) <= getStartPoint(Cur))) { +        // If this interval has subsequent segments, add the next one to the +        // inactive list. +        if (!isAtLastSegment(*RetireItr)) +          Inactive.push(nextSegment(*RetireItr)); + +        ++RetireItr; +      } +      Active.erase(Active.begin(), RetireItr); + +      // One of the newly retired segments may actually start before the +      // Cur segment, so re-grab the front of the inactive list. +      Cur = Inactive.top(); +      Inactive.pop(); + +      // At this point we know that Cur overlaps all active intervals. Add the +      // interference edges. +      PBQP::GraphBase::NodeId NId = getNodeId(Cur); +      for (const auto &A : Active) { +        PBQP::GraphBase::NodeId MId = getNodeId(A); + +        // Do not add an edge when the nodes' allowed registers do not +        // intersect: there is obviously no interference. +        if (haveDisjointAllowedRegs(G, NId, MId, D)) +          continue; + +        // Check that we haven't already added this edge +        IEdgeKey EK(std::min(NId, MId), std::max(NId, MId)); +        if (EC.count(EK)) +          continue; + +        // This is a new edge - add it to the graph. +        if (!createInterferenceEdge(G, NId, MId, C)) +          setDisjointAllowedRegs(G, NId, MId, D); +        else +          EC.insert(EK); +      } + +      // Finally, add Cur to the Active set. +      Active.insert(Cur); +    } +  } + +private: +  // Create an Interference edge and add it to the graph, unless it is +  // a null matrix, meaning the nodes' allowed registers do not have any +  // interference. This case occurs frequently between integer and floating +  // point registers for example. +  // return true iff both nodes interferes. +  bool createInterferenceEdge(PBQPRAGraph &G, +                              PBQPRAGraph::NodeId NId, PBQPRAGraph::NodeId MId, +                              IMatrixCache &C) { +    const TargetRegisterInfo &TRI = +        *G.getMetadata().MF.getSubtarget().getRegisterInfo(); +    const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs(); +    const auto &MRegs = G.getNodeMetadata(MId).getAllowedRegs(); + +    // Try looking the edge costs up in the IMatrixCache first. +    IKey K(&NRegs, &MRegs); +    IMatrixCache::iterator I = C.find(K); +    if (I != C.end()) { +      G.addEdgeBypassingCostAllocator(NId, MId, I->second); +      return true; +    } + +    PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0); +    bool NodesInterfere = false; +    for (unsigned I = 0; I != NRegs.size(); ++I) { +      unsigned PRegN = NRegs[I]; +      for (unsigned J = 0; J != MRegs.size(); ++J) { +        unsigned PRegM = MRegs[J]; +        if (TRI.regsOverlap(PRegN, PRegM)) { +          M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity(); +          NodesInterfere = true; +        } +      } +    } + +    if (!NodesInterfere) +      return false; + +    PBQPRAGraph::EdgeId EId = G.addEdge(NId, MId, std::move(M)); +    C[K] = G.getEdgeCostsPtr(EId); + +    return true; +  } +}; + +class Coalescing : public PBQPRAConstraint { +public: +  void apply(PBQPRAGraph &G) override { +    MachineFunction &MF = G.getMetadata().MF; +    MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI; +    CoalescerPair CP(*MF.getSubtarget().getRegisterInfo()); + +    // Scan the machine function and add a coalescing cost whenever CoalescerPair +    // gives the Ok. +    for (const auto &MBB : MF) { +      for (const auto &MI : MBB) { +        // Skip not-coalescable or already coalesced copies. +        if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg()) +          continue; + +        unsigned DstReg = CP.getDstReg(); +        unsigned SrcReg = CP.getSrcReg(); + +        const float Scale = 1.0f / MBFI.getEntryFreq(); +        PBQP::PBQPNum CBenefit = MBFI.getBlockFreq(&MBB).getFrequency() * Scale; + +        if (CP.isPhys()) { +          if (!MF.getRegInfo().isAllocatable(DstReg)) +            continue; + +          PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg); + +          const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed = +            G.getNodeMetadata(NId).getAllowedRegs(); + +          unsigned PRegOpt = 0; +          while (PRegOpt < Allowed.size() && Allowed[PRegOpt] != DstReg) +            ++PRegOpt; + +          if (PRegOpt < Allowed.size()) { +            PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId)); +            NewCosts[PRegOpt + 1] -= CBenefit; +            G.setNodeCosts(NId, std::move(NewCosts)); +          } +        } else { +          PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg); +          PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg); +          const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 = +            &G.getNodeMetadata(N1Id).getAllowedRegs(); +          const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 = +            &G.getNodeMetadata(N2Id).getAllowedRegs(); + +          PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id); +          if (EId == G.invalidEdgeId()) { +            PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1, +                                         Allowed2->size() + 1, 0); +            addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); +            G.addEdge(N1Id, N2Id, std::move(Costs)); +          } else { +            if (G.getEdgeNode1Id(EId) == N2Id) { +              std::swap(N1Id, N2Id); +              std::swap(Allowed1, Allowed2); +            } +            PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId)); +            addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); +            G.updateEdgeCosts(EId, std::move(Costs)); +          } +        } +      } +    } +  } + +private: +  void addVirtRegCoalesce( +                    PBQPRAGraph::RawMatrix &CostMat, +                    const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1, +                    const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2, +                    PBQP::PBQPNum Benefit) { +    assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch."); +    assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch."); +    for (unsigned I = 0; I != Allowed1.size(); ++I) { +      unsigned PReg1 = Allowed1[I]; +      for (unsigned J = 0; J != Allowed2.size(); ++J) { +        unsigned PReg2 = Allowed2[J]; +        if (PReg1 == PReg2) +          CostMat[I + 1][J + 1] -= Benefit; +      } +    } +  } +}; + +} // end anonymous namespace + +// Out-of-line destructor/anchor for PBQPRAConstraint. +PBQPRAConstraint::~PBQPRAConstraint() = default; + +void PBQPRAConstraint::anchor() {} + +void PBQPRAConstraintList::anchor() {} + +void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const { +  au.setPreservesCFG(); +  au.addRequired<AAResultsWrapperPass>(); +  au.addPreserved<AAResultsWrapperPass>(); +  au.addRequired<SlotIndexes>(); +  au.addPreserved<SlotIndexes>(); +  au.addRequired<LiveIntervals>(); +  au.addPreserved<LiveIntervals>(); +  //au.addRequiredID(SplitCriticalEdgesID); +  if (customPassID) +    au.addRequiredID(*customPassID); +  au.addRequired<LiveStacks>(); +  au.addPreserved<LiveStacks>(); +  au.addRequired<MachineBlockFrequencyInfo>(); +  au.addPreserved<MachineBlockFrequencyInfo>(); +  au.addRequired<MachineLoopInfo>(); +  au.addPreserved<MachineLoopInfo>(); +  au.addRequired<MachineDominatorTree>(); +  au.addPreserved<MachineDominatorTree>(); +  au.addRequired<VirtRegMap>(); +  au.addPreserved<VirtRegMap>(); +  MachineFunctionPass::getAnalysisUsage(au); +} + +void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF, +                                            LiveIntervals &LIS) { +  const MachineRegisterInfo &MRI = MF.getRegInfo(); + +  // Iterate over all live ranges. +  for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { +    unsigned Reg = Register::index2VirtReg(I); +    if (MRI.reg_nodbg_empty(Reg)) +      continue; +    VRegsToAlloc.insert(Reg); +  } +} + +static bool isACalleeSavedRegister(unsigned reg, const TargetRegisterInfo &TRI, +                                   const MachineFunction &MF) { +  const MCPhysReg *CSR = MF.getRegInfo().getCalleeSavedRegs(); +  for (unsigned i = 0; CSR[i] != 0; ++i) +    if (TRI.regsOverlap(reg, CSR[i])) +      return true; +  return false; +} + +void RegAllocPBQP::initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, +                                   Spiller &VRegSpiller) { +  MachineFunction &MF = G.getMetadata().MF; + +  LiveIntervals &LIS = G.getMetadata().LIS; +  const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo(); +  const TargetRegisterInfo &TRI = +      *G.getMetadata().MF.getSubtarget().getRegisterInfo(); + +  std::vector<unsigned> Worklist(VRegsToAlloc.begin(), VRegsToAlloc.end()); + +  std::map<unsigned, std::vector<unsigned>> VRegAllowedMap; + +  while (!Worklist.empty()) { +    unsigned VReg = Worklist.back(); +    Worklist.pop_back(); + +    LiveInterval &VRegLI = LIS.getInterval(VReg); + +    // If this is an empty interval move it to the EmptyIntervalVRegs set then +    // continue. +    if (VRegLI.empty()) { +      EmptyIntervalVRegs.insert(VRegLI.reg); +      VRegsToAlloc.erase(VRegLI.reg); +      continue; +    } + +    const TargetRegisterClass *TRC = MRI.getRegClass(VReg); + +    // Record any overlaps with regmask operands. +    BitVector RegMaskOverlaps; +    LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps); + +    // Compute an initial allowed set for the current vreg. +    std::vector<unsigned> VRegAllowed; +    ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF); +    for (unsigned I = 0; I != RawPRegOrder.size(); ++I) { +      unsigned PReg = RawPRegOrder[I]; +      if (MRI.isReserved(PReg)) +        continue; + +      // vregLI crosses a regmask operand that clobbers preg. +      if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg)) +        continue; + +      // vregLI overlaps fixed regunit interference. +      bool Interference = false; +      for (MCRegUnitIterator Units(PReg, &TRI); Units.isValid(); ++Units) { +        if (VRegLI.overlaps(LIS.getRegUnit(*Units))) { +          Interference = true; +          break; +        } +      } +      if (Interference) +        continue; + +      // preg is usable for this virtual register. +      VRegAllowed.push_back(PReg); +    } + +    // Check for vregs that have no allowed registers. These should be +    // pre-spilled and the new vregs added to the worklist. +    if (VRegAllowed.empty()) { +      SmallVector<unsigned, 8> NewVRegs; +      spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller); +      Worklist.insert(Worklist.end(), NewVRegs.begin(), NewVRegs.end()); +      continue; +    } else +      VRegAllowedMap[VReg] = std::move(VRegAllowed); +  } + +  for (auto &KV : VRegAllowedMap) { +    auto VReg = KV.first; + +    // Move empty intervals to the EmptyIntervalVReg set. +    if (LIS.getInterval(VReg).empty()) { +      EmptyIntervalVRegs.insert(VReg); +      VRegsToAlloc.erase(VReg); +      continue; +    } + +    auto &VRegAllowed = KV.second; + +    PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0); + +    // Tweak cost of callee saved registers, as using then force spilling and +    // restoring them. This would only happen in the prologue / epilogue though. +    for (unsigned i = 0; i != VRegAllowed.size(); ++i) +      if (isACalleeSavedRegister(VRegAllowed[i], TRI, MF)) +        NodeCosts[1 + i] += 1.0; + +    PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts)); +    G.getNodeMetadata(NId).setVReg(VReg); +    G.getNodeMetadata(NId).setAllowedRegs( +      G.getMetadata().getAllowedRegs(std::move(VRegAllowed))); +    G.getMetadata().setNodeIdForVReg(VReg, NId); +  } +} + +void RegAllocPBQP::spillVReg(unsigned VReg, +                             SmallVectorImpl<unsigned> &NewIntervals, +                             MachineFunction &MF, LiveIntervals &LIS, +                             VirtRegMap &VRM, Spiller &VRegSpiller) { +  VRegsToAlloc.erase(VReg); +  LiveRangeEdit LRE(&LIS.getInterval(VReg), NewIntervals, MF, LIS, &VRM, +                    nullptr, &DeadRemats); +  VRegSpiller.spill(LRE); + +  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); +  (void)TRI; +  LLVM_DEBUG(dbgs() << "VREG " << printReg(VReg, &TRI) << " -> SPILLED (Cost: " +                    << LRE.getParent().weight << ", New vregs: "); + +  // Copy any newly inserted live intervals into the list of regs to +  // allocate. +  for (LiveRangeEdit::iterator I = LRE.begin(), E = LRE.end(); +       I != E; ++I) { +    const LiveInterval &LI = LIS.getInterval(*I); +    assert(!LI.empty() && "Empty spill range."); +    LLVM_DEBUG(dbgs() << printReg(LI.reg, &TRI) << " "); +    VRegsToAlloc.insert(LI.reg); +  } + +  LLVM_DEBUG(dbgs() << ")\n"); +} + +bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G, +                                     const PBQP::Solution &Solution, +                                     VirtRegMap &VRM, +                                     Spiller &VRegSpiller) { +  MachineFunction &MF = G.getMetadata().MF; +  LiveIntervals &LIS = G.getMetadata().LIS; +  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); +  (void)TRI; + +  // Set to true if we have any spills +  bool AnotherRoundNeeded = false; + +  // Clear the existing allocation. +  VRM.clearAllVirt(); + +  // Iterate over the nodes mapping the PBQP solution to a register +  // assignment. +  for (auto NId : G.nodeIds()) { +    unsigned VReg = G.getNodeMetadata(NId).getVReg(); +    unsigned AllocOption = Solution.getSelection(NId); + +    if (AllocOption != PBQP::RegAlloc::getSpillOptionIdx()) { +      unsigned PReg = G.getNodeMetadata(NId).getAllowedRegs()[AllocOption - 1]; +      LLVM_DEBUG(dbgs() << "VREG " << printReg(VReg, &TRI) << " -> " +                        << TRI.getName(PReg) << "\n"); +      assert(PReg != 0 && "Invalid preg selected."); +      VRM.assignVirt2Phys(VReg, PReg); +    } else { +      // Spill VReg. If this introduces new intervals we'll need another round +      // of allocation. +      SmallVector<unsigned, 8> NewVRegs; +      spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller); +      AnotherRoundNeeded |= !NewVRegs.empty(); +    } +  } + +  return !AnotherRoundNeeded; +} + +void RegAllocPBQP::finalizeAlloc(MachineFunction &MF, +                                 LiveIntervals &LIS, +                                 VirtRegMap &VRM) const { +  MachineRegisterInfo &MRI = MF.getRegInfo(); + +  // First allocate registers for the empty intervals. +  for (RegSet::const_iterator +         I = EmptyIntervalVRegs.begin(), E = EmptyIntervalVRegs.end(); +         I != E; ++I) { +    LiveInterval &LI = LIS.getInterval(*I); + +    unsigned PReg = MRI.getSimpleHint(LI.reg); + +    if (PReg == 0) { +      const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg); +      const ArrayRef<MCPhysReg> RawPRegOrder = RC.getRawAllocationOrder(MF); +      for (unsigned CandidateReg : RawPRegOrder) { +        if (!VRM.getRegInfo().isReserved(CandidateReg)) { +          PReg = CandidateReg; +          break; +        } +      } +      assert(PReg && +             "No un-reserved physical registers in this register class"); +    } + +    VRM.assignVirt2Phys(LI.reg, PReg); +  } +} + +void RegAllocPBQP::postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS) { +  VRegSpiller.postOptimization(); +  /// Remove dead defs because of rematerialization. +  for (auto DeadInst : DeadRemats) { +    LIS.RemoveMachineInstrFromMaps(*DeadInst); +    DeadInst->eraseFromParent(); +  } +  DeadRemats.clear(); +} + +static inline float normalizePBQPSpillWeight(float UseDefFreq, unsigned Size, +                                         unsigned NumInstr) { +  // All intervals have a spill weight that is mostly proportional to the number +  // of uses, with uses in loops having a bigger weight. +  return NumInstr * normalizeSpillWeight(UseDefFreq, Size, 1); +} + +bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) { +  LiveIntervals &LIS = getAnalysis<LiveIntervals>(); +  MachineBlockFrequencyInfo &MBFI = +    getAnalysis<MachineBlockFrequencyInfo>(); + +  VirtRegMap &VRM = getAnalysis<VirtRegMap>(); + +  calculateSpillWeightsAndHints(LIS, MF, &VRM, getAnalysis<MachineLoopInfo>(), +                                MBFI, normalizePBQPSpillWeight); + +  std::unique_ptr<Spiller> VRegSpiller(createInlineSpiller(*this, MF, VRM)); + +  MF.getRegInfo().freezeReservedRegs(MF); + +  LLVM_DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n"); + +  // Allocator main loop: +  // +  // * Map current regalloc problem to a PBQP problem +  // * Solve the PBQP problem +  // * Map the solution back to a register allocation +  // * Spill if necessary +  // +  // This process is continued till no more spills are generated. + +  // Find the vreg intervals in need of allocation. +  findVRegIntervalsToAlloc(MF, LIS); + +#ifndef NDEBUG +  const Function &F = MF.getFunction(); +  std::string FullyQualifiedName = +    F.getParent()->getModuleIdentifier() + "." + F.getName().str(); +#endif + +  // If there are non-empty intervals allocate them using pbqp. +  if (!VRegsToAlloc.empty()) { +    const TargetSubtargetInfo &Subtarget = MF.getSubtarget(); +    std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot = +      std::make_unique<PBQPRAConstraintList>(); +    ConstraintsRoot->addConstraint(std::make_unique<SpillCosts>()); +    ConstraintsRoot->addConstraint(std::make_unique<Interference>()); +    if (PBQPCoalescing) +      ConstraintsRoot->addConstraint(std::make_unique<Coalescing>()); +    ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints()); + +    bool PBQPAllocComplete = false; +    unsigned Round = 0; + +    while (!PBQPAllocComplete) { +      LLVM_DEBUG(dbgs() << "  PBQP Regalloc round " << Round << ":\n"); + +      PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI)); +      initializeGraph(G, VRM, *VRegSpiller); +      ConstraintsRoot->apply(G); + +#ifndef NDEBUG +      if (PBQPDumpGraphs) { +        std::ostringstream RS; +        RS << Round; +        std::string GraphFileName = FullyQualifiedName + "." + RS.str() + +                                    ".pbqpgraph"; +        std::error_code EC; +        raw_fd_ostream OS(GraphFileName, EC, sys::fs::OF_Text); +        LLVM_DEBUG(dbgs() << "Dumping graph for round " << Round << " to \"" +                          << GraphFileName << "\"\n"); +        G.dump(OS); +      } +#endif + +      PBQP::Solution Solution = PBQP::RegAlloc::solve(G); +      PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller); +      ++Round; +    } +  } + +  // Finalise allocation, allocate empty ranges. +  finalizeAlloc(MF, LIS, VRM); +  postOptimization(*VRegSpiller, LIS); +  VRegsToAlloc.clear(); +  EmptyIntervalVRegs.clear(); + +  LLVM_DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n"); + +  return true; +} + +/// Create Printable object for node and register info. +static Printable PrintNodeInfo(PBQP::RegAlloc::PBQPRAGraph::NodeId NId, +                               const PBQP::RegAlloc::PBQPRAGraph &G) { +  return Printable([NId, &G](raw_ostream &OS) { +    const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo(); +    const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); +    unsigned VReg = G.getNodeMetadata(NId).getVReg(); +    const char *RegClassName = TRI->getRegClassName(MRI.getRegClass(VReg)); +    OS << NId << " (" << RegClassName << ':' << printReg(VReg, TRI) << ')'; +  }); +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump(raw_ostream &OS) const { +  for (auto NId : nodeIds()) { +    const Vector &Costs = getNodeCosts(NId); +    assert(Costs.getLength() != 0 && "Empty vector in graph."); +    OS << PrintNodeInfo(NId, *this) << ": " << Costs << '\n'; +  } +  OS << '\n'; + +  for (auto EId : edgeIds()) { +    NodeId N1Id = getEdgeNode1Id(EId); +    NodeId N2Id = getEdgeNode2Id(EId); +    assert(N1Id != N2Id && "PBQP graphs should not have self-edges."); +    const Matrix &M = getEdgeCosts(EId); +    assert(M.getRows() != 0 && "No rows in matrix."); +    assert(M.getCols() != 0 && "No cols in matrix."); +    OS << PrintNodeInfo(N1Id, *this) << ' ' << M.getRows() << " rows / "; +    OS << PrintNodeInfo(N2Id, *this) << ' ' << M.getCols() << " cols:\n"; +    OS << M << '\n'; +  } +} + +LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump() const { +  dump(dbgs()); +} +#endif + +void PBQP::RegAlloc::PBQPRAGraph::printDot(raw_ostream &OS) const { +  OS << "graph {\n"; +  for (auto NId : nodeIds()) { +    OS << "  node" << NId << " [ label=\"" +       << PrintNodeInfo(NId, *this) << "\\n" +       << getNodeCosts(NId) << "\" ]\n"; +  } + +  OS << "  edge [ len=" << nodeIds().size() << " ]\n"; +  for (auto EId : edgeIds()) { +    OS << "  node" << getEdgeNode1Id(EId) +       << " -- node" << getEdgeNode2Id(EId) +       << " [ label=\""; +    const Matrix &EdgeCosts = getEdgeCosts(EId); +    for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) { +      OS << EdgeCosts.getRowAsVector(i) << "\\n"; +    } +    OS << "\" ]\n"; +  } +  OS << "}\n"; +} + +FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) { +  return new RegAllocPBQP(customPassID); +} + +FunctionPass* llvm::createDefaultPBQPRegisterAllocator() { +  return createPBQPRegisterAllocator(); +} | 
