diff options
Diffstat (limited to 'llvm/lib/CodeGen/TargetInstrInfo.cpp')
-rw-r--r-- | llvm/lib/CodeGen/TargetInstrInfo.cpp | 1249 |
1 files changed, 1249 insertions, 0 deletions
diff --git a/llvm/lib/CodeGen/TargetInstrInfo.cpp b/llvm/lib/CodeGen/TargetInstrInfo.cpp new file mode 100644 index 000000000000..6cae3b869501 --- /dev/null +++ b/llvm/lib/CodeGen/TargetInstrInfo.cpp @@ -0,0 +1,1249 @@ +//===-- TargetInstrInfo.cpp - Target Instruction Information --------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the TargetInstrInfo class. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/PseudoSourceValue.h" +#include "llvm/CodeGen/ScoreboardHazardRecognizer.h" +#include "llvm/CodeGen/StackMaps.h" +#include "llvm/CodeGen/TargetFrameLowering.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSchedule.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/MC/MCAsmInfo.h" +#include "llvm/MC/MCInstrItineraries.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" +#include <cctype> + +using namespace llvm; + +static cl::opt<bool> DisableHazardRecognizer( + "disable-sched-hazard", cl::Hidden, cl::init(false), + cl::desc("Disable hazard detection during preRA scheduling")); + +TargetInstrInfo::~TargetInstrInfo() { +} + +const TargetRegisterClass* +TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum, + const TargetRegisterInfo *TRI, + const MachineFunction &MF) const { + if (OpNum >= MCID.getNumOperands()) + return nullptr; + + short RegClass = MCID.OpInfo[OpNum].RegClass; + if (MCID.OpInfo[OpNum].isLookupPtrRegClass()) + return TRI->getPointerRegClass(MF, RegClass); + + // Instructions like INSERT_SUBREG do not have fixed register classes. + if (RegClass < 0) + return nullptr; + + // Otherwise just look it up normally. + return TRI->getRegClass(RegClass); +} + +/// insertNoop - Insert a noop into the instruction stream at the specified +/// point. +void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI) const { + llvm_unreachable("Target didn't implement insertNoop!"); +} + +static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) { + return strncmp(Str, MAI.getCommentString().data(), + MAI.getCommentString().size()) == 0; +} + +/// Measure the specified inline asm to determine an approximation of its +/// length. +/// Comments (which run till the next SeparatorString or newline) do not +/// count as an instruction. +/// Any other non-whitespace text is considered an instruction, with +/// multiple instructions separated by SeparatorString or newlines. +/// Variable-length instructions are not handled here; this function +/// may be overloaded in the target code to do that. +/// We implement a special case of the .space directive which takes only a +/// single integer argument in base 10 that is the size in bytes. This is a +/// restricted form of the GAS directive in that we only interpret +/// simple--i.e. not a logical or arithmetic expression--size values without +/// the optional fill value. This is primarily used for creating arbitrary +/// sized inline asm blocks for testing purposes. +unsigned TargetInstrInfo::getInlineAsmLength( + const char *Str, + const MCAsmInfo &MAI, const TargetSubtargetInfo *STI) const { + // Count the number of instructions in the asm. + bool AtInsnStart = true; + unsigned Length = 0; + const unsigned MaxInstLength = MAI.getMaxInstLength(STI); + for (; *Str; ++Str) { + if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), + strlen(MAI.getSeparatorString())) == 0) { + AtInsnStart = true; + } else if (isAsmComment(Str, MAI)) { + // Stop counting as an instruction after a comment until the next + // separator. + AtInsnStart = false; + } + + if (AtInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) { + unsigned AddLength = MaxInstLength; + if (strncmp(Str, ".space", 6) == 0) { + char *EStr; + int SpaceSize; + SpaceSize = strtol(Str + 6, &EStr, 10); + SpaceSize = SpaceSize < 0 ? 0 : SpaceSize; + while (*EStr != '\n' && std::isspace(static_cast<unsigned char>(*EStr))) + ++EStr; + if (*EStr == '\0' || *EStr == '\n' || + isAsmComment(EStr, MAI)) // Successfully parsed .space argument + AddLength = SpaceSize; + } + Length += AddLength; + AtInsnStart = false; + } + } + + return Length; +} + +/// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything +/// after it, replacing it with an unconditional branch to NewDest. +void +TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, + MachineBasicBlock *NewDest) const { + MachineBasicBlock *MBB = Tail->getParent(); + + // Remove all the old successors of MBB from the CFG. + while (!MBB->succ_empty()) + MBB->removeSuccessor(MBB->succ_begin()); + + // Save off the debug loc before erasing the instruction. + DebugLoc DL = Tail->getDebugLoc(); + + // Update call site info and remove all the dead instructions + // from the end of MBB. + while (Tail != MBB->end()) { + auto MI = Tail++; + if (MI->isCall()) + MBB->getParent()->eraseCallSiteInfo(&*MI); + MBB->erase(MI); + } + + // If MBB isn't immediately before MBB, insert a branch to it. + if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest)) + insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL); + MBB->addSuccessor(NewDest); +} + +MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI, + bool NewMI, unsigned Idx1, + unsigned Idx2) const { + const MCInstrDesc &MCID = MI.getDesc(); + bool HasDef = MCID.getNumDefs(); + if (HasDef && !MI.getOperand(0).isReg()) + // No idea how to commute this instruction. Target should implement its own. + return nullptr; + + unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1; + unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2; + assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) && + CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 && + "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands."); + assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() && + "This only knows how to commute register operands so far"); + + Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register(); + Register Reg1 = MI.getOperand(Idx1).getReg(); + Register Reg2 = MI.getOperand(Idx2).getReg(); + unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0; + unsigned SubReg1 = MI.getOperand(Idx1).getSubReg(); + unsigned SubReg2 = MI.getOperand(Idx2).getSubReg(); + bool Reg1IsKill = MI.getOperand(Idx1).isKill(); + bool Reg2IsKill = MI.getOperand(Idx2).isKill(); + bool Reg1IsUndef = MI.getOperand(Idx1).isUndef(); + bool Reg2IsUndef = MI.getOperand(Idx2).isUndef(); + bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead(); + bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead(); + // Avoid calling isRenamable for virtual registers since we assert that + // renamable property is only queried/set for physical registers. + bool Reg1IsRenamable = Register::isPhysicalRegister(Reg1) + ? MI.getOperand(Idx1).isRenamable() + : false; + bool Reg2IsRenamable = Register::isPhysicalRegister(Reg2) + ? MI.getOperand(Idx2).isRenamable() + : false; + // If destination is tied to either of the commuted source register, then + // it must be updated. + if (HasDef && Reg0 == Reg1 && + MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) { + Reg2IsKill = false; + Reg0 = Reg2; + SubReg0 = SubReg2; + } else if (HasDef && Reg0 == Reg2 && + MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) { + Reg1IsKill = false; + Reg0 = Reg1; + SubReg0 = SubReg1; + } + + MachineInstr *CommutedMI = nullptr; + if (NewMI) { + // Create a new instruction. + MachineFunction &MF = *MI.getMF(); + CommutedMI = MF.CloneMachineInstr(&MI); + } else { + CommutedMI = &MI; + } + + if (HasDef) { + CommutedMI->getOperand(0).setReg(Reg0); + CommutedMI->getOperand(0).setSubReg(SubReg0); + } + CommutedMI->getOperand(Idx2).setReg(Reg1); + CommutedMI->getOperand(Idx1).setReg(Reg2); + CommutedMI->getOperand(Idx2).setSubReg(SubReg1); + CommutedMI->getOperand(Idx1).setSubReg(SubReg2); + CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill); + CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill); + CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef); + CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef); + CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal); + CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal); + // Avoid calling setIsRenamable for virtual registers since we assert that + // renamable property is only queried/set for physical registers. + if (Register::isPhysicalRegister(Reg1)) + CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable); + if (Register::isPhysicalRegister(Reg2)) + CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable); + return CommutedMI; +} + +MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI, + unsigned OpIdx1, + unsigned OpIdx2) const { + // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose + // any commutable operand, which is done in findCommutedOpIndices() method + // called below. + if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) && + !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) { + assert(MI.isCommutable() && + "Precondition violation: MI must be commutable."); + return nullptr; + } + return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); +} + +bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1, + unsigned &ResultIdx2, + unsigned CommutableOpIdx1, + unsigned CommutableOpIdx2) { + if (ResultIdx1 == CommuteAnyOperandIndex && + ResultIdx2 == CommuteAnyOperandIndex) { + ResultIdx1 = CommutableOpIdx1; + ResultIdx2 = CommutableOpIdx2; + } else if (ResultIdx1 == CommuteAnyOperandIndex) { + if (ResultIdx2 == CommutableOpIdx1) + ResultIdx1 = CommutableOpIdx2; + else if (ResultIdx2 == CommutableOpIdx2) + ResultIdx1 = CommutableOpIdx1; + else + return false; + } else if (ResultIdx2 == CommuteAnyOperandIndex) { + if (ResultIdx1 == CommutableOpIdx1) + ResultIdx2 = CommutableOpIdx2; + else if (ResultIdx1 == CommutableOpIdx2) + ResultIdx2 = CommutableOpIdx1; + else + return false; + } else + // Check that the result operand indices match the given commutable + // operand indices. + return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) || + (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1); + + return true; +} + +bool TargetInstrInfo::findCommutedOpIndices(const MachineInstr &MI, + unsigned &SrcOpIdx1, + unsigned &SrcOpIdx2) const { + assert(!MI.isBundle() && + "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); + + const MCInstrDesc &MCID = MI.getDesc(); + if (!MCID.isCommutable()) + return false; + + // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this + // is not true, then the target must implement this. + unsigned CommutableOpIdx1 = MCID.getNumDefs(); + unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1; + if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, + CommutableOpIdx1, CommutableOpIdx2)) + return false; + + if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg()) + // No idea. + return false; + return true; +} + +bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { + if (!MI.isTerminator()) return false; + + // Conditional branch is a special case. + if (MI.isBranch() && !MI.isBarrier()) + return true; + if (!MI.isPredicable()) + return true; + return !isPredicated(MI); +} + +bool TargetInstrInfo::PredicateInstruction( + MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { + bool MadeChange = false; + + assert(!MI.isBundle() && + "TargetInstrInfo::PredicateInstruction() can't handle bundles"); + + const MCInstrDesc &MCID = MI.getDesc(); + if (!MI.isPredicable()) + return false; + + for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) { + if (MCID.OpInfo[i].isPredicate()) { + MachineOperand &MO = MI.getOperand(i); + if (MO.isReg()) { + MO.setReg(Pred[j].getReg()); + MadeChange = true; + } else if (MO.isImm()) { + MO.setImm(Pred[j].getImm()); + MadeChange = true; + } else if (MO.isMBB()) { + MO.setMBB(Pred[j].getMBB()); + MadeChange = true; + } + ++j; + } + } + return MadeChange; +} + +bool TargetInstrInfo::hasLoadFromStackSlot( + const MachineInstr &MI, + SmallVectorImpl<const MachineMemOperand *> &Accesses) const { + size_t StartSize = Accesses.size(); + for (MachineInstr::mmo_iterator o = MI.memoperands_begin(), + oe = MI.memoperands_end(); + o != oe; ++o) { + if ((*o)->isLoad() && + dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue())) + Accesses.push_back(*o); + } + return Accesses.size() != StartSize; +} + +bool TargetInstrInfo::hasStoreToStackSlot( + const MachineInstr &MI, + SmallVectorImpl<const MachineMemOperand *> &Accesses) const { + size_t StartSize = Accesses.size(); + for (MachineInstr::mmo_iterator o = MI.memoperands_begin(), + oe = MI.memoperands_end(); + o != oe; ++o) { + if ((*o)->isStore() && + dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue())) + Accesses.push_back(*o); + } + return Accesses.size() != StartSize; +} + +bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC, + unsigned SubIdx, unsigned &Size, + unsigned &Offset, + const MachineFunction &MF) const { + const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); + if (!SubIdx) { + Size = TRI->getSpillSize(*RC); + Offset = 0; + return true; + } + unsigned BitSize = TRI->getSubRegIdxSize(SubIdx); + // Convert bit size to byte size. + if (BitSize % 8) + return false; + + int BitOffset = TRI->getSubRegIdxOffset(SubIdx); + if (BitOffset < 0 || BitOffset % 8) + return false; + + Size = BitSize / 8; + Offset = (unsigned)BitOffset / 8; + + assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range"); + + if (!MF.getDataLayout().isLittleEndian()) { + Offset = TRI->getSpillSize(*RC) - (Offset + Size); + } + return true; +} + +void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB, + MachineBasicBlock::iterator I, + unsigned DestReg, unsigned SubIdx, + const MachineInstr &Orig, + const TargetRegisterInfo &TRI) const { + MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); + MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); + MBB.insert(I, MI); +} + +bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0, + const MachineInstr &MI1, + const MachineRegisterInfo *MRI) const { + return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); +} + +MachineInstr &TargetInstrInfo::duplicate(MachineBasicBlock &MBB, + MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const { + assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated"); + MachineFunction &MF = *MBB.getParent(); + return MF.CloneMachineInstrBundle(MBB, InsertBefore, Orig); +} + +// If the COPY instruction in MI can be folded to a stack operation, return +// the register class to use. +static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI, + unsigned FoldIdx) { + assert(MI.isCopy() && "MI must be a COPY instruction"); + if (MI.getNumOperands() != 2) + return nullptr; + assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand"); + + const MachineOperand &FoldOp = MI.getOperand(FoldIdx); + const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx); + + if (FoldOp.getSubReg() || LiveOp.getSubReg()) + return nullptr; + + Register FoldReg = FoldOp.getReg(); + Register LiveReg = LiveOp.getReg(); + + assert(Register::isVirtualRegister(FoldReg) && "Cannot fold physregs"); + + const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); + const TargetRegisterClass *RC = MRI.getRegClass(FoldReg); + + if (Register::isPhysicalRegister(LiveOp.getReg())) + return RC->contains(LiveOp.getReg()) ? RC : nullptr; + + if (RC->hasSubClassEq(MRI.getRegClass(LiveReg))) + return RC; + + // FIXME: Allow folding when register classes are memory compatible. + return nullptr; +} + +void TargetInstrInfo::getNoop(MCInst &NopInst) const { + llvm_unreachable("Not implemented"); +} + +static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI, + ArrayRef<unsigned> Ops, int FrameIndex, + const TargetInstrInfo &TII) { + unsigned StartIdx = 0; + switch (MI.getOpcode()) { + case TargetOpcode::STACKMAP: { + // StackMapLiveValues are foldable + StartIdx = StackMapOpers(&MI).getVarIdx(); + break; + } + case TargetOpcode::PATCHPOINT: { + // For PatchPoint, the call args are not foldable (even if reported in the + // stackmap e.g. via anyregcc). + StartIdx = PatchPointOpers(&MI).getVarIdx(); + break; + } + case TargetOpcode::STATEPOINT: { + // For statepoints, fold deopt and gc arguments, but not call arguments. + StartIdx = StatepointOpers(&MI).getVarIdx(); + break; + } + default: + llvm_unreachable("unexpected stackmap opcode"); + } + + // Return false if any operands requested for folding are not foldable (not + // part of the stackmap's live values). + for (unsigned Op : Ops) { + if (Op < StartIdx) + return nullptr; + } + + MachineInstr *NewMI = + MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true); + MachineInstrBuilder MIB(MF, NewMI); + + // No need to fold return, the meta data, and function arguments + for (unsigned i = 0; i < StartIdx; ++i) + MIB.add(MI.getOperand(i)); + + for (unsigned i = StartIdx; i < MI.getNumOperands(); ++i) { + MachineOperand &MO = MI.getOperand(i); + if (is_contained(Ops, i)) { + unsigned SpillSize; + unsigned SpillOffset; + // Compute the spill slot size and offset. + const TargetRegisterClass *RC = + MF.getRegInfo().getRegClass(MO.getReg()); + bool Valid = + TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF); + if (!Valid) + report_fatal_error("cannot spill patchpoint subregister operand"); + MIB.addImm(StackMaps::IndirectMemRefOp); + MIB.addImm(SpillSize); + MIB.addFrameIndex(FrameIndex); + MIB.addImm(SpillOffset); + } + else + MIB.add(MO); + } + return NewMI; +} + +MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI, + ArrayRef<unsigned> Ops, int FI, + LiveIntervals *LIS, + VirtRegMap *VRM) const { + auto Flags = MachineMemOperand::MONone; + for (unsigned OpIdx : Ops) + Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore + : MachineMemOperand::MOLoad; + + MachineBasicBlock *MBB = MI.getParent(); + assert(MBB && "foldMemoryOperand needs an inserted instruction"); + MachineFunction &MF = *MBB->getParent(); + + // If we're not folding a load into a subreg, the size of the load is the + // size of the spill slot. But if we are, we need to figure out what the + // actual load size is. + int64_t MemSize = 0; + const MachineFrameInfo &MFI = MF.getFrameInfo(); + const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); + + if (Flags & MachineMemOperand::MOStore) { + MemSize = MFI.getObjectSize(FI); + } else { + for (unsigned OpIdx : Ops) { + int64_t OpSize = MFI.getObjectSize(FI); + + if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) { + unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg); + if (SubRegSize > 0 && !(SubRegSize % 8)) + OpSize = SubRegSize / 8; + } + + MemSize = std::max(MemSize, OpSize); + } + } + + assert(MemSize && "Did not expect a zero-sized stack slot"); + + MachineInstr *NewMI = nullptr; + + if (MI.getOpcode() == TargetOpcode::STACKMAP || + MI.getOpcode() == TargetOpcode::PATCHPOINT || + MI.getOpcode() == TargetOpcode::STATEPOINT) { + // Fold stackmap/patchpoint. + NewMI = foldPatchpoint(MF, MI, Ops, FI, *this); + if (NewMI) + MBB->insert(MI, NewMI); + } else { + // Ask the target to do the actual folding. + NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS, VRM); + } + + if (NewMI) { + NewMI->setMemRefs(MF, MI.memoperands()); + // Add a memory operand, foldMemoryOperandImpl doesn't do that. + assert((!(Flags & MachineMemOperand::MOStore) || + NewMI->mayStore()) && + "Folded a def to a non-store!"); + assert((!(Flags & MachineMemOperand::MOLoad) || + NewMI->mayLoad()) && + "Folded a use to a non-load!"); + assert(MFI.getObjectOffset(FI) != -1); + MachineMemOperand *MMO = MF.getMachineMemOperand( + MachinePointerInfo::getFixedStack(MF, FI), Flags, MemSize, + MFI.getObjectAlignment(FI)); + NewMI->addMemOperand(MF, MMO); + + return NewMI; + } + + // Straight COPY may fold as load/store. + if (!MI.isCopy() || Ops.size() != 1) + return nullptr; + + const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]); + if (!RC) + return nullptr; + + const MachineOperand &MO = MI.getOperand(1 - Ops[0]); + MachineBasicBlock::iterator Pos = MI; + + if (Flags == MachineMemOperand::MOStore) + storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI); + else + loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI); + return &*--Pos; +} + +MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI, + ArrayRef<unsigned> Ops, + MachineInstr &LoadMI, + LiveIntervals *LIS) const { + assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!"); +#ifndef NDEBUG + for (unsigned OpIdx : Ops) + assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!"); +#endif + + MachineBasicBlock &MBB = *MI.getParent(); + MachineFunction &MF = *MBB.getParent(); + + // Ask the target to do the actual folding. + MachineInstr *NewMI = nullptr; + int FrameIndex = 0; + + if ((MI.getOpcode() == TargetOpcode::STACKMAP || + MI.getOpcode() == TargetOpcode::PATCHPOINT || + MI.getOpcode() == TargetOpcode::STATEPOINT) && + isLoadFromStackSlot(LoadMI, FrameIndex)) { + // Fold stackmap/patchpoint. + NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this); + if (NewMI) + NewMI = &*MBB.insert(MI, NewMI); + } else { + // Ask the target to do the actual folding. + NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS); + } + + if (!NewMI) + return nullptr; + + // Copy the memoperands from the load to the folded instruction. + if (MI.memoperands_empty()) { + NewMI->setMemRefs(MF, LoadMI.memoperands()); + } else { + // Handle the rare case of folding multiple loads. + NewMI->setMemRefs(MF, MI.memoperands()); + for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(), + E = LoadMI.memoperands_end(); + I != E; ++I) { + NewMI->addMemOperand(MF, *I); + } + } + return NewMI; +} + +bool TargetInstrInfo::hasReassociableOperands( + const MachineInstr &Inst, const MachineBasicBlock *MBB) const { + const MachineOperand &Op1 = Inst.getOperand(1); + const MachineOperand &Op2 = Inst.getOperand(2); + const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); + + // We need virtual register definitions for the operands that we will + // reassociate. + MachineInstr *MI1 = nullptr; + MachineInstr *MI2 = nullptr; + if (Op1.isReg() && Register::isVirtualRegister(Op1.getReg())) + MI1 = MRI.getUniqueVRegDef(Op1.getReg()); + if (Op2.isReg() && Register::isVirtualRegister(Op2.getReg())) + MI2 = MRI.getUniqueVRegDef(Op2.getReg()); + + // And they need to be in the trace (otherwise, they won't have a depth). + return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB; +} + +bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst, + bool &Commuted) const { + const MachineBasicBlock *MBB = Inst.getParent(); + const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); + MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg()); + MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg()); + unsigned AssocOpcode = Inst.getOpcode(); + + // If only one operand has the same opcode and it's the second source operand, + // the operands must be commuted. + Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode; + if (Commuted) + std::swap(MI1, MI2); + + // 1. The previous instruction must be the same type as Inst. + // 2. The previous instruction must have virtual register definitions for its + // operands in the same basic block as Inst. + // 3. The previous instruction's result must only be used by Inst. + return MI1->getOpcode() == AssocOpcode && + hasReassociableOperands(*MI1, MBB) && + MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg()); +} + +// 1. The operation must be associative and commutative. +// 2. The instruction must have virtual register definitions for its +// operands in the same basic block. +// 3. The instruction must have a reassociable sibling. +bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst, + bool &Commuted) const { + return isAssociativeAndCommutative(Inst) && + hasReassociableOperands(Inst, Inst.getParent()) && + hasReassociableSibling(Inst, Commuted); +} + +// The concept of the reassociation pass is that these operations can benefit +// from this kind of transformation: +// +// A = ? op ? +// B = A op X (Prev) +// C = B op Y (Root) +// --> +// A = ? op ? +// B = X op Y +// C = A op B +// +// breaking the dependency between A and B, allowing them to be executed in +// parallel (or back-to-back in a pipeline) instead of depending on each other. + +// FIXME: This has the potential to be expensive (compile time) while not +// improving the code at all. Some ways to limit the overhead: +// 1. Track successful transforms; bail out if hit rate gets too low. +// 2. Only enable at -O3 or some other non-default optimization level. +// 3. Pre-screen pattern candidates here: if an operand of the previous +// instruction is known to not increase the critical path, then don't match +// that pattern. +bool TargetInstrInfo::getMachineCombinerPatterns( + MachineInstr &Root, + SmallVectorImpl<MachineCombinerPattern> &Patterns) const { + bool Commute; + if (isReassociationCandidate(Root, Commute)) { + // We found a sequence of instructions that may be suitable for a + // reassociation of operands to increase ILP. Specify each commutation + // possibility for the Prev instruction in the sequence and let the + // machine combiner decide if changing the operands is worthwhile. + if (Commute) { + Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB); + Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB); + } else { + Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY); + Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY); + } + return true; + } + + return false; +} + +/// Return true when a code sequence can improve loop throughput. +bool +TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const { + return false; +} + +/// Attempt the reassociation transformation to reduce critical path length. +/// See the above comments before getMachineCombinerPatterns(). +void TargetInstrInfo::reassociateOps( + MachineInstr &Root, MachineInstr &Prev, + MachineCombinerPattern Pattern, + SmallVectorImpl<MachineInstr *> &InsInstrs, + SmallVectorImpl<MachineInstr *> &DelInstrs, + DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { + MachineFunction *MF = Root.getMF(); + MachineRegisterInfo &MRI = MF->getRegInfo(); + const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); + const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); + const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI); + + // This array encodes the operand index for each parameter because the + // operands may be commuted. Each row corresponds to a pattern value, + // and each column specifies the index of A, B, X, Y. + unsigned OpIdx[4][4] = { + { 1, 1, 2, 2 }, + { 1, 2, 2, 1 }, + { 2, 1, 1, 2 }, + { 2, 2, 1, 1 } + }; + + int Row; + switch (Pattern) { + case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break; + case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break; + case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break; + case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break; + default: llvm_unreachable("unexpected MachineCombinerPattern"); + } + + MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]); + MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]); + MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]); + MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]); + MachineOperand &OpC = Root.getOperand(0); + + Register RegA = OpA.getReg(); + Register RegB = OpB.getReg(); + Register RegX = OpX.getReg(); + Register RegY = OpY.getReg(); + Register RegC = OpC.getReg(); + + if (Register::isVirtualRegister(RegA)) + MRI.constrainRegClass(RegA, RC); + if (Register::isVirtualRegister(RegB)) + MRI.constrainRegClass(RegB, RC); + if (Register::isVirtualRegister(RegX)) + MRI.constrainRegClass(RegX, RC); + if (Register::isVirtualRegister(RegY)) + MRI.constrainRegClass(RegY, RC); + if (Register::isVirtualRegister(RegC)) + MRI.constrainRegClass(RegC, RC); + + // Create a new virtual register for the result of (X op Y) instead of + // recycling RegB because the MachineCombiner's computation of the critical + // path requires a new register definition rather than an existing one. + Register NewVR = MRI.createVirtualRegister(RC); + InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); + + unsigned Opcode = Root.getOpcode(); + bool KillA = OpA.isKill(); + bool KillX = OpX.isKill(); + bool KillY = OpY.isKill(); + + // Create new instructions for insertion. + MachineInstrBuilder MIB1 = + BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR) + .addReg(RegX, getKillRegState(KillX)) + .addReg(RegY, getKillRegState(KillY)); + MachineInstrBuilder MIB2 = + BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC) + .addReg(RegA, getKillRegState(KillA)) + .addReg(NewVR, getKillRegState(true)); + + setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2); + + // Record new instructions for insertion and old instructions for deletion. + InsInstrs.push_back(MIB1); + InsInstrs.push_back(MIB2); + DelInstrs.push_back(&Prev); + DelInstrs.push_back(&Root); +} + +void TargetInstrInfo::genAlternativeCodeSequence( + MachineInstr &Root, MachineCombinerPattern Pattern, + SmallVectorImpl<MachineInstr *> &InsInstrs, + SmallVectorImpl<MachineInstr *> &DelInstrs, + DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const { + MachineRegisterInfo &MRI = Root.getMF()->getRegInfo(); + + // Select the previous instruction in the sequence based on the input pattern. + MachineInstr *Prev = nullptr; + switch (Pattern) { + case MachineCombinerPattern::REASSOC_AX_BY: + case MachineCombinerPattern::REASSOC_XA_BY: + Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg()); + break; + case MachineCombinerPattern::REASSOC_AX_YB: + case MachineCombinerPattern::REASSOC_XA_YB: + Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg()); + break; + default: + break; + } + + assert(Prev && "Unknown pattern for machine combiner"); + + reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg); +} + +bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric( + const MachineInstr &MI, AAResults *AA) const { + const MachineFunction &MF = *MI.getMF(); + const MachineRegisterInfo &MRI = MF.getRegInfo(); + + // Remat clients assume operand 0 is the defined register. + if (!MI.getNumOperands() || !MI.getOperand(0).isReg()) + return false; + Register DefReg = MI.getOperand(0).getReg(); + + // A sub-register definition can only be rematerialized if the instruction + // doesn't read the other parts of the register. Otherwise it is really a + // read-modify-write operation on the full virtual register which cannot be + // moved safely. + if (Register::isVirtualRegister(DefReg) && MI.getOperand(0).getSubReg() && + MI.readsVirtualRegister(DefReg)) + return false; + + // A load from a fixed stack slot can be rematerialized. This may be + // redundant with subsequent checks, but it's target-independent, + // simple, and a common case. + int FrameIdx = 0; + if (isLoadFromStackSlot(MI, FrameIdx) && + MF.getFrameInfo().isImmutableObjectIndex(FrameIdx)) + return true; + + // Avoid instructions obviously unsafe for remat. + if (MI.isNotDuplicable() || MI.mayStore() || MI.mayRaiseFPException() || + MI.hasUnmodeledSideEffects()) + return false; + + // Don't remat inline asm. We have no idea how expensive it is + // even if it's side effect free. + if (MI.isInlineAsm()) + return false; + + // Avoid instructions which load from potentially varying memory. + if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA)) + return false; + + // If any of the registers accessed are non-constant, conservatively assume + // the instruction is not rematerializable. + for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { + const MachineOperand &MO = MI.getOperand(i); + if (!MO.isReg()) continue; + Register Reg = MO.getReg(); + if (Reg == 0) + continue; + + // Check for a well-behaved physical register. + if (Register::isPhysicalRegister(Reg)) { + if (MO.isUse()) { + // If the physreg has no defs anywhere, it's just an ambient register + // and we can freely move its uses. Alternatively, if it's allocatable, + // it could get allocated to something with a def during allocation. + if (!MRI.isConstantPhysReg(Reg)) + return false; + } else { + // A physreg def. We can't remat it. + return false; + } + continue; + } + + // Only allow one virtual-register def. There may be multiple defs of the + // same virtual register, though. + if (MO.isDef() && Reg != DefReg) + return false; + + // Don't allow any virtual-register uses. Rematting an instruction with + // virtual register uses would length the live ranges of the uses, which + // is not necessarily a good idea, certainly not "trivial". + if (MO.isUse()) + return false; + } + + // Everything checked out. + return true; +} + +int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const { + const MachineFunction *MF = MI.getMF(); + const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); + bool StackGrowsDown = + TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown; + + unsigned FrameSetupOpcode = getCallFrameSetupOpcode(); + unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode(); + + if (!isFrameInstr(MI)) + return 0; + + int SPAdj = TFI->alignSPAdjust(getFrameSize(MI)); + + if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) || + (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode)) + SPAdj = -SPAdj; + + return SPAdj; +} + +/// isSchedulingBoundary - Test if the given instruction should be +/// considered a scheduling boundary. This primarily includes labels +/// and terminators. +bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI, + const MachineBasicBlock *MBB, + const MachineFunction &MF) const { + // Terminators and labels can't be scheduled around. + if (MI.isTerminator() || MI.isPosition()) + return true; + + // Don't attempt to schedule around any instruction that defines + // a stack-oriented pointer, as it's unlikely to be profitable. This + // saves compile time, because it doesn't require every single + // stack slot reference to depend on the instruction that does the + // modification. + const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); + const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); + return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI); +} + +// Provide a global flag for disabling the PreRA hazard recognizer that targets +// may choose to honor. +bool TargetInstrInfo::usePreRAHazardRecognizer() const { + return !DisableHazardRecognizer; +} + +// Default implementation of CreateTargetRAHazardRecognizer. +ScheduleHazardRecognizer *TargetInstrInfo:: +CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, + const ScheduleDAG *DAG) const { + // Dummy hazard recognizer allows all instructions to issue. + return new ScheduleHazardRecognizer(); +} + +// Default implementation of CreateTargetMIHazardRecognizer. +ScheduleHazardRecognizer *TargetInstrInfo:: +CreateTargetMIHazardRecognizer(const InstrItineraryData *II, + const ScheduleDAG *DAG) const { + return (ScheduleHazardRecognizer *) + new ScoreboardHazardRecognizer(II, DAG, "machine-scheduler"); +} + +// Default implementation of CreateTargetPostRAHazardRecognizer. +ScheduleHazardRecognizer *TargetInstrInfo:: +CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, + const ScheduleDAG *DAG) const { + return (ScheduleHazardRecognizer *) + new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched"); +} + +//===----------------------------------------------------------------------===// +// SelectionDAG latency interface. +//===----------------------------------------------------------------------===// + +int +TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, + SDNode *DefNode, unsigned DefIdx, + SDNode *UseNode, unsigned UseIdx) const { + if (!ItinData || ItinData->isEmpty()) + return -1; + + if (!DefNode->isMachineOpcode()) + return -1; + + unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass(); + if (!UseNode->isMachineOpcode()) + return ItinData->getOperandCycle(DefClass, DefIdx); + unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass(); + return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); +} + +int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, + SDNode *N) const { + if (!ItinData || ItinData->isEmpty()) + return 1; + + if (!N->isMachineOpcode()) + return 1; + + return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass()); +} + +//===----------------------------------------------------------------------===// +// MachineInstr latency interface. +//===----------------------------------------------------------------------===// + +unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, + const MachineInstr &MI) const { + if (!ItinData || ItinData->isEmpty()) + return 1; + + unsigned Class = MI.getDesc().getSchedClass(); + int UOps = ItinData->Itineraries[Class].NumMicroOps; + if (UOps >= 0) + return UOps; + + // The # of u-ops is dynamically determined. The specific target should + // override this function to return the right number. + return 1; +} + +/// Return the default expected latency for a def based on it's opcode. +unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel, + const MachineInstr &DefMI) const { + if (DefMI.isTransient()) + return 0; + if (DefMI.mayLoad()) + return SchedModel.LoadLatency; + if (isHighLatencyDef(DefMI.getOpcode())) + return SchedModel.HighLatency; + return 1; +} + +unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const { + return 0; +} + +unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, + const MachineInstr &MI, + unsigned *PredCost) const { + // Default to one cycle for no itinerary. However, an "empty" itinerary may + // still have a MinLatency property, which getStageLatency checks. + if (!ItinData) + return MI.mayLoad() ? 2 : 1; + + return ItinData->getStageLatency(MI.getDesc().getSchedClass()); +} + +bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, + const MachineInstr &DefMI, + unsigned DefIdx) const { + const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); + if (!ItinData || ItinData->isEmpty()) + return false; + + unsigned DefClass = DefMI.getDesc().getSchedClass(); + int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); + return (DefCycle != -1 && DefCycle <= 1); +} + +Optional<ParamLoadedValue> +TargetInstrInfo::describeLoadedValue(const MachineInstr &MI) const { + const MachineFunction *MF = MI.getMF(); + const MachineOperand *Op = nullptr; + DIExpression *Expr = DIExpression::get(MF->getFunction().getContext(), {});; + const MachineOperand *SrcRegOp, *DestRegOp; + + if (isCopyInstr(MI, SrcRegOp, DestRegOp)) { + Op = SrcRegOp; + return ParamLoadedValue(*Op, Expr); + } else if (MI.isMoveImmediate()) { + Op = &MI.getOperand(1); + return ParamLoadedValue(*Op, Expr); + } + + return None; +} + +/// Both DefMI and UseMI must be valid. By default, call directly to the +/// itinerary. This may be overriden by the target. +int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, + const MachineInstr &DefMI, + unsigned DefIdx, + const MachineInstr &UseMI, + unsigned UseIdx) const { + unsigned DefClass = DefMI.getDesc().getSchedClass(); + unsigned UseClass = UseMI.getDesc().getSchedClass(); + return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); +} + +/// If we can determine the operand latency from the def only, without itinerary +/// lookup, do so. Otherwise return -1. +int TargetInstrInfo::computeDefOperandLatency( + const InstrItineraryData *ItinData, const MachineInstr &DefMI) const { + + // Let the target hook getInstrLatency handle missing itineraries. + if (!ItinData) + return getInstrLatency(ItinData, DefMI); + + if(ItinData->isEmpty()) + return defaultDefLatency(ItinData->SchedModel, DefMI); + + // ...operand lookup required + return -1; +} + +bool TargetInstrInfo::getRegSequenceInputs( + const MachineInstr &MI, unsigned DefIdx, + SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { + assert((MI.isRegSequence() || + MI.isRegSequenceLike()) && "Instruction do not have the proper type"); + + if (!MI.isRegSequence()) + return getRegSequenceLikeInputs(MI, DefIdx, InputRegs); + + // We are looking at: + // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... + assert(DefIdx == 0 && "REG_SEQUENCE only has one def"); + for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx; + OpIdx += 2) { + const MachineOperand &MOReg = MI.getOperand(OpIdx); + if (MOReg.isUndef()) + continue; + const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1); + assert(MOSubIdx.isImm() && + "One of the subindex of the reg_sequence is not an immediate"); + // Record Reg:SubReg, SubIdx. + InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(), + (unsigned)MOSubIdx.getImm())); + } + return true; +} + +bool TargetInstrInfo::getExtractSubregInputs( + const MachineInstr &MI, unsigned DefIdx, + RegSubRegPairAndIdx &InputReg) const { + assert((MI.isExtractSubreg() || + MI.isExtractSubregLike()) && "Instruction do not have the proper type"); + + if (!MI.isExtractSubreg()) + return getExtractSubregLikeInputs(MI, DefIdx, InputReg); + + // We are looking at: + // Def = EXTRACT_SUBREG v0.sub1, sub0. + assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def"); + const MachineOperand &MOReg = MI.getOperand(1); + if (MOReg.isUndef()) + return false; + const MachineOperand &MOSubIdx = MI.getOperand(2); + assert(MOSubIdx.isImm() && + "The subindex of the extract_subreg is not an immediate"); + + InputReg.Reg = MOReg.getReg(); + InputReg.SubReg = MOReg.getSubReg(); + InputReg.SubIdx = (unsigned)MOSubIdx.getImm(); + return true; +} + +bool TargetInstrInfo::getInsertSubregInputs( + const MachineInstr &MI, unsigned DefIdx, + RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const { + assert((MI.isInsertSubreg() || + MI.isInsertSubregLike()) && "Instruction do not have the proper type"); + + if (!MI.isInsertSubreg()) + return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg); + + // We are looking at: + // Def = INSERT_SEQUENCE v0, v1, sub0. + assert(DefIdx == 0 && "INSERT_SUBREG only has one def"); + const MachineOperand &MOBaseReg = MI.getOperand(1); + const MachineOperand &MOInsertedReg = MI.getOperand(2); + if (MOInsertedReg.isUndef()) + return false; + const MachineOperand &MOSubIdx = MI.getOperand(3); + assert(MOSubIdx.isImm() && + "One of the subindex of the reg_sequence is not an immediate"); + BaseReg.Reg = MOBaseReg.getReg(); + BaseReg.SubReg = MOBaseReg.getSubReg(); + + InsertedReg.Reg = MOInsertedReg.getReg(); + InsertedReg.SubReg = MOInsertedReg.getSubReg(); + InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm(); + return true; +} + +TargetInstrInfo::PipelinerLoopInfo::~PipelinerLoopInfo() {} |