diff options
Diffstat (limited to 'llvm/lib/CodeGen/TargetInstrInfo.cpp')
| -rw-r--r-- | llvm/lib/CodeGen/TargetInstrInfo.cpp | 1229 | 
1 files changed, 1229 insertions, 0 deletions
| diff --git a/llvm/lib/CodeGen/TargetInstrInfo.cpp b/llvm/lib/CodeGen/TargetInstrInfo.cpp new file mode 100644 index 000000000000..868617ffe14d --- /dev/null +++ b/llvm/lib/CodeGen/TargetInstrInfo.cpp @@ -0,0 +1,1229 @@ +//===-- TargetInstrInfo.cpp - Target Instruction Information --------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the TargetInstrInfo class. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/PseudoSourceValue.h" +#include "llvm/CodeGen/ScoreboardHazardRecognizer.h" +#include "llvm/CodeGen/StackMaps.h" +#include "llvm/CodeGen/TargetFrameLowering.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSchedule.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/MC/MCAsmInfo.h" +#include "llvm/MC/MCInstrItineraries.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" +#include <cctype> + +using namespace llvm; + +static cl::opt<bool> DisableHazardRecognizer( +  "disable-sched-hazard", cl::Hidden, cl::init(false), +  cl::desc("Disable hazard detection during preRA scheduling")); + +TargetInstrInfo::~TargetInstrInfo() { +} + +const TargetRegisterClass* +TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum, +                             const TargetRegisterInfo *TRI, +                             const MachineFunction &MF) const { +  if (OpNum >= MCID.getNumOperands()) +    return nullptr; + +  short RegClass = MCID.OpInfo[OpNum].RegClass; +  if (MCID.OpInfo[OpNum].isLookupPtrRegClass()) +    return TRI->getPointerRegClass(MF, RegClass); + +  // Instructions like INSERT_SUBREG do not have fixed register classes. +  if (RegClass < 0) +    return nullptr; + +  // Otherwise just look it up normally. +  return TRI->getRegClass(RegClass); +} + +/// insertNoop - Insert a noop into the instruction stream at the specified +/// point. +void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB, +                                 MachineBasicBlock::iterator MI) const { +  llvm_unreachable("Target didn't implement insertNoop!"); +} + +static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) { +  return strncmp(Str, MAI.getCommentString().data(), +                 MAI.getCommentString().size()) == 0; +} + +/// Measure the specified inline asm to determine an approximation of its +/// length. +/// Comments (which run till the next SeparatorString or newline) do not +/// count as an instruction. +/// Any other non-whitespace text is considered an instruction, with +/// multiple instructions separated by SeparatorString or newlines. +/// Variable-length instructions are not handled here; this function +/// may be overloaded in the target code to do that. +/// We implement a special case of the .space directive which takes only a +/// single integer argument in base 10 that is the size in bytes. This is a +/// restricted form of the GAS directive in that we only interpret +/// simple--i.e. not a logical or arithmetic expression--size values without +/// the optional fill value. This is primarily used for creating arbitrary +/// sized inline asm blocks for testing purposes. +unsigned TargetInstrInfo::getInlineAsmLength( +  const char *Str, +  const MCAsmInfo &MAI, const TargetSubtargetInfo *STI) const { +  // Count the number of instructions in the asm. +  bool AtInsnStart = true; +  unsigned Length = 0; +  const unsigned MaxInstLength = MAI.getMaxInstLength(STI); +  for (; *Str; ++Str) { +    if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), +                                strlen(MAI.getSeparatorString())) == 0) { +      AtInsnStart = true; +    } else if (isAsmComment(Str, MAI)) { +      // Stop counting as an instruction after a comment until the next +      // separator. +      AtInsnStart = false; +    } + +    if (AtInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) { +      unsigned AddLength = MaxInstLength; +      if (strncmp(Str, ".space", 6) == 0) { +        char *EStr; +        int SpaceSize; +        SpaceSize = strtol(Str + 6, &EStr, 10); +        SpaceSize = SpaceSize < 0 ? 0 : SpaceSize; +        while (*EStr != '\n' && std::isspace(static_cast<unsigned char>(*EStr))) +          ++EStr; +        if (*EStr == '\0' || *EStr == '\n' || +            isAsmComment(EStr, MAI)) // Successfully parsed .space argument +          AddLength = SpaceSize; +      } +      Length += AddLength; +      AtInsnStart = false; +    } +  } + +  return Length; +} + +/// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything +/// after it, replacing it with an unconditional branch to NewDest. +void +TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, +                                         MachineBasicBlock *NewDest) const { +  MachineBasicBlock *MBB = Tail->getParent(); + +  // Remove all the old successors of MBB from the CFG. +  while (!MBB->succ_empty()) +    MBB->removeSuccessor(MBB->succ_begin()); + +  // Save off the debug loc before erasing the instruction. +  DebugLoc DL = Tail->getDebugLoc(); + +  // Update call site info and remove all the dead instructions +  // from the end of MBB. +  while (Tail != MBB->end()) { +    auto MI = Tail++; +    if (MI->isCall()) +      MBB->getParent()->updateCallSiteInfo(&*MI); +    MBB->erase(MI); +  } + +  // If MBB isn't immediately before MBB, insert a branch to it. +  if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest)) +    insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL); +  MBB->addSuccessor(NewDest); +} + +MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI, +                                                      bool NewMI, unsigned Idx1, +                                                      unsigned Idx2) const { +  const MCInstrDesc &MCID = MI.getDesc(); +  bool HasDef = MCID.getNumDefs(); +  if (HasDef && !MI.getOperand(0).isReg()) +    // No idea how to commute this instruction. Target should implement its own. +    return nullptr; + +  unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1; +  unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2; +  assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) && +         CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 && +         "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands."); +  assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() && +         "This only knows how to commute register operands so far"); + +  Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register(); +  Register Reg1 = MI.getOperand(Idx1).getReg(); +  Register Reg2 = MI.getOperand(Idx2).getReg(); +  unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0; +  unsigned SubReg1 = MI.getOperand(Idx1).getSubReg(); +  unsigned SubReg2 = MI.getOperand(Idx2).getSubReg(); +  bool Reg1IsKill = MI.getOperand(Idx1).isKill(); +  bool Reg2IsKill = MI.getOperand(Idx2).isKill(); +  bool Reg1IsUndef = MI.getOperand(Idx1).isUndef(); +  bool Reg2IsUndef = MI.getOperand(Idx2).isUndef(); +  bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead(); +  bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead(); +  // Avoid calling isRenamable for virtual registers since we assert that +  // renamable property is only queried/set for physical registers. +  bool Reg1IsRenamable = TargetRegisterInfo::isPhysicalRegister(Reg1) +                             ? MI.getOperand(Idx1).isRenamable() +                             : false; +  bool Reg2IsRenamable = TargetRegisterInfo::isPhysicalRegister(Reg2) +                             ? MI.getOperand(Idx2).isRenamable() +                             : false; +  // If destination is tied to either of the commuted source register, then +  // it must be updated. +  if (HasDef && Reg0 == Reg1 && +      MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) { +    Reg2IsKill = false; +    Reg0 = Reg2; +    SubReg0 = SubReg2; +  } else if (HasDef && Reg0 == Reg2 && +             MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) { +    Reg1IsKill = false; +    Reg0 = Reg1; +    SubReg0 = SubReg1; +  } + +  MachineInstr *CommutedMI = nullptr; +  if (NewMI) { +    // Create a new instruction. +    MachineFunction &MF = *MI.getMF(); +    CommutedMI = MF.CloneMachineInstr(&MI); +  } else { +    CommutedMI = &MI; +  } + +  if (HasDef) { +    CommutedMI->getOperand(0).setReg(Reg0); +    CommutedMI->getOperand(0).setSubReg(SubReg0); +  } +  CommutedMI->getOperand(Idx2).setReg(Reg1); +  CommutedMI->getOperand(Idx1).setReg(Reg2); +  CommutedMI->getOperand(Idx2).setSubReg(SubReg1); +  CommutedMI->getOperand(Idx1).setSubReg(SubReg2); +  CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill); +  CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill); +  CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef); +  CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef); +  CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal); +  CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal); +  // Avoid calling setIsRenamable for virtual registers since we assert that +  // renamable property is only queried/set for physical registers. +  if (TargetRegisterInfo::isPhysicalRegister(Reg1)) +    CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable); +  if (TargetRegisterInfo::isPhysicalRegister(Reg2)) +    CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable); +  return CommutedMI; +} + +MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI, +                                                  unsigned OpIdx1, +                                                  unsigned OpIdx2) const { +  // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose +  // any commutable operand, which is done in findCommutedOpIndices() method +  // called below. +  if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) && +      !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) { +    assert(MI.isCommutable() && +           "Precondition violation: MI must be commutable."); +    return nullptr; +  } +  return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); +} + +bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1, +                                           unsigned &ResultIdx2, +                                           unsigned CommutableOpIdx1, +                                           unsigned CommutableOpIdx2) { +  if (ResultIdx1 == CommuteAnyOperandIndex && +      ResultIdx2 == CommuteAnyOperandIndex) { +    ResultIdx1 = CommutableOpIdx1; +    ResultIdx2 = CommutableOpIdx2; +  } else if (ResultIdx1 == CommuteAnyOperandIndex) { +    if (ResultIdx2 == CommutableOpIdx1) +      ResultIdx1 = CommutableOpIdx2; +    else if (ResultIdx2 == CommutableOpIdx2) +      ResultIdx1 = CommutableOpIdx1; +    else +      return false; +  } else if (ResultIdx2 == CommuteAnyOperandIndex) { +    if (ResultIdx1 == CommutableOpIdx1) +      ResultIdx2 = CommutableOpIdx2; +    else if (ResultIdx1 == CommutableOpIdx2) +      ResultIdx2 = CommutableOpIdx1; +    else +      return false; +  } else +    // Check that the result operand indices match the given commutable +    // operand indices. +    return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) || +           (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1); + +  return true; +} + +bool TargetInstrInfo::findCommutedOpIndices(MachineInstr &MI, +                                            unsigned &SrcOpIdx1, +                                            unsigned &SrcOpIdx2) const { +  assert(!MI.isBundle() && +         "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); + +  const MCInstrDesc &MCID = MI.getDesc(); +  if (!MCID.isCommutable()) +    return false; + +  // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this +  // is not true, then the target must implement this. +  unsigned CommutableOpIdx1 = MCID.getNumDefs(); +  unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1; +  if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, +                            CommutableOpIdx1, CommutableOpIdx2)) +    return false; + +  if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg()) +    // No idea. +    return false; +  return true; +} + +bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { +  if (!MI.isTerminator()) return false; + +  // Conditional branch is a special case. +  if (MI.isBranch() && !MI.isBarrier()) +    return true; +  if (!MI.isPredicable()) +    return true; +  return !isPredicated(MI); +} + +bool TargetInstrInfo::PredicateInstruction( +    MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { +  bool MadeChange = false; + +  assert(!MI.isBundle() && +         "TargetInstrInfo::PredicateInstruction() can't handle bundles"); + +  const MCInstrDesc &MCID = MI.getDesc(); +  if (!MI.isPredicable()) +    return false; + +  for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) { +    if (MCID.OpInfo[i].isPredicate()) { +      MachineOperand &MO = MI.getOperand(i); +      if (MO.isReg()) { +        MO.setReg(Pred[j].getReg()); +        MadeChange = true; +      } else if (MO.isImm()) { +        MO.setImm(Pred[j].getImm()); +        MadeChange = true; +      } else if (MO.isMBB()) { +        MO.setMBB(Pred[j].getMBB()); +        MadeChange = true; +      } +      ++j; +    } +  } +  return MadeChange; +} + +bool TargetInstrInfo::hasLoadFromStackSlot( +    const MachineInstr &MI, +    SmallVectorImpl<const MachineMemOperand *> &Accesses) const { +  size_t StartSize = Accesses.size(); +  for (MachineInstr::mmo_iterator o = MI.memoperands_begin(), +                                  oe = MI.memoperands_end(); +       o != oe; ++o) { +    if ((*o)->isLoad() && +        dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue())) +      Accesses.push_back(*o); +  } +  return Accesses.size() != StartSize; +} + +bool TargetInstrInfo::hasStoreToStackSlot( +    const MachineInstr &MI, +    SmallVectorImpl<const MachineMemOperand *> &Accesses) const { +  size_t StartSize = Accesses.size(); +  for (MachineInstr::mmo_iterator o = MI.memoperands_begin(), +                                  oe = MI.memoperands_end(); +       o != oe; ++o) { +    if ((*o)->isStore() && +        dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue())) +      Accesses.push_back(*o); +  } +  return Accesses.size() != StartSize; +} + +bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC, +                                        unsigned SubIdx, unsigned &Size, +                                        unsigned &Offset, +                                        const MachineFunction &MF) const { +  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); +  if (!SubIdx) { +    Size = TRI->getSpillSize(*RC); +    Offset = 0; +    return true; +  } +  unsigned BitSize = TRI->getSubRegIdxSize(SubIdx); +  // Convert bit size to byte size. +  if (BitSize % 8) +    return false; + +  int BitOffset = TRI->getSubRegIdxOffset(SubIdx); +  if (BitOffset < 0 || BitOffset % 8) +    return false; + +  Size = BitSize /= 8; +  Offset = (unsigned)BitOffset / 8; + +  assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range"); + +  if (!MF.getDataLayout().isLittleEndian()) { +    Offset = TRI->getSpillSize(*RC) - (Offset + Size); +  } +  return true; +} + +void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB, +                                    MachineBasicBlock::iterator I, +                                    unsigned DestReg, unsigned SubIdx, +                                    const MachineInstr &Orig, +                                    const TargetRegisterInfo &TRI) const { +  MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); +  MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); +  MBB.insert(I, MI); +} + +bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0, +                                       const MachineInstr &MI1, +                                       const MachineRegisterInfo *MRI) const { +  return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); +} + +MachineInstr &TargetInstrInfo::duplicate(MachineBasicBlock &MBB, +    MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const { +  assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated"); +  MachineFunction &MF = *MBB.getParent(); +  return MF.CloneMachineInstrBundle(MBB, InsertBefore, Orig); +} + +// If the COPY instruction in MI can be folded to a stack operation, return +// the register class to use. +static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI, +                                              unsigned FoldIdx) { +  assert(MI.isCopy() && "MI must be a COPY instruction"); +  if (MI.getNumOperands() != 2) +    return nullptr; +  assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand"); + +  const MachineOperand &FoldOp = MI.getOperand(FoldIdx); +  const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx); + +  if (FoldOp.getSubReg() || LiveOp.getSubReg()) +    return nullptr; + +  unsigned FoldReg = FoldOp.getReg(); +  unsigned LiveReg = LiveOp.getReg(); + +  assert(TargetRegisterInfo::isVirtualRegister(FoldReg) && +         "Cannot fold physregs"); + +  const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); +  const TargetRegisterClass *RC = MRI.getRegClass(FoldReg); + +  if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg())) +    return RC->contains(LiveOp.getReg()) ? RC : nullptr; + +  if (RC->hasSubClassEq(MRI.getRegClass(LiveReg))) +    return RC; + +  // FIXME: Allow folding when register classes are memory compatible. +  return nullptr; +} + +void TargetInstrInfo::getNoop(MCInst &NopInst) const { +  llvm_unreachable("Not implemented"); +} + +static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI, +                                    ArrayRef<unsigned> Ops, int FrameIndex, +                                    const TargetInstrInfo &TII) { +  unsigned StartIdx = 0; +  switch (MI.getOpcode()) { +  case TargetOpcode::STACKMAP: { +    // StackMapLiveValues are foldable +    StartIdx = StackMapOpers(&MI).getVarIdx(); +    break; +  } +  case TargetOpcode::PATCHPOINT: { +    // For PatchPoint, the call args are not foldable (even if reported in the +    // stackmap e.g. via anyregcc). +    StartIdx = PatchPointOpers(&MI).getVarIdx(); +    break; +  } +  case TargetOpcode::STATEPOINT: { +    // For statepoints, fold deopt and gc arguments, but not call arguments. +    StartIdx = StatepointOpers(&MI).getVarIdx(); +    break; +  } +  default: +    llvm_unreachable("unexpected stackmap opcode"); +  } + +  // Return false if any operands requested for folding are not foldable (not +  // part of the stackmap's live values). +  for (unsigned Op : Ops) { +    if (Op < StartIdx) +      return nullptr; +  } + +  MachineInstr *NewMI = +      MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true); +  MachineInstrBuilder MIB(MF, NewMI); + +  // No need to fold return, the meta data, and function arguments +  for (unsigned i = 0; i < StartIdx; ++i) +    MIB.add(MI.getOperand(i)); + +  for (unsigned i = StartIdx; i < MI.getNumOperands(); ++i) { +    MachineOperand &MO = MI.getOperand(i); +    if (is_contained(Ops, i)) { +      unsigned SpillSize; +      unsigned SpillOffset; +      // Compute the spill slot size and offset. +      const TargetRegisterClass *RC = +        MF.getRegInfo().getRegClass(MO.getReg()); +      bool Valid = +          TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF); +      if (!Valid) +        report_fatal_error("cannot spill patchpoint subregister operand"); +      MIB.addImm(StackMaps::IndirectMemRefOp); +      MIB.addImm(SpillSize); +      MIB.addFrameIndex(FrameIndex); +      MIB.addImm(SpillOffset); +    } +    else +      MIB.add(MO); +  } +  return NewMI; +} + +MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI, +                                                 ArrayRef<unsigned> Ops, int FI, +                                                 LiveIntervals *LIS, +                                                 VirtRegMap *VRM) const { +  auto Flags = MachineMemOperand::MONone; +  for (unsigned OpIdx : Ops) +    Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore +                                          : MachineMemOperand::MOLoad; + +  MachineBasicBlock *MBB = MI.getParent(); +  assert(MBB && "foldMemoryOperand needs an inserted instruction"); +  MachineFunction &MF = *MBB->getParent(); + +  // If we're not folding a load into a subreg, the size of the load is the +  // size of the spill slot. But if we are, we need to figure out what the +  // actual load size is. +  int64_t MemSize = 0; +  const MachineFrameInfo &MFI = MF.getFrameInfo(); +  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); + +  if (Flags & MachineMemOperand::MOStore) { +    MemSize = MFI.getObjectSize(FI); +  } else { +    for (unsigned OpIdx : Ops) { +      int64_t OpSize = MFI.getObjectSize(FI); + +      if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) { +        unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg); +        if (SubRegSize > 0 && !(SubRegSize % 8)) +          OpSize = SubRegSize / 8; +      } + +      MemSize = std::max(MemSize, OpSize); +    } +  } + +  assert(MemSize && "Did not expect a zero-sized stack slot"); + +  MachineInstr *NewMI = nullptr; + +  if (MI.getOpcode() == TargetOpcode::STACKMAP || +      MI.getOpcode() == TargetOpcode::PATCHPOINT || +      MI.getOpcode() == TargetOpcode::STATEPOINT) { +    // Fold stackmap/patchpoint. +    NewMI = foldPatchpoint(MF, MI, Ops, FI, *this); +    if (NewMI) +      MBB->insert(MI, NewMI); +  } else { +    // Ask the target to do the actual folding. +    NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS, VRM); +  } + +  if (NewMI) { +    NewMI->setMemRefs(MF, MI.memoperands()); +    // Add a memory operand, foldMemoryOperandImpl doesn't do that. +    assert((!(Flags & MachineMemOperand::MOStore) || +            NewMI->mayStore()) && +           "Folded a def to a non-store!"); +    assert((!(Flags & MachineMemOperand::MOLoad) || +            NewMI->mayLoad()) && +           "Folded a use to a non-load!"); +    assert(MFI.getObjectOffset(FI) != -1); +    MachineMemOperand *MMO = MF.getMachineMemOperand( +        MachinePointerInfo::getFixedStack(MF, FI), Flags, MemSize, +        MFI.getObjectAlignment(FI)); +    NewMI->addMemOperand(MF, MMO); + +    return NewMI; +  } + +  // Straight COPY may fold as load/store. +  if (!MI.isCopy() || Ops.size() != 1) +    return nullptr; + +  const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]); +  if (!RC) +    return nullptr; + +  const MachineOperand &MO = MI.getOperand(1 - Ops[0]); +  MachineBasicBlock::iterator Pos = MI; + +  if (Flags == MachineMemOperand::MOStore) +    storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI); +  else +    loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI); +  return &*--Pos; +} + +MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI, +                                                 ArrayRef<unsigned> Ops, +                                                 MachineInstr &LoadMI, +                                                 LiveIntervals *LIS) const { +  assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!"); +#ifndef NDEBUG +  for (unsigned OpIdx : Ops) +    assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!"); +#endif + +  MachineBasicBlock &MBB = *MI.getParent(); +  MachineFunction &MF = *MBB.getParent(); + +  // Ask the target to do the actual folding. +  MachineInstr *NewMI = nullptr; +  int FrameIndex = 0; + +  if ((MI.getOpcode() == TargetOpcode::STACKMAP || +       MI.getOpcode() == TargetOpcode::PATCHPOINT || +       MI.getOpcode() == TargetOpcode::STATEPOINT) && +      isLoadFromStackSlot(LoadMI, FrameIndex)) { +    // Fold stackmap/patchpoint. +    NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this); +    if (NewMI) +      NewMI = &*MBB.insert(MI, NewMI); +  } else { +    // Ask the target to do the actual folding. +    NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS); +  } + +  if (!NewMI) +    return nullptr; + +  // Copy the memoperands from the load to the folded instruction. +  if (MI.memoperands_empty()) { +    NewMI->setMemRefs(MF, LoadMI.memoperands()); +  } else { +    // Handle the rare case of folding multiple loads. +    NewMI->setMemRefs(MF, MI.memoperands()); +    for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(), +                                    E = LoadMI.memoperands_end(); +         I != E; ++I) { +      NewMI->addMemOperand(MF, *I); +    } +  } +  return NewMI; +} + +bool TargetInstrInfo::hasReassociableOperands( +    const MachineInstr &Inst, const MachineBasicBlock *MBB) const { +  const MachineOperand &Op1 = Inst.getOperand(1); +  const MachineOperand &Op2 = Inst.getOperand(2); +  const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); + +  // We need virtual register definitions for the operands that we will +  // reassociate. +  MachineInstr *MI1 = nullptr; +  MachineInstr *MI2 = nullptr; +  if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg())) +    MI1 = MRI.getUniqueVRegDef(Op1.getReg()); +  if (Op2.isReg() && TargetRegisterInfo::isVirtualRegister(Op2.getReg())) +    MI2 = MRI.getUniqueVRegDef(Op2.getReg()); + +  // And they need to be in the trace (otherwise, they won't have a depth). +  return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB; +} + +bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst, +                                             bool &Commuted) const { +  const MachineBasicBlock *MBB = Inst.getParent(); +  const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); +  MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg()); +  MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg()); +  unsigned AssocOpcode = Inst.getOpcode(); + +  // If only one operand has the same opcode and it's the second source operand, +  // the operands must be commuted. +  Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode; +  if (Commuted) +    std::swap(MI1, MI2); + +  // 1. The previous instruction must be the same type as Inst. +  // 2. The previous instruction must have virtual register definitions for its +  //    operands in the same basic block as Inst. +  // 3. The previous instruction's result must only be used by Inst. +  return MI1->getOpcode() == AssocOpcode && +         hasReassociableOperands(*MI1, MBB) && +         MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg()); +} + +// 1. The operation must be associative and commutative. +// 2. The instruction must have virtual register definitions for its +//    operands in the same basic block. +// 3. The instruction must have a reassociable sibling. +bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst, +                                               bool &Commuted) const { +  return isAssociativeAndCommutative(Inst) && +         hasReassociableOperands(Inst, Inst.getParent()) && +         hasReassociableSibling(Inst, Commuted); +} + +// The concept of the reassociation pass is that these operations can benefit +// from this kind of transformation: +// +// A = ? op ? +// B = A op X (Prev) +// C = B op Y (Root) +// --> +// A = ? op ? +// B = X op Y +// C = A op B +// +// breaking the dependency between A and B, allowing them to be executed in +// parallel (or back-to-back in a pipeline) instead of depending on each other. + +// FIXME: This has the potential to be expensive (compile time) while not +// improving the code at all. Some ways to limit the overhead: +// 1. Track successful transforms; bail out if hit rate gets too low. +// 2. Only enable at -O3 or some other non-default optimization level. +// 3. Pre-screen pattern candidates here: if an operand of the previous +//    instruction is known to not increase the critical path, then don't match +//    that pattern. +bool TargetInstrInfo::getMachineCombinerPatterns( +    MachineInstr &Root, +    SmallVectorImpl<MachineCombinerPattern> &Patterns) const { +  bool Commute; +  if (isReassociationCandidate(Root, Commute)) { +    // We found a sequence of instructions that may be suitable for a +    // reassociation of operands to increase ILP. Specify each commutation +    // possibility for the Prev instruction in the sequence and let the +    // machine combiner decide if changing the operands is worthwhile. +    if (Commute) { +      Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB); +      Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB); +    } else { +      Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY); +      Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY); +    } +    return true; +  } + +  return false; +} + +/// Return true when a code sequence can improve loop throughput. +bool +TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const { +  return false; +} + +/// Attempt the reassociation transformation to reduce critical path length. +/// See the above comments before getMachineCombinerPatterns(). +void TargetInstrInfo::reassociateOps( +    MachineInstr &Root, MachineInstr &Prev, +    MachineCombinerPattern Pattern, +    SmallVectorImpl<MachineInstr *> &InsInstrs, +    SmallVectorImpl<MachineInstr *> &DelInstrs, +    DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { +  MachineFunction *MF = Root.getMF(); +  MachineRegisterInfo &MRI = MF->getRegInfo(); +  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); +  const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); +  const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI); + +  // This array encodes the operand index for each parameter because the +  // operands may be commuted. Each row corresponds to a pattern value, +  // and each column specifies the index of A, B, X, Y. +  unsigned OpIdx[4][4] = { +    { 1, 1, 2, 2 }, +    { 1, 2, 2, 1 }, +    { 2, 1, 1, 2 }, +    { 2, 2, 1, 1 } +  }; + +  int Row; +  switch (Pattern) { +  case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break; +  case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break; +  case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break; +  case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break; +  default: llvm_unreachable("unexpected MachineCombinerPattern"); +  } + +  MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]); +  MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]); +  MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]); +  MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]); +  MachineOperand &OpC = Root.getOperand(0); + +  unsigned RegA = OpA.getReg(); +  unsigned RegB = OpB.getReg(); +  unsigned RegX = OpX.getReg(); +  unsigned RegY = OpY.getReg(); +  unsigned RegC = OpC.getReg(); + +  if (TargetRegisterInfo::isVirtualRegister(RegA)) +    MRI.constrainRegClass(RegA, RC); +  if (TargetRegisterInfo::isVirtualRegister(RegB)) +    MRI.constrainRegClass(RegB, RC); +  if (TargetRegisterInfo::isVirtualRegister(RegX)) +    MRI.constrainRegClass(RegX, RC); +  if (TargetRegisterInfo::isVirtualRegister(RegY)) +    MRI.constrainRegClass(RegY, RC); +  if (TargetRegisterInfo::isVirtualRegister(RegC)) +    MRI.constrainRegClass(RegC, RC); + +  // Create a new virtual register for the result of (X op Y) instead of +  // recycling RegB because the MachineCombiner's computation of the critical +  // path requires a new register definition rather than an existing one. +  unsigned NewVR = MRI.createVirtualRegister(RC); +  InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); + +  unsigned Opcode = Root.getOpcode(); +  bool KillA = OpA.isKill(); +  bool KillX = OpX.isKill(); +  bool KillY = OpY.isKill(); + +  // Create new instructions for insertion. +  MachineInstrBuilder MIB1 = +      BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR) +          .addReg(RegX, getKillRegState(KillX)) +          .addReg(RegY, getKillRegState(KillY)); +  MachineInstrBuilder MIB2 = +      BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC) +          .addReg(RegA, getKillRegState(KillA)) +          .addReg(NewVR, getKillRegState(true)); + +  setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2); + +  // Record new instructions for insertion and old instructions for deletion. +  InsInstrs.push_back(MIB1); +  InsInstrs.push_back(MIB2); +  DelInstrs.push_back(&Prev); +  DelInstrs.push_back(&Root); +} + +void TargetInstrInfo::genAlternativeCodeSequence( +    MachineInstr &Root, MachineCombinerPattern Pattern, +    SmallVectorImpl<MachineInstr *> &InsInstrs, +    SmallVectorImpl<MachineInstr *> &DelInstrs, +    DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const { +  MachineRegisterInfo &MRI = Root.getMF()->getRegInfo(); + +  // Select the previous instruction in the sequence based on the input pattern. +  MachineInstr *Prev = nullptr; +  switch (Pattern) { +  case MachineCombinerPattern::REASSOC_AX_BY: +  case MachineCombinerPattern::REASSOC_XA_BY: +    Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg()); +    break; +  case MachineCombinerPattern::REASSOC_AX_YB: +  case MachineCombinerPattern::REASSOC_XA_YB: +    Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg()); +    break; +  default: +    break; +  } + +  assert(Prev && "Unknown pattern for machine combiner"); + +  reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg); +} + +bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric( +    const MachineInstr &MI, AliasAnalysis *AA) const { +  const MachineFunction &MF = *MI.getMF(); +  const MachineRegisterInfo &MRI = MF.getRegInfo(); + +  // Remat clients assume operand 0 is the defined register. +  if (!MI.getNumOperands() || !MI.getOperand(0).isReg()) +    return false; +  unsigned DefReg = MI.getOperand(0).getReg(); + +  // A sub-register definition can only be rematerialized if the instruction +  // doesn't read the other parts of the register.  Otherwise it is really a +  // read-modify-write operation on the full virtual register which cannot be +  // moved safely. +  if (TargetRegisterInfo::isVirtualRegister(DefReg) && +      MI.getOperand(0).getSubReg() && MI.readsVirtualRegister(DefReg)) +    return false; + +  // A load from a fixed stack slot can be rematerialized. This may be +  // redundant with subsequent checks, but it's target-independent, +  // simple, and a common case. +  int FrameIdx = 0; +  if (isLoadFromStackSlot(MI, FrameIdx) && +      MF.getFrameInfo().isImmutableObjectIndex(FrameIdx)) +    return true; + +  // Avoid instructions obviously unsafe for remat. +  if (MI.isNotDuplicable() || MI.mayStore() || MI.mayRaiseFPException() || +      MI.hasUnmodeledSideEffects()) +    return false; + +  // Don't remat inline asm. We have no idea how expensive it is +  // even if it's side effect free. +  if (MI.isInlineAsm()) +    return false; + +  // Avoid instructions which load from potentially varying memory. +  if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA)) +    return false; + +  // If any of the registers accessed are non-constant, conservatively assume +  // the instruction is not rematerializable. +  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { +    const MachineOperand &MO = MI.getOperand(i); +    if (!MO.isReg()) continue; +    unsigned Reg = MO.getReg(); +    if (Reg == 0) +      continue; + +    // Check for a well-behaved physical register. +    if (TargetRegisterInfo::isPhysicalRegister(Reg)) { +      if (MO.isUse()) { +        // If the physreg has no defs anywhere, it's just an ambient register +        // and we can freely move its uses. Alternatively, if it's allocatable, +        // it could get allocated to something with a def during allocation. +        if (!MRI.isConstantPhysReg(Reg)) +          return false; +      } else { +        // A physreg def. We can't remat it. +        return false; +      } +      continue; +    } + +    // Only allow one virtual-register def.  There may be multiple defs of the +    // same virtual register, though. +    if (MO.isDef() && Reg != DefReg) +      return false; + +    // Don't allow any virtual-register uses. Rematting an instruction with +    // virtual register uses would length the live ranges of the uses, which +    // is not necessarily a good idea, certainly not "trivial". +    if (MO.isUse()) +      return false; +  } + +  // Everything checked out. +  return true; +} + +int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const { +  const MachineFunction *MF = MI.getMF(); +  const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); +  bool StackGrowsDown = +    TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown; + +  unsigned FrameSetupOpcode = getCallFrameSetupOpcode(); +  unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode(); + +  if (!isFrameInstr(MI)) +    return 0; + +  int SPAdj = TFI->alignSPAdjust(getFrameSize(MI)); + +  if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) || +      (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode)) +    SPAdj = -SPAdj; + +  return SPAdj; +} + +/// isSchedulingBoundary - Test if the given instruction should be +/// considered a scheduling boundary. This primarily includes labels +/// and terminators. +bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI, +                                           const MachineBasicBlock *MBB, +                                           const MachineFunction &MF) const { +  // Terminators and labels can't be scheduled around. +  if (MI.isTerminator() || MI.isPosition()) +    return true; + +  // Don't attempt to schedule around any instruction that defines +  // a stack-oriented pointer, as it's unlikely to be profitable. This +  // saves compile time, because it doesn't require every single +  // stack slot reference to depend on the instruction that does the +  // modification. +  const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); +  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); +  return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI); +} + +// Provide a global flag for disabling the PreRA hazard recognizer that targets +// may choose to honor. +bool TargetInstrInfo::usePreRAHazardRecognizer() const { +  return !DisableHazardRecognizer; +} + +// Default implementation of CreateTargetRAHazardRecognizer. +ScheduleHazardRecognizer *TargetInstrInfo:: +CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, +                             const ScheduleDAG *DAG) const { +  // Dummy hazard recognizer allows all instructions to issue. +  return new ScheduleHazardRecognizer(); +} + +// Default implementation of CreateTargetMIHazardRecognizer. +ScheduleHazardRecognizer *TargetInstrInfo:: +CreateTargetMIHazardRecognizer(const InstrItineraryData *II, +                               const ScheduleDAG *DAG) const { +  return (ScheduleHazardRecognizer *) +    new ScoreboardHazardRecognizer(II, DAG, "machine-scheduler"); +} + +// Default implementation of CreateTargetPostRAHazardRecognizer. +ScheduleHazardRecognizer *TargetInstrInfo:: +CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, +                                   const ScheduleDAG *DAG) const { +  return (ScheduleHazardRecognizer *) +    new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched"); +} + +//===----------------------------------------------------------------------===// +//  SelectionDAG latency interface. +//===----------------------------------------------------------------------===// + +int +TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, +                                   SDNode *DefNode, unsigned DefIdx, +                                   SDNode *UseNode, unsigned UseIdx) const { +  if (!ItinData || ItinData->isEmpty()) +    return -1; + +  if (!DefNode->isMachineOpcode()) +    return -1; + +  unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass(); +  if (!UseNode->isMachineOpcode()) +    return ItinData->getOperandCycle(DefClass, DefIdx); +  unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass(); +  return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); +} + +int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, +                                     SDNode *N) const { +  if (!ItinData || ItinData->isEmpty()) +    return 1; + +  if (!N->isMachineOpcode()) +    return 1; + +  return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass()); +} + +//===----------------------------------------------------------------------===// +//  MachineInstr latency interface. +//===----------------------------------------------------------------------===// + +unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, +                                         const MachineInstr &MI) const { +  if (!ItinData || ItinData->isEmpty()) +    return 1; + +  unsigned Class = MI.getDesc().getSchedClass(); +  int UOps = ItinData->Itineraries[Class].NumMicroOps; +  if (UOps >= 0) +    return UOps; + +  // The # of u-ops is dynamically determined. The specific target should +  // override this function to return the right number. +  return 1; +} + +/// Return the default expected latency for a def based on it's opcode. +unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel, +                                            const MachineInstr &DefMI) const { +  if (DefMI.isTransient()) +    return 0; +  if (DefMI.mayLoad()) +    return SchedModel.LoadLatency; +  if (isHighLatencyDef(DefMI.getOpcode())) +    return SchedModel.HighLatency; +  return 1; +} + +unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const { +  return 0; +} + +unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, +                                          const MachineInstr &MI, +                                          unsigned *PredCost) const { +  // Default to one cycle for no itinerary. However, an "empty" itinerary may +  // still have a MinLatency property, which getStageLatency checks. +  if (!ItinData) +    return MI.mayLoad() ? 2 : 1; + +  return ItinData->getStageLatency(MI.getDesc().getSchedClass()); +} + +bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, +                                       const MachineInstr &DefMI, +                                       unsigned DefIdx) const { +  const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); +  if (!ItinData || ItinData->isEmpty()) +    return false; + +  unsigned DefClass = DefMI.getDesc().getSchedClass(); +  int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); +  return (DefCycle != -1 && DefCycle <= 1); +} + +/// Both DefMI and UseMI must be valid.  By default, call directly to the +/// itinerary. This may be overriden by the target. +int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, +                                       const MachineInstr &DefMI, +                                       unsigned DefIdx, +                                       const MachineInstr &UseMI, +                                       unsigned UseIdx) const { +  unsigned DefClass = DefMI.getDesc().getSchedClass(); +  unsigned UseClass = UseMI.getDesc().getSchedClass(); +  return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); +} + +/// If we can determine the operand latency from the def only, without itinerary +/// lookup, do so. Otherwise return -1. +int TargetInstrInfo::computeDefOperandLatency( +    const InstrItineraryData *ItinData, const MachineInstr &DefMI) const { + +  // Let the target hook getInstrLatency handle missing itineraries. +  if (!ItinData) +    return getInstrLatency(ItinData, DefMI); + +  if(ItinData->isEmpty()) +    return defaultDefLatency(ItinData->SchedModel, DefMI); + +  // ...operand lookup required +  return -1; +} + +bool TargetInstrInfo::getRegSequenceInputs( +    const MachineInstr &MI, unsigned DefIdx, +    SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { +  assert((MI.isRegSequence() || +          MI.isRegSequenceLike()) && "Instruction do not have the proper type"); + +  if (!MI.isRegSequence()) +    return getRegSequenceLikeInputs(MI, DefIdx, InputRegs); + +  // We are looking at: +  // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... +  assert(DefIdx == 0 && "REG_SEQUENCE only has one def"); +  for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx; +       OpIdx += 2) { +    const MachineOperand &MOReg = MI.getOperand(OpIdx); +    if (MOReg.isUndef()) +      continue; +    const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1); +    assert(MOSubIdx.isImm() && +           "One of the subindex of the reg_sequence is not an immediate"); +    // Record Reg:SubReg, SubIdx. +    InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(), +                                            (unsigned)MOSubIdx.getImm())); +  } +  return true; +} + +bool TargetInstrInfo::getExtractSubregInputs( +    const MachineInstr &MI, unsigned DefIdx, +    RegSubRegPairAndIdx &InputReg) const { +  assert((MI.isExtractSubreg() || +      MI.isExtractSubregLike()) && "Instruction do not have the proper type"); + +  if (!MI.isExtractSubreg()) +    return getExtractSubregLikeInputs(MI, DefIdx, InputReg); + +  // We are looking at: +  // Def = EXTRACT_SUBREG v0.sub1, sub0. +  assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def"); +  const MachineOperand &MOReg = MI.getOperand(1); +  if (MOReg.isUndef()) +    return false; +  const MachineOperand &MOSubIdx = MI.getOperand(2); +  assert(MOSubIdx.isImm() && +         "The subindex of the extract_subreg is not an immediate"); + +  InputReg.Reg = MOReg.getReg(); +  InputReg.SubReg = MOReg.getSubReg(); +  InputReg.SubIdx = (unsigned)MOSubIdx.getImm(); +  return true; +} + +bool TargetInstrInfo::getInsertSubregInputs( +    const MachineInstr &MI, unsigned DefIdx, +    RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const { +  assert((MI.isInsertSubreg() || +      MI.isInsertSubregLike()) && "Instruction do not have the proper type"); + +  if (!MI.isInsertSubreg()) +    return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg); + +  // We are looking at: +  // Def = INSERT_SEQUENCE v0, v1, sub0. +  assert(DefIdx == 0 && "INSERT_SUBREG only has one def"); +  const MachineOperand &MOBaseReg = MI.getOperand(1); +  const MachineOperand &MOInsertedReg = MI.getOperand(2); +  if (MOInsertedReg.isUndef()) +    return false; +  const MachineOperand &MOSubIdx = MI.getOperand(3); +  assert(MOSubIdx.isImm() && +         "One of the subindex of the reg_sequence is not an immediate"); +  BaseReg.Reg = MOBaseReg.getReg(); +  BaseReg.SubReg = MOBaseReg.getSubReg(); + +  InsertedReg.Reg = MOInsertedReg.getReg(); +  InsertedReg.SubReg = MOInsertedReg.getSubReg(); +  InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm(); +  return true; +} | 
