summaryrefslogtreecommitdiff
path: root/llvm/lib/IR/Value.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/IR/Value.cpp')
-rw-r--r--llvm/lib/IR/Value.cpp980
1 files changed, 980 insertions, 0 deletions
diff --git a/llvm/lib/IR/Value.cpp b/llvm/lib/IR/Value.cpp
new file mode 100644
index 000000000000..3c8a5b536695
--- /dev/null
+++ b/llvm/lib/IR/Value.cpp
@@ -0,0 +1,980 @@
+//===-- Value.cpp - Implement the Value class -----------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Value, ValueHandle, and User classes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/IR/Value.h"
+#include "LLVMContextImpl.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/DerivedUser.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/Statepoint.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/IR/ValueSymbolTable.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+
+using namespace llvm;
+
+static cl::opt<unsigned> NonGlobalValueMaxNameSize(
+ "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
+ cl::desc("Maximum size for the name of non-global values."));
+
+//===----------------------------------------------------------------------===//
+// Value Class
+//===----------------------------------------------------------------------===//
+static inline Type *checkType(Type *Ty) {
+ assert(Ty && "Value defined with a null type: Error!");
+ return Ty;
+}
+
+Value::Value(Type *ty, unsigned scid)
+ : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid),
+ HasValueHandle(0), SubclassOptionalData(0), SubclassData(0),
+ NumUserOperands(0), IsUsedByMD(false), HasName(false) {
+ static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)");
+ // FIXME: Why isn't this in the subclass gunk??
+ // Note, we cannot call isa<CallInst> before the CallInst has been
+ // constructed.
+ if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke ||
+ SubclassID == Instruction::CallBr)
+ assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
+ "invalid CallInst type!");
+ else if (SubclassID != BasicBlockVal &&
+ (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal))
+ assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
+ "Cannot create non-first-class values except for constants!");
+ static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned),
+ "Value too big");
+}
+
+Value::~Value() {
+ // Notify all ValueHandles (if present) that this value is going away.
+ if (HasValueHandle)
+ ValueHandleBase::ValueIsDeleted(this);
+ if (isUsedByMetadata())
+ ValueAsMetadata::handleDeletion(this);
+
+#ifndef NDEBUG // Only in -g mode...
+ // Check to make sure that there are no uses of this value that are still
+ // around when the value is destroyed. If there are, then we have a dangling
+ // reference and something is wrong. This code is here to print out where
+ // the value is still being referenced.
+ //
+ if (!use_empty()) {
+ dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
+ for (auto *U : users())
+ dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n";
+ }
+#endif
+ assert(use_empty() && "Uses remain when a value is destroyed!");
+
+ // If this value is named, destroy the name. This should not be in a symtab
+ // at this point.
+ destroyValueName();
+}
+
+void Value::deleteValue() {
+ switch (getValueID()) {
+#define HANDLE_VALUE(Name) \
+ case Value::Name##Val: \
+ delete static_cast<Name *>(this); \
+ break;
+#define HANDLE_MEMORY_VALUE(Name) \
+ case Value::Name##Val: \
+ static_cast<DerivedUser *>(this)->DeleteValue( \
+ static_cast<DerivedUser *>(this)); \
+ break;
+#define HANDLE_INSTRUCTION(Name) /* nothing */
+#include "llvm/IR/Value.def"
+
+#define HANDLE_INST(N, OPC, CLASS) \
+ case Value::InstructionVal + Instruction::OPC: \
+ delete static_cast<CLASS *>(this); \
+ break;
+#define HANDLE_USER_INST(N, OPC, CLASS)
+#include "llvm/IR/Instruction.def"
+
+ default:
+ llvm_unreachable("attempting to delete unknown value kind");
+ }
+}
+
+void Value::destroyValueName() {
+ ValueName *Name = getValueName();
+ if (Name)
+ Name->Destroy();
+ setValueName(nullptr);
+}
+
+bool Value::hasNUses(unsigned N) const {
+ return hasNItems(use_begin(), use_end(), N);
+}
+
+bool Value::hasNUsesOrMore(unsigned N) const {
+ return hasNItemsOrMore(use_begin(), use_end(), N);
+}
+
+bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
+ // This can be computed either by scanning the instructions in BB, or by
+ // scanning the use list of this Value. Both lists can be very long, but
+ // usually one is quite short.
+ //
+ // Scan both lists simultaneously until one is exhausted. This limits the
+ // search to the shorter list.
+ BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
+ const_user_iterator UI = user_begin(), UE = user_end();
+ for (; BI != BE && UI != UE; ++BI, ++UI) {
+ // Scan basic block: Check if this Value is used by the instruction at BI.
+ if (is_contained(BI->operands(), this))
+ return true;
+ // Scan use list: Check if the use at UI is in BB.
+ const auto *User = dyn_cast<Instruction>(*UI);
+ if (User && User->getParent() == BB)
+ return true;
+ }
+ return false;
+}
+
+unsigned Value::getNumUses() const {
+ return (unsigned)std::distance(use_begin(), use_end());
+}
+
+static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
+ ST = nullptr;
+ if (Instruction *I = dyn_cast<Instruction>(V)) {
+ if (BasicBlock *P = I->getParent())
+ if (Function *PP = P->getParent())
+ ST = PP->getValueSymbolTable();
+ } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
+ if (Function *P = BB->getParent())
+ ST = P->getValueSymbolTable();
+ } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ if (Module *P = GV->getParent())
+ ST = &P->getValueSymbolTable();
+ } else if (Argument *A = dyn_cast<Argument>(V)) {
+ if (Function *P = A->getParent())
+ ST = P->getValueSymbolTable();
+ } else {
+ assert(isa<Constant>(V) && "Unknown value type!");
+ return true; // no name is setable for this.
+ }
+ return false;
+}
+
+ValueName *Value::getValueName() const {
+ if (!HasName) return nullptr;
+
+ LLVMContext &Ctx = getContext();
+ auto I = Ctx.pImpl->ValueNames.find(this);
+ assert(I != Ctx.pImpl->ValueNames.end() &&
+ "No name entry found!");
+
+ return I->second;
+}
+
+void Value::setValueName(ValueName *VN) {
+ LLVMContext &Ctx = getContext();
+
+ assert(HasName == Ctx.pImpl->ValueNames.count(this) &&
+ "HasName bit out of sync!");
+
+ if (!VN) {
+ if (HasName)
+ Ctx.pImpl->ValueNames.erase(this);
+ HasName = false;
+ return;
+ }
+
+ HasName = true;
+ Ctx.pImpl->ValueNames[this] = VN;
+}
+
+StringRef Value::getName() const {
+ // Make sure the empty string is still a C string. For historical reasons,
+ // some clients want to call .data() on the result and expect it to be null
+ // terminated.
+ if (!hasName())
+ return StringRef("", 0);
+ return getValueName()->getKey();
+}
+
+void Value::setNameImpl(const Twine &NewName) {
+ // Fast-path: LLVMContext can be set to strip out non-GlobalValue names
+ if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this))
+ return;
+
+ // Fast path for common IRBuilder case of setName("") when there is no name.
+ if (NewName.isTriviallyEmpty() && !hasName())
+ return;
+
+ SmallString<256> NameData;
+ StringRef NameRef = NewName.toStringRef(NameData);
+ assert(NameRef.find_first_of(0) == StringRef::npos &&
+ "Null bytes are not allowed in names");
+
+ // Name isn't changing?
+ if (getName() == NameRef)
+ return;
+
+ // Cap the size of non-GlobalValue names.
+ if (NameRef.size() > NonGlobalValueMaxNameSize && !isa<GlobalValue>(this))
+ NameRef =
+ NameRef.substr(0, std::max(1u, (unsigned)NonGlobalValueMaxNameSize));
+
+ assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
+
+ // Get the symbol table to update for this object.
+ ValueSymbolTable *ST;
+ if (getSymTab(this, ST))
+ return; // Cannot set a name on this value (e.g. constant).
+
+ if (!ST) { // No symbol table to update? Just do the change.
+ if (NameRef.empty()) {
+ // Free the name for this value.
+ destroyValueName();
+ return;
+ }
+
+ // NOTE: Could optimize for the case the name is shrinking to not deallocate
+ // then reallocated.
+ destroyValueName();
+
+ // Create the new name.
+ setValueName(ValueName::Create(NameRef));
+ getValueName()->setValue(this);
+ return;
+ }
+
+ // NOTE: Could optimize for the case the name is shrinking to not deallocate
+ // then reallocated.
+ if (hasName()) {
+ // Remove old name.
+ ST->removeValueName(getValueName());
+ destroyValueName();
+
+ if (NameRef.empty())
+ return;
+ }
+
+ // Name is changing to something new.
+ setValueName(ST->createValueName(NameRef, this));
+}
+
+void Value::setName(const Twine &NewName) {
+ setNameImpl(NewName);
+ if (Function *F = dyn_cast<Function>(this))
+ F->recalculateIntrinsicID();
+}
+
+void Value::takeName(Value *V) {
+ ValueSymbolTable *ST = nullptr;
+ // If this value has a name, drop it.
+ if (hasName()) {
+ // Get the symtab this is in.
+ if (getSymTab(this, ST)) {
+ // We can't set a name on this value, but we need to clear V's name if
+ // it has one.
+ if (V->hasName()) V->setName("");
+ return; // Cannot set a name on this value (e.g. constant).
+ }
+
+ // Remove old name.
+ if (ST)
+ ST->removeValueName(getValueName());
+ destroyValueName();
+ }
+
+ // Now we know that this has no name.
+
+ // If V has no name either, we're done.
+ if (!V->hasName()) return;
+
+ // Get this's symtab if we didn't before.
+ if (!ST) {
+ if (getSymTab(this, ST)) {
+ // Clear V's name.
+ V->setName("");
+ return; // Cannot set a name on this value (e.g. constant).
+ }
+ }
+
+ // Get V's ST, this should always succed, because V has a name.
+ ValueSymbolTable *VST;
+ bool Failure = getSymTab(V, VST);
+ assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
+
+ // If these values are both in the same symtab, we can do this very fast.
+ // This works even if both values have no symtab yet.
+ if (ST == VST) {
+ // Take the name!
+ setValueName(V->getValueName());
+ V->setValueName(nullptr);
+ getValueName()->setValue(this);
+ return;
+ }
+
+ // Otherwise, things are slightly more complex. Remove V's name from VST and
+ // then reinsert it into ST.
+
+ if (VST)
+ VST->removeValueName(V->getValueName());
+ setValueName(V->getValueName());
+ V->setValueName(nullptr);
+ getValueName()->setValue(this);
+
+ if (ST)
+ ST->reinsertValue(this);
+}
+
+void Value::assertModuleIsMaterializedImpl() const {
+#ifndef NDEBUG
+ const GlobalValue *GV = dyn_cast<GlobalValue>(this);
+ if (!GV)
+ return;
+ const Module *M = GV->getParent();
+ if (!M)
+ return;
+ assert(M->isMaterialized());
+#endif
+}
+
+#ifndef NDEBUG
+static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
+ Constant *C) {
+ if (!Cache.insert(Expr).second)
+ return false;
+
+ for (auto &O : Expr->operands()) {
+ if (O == C)
+ return true;
+ auto *CE = dyn_cast<ConstantExpr>(O);
+ if (!CE)
+ continue;
+ if (contains(Cache, CE, C))
+ return true;
+ }
+ return false;
+}
+
+static bool contains(Value *Expr, Value *V) {
+ if (Expr == V)
+ return true;
+
+ auto *C = dyn_cast<Constant>(V);
+ if (!C)
+ return false;
+
+ auto *CE = dyn_cast<ConstantExpr>(Expr);
+ if (!CE)
+ return false;
+
+ SmallPtrSet<ConstantExpr *, 4> Cache;
+ return contains(Cache, CE, C);
+}
+#endif // NDEBUG
+
+void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) {
+ assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
+ assert(!contains(New, this) &&
+ "this->replaceAllUsesWith(expr(this)) is NOT valid!");
+ assert(New->getType() == getType() &&
+ "replaceAllUses of value with new value of different type!");
+
+ // Notify all ValueHandles (if present) that this value is going away.
+ if (HasValueHandle)
+ ValueHandleBase::ValueIsRAUWd(this, New);
+ if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata())
+ ValueAsMetadata::handleRAUW(this, New);
+
+ while (!materialized_use_empty()) {
+ Use &U = *UseList;
+ // Must handle Constants specially, we cannot call replaceUsesOfWith on a
+ // constant because they are uniqued.
+ if (auto *C = dyn_cast<Constant>(U.getUser())) {
+ if (!isa<GlobalValue>(C)) {
+ C->handleOperandChange(this, New);
+ continue;
+ }
+ }
+
+ U.set(New);
+ }
+
+ if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
+ BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
+}
+
+void Value::replaceAllUsesWith(Value *New) {
+ doRAUW(New, ReplaceMetadataUses::Yes);
+}
+
+void Value::replaceNonMetadataUsesWith(Value *New) {
+ doRAUW(New, ReplaceMetadataUses::No);
+}
+
+// Like replaceAllUsesWith except it does not handle constants or basic blocks.
+// This routine leaves uses within BB.
+void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) {
+ assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
+ assert(!contains(New, this) &&
+ "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
+ assert(New->getType() == getType() &&
+ "replaceUses of value with new value of different type!");
+ assert(BB && "Basic block that may contain a use of 'New' must be defined\n");
+
+ replaceUsesWithIf(New, [BB](Use &U) {
+ auto *I = dyn_cast<Instruction>(U.getUser());
+ // Don't replace if it's an instruction in the BB basic block.
+ return !I || I->getParent() != BB;
+ });
+}
+
+namespace {
+// Various metrics for how much to strip off of pointers.
+enum PointerStripKind {
+ PSK_ZeroIndices,
+ PSK_ZeroIndicesAndAliases,
+ PSK_ZeroIndicesSameRepresentation,
+ PSK_ZeroIndicesAndInvariantGroups,
+ PSK_InBoundsConstantIndices,
+ PSK_InBounds
+};
+
+template <PointerStripKind StripKind>
+static const Value *stripPointerCastsAndOffsets(const Value *V) {
+ if (!V->getType()->isPointerTy())
+ return V;
+
+ // Even though we don't look through PHI nodes, we could be called on an
+ // instruction in an unreachable block, which may be on a cycle.
+ SmallPtrSet<const Value *, 4> Visited;
+
+ Visited.insert(V);
+ do {
+ if (auto *GEP = dyn_cast<GEPOperator>(V)) {
+ switch (StripKind) {
+ case PSK_ZeroIndices:
+ case PSK_ZeroIndicesAndAliases:
+ case PSK_ZeroIndicesSameRepresentation:
+ case PSK_ZeroIndicesAndInvariantGroups:
+ if (!GEP->hasAllZeroIndices())
+ return V;
+ break;
+ case PSK_InBoundsConstantIndices:
+ if (!GEP->hasAllConstantIndices())
+ return V;
+ LLVM_FALLTHROUGH;
+ case PSK_InBounds:
+ if (!GEP->isInBounds())
+ return V;
+ break;
+ }
+ V = GEP->getPointerOperand();
+ } else if (Operator::getOpcode(V) == Instruction::BitCast) {
+ V = cast<Operator>(V)->getOperand(0);
+ } else if (StripKind != PSK_ZeroIndicesSameRepresentation &&
+ Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
+ // TODO: If we know an address space cast will not change the
+ // representation we could look through it here as well.
+ V = cast<Operator>(V)->getOperand(0);
+ } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(V)) {
+ V = cast<GlobalAlias>(V)->getAliasee();
+ } else {
+ if (const auto *Call = dyn_cast<CallBase>(V)) {
+ if (const Value *RV = Call->getReturnedArgOperand()) {
+ V = RV;
+ continue;
+ }
+ // The result of launder.invariant.group must alias it's argument,
+ // but it can't be marked with returned attribute, that's why it needs
+ // special case.
+ if (StripKind == PSK_ZeroIndicesAndInvariantGroups &&
+ (Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
+ Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) {
+ V = Call->getArgOperand(0);
+ continue;
+ }
+ }
+ return V;
+ }
+ assert(V->getType()->isPointerTy() && "Unexpected operand type!");
+ } while (Visited.insert(V).second);
+
+ return V;
+}
+} // end anonymous namespace
+
+const Value *Value::stripPointerCasts() const {
+ return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
+}
+
+const Value *Value::stripPointerCastsAndAliases() const {
+ return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
+}
+
+const Value *Value::stripPointerCastsSameRepresentation() const {
+ return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this);
+}
+
+const Value *Value::stripInBoundsConstantOffsets() const {
+ return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
+}
+
+const Value *Value::stripPointerCastsAndInvariantGroups() const {
+ return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndInvariantGroups>(this);
+}
+
+const Value *
+Value::stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset,
+ bool AllowNonInbounds) const {
+ if (!getType()->isPtrOrPtrVectorTy())
+ return this;
+
+ unsigned BitWidth = Offset.getBitWidth();
+ assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) &&
+ "The offset bit width does not match the DL specification.");
+
+ // Even though we don't look through PHI nodes, we could be called on an
+ // instruction in an unreachable block, which may be on a cycle.
+ SmallPtrSet<const Value *, 4> Visited;
+ Visited.insert(this);
+ const Value *V = this;
+ do {
+ if (auto *GEP = dyn_cast<GEPOperator>(V)) {
+ // If in-bounds was requested, we do not strip non-in-bounds GEPs.
+ if (!AllowNonInbounds && !GEP->isInBounds())
+ return V;
+
+ // If one of the values we have visited is an addrspacecast, then
+ // the pointer type of this GEP may be different from the type
+ // of the Ptr parameter which was passed to this function. This
+ // means when we construct GEPOffset, we need to use the size
+ // of GEP's pointer type rather than the size of the original
+ // pointer type.
+ APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0);
+ if (!GEP->accumulateConstantOffset(DL, GEPOffset))
+ return V;
+
+ // Stop traversal if the pointer offset wouldn't fit in the bit-width
+ // provided by the Offset argument. This can happen due to AddrSpaceCast
+ // stripping.
+ if (GEPOffset.getMinSignedBits() > BitWidth)
+ return V;
+
+ Offset += GEPOffset.sextOrTrunc(BitWidth);
+ V = GEP->getPointerOperand();
+ } else if (Operator::getOpcode(V) == Instruction::BitCast ||
+ Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
+ V = cast<Operator>(V)->getOperand(0);
+ } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
+ if (!GA->isInterposable())
+ V = GA->getAliasee();
+ } else if (const auto *Call = dyn_cast<CallBase>(V)) {
+ if (const Value *RV = Call->getReturnedArgOperand())
+ V = RV;
+ }
+ assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!");
+ } while (Visited.insert(V).second);
+
+ return V;
+}
+
+const Value *Value::stripInBoundsOffsets() const {
+ return stripPointerCastsAndOffsets<PSK_InBounds>(this);
+}
+
+uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL,
+ bool &CanBeNull) const {
+ assert(getType()->isPointerTy() && "must be pointer");
+
+ uint64_t DerefBytes = 0;
+ CanBeNull = false;
+ if (const Argument *A = dyn_cast<Argument>(this)) {
+ DerefBytes = A->getDereferenceableBytes();
+ if (DerefBytes == 0 && (A->hasByValAttr() || A->hasStructRetAttr())) {
+ Type *PT = cast<PointerType>(A->getType())->getElementType();
+ if (PT->isSized())
+ DerefBytes = DL.getTypeStoreSize(PT);
+ }
+ if (DerefBytes == 0) {
+ DerefBytes = A->getDereferenceableOrNullBytes();
+ CanBeNull = true;
+ }
+ } else if (const auto *Call = dyn_cast<CallBase>(this)) {
+ DerefBytes = Call->getDereferenceableBytes(AttributeList::ReturnIndex);
+ if (DerefBytes == 0) {
+ DerefBytes =
+ Call->getDereferenceableOrNullBytes(AttributeList::ReturnIndex);
+ CanBeNull = true;
+ }
+ } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
+ if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
+ ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
+ DerefBytes = CI->getLimitedValue();
+ }
+ if (DerefBytes == 0) {
+ if (MDNode *MD =
+ LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
+ ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
+ DerefBytes = CI->getLimitedValue();
+ }
+ CanBeNull = true;
+ }
+ } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) {
+ if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) {
+ ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
+ DerefBytes = CI->getLimitedValue();
+ }
+ if (DerefBytes == 0) {
+ if (MDNode *MD =
+ IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
+ ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
+ DerefBytes = CI->getLimitedValue();
+ }
+ CanBeNull = true;
+ }
+ } else if (auto *AI = dyn_cast<AllocaInst>(this)) {
+ if (!AI->isArrayAllocation()) {
+ DerefBytes = DL.getTypeStoreSize(AI->getAllocatedType());
+ CanBeNull = false;
+ }
+ } else if (auto *GV = dyn_cast<GlobalVariable>(this)) {
+ if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) {
+ // TODO: Don't outright reject hasExternalWeakLinkage but set the
+ // CanBeNull flag.
+ DerefBytes = DL.getTypeStoreSize(GV->getValueType());
+ CanBeNull = false;
+ }
+ }
+ return DerefBytes;
+}
+
+MaybeAlign Value::getPointerAlignment(const DataLayout &DL) const {
+ assert(getType()->isPointerTy() && "must be pointer");
+ if (auto *GO = dyn_cast<GlobalObject>(this)) {
+ if (isa<Function>(GO)) {
+ const MaybeAlign FunctionPtrAlign = DL.getFunctionPtrAlign();
+ switch (DL.getFunctionPtrAlignType()) {
+ case DataLayout::FunctionPtrAlignType::Independent:
+ return FunctionPtrAlign;
+ case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign:
+ return std::max(FunctionPtrAlign, MaybeAlign(GO->getAlignment()));
+ }
+ llvm_unreachable("Unhandled FunctionPtrAlignType");
+ }
+ const MaybeAlign Alignment(GO->getAlignment());
+ if (!Alignment) {
+ if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
+ Type *ObjectType = GVar->getValueType();
+ if (ObjectType->isSized()) {
+ // If the object is defined in the current Module, we'll be giving
+ // it the preferred alignment. Otherwise, we have to assume that it
+ // may only have the minimum ABI alignment.
+ if (GVar->isStrongDefinitionForLinker())
+ return MaybeAlign(DL.getPreferredAlignment(GVar));
+ else
+ return Align(DL.getABITypeAlignment(ObjectType));
+ }
+ }
+ }
+ return Alignment;
+ } else if (const Argument *A = dyn_cast<Argument>(this)) {
+ const MaybeAlign Alignment(A->getParamAlignment());
+ if (!Alignment && A->hasStructRetAttr()) {
+ // An sret parameter has at least the ABI alignment of the return type.
+ Type *EltTy = cast<PointerType>(A->getType())->getElementType();
+ if (EltTy->isSized())
+ return Align(DL.getABITypeAlignment(EltTy));
+ }
+ return Alignment;
+ } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) {
+ const MaybeAlign Alignment(AI->getAlignment());
+ if (!Alignment) {
+ Type *AllocatedType = AI->getAllocatedType();
+ if (AllocatedType->isSized())
+ return MaybeAlign(DL.getPrefTypeAlignment(AllocatedType));
+ }
+ return Alignment;
+ } else if (const auto *Call = dyn_cast<CallBase>(this)) {
+ const MaybeAlign Alignment(Call->getRetAlignment());
+ if (!Alignment && Call->getCalledFunction())
+ return MaybeAlign(
+ Call->getCalledFunction()->getAttributes().getRetAlignment());
+ return Alignment;
+ } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
+ if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
+ ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
+ return MaybeAlign(CI->getLimitedValue());
+ }
+ }
+ return llvm::None;
+}
+
+const Value *Value::DoPHITranslation(const BasicBlock *CurBB,
+ const BasicBlock *PredBB) const {
+ auto *PN = dyn_cast<PHINode>(this);
+ if (PN && PN->getParent() == CurBB)
+ return PN->getIncomingValueForBlock(PredBB);
+ return this;
+}
+
+LLVMContext &Value::getContext() const { return VTy->getContext(); }
+
+void Value::reverseUseList() {
+ if (!UseList || !UseList->Next)
+ // No need to reverse 0 or 1 uses.
+ return;
+
+ Use *Head = UseList;
+ Use *Current = UseList->Next;
+ Head->Next = nullptr;
+ while (Current) {
+ Use *Next = Current->Next;
+ Current->Next = Head;
+ Head->setPrev(&Current->Next);
+ Head = Current;
+ Current = Next;
+ }
+ UseList = Head;
+ Head->setPrev(&UseList);
+}
+
+bool Value::isSwiftError() const {
+ auto *Arg = dyn_cast<Argument>(this);
+ if (Arg)
+ return Arg->hasSwiftErrorAttr();
+ auto *Alloca = dyn_cast<AllocaInst>(this);
+ if (!Alloca)
+ return false;
+ return Alloca->isSwiftError();
+}
+
+//===----------------------------------------------------------------------===//
+// ValueHandleBase Class
+//===----------------------------------------------------------------------===//
+
+void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
+ assert(List && "Handle list is null?");
+
+ // Splice ourselves into the list.
+ Next = *List;
+ *List = this;
+ setPrevPtr(List);
+ if (Next) {
+ Next->setPrevPtr(&Next);
+ assert(getValPtr() == Next->getValPtr() && "Added to wrong list?");
+ }
+}
+
+void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
+ assert(List && "Must insert after existing node");
+
+ Next = List->Next;
+ setPrevPtr(&List->Next);
+ List->Next = this;
+ if (Next)
+ Next->setPrevPtr(&Next);
+}
+
+void ValueHandleBase::AddToUseList() {
+ assert(getValPtr() && "Null pointer doesn't have a use list!");
+
+ LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
+
+ if (getValPtr()->HasValueHandle) {
+ // If this value already has a ValueHandle, then it must be in the
+ // ValueHandles map already.
+ ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()];
+ assert(Entry && "Value doesn't have any handles?");
+ AddToExistingUseList(&Entry);
+ return;
+ }
+
+ // Ok, it doesn't have any handles yet, so we must insert it into the
+ // DenseMap. However, doing this insertion could cause the DenseMap to
+ // reallocate itself, which would invalidate all of the PrevP pointers that
+ // point into the old table. Handle this by checking for reallocation and
+ // updating the stale pointers only if needed.
+ DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
+ const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
+
+ ValueHandleBase *&Entry = Handles[getValPtr()];
+ assert(!Entry && "Value really did already have handles?");
+ AddToExistingUseList(&Entry);
+ getValPtr()->HasValueHandle = true;
+
+ // If reallocation didn't happen or if this was the first insertion, don't
+ // walk the table.
+ if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
+ Handles.size() == 1) {
+ return;
+ }
+
+ // Okay, reallocation did happen. Fix the Prev Pointers.
+ for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
+ E = Handles.end(); I != E; ++I) {
+ assert(I->second && I->first == I->second->getValPtr() &&
+ "List invariant broken!");
+ I->second->setPrevPtr(&I->second);
+ }
+}
+
+void ValueHandleBase::RemoveFromUseList() {
+ assert(getValPtr() && getValPtr()->HasValueHandle &&
+ "Pointer doesn't have a use list!");
+
+ // Unlink this from its use list.
+ ValueHandleBase **PrevPtr = getPrevPtr();
+ assert(*PrevPtr == this && "List invariant broken");
+
+ *PrevPtr = Next;
+ if (Next) {
+ assert(Next->getPrevPtr() == &Next && "List invariant broken");
+ Next->setPrevPtr(PrevPtr);
+ return;
+ }
+
+ // If the Next pointer was null, then it is possible that this was the last
+ // ValueHandle watching VP. If so, delete its entry from the ValueHandles
+ // map.
+ LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
+ DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
+ if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
+ Handles.erase(getValPtr());
+ getValPtr()->HasValueHandle = false;
+ }
+}
+
+void ValueHandleBase::ValueIsDeleted(Value *V) {
+ assert(V->HasValueHandle && "Should only be called if ValueHandles present");
+
+ // Get the linked list base, which is guaranteed to exist since the
+ // HasValueHandle flag is set.
+ LLVMContextImpl *pImpl = V->getContext().pImpl;
+ ValueHandleBase *Entry = pImpl->ValueHandles[V];
+ assert(Entry && "Value bit set but no entries exist");
+
+ // We use a local ValueHandleBase as an iterator so that ValueHandles can add
+ // and remove themselves from the list without breaking our iteration. This
+ // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
+ // Note that we deliberately do not the support the case when dropping a value
+ // handle results in a new value handle being permanently added to the list
+ // (as might occur in theory for CallbackVH's): the new value handle will not
+ // be processed and the checking code will mete out righteous punishment if
+ // the handle is still present once we have finished processing all the other
+ // value handles (it is fine to momentarily add then remove a value handle).
+ for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
+ Iterator.RemoveFromUseList();
+ Iterator.AddToExistingUseListAfter(Entry);
+ assert(Entry->Next == &Iterator && "Loop invariant broken.");
+
+ switch (Entry->getKind()) {
+ case Assert:
+ break;
+ case Weak:
+ case WeakTracking:
+ // WeakTracking and Weak just go to null, which unlinks them
+ // from the list.
+ Entry->operator=(nullptr);
+ break;
+ case Callback:
+ // Forward to the subclass's implementation.
+ static_cast<CallbackVH*>(Entry)->deleted();
+ break;
+ }
+ }
+
+ // All callbacks, weak references, and assertingVHs should be dropped by now.
+ if (V->HasValueHandle) {
+#ifndef NDEBUG // Only in +Asserts mode...
+ dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
+ << "\n";
+ if (pImpl->ValueHandles[V]->getKind() == Assert)
+ llvm_unreachable("An asserting value handle still pointed to this"
+ " value!");
+
+#endif
+ llvm_unreachable("All references to V were not removed?");
+ }
+}
+
+void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
+ assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
+ assert(Old != New && "Changing value into itself!");
+ assert(Old->getType() == New->getType() &&
+ "replaceAllUses of value with new value of different type!");
+
+ // Get the linked list base, which is guaranteed to exist since the
+ // HasValueHandle flag is set.
+ LLVMContextImpl *pImpl = Old->getContext().pImpl;
+ ValueHandleBase *Entry = pImpl->ValueHandles[Old];
+
+ assert(Entry && "Value bit set but no entries exist");
+
+ // We use a local ValueHandleBase as an iterator so that
+ // ValueHandles can add and remove themselves from the list without
+ // breaking our iteration. This is not really an AssertingVH; we
+ // just have to give ValueHandleBase some kind.
+ for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
+ Iterator.RemoveFromUseList();
+ Iterator.AddToExistingUseListAfter(Entry);
+ assert(Entry->Next == &Iterator && "Loop invariant broken.");
+
+ switch (Entry->getKind()) {
+ case Assert:
+ case Weak:
+ // Asserting and Weak handles do not follow RAUW implicitly.
+ break;
+ case WeakTracking:
+ // Weak goes to the new value, which will unlink it from Old's list.
+ Entry->operator=(New);
+ break;
+ case Callback:
+ // Forward to the subclass's implementation.
+ static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
+ break;
+ }
+ }
+
+#ifndef NDEBUG
+ // If any new weak value handles were added while processing the
+ // list, then complain about it now.
+ if (Old->HasValueHandle)
+ for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
+ switch (Entry->getKind()) {
+ case WeakTracking:
+ dbgs() << "After RAUW from " << *Old->getType() << " %"
+ << Old->getName() << " to " << *New->getType() << " %"
+ << New->getName() << "\n";
+ llvm_unreachable(
+ "A weak tracking value handle still pointed to the old value!\n");
+ default:
+ break;
+ }
+#endif
+}
+
+// Pin the vtable to this file.
+void CallbackVH::anchor() {}