diff options
Diffstat (limited to 'llvm/lib/IR/Verifier.cpp')
-rw-r--r-- | llvm/lib/IR/Verifier.cpp | 5561 |
1 files changed, 5561 insertions, 0 deletions
diff --git a/llvm/lib/IR/Verifier.cpp b/llvm/lib/IR/Verifier.cpp new file mode 100644 index 000000000000..b17fc433ed74 --- /dev/null +++ b/llvm/lib/IR/Verifier.cpp @@ -0,0 +1,5561 @@ +//===-- Verifier.cpp - Implement the Module Verifier -----------------------==// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines the function verifier interface, that can be used for some +// sanity checking of input to the system. +// +// Note that this does not provide full `Java style' security and verifications, +// instead it just tries to ensure that code is well-formed. +// +// * Both of a binary operator's parameters are of the same type +// * Verify that the indices of mem access instructions match other operands +// * Verify that arithmetic and other things are only performed on first-class +// types. Verify that shifts & logicals only happen on integrals f.e. +// * All of the constants in a switch statement are of the correct type +// * The code is in valid SSA form +// * It should be illegal to put a label into any other type (like a structure) +// or to return one. [except constant arrays!] +// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad +// * PHI nodes must have an entry for each predecessor, with no extras. +// * PHI nodes must be the first thing in a basic block, all grouped together +// * PHI nodes must have at least one entry +// * All basic blocks should only end with terminator insts, not contain them +// * The entry node to a function must not have predecessors +// * All Instructions must be embedded into a basic block +// * Functions cannot take a void-typed parameter +// * Verify that a function's argument list agrees with it's declared type. +// * It is illegal to specify a name for a void value. +// * It is illegal to have a internal global value with no initializer +// * It is illegal to have a ret instruction that returns a value that does not +// agree with the function return value type. +// * Function call argument types match the function prototype +// * A landing pad is defined by a landingpad instruction, and can be jumped to +// only by the unwind edge of an invoke instruction. +// * A landingpad instruction must be the first non-PHI instruction in the +// block. +// * Landingpad instructions must be in a function with a personality function. +// * All other things that are tested by asserts spread about the code... +// +//===----------------------------------------------------------------------===// + +#include "llvm/IR/Verifier.h" +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/MapVector.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/StringMap.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/Twine.h" +#include "llvm/ADT/ilist.h" +#include "llvm/BinaryFormat/Dwarf.h" +#include "llvm/IR/Argument.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/Comdat.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/ConstantRange.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfo.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/InstVisitor.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/ModuleSlotTracker.h" +#include "llvm/IR/PassManager.h" +#include "llvm/IR/Statepoint.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Use.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/Pass.h" +#include "llvm/Support/AtomicOrdering.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <memory> +#include <string> +#include <utility> + +using namespace llvm; + +namespace llvm { + +struct VerifierSupport { + raw_ostream *OS; + const Module &M; + ModuleSlotTracker MST; + Triple TT; + const DataLayout &DL; + LLVMContext &Context; + + /// Track the brokenness of the module while recursively visiting. + bool Broken = false; + /// Broken debug info can be "recovered" from by stripping the debug info. + bool BrokenDebugInfo = false; + /// Whether to treat broken debug info as an error. + bool TreatBrokenDebugInfoAsError = true; + + explicit VerifierSupport(raw_ostream *OS, const Module &M) + : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), + Context(M.getContext()) {} + +private: + void Write(const Module *M) { + *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; + } + + void Write(const Value *V) { + if (V) + Write(*V); + } + + void Write(const Value &V) { + if (isa<Instruction>(V)) { + V.print(*OS, MST); + *OS << '\n'; + } else { + V.printAsOperand(*OS, true, MST); + *OS << '\n'; + } + } + + void Write(const Metadata *MD) { + if (!MD) + return; + MD->print(*OS, MST, &M); + *OS << '\n'; + } + + template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { + Write(MD.get()); + } + + void Write(const NamedMDNode *NMD) { + if (!NMD) + return; + NMD->print(*OS, MST); + *OS << '\n'; + } + + void Write(Type *T) { + if (!T) + return; + *OS << ' ' << *T; + } + + void Write(const Comdat *C) { + if (!C) + return; + *OS << *C; + } + + void Write(const APInt *AI) { + if (!AI) + return; + *OS << *AI << '\n'; + } + + void Write(const unsigned i) { *OS << i << '\n'; } + + template <typename T> void Write(ArrayRef<T> Vs) { + for (const T &V : Vs) + Write(V); + } + + template <typename T1, typename... Ts> + void WriteTs(const T1 &V1, const Ts &... Vs) { + Write(V1); + WriteTs(Vs...); + } + + template <typename... Ts> void WriteTs() {} + +public: + /// A check failed, so printout out the condition and the message. + /// + /// This provides a nice place to put a breakpoint if you want to see why + /// something is not correct. + void CheckFailed(const Twine &Message) { + if (OS) + *OS << Message << '\n'; + Broken = true; + } + + /// A check failed (with values to print). + /// + /// This calls the Message-only version so that the above is easier to set a + /// breakpoint on. + template <typename T1, typename... Ts> + void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { + CheckFailed(Message); + if (OS) + WriteTs(V1, Vs...); + } + + /// A debug info check failed. + void DebugInfoCheckFailed(const Twine &Message) { + if (OS) + *OS << Message << '\n'; + Broken |= TreatBrokenDebugInfoAsError; + BrokenDebugInfo = true; + } + + /// A debug info check failed (with values to print). + template <typename T1, typename... Ts> + void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, + const Ts &... Vs) { + DebugInfoCheckFailed(Message); + if (OS) + WriteTs(V1, Vs...); + } +}; + +} // namespace llvm + +namespace { + +class Verifier : public InstVisitor<Verifier>, VerifierSupport { + friend class InstVisitor<Verifier>; + + DominatorTree DT; + + /// When verifying a basic block, keep track of all of the + /// instructions we have seen so far. + /// + /// This allows us to do efficient dominance checks for the case when an + /// instruction has an operand that is an instruction in the same block. + SmallPtrSet<Instruction *, 16> InstsInThisBlock; + + /// Keep track of the metadata nodes that have been checked already. + SmallPtrSet<const Metadata *, 32> MDNodes; + + /// Keep track which DISubprogram is attached to which function. + DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; + + /// Track all DICompileUnits visited. + SmallPtrSet<const Metadata *, 2> CUVisited; + + /// The result type for a landingpad. + Type *LandingPadResultTy; + + /// Whether we've seen a call to @llvm.localescape in this function + /// already. + bool SawFrameEscape; + + /// Whether the current function has a DISubprogram attached to it. + bool HasDebugInfo = false; + + /// Whether source was present on the first DIFile encountered in each CU. + DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; + + /// Stores the count of how many objects were passed to llvm.localescape for a + /// given function and the largest index passed to llvm.localrecover. + DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; + + // Maps catchswitches and cleanuppads that unwind to siblings to the + // terminators that indicate the unwind, used to detect cycles therein. + MapVector<Instruction *, Instruction *> SiblingFuncletInfo; + + /// Cache of constants visited in search of ConstantExprs. + SmallPtrSet<const Constant *, 32> ConstantExprVisited; + + /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. + SmallVector<const Function *, 4> DeoptimizeDeclarations; + + // Verify that this GlobalValue is only used in this module. + // This map is used to avoid visiting uses twice. We can arrive at a user + // twice, if they have multiple operands. In particular for very large + // constant expressions, we can arrive at a particular user many times. + SmallPtrSet<const Value *, 32> GlobalValueVisited; + + // Keeps track of duplicate function argument debug info. + SmallVector<const DILocalVariable *, 16> DebugFnArgs; + + TBAAVerifier TBAAVerifyHelper; + + void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); + +public: + explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, + const Module &M) + : VerifierSupport(OS, M), LandingPadResultTy(nullptr), + SawFrameEscape(false), TBAAVerifyHelper(this) { + TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; + } + + bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } + + bool verify(const Function &F) { + assert(F.getParent() == &M && + "An instance of this class only works with a specific module!"); + + // First ensure the function is well-enough formed to compute dominance + // information, and directly compute a dominance tree. We don't rely on the + // pass manager to provide this as it isolates us from a potentially + // out-of-date dominator tree and makes it significantly more complex to run + // this code outside of a pass manager. + // FIXME: It's really gross that we have to cast away constness here. + if (!F.empty()) + DT.recalculate(const_cast<Function &>(F)); + + for (const BasicBlock &BB : F) { + if (!BB.empty() && BB.back().isTerminator()) + continue; + + if (OS) { + *OS << "Basic Block in function '" << F.getName() + << "' does not have terminator!\n"; + BB.printAsOperand(*OS, true, MST); + *OS << "\n"; + } + return false; + } + + Broken = false; + // FIXME: We strip const here because the inst visitor strips const. + visit(const_cast<Function &>(F)); + verifySiblingFuncletUnwinds(); + InstsInThisBlock.clear(); + DebugFnArgs.clear(); + LandingPadResultTy = nullptr; + SawFrameEscape = false; + SiblingFuncletInfo.clear(); + + return !Broken; + } + + /// Verify the module that this instance of \c Verifier was initialized with. + bool verify() { + Broken = false; + + // Collect all declarations of the llvm.experimental.deoptimize intrinsic. + for (const Function &F : M) + if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) + DeoptimizeDeclarations.push_back(&F); + + // Now that we've visited every function, verify that we never asked to + // recover a frame index that wasn't escaped. + verifyFrameRecoverIndices(); + for (const GlobalVariable &GV : M.globals()) + visitGlobalVariable(GV); + + for (const GlobalAlias &GA : M.aliases()) + visitGlobalAlias(GA); + + for (const NamedMDNode &NMD : M.named_metadata()) + visitNamedMDNode(NMD); + + for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) + visitComdat(SMEC.getValue()); + + visitModuleFlags(M); + visitModuleIdents(M); + visitModuleCommandLines(M); + + verifyCompileUnits(); + + verifyDeoptimizeCallingConvs(); + DISubprogramAttachments.clear(); + return !Broken; + } + +private: + // Verification methods... + void visitGlobalValue(const GlobalValue &GV); + void visitGlobalVariable(const GlobalVariable &GV); + void visitGlobalAlias(const GlobalAlias &GA); + void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); + void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, + const GlobalAlias &A, const Constant &C); + void visitNamedMDNode(const NamedMDNode &NMD); + void visitMDNode(const MDNode &MD); + void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); + void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); + void visitComdat(const Comdat &C); + void visitModuleIdents(const Module &M); + void visitModuleCommandLines(const Module &M); + void visitModuleFlags(const Module &M); + void visitModuleFlag(const MDNode *Op, + DenseMap<const MDString *, const MDNode *> &SeenIDs, + SmallVectorImpl<const MDNode *> &Requirements); + void visitModuleFlagCGProfileEntry(const MDOperand &MDO); + void visitFunction(const Function &F); + void visitBasicBlock(BasicBlock &BB); + void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); + void visitDereferenceableMetadata(Instruction &I, MDNode *MD); + void visitProfMetadata(Instruction &I, MDNode *MD); + + template <class Ty> bool isValidMetadataArray(const MDTuple &N); +#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); +#include "llvm/IR/Metadata.def" + void visitDIScope(const DIScope &N); + void visitDIVariable(const DIVariable &N); + void visitDILexicalBlockBase(const DILexicalBlockBase &N); + void visitDITemplateParameter(const DITemplateParameter &N); + + void visitTemplateParams(const MDNode &N, const Metadata &RawParams); + + // InstVisitor overrides... + using InstVisitor<Verifier>::visit; + void visit(Instruction &I); + + void visitTruncInst(TruncInst &I); + void visitZExtInst(ZExtInst &I); + void visitSExtInst(SExtInst &I); + void visitFPTruncInst(FPTruncInst &I); + void visitFPExtInst(FPExtInst &I); + void visitFPToUIInst(FPToUIInst &I); + void visitFPToSIInst(FPToSIInst &I); + void visitUIToFPInst(UIToFPInst &I); + void visitSIToFPInst(SIToFPInst &I); + void visitIntToPtrInst(IntToPtrInst &I); + void visitPtrToIntInst(PtrToIntInst &I); + void visitBitCastInst(BitCastInst &I); + void visitAddrSpaceCastInst(AddrSpaceCastInst &I); + void visitPHINode(PHINode &PN); + void visitCallBase(CallBase &Call); + void visitUnaryOperator(UnaryOperator &U); + void visitBinaryOperator(BinaryOperator &B); + void visitICmpInst(ICmpInst &IC); + void visitFCmpInst(FCmpInst &FC); + void visitExtractElementInst(ExtractElementInst &EI); + void visitInsertElementInst(InsertElementInst &EI); + void visitShuffleVectorInst(ShuffleVectorInst &EI); + void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } + void visitCallInst(CallInst &CI); + void visitInvokeInst(InvokeInst &II); + void visitGetElementPtrInst(GetElementPtrInst &GEP); + void visitLoadInst(LoadInst &LI); + void visitStoreInst(StoreInst &SI); + void verifyDominatesUse(Instruction &I, unsigned i); + void visitInstruction(Instruction &I); + void visitTerminator(Instruction &I); + void visitBranchInst(BranchInst &BI); + void visitReturnInst(ReturnInst &RI); + void visitSwitchInst(SwitchInst &SI); + void visitIndirectBrInst(IndirectBrInst &BI); + void visitCallBrInst(CallBrInst &CBI); + void visitSelectInst(SelectInst &SI); + void visitUserOp1(Instruction &I); + void visitUserOp2(Instruction &I) { visitUserOp1(I); } + void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); + void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); + void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); + void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); + void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); + void visitAtomicRMWInst(AtomicRMWInst &RMWI); + void visitFenceInst(FenceInst &FI); + void visitAllocaInst(AllocaInst &AI); + void visitExtractValueInst(ExtractValueInst &EVI); + void visitInsertValueInst(InsertValueInst &IVI); + void visitEHPadPredecessors(Instruction &I); + void visitLandingPadInst(LandingPadInst &LPI); + void visitResumeInst(ResumeInst &RI); + void visitCatchPadInst(CatchPadInst &CPI); + void visitCatchReturnInst(CatchReturnInst &CatchReturn); + void visitCleanupPadInst(CleanupPadInst &CPI); + void visitFuncletPadInst(FuncletPadInst &FPI); + void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); + void visitCleanupReturnInst(CleanupReturnInst &CRI); + + void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); + void verifySwiftErrorValue(const Value *SwiftErrorVal); + void verifyMustTailCall(CallInst &CI); + bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, + unsigned ArgNo, std::string &Suffix); + bool verifyAttributeCount(AttributeList Attrs, unsigned Params); + void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, + const Value *V); + void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); + void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, + const Value *V, bool IsIntrinsic); + void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); + + void visitConstantExprsRecursively(const Constant *EntryC); + void visitConstantExpr(const ConstantExpr *CE); + void verifyStatepoint(const CallBase &Call); + void verifyFrameRecoverIndices(); + void verifySiblingFuncletUnwinds(); + + void verifyFragmentExpression(const DbgVariableIntrinsic &I); + template <typename ValueOrMetadata> + void verifyFragmentExpression(const DIVariable &V, + DIExpression::FragmentInfo Fragment, + ValueOrMetadata *Desc); + void verifyFnArgs(const DbgVariableIntrinsic &I); + void verifyNotEntryValue(const DbgVariableIntrinsic &I); + + /// Module-level debug info verification... + void verifyCompileUnits(); + + /// Module-level verification that all @llvm.experimental.deoptimize + /// declarations share the same calling convention. + void verifyDeoptimizeCallingConvs(); + + /// Verify all-or-nothing property of DIFile source attribute within a CU. + void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); +}; + +} // end anonymous namespace + +/// We know that cond should be true, if not print an error message. +#define Assert(C, ...) \ + do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) + +/// We know that a debug info condition should be true, if not print +/// an error message. +#define AssertDI(C, ...) \ + do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) + +void Verifier::visit(Instruction &I) { + for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) + Assert(I.getOperand(i) != nullptr, "Operand is null", &I); + InstVisitor<Verifier>::visit(I); +} + +// Helper to recursively iterate over indirect users. By +// returning false, the callback can ask to stop recursing +// further. +static void forEachUser(const Value *User, + SmallPtrSet<const Value *, 32> &Visited, + llvm::function_ref<bool(const Value *)> Callback) { + if (!Visited.insert(User).second) + return; + for (const Value *TheNextUser : User->materialized_users()) + if (Callback(TheNextUser)) + forEachUser(TheNextUser, Visited, Callback); +} + +void Verifier::visitGlobalValue(const GlobalValue &GV) { + Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), + "Global is external, but doesn't have external or weak linkage!", &GV); + + Assert(GV.getAlignment() <= Value::MaximumAlignment, + "huge alignment values are unsupported", &GV); + Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), + "Only global variables can have appending linkage!", &GV); + + if (GV.hasAppendingLinkage()) { + const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); + Assert(GVar && GVar->getValueType()->isArrayTy(), + "Only global arrays can have appending linkage!", GVar); + } + + if (GV.isDeclarationForLinker()) + Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); + + if (GV.hasDLLImportStorageClass()) { + Assert(!GV.isDSOLocal(), + "GlobalValue with DLLImport Storage is dso_local!", &GV); + + Assert((GV.isDeclaration() && GV.hasExternalLinkage()) || + GV.hasAvailableExternallyLinkage(), + "Global is marked as dllimport, but not external", &GV); + } + + if (GV.hasLocalLinkage()) + Assert(GV.isDSOLocal(), + "GlobalValue with private or internal linkage must be dso_local!", + &GV); + + if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage()) + Assert(GV.isDSOLocal(), + "GlobalValue with non default visibility must be dso_local!", &GV); + + forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { + if (const Instruction *I = dyn_cast<Instruction>(V)) { + if (!I->getParent() || !I->getParent()->getParent()) + CheckFailed("Global is referenced by parentless instruction!", &GV, &M, + I); + else if (I->getParent()->getParent()->getParent() != &M) + CheckFailed("Global is referenced in a different module!", &GV, &M, I, + I->getParent()->getParent(), + I->getParent()->getParent()->getParent()); + return false; + } else if (const Function *F = dyn_cast<Function>(V)) { + if (F->getParent() != &M) + CheckFailed("Global is used by function in a different module", &GV, &M, + F, F->getParent()); + return false; + } + return true; + }); +} + +void Verifier::visitGlobalVariable(const GlobalVariable &GV) { + if (GV.hasInitializer()) { + Assert(GV.getInitializer()->getType() == GV.getValueType(), + "Global variable initializer type does not match global " + "variable type!", + &GV); + // If the global has common linkage, it must have a zero initializer and + // cannot be constant. + if (GV.hasCommonLinkage()) { + Assert(GV.getInitializer()->isNullValue(), + "'common' global must have a zero initializer!", &GV); + Assert(!GV.isConstant(), "'common' global may not be marked constant!", + &GV); + Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); + } + } + + if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || + GV.getName() == "llvm.global_dtors")) { + Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), + "invalid linkage for intrinsic global variable", &GV); + // Don't worry about emitting an error for it not being an array, + // visitGlobalValue will complain on appending non-array. + if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { + StructType *STy = dyn_cast<StructType>(ATy->getElementType()); + PointerType *FuncPtrTy = + FunctionType::get(Type::getVoidTy(Context), false)-> + getPointerTo(DL.getProgramAddressSpace()); + Assert(STy && + (STy->getNumElements() == 2 || STy->getNumElements() == 3) && + STy->getTypeAtIndex(0u)->isIntegerTy(32) && + STy->getTypeAtIndex(1) == FuncPtrTy, + "wrong type for intrinsic global variable", &GV); + Assert(STy->getNumElements() == 3, + "the third field of the element type is mandatory, " + "specify i8* null to migrate from the obsoleted 2-field form"); + Type *ETy = STy->getTypeAtIndex(2); + Assert(ETy->isPointerTy() && + cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), + "wrong type for intrinsic global variable", &GV); + } + } + + if (GV.hasName() && (GV.getName() == "llvm.used" || + GV.getName() == "llvm.compiler.used")) { + Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), + "invalid linkage for intrinsic global variable", &GV); + Type *GVType = GV.getValueType(); + if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { + PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); + Assert(PTy, "wrong type for intrinsic global variable", &GV); + if (GV.hasInitializer()) { + const Constant *Init = GV.getInitializer(); + const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); + Assert(InitArray, "wrong initalizer for intrinsic global variable", + Init); + for (Value *Op : InitArray->operands()) { + Value *V = Op->stripPointerCasts(); + Assert(isa<GlobalVariable>(V) || isa<Function>(V) || + isa<GlobalAlias>(V), + "invalid llvm.used member", V); + Assert(V->hasName(), "members of llvm.used must be named", V); + } + } + } + } + + // Visit any debug info attachments. + SmallVector<MDNode *, 1> MDs; + GV.getMetadata(LLVMContext::MD_dbg, MDs); + for (auto *MD : MDs) { + if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) + visitDIGlobalVariableExpression(*GVE); + else + AssertDI(false, "!dbg attachment of global variable must be a " + "DIGlobalVariableExpression"); + } + + // Scalable vectors cannot be global variables, since we don't know + // the runtime size. If the global is a struct or an array containing + // scalable vectors, that will be caught by the isValidElementType methods + // in StructType or ArrayType instead. + if (auto *VTy = dyn_cast<VectorType>(GV.getValueType())) + Assert(!VTy->isScalable(), "Globals cannot contain scalable vectors", &GV); + + if (!GV.hasInitializer()) { + visitGlobalValue(GV); + return; + } + + // Walk any aggregate initializers looking for bitcasts between address spaces + visitConstantExprsRecursively(GV.getInitializer()); + + visitGlobalValue(GV); +} + +void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { + SmallPtrSet<const GlobalAlias*, 4> Visited; + Visited.insert(&GA); + visitAliaseeSubExpr(Visited, GA, C); +} + +void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, + const GlobalAlias &GA, const Constant &C) { + if (const auto *GV = dyn_cast<GlobalValue>(&C)) { + Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", + &GA); + + if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { + Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); + + Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", + &GA); + } else { + // Only continue verifying subexpressions of GlobalAliases. + // Do not recurse into global initializers. + return; + } + } + + if (const auto *CE = dyn_cast<ConstantExpr>(&C)) + visitConstantExprsRecursively(CE); + + for (const Use &U : C.operands()) { + Value *V = &*U; + if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) + visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); + else if (const auto *C2 = dyn_cast<Constant>(V)) + visitAliaseeSubExpr(Visited, GA, *C2); + } +} + +void Verifier::visitGlobalAlias(const GlobalAlias &GA) { + Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), + "Alias should have private, internal, linkonce, weak, linkonce_odr, " + "weak_odr, or external linkage!", + &GA); + const Constant *Aliasee = GA.getAliasee(); + Assert(Aliasee, "Aliasee cannot be NULL!", &GA); + Assert(GA.getType() == Aliasee->getType(), + "Alias and aliasee types should match!", &GA); + + Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), + "Aliasee should be either GlobalValue or ConstantExpr", &GA); + + visitAliaseeSubExpr(GA, *Aliasee); + + visitGlobalValue(GA); +} + +void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { + // There used to be various other llvm.dbg.* nodes, but we don't support + // upgrading them and we want to reserve the namespace for future uses. + if (NMD.getName().startswith("llvm.dbg.")) + AssertDI(NMD.getName() == "llvm.dbg.cu", + "unrecognized named metadata node in the llvm.dbg namespace", + &NMD); + for (const MDNode *MD : NMD.operands()) { + if (NMD.getName() == "llvm.dbg.cu") + AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); + + if (!MD) + continue; + + visitMDNode(*MD); + } +} + +void Verifier::visitMDNode(const MDNode &MD) { + // Only visit each node once. Metadata can be mutually recursive, so this + // avoids infinite recursion here, as well as being an optimization. + if (!MDNodes.insert(&MD).second) + return; + + switch (MD.getMetadataID()) { + default: + llvm_unreachable("Invalid MDNode subclass"); + case Metadata::MDTupleKind: + break; +#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ + case Metadata::CLASS##Kind: \ + visit##CLASS(cast<CLASS>(MD)); \ + break; +#include "llvm/IR/Metadata.def" + } + + for (const Metadata *Op : MD.operands()) { + if (!Op) + continue; + Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", + &MD, Op); + if (auto *N = dyn_cast<MDNode>(Op)) { + visitMDNode(*N); + continue; + } + if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { + visitValueAsMetadata(*V, nullptr); + continue; + } + } + + // Check these last, so we diagnose problems in operands first. + Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); + Assert(MD.isResolved(), "All nodes should be resolved!", &MD); +} + +void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { + Assert(MD.getValue(), "Expected valid value", &MD); + Assert(!MD.getValue()->getType()->isMetadataTy(), + "Unexpected metadata round-trip through values", &MD, MD.getValue()); + + auto *L = dyn_cast<LocalAsMetadata>(&MD); + if (!L) + return; + + Assert(F, "function-local metadata used outside a function", L); + + // If this was an instruction, bb, or argument, verify that it is in the + // function that we expect. + Function *ActualF = nullptr; + if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { + Assert(I->getParent(), "function-local metadata not in basic block", L, I); + ActualF = I->getParent()->getParent(); + } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) + ActualF = BB->getParent(); + else if (Argument *A = dyn_cast<Argument>(L->getValue())) + ActualF = A->getParent(); + assert(ActualF && "Unimplemented function local metadata case!"); + + Assert(ActualF == F, "function-local metadata used in wrong function", L); +} + +void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { + Metadata *MD = MDV.getMetadata(); + if (auto *N = dyn_cast<MDNode>(MD)) { + visitMDNode(*N); + return; + } + + // Only visit each node once. Metadata can be mutually recursive, so this + // avoids infinite recursion here, as well as being an optimization. + if (!MDNodes.insert(MD).second) + return; + + if (auto *V = dyn_cast<ValueAsMetadata>(MD)) + visitValueAsMetadata(*V, F); +} + +static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } +static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } +static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } + +void Verifier::visitDILocation(const DILocation &N) { + AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), + "location requires a valid scope", &N, N.getRawScope()); + if (auto *IA = N.getRawInlinedAt()) + AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); + if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) + AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); +} + +void Verifier::visitGenericDINode(const GenericDINode &N) { + AssertDI(N.getTag(), "invalid tag", &N); +} + +void Verifier::visitDIScope(const DIScope &N) { + if (auto *F = N.getRawFile()) + AssertDI(isa<DIFile>(F), "invalid file", &N, F); +} + +void Verifier::visitDISubrange(const DISubrange &N) { + AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); + auto Count = N.getCount(); + AssertDI(Count, "Count must either be a signed constant or a DIVariable", + &N); + AssertDI(!Count.is<ConstantInt*>() || + Count.get<ConstantInt*>()->getSExtValue() >= -1, + "invalid subrange count", &N); +} + +void Verifier::visitDIEnumerator(const DIEnumerator &N) { + AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); +} + +void Verifier::visitDIBasicType(const DIBasicType &N) { + AssertDI(N.getTag() == dwarf::DW_TAG_base_type || + N.getTag() == dwarf::DW_TAG_unspecified_type, + "invalid tag", &N); + AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , + "has conflicting flags", &N); +} + +void Verifier::visitDIDerivedType(const DIDerivedType &N) { + // Common scope checks. + visitDIScope(N); + + AssertDI(N.getTag() == dwarf::DW_TAG_typedef || + N.getTag() == dwarf::DW_TAG_pointer_type || + N.getTag() == dwarf::DW_TAG_ptr_to_member_type || + N.getTag() == dwarf::DW_TAG_reference_type || + N.getTag() == dwarf::DW_TAG_rvalue_reference_type || + N.getTag() == dwarf::DW_TAG_const_type || + N.getTag() == dwarf::DW_TAG_volatile_type || + N.getTag() == dwarf::DW_TAG_restrict_type || + N.getTag() == dwarf::DW_TAG_atomic_type || + N.getTag() == dwarf::DW_TAG_member || + N.getTag() == dwarf::DW_TAG_inheritance || + N.getTag() == dwarf::DW_TAG_friend, + "invalid tag", &N); + if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { + AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, + N.getRawExtraData()); + } + + AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); + AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, + N.getRawBaseType()); + + if (N.getDWARFAddressSpace()) { + AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || + N.getTag() == dwarf::DW_TAG_reference_type || + N.getTag() == dwarf::DW_TAG_rvalue_reference_type, + "DWARF address space only applies to pointer or reference types", + &N); + } +} + +/// Detect mutually exclusive flags. +static bool hasConflictingReferenceFlags(unsigned Flags) { + return ((Flags & DINode::FlagLValueReference) && + (Flags & DINode::FlagRValueReference)) || + ((Flags & DINode::FlagTypePassByValue) && + (Flags & DINode::FlagTypePassByReference)); +} + +void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { + auto *Params = dyn_cast<MDTuple>(&RawParams); + AssertDI(Params, "invalid template params", &N, &RawParams); + for (Metadata *Op : Params->operands()) { + AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", + &N, Params, Op); + } +} + +void Verifier::visitDICompositeType(const DICompositeType &N) { + // Common scope checks. + visitDIScope(N); + + AssertDI(N.getTag() == dwarf::DW_TAG_array_type || + N.getTag() == dwarf::DW_TAG_structure_type || + N.getTag() == dwarf::DW_TAG_union_type || + N.getTag() == dwarf::DW_TAG_enumeration_type || + N.getTag() == dwarf::DW_TAG_class_type || + N.getTag() == dwarf::DW_TAG_variant_part, + "invalid tag", &N); + + AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); + AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, + N.getRawBaseType()); + + AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), + "invalid composite elements", &N, N.getRawElements()); + AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, + N.getRawVTableHolder()); + AssertDI(!hasConflictingReferenceFlags(N.getFlags()), + "invalid reference flags", &N); + unsigned DIBlockByRefStruct = 1 << 4; + AssertDI((N.getFlags() & DIBlockByRefStruct) == 0, + "DIBlockByRefStruct on DICompositeType is no longer supported", &N); + + if (N.isVector()) { + const DINodeArray Elements = N.getElements(); + AssertDI(Elements.size() == 1 && + Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, + "invalid vector, expected one element of type subrange", &N); + } + + if (auto *Params = N.getRawTemplateParams()) + visitTemplateParams(N, *Params); + + if (N.getTag() == dwarf::DW_TAG_class_type || + N.getTag() == dwarf::DW_TAG_union_type) { + AssertDI(N.getFile() && !N.getFile()->getFilename().empty(), + "class/union requires a filename", &N, N.getFile()); + } + + if (auto *D = N.getRawDiscriminator()) { + AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, + "discriminator can only appear on variant part"); + } +} + +void Verifier::visitDISubroutineType(const DISubroutineType &N) { + AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); + if (auto *Types = N.getRawTypeArray()) { + AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); + for (Metadata *Ty : N.getTypeArray()->operands()) { + AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); + } + } + AssertDI(!hasConflictingReferenceFlags(N.getFlags()), + "invalid reference flags", &N); +} + +void Verifier::visitDIFile(const DIFile &N) { + AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); + Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); + if (Checksum) { + AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, + "invalid checksum kind", &N); + size_t Size; + switch (Checksum->Kind) { + case DIFile::CSK_MD5: + Size = 32; + break; + case DIFile::CSK_SHA1: + Size = 40; + break; + } + AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); + AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, + "invalid checksum", &N); + } +} + +void Verifier::visitDICompileUnit(const DICompileUnit &N) { + AssertDI(N.isDistinct(), "compile units must be distinct", &N); + AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); + + // Don't bother verifying the compilation directory or producer string + // as those could be empty. + AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, + N.getRawFile()); + AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, + N.getFile()); + + verifySourceDebugInfo(N, *N.getFile()); + + AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), + "invalid emission kind", &N); + + if (auto *Array = N.getRawEnumTypes()) { + AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); + for (Metadata *Op : N.getEnumTypes()->operands()) { + auto *Enum = dyn_cast_or_null<DICompositeType>(Op); + AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, + "invalid enum type", &N, N.getEnumTypes(), Op); + } + } + if (auto *Array = N.getRawRetainedTypes()) { + AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); + for (Metadata *Op : N.getRetainedTypes()->operands()) { + AssertDI(Op && (isa<DIType>(Op) || + (isa<DISubprogram>(Op) && + !cast<DISubprogram>(Op)->isDefinition())), + "invalid retained type", &N, Op); + } + } + if (auto *Array = N.getRawGlobalVariables()) { + AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); + for (Metadata *Op : N.getGlobalVariables()->operands()) { + AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), + "invalid global variable ref", &N, Op); + } + } + if (auto *Array = N.getRawImportedEntities()) { + AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); + for (Metadata *Op : N.getImportedEntities()->operands()) { + AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", + &N, Op); + } + } + if (auto *Array = N.getRawMacros()) { + AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); + for (Metadata *Op : N.getMacros()->operands()) { + AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); + } + } + CUVisited.insert(&N); +} + +void Verifier::visitDISubprogram(const DISubprogram &N) { + AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); + AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); + if (auto *F = N.getRawFile()) + AssertDI(isa<DIFile>(F), "invalid file", &N, F); + else + AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); + if (auto *T = N.getRawType()) + AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); + AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, + N.getRawContainingType()); + if (auto *Params = N.getRawTemplateParams()) + visitTemplateParams(N, *Params); + if (auto *S = N.getRawDeclaration()) + AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), + "invalid subprogram declaration", &N, S); + if (auto *RawNode = N.getRawRetainedNodes()) { + auto *Node = dyn_cast<MDTuple>(RawNode); + AssertDI(Node, "invalid retained nodes list", &N, RawNode); + for (Metadata *Op : Node->operands()) { + AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), + "invalid retained nodes, expected DILocalVariable or DILabel", + &N, Node, Op); + } + } + AssertDI(!hasConflictingReferenceFlags(N.getFlags()), + "invalid reference flags", &N); + + auto *Unit = N.getRawUnit(); + if (N.isDefinition()) { + // Subprogram definitions (not part of the type hierarchy). + AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); + AssertDI(Unit, "subprogram definitions must have a compile unit", &N); + AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); + if (N.getFile()) + verifySourceDebugInfo(*N.getUnit(), *N.getFile()); + } else { + // Subprogram declarations (part of the type hierarchy). + AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); + } + + if (auto *RawThrownTypes = N.getRawThrownTypes()) { + auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); + AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); + for (Metadata *Op : ThrownTypes->operands()) + AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, + Op); + } + + if (N.areAllCallsDescribed()) + AssertDI(N.isDefinition(), + "DIFlagAllCallsDescribed must be attached to a definition"); +} + +void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { + AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); + AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), + "invalid local scope", &N, N.getRawScope()); + if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) + AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); +} + +void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { + visitDILexicalBlockBase(N); + + AssertDI(N.getLine() || !N.getColumn(), + "cannot have column info without line info", &N); +} + +void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { + visitDILexicalBlockBase(N); +} + +void Verifier::visitDICommonBlock(const DICommonBlock &N) { + AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); + if (auto *S = N.getRawScope()) + AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); + if (auto *S = N.getRawDecl()) + AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); +} + +void Verifier::visitDINamespace(const DINamespace &N) { + AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); + if (auto *S = N.getRawScope()) + AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); +} + +void Verifier::visitDIMacro(const DIMacro &N) { + AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || + N.getMacinfoType() == dwarf::DW_MACINFO_undef, + "invalid macinfo type", &N); + AssertDI(!N.getName().empty(), "anonymous macro", &N); + if (!N.getValue().empty()) { + assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); + } +} + +void Verifier::visitDIMacroFile(const DIMacroFile &N) { + AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, + "invalid macinfo type", &N); + if (auto *F = N.getRawFile()) + AssertDI(isa<DIFile>(F), "invalid file", &N, F); + + if (auto *Array = N.getRawElements()) { + AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); + for (Metadata *Op : N.getElements()->operands()) { + AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); + } + } +} + +void Verifier::visitDIModule(const DIModule &N) { + AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); + AssertDI(!N.getName().empty(), "anonymous module", &N); +} + +void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { + AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); +} + +void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { + visitDITemplateParameter(N); + + AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", + &N); +} + +void Verifier::visitDITemplateValueParameter( + const DITemplateValueParameter &N) { + visitDITemplateParameter(N); + + AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || + N.getTag() == dwarf::DW_TAG_GNU_template_template_param || + N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, + "invalid tag", &N); +} + +void Verifier::visitDIVariable(const DIVariable &N) { + if (auto *S = N.getRawScope()) + AssertDI(isa<DIScope>(S), "invalid scope", &N, S); + if (auto *F = N.getRawFile()) + AssertDI(isa<DIFile>(F), "invalid file", &N, F); +} + +void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { + // Checks common to all variables. + visitDIVariable(N); + + AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); + AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); + AssertDI(N.getType(), "missing global variable type", &N); + if (auto *Member = N.getRawStaticDataMemberDeclaration()) { + AssertDI(isa<DIDerivedType>(Member), + "invalid static data member declaration", &N, Member); + } +} + +void Verifier::visitDILocalVariable(const DILocalVariable &N) { + // Checks common to all variables. + visitDIVariable(N); + + AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); + AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); + AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), + "local variable requires a valid scope", &N, N.getRawScope()); + if (auto Ty = N.getType()) + AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); +} + +void Verifier::visitDILabel(const DILabel &N) { + if (auto *S = N.getRawScope()) + AssertDI(isa<DIScope>(S), "invalid scope", &N, S); + if (auto *F = N.getRawFile()) + AssertDI(isa<DIFile>(F), "invalid file", &N, F); + + AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); + AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), + "label requires a valid scope", &N, N.getRawScope()); +} + +void Verifier::visitDIExpression(const DIExpression &N) { + AssertDI(N.isValid(), "invalid expression", &N); +} + +void Verifier::visitDIGlobalVariableExpression( + const DIGlobalVariableExpression &GVE) { + AssertDI(GVE.getVariable(), "missing variable"); + if (auto *Var = GVE.getVariable()) + visitDIGlobalVariable(*Var); + if (auto *Expr = GVE.getExpression()) { + visitDIExpression(*Expr); + if (auto Fragment = Expr->getFragmentInfo()) + verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); + } +} + +void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { + AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); + if (auto *T = N.getRawType()) + AssertDI(isType(T), "invalid type ref", &N, T); + if (auto *F = N.getRawFile()) + AssertDI(isa<DIFile>(F), "invalid file", &N, F); +} + +void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { + AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || + N.getTag() == dwarf::DW_TAG_imported_declaration, + "invalid tag", &N); + if (auto *S = N.getRawScope()) + AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); + AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, + N.getRawEntity()); +} + +void Verifier::visitComdat(const Comdat &C) { + // In COFF the Module is invalid if the GlobalValue has private linkage. + // Entities with private linkage don't have entries in the symbol table. + if (TT.isOSBinFormatCOFF()) + if (const GlobalValue *GV = M.getNamedValue(C.getName())) + Assert(!GV->hasPrivateLinkage(), + "comdat global value has private linkage", GV); +} + +void Verifier::visitModuleIdents(const Module &M) { + const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); + if (!Idents) + return; + + // llvm.ident takes a list of metadata entry. Each entry has only one string. + // Scan each llvm.ident entry and make sure that this requirement is met. + for (const MDNode *N : Idents->operands()) { + Assert(N->getNumOperands() == 1, + "incorrect number of operands in llvm.ident metadata", N); + Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), + ("invalid value for llvm.ident metadata entry operand" + "(the operand should be a string)"), + N->getOperand(0)); + } +} + +void Verifier::visitModuleCommandLines(const Module &M) { + const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); + if (!CommandLines) + return; + + // llvm.commandline takes a list of metadata entry. Each entry has only one + // string. Scan each llvm.commandline entry and make sure that this + // requirement is met. + for (const MDNode *N : CommandLines->operands()) { + Assert(N->getNumOperands() == 1, + "incorrect number of operands in llvm.commandline metadata", N); + Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), + ("invalid value for llvm.commandline metadata entry operand" + "(the operand should be a string)"), + N->getOperand(0)); + } +} + +void Verifier::visitModuleFlags(const Module &M) { + const NamedMDNode *Flags = M.getModuleFlagsMetadata(); + if (!Flags) return; + + // Scan each flag, and track the flags and requirements. + DenseMap<const MDString*, const MDNode*> SeenIDs; + SmallVector<const MDNode*, 16> Requirements; + for (const MDNode *MDN : Flags->operands()) + visitModuleFlag(MDN, SeenIDs, Requirements); + + // Validate that the requirements in the module are valid. + for (const MDNode *Requirement : Requirements) { + const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); + const Metadata *ReqValue = Requirement->getOperand(1); + + const MDNode *Op = SeenIDs.lookup(Flag); + if (!Op) { + CheckFailed("invalid requirement on flag, flag is not present in module", + Flag); + continue; + } + + if (Op->getOperand(2) != ReqValue) { + CheckFailed(("invalid requirement on flag, " + "flag does not have the required value"), + Flag); + continue; + } + } +} + +void +Verifier::visitModuleFlag(const MDNode *Op, + DenseMap<const MDString *, const MDNode *> &SeenIDs, + SmallVectorImpl<const MDNode *> &Requirements) { + // Each module flag should have three arguments, the merge behavior (a + // constant int), the flag ID (an MDString), and the value. + Assert(Op->getNumOperands() == 3, + "incorrect number of operands in module flag", Op); + Module::ModFlagBehavior MFB; + if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { + Assert( + mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), + "invalid behavior operand in module flag (expected constant integer)", + Op->getOperand(0)); + Assert(false, + "invalid behavior operand in module flag (unexpected constant)", + Op->getOperand(0)); + } + MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); + Assert(ID, "invalid ID operand in module flag (expected metadata string)", + Op->getOperand(1)); + + // Sanity check the values for behaviors with additional requirements. + switch (MFB) { + case Module::Error: + case Module::Warning: + case Module::Override: + // These behavior types accept any value. + break; + + case Module::Max: { + Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), + "invalid value for 'max' module flag (expected constant integer)", + Op->getOperand(2)); + break; + } + + case Module::Require: { + // The value should itself be an MDNode with two operands, a flag ID (an + // MDString), and a value. + MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); + Assert(Value && Value->getNumOperands() == 2, + "invalid value for 'require' module flag (expected metadata pair)", + Op->getOperand(2)); + Assert(isa<MDString>(Value->getOperand(0)), + ("invalid value for 'require' module flag " + "(first value operand should be a string)"), + Value->getOperand(0)); + + // Append it to the list of requirements, to check once all module flags are + // scanned. + Requirements.push_back(Value); + break; + } + + case Module::Append: + case Module::AppendUnique: { + // These behavior types require the operand be an MDNode. + Assert(isa<MDNode>(Op->getOperand(2)), + "invalid value for 'append'-type module flag " + "(expected a metadata node)", + Op->getOperand(2)); + break; + } + } + + // Unless this is a "requires" flag, check the ID is unique. + if (MFB != Module::Require) { + bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; + Assert(Inserted, + "module flag identifiers must be unique (or of 'require' type)", ID); + } + + if (ID->getString() == "wchar_size") { + ConstantInt *Value + = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); + Assert(Value, "wchar_size metadata requires constant integer argument"); + } + + if (ID->getString() == "Linker Options") { + // If the llvm.linker.options named metadata exists, we assume that the + // bitcode reader has upgraded the module flag. Otherwise the flag might + // have been created by a client directly. + Assert(M.getNamedMetadata("llvm.linker.options"), + "'Linker Options' named metadata no longer supported"); + } + + if (ID->getString() == "CG Profile") { + for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) + visitModuleFlagCGProfileEntry(MDO); + } +} + +void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { + auto CheckFunction = [&](const MDOperand &FuncMDO) { + if (!FuncMDO) + return; + auto F = dyn_cast<ValueAsMetadata>(FuncMDO); + Assert(F && isa<Function>(F->getValue()), "expected a Function or null", + FuncMDO); + }; + auto Node = dyn_cast_or_null<MDNode>(MDO); + Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); + CheckFunction(Node->getOperand(0)); + CheckFunction(Node->getOperand(1)); + auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); + Assert(Count && Count->getType()->isIntegerTy(), + "expected an integer constant", Node->getOperand(2)); +} + +/// Return true if this attribute kind only applies to functions. +static bool isFuncOnlyAttr(Attribute::AttrKind Kind) { + switch (Kind) { + case Attribute::NoReturn: + case Attribute::NoSync: + case Attribute::WillReturn: + case Attribute::NoCfCheck: + case Attribute::NoUnwind: + case Attribute::NoInline: + case Attribute::NoFree: + case Attribute::AlwaysInline: + case Attribute::OptimizeForSize: + case Attribute::StackProtect: + case Attribute::StackProtectReq: + case Attribute::StackProtectStrong: + case Attribute::SafeStack: + case Attribute::ShadowCallStack: + case Attribute::NoRedZone: + case Attribute::NoImplicitFloat: + case Attribute::Naked: + case Attribute::InlineHint: + case Attribute::StackAlignment: + case Attribute::UWTable: + case Attribute::NonLazyBind: + case Attribute::ReturnsTwice: + case Attribute::SanitizeAddress: + case Attribute::SanitizeHWAddress: + case Attribute::SanitizeMemTag: + case Attribute::SanitizeThread: + case Attribute::SanitizeMemory: + case Attribute::MinSize: + case Attribute::NoDuplicate: + case Attribute::Builtin: + case Attribute::NoBuiltin: + case Attribute::Cold: + case Attribute::OptForFuzzing: + case Attribute::OptimizeNone: + case Attribute::JumpTable: + case Attribute::Convergent: + case Attribute::ArgMemOnly: + case Attribute::NoRecurse: + case Attribute::InaccessibleMemOnly: + case Attribute::InaccessibleMemOrArgMemOnly: + case Attribute::AllocSize: + case Attribute::SpeculativeLoadHardening: + case Attribute::Speculatable: + case Attribute::StrictFP: + return true; + default: + break; + } + return false; +} + +/// Return true if this is a function attribute that can also appear on +/// arguments. +static bool isFuncOrArgAttr(Attribute::AttrKind Kind) { + return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly || + Kind == Attribute::ReadNone; +} + +void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, + const Value *V) { + for (Attribute A : Attrs) { + if (A.isStringAttribute()) + continue; + + if (isFuncOnlyAttr(A.getKindAsEnum())) { + if (!IsFunction) { + CheckFailed("Attribute '" + A.getAsString() + + "' only applies to functions!", + V); + return; + } + } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) { + CheckFailed("Attribute '" + A.getAsString() + + "' does not apply to functions!", + V); + return; + } + } +} + +// VerifyParameterAttrs - Check the given attributes for an argument or return +// value of the specified type. The value V is printed in error messages. +void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, + const Value *V) { + if (!Attrs.hasAttributes()) + return; + + verifyAttributeTypes(Attrs, /*IsFunction=*/false, V); + + if (Attrs.hasAttribute(Attribute::ImmArg)) { + Assert(Attrs.getNumAttributes() == 1, + "Attribute 'immarg' is incompatible with other attributes", V); + } + + // Check for mutually incompatible attributes. Only inreg is compatible with + // sret. + unsigned AttrCount = 0; + AttrCount += Attrs.hasAttribute(Attribute::ByVal); + AttrCount += Attrs.hasAttribute(Attribute::InAlloca); + AttrCount += Attrs.hasAttribute(Attribute::StructRet) || + Attrs.hasAttribute(Attribute::InReg); + AttrCount += Attrs.hasAttribute(Attribute::Nest); + Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', " + "and 'sret' are incompatible!", + V); + + Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && + Attrs.hasAttribute(Attribute::ReadOnly)), + "Attributes " + "'inalloca and readonly' are incompatible!", + V); + + Assert(!(Attrs.hasAttribute(Attribute::StructRet) && + Attrs.hasAttribute(Attribute::Returned)), + "Attributes " + "'sret and returned' are incompatible!", + V); + + Assert(!(Attrs.hasAttribute(Attribute::ZExt) && + Attrs.hasAttribute(Attribute::SExt)), + "Attributes " + "'zeroext and signext' are incompatible!", + V); + + Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && + Attrs.hasAttribute(Attribute::ReadOnly)), + "Attributes " + "'readnone and readonly' are incompatible!", + V); + + Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && + Attrs.hasAttribute(Attribute::WriteOnly)), + "Attributes " + "'readnone and writeonly' are incompatible!", + V); + + Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && + Attrs.hasAttribute(Attribute::WriteOnly)), + "Attributes " + "'readonly and writeonly' are incompatible!", + V); + + Assert(!(Attrs.hasAttribute(Attribute::NoInline) && + Attrs.hasAttribute(Attribute::AlwaysInline)), + "Attributes " + "'noinline and alwaysinline' are incompatible!", + V); + + if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { + Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(), + "Attribute 'byval' type does not match parameter!", V); + } + + AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); + Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs), + "Wrong types for attribute: " + + AttributeSet::get(Context, IncompatibleAttrs).getAsString(), + V); + + if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { + SmallPtrSet<Type*, 4> Visited; + if (!PTy->getElementType()->isSized(&Visited)) { + Assert(!Attrs.hasAttribute(Attribute::ByVal) && + !Attrs.hasAttribute(Attribute::InAlloca), + "Attributes 'byval' and 'inalloca' do not support unsized types!", + V); + } + if (!isa<PointerType>(PTy->getElementType())) + Assert(!Attrs.hasAttribute(Attribute::SwiftError), + "Attribute 'swifterror' only applies to parameters " + "with pointer to pointer type!", + V); + } else { + Assert(!Attrs.hasAttribute(Attribute::ByVal), + "Attribute 'byval' only applies to parameters with pointer type!", + V); + Assert(!Attrs.hasAttribute(Attribute::SwiftError), + "Attribute 'swifterror' only applies to parameters " + "with pointer type!", + V); + } +} + +// Check parameter attributes against a function type. +// The value V is printed in error messages. +void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, + const Value *V, bool IsIntrinsic) { + if (Attrs.isEmpty()) + return; + + bool SawNest = false; + bool SawReturned = false; + bool SawSRet = false; + bool SawSwiftSelf = false; + bool SawSwiftError = false; + + // Verify return value attributes. + AttributeSet RetAttrs = Attrs.getRetAttributes(); + Assert((!RetAttrs.hasAttribute(Attribute::ByVal) && + !RetAttrs.hasAttribute(Attribute::Nest) && + !RetAttrs.hasAttribute(Attribute::StructRet) && + !RetAttrs.hasAttribute(Attribute::NoCapture) && + !RetAttrs.hasAttribute(Attribute::Returned) && + !RetAttrs.hasAttribute(Attribute::InAlloca) && + !RetAttrs.hasAttribute(Attribute::SwiftSelf) && + !RetAttrs.hasAttribute(Attribute::SwiftError)), + "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', " + "'returned', 'swiftself', and 'swifterror' do not apply to return " + "values!", + V); + Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) && + !RetAttrs.hasAttribute(Attribute::WriteOnly) && + !RetAttrs.hasAttribute(Attribute::ReadNone)), + "Attribute '" + RetAttrs.getAsString() + + "' does not apply to function returns", + V); + verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); + + // Verify parameter attributes. + for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { + Type *Ty = FT->getParamType(i); + AttributeSet ArgAttrs = Attrs.getParamAttributes(i); + + if (!IsIntrinsic) { + Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg), + "immarg attribute only applies to intrinsics",V); + } + + verifyParameterAttrs(ArgAttrs, Ty, V); + + if (ArgAttrs.hasAttribute(Attribute::Nest)) { + Assert(!SawNest, "More than one parameter has attribute nest!", V); + SawNest = true; + } + + if (ArgAttrs.hasAttribute(Attribute::Returned)) { + Assert(!SawReturned, "More than one parameter has attribute returned!", + V); + Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), + "Incompatible argument and return types for 'returned' attribute", + V); + SawReturned = true; + } + + if (ArgAttrs.hasAttribute(Attribute::StructRet)) { + Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); + Assert(i == 0 || i == 1, + "Attribute 'sret' is not on first or second parameter!", V); + SawSRet = true; + } + + if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { + Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); + SawSwiftSelf = true; + } + + if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { + Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", + V); + SawSwiftError = true; + } + + if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { + Assert(i == FT->getNumParams() - 1, + "inalloca isn't on the last parameter!", V); + } + } + + if (!Attrs.hasAttributes(AttributeList::FunctionIndex)) + return; + + verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V); + + Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && + Attrs.hasFnAttribute(Attribute::ReadOnly)), + "Attributes 'readnone and readonly' are incompatible!", V); + + Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && + Attrs.hasFnAttribute(Attribute::WriteOnly)), + "Attributes 'readnone and writeonly' are incompatible!", V); + + Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) && + Attrs.hasFnAttribute(Attribute::WriteOnly)), + "Attributes 'readonly and writeonly' are incompatible!", V); + + Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && + Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)), + "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " + "incompatible!", + V); + + Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && + Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)), + "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); + + Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) && + Attrs.hasFnAttribute(Attribute::AlwaysInline)), + "Attributes 'noinline and alwaysinline' are incompatible!", V); + + if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) { + Assert(Attrs.hasFnAttribute(Attribute::NoInline), + "Attribute 'optnone' requires 'noinline'!", V); + + Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize), + "Attributes 'optsize and optnone' are incompatible!", V); + + Assert(!Attrs.hasFnAttribute(Attribute::MinSize), + "Attributes 'minsize and optnone' are incompatible!", V); + } + + if (Attrs.hasFnAttribute(Attribute::JumpTable)) { + const GlobalValue *GV = cast<GlobalValue>(V); + Assert(GV->hasGlobalUnnamedAddr(), + "Attribute 'jumptable' requires 'unnamed_addr'", V); + } + + if (Attrs.hasFnAttribute(Attribute::AllocSize)) { + std::pair<unsigned, Optional<unsigned>> Args = + Attrs.getAllocSizeArgs(AttributeList::FunctionIndex); + + auto CheckParam = [&](StringRef Name, unsigned ParamNo) { + if (ParamNo >= FT->getNumParams()) { + CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); + return false; + } + + if (!FT->getParamType(ParamNo)->isIntegerTy()) { + CheckFailed("'allocsize' " + Name + + " argument must refer to an integer parameter", + V); + return false; + } + + return true; + }; + + if (!CheckParam("element size", Args.first)) + return; + + if (Args.second && !CheckParam("number of elements", *Args.second)) + return; + } +} + +void Verifier::verifyFunctionMetadata( + ArrayRef<std::pair<unsigned, MDNode *>> MDs) { + for (const auto &Pair : MDs) { + if (Pair.first == LLVMContext::MD_prof) { + MDNode *MD = Pair.second; + Assert(MD->getNumOperands() >= 2, + "!prof annotations should have no less than 2 operands", MD); + + // Check first operand. + Assert(MD->getOperand(0) != nullptr, "first operand should not be null", + MD); + Assert(isa<MDString>(MD->getOperand(0)), + "expected string with name of the !prof annotation", MD); + MDString *MDS = cast<MDString>(MD->getOperand(0)); + StringRef ProfName = MDS->getString(); + Assert(ProfName.equals("function_entry_count") || + ProfName.equals("synthetic_function_entry_count"), + "first operand should be 'function_entry_count'" + " or 'synthetic_function_entry_count'", + MD); + + // Check second operand. + Assert(MD->getOperand(1) != nullptr, "second operand should not be null", + MD); + Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), + "expected integer argument to function_entry_count", MD); + } + } +} + +void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { + if (!ConstantExprVisited.insert(EntryC).second) + return; + + SmallVector<const Constant *, 16> Stack; + Stack.push_back(EntryC); + + while (!Stack.empty()) { + const Constant *C = Stack.pop_back_val(); + + // Check this constant expression. + if (const auto *CE = dyn_cast<ConstantExpr>(C)) + visitConstantExpr(CE); + + if (const auto *GV = dyn_cast<GlobalValue>(C)) { + // Global Values get visited separately, but we do need to make sure + // that the global value is in the correct module + Assert(GV->getParent() == &M, "Referencing global in another module!", + EntryC, &M, GV, GV->getParent()); + continue; + } + + // Visit all sub-expressions. + for (const Use &U : C->operands()) { + const auto *OpC = dyn_cast<Constant>(U); + if (!OpC) + continue; + if (!ConstantExprVisited.insert(OpC).second) + continue; + Stack.push_back(OpC); + } + } +} + +void Verifier::visitConstantExpr(const ConstantExpr *CE) { + if (CE->getOpcode() == Instruction::BitCast) + Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), + CE->getType()), + "Invalid bitcast", CE); + + if (CE->getOpcode() == Instruction::IntToPtr || + CE->getOpcode() == Instruction::PtrToInt) { + auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr + ? CE->getType() + : CE->getOperand(0)->getType(); + StringRef Msg = CE->getOpcode() == Instruction::IntToPtr + ? "inttoptr not supported for non-integral pointers" + : "ptrtoint not supported for non-integral pointers"; + Assert( + !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())), + Msg); + } +} + +bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { + // There shouldn't be more attribute sets than there are parameters plus the + // function and return value. + return Attrs.getNumAttrSets() <= Params + 2; +} + +/// Verify that statepoint intrinsic is well formed. +void Verifier::verifyStatepoint(const CallBase &Call) { + assert(Call.getCalledFunction() && + Call.getCalledFunction()->getIntrinsicID() == + Intrinsic::experimental_gc_statepoint); + + Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && + !Call.onlyAccessesArgMemory(), + "gc.statepoint must read and write all memory to preserve " + "reordering restrictions required by safepoint semantics", + Call); + + const int64_t NumPatchBytes = + cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); + assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); + Assert(NumPatchBytes >= 0, + "gc.statepoint number of patchable bytes must be " + "positive", + Call); + + const Value *Target = Call.getArgOperand(2); + auto *PT = dyn_cast<PointerType>(Target->getType()); + Assert(PT && PT->getElementType()->isFunctionTy(), + "gc.statepoint callee must be of function pointer type", Call, Target); + FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); + + const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); + Assert(NumCallArgs >= 0, + "gc.statepoint number of arguments to underlying call " + "must be positive", + Call); + const int NumParams = (int)TargetFuncType->getNumParams(); + if (TargetFuncType->isVarArg()) { + Assert(NumCallArgs >= NumParams, + "gc.statepoint mismatch in number of vararg call args", Call); + + // TODO: Remove this limitation + Assert(TargetFuncType->getReturnType()->isVoidTy(), + "gc.statepoint doesn't support wrapping non-void " + "vararg functions yet", + Call); + } else + Assert(NumCallArgs == NumParams, + "gc.statepoint mismatch in number of call args", Call); + + const uint64_t Flags + = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); + Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, + "unknown flag used in gc.statepoint flags argument", Call); + + // Verify that the types of the call parameter arguments match + // the type of the wrapped callee. + AttributeList Attrs = Call.getAttributes(); + for (int i = 0; i < NumParams; i++) { + Type *ParamType = TargetFuncType->getParamType(i); + Type *ArgType = Call.getArgOperand(5 + i)->getType(); + Assert(ArgType == ParamType, + "gc.statepoint call argument does not match wrapped " + "function type", + Call); + + if (TargetFuncType->isVarArg()) { + AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i); + Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), + "Attribute 'sret' cannot be used for vararg call arguments!", + Call); + } + } + + const int EndCallArgsInx = 4 + NumCallArgs; + + const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); + Assert(isa<ConstantInt>(NumTransitionArgsV), + "gc.statepoint number of transition arguments " + "must be constant integer", + Call); + const int NumTransitionArgs = + cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); + Assert(NumTransitionArgs >= 0, + "gc.statepoint number of transition arguments must be positive", Call); + const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; + + const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); + Assert(isa<ConstantInt>(NumDeoptArgsV), + "gc.statepoint number of deoptimization arguments " + "must be constant integer", + Call); + const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); + Assert(NumDeoptArgs >= 0, + "gc.statepoint number of deoptimization arguments " + "must be positive", + Call); + + const int ExpectedNumArgs = + 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs; + Assert(ExpectedNumArgs <= (int)Call.arg_size(), + "gc.statepoint too few arguments according to length fields", Call); + + // Check that the only uses of this gc.statepoint are gc.result or + // gc.relocate calls which are tied to this statepoint and thus part + // of the same statepoint sequence + for (const User *U : Call.users()) { + const CallInst *UserCall = dyn_cast<const CallInst>(U); + Assert(UserCall, "illegal use of statepoint token", Call, U); + if (!UserCall) + continue; + Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), + "gc.result or gc.relocate are the only value uses " + "of a gc.statepoint", + Call, U); + if (isa<GCResultInst>(UserCall)) { + Assert(UserCall->getArgOperand(0) == &Call, + "gc.result connected to wrong gc.statepoint", Call, UserCall); + } else if (isa<GCRelocateInst>(Call)) { + Assert(UserCall->getArgOperand(0) == &Call, + "gc.relocate connected to wrong gc.statepoint", Call, UserCall); + } + } + + // Note: It is legal for a single derived pointer to be listed multiple + // times. It's non-optimal, but it is legal. It can also happen after + // insertion if we strip a bitcast away. + // Note: It is really tempting to check that each base is relocated and + // that a derived pointer is never reused as a base pointer. This turns + // out to be problematic since optimizations run after safepoint insertion + // can recognize equality properties that the insertion logic doesn't know + // about. See example statepoint.ll in the verifier subdirectory +} + +void Verifier::verifyFrameRecoverIndices() { + for (auto &Counts : FrameEscapeInfo) { + Function *F = Counts.first; + unsigned EscapedObjectCount = Counts.second.first; + unsigned MaxRecoveredIndex = Counts.second.second; + Assert(MaxRecoveredIndex <= EscapedObjectCount, + "all indices passed to llvm.localrecover must be less than the " + "number of arguments passed to llvm.localescape in the parent " + "function", + F); + } +} + +static Instruction *getSuccPad(Instruction *Terminator) { + BasicBlock *UnwindDest; + if (auto *II = dyn_cast<InvokeInst>(Terminator)) + UnwindDest = II->getUnwindDest(); + else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) + UnwindDest = CSI->getUnwindDest(); + else + UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); + return UnwindDest->getFirstNonPHI(); +} + +void Verifier::verifySiblingFuncletUnwinds() { + SmallPtrSet<Instruction *, 8> Visited; + SmallPtrSet<Instruction *, 8> Active; + for (const auto &Pair : SiblingFuncletInfo) { + Instruction *PredPad = Pair.first; + if (Visited.count(PredPad)) + continue; + Active.insert(PredPad); + Instruction *Terminator = Pair.second; + do { + Instruction *SuccPad = getSuccPad(Terminator); + if (Active.count(SuccPad)) { + // Found a cycle; report error + Instruction *CyclePad = SuccPad; + SmallVector<Instruction *, 8> CycleNodes; + do { + CycleNodes.push_back(CyclePad); + Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; + if (CycleTerminator != CyclePad) + CycleNodes.push_back(CycleTerminator); + CyclePad = getSuccPad(CycleTerminator); + } while (CyclePad != SuccPad); + Assert(false, "EH pads can't handle each other's exceptions", + ArrayRef<Instruction *>(CycleNodes)); + } + // Don't re-walk a node we've already checked + if (!Visited.insert(SuccPad).second) + break; + // Walk to this successor if it has a map entry. + PredPad = SuccPad; + auto TermI = SiblingFuncletInfo.find(PredPad); + if (TermI == SiblingFuncletInfo.end()) + break; + Terminator = TermI->second; + Active.insert(PredPad); + } while (true); + // Each node only has one successor, so we've walked all the active + // nodes' successors. + Active.clear(); + } +} + +// visitFunction - Verify that a function is ok. +// +void Verifier::visitFunction(const Function &F) { + visitGlobalValue(F); + + // Check function arguments. + FunctionType *FT = F.getFunctionType(); + unsigned NumArgs = F.arg_size(); + + Assert(&Context == &F.getContext(), + "Function context does not match Module context!", &F); + + Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); + Assert(FT->getNumParams() == NumArgs, + "# formal arguments must match # of arguments for function type!", &F, + FT); + Assert(F.getReturnType()->isFirstClassType() || + F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), + "Functions cannot return aggregate values!", &F); + + Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), + "Invalid struct return type!", &F); + + AttributeList Attrs = F.getAttributes(); + + Assert(verifyAttributeCount(Attrs, FT->getNumParams()), + "Attribute after last parameter!", &F); + + bool isLLVMdotName = F.getName().size() >= 5 && + F.getName().substr(0, 5) == "llvm."; + + // Check function attributes. + verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName); + + // On function declarations/definitions, we do not support the builtin + // attribute. We do not check this in VerifyFunctionAttrs since that is + // checking for Attributes that can/can not ever be on functions. + Assert(!Attrs.hasFnAttribute(Attribute::Builtin), + "Attribute 'builtin' can only be applied to a callsite.", &F); + + // Check that this function meets the restrictions on this calling convention. + // Sometimes varargs is used for perfectly forwarding thunks, so some of these + // restrictions can be lifted. + switch (F.getCallingConv()) { + default: + case CallingConv::C: + break; + case CallingConv::AMDGPU_KERNEL: + case CallingConv::SPIR_KERNEL: + Assert(F.getReturnType()->isVoidTy(), + "Calling convention requires void return type", &F); + LLVM_FALLTHROUGH; + case CallingConv::AMDGPU_VS: + case CallingConv::AMDGPU_HS: + case CallingConv::AMDGPU_GS: + case CallingConv::AMDGPU_PS: + case CallingConv::AMDGPU_CS: + Assert(!F.hasStructRetAttr(), + "Calling convention does not allow sret", &F); + LLVM_FALLTHROUGH; + case CallingConv::Fast: + case CallingConv::Cold: + case CallingConv::Intel_OCL_BI: + case CallingConv::PTX_Kernel: + case CallingConv::PTX_Device: + Assert(!F.isVarArg(), "Calling convention does not support varargs or " + "perfect forwarding!", + &F); + break; + } + + // Check that the argument values match the function type for this function... + unsigned i = 0; + for (const Argument &Arg : F.args()) { + Assert(Arg.getType() == FT->getParamType(i), + "Argument value does not match function argument type!", &Arg, + FT->getParamType(i)); + Assert(Arg.getType()->isFirstClassType(), + "Function arguments must have first-class types!", &Arg); + if (!isLLVMdotName) { + Assert(!Arg.getType()->isMetadataTy(), + "Function takes metadata but isn't an intrinsic", &Arg, &F); + Assert(!Arg.getType()->isTokenTy(), + "Function takes token but isn't an intrinsic", &Arg, &F); + } + + // Check that swifterror argument is only used by loads and stores. + if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) { + verifySwiftErrorValue(&Arg); + } + ++i; + } + + if (!isLLVMdotName) + Assert(!F.getReturnType()->isTokenTy(), + "Functions returns a token but isn't an intrinsic", &F); + + // Get the function metadata attachments. + SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; + F.getAllMetadata(MDs); + assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); + verifyFunctionMetadata(MDs); + + // Check validity of the personality function + if (F.hasPersonalityFn()) { + auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); + if (Per) + Assert(Per->getParent() == F.getParent(), + "Referencing personality function in another module!", + &F, F.getParent(), Per, Per->getParent()); + } + + if (F.isMaterializable()) { + // Function has a body somewhere we can't see. + Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, + MDs.empty() ? nullptr : MDs.front().second); + } else if (F.isDeclaration()) { + for (const auto &I : MDs) { + // This is used for call site debug information. + AssertDI(I.first != LLVMContext::MD_dbg || + !cast<DISubprogram>(I.second)->isDistinct(), + "function declaration may only have a unique !dbg attachment", + &F); + Assert(I.first != LLVMContext::MD_prof, + "function declaration may not have a !prof attachment", &F); + + // Verify the metadata itself. + visitMDNode(*I.second); + } + Assert(!F.hasPersonalityFn(), + "Function declaration shouldn't have a personality routine", &F); + } else { + // Verify that this function (which has a body) is not named "llvm.*". It + // is not legal to define intrinsics. + Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); + + // Check the entry node + const BasicBlock *Entry = &F.getEntryBlock(); + Assert(pred_empty(Entry), + "Entry block to function must not have predecessors!", Entry); + + // The address of the entry block cannot be taken, unless it is dead. + if (Entry->hasAddressTaken()) { + Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), + "blockaddress may not be used with the entry block!", Entry); + } + + unsigned NumDebugAttachments = 0, NumProfAttachments = 0; + // Visit metadata attachments. + for (const auto &I : MDs) { + // Verify that the attachment is legal. + switch (I.first) { + default: + break; + case LLVMContext::MD_dbg: { + ++NumDebugAttachments; + AssertDI(NumDebugAttachments == 1, + "function must have a single !dbg attachment", &F, I.second); + AssertDI(isa<DISubprogram>(I.second), + "function !dbg attachment must be a subprogram", &F, I.second); + auto *SP = cast<DISubprogram>(I.second); + const Function *&AttachedTo = DISubprogramAttachments[SP]; + AssertDI(!AttachedTo || AttachedTo == &F, + "DISubprogram attached to more than one function", SP, &F); + AttachedTo = &F; + break; + } + case LLVMContext::MD_prof: + ++NumProfAttachments; + Assert(NumProfAttachments == 1, + "function must have a single !prof attachment", &F, I.second); + break; + } + + // Verify the metadata itself. + visitMDNode(*I.second); + } + } + + // If this function is actually an intrinsic, verify that it is only used in + // direct call/invokes, never having its "address taken". + // Only do this if the module is materialized, otherwise we don't have all the + // uses. + if (F.getIntrinsicID() && F.getParent()->isMaterialized()) { + const User *U; + if (F.hasAddressTaken(&U)) + Assert(false, "Invalid user of intrinsic instruction!", U); + } + + auto *N = F.getSubprogram(); + HasDebugInfo = (N != nullptr); + if (!HasDebugInfo) + return; + + // Check that all !dbg attachments lead to back to N (or, at least, another + // subprogram that describes the same function). + // + // FIXME: Check this incrementally while visiting !dbg attachments. + // FIXME: Only check when N is the canonical subprogram for F. + SmallPtrSet<const MDNode *, 32> Seen; + auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { + // Be careful about using DILocation here since we might be dealing with + // broken code (this is the Verifier after all). + const DILocation *DL = dyn_cast_or_null<DILocation>(Node); + if (!DL) + return; + if (!Seen.insert(DL).second) + return; + + Metadata *Parent = DL->getRawScope(); + AssertDI(Parent && isa<DILocalScope>(Parent), + "DILocation's scope must be a DILocalScope", N, &F, &I, DL, + Parent); + DILocalScope *Scope = DL->getInlinedAtScope(); + if (Scope && !Seen.insert(Scope).second) + return; + + DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr; + + // Scope and SP could be the same MDNode and we don't want to skip + // validation in that case + if (SP && ((Scope != SP) && !Seen.insert(SP).second)) + return; + + // FIXME: Once N is canonical, check "SP == &N". + AssertDI(SP->describes(&F), + "!dbg attachment points at wrong subprogram for function", N, &F, + &I, DL, Scope, SP); + }; + for (auto &BB : F) + for (auto &I : BB) { + VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); + // The llvm.loop annotations also contain two DILocations. + if (auto MD = I.getMetadata(LLVMContext::MD_loop)) + for (unsigned i = 1; i < MD->getNumOperands(); ++i) + VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); + if (BrokenDebugInfo) + return; + } +} + +// verifyBasicBlock - Verify that a basic block is well formed... +// +void Verifier::visitBasicBlock(BasicBlock &BB) { + InstsInThisBlock.clear(); + + // Ensure that basic blocks have terminators! + Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); + + // Check constraints that this basic block imposes on all of the PHI nodes in + // it. + if (isa<PHINode>(BB.front())) { + SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); + SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; + llvm::sort(Preds); + for (const PHINode &PN : BB.phis()) { + // Ensure that PHI nodes have at least one entry! + Assert(PN.getNumIncomingValues() != 0, + "PHI nodes must have at least one entry. If the block is dead, " + "the PHI should be removed!", + &PN); + Assert(PN.getNumIncomingValues() == Preds.size(), + "PHINode should have one entry for each predecessor of its " + "parent basic block!", + &PN); + + // Get and sort all incoming values in the PHI node... + Values.clear(); + Values.reserve(PN.getNumIncomingValues()); + for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) + Values.push_back( + std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); + llvm::sort(Values); + + for (unsigned i = 0, e = Values.size(); i != e; ++i) { + // Check to make sure that if there is more than one entry for a + // particular basic block in this PHI node, that the incoming values are + // all identical. + // + Assert(i == 0 || Values[i].first != Values[i - 1].first || + Values[i].second == Values[i - 1].second, + "PHI node has multiple entries for the same basic block with " + "different incoming values!", + &PN, Values[i].first, Values[i].second, Values[i - 1].second); + + // Check to make sure that the predecessors and PHI node entries are + // matched up. + Assert(Values[i].first == Preds[i], + "PHI node entries do not match predecessors!", &PN, + Values[i].first, Preds[i]); + } + } + } + + // Check that all instructions have their parent pointers set up correctly. + for (auto &I : BB) + { + Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); + } +} + +void Verifier::visitTerminator(Instruction &I) { + // Ensure that terminators only exist at the end of the basic block. + Assert(&I == I.getParent()->getTerminator(), + "Terminator found in the middle of a basic block!", I.getParent()); + visitInstruction(I); +} + +void Verifier::visitBranchInst(BranchInst &BI) { + if (BI.isConditional()) { + Assert(BI.getCondition()->getType()->isIntegerTy(1), + "Branch condition is not 'i1' type!", &BI, BI.getCondition()); + } + visitTerminator(BI); +} + +void Verifier::visitReturnInst(ReturnInst &RI) { + Function *F = RI.getParent()->getParent(); + unsigned N = RI.getNumOperands(); + if (F->getReturnType()->isVoidTy()) + Assert(N == 0, + "Found return instr that returns non-void in Function of void " + "return type!", + &RI, F->getReturnType()); + else + Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), + "Function return type does not match operand " + "type of return inst!", + &RI, F->getReturnType()); + + // Check to make sure that the return value has necessary properties for + // terminators... + visitTerminator(RI); +} + +void Verifier::visitSwitchInst(SwitchInst &SI) { + // Check to make sure that all of the constants in the switch instruction + // have the same type as the switched-on value. + Type *SwitchTy = SI.getCondition()->getType(); + SmallPtrSet<ConstantInt*, 32> Constants; + for (auto &Case : SI.cases()) { + Assert(Case.getCaseValue()->getType() == SwitchTy, + "Switch constants must all be same type as switch value!", &SI); + Assert(Constants.insert(Case.getCaseValue()).second, + "Duplicate integer as switch case", &SI, Case.getCaseValue()); + } + + visitTerminator(SI); +} + +void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { + Assert(BI.getAddress()->getType()->isPointerTy(), + "Indirectbr operand must have pointer type!", &BI); + for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) + Assert(BI.getDestination(i)->getType()->isLabelTy(), + "Indirectbr destinations must all have pointer type!", &BI); + + visitTerminator(BI); +} + +void Verifier::visitCallBrInst(CallBrInst &CBI) { + Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", + &CBI); + Assert(CBI.getType()->isVoidTy(), "Callbr return value is not supported!", + &CBI); + for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) + Assert(CBI.getSuccessor(i)->getType()->isLabelTy(), + "Callbr successors must all have pointer type!", &CBI); + for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { + Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)), + "Using an unescaped label as a callbr argument!", &CBI); + if (isa<BasicBlock>(CBI.getOperand(i))) + for (unsigned j = i + 1; j != e; ++j) + Assert(CBI.getOperand(i) != CBI.getOperand(j), + "Duplicate callbr destination!", &CBI); + } + { + SmallPtrSet<BasicBlock *, 4> ArgBBs; + for (Value *V : CBI.args()) + if (auto *BA = dyn_cast<BlockAddress>(V)) + ArgBBs.insert(BA->getBasicBlock()); + for (BasicBlock *BB : CBI.getIndirectDests()) + Assert(ArgBBs.find(BB) != ArgBBs.end(), + "Indirect label missing from arglist.", &CBI); + } + + visitTerminator(CBI); +} + +void Verifier::visitSelectInst(SelectInst &SI) { + Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), + SI.getOperand(2)), + "Invalid operands for select instruction!", &SI); + + Assert(SI.getTrueValue()->getType() == SI.getType(), + "Select values must have same type as select instruction!", &SI); + visitInstruction(SI); +} + +/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of +/// a pass, if any exist, it's an error. +/// +void Verifier::visitUserOp1(Instruction &I) { + Assert(false, "User-defined operators should not live outside of a pass!", &I); +} + +void Verifier::visitTruncInst(TruncInst &I) { + // Get the source and destination types + Type *SrcTy = I.getOperand(0)->getType(); + Type *DestTy = I.getType(); + + // Get the size of the types in bits, we'll need this later + unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); + unsigned DestBitSize = DestTy->getScalarSizeInBits(); + + Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); + Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); + Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), + "trunc source and destination must both be a vector or neither", &I); + Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); + + visitInstruction(I); +} + +void Verifier::visitZExtInst(ZExtInst &I) { + // Get the source and destination types + Type *SrcTy = I.getOperand(0)->getType(); + Type *DestTy = I.getType(); + + // Get the size of the types in bits, we'll need this later + Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); + Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); + Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), + "zext source and destination must both be a vector or neither", &I); + unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); + unsigned DestBitSize = DestTy->getScalarSizeInBits(); + + Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); + + visitInstruction(I); +} + +void Verifier::visitSExtInst(SExtInst &I) { + // Get the source and destination types + Type *SrcTy = I.getOperand(0)->getType(); + Type *DestTy = I.getType(); + + // Get the size of the types in bits, we'll need this later + unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); + unsigned DestBitSize = DestTy->getScalarSizeInBits(); + + Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); + Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); + Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), + "sext source and destination must both be a vector or neither", &I); + Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); + + visitInstruction(I); +} + +void Verifier::visitFPTruncInst(FPTruncInst &I) { + // Get the source and destination types + Type *SrcTy = I.getOperand(0)->getType(); + Type *DestTy = I.getType(); + // Get the size of the types in bits, we'll need this later + unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); + unsigned DestBitSize = DestTy->getScalarSizeInBits(); + + Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); + Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); + Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), + "fptrunc source and destination must both be a vector or neither", &I); + Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); + + visitInstruction(I); +} + +void Verifier::visitFPExtInst(FPExtInst &I) { + // Get the source and destination types + Type *SrcTy = I.getOperand(0)->getType(); + Type *DestTy = I.getType(); + + // Get the size of the types in bits, we'll need this later + unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); + unsigned DestBitSize = DestTy->getScalarSizeInBits(); + + Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); + Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); + Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), + "fpext source and destination must both be a vector or neither", &I); + Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); + + visitInstruction(I); +} + +void Verifier::visitUIToFPInst(UIToFPInst &I) { + // Get the source and destination types + Type *SrcTy = I.getOperand(0)->getType(); + Type *DestTy = I.getType(); + + bool SrcVec = SrcTy->isVectorTy(); + bool DstVec = DestTy->isVectorTy(); + + Assert(SrcVec == DstVec, + "UIToFP source and dest must both be vector or scalar", &I); + Assert(SrcTy->isIntOrIntVectorTy(), + "UIToFP source must be integer or integer vector", &I); + Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", + &I); + + if (SrcVec && DstVec) + Assert(cast<VectorType>(SrcTy)->getNumElements() == + cast<VectorType>(DestTy)->getNumElements(), + "UIToFP source and dest vector length mismatch", &I); + + visitInstruction(I); +} + +void Verifier::visitSIToFPInst(SIToFPInst &I) { + // Get the source and destination types + Type *SrcTy = I.getOperand(0)->getType(); + Type *DestTy = I.getType(); + + bool SrcVec = SrcTy->isVectorTy(); + bool DstVec = DestTy->isVectorTy(); + + Assert(SrcVec == DstVec, + "SIToFP source and dest must both be vector or scalar", &I); + Assert(SrcTy->isIntOrIntVectorTy(), + "SIToFP source must be integer or integer vector", &I); + Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", + &I); + + if (SrcVec && DstVec) + Assert(cast<VectorType>(SrcTy)->getNumElements() == + cast<VectorType>(DestTy)->getNumElements(), + "SIToFP source and dest vector length mismatch", &I); + + visitInstruction(I); +} + +void Verifier::visitFPToUIInst(FPToUIInst &I) { + // Get the source and destination types + Type *SrcTy = I.getOperand(0)->getType(); + Type *DestTy = I.getType(); + + bool SrcVec = SrcTy->isVectorTy(); + bool DstVec = DestTy->isVectorTy(); + + Assert(SrcVec == DstVec, + "FPToUI source and dest must both be vector or scalar", &I); + Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", + &I); + Assert(DestTy->isIntOrIntVectorTy(), + "FPToUI result must be integer or integer vector", &I); + + if (SrcVec && DstVec) + Assert(cast<VectorType>(SrcTy)->getNumElements() == + cast<VectorType>(DestTy)->getNumElements(), + "FPToUI source and dest vector length mismatch", &I); + + visitInstruction(I); +} + +void Verifier::visitFPToSIInst(FPToSIInst &I) { + // Get the source and destination types + Type *SrcTy = I.getOperand(0)->getType(); + Type *DestTy = I.getType(); + + bool SrcVec = SrcTy->isVectorTy(); + bool DstVec = DestTy->isVectorTy(); + + Assert(SrcVec == DstVec, + "FPToSI source and dest must both be vector or scalar", &I); + Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", + &I); + Assert(DestTy->isIntOrIntVectorTy(), + "FPToSI result must be integer or integer vector", &I); + + if (SrcVec && DstVec) + Assert(cast<VectorType>(SrcTy)->getNumElements() == + cast<VectorType>(DestTy)->getNumElements(), + "FPToSI source and dest vector length mismatch", &I); + + visitInstruction(I); +} + +void Verifier::visitPtrToIntInst(PtrToIntInst &I) { + // Get the source and destination types + Type *SrcTy = I.getOperand(0)->getType(); + Type *DestTy = I.getType(); + + Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); + + if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType())) + Assert(!DL.isNonIntegralPointerType(PTy), + "ptrtoint not supported for non-integral pointers"); + + Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); + Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", + &I); + + if (SrcTy->isVectorTy()) { + VectorType *VSrc = cast<VectorType>(SrcTy); + VectorType *VDest = cast<VectorType>(DestTy); + Assert(VSrc->getNumElements() == VDest->getNumElements(), + "PtrToInt Vector width mismatch", &I); + } + + visitInstruction(I); +} + +void Verifier::visitIntToPtrInst(IntToPtrInst &I) { + // Get the source and destination types + Type *SrcTy = I.getOperand(0)->getType(); + Type *DestTy = I.getType(); + + Assert(SrcTy->isIntOrIntVectorTy(), + "IntToPtr source must be an integral", &I); + Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); + + if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType())) + Assert(!DL.isNonIntegralPointerType(PTy), + "inttoptr not supported for non-integral pointers"); + + Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", + &I); + if (SrcTy->isVectorTy()) { + VectorType *VSrc = cast<VectorType>(SrcTy); + VectorType *VDest = cast<VectorType>(DestTy); + Assert(VSrc->getNumElements() == VDest->getNumElements(), + "IntToPtr Vector width mismatch", &I); + } + visitInstruction(I); +} + +void Verifier::visitBitCastInst(BitCastInst &I) { + Assert( + CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), + "Invalid bitcast", &I); + visitInstruction(I); +} + +void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { + Type *SrcTy = I.getOperand(0)->getType(); + Type *DestTy = I.getType(); + + Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", + &I); + Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", + &I); + Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), + "AddrSpaceCast must be between different address spaces", &I); + if (SrcTy->isVectorTy()) + Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(), + "AddrSpaceCast vector pointer number of elements mismatch", &I); + visitInstruction(I); +} + +/// visitPHINode - Ensure that a PHI node is well formed. +/// +void Verifier::visitPHINode(PHINode &PN) { + // Ensure that the PHI nodes are all grouped together at the top of the block. + // This can be tested by checking whether the instruction before this is + // either nonexistent (because this is begin()) or is a PHI node. If not, + // then there is some other instruction before a PHI. + Assert(&PN == &PN.getParent()->front() || + isa<PHINode>(--BasicBlock::iterator(&PN)), + "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); + + // Check that a PHI doesn't yield a Token. + Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); + + // Check that all of the values of the PHI node have the same type as the + // result, and that the incoming blocks are really basic blocks. + for (Value *IncValue : PN.incoming_values()) { + Assert(PN.getType() == IncValue->getType(), + "PHI node operands are not the same type as the result!", &PN); + } + + // All other PHI node constraints are checked in the visitBasicBlock method. + + visitInstruction(PN); +} + +void Verifier::visitCallBase(CallBase &Call) { + Assert(Call.getCalledValue()->getType()->isPointerTy(), + "Called function must be a pointer!", Call); + PointerType *FPTy = cast<PointerType>(Call.getCalledValue()->getType()); + + Assert(FPTy->getElementType()->isFunctionTy(), + "Called function is not pointer to function type!", Call); + + Assert(FPTy->getElementType() == Call.getFunctionType(), + "Called function is not the same type as the call!", Call); + + FunctionType *FTy = Call.getFunctionType(); + + // Verify that the correct number of arguments are being passed + if (FTy->isVarArg()) + Assert(Call.arg_size() >= FTy->getNumParams(), + "Called function requires more parameters than were provided!", + Call); + else + Assert(Call.arg_size() == FTy->getNumParams(), + "Incorrect number of arguments passed to called function!", Call); + + // Verify that all arguments to the call match the function type. + for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) + Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i), + "Call parameter type does not match function signature!", + Call.getArgOperand(i), FTy->getParamType(i), Call); + + AttributeList Attrs = Call.getAttributes(); + + Assert(verifyAttributeCount(Attrs, Call.arg_size()), + "Attribute after last parameter!", Call); + + bool IsIntrinsic = Call.getCalledFunction() && + Call.getCalledFunction()->getName().startswith("llvm."); + + Function *Callee + = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts()); + + if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) { + // Don't allow speculatable on call sites, unless the underlying function + // declaration is also speculatable. + Assert(Callee && Callee->isSpeculatable(), + "speculatable attribute may not apply to call sites", Call); + } + + // Verify call attributes. + verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic); + + // Conservatively check the inalloca argument. + // We have a bug if we can find that there is an underlying alloca without + // inalloca. + if (Call.hasInAllocaArgument()) { + Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); + if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) + Assert(AI->isUsedWithInAlloca(), + "inalloca argument for call has mismatched alloca", AI, Call); + } + + // For each argument of the callsite, if it has the swifterror argument, + // make sure the underlying alloca/parameter it comes from has a swifterror as + // well. + for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { + if (Call.paramHasAttr(i, Attribute::SwiftError)) { + Value *SwiftErrorArg = Call.getArgOperand(i); + if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { + Assert(AI->isSwiftError(), + "swifterror argument for call has mismatched alloca", AI, Call); + continue; + } + auto ArgI = dyn_cast<Argument>(SwiftErrorArg); + Assert(ArgI, + "swifterror argument should come from an alloca or parameter", + SwiftErrorArg, Call); + Assert(ArgI->hasSwiftErrorAttr(), + "swifterror argument for call has mismatched parameter", ArgI, + Call); + } + + if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) { + // Don't allow immarg on call sites, unless the underlying declaration + // also has the matching immarg. + Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), + "immarg may not apply only to call sites", + Call.getArgOperand(i), Call); + } + + if (Call.paramHasAttr(i, Attribute::ImmArg)) { + Value *ArgVal = Call.getArgOperand(i); + Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), + "immarg operand has non-immediate parameter", ArgVal, Call); + } + } + + if (FTy->isVarArg()) { + // FIXME? is 'nest' even legal here? + bool SawNest = false; + bool SawReturned = false; + + for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { + if (Attrs.hasParamAttribute(Idx, Attribute::Nest)) + SawNest = true; + if (Attrs.hasParamAttribute(Idx, Attribute::Returned)) + SawReturned = true; + } + + // Check attributes on the varargs part. + for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { + Type *Ty = Call.getArgOperand(Idx)->getType(); + AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx); + verifyParameterAttrs(ArgAttrs, Ty, &Call); + + if (ArgAttrs.hasAttribute(Attribute::Nest)) { + Assert(!SawNest, "More than one parameter has attribute nest!", Call); + SawNest = true; + } + + if (ArgAttrs.hasAttribute(Attribute::Returned)) { + Assert(!SawReturned, "More than one parameter has attribute returned!", + Call); + Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), + "Incompatible argument and return types for 'returned' " + "attribute", + Call); + SawReturned = true; + } + + // Statepoint intrinsic is vararg but the wrapped function may be not. + // Allow sret here and check the wrapped function in verifyStatepoint. + if (!Call.getCalledFunction() || + Call.getCalledFunction()->getIntrinsicID() != + Intrinsic::experimental_gc_statepoint) + Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), + "Attribute 'sret' cannot be used for vararg call arguments!", + Call); + + if (ArgAttrs.hasAttribute(Attribute::InAlloca)) + Assert(Idx == Call.arg_size() - 1, + "inalloca isn't on the last argument!", Call); + } + } + + // Verify that there's no metadata unless it's a direct call to an intrinsic. + if (!IsIntrinsic) { + for (Type *ParamTy : FTy->params()) { + Assert(!ParamTy->isMetadataTy(), + "Function has metadata parameter but isn't an intrinsic", Call); + Assert(!ParamTy->isTokenTy(), + "Function has token parameter but isn't an intrinsic", Call); + } + } + + // Verify that indirect calls don't return tokens. + if (!Call.getCalledFunction()) + Assert(!FTy->getReturnType()->isTokenTy(), + "Return type cannot be token for indirect call!"); + + if (Function *F = Call.getCalledFunction()) + if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) + visitIntrinsicCall(ID, Call); + + // Verify that a callsite has at most one "deopt", at most one "funclet" and + // at most one "gc-transition" operand bundle. + bool FoundDeoptBundle = false, FoundFuncletBundle = false, + FoundGCTransitionBundle = false; + for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { + OperandBundleUse BU = Call.getOperandBundleAt(i); + uint32_t Tag = BU.getTagID(); + if (Tag == LLVMContext::OB_deopt) { + Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); + FoundDeoptBundle = true; + } else if (Tag == LLVMContext::OB_gc_transition) { + Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", + Call); + FoundGCTransitionBundle = true; + } else if (Tag == LLVMContext::OB_funclet) { + Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); + FoundFuncletBundle = true; + Assert(BU.Inputs.size() == 1, + "Expected exactly one funclet bundle operand", Call); + Assert(isa<FuncletPadInst>(BU.Inputs.front()), + "Funclet bundle operands should correspond to a FuncletPadInst", + Call); + } + } + + // Verify that each inlinable callsite of a debug-info-bearing function in a + // debug-info-bearing function has a debug location attached to it. Failure to + // do so causes assertion failures when the inliner sets up inline scope info. + if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && + Call.getCalledFunction()->getSubprogram()) + AssertDI(Call.getDebugLoc(), + "inlinable function call in a function with " + "debug info must have a !dbg location", + Call); + + visitInstruction(Call); +} + +/// Two types are "congruent" if they are identical, or if they are both pointer +/// types with different pointee types and the same address space. +static bool isTypeCongruent(Type *L, Type *R) { + if (L == R) + return true; + PointerType *PL = dyn_cast<PointerType>(L); + PointerType *PR = dyn_cast<PointerType>(R); + if (!PL || !PR) + return false; + return PL->getAddressSpace() == PR->getAddressSpace(); +} + +static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) { + static const Attribute::AttrKind ABIAttrs[] = { + Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, + Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf, + Attribute::SwiftError}; + AttrBuilder Copy; + for (auto AK : ABIAttrs) { + if (Attrs.hasParamAttribute(I, AK)) + Copy.addAttribute(AK); + } + if (Attrs.hasParamAttribute(I, Attribute::Alignment)) + Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); + return Copy; +} + +void Verifier::verifyMustTailCall(CallInst &CI) { + Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); + + // - The caller and callee prototypes must match. Pointer types of + // parameters or return types may differ in pointee type, but not + // address space. + Function *F = CI.getParent()->getParent(); + FunctionType *CallerTy = F->getFunctionType(); + FunctionType *CalleeTy = CI.getFunctionType(); + if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { + Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), + "cannot guarantee tail call due to mismatched parameter counts", + &CI); + for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { + Assert( + isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), + "cannot guarantee tail call due to mismatched parameter types", &CI); + } + } + Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), + "cannot guarantee tail call due to mismatched varargs", &CI); + Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), + "cannot guarantee tail call due to mismatched return types", &CI); + + // - The calling conventions of the caller and callee must match. + Assert(F->getCallingConv() == CI.getCallingConv(), + "cannot guarantee tail call due to mismatched calling conv", &CI); + + // - All ABI-impacting function attributes, such as sret, byval, inreg, + // returned, and inalloca, must match. + AttributeList CallerAttrs = F->getAttributes(); + AttributeList CalleeAttrs = CI.getAttributes(); + for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { + AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); + AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); + Assert(CallerABIAttrs == CalleeABIAttrs, + "cannot guarantee tail call due to mismatched ABI impacting " + "function attributes", + &CI, CI.getOperand(I)); + } + + // - The call must immediately precede a :ref:`ret <i_ret>` instruction, + // or a pointer bitcast followed by a ret instruction. + // - The ret instruction must return the (possibly bitcasted) value + // produced by the call or void. + Value *RetVal = &CI; + Instruction *Next = CI.getNextNode(); + + // Handle the optional bitcast. + if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { + Assert(BI->getOperand(0) == RetVal, + "bitcast following musttail call must use the call", BI); + RetVal = BI; + Next = BI->getNextNode(); + } + + // Check the return. + ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); + Assert(Ret, "musttail call must precede a ret with an optional bitcast", + &CI); + Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, + "musttail call result must be returned", Ret); +} + +void Verifier::visitCallInst(CallInst &CI) { + visitCallBase(CI); + + if (CI.isMustTailCall()) + verifyMustTailCall(CI); +} + +void Verifier::visitInvokeInst(InvokeInst &II) { + visitCallBase(II); + + // Verify that the first non-PHI instruction of the unwind destination is an + // exception handling instruction. + Assert( + II.getUnwindDest()->isEHPad(), + "The unwind destination does not have an exception handling instruction!", + &II); + + visitTerminator(II); +} + +/// visitUnaryOperator - Check the argument to the unary operator. +/// +void Verifier::visitUnaryOperator(UnaryOperator &U) { + Assert(U.getType() == U.getOperand(0)->getType(), + "Unary operators must have same type for" + "operands and result!", + &U); + + switch (U.getOpcode()) { + // Check that floating-point arithmetic operators are only used with + // floating-point operands. + case Instruction::FNeg: + Assert(U.getType()->isFPOrFPVectorTy(), + "FNeg operator only works with float types!", &U); + break; + default: + llvm_unreachable("Unknown UnaryOperator opcode!"); + } + + visitInstruction(U); +} + +/// visitBinaryOperator - Check that both arguments to the binary operator are +/// of the same type! +/// +void Verifier::visitBinaryOperator(BinaryOperator &B) { + Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), + "Both operands to a binary operator are not of the same type!", &B); + + switch (B.getOpcode()) { + // Check that integer arithmetic operators are only used with + // integral operands. + case Instruction::Add: + case Instruction::Sub: + case Instruction::Mul: + case Instruction::SDiv: + case Instruction::UDiv: + case Instruction::SRem: + case Instruction::URem: + Assert(B.getType()->isIntOrIntVectorTy(), + "Integer arithmetic operators only work with integral types!", &B); + Assert(B.getType() == B.getOperand(0)->getType(), + "Integer arithmetic operators must have same type " + "for operands and result!", + &B); + break; + // Check that floating-point arithmetic operators are only used with + // floating-point operands. + case Instruction::FAdd: + case Instruction::FSub: + case Instruction::FMul: + case Instruction::FDiv: + case Instruction::FRem: + Assert(B.getType()->isFPOrFPVectorTy(), + "Floating-point arithmetic operators only work with " + "floating-point types!", + &B); + Assert(B.getType() == B.getOperand(0)->getType(), + "Floating-point arithmetic operators must have same type " + "for operands and result!", + &B); + break; + // Check that logical operators are only used with integral operands. + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + Assert(B.getType()->isIntOrIntVectorTy(), + "Logical operators only work with integral types!", &B); + Assert(B.getType() == B.getOperand(0)->getType(), + "Logical operators must have same type for operands and result!", + &B); + break; + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + Assert(B.getType()->isIntOrIntVectorTy(), + "Shifts only work with integral types!", &B); + Assert(B.getType() == B.getOperand(0)->getType(), + "Shift return type must be same as operands!", &B); + break; + default: + llvm_unreachable("Unknown BinaryOperator opcode!"); + } + + visitInstruction(B); +} + +void Verifier::visitICmpInst(ICmpInst &IC) { + // Check that the operands are the same type + Type *Op0Ty = IC.getOperand(0)->getType(); + Type *Op1Ty = IC.getOperand(1)->getType(); + Assert(Op0Ty == Op1Ty, + "Both operands to ICmp instruction are not of the same type!", &IC); + // Check that the operands are the right type + Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), + "Invalid operand types for ICmp instruction", &IC); + // Check that the predicate is valid. + Assert(IC.isIntPredicate(), + "Invalid predicate in ICmp instruction!", &IC); + + visitInstruction(IC); +} + +void Verifier::visitFCmpInst(FCmpInst &FC) { + // Check that the operands are the same type + Type *Op0Ty = FC.getOperand(0)->getType(); + Type *Op1Ty = FC.getOperand(1)->getType(); + Assert(Op0Ty == Op1Ty, + "Both operands to FCmp instruction are not of the same type!", &FC); + // Check that the operands are the right type + Assert(Op0Ty->isFPOrFPVectorTy(), + "Invalid operand types for FCmp instruction", &FC); + // Check that the predicate is valid. + Assert(FC.isFPPredicate(), + "Invalid predicate in FCmp instruction!", &FC); + + visitInstruction(FC); +} + +void Verifier::visitExtractElementInst(ExtractElementInst &EI) { + Assert( + ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), + "Invalid extractelement operands!", &EI); + visitInstruction(EI); +} + +void Verifier::visitInsertElementInst(InsertElementInst &IE) { + Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), + IE.getOperand(2)), + "Invalid insertelement operands!", &IE); + visitInstruction(IE); +} + +void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { + Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), + SV.getOperand(2)), + "Invalid shufflevector operands!", &SV); + visitInstruction(SV); +} + +void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { + Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); + + Assert(isa<PointerType>(TargetTy), + "GEP base pointer is not a vector or a vector of pointers", &GEP); + Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); + + SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); + Assert(all_of( + Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), + "GEP indexes must be integers", &GEP); + Type *ElTy = + GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); + Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); + + Assert(GEP.getType()->isPtrOrPtrVectorTy() && + GEP.getResultElementType() == ElTy, + "GEP is not of right type for indices!", &GEP, ElTy); + + if (GEP.getType()->isVectorTy()) { + // Additional checks for vector GEPs. + unsigned GEPWidth = GEP.getType()->getVectorNumElements(); + if (GEP.getPointerOperandType()->isVectorTy()) + Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(), + "Vector GEP result width doesn't match operand's", &GEP); + for (Value *Idx : Idxs) { + Type *IndexTy = Idx->getType(); + if (IndexTy->isVectorTy()) { + unsigned IndexWidth = IndexTy->getVectorNumElements(); + Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); + } + Assert(IndexTy->isIntOrIntVectorTy(), + "All GEP indices should be of integer type"); + } + } + + if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { + Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), + "GEP address space doesn't match type", &GEP); + } + + visitInstruction(GEP); +} + +static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { + return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); +} + +void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { + assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && + "precondition violation"); + + unsigned NumOperands = Range->getNumOperands(); + Assert(NumOperands % 2 == 0, "Unfinished range!", Range); + unsigned NumRanges = NumOperands / 2; + Assert(NumRanges >= 1, "It should have at least one range!", Range); + + ConstantRange LastRange(1, true); // Dummy initial value + for (unsigned i = 0; i < NumRanges; ++i) { + ConstantInt *Low = + mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); + Assert(Low, "The lower limit must be an integer!", Low); + ConstantInt *High = + mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); + Assert(High, "The upper limit must be an integer!", High); + Assert(High->getType() == Low->getType() && High->getType() == Ty, + "Range types must match instruction type!", &I); + + APInt HighV = High->getValue(); + APInt LowV = Low->getValue(); + ConstantRange CurRange(LowV, HighV); + Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), + "Range must not be empty!", Range); + if (i != 0) { + Assert(CurRange.intersectWith(LastRange).isEmptySet(), + "Intervals are overlapping", Range); + Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", + Range); + Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", + Range); + } + LastRange = ConstantRange(LowV, HighV); + } + if (NumRanges > 2) { + APInt FirstLow = + mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); + APInt FirstHigh = + mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); + ConstantRange FirstRange(FirstLow, FirstHigh); + Assert(FirstRange.intersectWith(LastRange).isEmptySet(), + "Intervals are overlapping", Range); + Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", + Range); + } +} + +void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { + unsigned Size = DL.getTypeSizeInBits(Ty); + Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); + Assert(!(Size & (Size - 1)), + "atomic memory access' operand must have a power-of-two size", Ty, I); +} + +void Verifier::visitLoadInst(LoadInst &LI) { + PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); + Assert(PTy, "Load operand must be a pointer.", &LI); + Type *ElTy = LI.getType(); + Assert(LI.getAlignment() <= Value::MaximumAlignment, + "huge alignment values are unsupported", &LI); + Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); + if (LI.isAtomic()) { + Assert(LI.getOrdering() != AtomicOrdering::Release && + LI.getOrdering() != AtomicOrdering::AcquireRelease, + "Load cannot have Release ordering", &LI); + Assert(LI.getAlignment() != 0, + "Atomic load must specify explicit alignment", &LI); + Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), + "atomic load operand must have integer, pointer, or floating point " + "type!", + ElTy, &LI); + checkAtomicMemAccessSize(ElTy, &LI); + } else { + Assert(LI.getSyncScopeID() == SyncScope::System, + "Non-atomic load cannot have SynchronizationScope specified", &LI); + } + + visitInstruction(LI); +} + +void Verifier::visitStoreInst(StoreInst &SI) { + PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); + Assert(PTy, "Store operand must be a pointer.", &SI); + Type *ElTy = PTy->getElementType(); + Assert(ElTy == SI.getOperand(0)->getType(), + "Stored value type does not match pointer operand type!", &SI, ElTy); + Assert(SI.getAlignment() <= Value::MaximumAlignment, + "huge alignment values are unsupported", &SI); + Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); + if (SI.isAtomic()) { + Assert(SI.getOrdering() != AtomicOrdering::Acquire && + SI.getOrdering() != AtomicOrdering::AcquireRelease, + "Store cannot have Acquire ordering", &SI); + Assert(SI.getAlignment() != 0, + "Atomic store must specify explicit alignment", &SI); + Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), + "atomic store operand must have integer, pointer, or floating point " + "type!", + ElTy, &SI); + checkAtomicMemAccessSize(ElTy, &SI); + } else { + Assert(SI.getSyncScopeID() == SyncScope::System, + "Non-atomic store cannot have SynchronizationScope specified", &SI); + } + visitInstruction(SI); +} + +/// Check that SwiftErrorVal is used as a swifterror argument in CS. +void Verifier::verifySwiftErrorCall(CallBase &Call, + const Value *SwiftErrorVal) { + unsigned Idx = 0; + for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) { + if (*I == SwiftErrorVal) { + Assert(Call.paramHasAttr(Idx, Attribute::SwiftError), + "swifterror value when used in a callsite should be marked " + "with swifterror attribute", + SwiftErrorVal, Call); + } + } +} + +void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { + // Check that swifterror value is only used by loads, stores, or as + // a swifterror argument. + for (const User *U : SwiftErrorVal->users()) { + Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || + isa<InvokeInst>(U), + "swifterror value can only be loaded and stored from, or " + "as a swifterror argument!", + SwiftErrorVal, U); + // If it is used by a store, check it is the second operand. + if (auto StoreI = dyn_cast<StoreInst>(U)) + Assert(StoreI->getOperand(1) == SwiftErrorVal, + "swifterror value should be the second operand when used " + "by stores", SwiftErrorVal, U); + if (auto *Call = dyn_cast<CallBase>(U)) + verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); + } +} + +void Verifier::visitAllocaInst(AllocaInst &AI) { + SmallPtrSet<Type*, 4> Visited; + PointerType *PTy = AI.getType(); + // TODO: Relax this restriction? + Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(), + "Allocation instruction pointer not in the stack address space!", + &AI); + Assert(AI.getAllocatedType()->isSized(&Visited), + "Cannot allocate unsized type", &AI); + Assert(AI.getArraySize()->getType()->isIntegerTy(), + "Alloca array size must have integer type", &AI); + Assert(AI.getAlignment() <= Value::MaximumAlignment, + "huge alignment values are unsupported", &AI); + + if (AI.isSwiftError()) { + verifySwiftErrorValue(&AI); + } + + visitInstruction(AI); +} + +void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { + + // FIXME: more conditions??? + Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic, + "cmpxchg instructions must be atomic.", &CXI); + Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic, + "cmpxchg instructions must be atomic.", &CXI); + Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered, + "cmpxchg instructions cannot be unordered.", &CXI); + Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered, + "cmpxchg instructions cannot be unordered.", &CXI); + Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()), + "cmpxchg instructions failure argument shall be no stronger than the " + "success argument", + &CXI); + Assert(CXI.getFailureOrdering() != AtomicOrdering::Release && + CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease, + "cmpxchg failure ordering cannot include release semantics", &CXI); + + PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); + Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); + Type *ElTy = PTy->getElementType(); + Assert(ElTy->isIntOrPtrTy(), + "cmpxchg operand must have integer or pointer type", ElTy, &CXI); + checkAtomicMemAccessSize(ElTy, &CXI); + Assert(ElTy == CXI.getOperand(1)->getType(), + "Expected value type does not match pointer operand type!", &CXI, + ElTy); + Assert(ElTy == CXI.getOperand(2)->getType(), + "Stored value type does not match pointer operand type!", &CXI, ElTy); + visitInstruction(CXI); +} + +void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { + Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic, + "atomicrmw instructions must be atomic.", &RMWI); + Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, + "atomicrmw instructions cannot be unordered.", &RMWI); + auto Op = RMWI.getOperation(); + PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); + Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); + Type *ElTy = PTy->getElementType(); + if (Op == AtomicRMWInst::Xchg) { + Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " + + AtomicRMWInst::getOperationName(Op) + + " operand must have integer or floating point type!", + &RMWI, ElTy); + } else if (AtomicRMWInst::isFPOperation(Op)) { + Assert(ElTy->isFloatingPointTy(), "atomicrmw " + + AtomicRMWInst::getOperationName(Op) + + " operand must have floating point type!", + &RMWI, ElTy); + } else { + Assert(ElTy->isIntegerTy(), "atomicrmw " + + AtomicRMWInst::getOperationName(Op) + + " operand must have integer type!", + &RMWI, ElTy); + } + checkAtomicMemAccessSize(ElTy, &RMWI); + Assert(ElTy == RMWI.getOperand(1)->getType(), + "Argument value type does not match pointer operand type!", &RMWI, + ElTy); + Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, + "Invalid binary operation!", &RMWI); + visitInstruction(RMWI); +} + +void Verifier::visitFenceInst(FenceInst &FI) { + const AtomicOrdering Ordering = FI.getOrdering(); + Assert(Ordering == AtomicOrdering::Acquire || + Ordering == AtomicOrdering::Release || + Ordering == AtomicOrdering::AcquireRelease || + Ordering == AtomicOrdering::SequentiallyConsistent, + "fence instructions may only have acquire, release, acq_rel, or " + "seq_cst ordering.", + &FI); + visitInstruction(FI); +} + +void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { + Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), + EVI.getIndices()) == EVI.getType(), + "Invalid ExtractValueInst operands!", &EVI); + + visitInstruction(EVI); +} + +void Verifier::visitInsertValueInst(InsertValueInst &IVI) { + Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), + IVI.getIndices()) == + IVI.getOperand(1)->getType(), + "Invalid InsertValueInst operands!", &IVI); + + visitInstruction(IVI); +} + +static Value *getParentPad(Value *EHPad) { + if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) + return FPI->getParentPad(); + + return cast<CatchSwitchInst>(EHPad)->getParentPad(); +} + +void Verifier::visitEHPadPredecessors(Instruction &I) { + assert(I.isEHPad()); + + BasicBlock *BB = I.getParent(); + Function *F = BB->getParent(); + + Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); + + if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { + // The landingpad instruction defines its parent as a landing pad block. The + // landing pad block may be branched to only by the unwind edge of an + // invoke. + for (BasicBlock *PredBB : predecessors(BB)) { + const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); + Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, + "Block containing LandingPadInst must be jumped to " + "only by the unwind edge of an invoke.", + LPI); + } + return; + } + if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { + if (!pred_empty(BB)) + Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), + "Block containg CatchPadInst must be jumped to " + "only by its catchswitch.", + CPI); + Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), + "Catchswitch cannot unwind to one of its catchpads", + CPI->getCatchSwitch(), CPI); + return; + } + + // Verify that each pred has a legal terminator with a legal to/from EH + // pad relationship. + Instruction *ToPad = &I; + Value *ToPadParent = getParentPad(ToPad); + for (BasicBlock *PredBB : predecessors(BB)) { + Instruction *TI = PredBB->getTerminator(); + Value *FromPad; + if (auto *II = dyn_cast<InvokeInst>(TI)) { + Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, + "EH pad must be jumped to via an unwind edge", ToPad, II); + if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) + FromPad = Bundle->Inputs[0]; + else + FromPad = ConstantTokenNone::get(II->getContext()); + } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { + FromPad = CRI->getOperand(0); + Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); + } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { + FromPad = CSI; + } else { + Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); + } + + // The edge may exit from zero or more nested pads. + SmallSet<Value *, 8> Seen; + for (;; FromPad = getParentPad(FromPad)) { + Assert(FromPad != ToPad, + "EH pad cannot handle exceptions raised within it", FromPad, TI); + if (FromPad == ToPadParent) { + // This is a legal unwind edge. + break; + } + Assert(!isa<ConstantTokenNone>(FromPad), + "A single unwind edge may only enter one EH pad", TI); + Assert(Seen.insert(FromPad).second, + "EH pad jumps through a cycle of pads", FromPad); + } + } +} + +void Verifier::visitLandingPadInst(LandingPadInst &LPI) { + // The landingpad instruction is ill-formed if it doesn't have any clauses and + // isn't a cleanup. + Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), + "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); + + visitEHPadPredecessors(LPI); + + if (!LandingPadResultTy) + LandingPadResultTy = LPI.getType(); + else + Assert(LandingPadResultTy == LPI.getType(), + "The landingpad instruction should have a consistent result type " + "inside a function.", + &LPI); + + Function *F = LPI.getParent()->getParent(); + Assert(F->hasPersonalityFn(), + "LandingPadInst needs to be in a function with a personality.", &LPI); + + // The landingpad instruction must be the first non-PHI instruction in the + // block. + Assert(LPI.getParent()->getLandingPadInst() == &LPI, + "LandingPadInst not the first non-PHI instruction in the block.", + &LPI); + + for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { + Constant *Clause = LPI.getClause(i); + if (LPI.isCatch(i)) { + Assert(isa<PointerType>(Clause->getType()), + "Catch operand does not have pointer type!", &LPI); + } else { + Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); + Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), + "Filter operand is not an array of constants!", &LPI); + } + } + + visitInstruction(LPI); +} + +void Verifier::visitResumeInst(ResumeInst &RI) { + Assert(RI.getFunction()->hasPersonalityFn(), + "ResumeInst needs to be in a function with a personality.", &RI); + + if (!LandingPadResultTy) + LandingPadResultTy = RI.getValue()->getType(); + else + Assert(LandingPadResultTy == RI.getValue()->getType(), + "The resume instruction should have a consistent result type " + "inside a function.", + &RI); + + visitTerminator(RI); +} + +void Verifier::visitCatchPadInst(CatchPadInst &CPI) { + BasicBlock *BB = CPI.getParent(); + + Function *F = BB->getParent(); + Assert(F->hasPersonalityFn(), + "CatchPadInst needs to be in a function with a personality.", &CPI); + + Assert(isa<CatchSwitchInst>(CPI.getParentPad()), + "CatchPadInst needs to be directly nested in a CatchSwitchInst.", + CPI.getParentPad()); + + // The catchpad instruction must be the first non-PHI instruction in the + // block. + Assert(BB->getFirstNonPHI() == &CPI, + "CatchPadInst not the first non-PHI instruction in the block.", &CPI); + + visitEHPadPredecessors(CPI); + visitFuncletPadInst(CPI); +} + +void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { + Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), + "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, + CatchReturn.getOperand(0)); + + visitTerminator(CatchReturn); +} + +void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { + BasicBlock *BB = CPI.getParent(); + + Function *F = BB->getParent(); + Assert(F->hasPersonalityFn(), + "CleanupPadInst needs to be in a function with a personality.", &CPI); + + // The cleanuppad instruction must be the first non-PHI instruction in the + // block. + Assert(BB->getFirstNonPHI() == &CPI, + "CleanupPadInst not the first non-PHI instruction in the block.", + &CPI); + + auto *ParentPad = CPI.getParentPad(); + Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), + "CleanupPadInst has an invalid parent.", &CPI); + + visitEHPadPredecessors(CPI); + visitFuncletPadInst(CPI); +} + +void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { + User *FirstUser = nullptr; + Value *FirstUnwindPad = nullptr; + SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); + SmallSet<FuncletPadInst *, 8> Seen; + + while (!Worklist.empty()) { + FuncletPadInst *CurrentPad = Worklist.pop_back_val(); + Assert(Seen.insert(CurrentPad).second, + "FuncletPadInst must not be nested within itself", CurrentPad); + Value *UnresolvedAncestorPad = nullptr; + for (User *U : CurrentPad->users()) { + BasicBlock *UnwindDest; + if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { + UnwindDest = CRI->getUnwindDest(); + } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { + // We allow catchswitch unwind to caller to nest + // within an outer pad that unwinds somewhere else, + // because catchswitch doesn't have a nounwind variant. + // See e.g. SimplifyCFGOpt::SimplifyUnreachable. + if (CSI->unwindsToCaller()) + continue; + UnwindDest = CSI->getUnwindDest(); + } else if (auto *II = dyn_cast<InvokeInst>(U)) { + UnwindDest = II->getUnwindDest(); + } else if (isa<CallInst>(U)) { + // Calls which don't unwind may be found inside funclet + // pads that unwind somewhere else. We don't *require* + // such calls to be annotated nounwind. + continue; + } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { + // The unwind dest for a cleanup can only be found by + // recursive search. Add it to the worklist, and we'll + // search for its first use that determines where it unwinds. + Worklist.push_back(CPI); + continue; + } else { + Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); + continue; + } + + Value *UnwindPad; + bool ExitsFPI; + if (UnwindDest) { + UnwindPad = UnwindDest->getFirstNonPHI(); + if (!cast<Instruction>(UnwindPad)->isEHPad()) + continue; + Value *UnwindParent = getParentPad(UnwindPad); + // Ignore unwind edges that don't exit CurrentPad. + if (UnwindParent == CurrentPad) + continue; + // Determine whether the original funclet pad is exited, + // and if we are scanning nested pads determine how many + // of them are exited so we can stop searching their + // children. + Value *ExitedPad = CurrentPad; + ExitsFPI = false; + do { + if (ExitedPad == &FPI) { + ExitsFPI = true; + // Now we can resolve any ancestors of CurrentPad up to + // FPI, but not including FPI since we need to make sure + // to check all direct users of FPI for consistency. + UnresolvedAncestorPad = &FPI; + break; + } + Value *ExitedParent = getParentPad(ExitedPad); + if (ExitedParent == UnwindParent) { + // ExitedPad is the ancestor-most pad which this unwind + // edge exits, so we can resolve up to it, meaning that + // ExitedParent is the first ancestor still unresolved. + UnresolvedAncestorPad = ExitedParent; + break; + } + ExitedPad = ExitedParent; + } while (!isa<ConstantTokenNone>(ExitedPad)); + } else { + // Unwinding to caller exits all pads. + UnwindPad = ConstantTokenNone::get(FPI.getContext()); + ExitsFPI = true; + UnresolvedAncestorPad = &FPI; + } + + if (ExitsFPI) { + // This unwind edge exits FPI. Make sure it agrees with other + // such edges. + if (FirstUser) { + Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " + "pad must have the same unwind " + "dest", + &FPI, U, FirstUser); + } else { + FirstUser = U; + FirstUnwindPad = UnwindPad; + // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds + if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && + getParentPad(UnwindPad) == getParentPad(&FPI)) + SiblingFuncletInfo[&FPI] = cast<Instruction>(U); + } + } + // Make sure we visit all uses of FPI, but for nested pads stop as + // soon as we know where they unwind to. + if (CurrentPad != &FPI) + break; + } + if (UnresolvedAncestorPad) { + if (CurrentPad == UnresolvedAncestorPad) { + // When CurrentPad is FPI itself, we don't mark it as resolved even if + // we've found an unwind edge that exits it, because we need to verify + // all direct uses of FPI. + assert(CurrentPad == &FPI); + continue; + } + // Pop off the worklist any nested pads that we've found an unwind + // destination for. The pads on the worklist are the uncles, + // great-uncles, etc. of CurrentPad. We've found an unwind destination + // for all ancestors of CurrentPad up to but not including + // UnresolvedAncestorPad. + Value *ResolvedPad = CurrentPad; + while (!Worklist.empty()) { + Value *UnclePad = Worklist.back(); + Value *AncestorPad = getParentPad(UnclePad); + // Walk ResolvedPad up the ancestor list until we either find the + // uncle's parent or the last resolved ancestor. + while (ResolvedPad != AncestorPad) { + Value *ResolvedParent = getParentPad(ResolvedPad); + if (ResolvedParent == UnresolvedAncestorPad) { + break; + } + ResolvedPad = ResolvedParent; + } + // If the resolved ancestor search didn't find the uncle's parent, + // then the uncle is not yet resolved. + if (ResolvedPad != AncestorPad) + break; + // This uncle is resolved, so pop it from the worklist. + Worklist.pop_back(); + } + } + } + + if (FirstUnwindPad) { + if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { + BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); + Value *SwitchUnwindPad; + if (SwitchUnwindDest) + SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); + else + SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); + Assert(SwitchUnwindPad == FirstUnwindPad, + "Unwind edges out of a catch must have the same unwind dest as " + "the parent catchswitch", + &FPI, FirstUser, CatchSwitch); + } + } + + visitInstruction(FPI); +} + +void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { + BasicBlock *BB = CatchSwitch.getParent(); + + Function *F = BB->getParent(); + Assert(F->hasPersonalityFn(), + "CatchSwitchInst needs to be in a function with a personality.", + &CatchSwitch); + + // The catchswitch instruction must be the first non-PHI instruction in the + // block. + Assert(BB->getFirstNonPHI() == &CatchSwitch, + "CatchSwitchInst not the first non-PHI instruction in the block.", + &CatchSwitch); + + auto *ParentPad = CatchSwitch.getParentPad(); + Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), + "CatchSwitchInst has an invalid parent.", ParentPad); + + if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { + Instruction *I = UnwindDest->getFirstNonPHI(); + Assert(I->isEHPad() && !isa<LandingPadInst>(I), + "CatchSwitchInst must unwind to an EH block which is not a " + "landingpad.", + &CatchSwitch); + + // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds + if (getParentPad(I) == ParentPad) + SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; + } + + Assert(CatchSwitch.getNumHandlers() != 0, + "CatchSwitchInst cannot have empty handler list", &CatchSwitch); + + for (BasicBlock *Handler : CatchSwitch.handlers()) { + Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), + "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); + } + + visitEHPadPredecessors(CatchSwitch); + visitTerminator(CatchSwitch); +} + +void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { + Assert(isa<CleanupPadInst>(CRI.getOperand(0)), + "CleanupReturnInst needs to be provided a CleanupPad", &CRI, + CRI.getOperand(0)); + + if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { + Instruction *I = UnwindDest->getFirstNonPHI(); + Assert(I->isEHPad() && !isa<LandingPadInst>(I), + "CleanupReturnInst must unwind to an EH block which is not a " + "landingpad.", + &CRI); + } + + visitTerminator(CRI); +} + +void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { + Instruction *Op = cast<Instruction>(I.getOperand(i)); + // If the we have an invalid invoke, don't try to compute the dominance. + // We already reject it in the invoke specific checks and the dominance + // computation doesn't handle multiple edges. + if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { + if (II->getNormalDest() == II->getUnwindDest()) + return; + } + + // Quick check whether the def has already been encountered in the same block. + // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI + // uses are defined to happen on the incoming edge, not at the instruction. + // + // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) + // wrapping an SSA value, assert that we've already encountered it. See + // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. + if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) + return; + + const Use &U = I.getOperandUse(i); + Assert(DT.dominates(Op, U), + "Instruction does not dominate all uses!", Op, &I); +} + +void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { + Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " + "apply only to pointer types", &I); + Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), + "dereferenceable, dereferenceable_or_null apply only to load" + " and inttoptr instructions, use attributes for calls or invokes", &I); + Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " + "take one operand!", &I); + ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); + Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " + "dereferenceable_or_null metadata value must be an i64!", &I); +} + +void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { + Assert(MD->getNumOperands() >= 2, + "!prof annotations should have no less than 2 operands", MD); + + // Check first operand. + Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD); + Assert(isa<MDString>(MD->getOperand(0)), + "expected string with name of the !prof annotation", MD); + MDString *MDS = cast<MDString>(MD->getOperand(0)); + StringRef ProfName = MDS->getString(); + + // Check consistency of !prof branch_weights metadata. + if (ProfName.equals("branch_weights")) { + unsigned ExpectedNumOperands = 0; + if (BranchInst *BI = dyn_cast<BranchInst>(&I)) + ExpectedNumOperands = BI->getNumSuccessors(); + else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) + ExpectedNumOperands = SI->getNumSuccessors(); + else if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) + ExpectedNumOperands = 1; + else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) + ExpectedNumOperands = IBI->getNumDestinations(); + else if (isa<SelectInst>(&I)) + ExpectedNumOperands = 2; + else + CheckFailed("!prof branch_weights are not allowed for this instruction", + MD); + + Assert(MD->getNumOperands() == 1 + ExpectedNumOperands, + "Wrong number of operands", MD); + for (unsigned i = 1; i < MD->getNumOperands(); ++i) { + auto &MDO = MD->getOperand(i); + Assert(MDO, "second operand should not be null", MD); + Assert(mdconst::dyn_extract<ConstantInt>(MDO), + "!prof brunch_weights operand is not a const int"); + } + } +} + +/// verifyInstruction - Verify that an instruction is well formed. +/// +void Verifier::visitInstruction(Instruction &I) { + BasicBlock *BB = I.getParent(); + Assert(BB, "Instruction not embedded in basic block!", &I); + + if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential + for (User *U : I.users()) { + Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), + "Only PHI nodes may reference their own value!", &I); + } + } + + // Check that void typed values don't have names + Assert(!I.getType()->isVoidTy() || !I.hasName(), + "Instruction has a name, but provides a void value!", &I); + + // Check that the return value of the instruction is either void or a legal + // value type. + Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), + "Instruction returns a non-scalar type!", &I); + + // Check that the instruction doesn't produce metadata. Calls are already + // checked against the callee type. + Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), + "Invalid use of metadata!", &I); + + // Check that all uses of the instruction, if they are instructions + // themselves, actually have parent basic blocks. If the use is not an + // instruction, it is an error! + for (Use &U : I.uses()) { + if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) + Assert(Used->getParent() != nullptr, + "Instruction referencing" + " instruction not embedded in a basic block!", + &I, Used); + else { + CheckFailed("Use of instruction is not an instruction!", U); + return; + } + } + + // Get a pointer to the call base of the instruction if it is some form of + // call. + const CallBase *CBI = dyn_cast<CallBase>(&I); + + for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { + Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); + + // Check to make sure that only first-class-values are operands to + // instructions. + if (!I.getOperand(i)->getType()->isFirstClassType()) { + Assert(false, "Instruction operands must be first-class values!", &I); + } + + if (Function *F = dyn_cast<Function>(I.getOperand(i))) { + // Check to make sure that the "address of" an intrinsic function is never + // taken. + Assert(!F->isIntrinsic() || + (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)), + "Cannot take the address of an intrinsic!", &I); + Assert( + !F->isIntrinsic() || isa<CallInst>(I) || + F->getIntrinsicID() == Intrinsic::donothing || + F->getIntrinsicID() == Intrinsic::coro_resume || + F->getIntrinsicID() == Intrinsic::coro_destroy || + F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || + F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || + F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || + F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch, + "Cannot invoke an intrinsic other than donothing, patchpoint, " + "statepoint, coro_resume or coro_destroy", + &I); + Assert(F->getParent() == &M, "Referencing function in another module!", + &I, &M, F, F->getParent()); + } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { + Assert(OpBB->getParent() == BB->getParent(), + "Referring to a basic block in another function!", &I); + } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { + Assert(OpArg->getParent() == BB->getParent(), + "Referring to an argument in another function!", &I); + } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { + Assert(GV->getParent() == &M, "Referencing global in another module!", &I, + &M, GV, GV->getParent()); + } else if (isa<Instruction>(I.getOperand(i))) { + verifyDominatesUse(I, i); + } else if (isa<InlineAsm>(I.getOperand(i))) { + Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), + "Cannot take the address of an inline asm!", &I); + } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { + if (CE->getType()->isPtrOrPtrVectorTy() || + !DL.getNonIntegralAddressSpaces().empty()) { + // If we have a ConstantExpr pointer, we need to see if it came from an + // illegal bitcast. If the datalayout string specifies non-integral + // address spaces then we also need to check for illegal ptrtoint and + // inttoptr expressions. + visitConstantExprsRecursively(CE); + } + } + } + + if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { + Assert(I.getType()->isFPOrFPVectorTy(), + "fpmath requires a floating point result!", &I); + Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); + if (ConstantFP *CFP0 = + mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { + const APFloat &Accuracy = CFP0->getValueAPF(); + Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), + "fpmath accuracy must have float type", &I); + Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), + "fpmath accuracy not a positive number!", &I); + } else { + Assert(false, "invalid fpmath accuracy!", &I); + } + } + + if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { + Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), + "Ranges are only for loads, calls and invokes!", &I); + visitRangeMetadata(I, Range, I.getType()); + } + + if (I.getMetadata(LLVMContext::MD_nonnull)) { + Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", + &I); + Assert(isa<LoadInst>(I), + "nonnull applies only to load instructions, use attributes" + " for calls or invokes", + &I); + } + + if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) + visitDereferenceableMetadata(I, MD); + + if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) + visitDereferenceableMetadata(I, MD); + + if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) + TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); + + if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { + Assert(I.getType()->isPointerTy(), "align applies only to pointer types", + &I); + Assert(isa<LoadInst>(I), "align applies only to load instructions, " + "use attributes for calls or invokes", &I); + Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); + ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); + Assert(CI && CI->getType()->isIntegerTy(64), + "align metadata value must be an i64!", &I); + uint64_t Align = CI->getZExtValue(); + Assert(isPowerOf2_64(Align), + "align metadata value must be a power of 2!", &I); + Assert(Align <= Value::MaximumAlignment, + "alignment is larger that implementation defined limit", &I); + } + + if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) + visitProfMetadata(I, MD); + + if (MDNode *N = I.getDebugLoc().getAsMDNode()) { + AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); + visitMDNode(*N); + } + + if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { + verifyFragmentExpression(*DII); + verifyNotEntryValue(*DII); + } + + InstsInThisBlock.insert(&I); +} + +/// Allow intrinsics to be verified in different ways. +void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { + Function *IF = Call.getCalledFunction(); + Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", + IF); + + // Verify that the intrinsic prototype lines up with what the .td files + // describe. + FunctionType *IFTy = IF->getFunctionType(); + bool IsVarArg = IFTy->isVarArg(); + + SmallVector<Intrinsic::IITDescriptor, 8> Table; + getIntrinsicInfoTableEntries(ID, Table); + ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; + + // Walk the descriptors to extract overloaded types. + SmallVector<Type *, 4> ArgTys; + Intrinsic::MatchIntrinsicTypesResult Res = + Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); + Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, + "Intrinsic has incorrect return type!", IF); + Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, + "Intrinsic has incorrect argument type!", IF); + + // Verify if the intrinsic call matches the vararg property. + if (IsVarArg) + Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), + "Intrinsic was not defined with variable arguments!", IF); + else + Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), + "Callsite was not defined with variable arguments!", IF); + + // All descriptors should be absorbed by now. + Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); + + // Now that we have the intrinsic ID and the actual argument types (and we + // know they are legal for the intrinsic!) get the intrinsic name through the + // usual means. This allows us to verify the mangling of argument types into + // the name. + const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); + Assert(ExpectedName == IF->getName(), + "Intrinsic name not mangled correctly for type arguments! " + "Should be: " + + ExpectedName, + IF); + + // If the intrinsic takes MDNode arguments, verify that they are either global + // or are local to *this* function. + for (Value *V : Call.args()) + if (auto *MD = dyn_cast<MetadataAsValue>(V)) + visitMetadataAsValue(*MD, Call.getCaller()); + + switch (ID) { + default: + break; + case Intrinsic::coro_id: { + auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); + if (isa<ConstantPointerNull>(InfoArg)) + break; + auto *GV = dyn_cast<GlobalVariable>(InfoArg); + Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), + "info argument of llvm.coro.begin must refer to an initialized " + "constant"); + Constant *Init = GV->getInitializer(); + Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), + "info argument of llvm.coro.begin must refer to either a struct or " + "an array"); + break; + } + case Intrinsic::experimental_constrained_fadd: + case Intrinsic::experimental_constrained_fsub: + case Intrinsic::experimental_constrained_fmul: + case Intrinsic::experimental_constrained_fdiv: + case Intrinsic::experimental_constrained_frem: + case Intrinsic::experimental_constrained_fma: + case Intrinsic::experimental_constrained_fptosi: + case Intrinsic::experimental_constrained_fptoui: + case Intrinsic::experimental_constrained_fptrunc: + case Intrinsic::experimental_constrained_fpext: + case Intrinsic::experimental_constrained_sqrt: + case Intrinsic::experimental_constrained_pow: + case Intrinsic::experimental_constrained_powi: + case Intrinsic::experimental_constrained_sin: + case Intrinsic::experimental_constrained_cos: + case Intrinsic::experimental_constrained_exp: + case Intrinsic::experimental_constrained_exp2: + case Intrinsic::experimental_constrained_log: + case Intrinsic::experimental_constrained_log10: + case Intrinsic::experimental_constrained_log2: + case Intrinsic::experimental_constrained_lrint: + case Intrinsic::experimental_constrained_llrint: + case Intrinsic::experimental_constrained_rint: + case Intrinsic::experimental_constrained_nearbyint: + case Intrinsic::experimental_constrained_maxnum: + case Intrinsic::experimental_constrained_minnum: + case Intrinsic::experimental_constrained_ceil: + case Intrinsic::experimental_constrained_floor: + case Intrinsic::experimental_constrained_lround: + case Intrinsic::experimental_constrained_llround: + case Intrinsic::experimental_constrained_round: + case Intrinsic::experimental_constrained_trunc: + visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); + break; + case Intrinsic::dbg_declare: // llvm.dbg.declare + Assert(isa<MetadataAsValue>(Call.getArgOperand(0)), + "invalid llvm.dbg.declare intrinsic call 1", Call); + visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); + break; + case Intrinsic::dbg_addr: // llvm.dbg.addr + visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); + break; + case Intrinsic::dbg_value: // llvm.dbg.value + visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); + break; + case Intrinsic::dbg_label: // llvm.dbg.label + visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); + break; + case Intrinsic::memcpy: + case Intrinsic::memmove: + case Intrinsic::memset: { + const auto *MI = cast<MemIntrinsic>(&Call); + auto IsValidAlignment = [&](unsigned Alignment) -> bool { + return Alignment == 0 || isPowerOf2_32(Alignment); + }; + Assert(IsValidAlignment(MI->getDestAlignment()), + "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", + Call); + if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { + Assert(IsValidAlignment(MTI->getSourceAlignment()), + "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", + Call); + } + + break; + } + case Intrinsic::memcpy_element_unordered_atomic: + case Intrinsic::memmove_element_unordered_atomic: + case Intrinsic::memset_element_unordered_atomic: { + const auto *AMI = cast<AtomicMemIntrinsic>(&Call); + + ConstantInt *ElementSizeCI = + cast<ConstantInt>(AMI->getRawElementSizeInBytes()); + const APInt &ElementSizeVal = ElementSizeCI->getValue(); + Assert(ElementSizeVal.isPowerOf2(), + "element size of the element-wise atomic memory intrinsic " + "must be a power of 2", + Call); + + if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) { + uint64_t Length = LengthCI->getZExtValue(); + uint64_t ElementSize = AMI->getElementSizeInBytes(); + Assert((Length % ElementSize) == 0, + "constant length must be a multiple of the element size in the " + "element-wise atomic memory intrinsic", + Call); + } + + auto IsValidAlignment = [&](uint64_t Alignment) { + return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); + }; + uint64_t DstAlignment = AMI->getDestAlignment(); + Assert(IsValidAlignment(DstAlignment), + "incorrect alignment of the destination argument", Call); + if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { + uint64_t SrcAlignment = AMT->getSourceAlignment(); + Assert(IsValidAlignment(SrcAlignment), + "incorrect alignment of the source argument", Call); + } + break; + } + case Intrinsic::gcroot: + case Intrinsic::gcwrite: + case Intrinsic::gcread: + if (ID == Intrinsic::gcroot) { + AllocaInst *AI = + dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); + Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); + Assert(isa<Constant>(Call.getArgOperand(1)), + "llvm.gcroot parameter #2 must be a constant.", Call); + if (!AI->getAllocatedType()->isPointerTy()) { + Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)), + "llvm.gcroot parameter #1 must either be a pointer alloca, " + "or argument #2 must be a non-null constant.", + Call); + } + } + + Assert(Call.getParent()->getParent()->hasGC(), + "Enclosing function does not use GC.", Call); + break; + case Intrinsic::init_trampoline: + Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), + "llvm.init_trampoline parameter #2 must resolve to a function.", + Call); + break; + case Intrinsic::prefetch: + Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && + cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, + "invalid arguments to llvm.prefetch", Call); + break; + case Intrinsic::stackprotector: + Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), + "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); + break; + case Intrinsic::localescape: { + BasicBlock *BB = Call.getParent(); + Assert(BB == &BB->getParent()->front(), + "llvm.localescape used outside of entry block", Call); + Assert(!SawFrameEscape, + "multiple calls to llvm.localescape in one function", Call); + for (Value *Arg : Call.args()) { + if (isa<ConstantPointerNull>(Arg)) + continue; // Null values are allowed as placeholders. + auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); + Assert(AI && AI->isStaticAlloca(), + "llvm.localescape only accepts static allocas", Call); + } + FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands(); + SawFrameEscape = true; + break; + } + case Intrinsic::localrecover: { + Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); + Function *Fn = dyn_cast<Function>(FnArg); + Assert(Fn && !Fn->isDeclaration(), + "llvm.localrecover first " + "argument must be function defined in this module", + Call); + auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); + auto &Entry = FrameEscapeInfo[Fn]; + Entry.second = unsigned( + std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); + break; + } + + case Intrinsic::experimental_gc_statepoint: + if (auto *CI = dyn_cast<CallInst>(&Call)) + Assert(!CI->isInlineAsm(), + "gc.statepoint support for inline assembly unimplemented", CI); + Assert(Call.getParent()->getParent()->hasGC(), + "Enclosing function does not use GC.", Call); + + verifyStatepoint(Call); + break; + case Intrinsic::experimental_gc_result: { + Assert(Call.getParent()->getParent()->hasGC(), + "Enclosing function does not use GC.", Call); + // Are we tied to a statepoint properly? + const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); + const Function *StatepointFn = + StatepointCall ? StatepointCall->getCalledFunction() : nullptr; + Assert(StatepointFn && StatepointFn->isDeclaration() && + StatepointFn->getIntrinsicID() == + Intrinsic::experimental_gc_statepoint, + "gc.result operand #1 must be from a statepoint", Call, + Call.getArgOperand(0)); + + // Assert that result type matches wrapped callee. + const Value *Target = StatepointCall->getArgOperand(2); + auto *PT = cast<PointerType>(Target->getType()); + auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); + Assert(Call.getType() == TargetFuncType->getReturnType(), + "gc.result result type does not match wrapped callee", Call); + break; + } + case Intrinsic::experimental_gc_relocate: { + Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call); + + Assert(isa<PointerType>(Call.getType()->getScalarType()), + "gc.relocate must return a pointer or a vector of pointers", Call); + + // Check that this relocate is correctly tied to the statepoint + + // This is case for relocate on the unwinding path of an invoke statepoint + if (LandingPadInst *LandingPad = + dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { + + const BasicBlock *InvokeBB = + LandingPad->getParent()->getUniquePredecessor(); + + // Landingpad relocates should have only one predecessor with invoke + // statepoint terminator + Assert(InvokeBB, "safepoints should have unique landingpads", + LandingPad->getParent()); + Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", + InvokeBB); + Assert(isStatepoint(InvokeBB->getTerminator()), + "gc relocate should be linked to a statepoint", InvokeBB); + } else { + // In all other cases relocate should be tied to the statepoint directly. + // This covers relocates on a normal return path of invoke statepoint and + // relocates of a call statepoint. + auto Token = Call.getArgOperand(0); + Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)), + "gc relocate is incorrectly tied to the statepoint", Call, Token); + } + + // Verify rest of the relocate arguments. + const CallBase &StatepointCall = + *cast<CallBase>(cast<GCRelocateInst>(Call).getStatepoint()); + + // Both the base and derived must be piped through the safepoint. + Value *Base = Call.getArgOperand(1); + Assert(isa<ConstantInt>(Base), + "gc.relocate operand #2 must be integer offset", Call); + + Value *Derived = Call.getArgOperand(2); + Assert(isa<ConstantInt>(Derived), + "gc.relocate operand #3 must be integer offset", Call); + + const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); + const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); + // Check the bounds + Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCall.arg_size(), + "gc.relocate: statepoint base index out of bounds", Call); + Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCall.arg_size(), + "gc.relocate: statepoint derived index out of bounds", Call); + + // Check that BaseIndex and DerivedIndex fall within the 'gc parameters' + // section of the statepoint's argument. + Assert(StatepointCall.arg_size() > 0, + "gc.statepoint: insufficient arguments"); + Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)), + "gc.statement: number of call arguments must be constant integer"); + const unsigned NumCallArgs = + cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue(); + Assert(StatepointCall.arg_size() > NumCallArgs + 5, + "gc.statepoint: mismatch in number of call arguments"); + Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)), + "gc.statepoint: number of transition arguments must be " + "a constant integer"); + const int NumTransitionArgs = + cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)) + ->getZExtValue(); + const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1; + Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)), + "gc.statepoint: number of deoptimization arguments must be " + "a constant integer"); + const int NumDeoptArgs = + cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)) + ->getZExtValue(); + const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs; + const int GCParamArgsEnd = StatepointCall.arg_size(); + Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd, + "gc.relocate: statepoint base index doesn't fall within the " + "'gc parameters' section of the statepoint call", + Call); + Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd, + "gc.relocate: statepoint derived index doesn't fall within the " + "'gc parameters' section of the statepoint call", + Call); + + // Relocated value must be either a pointer type or vector-of-pointer type, + // but gc_relocate does not need to return the same pointer type as the + // relocated pointer. It can be casted to the correct type later if it's + // desired. However, they must have the same address space and 'vectorness' + GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); + Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), + "gc.relocate: relocated value must be a gc pointer", Call); + + auto ResultType = Call.getType(); + auto DerivedType = Relocate.getDerivedPtr()->getType(); + Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), + "gc.relocate: vector relocates to vector and pointer to pointer", + Call); + Assert( + ResultType->getPointerAddressSpace() == + DerivedType->getPointerAddressSpace(), + "gc.relocate: relocating a pointer shouldn't change its address space", + Call); + break; + } + case Intrinsic::eh_exceptioncode: + case Intrinsic::eh_exceptionpointer: { + Assert(isa<CatchPadInst>(Call.getArgOperand(0)), + "eh.exceptionpointer argument must be a catchpad", Call); + break; + } + case Intrinsic::masked_load: { + Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector", + Call); + + Value *Ptr = Call.getArgOperand(0); + ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); + Value *Mask = Call.getArgOperand(2); + Value *PassThru = Call.getArgOperand(3); + Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", + Call); + Assert(Alignment->getValue().isPowerOf2(), + "masked_load: alignment must be a power of 2", Call); + + // DataTy is the overloaded type + Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); + Assert(DataTy == Call.getType(), + "masked_load: return must match pointer type", Call); + Assert(PassThru->getType() == DataTy, + "masked_load: pass through and data type must match", Call); + Assert(Mask->getType()->getVectorNumElements() == + DataTy->getVectorNumElements(), + "masked_load: vector mask must be same length as data", Call); + break; + } + case Intrinsic::masked_store: { + Value *Val = Call.getArgOperand(0); + Value *Ptr = Call.getArgOperand(1); + ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); + Value *Mask = Call.getArgOperand(3); + Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", + Call); + Assert(Alignment->getValue().isPowerOf2(), + "masked_store: alignment must be a power of 2", Call); + + // DataTy is the overloaded type + Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); + Assert(DataTy == Val->getType(), + "masked_store: storee must match pointer type", Call); + Assert(Mask->getType()->getVectorNumElements() == + DataTy->getVectorNumElements(), + "masked_store: vector mask must be same length as data", Call); + break; + } + + case Intrinsic::experimental_guard: { + Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); + Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, + "experimental_guard must have exactly one " + "\"deopt\" operand bundle"); + break; + } + + case Intrinsic::experimental_deoptimize: { + Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", + Call); + Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, + "experimental_deoptimize must have exactly one " + "\"deopt\" operand bundle"); + Assert(Call.getType() == Call.getFunction()->getReturnType(), + "experimental_deoptimize return type must match caller return type"); + + if (isa<CallInst>(Call)) { + auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); + Assert(RI, + "calls to experimental_deoptimize must be followed by a return"); + + if (!Call.getType()->isVoidTy() && RI) + Assert(RI->getReturnValue() == &Call, + "calls to experimental_deoptimize must be followed by a return " + "of the value computed by experimental_deoptimize"); + } + + break; + } + case Intrinsic::sadd_sat: + case Intrinsic::uadd_sat: + case Intrinsic::ssub_sat: + case Intrinsic::usub_sat: { + Value *Op1 = Call.getArgOperand(0); + Value *Op2 = Call.getArgOperand(1); + Assert(Op1->getType()->isIntOrIntVectorTy(), + "first operand of [us][add|sub]_sat must be an int type or vector " + "of ints"); + Assert(Op2->getType()->isIntOrIntVectorTy(), + "second operand of [us][add|sub]_sat must be an int type or vector " + "of ints"); + break; + } + case Intrinsic::smul_fix: + case Intrinsic::smul_fix_sat: + case Intrinsic::umul_fix: + case Intrinsic::umul_fix_sat: { + Value *Op1 = Call.getArgOperand(0); + Value *Op2 = Call.getArgOperand(1); + Assert(Op1->getType()->isIntOrIntVectorTy(), + "first operand of [us]mul_fix[_sat] must be an int type or vector " + "of ints"); + Assert(Op2->getType()->isIntOrIntVectorTy(), + "second operand of [us]mul_fix_[sat] must be an int type or vector " + "of ints"); + + auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); + Assert(Op3->getType()->getBitWidth() <= 32, + "third argument of [us]mul_fix[_sat] must fit within 32 bits"); + + if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat) { + Assert( + Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), + "the scale of smul_fix[_sat] must be less than the width of the operands"); + } else { + Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), + "the scale of umul_fix[_sat] must be less than or equal to the width of " + "the operands"); + } + break; + } + case Intrinsic::lround: + case Intrinsic::llround: + case Intrinsic::lrint: + case Intrinsic::llrint: { + Type *ValTy = Call.getArgOperand(0)->getType(); + Type *ResultTy = Call.getType(); + Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), + "Intrinsic does not support vectors", &Call); + break; + } + }; +} + +/// Carefully grab the subprogram from a local scope. +/// +/// This carefully grabs the subprogram from a local scope, avoiding the +/// built-in assertions that would typically fire. +static DISubprogram *getSubprogram(Metadata *LocalScope) { + if (!LocalScope) + return nullptr; + + if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) + return SP; + + if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) + return getSubprogram(LB->getRawScope()); + + // Just return null; broken scope chains are checked elsewhere. + assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); + return nullptr; +} + +void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { + unsigned NumOperands = FPI.getNumArgOperands(); + bool HasExceptionMD = false; + bool HasRoundingMD = false; + switch (FPI.getIntrinsicID()) { + case Intrinsic::experimental_constrained_sqrt: + case Intrinsic::experimental_constrained_sin: + case Intrinsic::experimental_constrained_cos: + case Intrinsic::experimental_constrained_exp: + case Intrinsic::experimental_constrained_exp2: + case Intrinsic::experimental_constrained_log: + case Intrinsic::experimental_constrained_log10: + case Intrinsic::experimental_constrained_log2: + case Intrinsic::experimental_constrained_rint: + case Intrinsic::experimental_constrained_nearbyint: + case Intrinsic::experimental_constrained_ceil: + case Intrinsic::experimental_constrained_floor: + case Intrinsic::experimental_constrained_round: + case Intrinsic::experimental_constrained_trunc: + Assert((NumOperands == 3), "invalid arguments for constrained FP intrinsic", + &FPI); + HasExceptionMD = true; + HasRoundingMD = true; + break; + + case Intrinsic::experimental_constrained_lrint: + case Intrinsic::experimental_constrained_llrint: { + Assert((NumOperands == 3), "invalid arguments for constrained FP intrinsic", + &FPI); + Type *ValTy = FPI.getArgOperand(0)->getType(); + Type *ResultTy = FPI.getType(); + Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), + "Intrinsic does not support vectors", &FPI); + HasExceptionMD = true; + HasRoundingMD = true; + } + break; + + case Intrinsic::experimental_constrained_lround: + case Intrinsic::experimental_constrained_llround: { + Assert((NumOperands == 2), "invalid arguments for constrained FP intrinsic", + &FPI); + Type *ValTy = FPI.getArgOperand(0)->getType(); + Type *ResultTy = FPI.getType(); + Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), + "Intrinsic does not support vectors", &FPI); + HasExceptionMD = true; + break; + } + + case Intrinsic::experimental_constrained_fma: + Assert((NumOperands == 5), "invalid arguments for constrained FP intrinsic", + &FPI); + HasExceptionMD = true; + HasRoundingMD = true; + break; + + case Intrinsic::experimental_constrained_fadd: + case Intrinsic::experimental_constrained_fsub: + case Intrinsic::experimental_constrained_fmul: + case Intrinsic::experimental_constrained_fdiv: + case Intrinsic::experimental_constrained_frem: + case Intrinsic::experimental_constrained_pow: + case Intrinsic::experimental_constrained_powi: + case Intrinsic::experimental_constrained_maxnum: + case Intrinsic::experimental_constrained_minnum: + Assert((NumOperands == 4), "invalid arguments for constrained FP intrinsic", + &FPI); + HasExceptionMD = true; + HasRoundingMD = true; + break; + + case Intrinsic::experimental_constrained_fptosi: + case Intrinsic::experimental_constrained_fptoui: { + Assert((NumOperands == 2), + "invalid arguments for constrained FP intrinsic", &FPI); + HasExceptionMD = true; + + Value *Operand = FPI.getArgOperand(0); + uint64_t NumSrcElem = 0; + Assert(Operand->getType()->isFPOrFPVectorTy(), + "Intrinsic first argument must be floating point", &FPI); + if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { + NumSrcElem = OperandT->getNumElements(); + } + + Operand = &FPI; + Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), + "Intrinsic first argument and result disagree on vector use", &FPI); + Assert(Operand->getType()->isIntOrIntVectorTy(), + "Intrinsic result must be an integer", &FPI); + if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { + Assert(NumSrcElem == OperandT->getNumElements(), + "Intrinsic first argument and result vector lengths must be equal", + &FPI); + } + } + break; + + case Intrinsic::experimental_constrained_fptrunc: + case Intrinsic::experimental_constrained_fpext: { + if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { + Assert((NumOperands == 3), + "invalid arguments for constrained FP intrinsic", &FPI); + HasRoundingMD = true; + } else { + Assert((NumOperands == 2), + "invalid arguments for constrained FP intrinsic", &FPI); + } + HasExceptionMD = true; + + Value *Operand = FPI.getArgOperand(0); + Type *OperandTy = Operand->getType(); + Value *Result = &FPI; + Type *ResultTy = Result->getType(); + Assert(OperandTy->isFPOrFPVectorTy(), + "Intrinsic first argument must be FP or FP vector", &FPI); + Assert(ResultTy->isFPOrFPVectorTy(), + "Intrinsic result must be FP or FP vector", &FPI); + Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(), + "Intrinsic first argument and result disagree on vector use", &FPI); + if (OperandTy->isVectorTy()) { + auto *OperandVecTy = cast<VectorType>(OperandTy); + auto *ResultVecTy = cast<VectorType>(ResultTy); + Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(), + "Intrinsic first argument and result vector lengths must be equal", + &FPI); + } + if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { + Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), + "Intrinsic first argument's type must be larger than result type", + &FPI); + } else { + Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), + "Intrinsic first argument's type must be smaller than result type", + &FPI); + } + } + break; + + default: + llvm_unreachable("Invalid constrained FP intrinsic!"); + } + + // If a non-metadata argument is passed in a metadata slot then the + // error will be caught earlier when the incorrect argument doesn't + // match the specification in the intrinsic call table. Thus, no + // argument type check is needed here. + + if (HasExceptionMD) { + Assert(FPI.getExceptionBehavior().hasValue(), + "invalid exception behavior argument", &FPI); + } + if (HasRoundingMD) { + Assert(FPI.getRoundingMode().hasValue(), + "invalid rounding mode argument", &FPI); + } +} + +void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { + auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata(); + AssertDI(isa<ValueAsMetadata>(MD) || + (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), + "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); + AssertDI(isa<DILocalVariable>(DII.getRawVariable()), + "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, + DII.getRawVariable()); + AssertDI(isa<DIExpression>(DII.getRawExpression()), + "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, + DII.getRawExpression()); + + // Ignore broken !dbg attachments; they're checked elsewhere. + if (MDNode *N = DII.getDebugLoc().getAsMDNode()) + if (!isa<DILocation>(N)) + return; + + BasicBlock *BB = DII.getParent(); + Function *F = BB ? BB->getParent() : nullptr; + + // The scopes for variables and !dbg attachments must agree. + DILocalVariable *Var = DII.getVariable(); + DILocation *Loc = DII.getDebugLoc(); + AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", + &DII, BB, F); + + DISubprogram *VarSP = getSubprogram(Var->getRawScope()); + DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); + if (!VarSP || !LocSP) + return; // Broken scope chains are checked elsewhere. + + AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + + " variable and !dbg attachment", + &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, + Loc->getScope()->getSubprogram()); + + // This check is redundant with one in visitLocalVariable(). + AssertDI(isType(Var->getRawType()), "invalid type ref", Var, + Var->getRawType()); + verifyFnArgs(DII); +} + +void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { + AssertDI(isa<DILabel>(DLI.getRawLabel()), + "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, + DLI.getRawLabel()); + + // Ignore broken !dbg attachments; they're checked elsewhere. + if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) + if (!isa<DILocation>(N)) + return; + + BasicBlock *BB = DLI.getParent(); + Function *F = BB ? BB->getParent() : nullptr; + + // The scopes for variables and !dbg attachments must agree. + DILabel *Label = DLI.getLabel(); + DILocation *Loc = DLI.getDebugLoc(); + Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", + &DLI, BB, F); + + DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); + DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); + if (!LabelSP || !LocSP) + return; + + AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + + " label and !dbg attachment", + &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, + Loc->getScope()->getSubprogram()); +} + +void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { + DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); + DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); + + // We don't know whether this intrinsic verified correctly. + if (!V || !E || !E->isValid()) + return; + + // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. + auto Fragment = E->getFragmentInfo(); + if (!Fragment) + return; + + // The frontend helps out GDB by emitting the members of local anonymous + // unions as artificial local variables with shared storage. When SROA splits + // the storage for artificial local variables that are smaller than the entire + // union, the overhang piece will be outside of the allotted space for the + // variable and this check fails. + // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. + if (V->isArtificial()) + return; + + verifyFragmentExpression(*V, *Fragment, &I); +} + +template <typename ValueOrMetadata> +void Verifier::verifyFragmentExpression(const DIVariable &V, + DIExpression::FragmentInfo Fragment, + ValueOrMetadata *Desc) { + // If there's no size, the type is broken, but that should be checked + // elsewhere. + auto VarSize = V.getSizeInBits(); + if (!VarSize) + return; + + unsigned FragSize = Fragment.SizeInBits; + unsigned FragOffset = Fragment.OffsetInBits; + AssertDI(FragSize + FragOffset <= *VarSize, + "fragment is larger than or outside of variable", Desc, &V); + AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); +} + +void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { + // This function does not take the scope of noninlined function arguments into + // account. Don't run it if current function is nodebug, because it may + // contain inlined debug intrinsics. + if (!HasDebugInfo) + return; + + // For performance reasons only check non-inlined ones. + if (I.getDebugLoc()->getInlinedAt()) + return; + + DILocalVariable *Var = I.getVariable(); + AssertDI(Var, "dbg intrinsic without variable"); + + unsigned ArgNo = Var->getArg(); + if (!ArgNo) + return; + + // Verify there are no duplicate function argument debug info entries. + // These will cause hard-to-debug assertions in the DWARF backend. + if (DebugFnArgs.size() < ArgNo) + DebugFnArgs.resize(ArgNo, nullptr); + + auto *Prev = DebugFnArgs[ArgNo - 1]; + DebugFnArgs[ArgNo - 1] = Var; + AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, + Prev, Var); +} + +void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { + DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); + + // We don't know whether this intrinsic verified correctly. + if (!E || !E->isValid()) + return; + + AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I); +} + +void Verifier::verifyCompileUnits() { + // When more than one Module is imported into the same context, such as during + // an LTO build before linking the modules, ODR type uniquing may cause types + // to point to a different CU. This check does not make sense in this case. + if (M.getContext().isODRUniquingDebugTypes()) + return; + auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); + SmallPtrSet<const Metadata *, 2> Listed; + if (CUs) + Listed.insert(CUs->op_begin(), CUs->op_end()); + for (auto *CU : CUVisited) + AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); + CUVisited.clear(); +} + +void Verifier::verifyDeoptimizeCallingConvs() { + if (DeoptimizeDeclarations.empty()) + return; + + const Function *First = DeoptimizeDeclarations[0]; + for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { + Assert(First->getCallingConv() == F->getCallingConv(), + "All llvm.experimental.deoptimize declarations must have the same " + "calling convention", + First, F); + } +} + +void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { + bool HasSource = F.getSource().hasValue(); + if (!HasSourceDebugInfo.count(&U)) + HasSourceDebugInfo[&U] = HasSource; + AssertDI(HasSource == HasSourceDebugInfo[&U], + "inconsistent use of embedded source"); +} + +//===----------------------------------------------------------------------===// +// Implement the public interfaces to this file... +//===----------------------------------------------------------------------===// + +bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { + Function &F = const_cast<Function &>(f); + + // Don't use a raw_null_ostream. Printing IR is expensive. + Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); + + // Note that this function's return value is inverted from what you would + // expect of a function called "verify". + return !V.verify(F); +} + +bool llvm::verifyModule(const Module &M, raw_ostream *OS, + bool *BrokenDebugInfo) { + // Don't use a raw_null_ostream. Printing IR is expensive. + Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); + + bool Broken = false; + for (const Function &F : M) + Broken |= !V.verify(F); + + Broken |= !V.verify(); + if (BrokenDebugInfo) + *BrokenDebugInfo = V.hasBrokenDebugInfo(); + // Note that this function's return value is inverted from what you would + // expect of a function called "verify". + return Broken; +} + +namespace { + +struct VerifierLegacyPass : public FunctionPass { + static char ID; + + std::unique_ptr<Verifier> V; + bool FatalErrors = true; + + VerifierLegacyPass() : FunctionPass(ID) { + initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); + } + explicit VerifierLegacyPass(bool FatalErrors) + : FunctionPass(ID), + FatalErrors(FatalErrors) { + initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); + } + + bool doInitialization(Module &M) override { + V = std::make_unique<Verifier>( + &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); + return false; + } + + bool runOnFunction(Function &F) override { + if (!V->verify(F) && FatalErrors) { + errs() << "in function " << F.getName() << '\n'; + report_fatal_error("Broken function found, compilation aborted!"); + } + return false; + } + + bool doFinalization(Module &M) override { + bool HasErrors = false; + for (Function &F : M) + if (F.isDeclaration()) + HasErrors |= !V->verify(F); + + HasErrors |= !V->verify(); + if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) + report_fatal_error("Broken module found, compilation aborted!"); + return false; + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesAll(); + } +}; + +} // end anonymous namespace + +/// Helper to issue failure from the TBAA verification +template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { + if (Diagnostic) + return Diagnostic->CheckFailed(Args...); +} + +#define AssertTBAA(C, ...) \ + do { \ + if (!(C)) { \ + CheckFailed(__VA_ARGS__); \ + return false; \ + } \ + } while (false) + +/// Verify that \p BaseNode can be used as the "base type" in the struct-path +/// TBAA scheme. This means \p BaseNode is either a scalar node, or a +/// struct-type node describing an aggregate data structure (like a struct). +TBAAVerifier::TBAABaseNodeSummary +TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, + bool IsNewFormat) { + if (BaseNode->getNumOperands() < 2) { + CheckFailed("Base nodes must have at least two operands", &I, BaseNode); + return {true, ~0u}; + } + + auto Itr = TBAABaseNodes.find(BaseNode); + if (Itr != TBAABaseNodes.end()) + return Itr->second; + + auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); + auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); + (void)InsertResult; + assert(InsertResult.second && "We just checked!"); + return Result; +} + +TBAAVerifier::TBAABaseNodeSummary +TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, + bool IsNewFormat) { + const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; + + if (BaseNode->getNumOperands() == 2) { + // Scalar nodes can only be accessed at offset 0. + return isValidScalarTBAANode(BaseNode) + ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) + : InvalidNode; + } + + if (IsNewFormat) { + if (BaseNode->getNumOperands() % 3 != 0) { + CheckFailed("Access tag nodes must have the number of operands that is a " + "multiple of 3!", BaseNode); + return InvalidNode; + } + } else { + if (BaseNode->getNumOperands() % 2 != 1) { + CheckFailed("Struct tag nodes must have an odd number of operands!", + BaseNode); + return InvalidNode; + } + } + + // Check the type size field. + if (IsNewFormat) { + auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( + BaseNode->getOperand(1)); + if (!TypeSizeNode) { + CheckFailed("Type size nodes must be constants!", &I, BaseNode); + return InvalidNode; + } + } + + // Check the type name field. In the new format it can be anything. + if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { + CheckFailed("Struct tag nodes have a string as their first operand", + BaseNode); + return InvalidNode; + } + + bool Failed = false; + + Optional<APInt> PrevOffset; + unsigned BitWidth = ~0u; + + // We've already checked that BaseNode is not a degenerate root node with one + // operand in \c verifyTBAABaseNode, so this loop should run at least once. + unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; + unsigned NumOpsPerField = IsNewFormat ? 3 : 2; + for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); + Idx += NumOpsPerField) { + const MDOperand &FieldTy = BaseNode->getOperand(Idx); + const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); + if (!isa<MDNode>(FieldTy)) { + CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); + Failed = true; + continue; + } + + auto *OffsetEntryCI = + mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); + if (!OffsetEntryCI) { + CheckFailed("Offset entries must be constants!", &I, BaseNode); + Failed = true; + continue; + } + + if (BitWidth == ~0u) + BitWidth = OffsetEntryCI->getBitWidth(); + + if (OffsetEntryCI->getBitWidth() != BitWidth) { + CheckFailed( + "Bitwidth between the offsets and struct type entries must match", &I, + BaseNode); + Failed = true; + continue; + } + + // NB! As far as I can tell, we generate a non-strictly increasing offset + // sequence only from structs that have zero size bit fields. When + // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we + // pick the field lexically the latest in struct type metadata node. This + // mirrors the actual behavior of the alias analysis implementation. + bool IsAscending = + !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); + + if (!IsAscending) { + CheckFailed("Offsets must be increasing!", &I, BaseNode); + Failed = true; + } + + PrevOffset = OffsetEntryCI->getValue(); + + if (IsNewFormat) { + auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( + BaseNode->getOperand(Idx + 2)); + if (!MemberSizeNode) { + CheckFailed("Member size entries must be constants!", &I, BaseNode); + Failed = true; + continue; + } + } + } + + return Failed ? InvalidNode + : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); +} + +static bool IsRootTBAANode(const MDNode *MD) { + return MD->getNumOperands() < 2; +} + +static bool IsScalarTBAANodeImpl(const MDNode *MD, + SmallPtrSetImpl<const MDNode *> &Visited) { + if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) + return false; + + if (!isa<MDString>(MD->getOperand(0))) + return false; + + if (MD->getNumOperands() == 3) { + auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); + if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) + return false; + } + + auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); + return Parent && Visited.insert(Parent).second && + (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); +} + +bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { + auto ResultIt = TBAAScalarNodes.find(MD); + if (ResultIt != TBAAScalarNodes.end()) + return ResultIt->second; + + SmallPtrSet<const MDNode *, 4> Visited; + bool Result = IsScalarTBAANodeImpl(MD, Visited); + auto InsertResult = TBAAScalarNodes.insert({MD, Result}); + (void)InsertResult; + assert(InsertResult.second && "Just checked!"); + + return Result; +} + +/// Returns the field node at the offset \p Offset in \p BaseNode. Update \p +/// Offset in place to be the offset within the field node returned. +/// +/// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. +MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, + const MDNode *BaseNode, + APInt &Offset, + bool IsNewFormat) { + assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); + + // Scalar nodes have only one possible "field" -- their parent in the access + // hierarchy. Offset must be zero at this point, but our caller is supposed + // to Assert that. + if (BaseNode->getNumOperands() == 2) + return cast<MDNode>(BaseNode->getOperand(1)); + + unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; + unsigned NumOpsPerField = IsNewFormat ? 3 : 2; + for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); + Idx += NumOpsPerField) { + auto *OffsetEntryCI = + mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); + if (OffsetEntryCI->getValue().ugt(Offset)) { + if (Idx == FirstFieldOpNo) { + CheckFailed("Could not find TBAA parent in struct type node", &I, + BaseNode, &Offset); + return nullptr; + } + + unsigned PrevIdx = Idx - NumOpsPerField; + auto *PrevOffsetEntryCI = + mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); + Offset -= PrevOffsetEntryCI->getValue(); + return cast<MDNode>(BaseNode->getOperand(PrevIdx)); + } + } + + unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; + auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( + BaseNode->getOperand(LastIdx + 1)); + Offset -= LastOffsetEntryCI->getValue(); + return cast<MDNode>(BaseNode->getOperand(LastIdx)); +} + +static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { + if (!Type || Type->getNumOperands() < 3) + return false; + + // In the new format type nodes shall have a reference to the parent type as + // its first operand. + MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0)); + if (!Parent) + return false; + + return true; +} + +bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { + AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || + isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || + isa<AtomicCmpXchgInst>(I), + "This instruction shall not have a TBAA access tag!", &I); + + bool IsStructPathTBAA = + isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; + + AssertTBAA( + IsStructPathTBAA, + "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); + + MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); + MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); + + bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); + + if (IsNewFormat) { + AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, + "Access tag metadata must have either 4 or 5 operands", &I, MD); + } else { + AssertTBAA(MD->getNumOperands() < 5, + "Struct tag metadata must have either 3 or 4 operands", &I, MD); + } + + // Check the access size field. + if (IsNewFormat) { + auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( + MD->getOperand(3)); + AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); + } + + // Check the immutability flag. + unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; + if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { + auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( + MD->getOperand(ImmutabilityFlagOpNo)); + AssertTBAA(IsImmutableCI, + "Immutability tag on struct tag metadata must be a constant", + &I, MD); + AssertTBAA( + IsImmutableCI->isZero() || IsImmutableCI->isOne(), + "Immutability part of the struct tag metadata must be either 0 or 1", + &I, MD); + } + + AssertTBAA(BaseNode && AccessType, + "Malformed struct tag metadata: base and access-type " + "should be non-null and point to Metadata nodes", + &I, MD, BaseNode, AccessType); + + if (!IsNewFormat) { + AssertTBAA(isValidScalarTBAANode(AccessType), + "Access type node must be a valid scalar type", &I, MD, + AccessType); + } + + auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); + AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); + + APInt Offset = OffsetCI->getValue(); + bool SeenAccessTypeInPath = false; + + SmallPtrSet<MDNode *, 4> StructPath; + + for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); + BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, + IsNewFormat)) { + if (!StructPath.insert(BaseNode).second) { + CheckFailed("Cycle detected in struct path", &I, MD); + return false; + } + + bool Invalid; + unsigned BaseNodeBitWidth; + std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, + IsNewFormat); + + // If the base node is invalid in itself, then we've already printed all the + // errors we wanted to print. + if (Invalid) + return false; + + SeenAccessTypeInPath |= BaseNode == AccessType; + + if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) + AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", + &I, MD, &Offset); + + AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || + (BaseNodeBitWidth == 0 && Offset == 0) || + (IsNewFormat && BaseNodeBitWidth == ~0u), + "Access bit-width not the same as description bit-width", &I, MD, + BaseNodeBitWidth, Offset.getBitWidth()); + + if (IsNewFormat && SeenAccessTypeInPath) + break; + } + + AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", + &I, MD); + return true; +} + +char VerifierLegacyPass::ID = 0; +INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) + +FunctionPass *llvm::createVerifierPass(bool FatalErrors) { + return new VerifierLegacyPass(FatalErrors); +} + +AnalysisKey VerifierAnalysis::Key; +VerifierAnalysis::Result VerifierAnalysis::run(Module &M, + ModuleAnalysisManager &) { + Result Res; + Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); + return Res; +} + +VerifierAnalysis::Result VerifierAnalysis::run(Function &F, + FunctionAnalysisManager &) { + return { llvm::verifyFunction(F, &dbgs()), false }; +} + +PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { + auto Res = AM.getResult<VerifierAnalysis>(M); + if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) + report_fatal_error("Broken module found, compilation aborted!"); + + return PreservedAnalyses::all(); +} + +PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { + auto res = AM.getResult<VerifierAnalysis>(F); + if (res.IRBroken && FatalErrors) + report_fatal_error("Broken function found, compilation aborted!"); + + return PreservedAnalyses::all(); +} |