diff options
Diffstat (limited to 'llvm/lib/IR/Verifier.cpp')
| -rw-r--r-- | llvm/lib/IR/Verifier.cpp | 5561 | 
1 files changed, 5561 insertions, 0 deletions
diff --git a/llvm/lib/IR/Verifier.cpp b/llvm/lib/IR/Verifier.cpp new file mode 100644 index 000000000000..b17fc433ed74 --- /dev/null +++ b/llvm/lib/IR/Verifier.cpp @@ -0,0 +1,5561 @@ +//===-- Verifier.cpp - Implement the Module Verifier -----------------------==// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines the function verifier interface, that can be used for some +// sanity checking of input to the system. +// +// Note that this does not provide full `Java style' security and verifications, +// instead it just tries to ensure that code is well-formed. +// +//  * Both of a binary operator's parameters are of the same type +//  * Verify that the indices of mem access instructions match other operands +//  * Verify that arithmetic and other things are only performed on first-class +//    types.  Verify that shifts & logicals only happen on integrals f.e. +//  * All of the constants in a switch statement are of the correct type +//  * The code is in valid SSA form +//  * It should be illegal to put a label into any other type (like a structure) +//    or to return one. [except constant arrays!] +//  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad +//  * PHI nodes must have an entry for each predecessor, with no extras. +//  * PHI nodes must be the first thing in a basic block, all grouped together +//  * PHI nodes must have at least one entry +//  * All basic blocks should only end with terminator insts, not contain them +//  * The entry node to a function must not have predecessors +//  * All Instructions must be embedded into a basic block +//  * Functions cannot take a void-typed parameter +//  * Verify that a function's argument list agrees with it's declared type. +//  * It is illegal to specify a name for a void value. +//  * It is illegal to have a internal global value with no initializer +//  * It is illegal to have a ret instruction that returns a value that does not +//    agree with the function return value type. +//  * Function call argument types match the function prototype +//  * A landing pad is defined by a landingpad instruction, and can be jumped to +//    only by the unwind edge of an invoke instruction. +//  * A landingpad instruction must be the first non-PHI instruction in the +//    block. +//  * Landingpad instructions must be in a function with a personality function. +//  * All other things that are tested by asserts spread about the code... +// +//===----------------------------------------------------------------------===// + +#include "llvm/IR/Verifier.h" +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/MapVector.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/StringMap.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/Twine.h" +#include "llvm/ADT/ilist.h" +#include "llvm/BinaryFormat/Dwarf.h" +#include "llvm/IR/Argument.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/Comdat.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/ConstantRange.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfo.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/InstVisitor.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/ModuleSlotTracker.h" +#include "llvm/IR/PassManager.h" +#include "llvm/IR/Statepoint.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Use.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/Pass.h" +#include "llvm/Support/AtomicOrdering.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <memory> +#include <string> +#include <utility> + +using namespace llvm; + +namespace llvm { + +struct VerifierSupport { +  raw_ostream *OS; +  const Module &M; +  ModuleSlotTracker MST; +  Triple TT; +  const DataLayout &DL; +  LLVMContext &Context; + +  /// Track the brokenness of the module while recursively visiting. +  bool Broken = false; +  /// Broken debug info can be "recovered" from by stripping the debug info. +  bool BrokenDebugInfo = false; +  /// Whether to treat broken debug info as an error. +  bool TreatBrokenDebugInfoAsError = true; + +  explicit VerifierSupport(raw_ostream *OS, const Module &M) +      : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), +        Context(M.getContext()) {} + +private: +  void Write(const Module *M) { +    *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; +  } + +  void Write(const Value *V) { +    if (V) +      Write(*V); +  } + +  void Write(const Value &V) { +    if (isa<Instruction>(V)) { +      V.print(*OS, MST); +      *OS << '\n'; +    } else { +      V.printAsOperand(*OS, true, MST); +      *OS << '\n'; +    } +  } + +  void Write(const Metadata *MD) { +    if (!MD) +      return; +    MD->print(*OS, MST, &M); +    *OS << '\n'; +  } + +  template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { +    Write(MD.get()); +  } + +  void Write(const NamedMDNode *NMD) { +    if (!NMD) +      return; +    NMD->print(*OS, MST); +    *OS << '\n'; +  } + +  void Write(Type *T) { +    if (!T) +      return; +    *OS << ' ' << *T; +  } + +  void Write(const Comdat *C) { +    if (!C) +      return; +    *OS << *C; +  } + +  void Write(const APInt *AI) { +    if (!AI) +      return; +    *OS << *AI << '\n'; +  } + +  void Write(const unsigned i) { *OS << i << '\n'; } + +  template <typename T> void Write(ArrayRef<T> Vs) { +    for (const T &V : Vs) +      Write(V); +  } + +  template <typename T1, typename... Ts> +  void WriteTs(const T1 &V1, const Ts &... Vs) { +    Write(V1); +    WriteTs(Vs...); +  } + +  template <typename... Ts> void WriteTs() {} + +public: +  /// A check failed, so printout out the condition and the message. +  /// +  /// This provides a nice place to put a breakpoint if you want to see why +  /// something is not correct. +  void CheckFailed(const Twine &Message) { +    if (OS) +      *OS << Message << '\n'; +    Broken = true; +  } + +  /// A check failed (with values to print). +  /// +  /// This calls the Message-only version so that the above is easier to set a +  /// breakpoint on. +  template <typename T1, typename... Ts> +  void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { +    CheckFailed(Message); +    if (OS) +      WriteTs(V1, Vs...); +  } + +  /// A debug info check failed. +  void DebugInfoCheckFailed(const Twine &Message) { +    if (OS) +      *OS << Message << '\n'; +    Broken |= TreatBrokenDebugInfoAsError; +    BrokenDebugInfo = true; +  } + +  /// A debug info check failed (with values to print). +  template <typename T1, typename... Ts> +  void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, +                            const Ts &... Vs) { +    DebugInfoCheckFailed(Message); +    if (OS) +      WriteTs(V1, Vs...); +  } +}; + +} // namespace llvm + +namespace { + +class Verifier : public InstVisitor<Verifier>, VerifierSupport { +  friend class InstVisitor<Verifier>; + +  DominatorTree DT; + +  /// When verifying a basic block, keep track of all of the +  /// instructions we have seen so far. +  /// +  /// This allows us to do efficient dominance checks for the case when an +  /// instruction has an operand that is an instruction in the same block. +  SmallPtrSet<Instruction *, 16> InstsInThisBlock; + +  /// Keep track of the metadata nodes that have been checked already. +  SmallPtrSet<const Metadata *, 32> MDNodes; + +  /// Keep track which DISubprogram is attached to which function. +  DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; + +  /// Track all DICompileUnits visited. +  SmallPtrSet<const Metadata *, 2> CUVisited; + +  /// The result type for a landingpad. +  Type *LandingPadResultTy; + +  /// Whether we've seen a call to @llvm.localescape in this function +  /// already. +  bool SawFrameEscape; + +  /// Whether the current function has a DISubprogram attached to it. +  bool HasDebugInfo = false; + +  /// Whether source was present on the first DIFile encountered in each CU. +  DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; + +  /// Stores the count of how many objects were passed to llvm.localescape for a +  /// given function and the largest index passed to llvm.localrecover. +  DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; + +  // Maps catchswitches and cleanuppads that unwind to siblings to the +  // terminators that indicate the unwind, used to detect cycles therein. +  MapVector<Instruction *, Instruction *> SiblingFuncletInfo; + +  /// Cache of constants visited in search of ConstantExprs. +  SmallPtrSet<const Constant *, 32> ConstantExprVisited; + +  /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. +  SmallVector<const Function *, 4> DeoptimizeDeclarations; + +  // Verify that this GlobalValue is only used in this module. +  // This map is used to avoid visiting uses twice. We can arrive at a user +  // twice, if they have multiple operands. In particular for very large +  // constant expressions, we can arrive at a particular user many times. +  SmallPtrSet<const Value *, 32> GlobalValueVisited; + +  // Keeps track of duplicate function argument debug info. +  SmallVector<const DILocalVariable *, 16> DebugFnArgs; + +  TBAAVerifier TBAAVerifyHelper; + +  void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); + +public: +  explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, +                    const Module &M) +      : VerifierSupport(OS, M), LandingPadResultTy(nullptr), +        SawFrameEscape(false), TBAAVerifyHelper(this) { +    TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; +  } + +  bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } + +  bool verify(const Function &F) { +    assert(F.getParent() == &M && +           "An instance of this class only works with a specific module!"); + +    // First ensure the function is well-enough formed to compute dominance +    // information, and directly compute a dominance tree. We don't rely on the +    // pass manager to provide this as it isolates us from a potentially +    // out-of-date dominator tree and makes it significantly more complex to run +    // this code outside of a pass manager. +    // FIXME: It's really gross that we have to cast away constness here. +    if (!F.empty()) +      DT.recalculate(const_cast<Function &>(F)); + +    for (const BasicBlock &BB : F) { +      if (!BB.empty() && BB.back().isTerminator()) +        continue; + +      if (OS) { +        *OS << "Basic Block in function '" << F.getName() +            << "' does not have terminator!\n"; +        BB.printAsOperand(*OS, true, MST); +        *OS << "\n"; +      } +      return false; +    } + +    Broken = false; +    // FIXME: We strip const here because the inst visitor strips const. +    visit(const_cast<Function &>(F)); +    verifySiblingFuncletUnwinds(); +    InstsInThisBlock.clear(); +    DebugFnArgs.clear(); +    LandingPadResultTy = nullptr; +    SawFrameEscape = false; +    SiblingFuncletInfo.clear(); + +    return !Broken; +  } + +  /// Verify the module that this instance of \c Verifier was initialized with. +  bool verify() { +    Broken = false; + +    // Collect all declarations of the llvm.experimental.deoptimize intrinsic. +    for (const Function &F : M) +      if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) +        DeoptimizeDeclarations.push_back(&F); + +    // Now that we've visited every function, verify that we never asked to +    // recover a frame index that wasn't escaped. +    verifyFrameRecoverIndices(); +    for (const GlobalVariable &GV : M.globals()) +      visitGlobalVariable(GV); + +    for (const GlobalAlias &GA : M.aliases()) +      visitGlobalAlias(GA); + +    for (const NamedMDNode &NMD : M.named_metadata()) +      visitNamedMDNode(NMD); + +    for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) +      visitComdat(SMEC.getValue()); + +    visitModuleFlags(M); +    visitModuleIdents(M); +    visitModuleCommandLines(M); + +    verifyCompileUnits(); + +    verifyDeoptimizeCallingConvs(); +    DISubprogramAttachments.clear(); +    return !Broken; +  } + +private: +  // Verification methods... +  void visitGlobalValue(const GlobalValue &GV); +  void visitGlobalVariable(const GlobalVariable &GV); +  void visitGlobalAlias(const GlobalAlias &GA); +  void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); +  void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, +                           const GlobalAlias &A, const Constant &C); +  void visitNamedMDNode(const NamedMDNode &NMD); +  void visitMDNode(const MDNode &MD); +  void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); +  void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); +  void visitComdat(const Comdat &C); +  void visitModuleIdents(const Module &M); +  void visitModuleCommandLines(const Module &M); +  void visitModuleFlags(const Module &M); +  void visitModuleFlag(const MDNode *Op, +                       DenseMap<const MDString *, const MDNode *> &SeenIDs, +                       SmallVectorImpl<const MDNode *> &Requirements); +  void visitModuleFlagCGProfileEntry(const MDOperand &MDO); +  void visitFunction(const Function &F); +  void visitBasicBlock(BasicBlock &BB); +  void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); +  void visitDereferenceableMetadata(Instruction &I, MDNode *MD); +  void visitProfMetadata(Instruction &I, MDNode *MD); + +  template <class Ty> bool isValidMetadataArray(const MDTuple &N); +#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); +#include "llvm/IR/Metadata.def" +  void visitDIScope(const DIScope &N); +  void visitDIVariable(const DIVariable &N); +  void visitDILexicalBlockBase(const DILexicalBlockBase &N); +  void visitDITemplateParameter(const DITemplateParameter &N); + +  void visitTemplateParams(const MDNode &N, const Metadata &RawParams); + +  // InstVisitor overrides... +  using InstVisitor<Verifier>::visit; +  void visit(Instruction &I); + +  void visitTruncInst(TruncInst &I); +  void visitZExtInst(ZExtInst &I); +  void visitSExtInst(SExtInst &I); +  void visitFPTruncInst(FPTruncInst &I); +  void visitFPExtInst(FPExtInst &I); +  void visitFPToUIInst(FPToUIInst &I); +  void visitFPToSIInst(FPToSIInst &I); +  void visitUIToFPInst(UIToFPInst &I); +  void visitSIToFPInst(SIToFPInst &I); +  void visitIntToPtrInst(IntToPtrInst &I); +  void visitPtrToIntInst(PtrToIntInst &I); +  void visitBitCastInst(BitCastInst &I); +  void visitAddrSpaceCastInst(AddrSpaceCastInst &I); +  void visitPHINode(PHINode &PN); +  void visitCallBase(CallBase &Call); +  void visitUnaryOperator(UnaryOperator &U); +  void visitBinaryOperator(BinaryOperator &B); +  void visitICmpInst(ICmpInst &IC); +  void visitFCmpInst(FCmpInst &FC); +  void visitExtractElementInst(ExtractElementInst &EI); +  void visitInsertElementInst(InsertElementInst &EI); +  void visitShuffleVectorInst(ShuffleVectorInst &EI); +  void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } +  void visitCallInst(CallInst &CI); +  void visitInvokeInst(InvokeInst &II); +  void visitGetElementPtrInst(GetElementPtrInst &GEP); +  void visitLoadInst(LoadInst &LI); +  void visitStoreInst(StoreInst &SI); +  void verifyDominatesUse(Instruction &I, unsigned i); +  void visitInstruction(Instruction &I); +  void visitTerminator(Instruction &I); +  void visitBranchInst(BranchInst &BI); +  void visitReturnInst(ReturnInst &RI); +  void visitSwitchInst(SwitchInst &SI); +  void visitIndirectBrInst(IndirectBrInst &BI); +  void visitCallBrInst(CallBrInst &CBI); +  void visitSelectInst(SelectInst &SI); +  void visitUserOp1(Instruction &I); +  void visitUserOp2(Instruction &I) { visitUserOp1(I); } +  void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); +  void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); +  void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); +  void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); +  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); +  void visitAtomicRMWInst(AtomicRMWInst &RMWI); +  void visitFenceInst(FenceInst &FI); +  void visitAllocaInst(AllocaInst &AI); +  void visitExtractValueInst(ExtractValueInst &EVI); +  void visitInsertValueInst(InsertValueInst &IVI); +  void visitEHPadPredecessors(Instruction &I); +  void visitLandingPadInst(LandingPadInst &LPI); +  void visitResumeInst(ResumeInst &RI); +  void visitCatchPadInst(CatchPadInst &CPI); +  void visitCatchReturnInst(CatchReturnInst &CatchReturn); +  void visitCleanupPadInst(CleanupPadInst &CPI); +  void visitFuncletPadInst(FuncletPadInst &FPI); +  void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); +  void visitCleanupReturnInst(CleanupReturnInst &CRI); + +  void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); +  void verifySwiftErrorValue(const Value *SwiftErrorVal); +  void verifyMustTailCall(CallInst &CI); +  bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, +                        unsigned ArgNo, std::string &Suffix); +  bool verifyAttributeCount(AttributeList Attrs, unsigned Params); +  void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, +                            const Value *V); +  void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); +  void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, +                           const Value *V, bool IsIntrinsic); +  void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); + +  void visitConstantExprsRecursively(const Constant *EntryC); +  void visitConstantExpr(const ConstantExpr *CE); +  void verifyStatepoint(const CallBase &Call); +  void verifyFrameRecoverIndices(); +  void verifySiblingFuncletUnwinds(); + +  void verifyFragmentExpression(const DbgVariableIntrinsic &I); +  template <typename ValueOrMetadata> +  void verifyFragmentExpression(const DIVariable &V, +                                DIExpression::FragmentInfo Fragment, +                                ValueOrMetadata *Desc); +  void verifyFnArgs(const DbgVariableIntrinsic &I); +  void verifyNotEntryValue(const DbgVariableIntrinsic &I); + +  /// Module-level debug info verification... +  void verifyCompileUnits(); + +  /// Module-level verification that all @llvm.experimental.deoptimize +  /// declarations share the same calling convention. +  void verifyDeoptimizeCallingConvs(); + +  /// Verify all-or-nothing property of DIFile source attribute within a CU. +  void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); +}; + +} // end anonymous namespace + +/// We know that cond should be true, if not print an error message. +#define Assert(C, ...) \ +  do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) + +/// We know that a debug info condition should be true, if not print +/// an error message. +#define AssertDI(C, ...) \ +  do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) + +void Verifier::visit(Instruction &I) { +  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) +    Assert(I.getOperand(i) != nullptr, "Operand is null", &I); +  InstVisitor<Verifier>::visit(I); +} + +// Helper to recursively iterate over indirect users. By +// returning false, the callback can ask to stop recursing +// further. +static void forEachUser(const Value *User, +                        SmallPtrSet<const Value *, 32> &Visited, +                        llvm::function_ref<bool(const Value *)> Callback) { +  if (!Visited.insert(User).second) +    return; +  for (const Value *TheNextUser : User->materialized_users()) +    if (Callback(TheNextUser)) +      forEachUser(TheNextUser, Visited, Callback); +} + +void Verifier::visitGlobalValue(const GlobalValue &GV) { +  Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), +         "Global is external, but doesn't have external or weak linkage!", &GV); + +  Assert(GV.getAlignment() <= Value::MaximumAlignment, +         "huge alignment values are unsupported", &GV); +  Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), +         "Only global variables can have appending linkage!", &GV); + +  if (GV.hasAppendingLinkage()) { +    const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); +    Assert(GVar && GVar->getValueType()->isArrayTy(), +           "Only global arrays can have appending linkage!", GVar); +  } + +  if (GV.isDeclarationForLinker()) +    Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); + +  if (GV.hasDLLImportStorageClass()) { +    Assert(!GV.isDSOLocal(), +           "GlobalValue with DLLImport Storage is dso_local!", &GV); + +    Assert((GV.isDeclaration() && GV.hasExternalLinkage()) || +               GV.hasAvailableExternallyLinkage(), +           "Global is marked as dllimport, but not external", &GV); +  } + +  if (GV.hasLocalLinkage()) +    Assert(GV.isDSOLocal(), +           "GlobalValue with private or internal linkage must be dso_local!", +           &GV); + +  if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage()) +    Assert(GV.isDSOLocal(), +           "GlobalValue with non default visibility must be dso_local!", &GV); + +  forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { +    if (const Instruction *I = dyn_cast<Instruction>(V)) { +      if (!I->getParent() || !I->getParent()->getParent()) +        CheckFailed("Global is referenced by parentless instruction!", &GV, &M, +                    I); +      else if (I->getParent()->getParent()->getParent() != &M) +        CheckFailed("Global is referenced in a different module!", &GV, &M, I, +                    I->getParent()->getParent(), +                    I->getParent()->getParent()->getParent()); +      return false; +    } else if (const Function *F = dyn_cast<Function>(V)) { +      if (F->getParent() != &M) +        CheckFailed("Global is used by function in a different module", &GV, &M, +                    F, F->getParent()); +      return false; +    } +    return true; +  }); +} + +void Verifier::visitGlobalVariable(const GlobalVariable &GV) { +  if (GV.hasInitializer()) { +    Assert(GV.getInitializer()->getType() == GV.getValueType(), +           "Global variable initializer type does not match global " +           "variable type!", +           &GV); +    // If the global has common linkage, it must have a zero initializer and +    // cannot be constant. +    if (GV.hasCommonLinkage()) { +      Assert(GV.getInitializer()->isNullValue(), +             "'common' global must have a zero initializer!", &GV); +      Assert(!GV.isConstant(), "'common' global may not be marked constant!", +             &GV); +      Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); +    } +  } + +  if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || +                       GV.getName() == "llvm.global_dtors")) { +    Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), +           "invalid linkage for intrinsic global variable", &GV); +    // Don't worry about emitting an error for it not being an array, +    // visitGlobalValue will complain on appending non-array. +    if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { +      StructType *STy = dyn_cast<StructType>(ATy->getElementType()); +      PointerType *FuncPtrTy = +          FunctionType::get(Type::getVoidTy(Context), false)-> +          getPointerTo(DL.getProgramAddressSpace()); +      Assert(STy && +                 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && +                 STy->getTypeAtIndex(0u)->isIntegerTy(32) && +                 STy->getTypeAtIndex(1) == FuncPtrTy, +             "wrong type for intrinsic global variable", &GV); +      Assert(STy->getNumElements() == 3, +             "the third field of the element type is mandatory, " +             "specify i8* null to migrate from the obsoleted 2-field form"); +      Type *ETy = STy->getTypeAtIndex(2); +      Assert(ETy->isPointerTy() && +                 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), +             "wrong type for intrinsic global variable", &GV); +    } +  } + +  if (GV.hasName() && (GV.getName() == "llvm.used" || +                       GV.getName() == "llvm.compiler.used")) { +    Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), +           "invalid linkage for intrinsic global variable", &GV); +    Type *GVType = GV.getValueType(); +    if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { +      PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); +      Assert(PTy, "wrong type for intrinsic global variable", &GV); +      if (GV.hasInitializer()) { +        const Constant *Init = GV.getInitializer(); +        const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); +        Assert(InitArray, "wrong initalizer for intrinsic global variable", +               Init); +        for (Value *Op : InitArray->operands()) { +          Value *V = Op->stripPointerCasts(); +          Assert(isa<GlobalVariable>(V) || isa<Function>(V) || +                     isa<GlobalAlias>(V), +                 "invalid llvm.used member", V); +          Assert(V->hasName(), "members of llvm.used must be named", V); +        } +      } +    } +  } + +  // Visit any debug info attachments. +  SmallVector<MDNode *, 1> MDs; +  GV.getMetadata(LLVMContext::MD_dbg, MDs); +  for (auto *MD : MDs) { +    if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) +      visitDIGlobalVariableExpression(*GVE); +    else +      AssertDI(false, "!dbg attachment of global variable must be a " +                      "DIGlobalVariableExpression"); +  } + +  // Scalable vectors cannot be global variables, since we don't know +  // the runtime size. If the global is a struct or an array containing +  // scalable vectors, that will be caught by the isValidElementType methods +  // in StructType or ArrayType instead. +  if (auto *VTy = dyn_cast<VectorType>(GV.getValueType())) +    Assert(!VTy->isScalable(), "Globals cannot contain scalable vectors", &GV); + +  if (!GV.hasInitializer()) { +    visitGlobalValue(GV); +    return; +  } + +  // Walk any aggregate initializers looking for bitcasts between address spaces +  visitConstantExprsRecursively(GV.getInitializer()); + +  visitGlobalValue(GV); +} + +void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { +  SmallPtrSet<const GlobalAlias*, 4> Visited; +  Visited.insert(&GA); +  visitAliaseeSubExpr(Visited, GA, C); +} + +void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, +                                   const GlobalAlias &GA, const Constant &C) { +  if (const auto *GV = dyn_cast<GlobalValue>(&C)) { +    Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", +           &GA); + +    if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { +      Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); + +      Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", +             &GA); +    } else { +      // Only continue verifying subexpressions of GlobalAliases. +      // Do not recurse into global initializers. +      return; +    } +  } + +  if (const auto *CE = dyn_cast<ConstantExpr>(&C)) +    visitConstantExprsRecursively(CE); + +  for (const Use &U : C.operands()) { +    Value *V = &*U; +    if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) +      visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); +    else if (const auto *C2 = dyn_cast<Constant>(V)) +      visitAliaseeSubExpr(Visited, GA, *C2); +  } +} + +void Verifier::visitGlobalAlias(const GlobalAlias &GA) { +  Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), +         "Alias should have private, internal, linkonce, weak, linkonce_odr, " +         "weak_odr, or external linkage!", +         &GA); +  const Constant *Aliasee = GA.getAliasee(); +  Assert(Aliasee, "Aliasee cannot be NULL!", &GA); +  Assert(GA.getType() == Aliasee->getType(), +         "Alias and aliasee types should match!", &GA); + +  Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), +         "Aliasee should be either GlobalValue or ConstantExpr", &GA); + +  visitAliaseeSubExpr(GA, *Aliasee); + +  visitGlobalValue(GA); +} + +void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { +  // There used to be various other llvm.dbg.* nodes, but we don't support +  // upgrading them and we want to reserve the namespace for future uses. +  if (NMD.getName().startswith("llvm.dbg.")) +    AssertDI(NMD.getName() == "llvm.dbg.cu", +             "unrecognized named metadata node in the llvm.dbg namespace", +             &NMD); +  for (const MDNode *MD : NMD.operands()) { +    if (NMD.getName() == "llvm.dbg.cu") +      AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); + +    if (!MD) +      continue; + +    visitMDNode(*MD); +  } +} + +void Verifier::visitMDNode(const MDNode &MD) { +  // Only visit each node once.  Metadata can be mutually recursive, so this +  // avoids infinite recursion here, as well as being an optimization. +  if (!MDNodes.insert(&MD).second) +    return; + +  switch (MD.getMetadataID()) { +  default: +    llvm_unreachable("Invalid MDNode subclass"); +  case Metadata::MDTupleKind: +    break; +#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \ +  case Metadata::CLASS##Kind:                                                  \ +    visit##CLASS(cast<CLASS>(MD));                                             \ +    break; +#include "llvm/IR/Metadata.def" +  } + +  for (const Metadata *Op : MD.operands()) { +    if (!Op) +      continue; +    Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", +           &MD, Op); +    if (auto *N = dyn_cast<MDNode>(Op)) { +      visitMDNode(*N); +      continue; +    } +    if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { +      visitValueAsMetadata(*V, nullptr); +      continue; +    } +  } + +  // Check these last, so we diagnose problems in operands first. +  Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); +  Assert(MD.isResolved(), "All nodes should be resolved!", &MD); +} + +void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { +  Assert(MD.getValue(), "Expected valid value", &MD); +  Assert(!MD.getValue()->getType()->isMetadataTy(), +         "Unexpected metadata round-trip through values", &MD, MD.getValue()); + +  auto *L = dyn_cast<LocalAsMetadata>(&MD); +  if (!L) +    return; + +  Assert(F, "function-local metadata used outside a function", L); + +  // If this was an instruction, bb, or argument, verify that it is in the +  // function that we expect. +  Function *ActualF = nullptr; +  if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { +    Assert(I->getParent(), "function-local metadata not in basic block", L, I); +    ActualF = I->getParent()->getParent(); +  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) +    ActualF = BB->getParent(); +  else if (Argument *A = dyn_cast<Argument>(L->getValue())) +    ActualF = A->getParent(); +  assert(ActualF && "Unimplemented function local metadata case!"); + +  Assert(ActualF == F, "function-local metadata used in wrong function", L); +} + +void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { +  Metadata *MD = MDV.getMetadata(); +  if (auto *N = dyn_cast<MDNode>(MD)) { +    visitMDNode(*N); +    return; +  } + +  // Only visit each node once.  Metadata can be mutually recursive, so this +  // avoids infinite recursion here, as well as being an optimization. +  if (!MDNodes.insert(MD).second) +    return; + +  if (auto *V = dyn_cast<ValueAsMetadata>(MD)) +    visitValueAsMetadata(*V, F); +} + +static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } +static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } +static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } + +void Verifier::visitDILocation(const DILocation &N) { +  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), +           "location requires a valid scope", &N, N.getRawScope()); +  if (auto *IA = N.getRawInlinedAt()) +    AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); +  if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) +    AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); +} + +void Verifier::visitGenericDINode(const GenericDINode &N) { +  AssertDI(N.getTag(), "invalid tag", &N); +} + +void Verifier::visitDIScope(const DIScope &N) { +  if (auto *F = N.getRawFile()) +    AssertDI(isa<DIFile>(F), "invalid file", &N, F); +} + +void Verifier::visitDISubrange(const DISubrange &N) { +  AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); +  auto Count = N.getCount(); +  AssertDI(Count, "Count must either be a signed constant or a DIVariable", +           &N); +  AssertDI(!Count.is<ConstantInt*>() || +               Count.get<ConstantInt*>()->getSExtValue() >= -1, +           "invalid subrange count", &N); +} + +void Verifier::visitDIEnumerator(const DIEnumerator &N) { +  AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); +} + +void Verifier::visitDIBasicType(const DIBasicType &N) { +  AssertDI(N.getTag() == dwarf::DW_TAG_base_type || +               N.getTag() == dwarf::DW_TAG_unspecified_type, +           "invalid tag", &N); +  AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , +            "has conflicting flags", &N); +} + +void Verifier::visitDIDerivedType(const DIDerivedType &N) { +  // Common scope checks. +  visitDIScope(N); + +  AssertDI(N.getTag() == dwarf::DW_TAG_typedef || +               N.getTag() == dwarf::DW_TAG_pointer_type || +               N.getTag() == dwarf::DW_TAG_ptr_to_member_type || +               N.getTag() == dwarf::DW_TAG_reference_type || +               N.getTag() == dwarf::DW_TAG_rvalue_reference_type || +               N.getTag() == dwarf::DW_TAG_const_type || +               N.getTag() == dwarf::DW_TAG_volatile_type || +               N.getTag() == dwarf::DW_TAG_restrict_type || +               N.getTag() == dwarf::DW_TAG_atomic_type || +               N.getTag() == dwarf::DW_TAG_member || +               N.getTag() == dwarf::DW_TAG_inheritance || +               N.getTag() == dwarf::DW_TAG_friend, +           "invalid tag", &N); +  if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { +    AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, +             N.getRawExtraData()); +  } + +  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); +  AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, +           N.getRawBaseType()); + +  if (N.getDWARFAddressSpace()) { +    AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || +                 N.getTag() == dwarf::DW_TAG_reference_type || +                 N.getTag() == dwarf::DW_TAG_rvalue_reference_type, +             "DWARF address space only applies to pointer or reference types", +             &N); +  } +} + +/// Detect mutually exclusive flags. +static bool hasConflictingReferenceFlags(unsigned Flags) { +  return ((Flags & DINode::FlagLValueReference) && +          (Flags & DINode::FlagRValueReference)) || +         ((Flags & DINode::FlagTypePassByValue) && +          (Flags & DINode::FlagTypePassByReference)); +} + +void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { +  auto *Params = dyn_cast<MDTuple>(&RawParams); +  AssertDI(Params, "invalid template params", &N, &RawParams); +  for (Metadata *Op : Params->operands()) { +    AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", +             &N, Params, Op); +  } +} + +void Verifier::visitDICompositeType(const DICompositeType &N) { +  // Common scope checks. +  visitDIScope(N); + +  AssertDI(N.getTag() == dwarf::DW_TAG_array_type || +               N.getTag() == dwarf::DW_TAG_structure_type || +               N.getTag() == dwarf::DW_TAG_union_type || +               N.getTag() == dwarf::DW_TAG_enumeration_type || +               N.getTag() == dwarf::DW_TAG_class_type || +               N.getTag() == dwarf::DW_TAG_variant_part, +           "invalid tag", &N); + +  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); +  AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, +           N.getRawBaseType()); + +  AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), +           "invalid composite elements", &N, N.getRawElements()); +  AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, +           N.getRawVTableHolder()); +  AssertDI(!hasConflictingReferenceFlags(N.getFlags()), +           "invalid reference flags", &N); +  unsigned DIBlockByRefStruct = 1 << 4; +  AssertDI((N.getFlags() & DIBlockByRefStruct) == 0, +           "DIBlockByRefStruct on DICompositeType is no longer supported", &N); + +  if (N.isVector()) { +    const DINodeArray Elements = N.getElements(); +    AssertDI(Elements.size() == 1 && +             Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, +             "invalid vector, expected one element of type subrange", &N); +  } + +  if (auto *Params = N.getRawTemplateParams()) +    visitTemplateParams(N, *Params); + +  if (N.getTag() == dwarf::DW_TAG_class_type || +      N.getTag() == dwarf::DW_TAG_union_type) { +    AssertDI(N.getFile() && !N.getFile()->getFilename().empty(), +             "class/union requires a filename", &N, N.getFile()); +  } + +  if (auto *D = N.getRawDiscriminator()) { +    AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, +             "discriminator can only appear on variant part"); +  } +} + +void Verifier::visitDISubroutineType(const DISubroutineType &N) { +  AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); +  if (auto *Types = N.getRawTypeArray()) { +    AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); +    for (Metadata *Ty : N.getTypeArray()->operands()) { +      AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); +    } +  } +  AssertDI(!hasConflictingReferenceFlags(N.getFlags()), +           "invalid reference flags", &N); +} + +void Verifier::visitDIFile(const DIFile &N) { +  AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); +  Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); +  if (Checksum) { +    AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, +             "invalid checksum kind", &N); +    size_t Size; +    switch (Checksum->Kind) { +    case DIFile::CSK_MD5: +      Size = 32; +      break; +    case DIFile::CSK_SHA1: +      Size = 40; +      break; +    } +    AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); +    AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, +             "invalid checksum", &N); +  } +} + +void Verifier::visitDICompileUnit(const DICompileUnit &N) { +  AssertDI(N.isDistinct(), "compile units must be distinct", &N); +  AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); + +  // Don't bother verifying the compilation directory or producer string +  // as those could be empty. +  AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, +           N.getRawFile()); +  AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, +           N.getFile()); + +  verifySourceDebugInfo(N, *N.getFile()); + +  AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), +           "invalid emission kind", &N); + +  if (auto *Array = N.getRawEnumTypes()) { +    AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); +    for (Metadata *Op : N.getEnumTypes()->operands()) { +      auto *Enum = dyn_cast_or_null<DICompositeType>(Op); +      AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, +               "invalid enum type", &N, N.getEnumTypes(), Op); +    } +  } +  if (auto *Array = N.getRawRetainedTypes()) { +    AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); +    for (Metadata *Op : N.getRetainedTypes()->operands()) { +      AssertDI(Op && (isa<DIType>(Op) || +                      (isa<DISubprogram>(Op) && +                       !cast<DISubprogram>(Op)->isDefinition())), +               "invalid retained type", &N, Op); +    } +  } +  if (auto *Array = N.getRawGlobalVariables()) { +    AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); +    for (Metadata *Op : N.getGlobalVariables()->operands()) { +      AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), +               "invalid global variable ref", &N, Op); +    } +  } +  if (auto *Array = N.getRawImportedEntities()) { +    AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); +    for (Metadata *Op : N.getImportedEntities()->operands()) { +      AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", +               &N, Op); +    } +  } +  if (auto *Array = N.getRawMacros()) { +    AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); +    for (Metadata *Op : N.getMacros()->operands()) { +      AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); +    } +  } +  CUVisited.insert(&N); +} + +void Verifier::visitDISubprogram(const DISubprogram &N) { +  AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); +  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); +  if (auto *F = N.getRawFile()) +    AssertDI(isa<DIFile>(F), "invalid file", &N, F); +  else +    AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); +  if (auto *T = N.getRawType()) +    AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); +  AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, +           N.getRawContainingType()); +  if (auto *Params = N.getRawTemplateParams()) +    visitTemplateParams(N, *Params); +  if (auto *S = N.getRawDeclaration()) +    AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), +             "invalid subprogram declaration", &N, S); +  if (auto *RawNode = N.getRawRetainedNodes()) { +    auto *Node = dyn_cast<MDTuple>(RawNode); +    AssertDI(Node, "invalid retained nodes list", &N, RawNode); +    for (Metadata *Op : Node->operands()) { +      AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), +               "invalid retained nodes, expected DILocalVariable or DILabel", +               &N, Node, Op); +    } +  } +  AssertDI(!hasConflictingReferenceFlags(N.getFlags()), +           "invalid reference flags", &N); + +  auto *Unit = N.getRawUnit(); +  if (N.isDefinition()) { +    // Subprogram definitions (not part of the type hierarchy). +    AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); +    AssertDI(Unit, "subprogram definitions must have a compile unit", &N); +    AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); +    if (N.getFile()) +      verifySourceDebugInfo(*N.getUnit(), *N.getFile()); +  } else { +    // Subprogram declarations (part of the type hierarchy). +    AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); +  } + +  if (auto *RawThrownTypes = N.getRawThrownTypes()) { +    auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); +    AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); +    for (Metadata *Op : ThrownTypes->operands()) +      AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, +               Op); +  } + +  if (N.areAllCallsDescribed()) +    AssertDI(N.isDefinition(), +             "DIFlagAllCallsDescribed must be attached to a definition"); +} + +void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { +  AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); +  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), +           "invalid local scope", &N, N.getRawScope()); +  if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) +    AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); +} + +void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { +  visitDILexicalBlockBase(N); + +  AssertDI(N.getLine() || !N.getColumn(), +           "cannot have column info without line info", &N); +} + +void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { +  visitDILexicalBlockBase(N); +} + +void Verifier::visitDICommonBlock(const DICommonBlock &N) { +  AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); +  if (auto *S = N.getRawScope()) +    AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); +  if (auto *S = N.getRawDecl()) +    AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); +} + +void Verifier::visitDINamespace(const DINamespace &N) { +  AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); +  if (auto *S = N.getRawScope()) +    AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); +} + +void Verifier::visitDIMacro(const DIMacro &N) { +  AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || +               N.getMacinfoType() == dwarf::DW_MACINFO_undef, +           "invalid macinfo type", &N); +  AssertDI(!N.getName().empty(), "anonymous macro", &N); +  if (!N.getValue().empty()) { +    assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); +  } +} + +void Verifier::visitDIMacroFile(const DIMacroFile &N) { +  AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, +           "invalid macinfo type", &N); +  if (auto *F = N.getRawFile()) +    AssertDI(isa<DIFile>(F), "invalid file", &N, F); + +  if (auto *Array = N.getRawElements()) { +    AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); +    for (Metadata *Op : N.getElements()->operands()) { +      AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); +    } +  } +} + +void Verifier::visitDIModule(const DIModule &N) { +  AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); +  AssertDI(!N.getName().empty(), "anonymous module", &N); +} + +void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { +  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); +} + +void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { +  visitDITemplateParameter(N); + +  AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", +           &N); +} + +void Verifier::visitDITemplateValueParameter( +    const DITemplateValueParameter &N) { +  visitDITemplateParameter(N); + +  AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || +               N.getTag() == dwarf::DW_TAG_GNU_template_template_param || +               N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, +           "invalid tag", &N); +} + +void Verifier::visitDIVariable(const DIVariable &N) { +  if (auto *S = N.getRawScope()) +    AssertDI(isa<DIScope>(S), "invalid scope", &N, S); +  if (auto *F = N.getRawFile()) +    AssertDI(isa<DIFile>(F), "invalid file", &N, F); +} + +void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { +  // Checks common to all variables. +  visitDIVariable(N); + +  AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); +  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); +  AssertDI(N.getType(), "missing global variable type", &N); +  if (auto *Member = N.getRawStaticDataMemberDeclaration()) { +    AssertDI(isa<DIDerivedType>(Member), +             "invalid static data member declaration", &N, Member); +  } +} + +void Verifier::visitDILocalVariable(const DILocalVariable &N) { +  // Checks common to all variables. +  visitDIVariable(N); + +  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); +  AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); +  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), +           "local variable requires a valid scope", &N, N.getRawScope()); +  if (auto Ty = N.getType()) +    AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); +} + +void Verifier::visitDILabel(const DILabel &N) { +  if (auto *S = N.getRawScope()) +    AssertDI(isa<DIScope>(S), "invalid scope", &N, S); +  if (auto *F = N.getRawFile()) +    AssertDI(isa<DIFile>(F), "invalid file", &N, F); + +  AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); +  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), +           "label requires a valid scope", &N, N.getRawScope()); +} + +void Verifier::visitDIExpression(const DIExpression &N) { +  AssertDI(N.isValid(), "invalid expression", &N); +} + +void Verifier::visitDIGlobalVariableExpression( +    const DIGlobalVariableExpression &GVE) { +  AssertDI(GVE.getVariable(), "missing variable"); +  if (auto *Var = GVE.getVariable()) +    visitDIGlobalVariable(*Var); +  if (auto *Expr = GVE.getExpression()) { +    visitDIExpression(*Expr); +    if (auto Fragment = Expr->getFragmentInfo()) +      verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); +  } +} + +void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { +  AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); +  if (auto *T = N.getRawType()) +    AssertDI(isType(T), "invalid type ref", &N, T); +  if (auto *F = N.getRawFile()) +    AssertDI(isa<DIFile>(F), "invalid file", &N, F); +} + +void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { +  AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || +               N.getTag() == dwarf::DW_TAG_imported_declaration, +           "invalid tag", &N); +  if (auto *S = N.getRawScope()) +    AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); +  AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, +           N.getRawEntity()); +} + +void Verifier::visitComdat(const Comdat &C) { +  // In COFF the Module is invalid if the GlobalValue has private linkage. +  // Entities with private linkage don't have entries in the symbol table. +  if (TT.isOSBinFormatCOFF()) +    if (const GlobalValue *GV = M.getNamedValue(C.getName())) +      Assert(!GV->hasPrivateLinkage(), +             "comdat global value has private linkage", GV); +} + +void Verifier::visitModuleIdents(const Module &M) { +  const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); +  if (!Idents) +    return; + +  // llvm.ident takes a list of metadata entry. Each entry has only one string. +  // Scan each llvm.ident entry and make sure that this requirement is met. +  for (const MDNode *N : Idents->operands()) { +    Assert(N->getNumOperands() == 1, +           "incorrect number of operands in llvm.ident metadata", N); +    Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), +           ("invalid value for llvm.ident metadata entry operand" +            "(the operand should be a string)"), +           N->getOperand(0)); +  } +} + +void Verifier::visitModuleCommandLines(const Module &M) { +  const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); +  if (!CommandLines) +    return; + +  // llvm.commandline takes a list of metadata entry. Each entry has only one +  // string. Scan each llvm.commandline entry and make sure that this +  // requirement is met. +  for (const MDNode *N : CommandLines->operands()) { +    Assert(N->getNumOperands() == 1, +           "incorrect number of operands in llvm.commandline metadata", N); +    Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), +           ("invalid value for llvm.commandline metadata entry operand" +            "(the operand should be a string)"), +           N->getOperand(0)); +  } +} + +void Verifier::visitModuleFlags(const Module &M) { +  const NamedMDNode *Flags = M.getModuleFlagsMetadata(); +  if (!Flags) return; + +  // Scan each flag, and track the flags and requirements. +  DenseMap<const MDString*, const MDNode*> SeenIDs; +  SmallVector<const MDNode*, 16> Requirements; +  for (const MDNode *MDN : Flags->operands()) +    visitModuleFlag(MDN, SeenIDs, Requirements); + +  // Validate that the requirements in the module are valid. +  for (const MDNode *Requirement : Requirements) { +    const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); +    const Metadata *ReqValue = Requirement->getOperand(1); + +    const MDNode *Op = SeenIDs.lookup(Flag); +    if (!Op) { +      CheckFailed("invalid requirement on flag, flag is not present in module", +                  Flag); +      continue; +    } + +    if (Op->getOperand(2) != ReqValue) { +      CheckFailed(("invalid requirement on flag, " +                   "flag does not have the required value"), +                  Flag); +      continue; +    } +  } +} + +void +Verifier::visitModuleFlag(const MDNode *Op, +                          DenseMap<const MDString *, const MDNode *> &SeenIDs, +                          SmallVectorImpl<const MDNode *> &Requirements) { +  // Each module flag should have three arguments, the merge behavior (a +  // constant int), the flag ID (an MDString), and the value. +  Assert(Op->getNumOperands() == 3, +         "incorrect number of operands in module flag", Op); +  Module::ModFlagBehavior MFB; +  if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { +    Assert( +        mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), +        "invalid behavior operand in module flag (expected constant integer)", +        Op->getOperand(0)); +    Assert(false, +           "invalid behavior operand in module flag (unexpected constant)", +           Op->getOperand(0)); +  } +  MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); +  Assert(ID, "invalid ID operand in module flag (expected metadata string)", +         Op->getOperand(1)); + +  // Sanity check the values for behaviors with additional requirements. +  switch (MFB) { +  case Module::Error: +  case Module::Warning: +  case Module::Override: +    // These behavior types accept any value. +    break; + +  case Module::Max: { +    Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), +           "invalid value for 'max' module flag (expected constant integer)", +           Op->getOperand(2)); +    break; +  } + +  case Module::Require: { +    // The value should itself be an MDNode with two operands, a flag ID (an +    // MDString), and a value. +    MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); +    Assert(Value && Value->getNumOperands() == 2, +           "invalid value for 'require' module flag (expected metadata pair)", +           Op->getOperand(2)); +    Assert(isa<MDString>(Value->getOperand(0)), +           ("invalid value for 'require' module flag " +            "(first value operand should be a string)"), +           Value->getOperand(0)); + +    // Append it to the list of requirements, to check once all module flags are +    // scanned. +    Requirements.push_back(Value); +    break; +  } + +  case Module::Append: +  case Module::AppendUnique: { +    // These behavior types require the operand be an MDNode. +    Assert(isa<MDNode>(Op->getOperand(2)), +           "invalid value for 'append'-type module flag " +           "(expected a metadata node)", +           Op->getOperand(2)); +    break; +  } +  } + +  // Unless this is a "requires" flag, check the ID is unique. +  if (MFB != Module::Require) { +    bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; +    Assert(Inserted, +           "module flag identifiers must be unique (or of 'require' type)", ID); +  } + +  if (ID->getString() == "wchar_size") { +    ConstantInt *Value +      = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); +    Assert(Value, "wchar_size metadata requires constant integer argument"); +  } + +  if (ID->getString() == "Linker Options") { +    // If the llvm.linker.options named metadata exists, we assume that the +    // bitcode reader has upgraded the module flag. Otherwise the flag might +    // have been created by a client directly. +    Assert(M.getNamedMetadata("llvm.linker.options"), +           "'Linker Options' named metadata no longer supported"); +  } + +  if (ID->getString() == "CG Profile") { +    for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) +      visitModuleFlagCGProfileEntry(MDO); +  } +} + +void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { +  auto CheckFunction = [&](const MDOperand &FuncMDO) { +    if (!FuncMDO) +      return; +    auto F = dyn_cast<ValueAsMetadata>(FuncMDO); +    Assert(F && isa<Function>(F->getValue()), "expected a Function or null", +           FuncMDO); +  }; +  auto Node = dyn_cast_or_null<MDNode>(MDO); +  Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); +  CheckFunction(Node->getOperand(0)); +  CheckFunction(Node->getOperand(1)); +  auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); +  Assert(Count && Count->getType()->isIntegerTy(), +         "expected an integer constant", Node->getOperand(2)); +} + +/// Return true if this attribute kind only applies to functions. +static bool isFuncOnlyAttr(Attribute::AttrKind Kind) { +  switch (Kind) { +  case Attribute::NoReturn: +  case Attribute::NoSync: +  case Attribute::WillReturn: +  case Attribute::NoCfCheck: +  case Attribute::NoUnwind: +  case Attribute::NoInline: +  case Attribute::NoFree: +  case Attribute::AlwaysInline: +  case Attribute::OptimizeForSize: +  case Attribute::StackProtect: +  case Attribute::StackProtectReq: +  case Attribute::StackProtectStrong: +  case Attribute::SafeStack: +  case Attribute::ShadowCallStack: +  case Attribute::NoRedZone: +  case Attribute::NoImplicitFloat: +  case Attribute::Naked: +  case Attribute::InlineHint: +  case Attribute::StackAlignment: +  case Attribute::UWTable: +  case Attribute::NonLazyBind: +  case Attribute::ReturnsTwice: +  case Attribute::SanitizeAddress: +  case Attribute::SanitizeHWAddress: +  case Attribute::SanitizeMemTag: +  case Attribute::SanitizeThread: +  case Attribute::SanitizeMemory: +  case Attribute::MinSize: +  case Attribute::NoDuplicate: +  case Attribute::Builtin: +  case Attribute::NoBuiltin: +  case Attribute::Cold: +  case Attribute::OptForFuzzing: +  case Attribute::OptimizeNone: +  case Attribute::JumpTable: +  case Attribute::Convergent: +  case Attribute::ArgMemOnly: +  case Attribute::NoRecurse: +  case Attribute::InaccessibleMemOnly: +  case Attribute::InaccessibleMemOrArgMemOnly: +  case Attribute::AllocSize: +  case Attribute::SpeculativeLoadHardening: +  case Attribute::Speculatable: +  case Attribute::StrictFP: +    return true; +  default: +    break; +  } +  return false; +} + +/// Return true if this is a function attribute that can also appear on +/// arguments. +static bool isFuncOrArgAttr(Attribute::AttrKind Kind) { +  return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly || +         Kind == Attribute::ReadNone; +} + +void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, +                                    const Value *V) { +  for (Attribute A : Attrs) { +    if (A.isStringAttribute()) +      continue; + +    if (isFuncOnlyAttr(A.getKindAsEnum())) { +      if (!IsFunction) { +        CheckFailed("Attribute '" + A.getAsString() + +                        "' only applies to functions!", +                    V); +        return; +      } +    } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) { +      CheckFailed("Attribute '" + A.getAsString() + +                      "' does not apply to functions!", +                  V); +      return; +    } +  } +} + +// VerifyParameterAttrs - Check the given attributes for an argument or return +// value of the specified type.  The value V is printed in error messages. +void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, +                                    const Value *V) { +  if (!Attrs.hasAttributes()) +    return; + +  verifyAttributeTypes(Attrs, /*IsFunction=*/false, V); + +  if (Attrs.hasAttribute(Attribute::ImmArg)) { +    Assert(Attrs.getNumAttributes() == 1, +           "Attribute 'immarg' is incompatible with other attributes", V); +  } + +  // Check for mutually incompatible attributes.  Only inreg is compatible with +  // sret. +  unsigned AttrCount = 0; +  AttrCount += Attrs.hasAttribute(Attribute::ByVal); +  AttrCount += Attrs.hasAttribute(Attribute::InAlloca); +  AttrCount += Attrs.hasAttribute(Attribute::StructRet) || +               Attrs.hasAttribute(Attribute::InReg); +  AttrCount += Attrs.hasAttribute(Attribute::Nest); +  Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', " +                         "and 'sret' are incompatible!", +         V); + +  Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && +           Attrs.hasAttribute(Attribute::ReadOnly)), +         "Attributes " +         "'inalloca and readonly' are incompatible!", +         V); + +  Assert(!(Attrs.hasAttribute(Attribute::StructRet) && +           Attrs.hasAttribute(Attribute::Returned)), +         "Attributes " +         "'sret and returned' are incompatible!", +         V); + +  Assert(!(Attrs.hasAttribute(Attribute::ZExt) && +           Attrs.hasAttribute(Attribute::SExt)), +         "Attributes " +         "'zeroext and signext' are incompatible!", +         V); + +  Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && +           Attrs.hasAttribute(Attribute::ReadOnly)), +         "Attributes " +         "'readnone and readonly' are incompatible!", +         V); + +  Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && +           Attrs.hasAttribute(Attribute::WriteOnly)), +         "Attributes " +         "'readnone and writeonly' are incompatible!", +         V); + +  Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && +           Attrs.hasAttribute(Attribute::WriteOnly)), +         "Attributes " +         "'readonly and writeonly' are incompatible!", +         V); + +  Assert(!(Attrs.hasAttribute(Attribute::NoInline) && +           Attrs.hasAttribute(Attribute::AlwaysInline)), +         "Attributes " +         "'noinline and alwaysinline' are incompatible!", +         V); + +  if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { +    Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(), +           "Attribute 'byval' type does not match parameter!", V); +  } + +  AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); +  Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs), +         "Wrong types for attribute: " + +             AttributeSet::get(Context, IncompatibleAttrs).getAsString(), +         V); + +  if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { +    SmallPtrSet<Type*, 4> Visited; +    if (!PTy->getElementType()->isSized(&Visited)) { +      Assert(!Attrs.hasAttribute(Attribute::ByVal) && +                 !Attrs.hasAttribute(Attribute::InAlloca), +             "Attributes 'byval' and 'inalloca' do not support unsized types!", +             V); +    } +    if (!isa<PointerType>(PTy->getElementType())) +      Assert(!Attrs.hasAttribute(Attribute::SwiftError), +             "Attribute 'swifterror' only applies to parameters " +             "with pointer to pointer type!", +             V); +  } else { +    Assert(!Attrs.hasAttribute(Attribute::ByVal), +           "Attribute 'byval' only applies to parameters with pointer type!", +           V); +    Assert(!Attrs.hasAttribute(Attribute::SwiftError), +           "Attribute 'swifterror' only applies to parameters " +           "with pointer type!", +           V); +  } +} + +// Check parameter attributes against a function type. +// The value V is printed in error messages. +void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, +                                   const Value *V, bool IsIntrinsic) { +  if (Attrs.isEmpty()) +    return; + +  bool SawNest = false; +  bool SawReturned = false; +  bool SawSRet = false; +  bool SawSwiftSelf = false; +  bool SawSwiftError = false; + +  // Verify return value attributes. +  AttributeSet RetAttrs = Attrs.getRetAttributes(); +  Assert((!RetAttrs.hasAttribute(Attribute::ByVal) && +          !RetAttrs.hasAttribute(Attribute::Nest) && +          !RetAttrs.hasAttribute(Attribute::StructRet) && +          !RetAttrs.hasAttribute(Attribute::NoCapture) && +          !RetAttrs.hasAttribute(Attribute::Returned) && +          !RetAttrs.hasAttribute(Attribute::InAlloca) && +          !RetAttrs.hasAttribute(Attribute::SwiftSelf) && +          !RetAttrs.hasAttribute(Attribute::SwiftError)), +         "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', " +         "'returned', 'swiftself', and 'swifterror' do not apply to return " +         "values!", +         V); +  Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) && +          !RetAttrs.hasAttribute(Attribute::WriteOnly) && +          !RetAttrs.hasAttribute(Attribute::ReadNone)), +         "Attribute '" + RetAttrs.getAsString() + +             "' does not apply to function returns", +         V); +  verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); + +  // Verify parameter attributes. +  for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { +    Type *Ty = FT->getParamType(i); +    AttributeSet ArgAttrs = Attrs.getParamAttributes(i); + +    if (!IsIntrinsic) { +      Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg), +             "immarg attribute only applies to intrinsics",V); +    } + +    verifyParameterAttrs(ArgAttrs, Ty, V); + +    if (ArgAttrs.hasAttribute(Attribute::Nest)) { +      Assert(!SawNest, "More than one parameter has attribute nest!", V); +      SawNest = true; +    } + +    if (ArgAttrs.hasAttribute(Attribute::Returned)) { +      Assert(!SawReturned, "More than one parameter has attribute returned!", +             V); +      Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), +             "Incompatible argument and return types for 'returned' attribute", +             V); +      SawReturned = true; +    } + +    if (ArgAttrs.hasAttribute(Attribute::StructRet)) { +      Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); +      Assert(i == 0 || i == 1, +             "Attribute 'sret' is not on first or second parameter!", V); +      SawSRet = true; +    } + +    if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { +      Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); +      SawSwiftSelf = true; +    } + +    if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { +      Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", +             V); +      SawSwiftError = true; +    } + +    if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { +      Assert(i == FT->getNumParams() - 1, +             "inalloca isn't on the last parameter!", V); +    } +  } + +  if (!Attrs.hasAttributes(AttributeList::FunctionIndex)) +    return; + +  verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V); + +  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && +           Attrs.hasFnAttribute(Attribute::ReadOnly)), +         "Attributes 'readnone and readonly' are incompatible!", V); + +  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && +           Attrs.hasFnAttribute(Attribute::WriteOnly)), +         "Attributes 'readnone and writeonly' are incompatible!", V); + +  Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) && +           Attrs.hasFnAttribute(Attribute::WriteOnly)), +         "Attributes 'readonly and writeonly' are incompatible!", V); + +  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && +           Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)), +         "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " +         "incompatible!", +         V); + +  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && +           Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)), +         "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); + +  Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) && +           Attrs.hasFnAttribute(Attribute::AlwaysInline)), +         "Attributes 'noinline and alwaysinline' are incompatible!", V); + +  if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) { +    Assert(Attrs.hasFnAttribute(Attribute::NoInline), +           "Attribute 'optnone' requires 'noinline'!", V); + +    Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize), +           "Attributes 'optsize and optnone' are incompatible!", V); + +    Assert(!Attrs.hasFnAttribute(Attribute::MinSize), +           "Attributes 'minsize and optnone' are incompatible!", V); +  } + +  if (Attrs.hasFnAttribute(Attribute::JumpTable)) { +    const GlobalValue *GV = cast<GlobalValue>(V); +    Assert(GV->hasGlobalUnnamedAddr(), +           "Attribute 'jumptable' requires 'unnamed_addr'", V); +  } + +  if (Attrs.hasFnAttribute(Attribute::AllocSize)) { +    std::pair<unsigned, Optional<unsigned>> Args = +        Attrs.getAllocSizeArgs(AttributeList::FunctionIndex); + +    auto CheckParam = [&](StringRef Name, unsigned ParamNo) { +      if (ParamNo >= FT->getNumParams()) { +        CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); +        return false; +      } + +      if (!FT->getParamType(ParamNo)->isIntegerTy()) { +        CheckFailed("'allocsize' " + Name + +                        " argument must refer to an integer parameter", +                    V); +        return false; +      } + +      return true; +    }; + +    if (!CheckParam("element size", Args.first)) +      return; + +    if (Args.second && !CheckParam("number of elements", *Args.second)) +      return; +  } +} + +void Verifier::verifyFunctionMetadata( +    ArrayRef<std::pair<unsigned, MDNode *>> MDs) { +  for (const auto &Pair : MDs) { +    if (Pair.first == LLVMContext::MD_prof) { +      MDNode *MD = Pair.second; +      Assert(MD->getNumOperands() >= 2, +             "!prof annotations should have no less than 2 operands", MD); + +      // Check first operand. +      Assert(MD->getOperand(0) != nullptr, "first operand should not be null", +             MD); +      Assert(isa<MDString>(MD->getOperand(0)), +             "expected string with name of the !prof annotation", MD); +      MDString *MDS = cast<MDString>(MD->getOperand(0)); +      StringRef ProfName = MDS->getString(); +      Assert(ProfName.equals("function_entry_count") || +                 ProfName.equals("synthetic_function_entry_count"), +             "first operand should be 'function_entry_count'" +             " or 'synthetic_function_entry_count'", +             MD); + +      // Check second operand. +      Assert(MD->getOperand(1) != nullptr, "second operand should not be null", +             MD); +      Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), +             "expected integer argument to function_entry_count", MD); +    } +  } +} + +void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { +  if (!ConstantExprVisited.insert(EntryC).second) +    return; + +  SmallVector<const Constant *, 16> Stack; +  Stack.push_back(EntryC); + +  while (!Stack.empty()) { +    const Constant *C = Stack.pop_back_val(); + +    // Check this constant expression. +    if (const auto *CE = dyn_cast<ConstantExpr>(C)) +      visitConstantExpr(CE); + +    if (const auto *GV = dyn_cast<GlobalValue>(C)) { +      // Global Values get visited separately, but we do need to make sure +      // that the global value is in the correct module +      Assert(GV->getParent() == &M, "Referencing global in another module!", +             EntryC, &M, GV, GV->getParent()); +      continue; +    } + +    // Visit all sub-expressions. +    for (const Use &U : C->operands()) { +      const auto *OpC = dyn_cast<Constant>(U); +      if (!OpC) +        continue; +      if (!ConstantExprVisited.insert(OpC).second) +        continue; +      Stack.push_back(OpC); +    } +  } +} + +void Verifier::visitConstantExpr(const ConstantExpr *CE) { +  if (CE->getOpcode() == Instruction::BitCast) +    Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), +                                 CE->getType()), +           "Invalid bitcast", CE); + +  if (CE->getOpcode() == Instruction::IntToPtr || +      CE->getOpcode() == Instruction::PtrToInt) { +    auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr +                      ? CE->getType() +                      : CE->getOperand(0)->getType(); +    StringRef Msg = CE->getOpcode() == Instruction::IntToPtr +                        ? "inttoptr not supported for non-integral pointers" +                        : "ptrtoint not supported for non-integral pointers"; +    Assert( +        !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())), +        Msg); +  } +} + +bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { +  // There shouldn't be more attribute sets than there are parameters plus the +  // function and return value. +  return Attrs.getNumAttrSets() <= Params + 2; +} + +/// Verify that statepoint intrinsic is well formed. +void Verifier::verifyStatepoint(const CallBase &Call) { +  assert(Call.getCalledFunction() && +         Call.getCalledFunction()->getIntrinsicID() == +             Intrinsic::experimental_gc_statepoint); + +  Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && +             !Call.onlyAccessesArgMemory(), +         "gc.statepoint must read and write all memory to preserve " +         "reordering restrictions required by safepoint semantics", +         Call); + +  const int64_t NumPatchBytes = +      cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); +  assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); +  Assert(NumPatchBytes >= 0, +         "gc.statepoint number of patchable bytes must be " +         "positive", +         Call); + +  const Value *Target = Call.getArgOperand(2); +  auto *PT = dyn_cast<PointerType>(Target->getType()); +  Assert(PT && PT->getElementType()->isFunctionTy(), +         "gc.statepoint callee must be of function pointer type", Call, Target); +  FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); + +  const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); +  Assert(NumCallArgs >= 0, +         "gc.statepoint number of arguments to underlying call " +         "must be positive", +         Call); +  const int NumParams = (int)TargetFuncType->getNumParams(); +  if (TargetFuncType->isVarArg()) { +    Assert(NumCallArgs >= NumParams, +           "gc.statepoint mismatch in number of vararg call args", Call); + +    // TODO: Remove this limitation +    Assert(TargetFuncType->getReturnType()->isVoidTy(), +           "gc.statepoint doesn't support wrapping non-void " +           "vararg functions yet", +           Call); +  } else +    Assert(NumCallArgs == NumParams, +           "gc.statepoint mismatch in number of call args", Call); + +  const uint64_t Flags +    = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); +  Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, +         "unknown flag used in gc.statepoint flags argument", Call); + +  // Verify that the types of the call parameter arguments match +  // the type of the wrapped callee. +  AttributeList Attrs = Call.getAttributes(); +  for (int i = 0; i < NumParams; i++) { +    Type *ParamType = TargetFuncType->getParamType(i); +    Type *ArgType = Call.getArgOperand(5 + i)->getType(); +    Assert(ArgType == ParamType, +           "gc.statepoint call argument does not match wrapped " +           "function type", +           Call); + +    if (TargetFuncType->isVarArg()) { +      AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i); +      Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), +             "Attribute 'sret' cannot be used for vararg call arguments!", +             Call); +    } +  } + +  const int EndCallArgsInx = 4 + NumCallArgs; + +  const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); +  Assert(isa<ConstantInt>(NumTransitionArgsV), +         "gc.statepoint number of transition arguments " +         "must be constant integer", +         Call); +  const int NumTransitionArgs = +      cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); +  Assert(NumTransitionArgs >= 0, +         "gc.statepoint number of transition arguments must be positive", Call); +  const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; + +  const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); +  Assert(isa<ConstantInt>(NumDeoptArgsV), +         "gc.statepoint number of deoptimization arguments " +         "must be constant integer", +         Call); +  const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); +  Assert(NumDeoptArgs >= 0, +         "gc.statepoint number of deoptimization arguments " +         "must be positive", +         Call); + +  const int ExpectedNumArgs = +      7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs; +  Assert(ExpectedNumArgs <= (int)Call.arg_size(), +         "gc.statepoint too few arguments according to length fields", Call); + +  // Check that the only uses of this gc.statepoint are gc.result or +  // gc.relocate calls which are tied to this statepoint and thus part +  // of the same statepoint sequence +  for (const User *U : Call.users()) { +    const CallInst *UserCall = dyn_cast<const CallInst>(U); +    Assert(UserCall, "illegal use of statepoint token", Call, U); +    if (!UserCall) +      continue; +    Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), +           "gc.result or gc.relocate are the only value uses " +           "of a gc.statepoint", +           Call, U); +    if (isa<GCResultInst>(UserCall)) { +      Assert(UserCall->getArgOperand(0) == &Call, +             "gc.result connected to wrong gc.statepoint", Call, UserCall); +    } else if (isa<GCRelocateInst>(Call)) { +      Assert(UserCall->getArgOperand(0) == &Call, +             "gc.relocate connected to wrong gc.statepoint", Call, UserCall); +    } +  } + +  // Note: It is legal for a single derived pointer to be listed multiple +  // times.  It's non-optimal, but it is legal.  It can also happen after +  // insertion if we strip a bitcast away. +  // Note: It is really tempting to check that each base is relocated and +  // that a derived pointer is never reused as a base pointer.  This turns +  // out to be problematic since optimizations run after safepoint insertion +  // can recognize equality properties that the insertion logic doesn't know +  // about.  See example statepoint.ll in the verifier subdirectory +} + +void Verifier::verifyFrameRecoverIndices() { +  for (auto &Counts : FrameEscapeInfo) { +    Function *F = Counts.first; +    unsigned EscapedObjectCount = Counts.second.first; +    unsigned MaxRecoveredIndex = Counts.second.second; +    Assert(MaxRecoveredIndex <= EscapedObjectCount, +           "all indices passed to llvm.localrecover must be less than the " +           "number of arguments passed to llvm.localescape in the parent " +           "function", +           F); +  } +} + +static Instruction *getSuccPad(Instruction *Terminator) { +  BasicBlock *UnwindDest; +  if (auto *II = dyn_cast<InvokeInst>(Terminator)) +    UnwindDest = II->getUnwindDest(); +  else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) +    UnwindDest = CSI->getUnwindDest(); +  else +    UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); +  return UnwindDest->getFirstNonPHI(); +} + +void Verifier::verifySiblingFuncletUnwinds() { +  SmallPtrSet<Instruction *, 8> Visited; +  SmallPtrSet<Instruction *, 8> Active; +  for (const auto &Pair : SiblingFuncletInfo) { +    Instruction *PredPad = Pair.first; +    if (Visited.count(PredPad)) +      continue; +    Active.insert(PredPad); +    Instruction *Terminator = Pair.second; +    do { +      Instruction *SuccPad = getSuccPad(Terminator); +      if (Active.count(SuccPad)) { +        // Found a cycle; report error +        Instruction *CyclePad = SuccPad; +        SmallVector<Instruction *, 8> CycleNodes; +        do { +          CycleNodes.push_back(CyclePad); +          Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; +          if (CycleTerminator != CyclePad) +            CycleNodes.push_back(CycleTerminator); +          CyclePad = getSuccPad(CycleTerminator); +        } while (CyclePad != SuccPad); +        Assert(false, "EH pads can't handle each other's exceptions", +               ArrayRef<Instruction *>(CycleNodes)); +      } +      // Don't re-walk a node we've already checked +      if (!Visited.insert(SuccPad).second) +        break; +      // Walk to this successor if it has a map entry. +      PredPad = SuccPad; +      auto TermI = SiblingFuncletInfo.find(PredPad); +      if (TermI == SiblingFuncletInfo.end()) +        break; +      Terminator = TermI->second; +      Active.insert(PredPad); +    } while (true); +    // Each node only has one successor, so we've walked all the active +    // nodes' successors. +    Active.clear(); +  } +} + +// visitFunction - Verify that a function is ok. +// +void Verifier::visitFunction(const Function &F) { +  visitGlobalValue(F); + +  // Check function arguments. +  FunctionType *FT = F.getFunctionType(); +  unsigned NumArgs = F.arg_size(); + +  Assert(&Context == &F.getContext(), +         "Function context does not match Module context!", &F); + +  Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); +  Assert(FT->getNumParams() == NumArgs, +         "# formal arguments must match # of arguments for function type!", &F, +         FT); +  Assert(F.getReturnType()->isFirstClassType() || +             F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), +         "Functions cannot return aggregate values!", &F); + +  Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), +         "Invalid struct return type!", &F); + +  AttributeList Attrs = F.getAttributes(); + +  Assert(verifyAttributeCount(Attrs, FT->getNumParams()), +         "Attribute after last parameter!", &F); + +  bool isLLVMdotName = F.getName().size() >= 5 && +                       F.getName().substr(0, 5) == "llvm."; + +  // Check function attributes. +  verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName); + +  // On function declarations/definitions, we do not support the builtin +  // attribute. We do not check this in VerifyFunctionAttrs since that is +  // checking for Attributes that can/can not ever be on functions. +  Assert(!Attrs.hasFnAttribute(Attribute::Builtin), +         "Attribute 'builtin' can only be applied to a callsite.", &F); + +  // Check that this function meets the restrictions on this calling convention. +  // Sometimes varargs is used for perfectly forwarding thunks, so some of these +  // restrictions can be lifted. +  switch (F.getCallingConv()) { +  default: +  case CallingConv::C: +    break; +  case CallingConv::AMDGPU_KERNEL: +  case CallingConv::SPIR_KERNEL: +    Assert(F.getReturnType()->isVoidTy(), +           "Calling convention requires void return type", &F); +    LLVM_FALLTHROUGH; +  case CallingConv::AMDGPU_VS: +  case CallingConv::AMDGPU_HS: +  case CallingConv::AMDGPU_GS: +  case CallingConv::AMDGPU_PS: +  case CallingConv::AMDGPU_CS: +    Assert(!F.hasStructRetAttr(), +           "Calling convention does not allow sret", &F); +    LLVM_FALLTHROUGH; +  case CallingConv::Fast: +  case CallingConv::Cold: +  case CallingConv::Intel_OCL_BI: +  case CallingConv::PTX_Kernel: +  case CallingConv::PTX_Device: +    Assert(!F.isVarArg(), "Calling convention does not support varargs or " +                          "perfect forwarding!", +           &F); +    break; +  } + +  // Check that the argument values match the function type for this function... +  unsigned i = 0; +  for (const Argument &Arg : F.args()) { +    Assert(Arg.getType() == FT->getParamType(i), +           "Argument value does not match function argument type!", &Arg, +           FT->getParamType(i)); +    Assert(Arg.getType()->isFirstClassType(), +           "Function arguments must have first-class types!", &Arg); +    if (!isLLVMdotName) { +      Assert(!Arg.getType()->isMetadataTy(), +             "Function takes metadata but isn't an intrinsic", &Arg, &F); +      Assert(!Arg.getType()->isTokenTy(), +             "Function takes token but isn't an intrinsic", &Arg, &F); +    } + +    // Check that swifterror argument is only used by loads and stores. +    if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) { +      verifySwiftErrorValue(&Arg); +    } +    ++i; +  } + +  if (!isLLVMdotName) +    Assert(!F.getReturnType()->isTokenTy(), +           "Functions returns a token but isn't an intrinsic", &F); + +  // Get the function metadata attachments. +  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; +  F.getAllMetadata(MDs); +  assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); +  verifyFunctionMetadata(MDs); + +  // Check validity of the personality function +  if (F.hasPersonalityFn()) { +    auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); +    if (Per) +      Assert(Per->getParent() == F.getParent(), +             "Referencing personality function in another module!", +             &F, F.getParent(), Per, Per->getParent()); +  } + +  if (F.isMaterializable()) { +    // Function has a body somewhere we can't see. +    Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, +           MDs.empty() ? nullptr : MDs.front().second); +  } else if (F.isDeclaration()) { +    for (const auto &I : MDs) { +      // This is used for call site debug information. +      AssertDI(I.first != LLVMContext::MD_dbg || +                   !cast<DISubprogram>(I.second)->isDistinct(), +               "function declaration may only have a unique !dbg attachment", +               &F); +      Assert(I.first != LLVMContext::MD_prof, +             "function declaration may not have a !prof attachment", &F); + +      // Verify the metadata itself. +      visitMDNode(*I.second); +    } +    Assert(!F.hasPersonalityFn(), +           "Function declaration shouldn't have a personality routine", &F); +  } else { +    // Verify that this function (which has a body) is not named "llvm.*".  It +    // is not legal to define intrinsics. +    Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); + +    // Check the entry node +    const BasicBlock *Entry = &F.getEntryBlock(); +    Assert(pred_empty(Entry), +           "Entry block to function must not have predecessors!", Entry); + +    // The address of the entry block cannot be taken, unless it is dead. +    if (Entry->hasAddressTaken()) { +      Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), +             "blockaddress may not be used with the entry block!", Entry); +    } + +    unsigned NumDebugAttachments = 0, NumProfAttachments = 0; +    // Visit metadata attachments. +    for (const auto &I : MDs) { +      // Verify that the attachment is legal. +      switch (I.first) { +      default: +        break; +      case LLVMContext::MD_dbg: { +        ++NumDebugAttachments; +        AssertDI(NumDebugAttachments == 1, +                 "function must have a single !dbg attachment", &F, I.second); +        AssertDI(isa<DISubprogram>(I.second), +                 "function !dbg attachment must be a subprogram", &F, I.second); +        auto *SP = cast<DISubprogram>(I.second); +        const Function *&AttachedTo = DISubprogramAttachments[SP]; +        AssertDI(!AttachedTo || AttachedTo == &F, +                 "DISubprogram attached to more than one function", SP, &F); +        AttachedTo = &F; +        break; +      } +      case LLVMContext::MD_prof: +        ++NumProfAttachments; +        Assert(NumProfAttachments == 1, +               "function must have a single !prof attachment", &F, I.second); +        break; +      } + +      // Verify the metadata itself. +      visitMDNode(*I.second); +    } +  } + +  // If this function is actually an intrinsic, verify that it is only used in +  // direct call/invokes, never having its "address taken". +  // Only do this if the module is materialized, otherwise we don't have all the +  // uses. +  if (F.getIntrinsicID() && F.getParent()->isMaterialized()) { +    const User *U; +    if (F.hasAddressTaken(&U)) +      Assert(false, "Invalid user of intrinsic instruction!", U); +  } + +  auto *N = F.getSubprogram(); +  HasDebugInfo = (N != nullptr); +  if (!HasDebugInfo) +    return; + +  // Check that all !dbg attachments lead to back to N (or, at least, another +  // subprogram that describes the same function). +  // +  // FIXME: Check this incrementally while visiting !dbg attachments. +  // FIXME: Only check when N is the canonical subprogram for F. +  SmallPtrSet<const MDNode *, 32> Seen; +  auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { +    // Be careful about using DILocation here since we might be dealing with +    // broken code (this is the Verifier after all). +    const DILocation *DL = dyn_cast_or_null<DILocation>(Node); +    if (!DL) +      return; +    if (!Seen.insert(DL).second) +      return; + +    Metadata *Parent = DL->getRawScope(); +    AssertDI(Parent && isa<DILocalScope>(Parent), +             "DILocation's scope must be a DILocalScope", N, &F, &I, DL, +             Parent); +    DILocalScope *Scope = DL->getInlinedAtScope(); +    if (Scope && !Seen.insert(Scope).second) +      return; + +    DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr; + +    // Scope and SP could be the same MDNode and we don't want to skip +    // validation in that case +    if (SP && ((Scope != SP) && !Seen.insert(SP).second)) +      return; + +    // FIXME: Once N is canonical, check "SP == &N". +    AssertDI(SP->describes(&F), +             "!dbg attachment points at wrong subprogram for function", N, &F, +             &I, DL, Scope, SP); +  }; +  for (auto &BB : F) +    for (auto &I : BB) { +      VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); +      // The llvm.loop annotations also contain two DILocations. +      if (auto MD = I.getMetadata(LLVMContext::MD_loop)) +        for (unsigned i = 1; i < MD->getNumOperands(); ++i) +          VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); +      if (BrokenDebugInfo) +        return; +    } +} + +// verifyBasicBlock - Verify that a basic block is well formed... +// +void Verifier::visitBasicBlock(BasicBlock &BB) { +  InstsInThisBlock.clear(); + +  // Ensure that basic blocks have terminators! +  Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); + +  // Check constraints that this basic block imposes on all of the PHI nodes in +  // it. +  if (isa<PHINode>(BB.front())) { +    SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); +    SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; +    llvm::sort(Preds); +    for (const PHINode &PN : BB.phis()) { +      // Ensure that PHI nodes have at least one entry! +      Assert(PN.getNumIncomingValues() != 0, +             "PHI nodes must have at least one entry.  If the block is dead, " +             "the PHI should be removed!", +             &PN); +      Assert(PN.getNumIncomingValues() == Preds.size(), +             "PHINode should have one entry for each predecessor of its " +             "parent basic block!", +             &PN); + +      // Get and sort all incoming values in the PHI node... +      Values.clear(); +      Values.reserve(PN.getNumIncomingValues()); +      for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) +        Values.push_back( +            std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); +      llvm::sort(Values); + +      for (unsigned i = 0, e = Values.size(); i != e; ++i) { +        // Check to make sure that if there is more than one entry for a +        // particular basic block in this PHI node, that the incoming values are +        // all identical. +        // +        Assert(i == 0 || Values[i].first != Values[i - 1].first || +                   Values[i].second == Values[i - 1].second, +               "PHI node has multiple entries for the same basic block with " +               "different incoming values!", +               &PN, Values[i].first, Values[i].second, Values[i - 1].second); + +        // Check to make sure that the predecessors and PHI node entries are +        // matched up. +        Assert(Values[i].first == Preds[i], +               "PHI node entries do not match predecessors!", &PN, +               Values[i].first, Preds[i]); +      } +    } +  } + +  // Check that all instructions have their parent pointers set up correctly. +  for (auto &I : BB) +  { +    Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); +  } +} + +void Verifier::visitTerminator(Instruction &I) { +  // Ensure that terminators only exist at the end of the basic block. +  Assert(&I == I.getParent()->getTerminator(), +         "Terminator found in the middle of a basic block!", I.getParent()); +  visitInstruction(I); +} + +void Verifier::visitBranchInst(BranchInst &BI) { +  if (BI.isConditional()) { +    Assert(BI.getCondition()->getType()->isIntegerTy(1), +           "Branch condition is not 'i1' type!", &BI, BI.getCondition()); +  } +  visitTerminator(BI); +} + +void Verifier::visitReturnInst(ReturnInst &RI) { +  Function *F = RI.getParent()->getParent(); +  unsigned N = RI.getNumOperands(); +  if (F->getReturnType()->isVoidTy()) +    Assert(N == 0, +           "Found return instr that returns non-void in Function of void " +           "return type!", +           &RI, F->getReturnType()); +  else +    Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), +           "Function return type does not match operand " +           "type of return inst!", +           &RI, F->getReturnType()); + +  // Check to make sure that the return value has necessary properties for +  // terminators... +  visitTerminator(RI); +} + +void Verifier::visitSwitchInst(SwitchInst &SI) { +  // Check to make sure that all of the constants in the switch instruction +  // have the same type as the switched-on value. +  Type *SwitchTy = SI.getCondition()->getType(); +  SmallPtrSet<ConstantInt*, 32> Constants; +  for (auto &Case : SI.cases()) { +    Assert(Case.getCaseValue()->getType() == SwitchTy, +           "Switch constants must all be same type as switch value!", &SI); +    Assert(Constants.insert(Case.getCaseValue()).second, +           "Duplicate integer as switch case", &SI, Case.getCaseValue()); +  } + +  visitTerminator(SI); +} + +void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { +  Assert(BI.getAddress()->getType()->isPointerTy(), +         "Indirectbr operand must have pointer type!", &BI); +  for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) +    Assert(BI.getDestination(i)->getType()->isLabelTy(), +           "Indirectbr destinations must all have pointer type!", &BI); + +  visitTerminator(BI); +} + +void Verifier::visitCallBrInst(CallBrInst &CBI) { +  Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", +         &CBI); +  Assert(CBI.getType()->isVoidTy(), "Callbr return value is not supported!", +         &CBI); +  for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) +    Assert(CBI.getSuccessor(i)->getType()->isLabelTy(), +           "Callbr successors must all have pointer type!", &CBI); +  for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { +    Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)), +           "Using an unescaped label as a callbr argument!", &CBI); +    if (isa<BasicBlock>(CBI.getOperand(i))) +      for (unsigned j = i + 1; j != e; ++j) +        Assert(CBI.getOperand(i) != CBI.getOperand(j), +               "Duplicate callbr destination!", &CBI); +  } +  { +    SmallPtrSet<BasicBlock *, 4> ArgBBs; +    for (Value *V : CBI.args()) +      if (auto *BA = dyn_cast<BlockAddress>(V)) +        ArgBBs.insert(BA->getBasicBlock()); +    for (BasicBlock *BB : CBI.getIndirectDests()) +      Assert(ArgBBs.find(BB) != ArgBBs.end(), +             "Indirect label missing from arglist.", &CBI); +  } + +  visitTerminator(CBI); +} + +void Verifier::visitSelectInst(SelectInst &SI) { +  Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), +                                         SI.getOperand(2)), +         "Invalid operands for select instruction!", &SI); + +  Assert(SI.getTrueValue()->getType() == SI.getType(), +         "Select values must have same type as select instruction!", &SI); +  visitInstruction(SI); +} + +/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of +/// a pass, if any exist, it's an error. +/// +void Verifier::visitUserOp1(Instruction &I) { +  Assert(false, "User-defined operators should not live outside of a pass!", &I); +} + +void Verifier::visitTruncInst(TruncInst &I) { +  // Get the source and destination types +  Type *SrcTy = I.getOperand(0)->getType(); +  Type *DestTy = I.getType(); + +  // Get the size of the types in bits, we'll need this later +  unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); +  unsigned DestBitSize = DestTy->getScalarSizeInBits(); + +  Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); +  Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); +  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), +         "trunc source and destination must both be a vector or neither", &I); +  Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); + +  visitInstruction(I); +} + +void Verifier::visitZExtInst(ZExtInst &I) { +  // Get the source and destination types +  Type *SrcTy = I.getOperand(0)->getType(); +  Type *DestTy = I.getType(); + +  // Get the size of the types in bits, we'll need this later +  Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); +  Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); +  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), +         "zext source and destination must both be a vector or neither", &I); +  unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); +  unsigned DestBitSize = DestTy->getScalarSizeInBits(); + +  Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); + +  visitInstruction(I); +} + +void Verifier::visitSExtInst(SExtInst &I) { +  // Get the source and destination types +  Type *SrcTy = I.getOperand(0)->getType(); +  Type *DestTy = I.getType(); + +  // Get the size of the types in bits, we'll need this later +  unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); +  unsigned DestBitSize = DestTy->getScalarSizeInBits(); + +  Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); +  Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); +  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), +         "sext source and destination must both be a vector or neither", &I); +  Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); + +  visitInstruction(I); +} + +void Verifier::visitFPTruncInst(FPTruncInst &I) { +  // Get the source and destination types +  Type *SrcTy = I.getOperand(0)->getType(); +  Type *DestTy = I.getType(); +  // Get the size of the types in bits, we'll need this later +  unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); +  unsigned DestBitSize = DestTy->getScalarSizeInBits(); + +  Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); +  Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); +  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), +         "fptrunc source and destination must both be a vector or neither", &I); +  Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); + +  visitInstruction(I); +} + +void Verifier::visitFPExtInst(FPExtInst &I) { +  // Get the source and destination types +  Type *SrcTy = I.getOperand(0)->getType(); +  Type *DestTy = I.getType(); + +  // Get the size of the types in bits, we'll need this later +  unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); +  unsigned DestBitSize = DestTy->getScalarSizeInBits(); + +  Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); +  Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); +  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), +         "fpext source and destination must both be a vector or neither", &I); +  Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); + +  visitInstruction(I); +} + +void Verifier::visitUIToFPInst(UIToFPInst &I) { +  // Get the source and destination types +  Type *SrcTy = I.getOperand(0)->getType(); +  Type *DestTy = I.getType(); + +  bool SrcVec = SrcTy->isVectorTy(); +  bool DstVec = DestTy->isVectorTy(); + +  Assert(SrcVec == DstVec, +         "UIToFP source and dest must both be vector or scalar", &I); +  Assert(SrcTy->isIntOrIntVectorTy(), +         "UIToFP source must be integer or integer vector", &I); +  Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", +         &I); + +  if (SrcVec && DstVec) +    Assert(cast<VectorType>(SrcTy)->getNumElements() == +               cast<VectorType>(DestTy)->getNumElements(), +           "UIToFP source and dest vector length mismatch", &I); + +  visitInstruction(I); +} + +void Verifier::visitSIToFPInst(SIToFPInst &I) { +  // Get the source and destination types +  Type *SrcTy = I.getOperand(0)->getType(); +  Type *DestTy = I.getType(); + +  bool SrcVec = SrcTy->isVectorTy(); +  bool DstVec = DestTy->isVectorTy(); + +  Assert(SrcVec == DstVec, +         "SIToFP source and dest must both be vector or scalar", &I); +  Assert(SrcTy->isIntOrIntVectorTy(), +         "SIToFP source must be integer or integer vector", &I); +  Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", +         &I); + +  if (SrcVec && DstVec) +    Assert(cast<VectorType>(SrcTy)->getNumElements() == +               cast<VectorType>(DestTy)->getNumElements(), +           "SIToFP source and dest vector length mismatch", &I); + +  visitInstruction(I); +} + +void Verifier::visitFPToUIInst(FPToUIInst &I) { +  // Get the source and destination types +  Type *SrcTy = I.getOperand(0)->getType(); +  Type *DestTy = I.getType(); + +  bool SrcVec = SrcTy->isVectorTy(); +  bool DstVec = DestTy->isVectorTy(); + +  Assert(SrcVec == DstVec, +         "FPToUI source and dest must both be vector or scalar", &I); +  Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", +         &I); +  Assert(DestTy->isIntOrIntVectorTy(), +         "FPToUI result must be integer or integer vector", &I); + +  if (SrcVec && DstVec) +    Assert(cast<VectorType>(SrcTy)->getNumElements() == +               cast<VectorType>(DestTy)->getNumElements(), +           "FPToUI source and dest vector length mismatch", &I); + +  visitInstruction(I); +} + +void Verifier::visitFPToSIInst(FPToSIInst &I) { +  // Get the source and destination types +  Type *SrcTy = I.getOperand(0)->getType(); +  Type *DestTy = I.getType(); + +  bool SrcVec = SrcTy->isVectorTy(); +  bool DstVec = DestTy->isVectorTy(); + +  Assert(SrcVec == DstVec, +         "FPToSI source and dest must both be vector or scalar", &I); +  Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", +         &I); +  Assert(DestTy->isIntOrIntVectorTy(), +         "FPToSI result must be integer or integer vector", &I); + +  if (SrcVec && DstVec) +    Assert(cast<VectorType>(SrcTy)->getNumElements() == +               cast<VectorType>(DestTy)->getNumElements(), +           "FPToSI source and dest vector length mismatch", &I); + +  visitInstruction(I); +} + +void Verifier::visitPtrToIntInst(PtrToIntInst &I) { +  // Get the source and destination types +  Type *SrcTy = I.getOperand(0)->getType(); +  Type *DestTy = I.getType(); + +  Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); + +  if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType())) +    Assert(!DL.isNonIntegralPointerType(PTy), +           "ptrtoint not supported for non-integral pointers"); + +  Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); +  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", +         &I); + +  if (SrcTy->isVectorTy()) { +    VectorType *VSrc = cast<VectorType>(SrcTy); +    VectorType *VDest = cast<VectorType>(DestTy); +    Assert(VSrc->getNumElements() == VDest->getNumElements(), +           "PtrToInt Vector width mismatch", &I); +  } + +  visitInstruction(I); +} + +void Verifier::visitIntToPtrInst(IntToPtrInst &I) { +  // Get the source and destination types +  Type *SrcTy = I.getOperand(0)->getType(); +  Type *DestTy = I.getType(); + +  Assert(SrcTy->isIntOrIntVectorTy(), +         "IntToPtr source must be an integral", &I); +  Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); + +  if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType())) +    Assert(!DL.isNonIntegralPointerType(PTy), +           "inttoptr not supported for non-integral pointers"); + +  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", +         &I); +  if (SrcTy->isVectorTy()) { +    VectorType *VSrc = cast<VectorType>(SrcTy); +    VectorType *VDest = cast<VectorType>(DestTy); +    Assert(VSrc->getNumElements() == VDest->getNumElements(), +           "IntToPtr Vector width mismatch", &I); +  } +  visitInstruction(I); +} + +void Verifier::visitBitCastInst(BitCastInst &I) { +  Assert( +      CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), +      "Invalid bitcast", &I); +  visitInstruction(I); +} + +void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { +  Type *SrcTy = I.getOperand(0)->getType(); +  Type *DestTy = I.getType(); + +  Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", +         &I); +  Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", +         &I); +  Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), +         "AddrSpaceCast must be between different address spaces", &I); +  if (SrcTy->isVectorTy()) +    Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(), +           "AddrSpaceCast vector pointer number of elements mismatch", &I); +  visitInstruction(I); +} + +/// visitPHINode - Ensure that a PHI node is well formed. +/// +void Verifier::visitPHINode(PHINode &PN) { +  // Ensure that the PHI nodes are all grouped together at the top of the block. +  // This can be tested by checking whether the instruction before this is +  // either nonexistent (because this is begin()) or is a PHI node.  If not, +  // then there is some other instruction before a PHI. +  Assert(&PN == &PN.getParent()->front() || +             isa<PHINode>(--BasicBlock::iterator(&PN)), +         "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); + +  // Check that a PHI doesn't yield a Token. +  Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); + +  // Check that all of the values of the PHI node have the same type as the +  // result, and that the incoming blocks are really basic blocks. +  for (Value *IncValue : PN.incoming_values()) { +    Assert(PN.getType() == IncValue->getType(), +           "PHI node operands are not the same type as the result!", &PN); +  } + +  // All other PHI node constraints are checked in the visitBasicBlock method. + +  visitInstruction(PN); +} + +void Verifier::visitCallBase(CallBase &Call) { +  Assert(Call.getCalledValue()->getType()->isPointerTy(), +         "Called function must be a pointer!", Call); +  PointerType *FPTy = cast<PointerType>(Call.getCalledValue()->getType()); + +  Assert(FPTy->getElementType()->isFunctionTy(), +         "Called function is not pointer to function type!", Call); + +  Assert(FPTy->getElementType() == Call.getFunctionType(), +         "Called function is not the same type as the call!", Call); + +  FunctionType *FTy = Call.getFunctionType(); + +  // Verify that the correct number of arguments are being passed +  if (FTy->isVarArg()) +    Assert(Call.arg_size() >= FTy->getNumParams(), +           "Called function requires more parameters than were provided!", +           Call); +  else +    Assert(Call.arg_size() == FTy->getNumParams(), +           "Incorrect number of arguments passed to called function!", Call); + +  // Verify that all arguments to the call match the function type. +  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) +    Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i), +           "Call parameter type does not match function signature!", +           Call.getArgOperand(i), FTy->getParamType(i), Call); + +  AttributeList Attrs = Call.getAttributes(); + +  Assert(verifyAttributeCount(Attrs, Call.arg_size()), +         "Attribute after last parameter!", Call); + +  bool IsIntrinsic = Call.getCalledFunction() && +                     Call.getCalledFunction()->getName().startswith("llvm."); + +  Function *Callee +    = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts()); + +  if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) { +    // Don't allow speculatable on call sites, unless the underlying function +    // declaration is also speculatable. +    Assert(Callee && Callee->isSpeculatable(), +           "speculatable attribute may not apply to call sites", Call); +  } + +  // Verify call attributes. +  verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic); + +  // Conservatively check the inalloca argument. +  // We have a bug if we can find that there is an underlying alloca without +  // inalloca. +  if (Call.hasInAllocaArgument()) { +    Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); +    if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) +      Assert(AI->isUsedWithInAlloca(), +             "inalloca argument for call has mismatched alloca", AI, Call); +  } + +  // For each argument of the callsite, if it has the swifterror argument, +  // make sure the underlying alloca/parameter it comes from has a swifterror as +  // well. +  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { +    if (Call.paramHasAttr(i, Attribute::SwiftError)) { +      Value *SwiftErrorArg = Call.getArgOperand(i); +      if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { +        Assert(AI->isSwiftError(), +               "swifterror argument for call has mismatched alloca", AI, Call); +        continue; +      } +      auto ArgI = dyn_cast<Argument>(SwiftErrorArg); +      Assert(ArgI, +             "swifterror argument should come from an alloca or parameter", +             SwiftErrorArg, Call); +      Assert(ArgI->hasSwiftErrorAttr(), +             "swifterror argument for call has mismatched parameter", ArgI, +             Call); +    } + +    if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) { +      // Don't allow immarg on call sites, unless the underlying declaration +      // also has the matching immarg. +      Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), +             "immarg may not apply only to call sites", +             Call.getArgOperand(i), Call); +    } + +    if (Call.paramHasAttr(i, Attribute::ImmArg)) { +      Value *ArgVal = Call.getArgOperand(i); +      Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), +             "immarg operand has non-immediate parameter", ArgVal, Call); +    } +  } + +  if (FTy->isVarArg()) { +    // FIXME? is 'nest' even legal here? +    bool SawNest = false; +    bool SawReturned = false; + +    for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { +      if (Attrs.hasParamAttribute(Idx, Attribute::Nest)) +        SawNest = true; +      if (Attrs.hasParamAttribute(Idx, Attribute::Returned)) +        SawReturned = true; +    } + +    // Check attributes on the varargs part. +    for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { +      Type *Ty = Call.getArgOperand(Idx)->getType(); +      AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx); +      verifyParameterAttrs(ArgAttrs, Ty, &Call); + +      if (ArgAttrs.hasAttribute(Attribute::Nest)) { +        Assert(!SawNest, "More than one parameter has attribute nest!", Call); +        SawNest = true; +      } + +      if (ArgAttrs.hasAttribute(Attribute::Returned)) { +        Assert(!SawReturned, "More than one parameter has attribute returned!", +               Call); +        Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), +               "Incompatible argument and return types for 'returned' " +               "attribute", +               Call); +        SawReturned = true; +      } + +      // Statepoint intrinsic is vararg but the wrapped function may be not. +      // Allow sret here and check the wrapped function in verifyStatepoint. +      if (!Call.getCalledFunction() || +          Call.getCalledFunction()->getIntrinsicID() != +              Intrinsic::experimental_gc_statepoint) +        Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), +               "Attribute 'sret' cannot be used for vararg call arguments!", +               Call); + +      if (ArgAttrs.hasAttribute(Attribute::InAlloca)) +        Assert(Idx == Call.arg_size() - 1, +               "inalloca isn't on the last argument!", Call); +    } +  } + +  // Verify that there's no metadata unless it's a direct call to an intrinsic. +  if (!IsIntrinsic) { +    for (Type *ParamTy : FTy->params()) { +      Assert(!ParamTy->isMetadataTy(), +             "Function has metadata parameter but isn't an intrinsic", Call); +      Assert(!ParamTy->isTokenTy(), +             "Function has token parameter but isn't an intrinsic", Call); +    } +  } + +  // Verify that indirect calls don't return tokens. +  if (!Call.getCalledFunction()) +    Assert(!FTy->getReturnType()->isTokenTy(), +           "Return type cannot be token for indirect call!"); + +  if (Function *F = Call.getCalledFunction()) +    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) +      visitIntrinsicCall(ID, Call); + +  // Verify that a callsite has at most one "deopt", at most one "funclet" and +  // at most one "gc-transition" operand bundle. +  bool FoundDeoptBundle = false, FoundFuncletBundle = false, +       FoundGCTransitionBundle = false; +  for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { +    OperandBundleUse BU = Call.getOperandBundleAt(i); +    uint32_t Tag = BU.getTagID(); +    if (Tag == LLVMContext::OB_deopt) { +      Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); +      FoundDeoptBundle = true; +    } else if (Tag == LLVMContext::OB_gc_transition) { +      Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", +             Call); +      FoundGCTransitionBundle = true; +    } else if (Tag == LLVMContext::OB_funclet) { +      Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); +      FoundFuncletBundle = true; +      Assert(BU.Inputs.size() == 1, +             "Expected exactly one funclet bundle operand", Call); +      Assert(isa<FuncletPadInst>(BU.Inputs.front()), +             "Funclet bundle operands should correspond to a FuncletPadInst", +             Call); +    } +  } + +  // Verify that each inlinable callsite of a debug-info-bearing function in a +  // debug-info-bearing function has a debug location attached to it. Failure to +  // do so causes assertion failures when the inliner sets up inline scope info. +  if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && +      Call.getCalledFunction()->getSubprogram()) +    AssertDI(Call.getDebugLoc(), +             "inlinable function call in a function with " +             "debug info must have a !dbg location", +             Call); + +  visitInstruction(Call); +} + +/// Two types are "congruent" if they are identical, or if they are both pointer +/// types with different pointee types and the same address space. +static bool isTypeCongruent(Type *L, Type *R) { +  if (L == R) +    return true; +  PointerType *PL = dyn_cast<PointerType>(L); +  PointerType *PR = dyn_cast<PointerType>(R); +  if (!PL || !PR) +    return false; +  return PL->getAddressSpace() == PR->getAddressSpace(); +} + +static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) { +  static const Attribute::AttrKind ABIAttrs[] = { +      Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, +      Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf, +      Attribute::SwiftError}; +  AttrBuilder Copy; +  for (auto AK : ABIAttrs) { +    if (Attrs.hasParamAttribute(I, AK)) +      Copy.addAttribute(AK); +  } +  if (Attrs.hasParamAttribute(I, Attribute::Alignment)) +    Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); +  return Copy; +} + +void Verifier::verifyMustTailCall(CallInst &CI) { +  Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); + +  // - The caller and callee prototypes must match.  Pointer types of +  //   parameters or return types may differ in pointee type, but not +  //   address space. +  Function *F = CI.getParent()->getParent(); +  FunctionType *CallerTy = F->getFunctionType(); +  FunctionType *CalleeTy = CI.getFunctionType(); +  if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { +    Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), +           "cannot guarantee tail call due to mismatched parameter counts", +           &CI); +    for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { +      Assert( +          isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), +          "cannot guarantee tail call due to mismatched parameter types", &CI); +    } +  } +  Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), +         "cannot guarantee tail call due to mismatched varargs", &CI); +  Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), +         "cannot guarantee tail call due to mismatched return types", &CI); + +  // - The calling conventions of the caller and callee must match. +  Assert(F->getCallingConv() == CI.getCallingConv(), +         "cannot guarantee tail call due to mismatched calling conv", &CI); + +  // - All ABI-impacting function attributes, such as sret, byval, inreg, +  //   returned, and inalloca, must match. +  AttributeList CallerAttrs = F->getAttributes(); +  AttributeList CalleeAttrs = CI.getAttributes(); +  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { +    AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); +    AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); +    Assert(CallerABIAttrs == CalleeABIAttrs, +           "cannot guarantee tail call due to mismatched ABI impacting " +           "function attributes", +           &CI, CI.getOperand(I)); +  } + +  // - The call must immediately precede a :ref:`ret <i_ret>` instruction, +  //   or a pointer bitcast followed by a ret instruction. +  // - The ret instruction must return the (possibly bitcasted) value +  //   produced by the call or void. +  Value *RetVal = &CI; +  Instruction *Next = CI.getNextNode(); + +  // Handle the optional bitcast. +  if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { +    Assert(BI->getOperand(0) == RetVal, +           "bitcast following musttail call must use the call", BI); +    RetVal = BI; +    Next = BI->getNextNode(); +  } + +  // Check the return. +  ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); +  Assert(Ret, "musttail call must precede a ret with an optional bitcast", +         &CI); +  Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, +         "musttail call result must be returned", Ret); +} + +void Verifier::visitCallInst(CallInst &CI) { +  visitCallBase(CI); + +  if (CI.isMustTailCall()) +    verifyMustTailCall(CI); +} + +void Verifier::visitInvokeInst(InvokeInst &II) { +  visitCallBase(II); + +  // Verify that the first non-PHI instruction of the unwind destination is an +  // exception handling instruction. +  Assert( +      II.getUnwindDest()->isEHPad(), +      "The unwind destination does not have an exception handling instruction!", +      &II); + +  visitTerminator(II); +} + +/// visitUnaryOperator - Check the argument to the unary operator. +/// +void Verifier::visitUnaryOperator(UnaryOperator &U) { +  Assert(U.getType() == U.getOperand(0)->getType(),  +         "Unary operators must have same type for" +         "operands and result!", +         &U); + +  switch (U.getOpcode()) { +  // Check that floating-point arithmetic operators are only used with +  // floating-point operands. +  case Instruction::FNeg: +    Assert(U.getType()->isFPOrFPVectorTy(), +           "FNeg operator only works with float types!", &U); +    break; +  default: +    llvm_unreachable("Unknown UnaryOperator opcode!"); +  } + +  visitInstruction(U); +} + +/// visitBinaryOperator - Check that both arguments to the binary operator are +/// of the same type! +/// +void Verifier::visitBinaryOperator(BinaryOperator &B) { +  Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), +         "Both operands to a binary operator are not of the same type!", &B); + +  switch (B.getOpcode()) { +  // Check that integer arithmetic operators are only used with +  // integral operands. +  case Instruction::Add: +  case Instruction::Sub: +  case Instruction::Mul: +  case Instruction::SDiv: +  case Instruction::UDiv: +  case Instruction::SRem: +  case Instruction::URem: +    Assert(B.getType()->isIntOrIntVectorTy(), +           "Integer arithmetic operators only work with integral types!", &B); +    Assert(B.getType() == B.getOperand(0)->getType(), +           "Integer arithmetic operators must have same type " +           "for operands and result!", +           &B); +    break; +  // Check that floating-point arithmetic operators are only used with +  // floating-point operands. +  case Instruction::FAdd: +  case Instruction::FSub: +  case Instruction::FMul: +  case Instruction::FDiv: +  case Instruction::FRem: +    Assert(B.getType()->isFPOrFPVectorTy(), +           "Floating-point arithmetic operators only work with " +           "floating-point types!", +           &B); +    Assert(B.getType() == B.getOperand(0)->getType(), +           "Floating-point arithmetic operators must have same type " +           "for operands and result!", +           &B); +    break; +  // Check that logical operators are only used with integral operands. +  case Instruction::And: +  case Instruction::Or: +  case Instruction::Xor: +    Assert(B.getType()->isIntOrIntVectorTy(), +           "Logical operators only work with integral types!", &B); +    Assert(B.getType() == B.getOperand(0)->getType(), +           "Logical operators must have same type for operands and result!", +           &B); +    break; +  case Instruction::Shl: +  case Instruction::LShr: +  case Instruction::AShr: +    Assert(B.getType()->isIntOrIntVectorTy(), +           "Shifts only work with integral types!", &B); +    Assert(B.getType() == B.getOperand(0)->getType(), +           "Shift return type must be same as operands!", &B); +    break; +  default: +    llvm_unreachable("Unknown BinaryOperator opcode!"); +  } + +  visitInstruction(B); +} + +void Verifier::visitICmpInst(ICmpInst &IC) { +  // Check that the operands are the same type +  Type *Op0Ty = IC.getOperand(0)->getType(); +  Type *Op1Ty = IC.getOperand(1)->getType(); +  Assert(Op0Ty == Op1Ty, +         "Both operands to ICmp instruction are not of the same type!", &IC); +  // Check that the operands are the right type +  Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), +         "Invalid operand types for ICmp instruction", &IC); +  // Check that the predicate is valid. +  Assert(IC.isIntPredicate(), +         "Invalid predicate in ICmp instruction!", &IC); + +  visitInstruction(IC); +} + +void Verifier::visitFCmpInst(FCmpInst &FC) { +  // Check that the operands are the same type +  Type *Op0Ty = FC.getOperand(0)->getType(); +  Type *Op1Ty = FC.getOperand(1)->getType(); +  Assert(Op0Ty == Op1Ty, +         "Both operands to FCmp instruction are not of the same type!", &FC); +  // Check that the operands are the right type +  Assert(Op0Ty->isFPOrFPVectorTy(), +         "Invalid operand types for FCmp instruction", &FC); +  // Check that the predicate is valid. +  Assert(FC.isFPPredicate(), +         "Invalid predicate in FCmp instruction!", &FC); + +  visitInstruction(FC); +} + +void Verifier::visitExtractElementInst(ExtractElementInst &EI) { +  Assert( +      ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), +      "Invalid extractelement operands!", &EI); +  visitInstruction(EI); +} + +void Verifier::visitInsertElementInst(InsertElementInst &IE) { +  Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), +                                            IE.getOperand(2)), +         "Invalid insertelement operands!", &IE); +  visitInstruction(IE); +} + +void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { +  Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), +                                            SV.getOperand(2)), +         "Invalid shufflevector operands!", &SV); +  visitInstruction(SV); +} + +void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { +  Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); + +  Assert(isa<PointerType>(TargetTy), +         "GEP base pointer is not a vector or a vector of pointers", &GEP); +  Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); + +  SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); +  Assert(all_of( +      Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), +      "GEP indexes must be integers", &GEP); +  Type *ElTy = +      GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); +  Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); + +  Assert(GEP.getType()->isPtrOrPtrVectorTy() && +             GEP.getResultElementType() == ElTy, +         "GEP is not of right type for indices!", &GEP, ElTy); + +  if (GEP.getType()->isVectorTy()) { +    // Additional checks for vector GEPs. +    unsigned GEPWidth = GEP.getType()->getVectorNumElements(); +    if (GEP.getPointerOperandType()->isVectorTy()) +      Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(), +             "Vector GEP result width doesn't match operand's", &GEP); +    for (Value *Idx : Idxs) { +      Type *IndexTy = Idx->getType(); +      if (IndexTy->isVectorTy()) { +        unsigned IndexWidth = IndexTy->getVectorNumElements(); +        Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); +      } +      Assert(IndexTy->isIntOrIntVectorTy(), +             "All GEP indices should be of integer type"); +    } +  } + +  if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { +    Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), +           "GEP address space doesn't match type", &GEP); +  } + +  visitInstruction(GEP); +} + +static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { +  return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); +} + +void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { +  assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && +         "precondition violation"); + +  unsigned NumOperands = Range->getNumOperands(); +  Assert(NumOperands % 2 == 0, "Unfinished range!", Range); +  unsigned NumRanges = NumOperands / 2; +  Assert(NumRanges >= 1, "It should have at least one range!", Range); + +  ConstantRange LastRange(1, true); // Dummy initial value +  for (unsigned i = 0; i < NumRanges; ++i) { +    ConstantInt *Low = +        mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); +    Assert(Low, "The lower limit must be an integer!", Low); +    ConstantInt *High = +        mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); +    Assert(High, "The upper limit must be an integer!", High); +    Assert(High->getType() == Low->getType() && High->getType() == Ty, +           "Range types must match instruction type!", &I); + +    APInt HighV = High->getValue(); +    APInt LowV = Low->getValue(); +    ConstantRange CurRange(LowV, HighV); +    Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), +           "Range must not be empty!", Range); +    if (i != 0) { +      Assert(CurRange.intersectWith(LastRange).isEmptySet(), +             "Intervals are overlapping", Range); +      Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", +             Range); +      Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", +             Range); +    } +    LastRange = ConstantRange(LowV, HighV); +  } +  if (NumRanges > 2) { +    APInt FirstLow = +        mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); +    APInt FirstHigh = +        mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); +    ConstantRange FirstRange(FirstLow, FirstHigh); +    Assert(FirstRange.intersectWith(LastRange).isEmptySet(), +           "Intervals are overlapping", Range); +    Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", +           Range); +  } +} + +void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { +  unsigned Size = DL.getTypeSizeInBits(Ty); +  Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); +  Assert(!(Size & (Size - 1)), +         "atomic memory access' operand must have a power-of-two size", Ty, I); +} + +void Verifier::visitLoadInst(LoadInst &LI) { +  PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); +  Assert(PTy, "Load operand must be a pointer.", &LI); +  Type *ElTy = LI.getType(); +  Assert(LI.getAlignment() <= Value::MaximumAlignment, +         "huge alignment values are unsupported", &LI); +  Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); +  if (LI.isAtomic()) { +    Assert(LI.getOrdering() != AtomicOrdering::Release && +               LI.getOrdering() != AtomicOrdering::AcquireRelease, +           "Load cannot have Release ordering", &LI); +    Assert(LI.getAlignment() != 0, +           "Atomic load must specify explicit alignment", &LI); +    Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), +           "atomic load operand must have integer, pointer, or floating point " +           "type!", +           ElTy, &LI); +    checkAtomicMemAccessSize(ElTy, &LI); +  } else { +    Assert(LI.getSyncScopeID() == SyncScope::System, +           "Non-atomic load cannot have SynchronizationScope specified", &LI); +  } + +  visitInstruction(LI); +} + +void Verifier::visitStoreInst(StoreInst &SI) { +  PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); +  Assert(PTy, "Store operand must be a pointer.", &SI); +  Type *ElTy = PTy->getElementType(); +  Assert(ElTy == SI.getOperand(0)->getType(), +         "Stored value type does not match pointer operand type!", &SI, ElTy); +  Assert(SI.getAlignment() <= Value::MaximumAlignment, +         "huge alignment values are unsupported", &SI); +  Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); +  if (SI.isAtomic()) { +    Assert(SI.getOrdering() != AtomicOrdering::Acquire && +               SI.getOrdering() != AtomicOrdering::AcquireRelease, +           "Store cannot have Acquire ordering", &SI); +    Assert(SI.getAlignment() != 0, +           "Atomic store must specify explicit alignment", &SI); +    Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), +           "atomic store operand must have integer, pointer, or floating point " +           "type!", +           ElTy, &SI); +    checkAtomicMemAccessSize(ElTy, &SI); +  } else { +    Assert(SI.getSyncScopeID() == SyncScope::System, +           "Non-atomic store cannot have SynchronizationScope specified", &SI); +  } +  visitInstruction(SI); +} + +/// Check that SwiftErrorVal is used as a swifterror argument in CS. +void Verifier::verifySwiftErrorCall(CallBase &Call, +                                    const Value *SwiftErrorVal) { +  unsigned Idx = 0; +  for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) { +    if (*I == SwiftErrorVal) { +      Assert(Call.paramHasAttr(Idx, Attribute::SwiftError), +             "swifterror value when used in a callsite should be marked " +             "with swifterror attribute", +             SwiftErrorVal, Call); +    } +  } +} + +void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { +  // Check that swifterror value is only used by loads, stores, or as +  // a swifterror argument. +  for (const User *U : SwiftErrorVal->users()) { +    Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || +           isa<InvokeInst>(U), +           "swifterror value can only be loaded and stored from, or " +           "as a swifterror argument!", +           SwiftErrorVal, U); +    // If it is used by a store, check it is the second operand. +    if (auto StoreI = dyn_cast<StoreInst>(U)) +      Assert(StoreI->getOperand(1) == SwiftErrorVal, +             "swifterror value should be the second operand when used " +             "by stores", SwiftErrorVal, U); +    if (auto *Call = dyn_cast<CallBase>(U)) +      verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); +  } +} + +void Verifier::visitAllocaInst(AllocaInst &AI) { +  SmallPtrSet<Type*, 4> Visited; +  PointerType *PTy = AI.getType(); +  // TODO: Relax this restriction? +  Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(), +         "Allocation instruction pointer not in the stack address space!", +         &AI); +  Assert(AI.getAllocatedType()->isSized(&Visited), +         "Cannot allocate unsized type", &AI); +  Assert(AI.getArraySize()->getType()->isIntegerTy(), +         "Alloca array size must have integer type", &AI); +  Assert(AI.getAlignment() <= Value::MaximumAlignment, +         "huge alignment values are unsupported", &AI); + +  if (AI.isSwiftError()) { +    verifySwiftErrorValue(&AI); +  } + +  visitInstruction(AI); +} + +void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { + +  // FIXME: more conditions??? +  Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic, +         "cmpxchg instructions must be atomic.", &CXI); +  Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic, +         "cmpxchg instructions must be atomic.", &CXI); +  Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered, +         "cmpxchg instructions cannot be unordered.", &CXI); +  Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered, +         "cmpxchg instructions cannot be unordered.", &CXI); +  Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()), +         "cmpxchg instructions failure argument shall be no stronger than the " +         "success argument", +         &CXI); +  Assert(CXI.getFailureOrdering() != AtomicOrdering::Release && +             CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease, +         "cmpxchg failure ordering cannot include release semantics", &CXI); + +  PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); +  Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); +  Type *ElTy = PTy->getElementType(); +  Assert(ElTy->isIntOrPtrTy(), +         "cmpxchg operand must have integer or pointer type", ElTy, &CXI); +  checkAtomicMemAccessSize(ElTy, &CXI); +  Assert(ElTy == CXI.getOperand(1)->getType(), +         "Expected value type does not match pointer operand type!", &CXI, +         ElTy); +  Assert(ElTy == CXI.getOperand(2)->getType(), +         "Stored value type does not match pointer operand type!", &CXI, ElTy); +  visitInstruction(CXI); +} + +void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { +  Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic, +         "atomicrmw instructions must be atomic.", &RMWI); +  Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, +         "atomicrmw instructions cannot be unordered.", &RMWI); +  auto Op = RMWI.getOperation(); +  PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); +  Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); +  Type *ElTy = PTy->getElementType(); +  if (Op == AtomicRMWInst::Xchg) { +    Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " + +           AtomicRMWInst::getOperationName(Op) + +           " operand must have integer or floating point type!", +           &RMWI, ElTy); +  } else if (AtomicRMWInst::isFPOperation(Op)) { +    Assert(ElTy->isFloatingPointTy(), "atomicrmw " + +           AtomicRMWInst::getOperationName(Op) + +           " operand must have floating point type!", +           &RMWI, ElTy); +  } else { +    Assert(ElTy->isIntegerTy(), "atomicrmw " + +           AtomicRMWInst::getOperationName(Op) + +           " operand must have integer type!", +           &RMWI, ElTy); +  } +  checkAtomicMemAccessSize(ElTy, &RMWI); +  Assert(ElTy == RMWI.getOperand(1)->getType(), +         "Argument value type does not match pointer operand type!", &RMWI, +         ElTy); +  Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, +         "Invalid binary operation!", &RMWI); +  visitInstruction(RMWI); +} + +void Verifier::visitFenceInst(FenceInst &FI) { +  const AtomicOrdering Ordering = FI.getOrdering(); +  Assert(Ordering == AtomicOrdering::Acquire || +             Ordering == AtomicOrdering::Release || +             Ordering == AtomicOrdering::AcquireRelease || +             Ordering == AtomicOrdering::SequentiallyConsistent, +         "fence instructions may only have acquire, release, acq_rel, or " +         "seq_cst ordering.", +         &FI); +  visitInstruction(FI); +} + +void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { +  Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), +                                          EVI.getIndices()) == EVI.getType(), +         "Invalid ExtractValueInst operands!", &EVI); + +  visitInstruction(EVI); +} + +void Verifier::visitInsertValueInst(InsertValueInst &IVI) { +  Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), +                                          IVI.getIndices()) == +             IVI.getOperand(1)->getType(), +         "Invalid InsertValueInst operands!", &IVI); + +  visitInstruction(IVI); +} + +static Value *getParentPad(Value *EHPad) { +  if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) +    return FPI->getParentPad(); + +  return cast<CatchSwitchInst>(EHPad)->getParentPad(); +} + +void Verifier::visitEHPadPredecessors(Instruction &I) { +  assert(I.isEHPad()); + +  BasicBlock *BB = I.getParent(); +  Function *F = BB->getParent(); + +  Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); + +  if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { +    // The landingpad instruction defines its parent as a landing pad block. The +    // landing pad block may be branched to only by the unwind edge of an +    // invoke. +    for (BasicBlock *PredBB : predecessors(BB)) { +      const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); +      Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, +             "Block containing LandingPadInst must be jumped to " +             "only by the unwind edge of an invoke.", +             LPI); +    } +    return; +  } +  if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { +    if (!pred_empty(BB)) +      Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), +             "Block containg CatchPadInst must be jumped to " +             "only by its catchswitch.", +             CPI); +    Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), +           "Catchswitch cannot unwind to one of its catchpads", +           CPI->getCatchSwitch(), CPI); +    return; +  } + +  // Verify that each pred has a legal terminator with a legal to/from EH +  // pad relationship. +  Instruction *ToPad = &I; +  Value *ToPadParent = getParentPad(ToPad); +  for (BasicBlock *PredBB : predecessors(BB)) { +    Instruction *TI = PredBB->getTerminator(); +    Value *FromPad; +    if (auto *II = dyn_cast<InvokeInst>(TI)) { +      Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, +             "EH pad must be jumped to via an unwind edge", ToPad, II); +      if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) +        FromPad = Bundle->Inputs[0]; +      else +        FromPad = ConstantTokenNone::get(II->getContext()); +    } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { +      FromPad = CRI->getOperand(0); +      Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); +    } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { +      FromPad = CSI; +    } else { +      Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); +    } + +    // The edge may exit from zero or more nested pads. +    SmallSet<Value *, 8> Seen; +    for (;; FromPad = getParentPad(FromPad)) { +      Assert(FromPad != ToPad, +             "EH pad cannot handle exceptions raised within it", FromPad, TI); +      if (FromPad == ToPadParent) { +        // This is a legal unwind edge. +        break; +      } +      Assert(!isa<ConstantTokenNone>(FromPad), +             "A single unwind edge may only enter one EH pad", TI); +      Assert(Seen.insert(FromPad).second, +             "EH pad jumps through a cycle of pads", FromPad); +    } +  } +} + +void Verifier::visitLandingPadInst(LandingPadInst &LPI) { +  // The landingpad instruction is ill-formed if it doesn't have any clauses and +  // isn't a cleanup. +  Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), +         "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); + +  visitEHPadPredecessors(LPI); + +  if (!LandingPadResultTy) +    LandingPadResultTy = LPI.getType(); +  else +    Assert(LandingPadResultTy == LPI.getType(), +           "The landingpad instruction should have a consistent result type " +           "inside a function.", +           &LPI); + +  Function *F = LPI.getParent()->getParent(); +  Assert(F->hasPersonalityFn(), +         "LandingPadInst needs to be in a function with a personality.", &LPI); + +  // The landingpad instruction must be the first non-PHI instruction in the +  // block. +  Assert(LPI.getParent()->getLandingPadInst() == &LPI, +         "LandingPadInst not the first non-PHI instruction in the block.", +         &LPI); + +  for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { +    Constant *Clause = LPI.getClause(i); +    if (LPI.isCatch(i)) { +      Assert(isa<PointerType>(Clause->getType()), +             "Catch operand does not have pointer type!", &LPI); +    } else { +      Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); +      Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), +             "Filter operand is not an array of constants!", &LPI); +    } +  } + +  visitInstruction(LPI); +} + +void Verifier::visitResumeInst(ResumeInst &RI) { +  Assert(RI.getFunction()->hasPersonalityFn(), +         "ResumeInst needs to be in a function with a personality.", &RI); + +  if (!LandingPadResultTy) +    LandingPadResultTy = RI.getValue()->getType(); +  else +    Assert(LandingPadResultTy == RI.getValue()->getType(), +           "The resume instruction should have a consistent result type " +           "inside a function.", +           &RI); + +  visitTerminator(RI); +} + +void Verifier::visitCatchPadInst(CatchPadInst &CPI) { +  BasicBlock *BB = CPI.getParent(); + +  Function *F = BB->getParent(); +  Assert(F->hasPersonalityFn(), +         "CatchPadInst needs to be in a function with a personality.", &CPI); + +  Assert(isa<CatchSwitchInst>(CPI.getParentPad()), +         "CatchPadInst needs to be directly nested in a CatchSwitchInst.", +         CPI.getParentPad()); + +  // The catchpad instruction must be the first non-PHI instruction in the +  // block. +  Assert(BB->getFirstNonPHI() == &CPI, +         "CatchPadInst not the first non-PHI instruction in the block.", &CPI); + +  visitEHPadPredecessors(CPI); +  visitFuncletPadInst(CPI); +} + +void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { +  Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), +         "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, +         CatchReturn.getOperand(0)); + +  visitTerminator(CatchReturn); +} + +void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { +  BasicBlock *BB = CPI.getParent(); + +  Function *F = BB->getParent(); +  Assert(F->hasPersonalityFn(), +         "CleanupPadInst needs to be in a function with a personality.", &CPI); + +  // The cleanuppad instruction must be the first non-PHI instruction in the +  // block. +  Assert(BB->getFirstNonPHI() == &CPI, +         "CleanupPadInst not the first non-PHI instruction in the block.", +         &CPI); + +  auto *ParentPad = CPI.getParentPad(); +  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), +         "CleanupPadInst has an invalid parent.", &CPI); + +  visitEHPadPredecessors(CPI); +  visitFuncletPadInst(CPI); +} + +void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { +  User *FirstUser = nullptr; +  Value *FirstUnwindPad = nullptr; +  SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); +  SmallSet<FuncletPadInst *, 8> Seen; + +  while (!Worklist.empty()) { +    FuncletPadInst *CurrentPad = Worklist.pop_back_val(); +    Assert(Seen.insert(CurrentPad).second, +           "FuncletPadInst must not be nested within itself", CurrentPad); +    Value *UnresolvedAncestorPad = nullptr; +    for (User *U : CurrentPad->users()) { +      BasicBlock *UnwindDest; +      if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { +        UnwindDest = CRI->getUnwindDest(); +      } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { +        // We allow catchswitch unwind to caller to nest +        // within an outer pad that unwinds somewhere else, +        // because catchswitch doesn't have a nounwind variant. +        // See e.g. SimplifyCFGOpt::SimplifyUnreachable. +        if (CSI->unwindsToCaller()) +          continue; +        UnwindDest = CSI->getUnwindDest(); +      } else if (auto *II = dyn_cast<InvokeInst>(U)) { +        UnwindDest = II->getUnwindDest(); +      } else if (isa<CallInst>(U)) { +        // Calls which don't unwind may be found inside funclet +        // pads that unwind somewhere else.  We don't *require* +        // such calls to be annotated nounwind. +        continue; +      } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { +        // The unwind dest for a cleanup can only be found by +        // recursive search.  Add it to the worklist, and we'll +        // search for its first use that determines where it unwinds. +        Worklist.push_back(CPI); +        continue; +      } else { +        Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); +        continue; +      } + +      Value *UnwindPad; +      bool ExitsFPI; +      if (UnwindDest) { +        UnwindPad = UnwindDest->getFirstNonPHI(); +        if (!cast<Instruction>(UnwindPad)->isEHPad()) +          continue; +        Value *UnwindParent = getParentPad(UnwindPad); +        // Ignore unwind edges that don't exit CurrentPad. +        if (UnwindParent == CurrentPad) +          continue; +        // Determine whether the original funclet pad is exited, +        // and if we are scanning nested pads determine how many +        // of them are exited so we can stop searching their +        // children. +        Value *ExitedPad = CurrentPad; +        ExitsFPI = false; +        do { +          if (ExitedPad == &FPI) { +            ExitsFPI = true; +            // Now we can resolve any ancestors of CurrentPad up to +            // FPI, but not including FPI since we need to make sure +            // to check all direct users of FPI for consistency. +            UnresolvedAncestorPad = &FPI; +            break; +          } +          Value *ExitedParent = getParentPad(ExitedPad); +          if (ExitedParent == UnwindParent) { +            // ExitedPad is the ancestor-most pad which this unwind +            // edge exits, so we can resolve up to it, meaning that +            // ExitedParent is the first ancestor still unresolved. +            UnresolvedAncestorPad = ExitedParent; +            break; +          } +          ExitedPad = ExitedParent; +        } while (!isa<ConstantTokenNone>(ExitedPad)); +      } else { +        // Unwinding to caller exits all pads. +        UnwindPad = ConstantTokenNone::get(FPI.getContext()); +        ExitsFPI = true; +        UnresolvedAncestorPad = &FPI; +      } + +      if (ExitsFPI) { +        // This unwind edge exits FPI.  Make sure it agrees with other +        // such edges. +        if (FirstUser) { +          Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " +                                              "pad must have the same unwind " +                                              "dest", +                 &FPI, U, FirstUser); +        } else { +          FirstUser = U; +          FirstUnwindPad = UnwindPad; +          // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds +          if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && +              getParentPad(UnwindPad) == getParentPad(&FPI)) +            SiblingFuncletInfo[&FPI] = cast<Instruction>(U); +        } +      } +      // Make sure we visit all uses of FPI, but for nested pads stop as +      // soon as we know where they unwind to. +      if (CurrentPad != &FPI) +        break; +    } +    if (UnresolvedAncestorPad) { +      if (CurrentPad == UnresolvedAncestorPad) { +        // When CurrentPad is FPI itself, we don't mark it as resolved even if +        // we've found an unwind edge that exits it, because we need to verify +        // all direct uses of FPI. +        assert(CurrentPad == &FPI); +        continue; +      } +      // Pop off the worklist any nested pads that we've found an unwind +      // destination for.  The pads on the worklist are the uncles, +      // great-uncles, etc. of CurrentPad.  We've found an unwind destination +      // for all ancestors of CurrentPad up to but not including +      // UnresolvedAncestorPad. +      Value *ResolvedPad = CurrentPad; +      while (!Worklist.empty()) { +        Value *UnclePad = Worklist.back(); +        Value *AncestorPad = getParentPad(UnclePad); +        // Walk ResolvedPad up the ancestor list until we either find the +        // uncle's parent or the last resolved ancestor. +        while (ResolvedPad != AncestorPad) { +          Value *ResolvedParent = getParentPad(ResolvedPad); +          if (ResolvedParent == UnresolvedAncestorPad) { +            break; +          } +          ResolvedPad = ResolvedParent; +        } +        // If the resolved ancestor search didn't find the uncle's parent, +        // then the uncle is not yet resolved. +        if (ResolvedPad != AncestorPad) +          break; +        // This uncle is resolved, so pop it from the worklist. +        Worklist.pop_back(); +      } +    } +  } + +  if (FirstUnwindPad) { +    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { +      BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); +      Value *SwitchUnwindPad; +      if (SwitchUnwindDest) +        SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); +      else +        SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); +      Assert(SwitchUnwindPad == FirstUnwindPad, +             "Unwind edges out of a catch must have the same unwind dest as " +             "the parent catchswitch", +             &FPI, FirstUser, CatchSwitch); +    } +  } + +  visitInstruction(FPI); +} + +void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { +  BasicBlock *BB = CatchSwitch.getParent(); + +  Function *F = BB->getParent(); +  Assert(F->hasPersonalityFn(), +         "CatchSwitchInst needs to be in a function with a personality.", +         &CatchSwitch); + +  // The catchswitch instruction must be the first non-PHI instruction in the +  // block. +  Assert(BB->getFirstNonPHI() == &CatchSwitch, +         "CatchSwitchInst not the first non-PHI instruction in the block.", +         &CatchSwitch); + +  auto *ParentPad = CatchSwitch.getParentPad(); +  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), +         "CatchSwitchInst has an invalid parent.", ParentPad); + +  if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { +    Instruction *I = UnwindDest->getFirstNonPHI(); +    Assert(I->isEHPad() && !isa<LandingPadInst>(I), +           "CatchSwitchInst must unwind to an EH block which is not a " +           "landingpad.", +           &CatchSwitch); + +    // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds +    if (getParentPad(I) == ParentPad) +      SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; +  } + +  Assert(CatchSwitch.getNumHandlers() != 0, +         "CatchSwitchInst cannot have empty handler list", &CatchSwitch); + +  for (BasicBlock *Handler : CatchSwitch.handlers()) { +    Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), +           "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); +  } + +  visitEHPadPredecessors(CatchSwitch); +  visitTerminator(CatchSwitch); +} + +void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { +  Assert(isa<CleanupPadInst>(CRI.getOperand(0)), +         "CleanupReturnInst needs to be provided a CleanupPad", &CRI, +         CRI.getOperand(0)); + +  if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { +    Instruction *I = UnwindDest->getFirstNonPHI(); +    Assert(I->isEHPad() && !isa<LandingPadInst>(I), +           "CleanupReturnInst must unwind to an EH block which is not a " +           "landingpad.", +           &CRI); +  } + +  visitTerminator(CRI); +} + +void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { +  Instruction *Op = cast<Instruction>(I.getOperand(i)); +  // If the we have an invalid invoke, don't try to compute the dominance. +  // We already reject it in the invoke specific checks and the dominance +  // computation doesn't handle multiple edges. +  if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { +    if (II->getNormalDest() == II->getUnwindDest()) +      return; +  } + +  // Quick check whether the def has already been encountered in the same block. +  // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI +  // uses are defined to happen on the incoming edge, not at the instruction. +  // +  // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) +  // wrapping an SSA value, assert that we've already encountered it.  See +  // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. +  if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) +    return; + +  const Use &U = I.getOperandUse(i); +  Assert(DT.dominates(Op, U), +         "Instruction does not dominate all uses!", Op, &I); +} + +void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { +  Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " +         "apply only to pointer types", &I); +  Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), +         "dereferenceable, dereferenceable_or_null apply only to load" +         " and inttoptr instructions, use attributes for calls or invokes", &I); +  Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " +         "take one operand!", &I); +  ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); +  Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " +         "dereferenceable_or_null metadata value must be an i64!", &I); +} + +void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { +  Assert(MD->getNumOperands() >= 2, +         "!prof annotations should have no less than 2 operands", MD); + +  // Check first operand. +  Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD); +  Assert(isa<MDString>(MD->getOperand(0)), +         "expected string with name of the !prof annotation", MD); +  MDString *MDS = cast<MDString>(MD->getOperand(0)); +  StringRef ProfName = MDS->getString(); + +  // Check consistency of !prof branch_weights metadata. +  if (ProfName.equals("branch_weights")) { +    unsigned ExpectedNumOperands = 0; +    if (BranchInst *BI = dyn_cast<BranchInst>(&I)) +      ExpectedNumOperands = BI->getNumSuccessors(); +    else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) +      ExpectedNumOperands = SI->getNumSuccessors(); +    else if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) +      ExpectedNumOperands = 1; +    else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) +      ExpectedNumOperands = IBI->getNumDestinations(); +    else if (isa<SelectInst>(&I)) +      ExpectedNumOperands = 2; +    else +      CheckFailed("!prof branch_weights are not allowed for this instruction", +                  MD); + +    Assert(MD->getNumOperands() == 1 + ExpectedNumOperands, +           "Wrong number of operands", MD); +    for (unsigned i = 1; i < MD->getNumOperands(); ++i) { +      auto &MDO = MD->getOperand(i); +      Assert(MDO, "second operand should not be null", MD); +      Assert(mdconst::dyn_extract<ConstantInt>(MDO), +             "!prof brunch_weights operand is not a const int"); +    } +  } +} + +/// verifyInstruction - Verify that an instruction is well formed. +/// +void Verifier::visitInstruction(Instruction &I) { +  BasicBlock *BB = I.getParent(); +  Assert(BB, "Instruction not embedded in basic block!", &I); + +  if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential +    for (User *U : I.users()) { +      Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), +             "Only PHI nodes may reference their own value!", &I); +    } +  } + +  // Check that void typed values don't have names +  Assert(!I.getType()->isVoidTy() || !I.hasName(), +         "Instruction has a name, but provides a void value!", &I); + +  // Check that the return value of the instruction is either void or a legal +  // value type. +  Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), +         "Instruction returns a non-scalar type!", &I); + +  // Check that the instruction doesn't produce metadata. Calls are already +  // checked against the callee type. +  Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), +         "Invalid use of metadata!", &I); + +  // Check that all uses of the instruction, if they are instructions +  // themselves, actually have parent basic blocks.  If the use is not an +  // instruction, it is an error! +  for (Use &U : I.uses()) { +    if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) +      Assert(Used->getParent() != nullptr, +             "Instruction referencing" +             " instruction not embedded in a basic block!", +             &I, Used); +    else { +      CheckFailed("Use of instruction is not an instruction!", U); +      return; +    } +  } + +  // Get a pointer to the call base of the instruction if it is some form of +  // call. +  const CallBase *CBI = dyn_cast<CallBase>(&I); + +  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { +    Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); + +    // Check to make sure that only first-class-values are operands to +    // instructions. +    if (!I.getOperand(i)->getType()->isFirstClassType()) { +      Assert(false, "Instruction operands must be first-class values!", &I); +    } + +    if (Function *F = dyn_cast<Function>(I.getOperand(i))) { +      // Check to make sure that the "address of" an intrinsic function is never +      // taken. +      Assert(!F->isIntrinsic() || +                 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)), +             "Cannot take the address of an intrinsic!", &I); +      Assert( +          !F->isIntrinsic() || isa<CallInst>(I) || +              F->getIntrinsicID() == Intrinsic::donothing || +              F->getIntrinsicID() == Intrinsic::coro_resume || +              F->getIntrinsicID() == Intrinsic::coro_destroy || +              F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || +              F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || +              F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || +              F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch, +          "Cannot invoke an intrinsic other than donothing, patchpoint, " +          "statepoint, coro_resume or coro_destroy", +          &I); +      Assert(F->getParent() == &M, "Referencing function in another module!", +             &I, &M, F, F->getParent()); +    } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { +      Assert(OpBB->getParent() == BB->getParent(), +             "Referring to a basic block in another function!", &I); +    } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { +      Assert(OpArg->getParent() == BB->getParent(), +             "Referring to an argument in another function!", &I); +    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { +      Assert(GV->getParent() == &M, "Referencing global in another module!", &I, +             &M, GV, GV->getParent()); +    } else if (isa<Instruction>(I.getOperand(i))) { +      verifyDominatesUse(I, i); +    } else if (isa<InlineAsm>(I.getOperand(i))) { +      Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), +             "Cannot take the address of an inline asm!", &I); +    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { +      if (CE->getType()->isPtrOrPtrVectorTy() || +          !DL.getNonIntegralAddressSpaces().empty()) { +        // If we have a ConstantExpr pointer, we need to see if it came from an +        // illegal bitcast.  If the datalayout string specifies non-integral +        // address spaces then we also need to check for illegal ptrtoint and +        // inttoptr expressions. +        visitConstantExprsRecursively(CE); +      } +    } +  } + +  if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { +    Assert(I.getType()->isFPOrFPVectorTy(), +           "fpmath requires a floating point result!", &I); +    Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); +    if (ConstantFP *CFP0 = +            mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { +      const APFloat &Accuracy = CFP0->getValueAPF(); +      Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), +             "fpmath accuracy must have float type", &I); +      Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), +             "fpmath accuracy not a positive number!", &I); +    } else { +      Assert(false, "invalid fpmath accuracy!", &I); +    } +  } + +  if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { +    Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), +           "Ranges are only for loads, calls and invokes!", &I); +    visitRangeMetadata(I, Range, I.getType()); +  } + +  if (I.getMetadata(LLVMContext::MD_nonnull)) { +    Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", +           &I); +    Assert(isa<LoadInst>(I), +           "nonnull applies only to load instructions, use attributes" +           " for calls or invokes", +           &I); +  } + +  if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) +    visitDereferenceableMetadata(I, MD); + +  if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) +    visitDereferenceableMetadata(I, MD); + +  if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) +    TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); + +  if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { +    Assert(I.getType()->isPointerTy(), "align applies only to pointer types", +           &I); +    Assert(isa<LoadInst>(I), "align applies only to load instructions, " +           "use attributes for calls or invokes", &I); +    Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); +    ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); +    Assert(CI && CI->getType()->isIntegerTy(64), +           "align metadata value must be an i64!", &I); +    uint64_t Align = CI->getZExtValue(); +    Assert(isPowerOf2_64(Align), +           "align metadata value must be a power of 2!", &I); +    Assert(Align <= Value::MaximumAlignment, +           "alignment is larger that implementation defined limit", &I); +  } + +  if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) +    visitProfMetadata(I, MD); + +  if (MDNode *N = I.getDebugLoc().getAsMDNode()) { +    AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); +    visitMDNode(*N); +  } + +  if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { +    verifyFragmentExpression(*DII); +    verifyNotEntryValue(*DII); +  } + +  InstsInThisBlock.insert(&I); +} + +/// Allow intrinsics to be verified in different ways. +void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { +  Function *IF = Call.getCalledFunction(); +  Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", +         IF); + +  // Verify that the intrinsic prototype lines up with what the .td files +  // describe. +  FunctionType *IFTy = IF->getFunctionType(); +  bool IsVarArg = IFTy->isVarArg(); + +  SmallVector<Intrinsic::IITDescriptor, 8> Table; +  getIntrinsicInfoTableEntries(ID, Table); +  ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; + +  // Walk the descriptors to extract overloaded types. +  SmallVector<Type *, 4> ArgTys; +  Intrinsic::MatchIntrinsicTypesResult Res = +      Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); +  Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, +         "Intrinsic has incorrect return type!", IF); +  Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, +         "Intrinsic has incorrect argument type!", IF); + +  // Verify if the intrinsic call matches the vararg property. +  if (IsVarArg) +    Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), +           "Intrinsic was not defined with variable arguments!", IF); +  else +    Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), +           "Callsite was not defined with variable arguments!", IF); + +  // All descriptors should be absorbed by now. +  Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); + +  // Now that we have the intrinsic ID and the actual argument types (and we +  // know they are legal for the intrinsic!) get the intrinsic name through the +  // usual means.  This allows us to verify the mangling of argument types into +  // the name. +  const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); +  Assert(ExpectedName == IF->getName(), +         "Intrinsic name not mangled correctly for type arguments! " +         "Should be: " + +             ExpectedName, +         IF); + +  // If the intrinsic takes MDNode arguments, verify that they are either global +  // or are local to *this* function. +  for (Value *V : Call.args()) +    if (auto *MD = dyn_cast<MetadataAsValue>(V)) +      visitMetadataAsValue(*MD, Call.getCaller()); + +  switch (ID) { +  default: +    break; +  case Intrinsic::coro_id: { +    auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); +    if (isa<ConstantPointerNull>(InfoArg)) +      break; +    auto *GV = dyn_cast<GlobalVariable>(InfoArg); +    Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), +      "info argument of llvm.coro.begin must refer to an initialized " +      "constant"); +    Constant *Init = GV->getInitializer(); +    Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), +      "info argument of llvm.coro.begin must refer to either a struct or " +      "an array"); +    break; +  } +  case Intrinsic::experimental_constrained_fadd: +  case Intrinsic::experimental_constrained_fsub: +  case Intrinsic::experimental_constrained_fmul: +  case Intrinsic::experimental_constrained_fdiv: +  case Intrinsic::experimental_constrained_frem: +  case Intrinsic::experimental_constrained_fma: +  case Intrinsic::experimental_constrained_fptosi: +  case Intrinsic::experimental_constrained_fptoui: +  case Intrinsic::experimental_constrained_fptrunc: +  case Intrinsic::experimental_constrained_fpext: +  case Intrinsic::experimental_constrained_sqrt: +  case Intrinsic::experimental_constrained_pow: +  case Intrinsic::experimental_constrained_powi: +  case Intrinsic::experimental_constrained_sin: +  case Intrinsic::experimental_constrained_cos: +  case Intrinsic::experimental_constrained_exp: +  case Intrinsic::experimental_constrained_exp2: +  case Intrinsic::experimental_constrained_log: +  case Intrinsic::experimental_constrained_log10: +  case Intrinsic::experimental_constrained_log2: +  case Intrinsic::experimental_constrained_lrint: +  case Intrinsic::experimental_constrained_llrint: +  case Intrinsic::experimental_constrained_rint: +  case Intrinsic::experimental_constrained_nearbyint: +  case Intrinsic::experimental_constrained_maxnum: +  case Intrinsic::experimental_constrained_minnum: +  case Intrinsic::experimental_constrained_ceil: +  case Intrinsic::experimental_constrained_floor: +  case Intrinsic::experimental_constrained_lround: +  case Intrinsic::experimental_constrained_llround: +  case Intrinsic::experimental_constrained_round: +  case Intrinsic::experimental_constrained_trunc: +    visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); +    break; +  case Intrinsic::dbg_declare: // llvm.dbg.declare +    Assert(isa<MetadataAsValue>(Call.getArgOperand(0)), +           "invalid llvm.dbg.declare intrinsic call 1", Call); +    visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); +    break; +  case Intrinsic::dbg_addr: // llvm.dbg.addr +    visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); +    break; +  case Intrinsic::dbg_value: // llvm.dbg.value +    visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); +    break; +  case Intrinsic::dbg_label: // llvm.dbg.label +    visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); +    break; +  case Intrinsic::memcpy: +  case Intrinsic::memmove: +  case Intrinsic::memset: { +    const auto *MI = cast<MemIntrinsic>(&Call); +    auto IsValidAlignment = [&](unsigned Alignment) -> bool { +      return Alignment == 0 || isPowerOf2_32(Alignment); +    }; +    Assert(IsValidAlignment(MI->getDestAlignment()), +           "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", +           Call); +    if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { +      Assert(IsValidAlignment(MTI->getSourceAlignment()), +             "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", +             Call); +    } + +    break; +  } +  case Intrinsic::memcpy_element_unordered_atomic: +  case Intrinsic::memmove_element_unordered_atomic: +  case Intrinsic::memset_element_unordered_atomic: { +    const auto *AMI = cast<AtomicMemIntrinsic>(&Call); + +    ConstantInt *ElementSizeCI = +        cast<ConstantInt>(AMI->getRawElementSizeInBytes()); +    const APInt &ElementSizeVal = ElementSizeCI->getValue(); +    Assert(ElementSizeVal.isPowerOf2(), +           "element size of the element-wise atomic memory intrinsic " +           "must be a power of 2", +           Call); + +    if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) { +      uint64_t Length = LengthCI->getZExtValue(); +      uint64_t ElementSize = AMI->getElementSizeInBytes(); +      Assert((Length % ElementSize) == 0, +             "constant length must be a multiple of the element size in the " +             "element-wise atomic memory intrinsic", +             Call); +    } + +    auto IsValidAlignment = [&](uint64_t Alignment) { +      return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); +    }; +    uint64_t DstAlignment = AMI->getDestAlignment(); +    Assert(IsValidAlignment(DstAlignment), +           "incorrect alignment of the destination argument", Call); +    if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { +      uint64_t SrcAlignment = AMT->getSourceAlignment(); +      Assert(IsValidAlignment(SrcAlignment), +             "incorrect alignment of the source argument", Call); +    } +    break; +  } +  case Intrinsic::gcroot: +  case Intrinsic::gcwrite: +  case Intrinsic::gcread: +    if (ID == Intrinsic::gcroot) { +      AllocaInst *AI = +          dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); +      Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); +      Assert(isa<Constant>(Call.getArgOperand(1)), +             "llvm.gcroot parameter #2 must be a constant.", Call); +      if (!AI->getAllocatedType()->isPointerTy()) { +        Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)), +               "llvm.gcroot parameter #1 must either be a pointer alloca, " +               "or argument #2 must be a non-null constant.", +               Call); +      } +    } + +    Assert(Call.getParent()->getParent()->hasGC(), +           "Enclosing function does not use GC.", Call); +    break; +  case Intrinsic::init_trampoline: +    Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), +           "llvm.init_trampoline parameter #2 must resolve to a function.", +           Call); +    break; +  case Intrinsic::prefetch: +    Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && +           cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, +           "invalid arguments to llvm.prefetch", Call); +    break; +  case Intrinsic::stackprotector: +    Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), +           "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); +    break; +  case Intrinsic::localescape: { +    BasicBlock *BB = Call.getParent(); +    Assert(BB == &BB->getParent()->front(), +           "llvm.localescape used outside of entry block", Call); +    Assert(!SawFrameEscape, +           "multiple calls to llvm.localescape in one function", Call); +    for (Value *Arg : Call.args()) { +      if (isa<ConstantPointerNull>(Arg)) +        continue; // Null values are allowed as placeholders. +      auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); +      Assert(AI && AI->isStaticAlloca(), +             "llvm.localescape only accepts static allocas", Call); +    } +    FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands(); +    SawFrameEscape = true; +    break; +  } +  case Intrinsic::localrecover: { +    Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); +    Function *Fn = dyn_cast<Function>(FnArg); +    Assert(Fn && !Fn->isDeclaration(), +           "llvm.localrecover first " +           "argument must be function defined in this module", +           Call); +    auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); +    auto &Entry = FrameEscapeInfo[Fn]; +    Entry.second = unsigned( +        std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); +    break; +  } + +  case Intrinsic::experimental_gc_statepoint: +    if (auto *CI = dyn_cast<CallInst>(&Call)) +      Assert(!CI->isInlineAsm(), +             "gc.statepoint support for inline assembly unimplemented", CI); +    Assert(Call.getParent()->getParent()->hasGC(), +           "Enclosing function does not use GC.", Call); + +    verifyStatepoint(Call); +    break; +  case Intrinsic::experimental_gc_result: { +    Assert(Call.getParent()->getParent()->hasGC(), +           "Enclosing function does not use GC.", Call); +    // Are we tied to a statepoint properly? +    const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); +    const Function *StatepointFn = +        StatepointCall ? StatepointCall->getCalledFunction() : nullptr; +    Assert(StatepointFn && StatepointFn->isDeclaration() && +               StatepointFn->getIntrinsicID() == +                   Intrinsic::experimental_gc_statepoint, +           "gc.result operand #1 must be from a statepoint", Call, +           Call.getArgOperand(0)); + +    // Assert that result type matches wrapped callee. +    const Value *Target = StatepointCall->getArgOperand(2); +    auto *PT = cast<PointerType>(Target->getType()); +    auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); +    Assert(Call.getType() == TargetFuncType->getReturnType(), +           "gc.result result type does not match wrapped callee", Call); +    break; +  } +  case Intrinsic::experimental_gc_relocate: { +    Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call); + +    Assert(isa<PointerType>(Call.getType()->getScalarType()), +           "gc.relocate must return a pointer or a vector of pointers", Call); + +    // Check that this relocate is correctly tied to the statepoint + +    // This is case for relocate on the unwinding path of an invoke statepoint +    if (LandingPadInst *LandingPad = +            dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { + +      const BasicBlock *InvokeBB = +          LandingPad->getParent()->getUniquePredecessor(); + +      // Landingpad relocates should have only one predecessor with invoke +      // statepoint terminator +      Assert(InvokeBB, "safepoints should have unique landingpads", +             LandingPad->getParent()); +      Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", +             InvokeBB); +      Assert(isStatepoint(InvokeBB->getTerminator()), +             "gc relocate should be linked to a statepoint", InvokeBB); +    } else { +      // In all other cases relocate should be tied to the statepoint directly. +      // This covers relocates on a normal return path of invoke statepoint and +      // relocates of a call statepoint. +      auto Token = Call.getArgOperand(0); +      Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)), +             "gc relocate is incorrectly tied to the statepoint", Call, Token); +    } + +    // Verify rest of the relocate arguments. +    const CallBase &StatepointCall = +        *cast<CallBase>(cast<GCRelocateInst>(Call).getStatepoint()); + +    // Both the base and derived must be piped through the safepoint. +    Value *Base = Call.getArgOperand(1); +    Assert(isa<ConstantInt>(Base), +           "gc.relocate operand #2 must be integer offset", Call); + +    Value *Derived = Call.getArgOperand(2); +    Assert(isa<ConstantInt>(Derived), +           "gc.relocate operand #3 must be integer offset", Call); + +    const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); +    const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); +    // Check the bounds +    Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCall.arg_size(), +           "gc.relocate: statepoint base index out of bounds", Call); +    Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCall.arg_size(), +           "gc.relocate: statepoint derived index out of bounds", Call); + +    // Check that BaseIndex and DerivedIndex fall within the 'gc parameters' +    // section of the statepoint's argument. +    Assert(StatepointCall.arg_size() > 0, +           "gc.statepoint: insufficient arguments"); +    Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)), +           "gc.statement: number of call arguments must be constant integer"); +    const unsigned NumCallArgs = +        cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue(); +    Assert(StatepointCall.arg_size() > NumCallArgs + 5, +           "gc.statepoint: mismatch in number of call arguments"); +    Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)), +           "gc.statepoint: number of transition arguments must be " +           "a constant integer"); +    const int NumTransitionArgs = +        cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)) +            ->getZExtValue(); +    const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1; +    Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)), +           "gc.statepoint: number of deoptimization arguments must be " +           "a constant integer"); +    const int NumDeoptArgs = +        cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)) +            ->getZExtValue(); +    const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs; +    const int GCParamArgsEnd = StatepointCall.arg_size(); +    Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd, +           "gc.relocate: statepoint base index doesn't fall within the " +           "'gc parameters' section of the statepoint call", +           Call); +    Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd, +           "gc.relocate: statepoint derived index doesn't fall within the " +           "'gc parameters' section of the statepoint call", +           Call); + +    // Relocated value must be either a pointer type or vector-of-pointer type, +    // but gc_relocate does not need to return the same pointer type as the +    // relocated pointer. It can be casted to the correct type later if it's +    // desired. However, they must have the same address space and 'vectorness' +    GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); +    Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), +           "gc.relocate: relocated value must be a gc pointer", Call); + +    auto ResultType = Call.getType(); +    auto DerivedType = Relocate.getDerivedPtr()->getType(); +    Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), +           "gc.relocate: vector relocates to vector and pointer to pointer", +           Call); +    Assert( +        ResultType->getPointerAddressSpace() == +            DerivedType->getPointerAddressSpace(), +        "gc.relocate: relocating a pointer shouldn't change its address space", +        Call); +    break; +  } +  case Intrinsic::eh_exceptioncode: +  case Intrinsic::eh_exceptionpointer: { +    Assert(isa<CatchPadInst>(Call.getArgOperand(0)), +           "eh.exceptionpointer argument must be a catchpad", Call); +    break; +  } +  case Intrinsic::masked_load: { +    Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector", +           Call); + +    Value *Ptr = Call.getArgOperand(0); +    ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); +    Value *Mask = Call.getArgOperand(2); +    Value *PassThru = Call.getArgOperand(3); +    Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", +           Call); +    Assert(Alignment->getValue().isPowerOf2(), +           "masked_load: alignment must be a power of 2", Call); + +    // DataTy is the overloaded type +    Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); +    Assert(DataTy == Call.getType(), +           "masked_load: return must match pointer type", Call); +    Assert(PassThru->getType() == DataTy, +           "masked_load: pass through and data type must match", Call); +    Assert(Mask->getType()->getVectorNumElements() == +               DataTy->getVectorNumElements(), +           "masked_load: vector mask must be same length as data", Call); +    break; +  } +  case Intrinsic::masked_store: { +    Value *Val = Call.getArgOperand(0); +    Value *Ptr = Call.getArgOperand(1); +    ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); +    Value *Mask = Call.getArgOperand(3); +    Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", +           Call); +    Assert(Alignment->getValue().isPowerOf2(), +           "masked_store: alignment must be a power of 2", Call); + +    // DataTy is the overloaded type +    Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); +    Assert(DataTy == Val->getType(), +           "masked_store: storee must match pointer type", Call); +    Assert(Mask->getType()->getVectorNumElements() == +               DataTy->getVectorNumElements(), +           "masked_store: vector mask must be same length as data", Call); +    break; +  } + +  case Intrinsic::experimental_guard: { +    Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); +    Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, +           "experimental_guard must have exactly one " +           "\"deopt\" operand bundle"); +    break; +  } + +  case Intrinsic::experimental_deoptimize: { +    Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", +           Call); +    Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, +           "experimental_deoptimize must have exactly one " +           "\"deopt\" operand bundle"); +    Assert(Call.getType() == Call.getFunction()->getReturnType(), +           "experimental_deoptimize return type must match caller return type"); + +    if (isa<CallInst>(Call)) { +      auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); +      Assert(RI, +             "calls to experimental_deoptimize must be followed by a return"); + +      if (!Call.getType()->isVoidTy() && RI) +        Assert(RI->getReturnValue() == &Call, +               "calls to experimental_deoptimize must be followed by a return " +               "of the value computed by experimental_deoptimize"); +    } + +    break; +  } +  case Intrinsic::sadd_sat: +  case Intrinsic::uadd_sat: +  case Intrinsic::ssub_sat: +  case Intrinsic::usub_sat: { +    Value *Op1 = Call.getArgOperand(0); +    Value *Op2 = Call.getArgOperand(1); +    Assert(Op1->getType()->isIntOrIntVectorTy(), +           "first operand of [us][add|sub]_sat must be an int type or vector " +           "of ints"); +    Assert(Op2->getType()->isIntOrIntVectorTy(), +           "second operand of [us][add|sub]_sat must be an int type or vector " +           "of ints"); +    break; +  } +  case Intrinsic::smul_fix: +  case Intrinsic::smul_fix_sat: +  case Intrinsic::umul_fix: +  case Intrinsic::umul_fix_sat: { +    Value *Op1 = Call.getArgOperand(0); +    Value *Op2 = Call.getArgOperand(1); +    Assert(Op1->getType()->isIntOrIntVectorTy(), +           "first operand of [us]mul_fix[_sat] must be an int type or vector " +           "of ints"); +    Assert(Op2->getType()->isIntOrIntVectorTy(), +           "second operand of [us]mul_fix_[sat] must be an int type or vector " +           "of ints"); + +    auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); +    Assert(Op3->getType()->getBitWidth() <= 32, +           "third argument of [us]mul_fix[_sat] must fit within 32 bits"); + +    if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat) { +      Assert( +          Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), +          "the scale of smul_fix[_sat] must be less than the width of the operands"); +    } else { +      Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), +             "the scale of umul_fix[_sat] must be less than or equal to the width of " +             "the operands"); +    } +    break; +  } +  case Intrinsic::lround: +  case Intrinsic::llround: +  case Intrinsic::lrint: +  case Intrinsic::llrint: { +    Type *ValTy = Call.getArgOperand(0)->getType(); +    Type *ResultTy = Call.getType(); +    Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), +           "Intrinsic does not support vectors", &Call); +    break; +  } +  }; +} + +/// Carefully grab the subprogram from a local scope. +/// +/// This carefully grabs the subprogram from a local scope, avoiding the +/// built-in assertions that would typically fire. +static DISubprogram *getSubprogram(Metadata *LocalScope) { +  if (!LocalScope) +    return nullptr; + +  if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) +    return SP; + +  if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) +    return getSubprogram(LB->getRawScope()); + +  // Just return null; broken scope chains are checked elsewhere. +  assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); +  return nullptr; +} + +void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { +  unsigned NumOperands = FPI.getNumArgOperands(); +  bool HasExceptionMD = false; +  bool HasRoundingMD = false; +  switch (FPI.getIntrinsicID()) { +  case Intrinsic::experimental_constrained_sqrt: +  case Intrinsic::experimental_constrained_sin: +  case Intrinsic::experimental_constrained_cos: +  case Intrinsic::experimental_constrained_exp: +  case Intrinsic::experimental_constrained_exp2: +  case Intrinsic::experimental_constrained_log: +  case Intrinsic::experimental_constrained_log10: +  case Intrinsic::experimental_constrained_log2: +  case Intrinsic::experimental_constrained_rint: +  case Intrinsic::experimental_constrained_nearbyint: +  case Intrinsic::experimental_constrained_ceil: +  case Intrinsic::experimental_constrained_floor: +  case Intrinsic::experimental_constrained_round: +  case Intrinsic::experimental_constrained_trunc: +    Assert((NumOperands == 3), "invalid arguments for constrained FP intrinsic", +           &FPI); +    HasExceptionMD = true; +    HasRoundingMD = true; +    break; + +  case Intrinsic::experimental_constrained_lrint: +  case Intrinsic::experimental_constrained_llrint: { +    Assert((NumOperands == 3), "invalid arguments for constrained FP intrinsic", +           &FPI); +    Type *ValTy = FPI.getArgOperand(0)->getType(); +    Type *ResultTy = FPI.getType(); +    Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), +           "Intrinsic does not support vectors", &FPI); +    HasExceptionMD = true; +    HasRoundingMD = true; +  }  +    break; + +  case Intrinsic::experimental_constrained_lround: +  case Intrinsic::experimental_constrained_llround: { +    Assert((NumOperands == 2), "invalid arguments for constrained FP intrinsic", +           &FPI); +    Type *ValTy = FPI.getArgOperand(0)->getType(); +    Type *ResultTy = FPI.getType(); +    Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), +           "Intrinsic does not support vectors", &FPI); +    HasExceptionMD = true; +    break; +  }  + +  case Intrinsic::experimental_constrained_fma: +    Assert((NumOperands == 5), "invalid arguments for constrained FP intrinsic", +           &FPI); +    HasExceptionMD = true; +    HasRoundingMD = true; +    break; + +  case Intrinsic::experimental_constrained_fadd: +  case Intrinsic::experimental_constrained_fsub: +  case Intrinsic::experimental_constrained_fmul: +  case Intrinsic::experimental_constrained_fdiv: +  case Intrinsic::experimental_constrained_frem: +  case Intrinsic::experimental_constrained_pow: +  case Intrinsic::experimental_constrained_powi: +  case Intrinsic::experimental_constrained_maxnum: +  case Intrinsic::experimental_constrained_minnum: +    Assert((NumOperands == 4), "invalid arguments for constrained FP intrinsic", +           &FPI); +    HasExceptionMD = true; +    HasRoundingMD = true; +    break; + +  case Intrinsic::experimental_constrained_fptosi: +  case Intrinsic::experimental_constrained_fptoui: {  +    Assert((NumOperands == 2), +           "invalid arguments for constrained FP intrinsic", &FPI); +    HasExceptionMD = true; + +    Value *Operand = FPI.getArgOperand(0); +    uint64_t NumSrcElem = 0; +    Assert(Operand->getType()->isFPOrFPVectorTy(), +           "Intrinsic first argument must be floating point", &FPI); +    if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { +      NumSrcElem = OperandT->getNumElements(); +    } + +    Operand = &FPI; +    Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), +           "Intrinsic first argument and result disagree on vector use", &FPI); +    Assert(Operand->getType()->isIntOrIntVectorTy(), +           "Intrinsic result must be an integer", &FPI); +    if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { +      Assert(NumSrcElem == OperandT->getNumElements(), +             "Intrinsic first argument and result vector lengths must be equal", +             &FPI); +    } +  } +    break; + +  case Intrinsic::experimental_constrained_fptrunc: +  case Intrinsic::experimental_constrained_fpext: { +    if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { +      Assert((NumOperands == 3), +             "invalid arguments for constrained FP intrinsic", &FPI); +      HasRoundingMD = true; +    } else { +      Assert((NumOperands == 2), +             "invalid arguments for constrained FP intrinsic", &FPI); +    } +    HasExceptionMD = true; + +    Value *Operand = FPI.getArgOperand(0); +    Type *OperandTy = Operand->getType(); +    Value *Result = &FPI; +    Type *ResultTy = Result->getType(); +    Assert(OperandTy->isFPOrFPVectorTy(), +           "Intrinsic first argument must be FP or FP vector", &FPI); +    Assert(ResultTy->isFPOrFPVectorTy(), +           "Intrinsic result must be FP or FP vector", &FPI); +    Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(), +           "Intrinsic first argument and result disagree on vector use", &FPI); +    if (OperandTy->isVectorTy()) { +      auto *OperandVecTy = cast<VectorType>(OperandTy); +      auto *ResultVecTy = cast<VectorType>(ResultTy); +      Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(), +             "Intrinsic first argument and result vector lengths must be equal", +             &FPI); +    } +    if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { +      Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), +             "Intrinsic first argument's type must be larger than result type", +             &FPI); +    } else { +      Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), +             "Intrinsic first argument's type must be smaller than result type", +             &FPI); +    } +  }  +    break; + +  default: +    llvm_unreachable("Invalid constrained FP intrinsic!"); +  } + +  // If a non-metadata argument is passed in a metadata slot then the +  // error will be caught earlier when the incorrect argument doesn't +  // match the specification in the intrinsic call table. Thus, no +  // argument type check is needed here. + +  if (HasExceptionMD) { +    Assert(FPI.getExceptionBehavior().hasValue(), +           "invalid exception behavior argument", &FPI); +  } +  if (HasRoundingMD) { +    Assert(FPI.getRoundingMode().hasValue(), +           "invalid rounding mode argument", &FPI); +  } +} + +void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { +  auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata(); +  AssertDI(isa<ValueAsMetadata>(MD) || +             (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), +         "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); +  AssertDI(isa<DILocalVariable>(DII.getRawVariable()), +         "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, +         DII.getRawVariable()); +  AssertDI(isa<DIExpression>(DII.getRawExpression()), +         "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, +         DII.getRawExpression()); + +  // Ignore broken !dbg attachments; they're checked elsewhere. +  if (MDNode *N = DII.getDebugLoc().getAsMDNode()) +    if (!isa<DILocation>(N)) +      return; + +  BasicBlock *BB = DII.getParent(); +  Function *F = BB ? BB->getParent() : nullptr; + +  // The scopes for variables and !dbg attachments must agree. +  DILocalVariable *Var = DII.getVariable(); +  DILocation *Loc = DII.getDebugLoc(); +  AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", +           &DII, BB, F); + +  DISubprogram *VarSP = getSubprogram(Var->getRawScope()); +  DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); +  if (!VarSP || !LocSP) +    return; // Broken scope chains are checked elsewhere. + +  AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + +                               " variable and !dbg attachment", +           &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, +           Loc->getScope()->getSubprogram()); + +  // This check is redundant with one in visitLocalVariable(). +  AssertDI(isType(Var->getRawType()), "invalid type ref", Var, +           Var->getRawType()); +  verifyFnArgs(DII); +} + +void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { +  AssertDI(isa<DILabel>(DLI.getRawLabel()), +         "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, +         DLI.getRawLabel()); + +  // Ignore broken !dbg attachments; they're checked elsewhere. +  if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) +    if (!isa<DILocation>(N)) +      return; + +  BasicBlock *BB = DLI.getParent(); +  Function *F = BB ? BB->getParent() : nullptr; + +  // The scopes for variables and !dbg attachments must agree. +  DILabel *Label = DLI.getLabel(); +  DILocation *Loc = DLI.getDebugLoc(); +  Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", +         &DLI, BB, F); + +  DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); +  DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); +  if (!LabelSP || !LocSP) +    return; + +  AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + +                             " label and !dbg attachment", +           &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, +           Loc->getScope()->getSubprogram()); +} + +void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { +  DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); +  DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); + +  // We don't know whether this intrinsic verified correctly. +  if (!V || !E || !E->isValid()) +    return; + +  // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. +  auto Fragment = E->getFragmentInfo(); +  if (!Fragment) +    return; + +  // The frontend helps out GDB by emitting the members of local anonymous +  // unions as artificial local variables with shared storage. When SROA splits +  // the storage for artificial local variables that are smaller than the entire +  // union, the overhang piece will be outside of the allotted space for the +  // variable and this check fails. +  // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. +  if (V->isArtificial()) +    return; + +  verifyFragmentExpression(*V, *Fragment, &I); +} + +template <typename ValueOrMetadata> +void Verifier::verifyFragmentExpression(const DIVariable &V, +                                        DIExpression::FragmentInfo Fragment, +                                        ValueOrMetadata *Desc) { +  // If there's no size, the type is broken, but that should be checked +  // elsewhere. +  auto VarSize = V.getSizeInBits(); +  if (!VarSize) +    return; + +  unsigned FragSize = Fragment.SizeInBits; +  unsigned FragOffset = Fragment.OffsetInBits; +  AssertDI(FragSize + FragOffset <= *VarSize, +         "fragment is larger than or outside of variable", Desc, &V); +  AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); +} + +void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { +  // This function does not take the scope of noninlined function arguments into +  // account. Don't run it if current function is nodebug, because it may +  // contain inlined debug intrinsics. +  if (!HasDebugInfo) +    return; + +  // For performance reasons only check non-inlined ones. +  if (I.getDebugLoc()->getInlinedAt()) +    return; + +  DILocalVariable *Var = I.getVariable(); +  AssertDI(Var, "dbg intrinsic without variable"); + +  unsigned ArgNo = Var->getArg(); +  if (!ArgNo) +    return; + +  // Verify there are no duplicate function argument debug info entries. +  // These will cause hard-to-debug assertions in the DWARF backend. +  if (DebugFnArgs.size() < ArgNo) +    DebugFnArgs.resize(ArgNo, nullptr); + +  auto *Prev = DebugFnArgs[ArgNo - 1]; +  DebugFnArgs[ArgNo - 1] = Var; +  AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, +           Prev, Var); +} + +void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { +  DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); + +  // We don't know whether this intrinsic verified correctly. +  if (!E || !E->isValid()) +    return; + +  AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I); +} + +void Verifier::verifyCompileUnits() { +  // When more than one Module is imported into the same context, such as during +  // an LTO build before linking the modules, ODR type uniquing may cause types +  // to point to a different CU. This check does not make sense in this case. +  if (M.getContext().isODRUniquingDebugTypes()) +    return; +  auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); +  SmallPtrSet<const Metadata *, 2> Listed; +  if (CUs) +    Listed.insert(CUs->op_begin(), CUs->op_end()); +  for (auto *CU : CUVisited) +    AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); +  CUVisited.clear(); +} + +void Verifier::verifyDeoptimizeCallingConvs() { +  if (DeoptimizeDeclarations.empty()) +    return; + +  const Function *First = DeoptimizeDeclarations[0]; +  for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { +    Assert(First->getCallingConv() == F->getCallingConv(), +           "All llvm.experimental.deoptimize declarations must have the same " +           "calling convention", +           First, F); +  } +} + +void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { +  bool HasSource = F.getSource().hasValue(); +  if (!HasSourceDebugInfo.count(&U)) +    HasSourceDebugInfo[&U] = HasSource; +  AssertDI(HasSource == HasSourceDebugInfo[&U], +           "inconsistent use of embedded source"); +} + +//===----------------------------------------------------------------------===// +//  Implement the public interfaces to this file... +//===----------------------------------------------------------------------===// + +bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { +  Function &F = const_cast<Function &>(f); + +  // Don't use a raw_null_ostream.  Printing IR is expensive. +  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); + +  // Note that this function's return value is inverted from what you would +  // expect of a function called "verify". +  return !V.verify(F); +} + +bool llvm::verifyModule(const Module &M, raw_ostream *OS, +                        bool *BrokenDebugInfo) { +  // Don't use a raw_null_ostream.  Printing IR is expensive. +  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); + +  bool Broken = false; +  for (const Function &F : M) +    Broken |= !V.verify(F); + +  Broken |= !V.verify(); +  if (BrokenDebugInfo) +    *BrokenDebugInfo = V.hasBrokenDebugInfo(); +  // Note that this function's return value is inverted from what you would +  // expect of a function called "verify". +  return Broken; +} + +namespace { + +struct VerifierLegacyPass : public FunctionPass { +  static char ID; + +  std::unique_ptr<Verifier> V; +  bool FatalErrors = true; + +  VerifierLegacyPass() : FunctionPass(ID) { +    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); +  } +  explicit VerifierLegacyPass(bool FatalErrors) +      : FunctionPass(ID), +        FatalErrors(FatalErrors) { +    initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); +  } + +  bool doInitialization(Module &M) override { +    V = std::make_unique<Verifier>( +        &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); +    return false; +  } + +  bool runOnFunction(Function &F) override { +    if (!V->verify(F) && FatalErrors) { +      errs() << "in function " << F.getName() << '\n';  +      report_fatal_error("Broken function found, compilation aborted!"); +    } +    return false; +  } + +  bool doFinalization(Module &M) override { +    bool HasErrors = false; +    for (Function &F : M) +      if (F.isDeclaration()) +        HasErrors |= !V->verify(F); + +    HasErrors |= !V->verify(); +    if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) +      report_fatal_error("Broken module found, compilation aborted!"); +    return false; +  } + +  void getAnalysisUsage(AnalysisUsage &AU) const override { +    AU.setPreservesAll(); +  } +}; + +} // end anonymous namespace + +/// Helper to issue failure from the TBAA verification +template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { +  if (Diagnostic) +    return Diagnostic->CheckFailed(Args...); +} + +#define AssertTBAA(C, ...)                                                     \ +  do {                                                                         \ +    if (!(C)) {                                                                \ +      CheckFailed(__VA_ARGS__);                                                \ +      return false;                                                            \ +    }                                                                          \ +  } while (false) + +/// Verify that \p BaseNode can be used as the "base type" in the struct-path +/// TBAA scheme.  This means \p BaseNode is either a scalar node, or a +/// struct-type node describing an aggregate data structure (like a struct). +TBAAVerifier::TBAABaseNodeSummary +TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, +                                 bool IsNewFormat) { +  if (BaseNode->getNumOperands() < 2) { +    CheckFailed("Base nodes must have at least two operands", &I, BaseNode); +    return {true, ~0u}; +  } + +  auto Itr = TBAABaseNodes.find(BaseNode); +  if (Itr != TBAABaseNodes.end()) +    return Itr->second; + +  auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); +  auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); +  (void)InsertResult; +  assert(InsertResult.second && "We just checked!"); +  return Result; +} + +TBAAVerifier::TBAABaseNodeSummary +TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, +                                     bool IsNewFormat) { +  const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; + +  if (BaseNode->getNumOperands() == 2) { +    // Scalar nodes can only be accessed at offset 0. +    return isValidScalarTBAANode(BaseNode) +               ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) +               : InvalidNode; +  } + +  if (IsNewFormat) { +    if (BaseNode->getNumOperands() % 3 != 0) { +      CheckFailed("Access tag nodes must have the number of operands that is a " +                  "multiple of 3!", BaseNode); +      return InvalidNode; +    } +  } else { +    if (BaseNode->getNumOperands() % 2 != 1) { +      CheckFailed("Struct tag nodes must have an odd number of operands!", +                  BaseNode); +      return InvalidNode; +    } +  } + +  // Check the type size field. +  if (IsNewFormat) { +    auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( +        BaseNode->getOperand(1)); +    if (!TypeSizeNode) { +      CheckFailed("Type size nodes must be constants!", &I, BaseNode); +      return InvalidNode; +    } +  } + +  // Check the type name field. In the new format it can be anything. +  if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { +    CheckFailed("Struct tag nodes have a string as their first operand", +                BaseNode); +    return InvalidNode; +  } + +  bool Failed = false; + +  Optional<APInt> PrevOffset; +  unsigned BitWidth = ~0u; + +  // We've already checked that BaseNode is not a degenerate root node with one +  // operand in \c verifyTBAABaseNode, so this loop should run at least once. +  unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; +  unsigned NumOpsPerField = IsNewFormat ? 3 : 2; +  for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); +           Idx += NumOpsPerField) { +    const MDOperand &FieldTy = BaseNode->getOperand(Idx); +    const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); +    if (!isa<MDNode>(FieldTy)) { +      CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); +      Failed = true; +      continue; +    } + +    auto *OffsetEntryCI = +        mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); +    if (!OffsetEntryCI) { +      CheckFailed("Offset entries must be constants!", &I, BaseNode); +      Failed = true; +      continue; +    } + +    if (BitWidth == ~0u) +      BitWidth = OffsetEntryCI->getBitWidth(); + +    if (OffsetEntryCI->getBitWidth() != BitWidth) { +      CheckFailed( +          "Bitwidth between the offsets and struct type entries must match", &I, +          BaseNode); +      Failed = true; +      continue; +    } + +    // NB! As far as I can tell, we generate a non-strictly increasing offset +    // sequence only from structs that have zero size bit fields.  When +    // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we +    // pick the field lexically the latest in struct type metadata node.  This +    // mirrors the actual behavior of the alias analysis implementation. +    bool IsAscending = +        !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); + +    if (!IsAscending) { +      CheckFailed("Offsets must be increasing!", &I, BaseNode); +      Failed = true; +    } + +    PrevOffset = OffsetEntryCI->getValue(); + +    if (IsNewFormat) { +      auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( +          BaseNode->getOperand(Idx + 2)); +      if (!MemberSizeNode) { +        CheckFailed("Member size entries must be constants!", &I, BaseNode); +        Failed = true; +        continue; +      } +    } +  } + +  return Failed ? InvalidNode +                : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); +} + +static bool IsRootTBAANode(const MDNode *MD) { +  return MD->getNumOperands() < 2; +} + +static bool IsScalarTBAANodeImpl(const MDNode *MD, +                                 SmallPtrSetImpl<const MDNode *> &Visited) { +  if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) +    return false; + +  if (!isa<MDString>(MD->getOperand(0))) +    return false; + +  if (MD->getNumOperands() == 3) { +    auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); +    if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) +      return false; +  } + +  auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); +  return Parent && Visited.insert(Parent).second && +         (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); +} + +bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { +  auto ResultIt = TBAAScalarNodes.find(MD); +  if (ResultIt != TBAAScalarNodes.end()) +    return ResultIt->second; + +  SmallPtrSet<const MDNode *, 4> Visited; +  bool Result = IsScalarTBAANodeImpl(MD, Visited); +  auto InsertResult = TBAAScalarNodes.insert({MD, Result}); +  (void)InsertResult; +  assert(InsertResult.second && "Just checked!"); + +  return Result; +} + +/// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p +/// Offset in place to be the offset within the field node returned. +/// +/// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. +MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, +                                                   const MDNode *BaseNode, +                                                   APInt &Offset, +                                                   bool IsNewFormat) { +  assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); + +  // Scalar nodes have only one possible "field" -- their parent in the access +  // hierarchy.  Offset must be zero at this point, but our caller is supposed +  // to Assert that. +  if (BaseNode->getNumOperands() == 2) +    return cast<MDNode>(BaseNode->getOperand(1)); + +  unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; +  unsigned NumOpsPerField = IsNewFormat ? 3 : 2; +  for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); +           Idx += NumOpsPerField) { +    auto *OffsetEntryCI = +        mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); +    if (OffsetEntryCI->getValue().ugt(Offset)) { +      if (Idx == FirstFieldOpNo) { +        CheckFailed("Could not find TBAA parent in struct type node", &I, +                    BaseNode, &Offset); +        return nullptr; +      } + +      unsigned PrevIdx = Idx - NumOpsPerField; +      auto *PrevOffsetEntryCI = +          mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); +      Offset -= PrevOffsetEntryCI->getValue(); +      return cast<MDNode>(BaseNode->getOperand(PrevIdx)); +    } +  } + +  unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; +  auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( +      BaseNode->getOperand(LastIdx + 1)); +  Offset -= LastOffsetEntryCI->getValue(); +  return cast<MDNode>(BaseNode->getOperand(LastIdx)); +} + +static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { +  if (!Type || Type->getNumOperands() < 3) +    return false; + +  // In the new format type nodes shall have a reference to the parent type as +  // its first operand. +  MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0)); +  if (!Parent) +    return false; + +  return true; +} + +bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { +  AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || +                 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || +                 isa<AtomicCmpXchgInst>(I), +             "This instruction shall not have a TBAA access tag!", &I); + +  bool IsStructPathTBAA = +      isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; + +  AssertTBAA( +      IsStructPathTBAA, +      "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); + +  MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); +  MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); + +  bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); + +  if (IsNewFormat) { +    AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, +               "Access tag metadata must have either 4 or 5 operands", &I, MD); +  } else { +    AssertTBAA(MD->getNumOperands() < 5, +               "Struct tag metadata must have either 3 or 4 operands", &I, MD); +  } + +  // Check the access size field. +  if (IsNewFormat) { +    auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( +        MD->getOperand(3)); +    AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); +  } + +  // Check the immutability flag. +  unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; +  if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { +    auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( +        MD->getOperand(ImmutabilityFlagOpNo)); +    AssertTBAA(IsImmutableCI, +               "Immutability tag on struct tag metadata must be a constant", +               &I, MD); +    AssertTBAA( +        IsImmutableCI->isZero() || IsImmutableCI->isOne(), +        "Immutability part of the struct tag metadata must be either 0 or 1", +        &I, MD); +  } + +  AssertTBAA(BaseNode && AccessType, +             "Malformed struct tag metadata: base and access-type " +             "should be non-null and point to Metadata nodes", +             &I, MD, BaseNode, AccessType); + +  if (!IsNewFormat) { +    AssertTBAA(isValidScalarTBAANode(AccessType), +               "Access type node must be a valid scalar type", &I, MD, +               AccessType); +  } + +  auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); +  AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); + +  APInt Offset = OffsetCI->getValue(); +  bool SeenAccessTypeInPath = false; + +  SmallPtrSet<MDNode *, 4> StructPath; + +  for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); +       BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, +                                               IsNewFormat)) { +    if (!StructPath.insert(BaseNode).second) { +      CheckFailed("Cycle detected in struct path", &I, MD); +      return false; +    } + +    bool Invalid; +    unsigned BaseNodeBitWidth; +    std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, +                                                             IsNewFormat); + +    // If the base node is invalid in itself, then we've already printed all the +    // errors we wanted to print. +    if (Invalid) +      return false; + +    SeenAccessTypeInPath |= BaseNode == AccessType; + +    if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) +      AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", +                 &I, MD, &Offset); + +    AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || +                   (BaseNodeBitWidth == 0 && Offset == 0) || +                   (IsNewFormat && BaseNodeBitWidth == ~0u), +               "Access bit-width not the same as description bit-width", &I, MD, +               BaseNodeBitWidth, Offset.getBitWidth()); + +    if (IsNewFormat && SeenAccessTypeInPath) +      break; +  } + +  AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", +             &I, MD); +  return true; +} + +char VerifierLegacyPass::ID = 0; +INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) + +FunctionPass *llvm::createVerifierPass(bool FatalErrors) { +  return new VerifierLegacyPass(FatalErrors); +} + +AnalysisKey VerifierAnalysis::Key; +VerifierAnalysis::Result VerifierAnalysis::run(Module &M, +                                               ModuleAnalysisManager &) { +  Result Res; +  Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); +  return Res; +} + +VerifierAnalysis::Result VerifierAnalysis::run(Function &F, +                                               FunctionAnalysisManager &) { +  return { llvm::verifyFunction(F, &dbgs()), false }; +} + +PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { +  auto Res = AM.getResult<VerifierAnalysis>(M); +  if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) +    report_fatal_error("Broken module found, compilation aborted!"); + +  return PreservedAnalyses::all(); +} + +PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { +  auto res = AM.getResult<VerifierAnalysis>(F); +  if (res.IRBroken && FatalErrors) +    report_fatal_error("Broken function found, compilation aborted!"); + +  return PreservedAnalyses::all(); +}  | 
