summaryrefslogtreecommitdiff
path: root/llvm/lib/ProfileData/Coverage
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/ProfileData/Coverage')
-rw-r--r--llvm/lib/ProfileData/Coverage/CoverageMapping.cpp835
-rw-r--r--llvm/lib/ProfileData/Coverage/CoverageMappingReader.cpp831
-rw-r--r--llvm/lib/ProfileData/Coverage/CoverageMappingWriter.cpp216
3 files changed, 1882 insertions, 0 deletions
diff --git a/llvm/lib/ProfileData/Coverage/CoverageMapping.cpp b/llvm/lib/ProfileData/Coverage/CoverageMapping.cpp
new file mode 100644
index 000000000000..8d5e56e26c0f
--- /dev/null
+++ b/llvm/lib/ProfileData/Coverage/CoverageMapping.cpp
@@ -0,0 +1,835 @@
+//===- CoverageMapping.cpp - Code coverage mapping support ----------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains support for clang's and llvm's instrumentation based
+// code coverage.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ProfileData/Coverage/CoverageMapping.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/SmallBitVector.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
+#include "llvm/ProfileData/InstrProfReader.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Errc.h"
+#include "llvm/Support/Error.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <iterator>
+#include <map>
+#include <memory>
+#include <string>
+#include <system_error>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+using namespace coverage;
+
+#define DEBUG_TYPE "coverage-mapping"
+
+Counter CounterExpressionBuilder::get(const CounterExpression &E) {
+ auto It = ExpressionIndices.find(E);
+ if (It != ExpressionIndices.end())
+ return Counter::getExpression(It->second);
+ unsigned I = Expressions.size();
+ Expressions.push_back(E);
+ ExpressionIndices[E] = I;
+ return Counter::getExpression(I);
+}
+
+void CounterExpressionBuilder::extractTerms(Counter C, int Factor,
+ SmallVectorImpl<Term> &Terms) {
+ switch (C.getKind()) {
+ case Counter::Zero:
+ break;
+ case Counter::CounterValueReference:
+ Terms.emplace_back(C.getCounterID(), Factor);
+ break;
+ case Counter::Expression:
+ const auto &E = Expressions[C.getExpressionID()];
+ extractTerms(E.LHS, Factor, Terms);
+ extractTerms(
+ E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms);
+ break;
+ }
+}
+
+Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) {
+ // Gather constant terms.
+ SmallVector<Term, 32> Terms;
+ extractTerms(ExpressionTree, +1, Terms);
+
+ // If there are no terms, this is just a zero. The algorithm below assumes at
+ // least one term.
+ if (Terms.size() == 0)
+ return Counter::getZero();
+
+ // Group the terms by counter ID.
+ llvm::sort(Terms, [](const Term &LHS, const Term &RHS) {
+ return LHS.CounterID < RHS.CounterID;
+ });
+
+ // Combine terms by counter ID to eliminate counters that sum to zero.
+ auto Prev = Terms.begin();
+ for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) {
+ if (I->CounterID == Prev->CounterID) {
+ Prev->Factor += I->Factor;
+ continue;
+ }
+ ++Prev;
+ *Prev = *I;
+ }
+ Terms.erase(++Prev, Terms.end());
+
+ Counter C;
+ // Create additions. We do this before subtractions to avoid constructs like
+ // ((0 - X) + Y), as opposed to (Y - X).
+ for (auto T : Terms) {
+ if (T.Factor <= 0)
+ continue;
+ for (int I = 0; I < T.Factor; ++I)
+ if (C.isZero())
+ C = Counter::getCounter(T.CounterID);
+ else
+ C = get(CounterExpression(CounterExpression::Add, C,
+ Counter::getCounter(T.CounterID)));
+ }
+
+ // Create subtractions.
+ for (auto T : Terms) {
+ if (T.Factor >= 0)
+ continue;
+ for (int I = 0; I < -T.Factor; ++I)
+ C = get(CounterExpression(CounterExpression::Subtract, C,
+ Counter::getCounter(T.CounterID)));
+ }
+ return C;
+}
+
+Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS) {
+ return simplify(get(CounterExpression(CounterExpression::Add, LHS, RHS)));
+}
+
+Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS) {
+ return simplify(
+ get(CounterExpression(CounterExpression::Subtract, LHS, RHS)));
+}
+
+void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const {
+ switch (C.getKind()) {
+ case Counter::Zero:
+ OS << '0';
+ return;
+ case Counter::CounterValueReference:
+ OS << '#' << C.getCounterID();
+ break;
+ case Counter::Expression: {
+ if (C.getExpressionID() >= Expressions.size())
+ return;
+ const auto &E = Expressions[C.getExpressionID()];
+ OS << '(';
+ dump(E.LHS, OS);
+ OS << (E.Kind == CounterExpression::Subtract ? " - " : " + ");
+ dump(E.RHS, OS);
+ OS << ')';
+ break;
+ }
+ }
+ if (CounterValues.empty())
+ return;
+ Expected<int64_t> Value = evaluate(C);
+ if (auto E = Value.takeError()) {
+ consumeError(std::move(E));
+ return;
+ }
+ OS << '[' << *Value << ']';
+}
+
+Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const {
+ switch (C.getKind()) {
+ case Counter::Zero:
+ return 0;
+ case Counter::CounterValueReference:
+ if (C.getCounterID() >= CounterValues.size())
+ return errorCodeToError(errc::argument_out_of_domain);
+ return CounterValues[C.getCounterID()];
+ case Counter::Expression: {
+ if (C.getExpressionID() >= Expressions.size())
+ return errorCodeToError(errc::argument_out_of_domain);
+ const auto &E = Expressions[C.getExpressionID()];
+ Expected<int64_t> LHS = evaluate(E.LHS);
+ if (!LHS)
+ return LHS;
+ Expected<int64_t> RHS = evaluate(E.RHS);
+ if (!RHS)
+ return RHS;
+ return E.Kind == CounterExpression::Subtract ? *LHS - *RHS : *LHS + *RHS;
+ }
+ }
+ llvm_unreachable("Unhandled CounterKind");
+}
+
+void FunctionRecordIterator::skipOtherFiles() {
+ while (Current != Records.end() && !Filename.empty() &&
+ Filename != Current->Filenames[0])
+ ++Current;
+ if (Current == Records.end())
+ *this = FunctionRecordIterator();
+}
+
+ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename(
+ StringRef Filename) const {
+ size_t FilenameHash = hash_value(Filename);
+ auto RecordIt = FilenameHash2RecordIndices.find(FilenameHash);
+ if (RecordIt == FilenameHash2RecordIndices.end())
+ return {};
+ return RecordIt->second;
+}
+
+Error CoverageMapping::loadFunctionRecord(
+ const CoverageMappingRecord &Record,
+ IndexedInstrProfReader &ProfileReader) {
+ StringRef OrigFuncName = Record.FunctionName;
+ if (OrigFuncName.empty())
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+
+ if (Record.Filenames.empty())
+ OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName);
+ else
+ OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]);
+
+ CounterMappingContext Ctx(Record.Expressions);
+
+ std::vector<uint64_t> Counts;
+ if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName,
+ Record.FunctionHash, Counts)) {
+ instrprof_error IPE = InstrProfError::take(std::move(E));
+ if (IPE == instrprof_error::hash_mismatch) {
+ FuncHashMismatches.emplace_back(Record.FunctionName, Record.FunctionHash);
+ return Error::success();
+ } else if (IPE != instrprof_error::unknown_function)
+ return make_error<InstrProfError>(IPE);
+ Counts.assign(Record.MappingRegions.size(), 0);
+ }
+ Ctx.setCounts(Counts);
+
+ assert(!Record.MappingRegions.empty() && "Function has no regions");
+
+ // This coverage record is a zero region for a function that's unused in
+ // some TU, but used in a different TU. Ignore it. The coverage maps from the
+ // the other TU will either be loaded (providing full region counts) or they
+ // won't (in which case we don't unintuitively report functions as uncovered
+ // when they have non-zero counts in the profile).
+ if (Record.MappingRegions.size() == 1 &&
+ Record.MappingRegions[0].Count.isZero() && Counts[0] > 0)
+ return Error::success();
+
+ FunctionRecord Function(OrigFuncName, Record.Filenames);
+ for (const auto &Region : Record.MappingRegions) {
+ Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count);
+ if (auto E = ExecutionCount.takeError()) {
+ consumeError(std::move(E));
+ return Error::success();
+ }
+ Function.pushRegion(Region, *ExecutionCount);
+ }
+
+ // Don't create records for (filenames, function) pairs we've already seen.
+ auto FilenamesHash = hash_combine_range(Record.Filenames.begin(),
+ Record.Filenames.end());
+ if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second)
+ return Error::success();
+
+ Functions.push_back(std::move(Function));
+
+ // Performance optimization: keep track of the indices of the function records
+ // which correspond to each filename. This can be used to substantially speed
+ // up queries for coverage info in a file.
+ unsigned RecordIndex = Functions.size() - 1;
+ for (StringRef Filename : Record.Filenames) {
+ auto &RecordIndices = FilenameHash2RecordIndices[hash_value(Filename)];
+ // Note that there may be duplicates in the filename set for a function
+ // record, because of e.g. macro expansions in the function in which both
+ // the macro and the function are defined in the same file.
+ if (RecordIndices.empty() || RecordIndices.back() != RecordIndex)
+ RecordIndices.push_back(RecordIndex);
+ }
+
+ return Error::success();
+}
+
+Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load(
+ ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders,
+ IndexedInstrProfReader &ProfileReader) {
+ auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping());
+
+ for (const auto &CoverageReader : CoverageReaders) {
+ for (auto RecordOrErr : *CoverageReader) {
+ if (Error E = RecordOrErr.takeError())
+ return std::move(E);
+ const auto &Record = *RecordOrErr;
+ if (Error E = Coverage->loadFunctionRecord(Record, ProfileReader))
+ return std::move(E);
+ }
+ }
+
+ return std::move(Coverage);
+}
+
+// If E is a no_data_found error, returns success. Otherwise returns E.
+static Error handleMaybeNoDataFoundError(Error E) {
+ return handleErrors(
+ std::move(E), [](const CoverageMapError &CME) {
+ if (CME.get() == coveragemap_error::no_data_found)
+ return static_cast<Error>(Error::success());
+ return make_error<CoverageMapError>(CME.get());
+ });
+}
+
+Expected<std::unique_ptr<CoverageMapping>>
+CoverageMapping::load(ArrayRef<StringRef> ObjectFilenames,
+ StringRef ProfileFilename, ArrayRef<StringRef> Arches) {
+ auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename);
+ if (Error E = ProfileReaderOrErr.takeError())
+ return std::move(E);
+ auto ProfileReader = std::move(ProfileReaderOrErr.get());
+
+ SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers;
+ SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers;
+ for (const auto &File : llvm::enumerate(ObjectFilenames)) {
+ auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN(File.value());
+ if (std::error_code EC = CovMappingBufOrErr.getError())
+ return errorCodeToError(EC);
+ StringRef Arch = Arches.empty() ? StringRef() : Arches[File.index()];
+ MemoryBufferRef CovMappingBufRef =
+ CovMappingBufOrErr.get()->getMemBufferRef();
+ auto CoverageReadersOrErr =
+ BinaryCoverageReader::create(CovMappingBufRef, Arch, Buffers);
+ if (Error E = CoverageReadersOrErr.takeError()) {
+ E = handleMaybeNoDataFoundError(std::move(E));
+ if (E)
+ return std::move(E);
+ // E == success (originally a no_data_found error).
+ continue;
+ }
+ for (auto &Reader : CoverageReadersOrErr.get())
+ Readers.push_back(std::move(Reader));
+ Buffers.push_back(std::move(CovMappingBufOrErr.get()));
+ }
+ // If no readers were created, either no objects were provided or none of them
+ // had coverage data. Return an error in the latter case.
+ if (Readers.empty() && !ObjectFilenames.empty())
+ return make_error<CoverageMapError>(coveragemap_error::no_data_found);
+ return load(Readers, *ProfileReader);
+}
+
+namespace {
+
+/// Distributes functions into instantiation sets.
+///
+/// An instantiation set is a collection of functions that have the same source
+/// code, ie, template functions specializations.
+class FunctionInstantiationSetCollector {
+ using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>;
+ MapT InstantiatedFunctions;
+
+public:
+ void insert(const FunctionRecord &Function, unsigned FileID) {
+ auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end();
+ while (I != E && I->FileID != FileID)
+ ++I;
+ assert(I != E && "function does not cover the given file");
+ auto &Functions = InstantiatedFunctions[I->startLoc()];
+ Functions.push_back(&Function);
+ }
+
+ MapT::iterator begin() { return InstantiatedFunctions.begin(); }
+ MapT::iterator end() { return InstantiatedFunctions.end(); }
+};
+
+class SegmentBuilder {
+ std::vector<CoverageSegment> &Segments;
+ SmallVector<const CountedRegion *, 8> ActiveRegions;
+
+ SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {}
+
+ /// Emit a segment with the count from \p Region starting at \p StartLoc.
+ //
+ /// \p IsRegionEntry: The segment is at the start of a new non-gap region.
+ /// \p EmitSkippedRegion: The segment must be emitted as a skipped region.
+ void startSegment(const CountedRegion &Region, LineColPair StartLoc,
+ bool IsRegionEntry, bool EmitSkippedRegion = false) {
+ bool HasCount = !EmitSkippedRegion &&
+ (Region.Kind != CounterMappingRegion::SkippedRegion);
+
+ // If the new segment wouldn't affect coverage rendering, skip it.
+ if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) {
+ const auto &Last = Segments.back();
+ if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount &&
+ !Last.IsRegionEntry)
+ return;
+ }
+
+ if (HasCount)
+ Segments.emplace_back(StartLoc.first, StartLoc.second,
+ Region.ExecutionCount, IsRegionEntry,
+ Region.Kind == CounterMappingRegion::GapRegion);
+ else
+ Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry);
+
+ LLVM_DEBUG({
+ const auto &Last = Segments.back();
+ dbgs() << "Segment at " << Last.Line << ":" << Last.Col
+ << " (count = " << Last.Count << ")"
+ << (Last.IsRegionEntry ? ", RegionEntry" : "")
+ << (!Last.HasCount ? ", Skipped" : "")
+ << (Last.IsGapRegion ? ", Gap" : "") << "\n";
+ });
+ }
+
+ /// Emit segments for active regions which end before \p Loc.
+ ///
+ /// \p Loc: The start location of the next region. If None, all active
+ /// regions are completed.
+ /// \p FirstCompletedRegion: Index of the first completed region.
+ void completeRegionsUntil(Optional<LineColPair> Loc,
+ unsigned FirstCompletedRegion) {
+ // Sort the completed regions by end location. This makes it simple to
+ // emit closing segments in sorted order.
+ auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion;
+ std::stable_sort(CompletedRegionsIt, ActiveRegions.end(),
+ [](const CountedRegion *L, const CountedRegion *R) {
+ return L->endLoc() < R->endLoc();
+ });
+
+ // Emit segments for all completed regions.
+ for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E;
+ ++I) {
+ const auto *CompletedRegion = ActiveRegions[I];
+ assert((!Loc || CompletedRegion->endLoc() <= *Loc) &&
+ "Completed region ends after start of new region");
+
+ const auto *PrevCompletedRegion = ActiveRegions[I - 1];
+ auto CompletedSegmentLoc = PrevCompletedRegion->endLoc();
+
+ // Don't emit any more segments if they start where the new region begins.
+ if (Loc && CompletedSegmentLoc == *Loc)
+ break;
+
+ // Don't emit a segment if the next completed region ends at the same
+ // location as this one.
+ if (CompletedSegmentLoc == CompletedRegion->endLoc())
+ continue;
+
+ // Use the count from the last completed region which ends at this loc.
+ for (unsigned J = I + 1; J < E; ++J)
+ if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc())
+ CompletedRegion = ActiveRegions[J];
+
+ startSegment(*CompletedRegion, CompletedSegmentLoc, false);
+ }
+
+ auto Last = ActiveRegions.back();
+ if (FirstCompletedRegion && Last->endLoc() != *Loc) {
+ // If there's a gap after the end of the last completed region and the
+ // start of the new region, use the last active region to fill the gap.
+ startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(),
+ false);
+ } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) {
+ // Emit a skipped segment if there are no more active regions. This
+ // ensures that gaps between functions are marked correctly.
+ startSegment(*Last, Last->endLoc(), false, true);
+ }
+
+ // Pop the completed regions.
+ ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end());
+ }
+
+ void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) {
+ for (const auto &CR : enumerate(Regions)) {
+ auto CurStartLoc = CR.value().startLoc();
+
+ // Active regions which end before the current region need to be popped.
+ auto CompletedRegions =
+ std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(),
+ [&](const CountedRegion *Region) {
+ return !(Region->endLoc() <= CurStartLoc);
+ });
+ if (CompletedRegions != ActiveRegions.end()) {
+ unsigned FirstCompletedRegion =
+ std::distance(ActiveRegions.begin(), CompletedRegions);
+ completeRegionsUntil(CurStartLoc, FirstCompletedRegion);
+ }
+
+ bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion;
+
+ // Try to emit a segment for the current region.
+ if (CurStartLoc == CR.value().endLoc()) {
+ // Avoid making zero-length regions active. If it's the last region,
+ // emit a skipped segment. Otherwise use its predecessor's count.
+ const bool Skipped = (CR.index() + 1) == Regions.size();
+ startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(),
+ CurStartLoc, !GapRegion, Skipped);
+ continue;
+ }
+ if (CR.index() + 1 == Regions.size() ||
+ CurStartLoc != Regions[CR.index() + 1].startLoc()) {
+ // Emit a segment if the next region doesn't start at the same location
+ // as this one.
+ startSegment(CR.value(), CurStartLoc, !GapRegion);
+ }
+
+ // This region is active (i.e not completed).
+ ActiveRegions.push_back(&CR.value());
+ }
+
+ // Complete any remaining active regions.
+ if (!ActiveRegions.empty())
+ completeRegionsUntil(None, 0);
+ }
+
+ /// Sort a nested sequence of regions from a single file.
+ static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) {
+ llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) {
+ if (LHS.startLoc() != RHS.startLoc())
+ return LHS.startLoc() < RHS.startLoc();
+ if (LHS.endLoc() != RHS.endLoc())
+ // When LHS completely contains RHS, we sort LHS first.
+ return RHS.endLoc() < LHS.endLoc();
+ // If LHS and RHS cover the same area, we need to sort them according
+ // to their kinds so that the most suitable region will become "active"
+ // in combineRegions(). Because we accumulate counter values only from
+ // regions of the same kind as the first region of the area, prefer
+ // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion.
+ static_assert(CounterMappingRegion::CodeRegion <
+ CounterMappingRegion::ExpansionRegion &&
+ CounterMappingRegion::ExpansionRegion <
+ CounterMappingRegion::SkippedRegion,
+ "Unexpected order of region kind values");
+ return LHS.Kind < RHS.Kind;
+ });
+ }
+
+ /// Combine counts of regions which cover the same area.
+ static ArrayRef<CountedRegion>
+ combineRegions(MutableArrayRef<CountedRegion> Regions) {
+ if (Regions.empty())
+ return Regions;
+ auto Active = Regions.begin();
+ auto End = Regions.end();
+ for (auto I = Regions.begin() + 1; I != End; ++I) {
+ if (Active->startLoc() != I->startLoc() ||
+ Active->endLoc() != I->endLoc()) {
+ // Shift to the next region.
+ ++Active;
+ if (Active != I)
+ *Active = *I;
+ continue;
+ }
+ // Merge duplicate region.
+ // If CodeRegions and ExpansionRegions cover the same area, it's probably
+ // a macro which is fully expanded to another macro. In that case, we need
+ // to accumulate counts only from CodeRegions, or else the area will be
+ // counted twice.
+ // On the other hand, a macro may have a nested macro in its body. If the
+ // outer macro is used several times, the ExpansionRegion for the nested
+ // macro will also be added several times. These ExpansionRegions cover
+ // the same source locations and have to be combined to reach the correct
+ // value for that area.
+ // We add counts of the regions of the same kind as the active region
+ // to handle the both situations.
+ if (I->Kind == Active->Kind)
+ Active->ExecutionCount += I->ExecutionCount;
+ }
+ return Regions.drop_back(std::distance(++Active, End));
+ }
+
+public:
+ /// Build a sorted list of CoverageSegments from a list of Regions.
+ static std::vector<CoverageSegment>
+ buildSegments(MutableArrayRef<CountedRegion> Regions) {
+ std::vector<CoverageSegment> Segments;
+ SegmentBuilder Builder(Segments);
+
+ sortNestedRegions(Regions);
+ ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions);
+
+ LLVM_DEBUG({
+ dbgs() << "Combined regions:\n";
+ for (const auto &CR : CombinedRegions)
+ dbgs() << " " << CR.LineStart << ":" << CR.ColumnStart << " -> "
+ << CR.LineEnd << ":" << CR.ColumnEnd
+ << " (count=" << CR.ExecutionCount << ")\n";
+ });
+
+ Builder.buildSegmentsImpl(CombinedRegions);
+
+#ifndef NDEBUG
+ for (unsigned I = 1, E = Segments.size(); I < E; ++I) {
+ const auto &L = Segments[I - 1];
+ const auto &R = Segments[I];
+ if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) {
+ LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col
+ << " followed by " << R.Line << ":" << R.Col << "\n");
+ assert(false && "Coverage segments not unique or sorted");
+ }
+ }
+#endif
+
+ return Segments;
+ }
+};
+
+} // end anonymous namespace
+
+std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const {
+ std::vector<StringRef> Filenames;
+ for (const auto &Function : getCoveredFunctions())
+ Filenames.insert(Filenames.end(), Function.Filenames.begin(),
+ Function.Filenames.end());
+ llvm::sort(Filenames);
+ auto Last = std::unique(Filenames.begin(), Filenames.end());
+ Filenames.erase(Last, Filenames.end());
+ return Filenames;
+}
+
+static SmallBitVector gatherFileIDs(StringRef SourceFile,
+ const FunctionRecord &Function) {
+ SmallBitVector FilenameEquivalence(Function.Filenames.size(), false);
+ for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I)
+ if (SourceFile == Function.Filenames[I])
+ FilenameEquivalence[I] = true;
+ return FilenameEquivalence;
+}
+
+/// Return the ID of the file where the definition of the function is located.
+static Optional<unsigned> findMainViewFileID(const FunctionRecord &Function) {
+ SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true);
+ for (const auto &CR : Function.CountedRegions)
+ if (CR.Kind == CounterMappingRegion::ExpansionRegion)
+ IsNotExpandedFile[CR.ExpandedFileID] = false;
+ int I = IsNotExpandedFile.find_first();
+ if (I == -1)
+ return None;
+ return I;
+}
+
+/// Check if SourceFile is the file that contains the definition of
+/// the Function. Return the ID of the file in that case or None otherwise.
+static Optional<unsigned> findMainViewFileID(StringRef SourceFile,
+ const FunctionRecord &Function) {
+ Optional<unsigned> I = findMainViewFileID(Function);
+ if (I && SourceFile == Function.Filenames[*I])
+ return I;
+ return None;
+}
+
+static bool isExpansion(const CountedRegion &R, unsigned FileID) {
+ return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID;
+}
+
+CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const {
+ CoverageData FileCoverage(Filename);
+ std::vector<CountedRegion> Regions;
+
+ // Look up the function records in the given file. Due to hash collisions on
+ // the filename, we may get back some records that are not in the file.
+ ArrayRef<unsigned> RecordIndices =
+ getImpreciseRecordIndicesForFilename(Filename);
+ for (unsigned RecordIndex : RecordIndices) {
+ const FunctionRecord &Function = Functions[RecordIndex];
+ auto MainFileID = findMainViewFileID(Filename, Function);
+ auto FileIDs = gatherFileIDs(Filename, Function);
+ for (const auto &CR : Function.CountedRegions)
+ if (FileIDs.test(CR.FileID)) {
+ Regions.push_back(CR);
+ if (MainFileID && isExpansion(CR, *MainFileID))
+ FileCoverage.Expansions.emplace_back(CR, Function);
+ }
+ }
+
+ LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n");
+ FileCoverage.Segments = SegmentBuilder::buildSegments(Regions);
+
+ return FileCoverage;
+}
+
+std::vector<InstantiationGroup>
+CoverageMapping::getInstantiationGroups(StringRef Filename) const {
+ FunctionInstantiationSetCollector InstantiationSetCollector;
+ // Look up the function records in the given file. Due to hash collisions on
+ // the filename, we may get back some records that are not in the file.
+ ArrayRef<unsigned> RecordIndices =
+ getImpreciseRecordIndicesForFilename(Filename);
+ for (unsigned RecordIndex : RecordIndices) {
+ const FunctionRecord &Function = Functions[RecordIndex];
+ auto MainFileID = findMainViewFileID(Filename, Function);
+ if (!MainFileID)
+ continue;
+ InstantiationSetCollector.insert(Function, *MainFileID);
+ }
+
+ std::vector<InstantiationGroup> Result;
+ for (auto &InstantiationSet : InstantiationSetCollector) {
+ InstantiationGroup IG{InstantiationSet.first.first,
+ InstantiationSet.first.second,
+ std::move(InstantiationSet.second)};
+ Result.emplace_back(std::move(IG));
+ }
+ return Result;
+}
+
+CoverageData
+CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const {
+ auto MainFileID = findMainViewFileID(Function);
+ if (!MainFileID)
+ return CoverageData();
+
+ CoverageData FunctionCoverage(Function.Filenames[*MainFileID]);
+ std::vector<CountedRegion> Regions;
+ for (const auto &CR : Function.CountedRegions)
+ if (CR.FileID == *MainFileID) {
+ Regions.push_back(CR);
+ if (isExpansion(CR, *MainFileID))
+ FunctionCoverage.Expansions.emplace_back(CR, Function);
+ }
+
+ LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name
+ << "\n");
+ FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions);
+
+ return FunctionCoverage;
+}
+
+CoverageData CoverageMapping::getCoverageForExpansion(
+ const ExpansionRecord &Expansion) const {
+ CoverageData ExpansionCoverage(
+ Expansion.Function.Filenames[Expansion.FileID]);
+ std::vector<CountedRegion> Regions;
+ for (const auto &CR : Expansion.Function.CountedRegions)
+ if (CR.FileID == Expansion.FileID) {
+ Regions.push_back(CR);
+ if (isExpansion(CR, Expansion.FileID))
+ ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function);
+ }
+
+ LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file "
+ << Expansion.FileID << "\n");
+ ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions);
+
+ return ExpansionCoverage;
+}
+
+LineCoverageStats::LineCoverageStats(
+ ArrayRef<const CoverageSegment *> LineSegments,
+ const CoverageSegment *WrappedSegment, unsigned Line)
+ : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line),
+ LineSegments(LineSegments), WrappedSegment(WrappedSegment) {
+ // Find the minimum number of regions which start in this line.
+ unsigned MinRegionCount = 0;
+ auto isStartOfRegion = [](const CoverageSegment *S) {
+ return !S->IsGapRegion && S->HasCount && S->IsRegionEntry;
+ };
+ for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I)
+ if (isStartOfRegion(LineSegments[I]))
+ ++MinRegionCount;
+
+ bool StartOfSkippedRegion = !LineSegments.empty() &&
+ !LineSegments.front()->HasCount &&
+ LineSegments.front()->IsRegionEntry;
+
+ HasMultipleRegions = MinRegionCount > 1;
+ Mapped =
+ !StartOfSkippedRegion &&
+ ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0));
+
+ if (!Mapped)
+ return;
+
+ // Pick the max count from the non-gap, region entry segments and the
+ // wrapped count.
+ if (WrappedSegment)
+ ExecutionCount = WrappedSegment->Count;
+ if (!MinRegionCount)
+ return;
+ for (const auto *LS : LineSegments)
+ if (isStartOfRegion(LS))
+ ExecutionCount = std::max(ExecutionCount, LS->Count);
+}
+
+LineCoverageIterator &LineCoverageIterator::operator++() {
+ if (Next == CD.end()) {
+ Stats = LineCoverageStats();
+ Ended = true;
+ return *this;
+ }
+ if (Segments.size())
+ WrappedSegment = Segments.back();
+ Segments.clear();
+ while (Next != CD.end() && Next->Line == Line)
+ Segments.push_back(&*Next++);
+ Stats = LineCoverageStats(Segments, WrappedSegment, Line);
+ ++Line;
+ return *this;
+}
+
+static std::string getCoverageMapErrString(coveragemap_error Err) {
+ switch (Err) {
+ case coveragemap_error::success:
+ return "Success";
+ case coveragemap_error::eof:
+ return "End of File";
+ case coveragemap_error::no_data_found:
+ return "No coverage data found";
+ case coveragemap_error::unsupported_version:
+ return "Unsupported coverage format version";
+ case coveragemap_error::truncated:
+ return "Truncated coverage data";
+ case coveragemap_error::malformed:
+ return "Malformed coverage data";
+ }
+ llvm_unreachable("A value of coveragemap_error has no message.");
+}
+
+namespace {
+
+// FIXME: This class is only here to support the transition to llvm::Error. It
+// will be removed once this transition is complete. Clients should prefer to
+// deal with the Error value directly, rather than converting to error_code.
+class CoverageMappingErrorCategoryType : public std::error_category {
+ const char *name() const noexcept override { return "llvm.coveragemap"; }
+ std::string message(int IE) const override {
+ return getCoverageMapErrString(static_cast<coveragemap_error>(IE));
+ }
+};
+
+} // end anonymous namespace
+
+std::string CoverageMapError::message() const {
+ return getCoverageMapErrString(Err);
+}
+
+static ManagedStatic<CoverageMappingErrorCategoryType> ErrorCategory;
+
+const std::error_category &llvm::coverage::coveragemap_category() {
+ return *ErrorCategory;
+}
+
+char CoverageMapError::ID = 0;
diff --git a/llvm/lib/ProfileData/Coverage/CoverageMappingReader.cpp b/llvm/lib/ProfileData/Coverage/CoverageMappingReader.cpp
new file mode 100644
index 000000000000..679ff3525eeb
--- /dev/null
+++ b/llvm/lib/ProfileData/Coverage/CoverageMappingReader.cpp
@@ -0,0 +1,831 @@
+//===- CoverageMappingReader.cpp - Code coverage mapping reader -----------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains support for reading coverage mapping data for
+// instrumentation based coverage.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/Object/Binary.h"
+#include "llvm/Object/Error.h"
+#include "llvm/Object/MachOUniversal.h"
+#include "llvm/Object/ObjectFile.h"
+#include "llvm/Object/COFF.h"
+#include "llvm/ProfileData/InstrProf.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Endian.h"
+#include "llvm/Support/Error.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/LEB128.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include <vector>
+
+using namespace llvm;
+using namespace coverage;
+using namespace object;
+
+#define DEBUG_TYPE "coverage-mapping"
+
+void CoverageMappingIterator::increment() {
+ if (ReadErr != coveragemap_error::success)
+ return;
+
+ // Check if all the records were read or if an error occurred while reading
+ // the next record.
+ if (auto E = Reader->readNextRecord(Record))
+ handleAllErrors(std::move(E), [&](const CoverageMapError &CME) {
+ if (CME.get() == coveragemap_error::eof)
+ *this = CoverageMappingIterator();
+ else
+ ReadErr = CME.get();
+ });
+}
+
+Error RawCoverageReader::readULEB128(uint64_t &Result) {
+ if (Data.empty())
+ return make_error<CoverageMapError>(coveragemap_error::truncated);
+ unsigned N = 0;
+ Result = decodeULEB128(Data.bytes_begin(), &N);
+ if (N > Data.size())
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ Data = Data.substr(N);
+ return Error::success();
+}
+
+Error RawCoverageReader::readIntMax(uint64_t &Result, uint64_t MaxPlus1) {
+ if (auto Err = readULEB128(Result))
+ return Err;
+ if (Result >= MaxPlus1)
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ return Error::success();
+}
+
+Error RawCoverageReader::readSize(uint64_t &Result) {
+ if (auto Err = readULEB128(Result))
+ return Err;
+ // Sanity check the number.
+ if (Result > Data.size())
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ return Error::success();
+}
+
+Error RawCoverageReader::readString(StringRef &Result) {
+ uint64_t Length;
+ if (auto Err = readSize(Length))
+ return Err;
+ Result = Data.substr(0, Length);
+ Data = Data.substr(Length);
+ return Error::success();
+}
+
+Error RawCoverageFilenamesReader::read() {
+ uint64_t NumFilenames;
+ if (auto Err = readSize(NumFilenames))
+ return Err;
+ for (size_t I = 0; I < NumFilenames; ++I) {
+ StringRef Filename;
+ if (auto Err = readString(Filename))
+ return Err;
+ Filenames.push_back(Filename);
+ }
+ return Error::success();
+}
+
+Error RawCoverageMappingReader::decodeCounter(unsigned Value, Counter &C) {
+ auto Tag = Value & Counter::EncodingTagMask;
+ switch (Tag) {
+ case Counter::Zero:
+ C = Counter::getZero();
+ return Error::success();
+ case Counter::CounterValueReference:
+ C = Counter::getCounter(Value >> Counter::EncodingTagBits);
+ return Error::success();
+ default:
+ break;
+ }
+ Tag -= Counter::Expression;
+ switch (Tag) {
+ case CounterExpression::Subtract:
+ case CounterExpression::Add: {
+ auto ID = Value >> Counter::EncodingTagBits;
+ if (ID >= Expressions.size())
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ Expressions[ID].Kind = CounterExpression::ExprKind(Tag);
+ C = Counter::getExpression(ID);
+ break;
+ }
+ default:
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ }
+ return Error::success();
+}
+
+Error RawCoverageMappingReader::readCounter(Counter &C) {
+ uint64_t EncodedCounter;
+ if (auto Err =
+ readIntMax(EncodedCounter, std::numeric_limits<unsigned>::max()))
+ return Err;
+ if (auto Err = decodeCounter(EncodedCounter, C))
+ return Err;
+ return Error::success();
+}
+
+static const unsigned EncodingExpansionRegionBit = 1
+ << Counter::EncodingTagBits;
+
+/// Read the sub-array of regions for the given inferred file id.
+/// \param NumFileIDs the number of file ids that are defined for this
+/// function.
+Error RawCoverageMappingReader::readMappingRegionsSubArray(
+ std::vector<CounterMappingRegion> &MappingRegions, unsigned InferredFileID,
+ size_t NumFileIDs) {
+ uint64_t NumRegions;
+ if (auto Err = readSize(NumRegions))
+ return Err;
+ unsigned LineStart = 0;
+ for (size_t I = 0; I < NumRegions; ++I) {
+ Counter C;
+ CounterMappingRegion::RegionKind Kind = CounterMappingRegion::CodeRegion;
+
+ // Read the combined counter + region kind.
+ uint64_t EncodedCounterAndRegion;
+ if (auto Err = readIntMax(EncodedCounterAndRegion,
+ std::numeric_limits<unsigned>::max()))
+ return Err;
+ unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask;
+ uint64_t ExpandedFileID = 0;
+ if (Tag != Counter::Zero) {
+ if (auto Err = decodeCounter(EncodedCounterAndRegion, C))
+ return Err;
+ } else {
+ // Is it an expansion region?
+ if (EncodedCounterAndRegion & EncodingExpansionRegionBit) {
+ Kind = CounterMappingRegion::ExpansionRegion;
+ ExpandedFileID = EncodedCounterAndRegion >>
+ Counter::EncodingCounterTagAndExpansionRegionTagBits;
+ if (ExpandedFileID >= NumFileIDs)
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ } else {
+ switch (EncodedCounterAndRegion >>
+ Counter::EncodingCounterTagAndExpansionRegionTagBits) {
+ case CounterMappingRegion::CodeRegion:
+ // Don't do anything when we have a code region with a zero counter.
+ break;
+ case CounterMappingRegion::SkippedRegion:
+ Kind = CounterMappingRegion::SkippedRegion;
+ break;
+ default:
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ }
+ }
+ }
+
+ // Read the source range.
+ uint64_t LineStartDelta, ColumnStart, NumLines, ColumnEnd;
+ if (auto Err =
+ readIntMax(LineStartDelta, std::numeric_limits<unsigned>::max()))
+ return Err;
+ if (auto Err = readULEB128(ColumnStart))
+ return Err;
+ if (ColumnStart > std::numeric_limits<unsigned>::max())
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ if (auto Err = readIntMax(NumLines, std::numeric_limits<unsigned>::max()))
+ return Err;
+ if (auto Err = readIntMax(ColumnEnd, std::numeric_limits<unsigned>::max()))
+ return Err;
+ LineStart += LineStartDelta;
+
+ // If the high bit of ColumnEnd is set, this is a gap region.
+ if (ColumnEnd & (1U << 31)) {
+ Kind = CounterMappingRegion::GapRegion;
+ ColumnEnd &= ~(1U << 31);
+ }
+
+ // Adjust the column locations for the empty regions that are supposed to
+ // cover whole lines. Those regions should be encoded with the
+ // column range (1 -> std::numeric_limits<unsigned>::max()), but because
+ // the encoded std::numeric_limits<unsigned>::max() is several bytes long,
+ // we set the column range to (0 -> 0) to ensure that the column start and
+ // column end take up one byte each.
+ // The std::numeric_limits<unsigned>::max() is used to represent a column
+ // position at the end of the line without knowing the length of that line.
+ if (ColumnStart == 0 && ColumnEnd == 0) {
+ ColumnStart = 1;
+ ColumnEnd = std::numeric_limits<unsigned>::max();
+ }
+
+ LLVM_DEBUG({
+ dbgs() << "Counter in file " << InferredFileID << " " << LineStart << ":"
+ << ColumnStart << " -> " << (LineStart + NumLines) << ":"
+ << ColumnEnd << ", ";
+ if (Kind == CounterMappingRegion::ExpansionRegion)
+ dbgs() << "Expands to file " << ExpandedFileID;
+ else
+ CounterMappingContext(Expressions).dump(C, dbgs());
+ dbgs() << "\n";
+ });
+
+ auto CMR = CounterMappingRegion(C, InferredFileID, ExpandedFileID,
+ LineStart, ColumnStart,
+ LineStart + NumLines, ColumnEnd, Kind);
+ if (CMR.startLoc() > CMR.endLoc())
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ MappingRegions.push_back(CMR);
+ }
+ return Error::success();
+}
+
+Error RawCoverageMappingReader::read() {
+ // Read the virtual file mapping.
+ SmallVector<unsigned, 8> VirtualFileMapping;
+ uint64_t NumFileMappings;
+ if (auto Err = readSize(NumFileMappings))
+ return Err;
+ for (size_t I = 0; I < NumFileMappings; ++I) {
+ uint64_t FilenameIndex;
+ if (auto Err = readIntMax(FilenameIndex, TranslationUnitFilenames.size()))
+ return Err;
+ VirtualFileMapping.push_back(FilenameIndex);
+ }
+
+ // Construct the files using unique filenames and virtual file mapping.
+ for (auto I : VirtualFileMapping) {
+ Filenames.push_back(TranslationUnitFilenames[I]);
+ }
+
+ // Read the expressions.
+ uint64_t NumExpressions;
+ if (auto Err = readSize(NumExpressions))
+ return Err;
+ // Create an array of dummy expressions that get the proper counters
+ // when the expressions are read, and the proper kinds when the counters
+ // are decoded.
+ Expressions.resize(
+ NumExpressions,
+ CounterExpression(CounterExpression::Subtract, Counter(), Counter()));
+ for (size_t I = 0; I < NumExpressions; ++I) {
+ if (auto Err = readCounter(Expressions[I].LHS))
+ return Err;
+ if (auto Err = readCounter(Expressions[I].RHS))
+ return Err;
+ }
+
+ // Read the mapping regions sub-arrays.
+ for (unsigned InferredFileID = 0, S = VirtualFileMapping.size();
+ InferredFileID < S; ++InferredFileID) {
+ if (auto Err = readMappingRegionsSubArray(MappingRegions, InferredFileID,
+ VirtualFileMapping.size()))
+ return Err;
+ }
+
+ // Set the counters for the expansion regions.
+ // i.e. Counter of expansion region = counter of the first region
+ // from the expanded file.
+ // Perform multiple passes to correctly propagate the counters through
+ // all the nested expansion regions.
+ SmallVector<CounterMappingRegion *, 8> FileIDExpansionRegionMapping;
+ FileIDExpansionRegionMapping.resize(VirtualFileMapping.size(), nullptr);
+ for (unsigned Pass = 1, S = VirtualFileMapping.size(); Pass < S; ++Pass) {
+ for (auto &R : MappingRegions) {
+ if (R.Kind != CounterMappingRegion::ExpansionRegion)
+ continue;
+ assert(!FileIDExpansionRegionMapping[R.ExpandedFileID]);
+ FileIDExpansionRegionMapping[R.ExpandedFileID] = &R;
+ }
+ for (auto &R : MappingRegions) {
+ if (FileIDExpansionRegionMapping[R.FileID]) {
+ FileIDExpansionRegionMapping[R.FileID]->Count = R.Count;
+ FileIDExpansionRegionMapping[R.FileID] = nullptr;
+ }
+ }
+ }
+
+ return Error::success();
+}
+
+Expected<bool> RawCoverageMappingDummyChecker::isDummy() {
+ // A dummy coverage mapping data consists of just one region with zero count.
+ uint64_t NumFileMappings;
+ if (Error Err = readSize(NumFileMappings))
+ return std::move(Err);
+ if (NumFileMappings != 1)
+ return false;
+ // We don't expect any specific value for the filename index, just skip it.
+ uint64_t FilenameIndex;
+ if (Error Err =
+ readIntMax(FilenameIndex, std::numeric_limits<unsigned>::max()))
+ return std::move(Err);
+ uint64_t NumExpressions;
+ if (Error Err = readSize(NumExpressions))
+ return std::move(Err);
+ if (NumExpressions != 0)
+ return false;
+ uint64_t NumRegions;
+ if (Error Err = readSize(NumRegions))
+ return std::move(Err);
+ if (NumRegions != 1)
+ return false;
+ uint64_t EncodedCounterAndRegion;
+ if (Error Err = readIntMax(EncodedCounterAndRegion,
+ std::numeric_limits<unsigned>::max()))
+ return std::move(Err);
+ unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask;
+ return Tag == Counter::Zero;
+}
+
+Error InstrProfSymtab::create(SectionRef &Section) {
+ Expected<StringRef> DataOrErr = Section.getContents();
+ if (!DataOrErr)
+ return DataOrErr.takeError();
+ Data = *DataOrErr;
+ Address = Section.getAddress();
+
+ // If this is a linked PE/COFF file, then we have to skip over the null byte
+ // that is allocated in the .lprfn$A section in the LLVM profiling runtime.
+ const ObjectFile *Obj = Section.getObject();
+ if (isa<COFFObjectFile>(Obj) && !Obj->isRelocatableObject())
+ Data = Data.drop_front(1);
+
+ return Error::success();
+}
+
+StringRef InstrProfSymtab::getFuncName(uint64_t Pointer, size_t Size) {
+ if (Pointer < Address)
+ return StringRef();
+ auto Offset = Pointer - Address;
+ if (Offset + Size > Data.size())
+ return StringRef();
+ return Data.substr(Pointer - Address, Size);
+}
+
+// Check if the mapping data is a dummy, i.e. is emitted for an unused function.
+static Expected<bool> isCoverageMappingDummy(uint64_t Hash, StringRef Mapping) {
+ // The hash value of dummy mapping records is always zero.
+ if (Hash)
+ return false;
+ return RawCoverageMappingDummyChecker(Mapping).isDummy();
+}
+
+namespace {
+
+struct CovMapFuncRecordReader {
+ virtual ~CovMapFuncRecordReader() = default;
+
+ // The interface to read coverage mapping function records for a module.
+ //
+ // \p Buf points to the buffer containing the \c CovHeader of the coverage
+ // mapping data associated with the module.
+ //
+ // Returns a pointer to the next \c CovHeader if it exists, or a pointer
+ // greater than \p End if not.
+ virtual Expected<const char *> readFunctionRecords(const char *Buf,
+ const char *End) = 0;
+
+ template <class IntPtrT, support::endianness Endian>
+ static Expected<std::unique_ptr<CovMapFuncRecordReader>>
+ get(CovMapVersion Version, InstrProfSymtab &P,
+ std::vector<BinaryCoverageReader::ProfileMappingRecord> &R,
+ std::vector<StringRef> &F);
+};
+
+// A class for reading coverage mapping function records for a module.
+template <CovMapVersion Version, class IntPtrT, support::endianness Endian>
+class VersionedCovMapFuncRecordReader : public CovMapFuncRecordReader {
+ using FuncRecordType =
+ typename CovMapTraits<Version, IntPtrT>::CovMapFuncRecordType;
+ using NameRefType = typename CovMapTraits<Version, IntPtrT>::NameRefType;
+
+ // Maps function's name references to the indexes of their records
+ // in \c Records.
+ DenseMap<NameRefType, size_t> FunctionRecords;
+ InstrProfSymtab &ProfileNames;
+ std::vector<StringRef> &Filenames;
+ std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records;
+
+ // Add the record to the collection if we don't already have a record that
+ // points to the same function name. This is useful to ignore the redundant
+ // records for the functions with ODR linkage.
+ // In addition, prefer records with real coverage mapping data to dummy
+ // records, which were emitted for inline functions which were seen but
+ // not used in the corresponding translation unit.
+ Error insertFunctionRecordIfNeeded(const FuncRecordType *CFR,
+ StringRef Mapping, size_t FilenamesBegin) {
+ uint64_t FuncHash = CFR->template getFuncHash<Endian>();
+ NameRefType NameRef = CFR->template getFuncNameRef<Endian>();
+ auto InsertResult =
+ FunctionRecords.insert(std::make_pair(NameRef, Records.size()));
+ if (InsertResult.second) {
+ StringRef FuncName;
+ if (Error Err = CFR->template getFuncName<Endian>(ProfileNames, FuncName))
+ return Err;
+ if (FuncName.empty())
+ return make_error<InstrProfError>(instrprof_error::malformed);
+ Records.emplace_back(Version, FuncName, FuncHash, Mapping, FilenamesBegin,
+ Filenames.size() - FilenamesBegin);
+ return Error::success();
+ }
+ // Update the existing record if it's a dummy and the new record is real.
+ size_t OldRecordIndex = InsertResult.first->second;
+ BinaryCoverageReader::ProfileMappingRecord &OldRecord =
+ Records[OldRecordIndex];
+ Expected<bool> OldIsDummyExpected = isCoverageMappingDummy(
+ OldRecord.FunctionHash, OldRecord.CoverageMapping);
+ if (Error Err = OldIsDummyExpected.takeError())
+ return Err;
+ if (!*OldIsDummyExpected)
+ return Error::success();
+ Expected<bool> NewIsDummyExpected =
+ isCoverageMappingDummy(FuncHash, Mapping);
+ if (Error Err = NewIsDummyExpected.takeError())
+ return Err;
+ if (*NewIsDummyExpected)
+ return Error::success();
+ OldRecord.FunctionHash = FuncHash;
+ OldRecord.CoverageMapping = Mapping;
+ OldRecord.FilenamesBegin = FilenamesBegin;
+ OldRecord.FilenamesSize = Filenames.size() - FilenamesBegin;
+ return Error::success();
+ }
+
+public:
+ VersionedCovMapFuncRecordReader(
+ InstrProfSymtab &P,
+ std::vector<BinaryCoverageReader::ProfileMappingRecord> &R,
+ std::vector<StringRef> &F)
+ : ProfileNames(P), Filenames(F), Records(R) {}
+
+ ~VersionedCovMapFuncRecordReader() override = default;
+
+ Expected<const char *> readFunctionRecords(const char *Buf,
+ const char *End) override {
+ using namespace support;
+
+ if (Buf + sizeof(CovMapHeader) > End)
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ auto CovHeader = reinterpret_cast<const CovMapHeader *>(Buf);
+ uint32_t NRecords = CovHeader->getNRecords<Endian>();
+ uint32_t FilenamesSize = CovHeader->getFilenamesSize<Endian>();
+ uint32_t CoverageSize = CovHeader->getCoverageSize<Endian>();
+ assert((CovMapVersion)CovHeader->getVersion<Endian>() == Version);
+ Buf = reinterpret_cast<const char *>(CovHeader + 1);
+
+ // Skip past the function records, saving the start and end for later.
+ const char *FunBuf = Buf;
+ Buf += NRecords * sizeof(FuncRecordType);
+ const char *FunEnd = Buf;
+
+ // Get the filenames.
+ if (Buf + FilenamesSize > End)
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ size_t FilenamesBegin = Filenames.size();
+ RawCoverageFilenamesReader Reader(StringRef(Buf, FilenamesSize), Filenames);
+ if (auto Err = Reader.read())
+ return std::move(Err);
+ Buf += FilenamesSize;
+
+ // We'll read the coverage mapping records in the loop below.
+ const char *CovBuf = Buf;
+ Buf += CoverageSize;
+ const char *CovEnd = Buf;
+
+ if (Buf > End)
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ // Each coverage map has an alignment of 8, so we need to adjust alignment
+ // before reading the next map.
+ Buf += offsetToAlignedAddr(Buf, Align(8));
+
+ auto CFR = reinterpret_cast<const FuncRecordType *>(FunBuf);
+ while ((const char *)CFR < FunEnd) {
+ // Read the function information
+ uint32_t DataSize = CFR->template getDataSize<Endian>();
+
+ // Now use that to read the coverage data.
+ if (CovBuf + DataSize > CovEnd)
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ auto Mapping = StringRef(CovBuf, DataSize);
+ CovBuf += DataSize;
+
+ if (Error Err =
+ insertFunctionRecordIfNeeded(CFR, Mapping, FilenamesBegin))
+ return std::move(Err);
+ CFR++;
+ }
+ return Buf;
+ }
+};
+
+} // end anonymous namespace
+
+template <class IntPtrT, support::endianness Endian>
+Expected<std::unique_ptr<CovMapFuncRecordReader>> CovMapFuncRecordReader::get(
+ CovMapVersion Version, InstrProfSymtab &P,
+ std::vector<BinaryCoverageReader::ProfileMappingRecord> &R,
+ std::vector<StringRef> &F) {
+ using namespace coverage;
+
+ switch (Version) {
+ case CovMapVersion::Version1:
+ return std::make_unique<VersionedCovMapFuncRecordReader<
+ CovMapVersion::Version1, IntPtrT, Endian>>(P, R, F);
+ case CovMapVersion::Version2:
+ case CovMapVersion::Version3:
+ // Decompress the name data.
+ if (Error E = P.create(P.getNameData()))
+ return std::move(E);
+ if (Version == CovMapVersion::Version2)
+ return std::make_unique<VersionedCovMapFuncRecordReader<
+ CovMapVersion::Version2, IntPtrT, Endian>>(P, R, F);
+ else
+ return std::make_unique<VersionedCovMapFuncRecordReader<
+ CovMapVersion::Version3, IntPtrT, Endian>>(P, R, F);
+ }
+ llvm_unreachable("Unsupported version");
+}
+
+template <typename T, support::endianness Endian>
+static Error readCoverageMappingData(
+ InstrProfSymtab &ProfileNames, StringRef Data,
+ std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records,
+ std::vector<StringRef> &Filenames) {
+ using namespace coverage;
+
+ // Read the records in the coverage data section.
+ auto CovHeader =
+ reinterpret_cast<const CovMapHeader *>(Data.data());
+ CovMapVersion Version = (CovMapVersion)CovHeader->getVersion<Endian>();
+ if (Version > CovMapVersion::CurrentVersion)
+ return make_error<CoverageMapError>(coveragemap_error::unsupported_version);
+ Expected<std::unique_ptr<CovMapFuncRecordReader>> ReaderExpected =
+ CovMapFuncRecordReader::get<T, Endian>(Version, ProfileNames, Records,
+ Filenames);
+ if (Error E = ReaderExpected.takeError())
+ return E;
+ auto Reader = std::move(ReaderExpected.get());
+ for (const char *Buf = Data.data(), *End = Buf + Data.size(); Buf < End;) {
+ auto NextHeaderOrErr = Reader->readFunctionRecords(Buf, End);
+ if (auto E = NextHeaderOrErr.takeError())
+ return E;
+ Buf = NextHeaderOrErr.get();
+ }
+ return Error::success();
+}
+
+static const char *TestingFormatMagic = "llvmcovmtestdata";
+
+Expected<std::unique_ptr<BinaryCoverageReader>>
+BinaryCoverageReader::createCoverageReaderFromBuffer(
+ StringRef Coverage, InstrProfSymtab &&ProfileNames, uint8_t BytesInAddress,
+ support::endianness Endian) {
+ std::unique_ptr<BinaryCoverageReader> Reader(new BinaryCoverageReader());
+ Reader->ProfileNames = std::move(ProfileNames);
+ if (BytesInAddress == 4 && Endian == support::endianness::little) {
+ if (Error E =
+ readCoverageMappingData<uint32_t, support::endianness::little>(
+ Reader->ProfileNames, Coverage, Reader->MappingRecords,
+ Reader->Filenames))
+ return std::move(E);
+ } else if (BytesInAddress == 4 && Endian == support::endianness::big) {
+ if (Error E = readCoverageMappingData<uint32_t, support::endianness::big>(
+ Reader->ProfileNames, Coverage, Reader->MappingRecords,
+ Reader->Filenames))
+ return std::move(E);
+ } else if (BytesInAddress == 8 && Endian == support::endianness::little) {
+ if (Error E =
+ readCoverageMappingData<uint64_t, support::endianness::little>(
+ Reader->ProfileNames, Coverage, Reader->MappingRecords,
+ Reader->Filenames))
+ return std::move(E);
+ } else if (BytesInAddress == 8 && Endian == support::endianness::big) {
+ if (Error E = readCoverageMappingData<uint64_t, support::endianness::big>(
+ Reader->ProfileNames, Coverage, Reader->MappingRecords,
+ Reader->Filenames))
+ return std::move(E);
+ } else
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ return std::move(Reader);
+}
+
+static Expected<std::unique_ptr<BinaryCoverageReader>>
+loadTestingFormat(StringRef Data) {
+ uint8_t BytesInAddress = 8;
+ support::endianness Endian = support::endianness::little;
+
+ Data = Data.substr(StringRef(TestingFormatMagic).size());
+ if (Data.empty())
+ return make_error<CoverageMapError>(coveragemap_error::truncated);
+ unsigned N = 0;
+ uint64_t ProfileNamesSize = decodeULEB128(Data.bytes_begin(), &N);
+ if (N > Data.size())
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ Data = Data.substr(N);
+ if (Data.empty())
+ return make_error<CoverageMapError>(coveragemap_error::truncated);
+ N = 0;
+ uint64_t Address = decodeULEB128(Data.bytes_begin(), &N);
+ if (N > Data.size())
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ Data = Data.substr(N);
+ if (Data.size() < ProfileNamesSize)
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ InstrProfSymtab ProfileNames;
+ if (Error E = ProfileNames.create(Data.substr(0, ProfileNamesSize), Address))
+ return std::move(E);
+ StringRef CoverageMapping = Data.substr(ProfileNamesSize);
+ // Skip the padding bytes because coverage map data has an alignment of 8.
+ if (CoverageMapping.empty())
+ return make_error<CoverageMapError>(coveragemap_error::truncated);
+ size_t Pad = offsetToAlignedAddr(CoverageMapping.data(), Align(8));
+ if (CoverageMapping.size() < Pad)
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ CoverageMapping = CoverageMapping.substr(Pad);
+ return BinaryCoverageReader::createCoverageReaderFromBuffer(
+ CoverageMapping, std::move(ProfileNames), BytesInAddress, Endian);
+}
+
+static Expected<SectionRef> lookupSection(ObjectFile &OF, StringRef Name) {
+ // On COFF, the object file section name may end in "$M". This tells the
+ // linker to sort these sections between "$A" and "$Z". The linker removes the
+ // dollar and everything after it in the final binary. Do the same to match.
+ bool IsCOFF = isa<COFFObjectFile>(OF);
+ auto stripSuffix = [IsCOFF](StringRef N) {
+ return IsCOFF ? N.split('$').first : N;
+ };
+ Name = stripSuffix(Name);
+
+ for (const auto &Section : OF.sections()) {
+ Expected<StringRef> NameOrErr = Section.getName();
+ if (!NameOrErr)
+ return NameOrErr.takeError();
+ if (stripSuffix(*NameOrErr) == Name)
+ return Section;
+ }
+ return make_error<CoverageMapError>(coveragemap_error::no_data_found);
+}
+
+static Expected<std::unique_ptr<BinaryCoverageReader>>
+loadBinaryFormat(std::unique_ptr<Binary> Bin, StringRef Arch) {
+ std::unique_ptr<ObjectFile> OF;
+ if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin.get())) {
+ // If we have a universal binary, try to look up the object for the
+ // appropriate architecture.
+ auto ObjectFileOrErr = Universal->getMachOObjectForArch(Arch);
+ if (!ObjectFileOrErr)
+ return ObjectFileOrErr.takeError();
+ OF = std::move(ObjectFileOrErr.get());
+ } else if (isa<ObjectFile>(Bin.get())) {
+ // For any other object file, upcast and take ownership.
+ OF.reset(cast<ObjectFile>(Bin.release()));
+ // If we've asked for a particular arch, make sure they match.
+ if (!Arch.empty() && OF->getArch() != Triple(Arch).getArch())
+ return errorCodeToError(object_error::arch_not_found);
+ } else
+ // We can only handle object files.
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+
+ // The coverage uses native pointer sizes for the object it's written in.
+ uint8_t BytesInAddress = OF->getBytesInAddress();
+ support::endianness Endian = OF->isLittleEndian()
+ ? support::endianness::little
+ : support::endianness::big;
+
+ // Look for the sections that we are interested in.
+ auto ObjFormat = OF->getTripleObjectFormat();
+ auto NamesSection =
+ lookupSection(*OF, getInstrProfSectionName(IPSK_name, ObjFormat,
+ /*AddSegmentInfo=*/false));
+ if (auto E = NamesSection.takeError())
+ return std::move(E);
+ auto CoverageSection =
+ lookupSection(*OF, getInstrProfSectionName(IPSK_covmap, ObjFormat,
+ /*AddSegmentInfo=*/false));
+ if (auto E = CoverageSection.takeError())
+ return std::move(E);
+
+ // Get the contents of the given sections.
+ auto CoverageMappingOrErr = CoverageSection->getContents();
+ if (!CoverageMappingOrErr)
+ return CoverageMappingOrErr.takeError();
+
+ InstrProfSymtab ProfileNames;
+ if (Error E = ProfileNames.create(*NamesSection))
+ return std::move(E);
+
+ return BinaryCoverageReader::createCoverageReaderFromBuffer(
+ CoverageMappingOrErr.get(), std::move(ProfileNames), BytesInAddress,
+ Endian);
+}
+
+Expected<std::vector<std::unique_ptr<BinaryCoverageReader>>>
+BinaryCoverageReader::create(
+ MemoryBufferRef ObjectBuffer, StringRef Arch,
+ SmallVectorImpl<std::unique_ptr<MemoryBuffer>> &ObjectFileBuffers) {
+ std::vector<std::unique_ptr<BinaryCoverageReader>> Readers;
+
+ if (ObjectBuffer.getBuffer().startswith(TestingFormatMagic)) {
+ // This is a special format used for testing.
+ auto ReaderOrErr = loadTestingFormat(ObjectBuffer.getBuffer());
+ if (!ReaderOrErr)
+ return ReaderOrErr.takeError();
+ Readers.push_back(std::move(ReaderOrErr.get()));
+ return std::move(Readers);
+ }
+
+ auto BinOrErr = createBinary(ObjectBuffer);
+ if (!BinOrErr)
+ return BinOrErr.takeError();
+ std::unique_ptr<Binary> Bin = std::move(BinOrErr.get());
+
+ // MachO universal binaries which contain archives need to be treated as
+ // archives, not as regular binaries.
+ if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin.get())) {
+ for (auto &ObjForArch : Universal->objects()) {
+ // Skip slices within the universal binary which target the wrong arch.
+ std::string ObjArch = ObjForArch.getArchFlagName();
+ if (Arch != ObjArch)
+ continue;
+
+ auto ArchiveOrErr = ObjForArch.getAsArchive();
+ if (!ArchiveOrErr) {
+ // If this is not an archive, try treating it as a regular object.
+ consumeError(ArchiveOrErr.takeError());
+ break;
+ }
+
+ return BinaryCoverageReader::create(
+ ArchiveOrErr.get()->getMemoryBufferRef(), Arch, ObjectFileBuffers);
+ }
+ }
+
+ // Load coverage out of archive members.
+ if (auto *Ar = dyn_cast<Archive>(Bin.get())) {
+ Error Err = Error::success();
+ for (auto &Child : Ar->children(Err)) {
+ Expected<MemoryBufferRef> ChildBufOrErr = Child.getMemoryBufferRef();
+ if (!ChildBufOrErr)
+ return ChildBufOrErr.takeError();
+
+ auto ChildReadersOrErr = BinaryCoverageReader::create(
+ ChildBufOrErr.get(), Arch, ObjectFileBuffers);
+ if (!ChildReadersOrErr)
+ return ChildReadersOrErr.takeError();
+ for (auto &Reader : ChildReadersOrErr.get())
+ Readers.push_back(std::move(Reader));
+ }
+ if (Err)
+ return std::move(Err);
+
+ // Thin archives reference object files outside of the archive file, i.e.
+ // files which reside in memory not owned by the caller. Transfer ownership
+ // to the caller.
+ if (Ar->isThin())
+ for (auto &Buffer : Ar->takeThinBuffers())
+ ObjectFileBuffers.push_back(std::move(Buffer));
+
+ return std::move(Readers);
+ }
+
+ auto ReaderOrErr = loadBinaryFormat(std::move(Bin), Arch);
+ if (!ReaderOrErr)
+ return ReaderOrErr.takeError();
+ Readers.push_back(std::move(ReaderOrErr.get()));
+ return std::move(Readers);
+}
+
+Error BinaryCoverageReader::readNextRecord(CoverageMappingRecord &Record) {
+ if (CurrentRecord >= MappingRecords.size())
+ return make_error<CoverageMapError>(coveragemap_error::eof);
+
+ FunctionsFilenames.clear();
+ Expressions.clear();
+ MappingRegions.clear();
+ auto &R = MappingRecords[CurrentRecord];
+ RawCoverageMappingReader Reader(
+ R.CoverageMapping,
+ makeArrayRef(Filenames).slice(R.FilenamesBegin, R.FilenamesSize),
+ FunctionsFilenames, Expressions, MappingRegions);
+ if (auto Err = Reader.read())
+ return Err;
+
+ Record.FunctionName = R.FunctionName;
+ Record.FunctionHash = R.FunctionHash;
+ Record.Filenames = FunctionsFilenames;
+ Record.Expressions = Expressions;
+ Record.MappingRegions = MappingRegions;
+
+ ++CurrentRecord;
+ return Error::success();
+}
diff --git a/llvm/lib/ProfileData/Coverage/CoverageMappingWriter.cpp b/llvm/lib/ProfileData/Coverage/CoverageMappingWriter.cpp
new file mode 100644
index 000000000000..d75854a60d1e
--- /dev/null
+++ b/llvm/lib/ProfileData/Coverage/CoverageMappingWriter.cpp
@@ -0,0 +1,216 @@
+//===- CoverageMappingWriter.cpp - Code coverage mapping writer -----------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains support for writing coverage mapping data for
+// instrumentation based coverage.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ProfileData/Coverage/CoverageMappingWriter.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/LEB128.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <limits>
+#include <vector>
+
+using namespace llvm;
+using namespace coverage;
+
+CoverageFilenamesSectionWriter::CoverageFilenamesSectionWriter(
+ ArrayRef<StringRef> Filenames)
+ : Filenames(Filenames) {
+#ifndef NDEBUG
+ StringSet<> NameSet;
+ for (StringRef Name : Filenames)
+ assert(NameSet.insert(Name).second && "Duplicate filename");
+#endif
+}
+
+void CoverageFilenamesSectionWriter::write(raw_ostream &OS) {
+ encodeULEB128(Filenames.size(), OS);
+ for (const auto &Filename : Filenames) {
+ encodeULEB128(Filename.size(), OS);
+ OS << Filename;
+ }
+}
+
+namespace {
+
+/// Gather only the expressions that are used by the mapping
+/// regions in this function.
+class CounterExpressionsMinimizer {
+ ArrayRef<CounterExpression> Expressions;
+ SmallVector<CounterExpression, 16> UsedExpressions;
+ std::vector<unsigned> AdjustedExpressionIDs;
+
+public:
+ CounterExpressionsMinimizer(ArrayRef<CounterExpression> Expressions,
+ ArrayRef<CounterMappingRegion> MappingRegions)
+ : Expressions(Expressions) {
+ AdjustedExpressionIDs.resize(Expressions.size(), 0);
+ for (const auto &I : MappingRegions)
+ mark(I.Count);
+ for (const auto &I : MappingRegions)
+ gatherUsed(I.Count);
+ }
+
+ void mark(Counter C) {
+ if (!C.isExpression())
+ return;
+ unsigned ID = C.getExpressionID();
+ AdjustedExpressionIDs[ID] = 1;
+ mark(Expressions[ID].LHS);
+ mark(Expressions[ID].RHS);
+ }
+
+ void gatherUsed(Counter C) {
+ if (!C.isExpression() || !AdjustedExpressionIDs[C.getExpressionID()])
+ return;
+ AdjustedExpressionIDs[C.getExpressionID()] = UsedExpressions.size();
+ const auto &E = Expressions[C.getExpressionID()];
+ UsedExpressions.push_back(E);
+ gatherUsed(E.LHS);
+ gatherUsed(E.RHS);
+ }
+
+ ArrayRef<CounterExpression> getExpressions() const { return UsedExpressions; }
+
+ /// Adjust the given counter to correctly transition from the old
+ /// expression ids to the new expression ids.
+ Counter adjust(Counter C) const {
+ if (C.isExpression())
+ C = Counter::getExpression(AdjustedExpressionIDs[C.getExpressionID()]);
+ return C;
+ }
+};
+
+} // end anonymous namespace
+
+/// Encode the counter.
+///
+/// The encoding uses the following format:
+/// Low 2 bits - Tag:
+/// Counter::Zero(0) - A Counter with kind Counter::Zero
+/// Counter::CounterValueReference(1) - A counter with kind
+/// Counter::CounterValueReference
+/// Counter::Expression(2) + CounterExpression::Subtract(0) -
+/// A counter with kind Counter::Expression and an expression
+/// with kind CounterExpression::Subtract
+/// Counter::Expression(2) + CounterExpression::Add(1) -
+/// A counter with kind Counter::Expression and an expression
+/// with kind CounterExpression::Add
+/// Remaining bits - Counter/Expression ID.
+static unsigned encodeCounter(ArrayRef<CounterExpression> Expressions,
+ Counter C) {
+ unsigned Tag = unsigned(C.getKind());
+ if (C.isExpression())
+ Tag += Expressions[C.getExpressionID()].Kind;
+ unsigned ID = C.getCounterID();
+ assert(ID <=
+ (std::numeric_limits<unsigned>::max() >> Counter::EncodingTagBits));
+ return Tag | (ID << Counter::EncodingTagBits);
+}
+
+static void writeCounter(ArrayRef<CounterExpression> Expressions, Counter C,
+ raw_ostream &OS) {
+ encodeULEB128(encodeCounter(Expressions, C), OS);
+}
+
+void CoverageMappingWriter::write(raw_ostream &OS) {
+ // Check that we don't have any bogus regions.
+ assert(all_of(MappingRegions,
+ [](const CounterMappingRegion &CMR) {
+ return CMR.startLoc() <= CMR.endLoc();
+ }) &&
+ "Source region does not begin before it ends");
+
+ // Sort the regions in an ascending order by the file id and the starting
+ // location. Sort by region kinds to ensure stable order for tests.
+ llvm::stable_sort(MappingRegions, [](const CounterMappingRegion &LHS,
+ const CounterMappingRegion &RHS) {
+ if (LHS.FileID != RHS.FileID)
+ return LHS.FileID < RHS.FileID;
+ if (LHS.startLoc() != RHS.startLoc())
+ return LHS.startLoc() < RHS.startLoc();
+ return LHS.Kind < RHS.Kind;
+ });
+
+ // Write out the fileid -> filename mapping.
+ encodeULEB128(VirtualFileMapping.size(), OS);
+ for (const auto &FileID : VirtualFileMapping)
+ encodeULEB128(FileID, OS);
+
+ // Write out the expressions.
+ CounterExpressionsMinimizer Minimizer(Expressions, MappingRegions);
+ auto MinExpressions = Minimizer.getExpressions();
+ encodeULEB128(MinExpressions.size(), OS);
+ for (const auto &E : MinExpressions) {
+ writeCounter(MinExpressions, Minimizer.adjust(E.LHS), OS);
+ writeCounter(MinExpressions, Minimizer.adjust(E.RHS), OS);
+ }
+
+ // Write out the mapping regions.
+ // Split the regions into subarrays where each region in a
+ // subarray has a fileID which is the index of that subarray.
+ unsigned PrevLineStart = 0;
+ unsigned CurrentFileID = ~0U;
+ for (auto I = MappingRegions.begin(), E = MappingRegions.end(); I != E; ++I) {
+ if (I->FileID != CurrentFileID) {
+ // Ensure that all file ids have at least one mapping region.
+ assert(I->FileID == (CurrentFileID + 1));
+ // Find the number of regions with this file id.
+ unsigned RegionCount = 1;
+ for (auto J = I + 1; J != E && I->FileID == J->FileID; ++J)
+ ++RegionCount;
+ // Start a new region sub-array.
+ encodeULEB128(RegionCount, OS);
+
+ CurrentFileID = I->FileID;
+ PrevLineStart = 0;
+ }
+ Counter Count = Minimizer.adjust(I->Count);
+ switch (I->Kind) {
+ case CounterMappingRegion::CodeRegion:
+ case CounterMappingRegion::GapRegion:
+ writeCounter(MinExpressions, Count, OS);
+ break;
+ case CounterMappingRegion::ExpansionRegion: {
+ assert(Count.isZero());
+ assert(I->ExpandedFileID <=
+ (std::numeric_limits<unsigned>::max() >>
+ Counter::EncodingCounterTagAndExpansionRegionTagBits));
+ // Mark an expansion region with a set bit that follows the counter tag,
+ // and pack the expanded file id into the remaining bits.
+ unsigned EncodedTagExpandedFileID =
+ (1 << Counter::EncodingTagBits) |
+ (I->ExpandedFileID
+ << Counter::EncodingCounterTagAndExpansionRegionTagBits);
+ encodeULEB128(EncodedTagExpandedFileID, OS);
+ break;
+ }
+ case CounterMappingRegion::SkippedRegion:
+ assert(Count.isZero());
+ encodeULEB128(unsigned(I->Kind)
+ << Counter::EncodingCounterTagAndExpansionRegionTagBits,
+ OS);
+ break;
+ }
+ assert(I->LineStart >= PrevLineStart);
+ encodeULEB128(I->LineStart - PrevLineStart, OS);
+ encodeULEB128(I->ColumnStart, OS);
+ assert(I->LineEnd >= I->LineStart);
+ encodeULEB128(I->LineEnd - I->LineStart, OS);
+ encodeULEB128(I->ColumnEnd, OS);
+ PrevLineStart = I->LineStart;
+ }
+ // Ensure that all file ids have at least one mapping region.
+ assert(CurrentFileID == (VirtualFileMapping.size() - 1));
+}