summaryrefslogtreecommitdiff
path: root/llvm/lib/ProfileData
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/ProfileData')
-rw-r--r--llvm/lib/ProfileData/Coverage/CoverageMapping.cpp835
-rw-r--r--llvm/lib/ProfileData/Coverage/CoverageMappingReader.cpp831
-rw-r--r--llvm/lib/ProfileData/Coverage/CoverageMappingWriter.cpp216
-rw-r--r--llvm/lib/ProfileData/GCOV.cpp940
-rw-r--r--llvm/lib/ProfileData/InstrProf.cpp1280
-rw-r--r--llvm/lib/ProfileData/InstrProfReader.cpp922
-rw-r--r--llvm/lib/ProfileData/InstrProfWriter.cpp471
-rw-r--r--llvm/lib/ProfileData/ProfileSummaryBuilder.cpp119
-rw-r--r--llvm/lib/ProfileData/SampleProf.cpp240
-rw-r--r--llvm/lib/ProfileData/SampleProfReader.cpp1377
-rw-r--r--llvm/lib/ProfileData/SampleProfWriter.cpp621
11 files changed, 7852 insertions, 0 deletions
diff --git a/llvm/lib/ProfileData/Coverage/CoverageMapping.cpp b/llvm/lib/ProfileData/Coverage/CoverageMapping.cpp
new file mode 100644
index 000000000000..8d5e56e26c0f
--- /dev/null
+++ b/llvm/lib/ProfileData/Coverage/CoverageMapping.cpp
@@ -0,0 +1,835 @@
+//===- CoverageMapping.cpp - Code coverage mapping support ----------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains support for clang's and llvm's instrumentation based
+// code coverage.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ProfileData/Coverage/CoverageMapping.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/SmallBitVector.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
+#include "llvm/ProfileData/InstrProfReader.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Errc.h"
+#include "llvm/Support/Error.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <iterator>
+#include <map>
+#include <memory>
+#include <string>
+#include <system_error>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+using namespace coverage;
+
+#define DEBUG_TYPE "coverage-mapping"
+
+Counter CounterExpressionBuilder::get(const CounterExpression &E) {
+ auto It = ExpressionIndices.find(E);
+ if (It != ExpressionIndices.end())
+ return Counter::getExpression(It->second);
+ unsigned I = Expressions.size();
+ Expressions.push_back(E);
+ ExpressionIndices[E] = I;
+ return Counter::getExpression(I);
+}
+
+void CounterExpressionBuilder::extractTerms(Counter C, int Factor,
+ SmallVectorImpl<Term> &Terms) {
+ switch (C.getKind()) {
+ case Counter::Zero:
+ break;
+ case Counter::CounterValueReference:
+ Terms.emplace_back(C.getCounterID(), Factor);
+ break;
+ case Counter::Expression:
+ const auto &E = Expressions[C.getExpressionID()];
+ extractTerms(E.LHS, Factor, Terms);
+ extractTerms(
+ E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms);
+ break;
+ }
+}
+
+Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) {
+ // Gather constant terms.
+ SmallVector<Term, 32> Terms;
+ extractTerms(ExpressionTree, +1, Terms);
+
+ // If there are no terms, this is just a zero. The algorithm below assumes at
+ // least one term.
+ if (Terms.size() == 0)
+ return Counter::getZero();
+
+ // Group the terms by counter ID.
+ llvm::sort(Terms, [](const Term &LHS, const Term &RHS) {
+ return LHS.CounterID < RHS.CounterID;
+ });
+
+ // Combine terms by counter ID to eliminate counters that sum to zero.
+ auto Prev = Terms.begin();
+ for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) {
+ if (I->CounterID == Prev->CounterID) {
+ Prev->Factor += I->Factor;
+ continue;
+ }
+ ++Prev;
+ *Prev = *I;
+ }
+ Terms.erase(++Prev, Terms.end());
+
+ Counter C;
+ // Create additions. We do this before subtractions to avoid constructs like
+ // ((0 - X) + Y), as opposed to (Y - X).
+ for (auto T : Terms) {
+ if (T.Factor <= 0)
+ continue;
+ for (int I = 0; I < T.Factor; ++I)
+ if (C.isZero())
+ C = Counter::getCounter(T.CounterID);
+ else
+ C = get(CounterExpression(CounterExpression::Add, C,
+ Counter::getCounter(T.CounterID)));
+ }
+
+ // Create subtractions.
+ for (auto T : Terms) {
+ if (T.Factor >= 0)
+ continue;
+ for (int I = 0; I < -T.Factor; ++I)
+ C = get(CounterExpression(CounterExpression::Subtract, C,
+ Counter::getCounter(T.CounterID)));
+ }
+ return C;
+}
+
+Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS) {
+ return simplify(get(CounterExpression(CounterExpression::Add, LHS, RHS)));
+}
+
+Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS) {
+ return simplify(
+ get(CounterExpression(CounterExpression::Subtract, LHS, RHS)));
+}
+
+void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const {
+ switch (C.getKind()) {
+ case Counter::Zero:
+ OS << '0';
+ return;
+ case Counter::CounterValueReference:
+ OS << '#' << C.getCounterID();
+ break;
+ case Counter::Expression: {
+ if (C.getExpressionID() >= Expressions.size())
+ return;
+ const auto &E = Expressions[C.getExpressionID()];
+ OS << '(';
+ dump(E.LHS, OS);
+ OS << (E.Kind == CounterExpression::Subtract ? " - " : " + ");
+ dump(E.RHS, OS);
+ OS << ')';
+ break;
+ }
+ }
+ if (CounterValues.empty())
+ return;
+ Expected<int64_t> Value = evaluate(C);
+ if (auto E = Value.takeError()) {
+ consumeError(std::move(E));
+ return;
+ }
+ OS << '[' << *Value << ']';
+}
+
+Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const {
+ switch (C.getKind()) {
+ case Counter::Zero:
+ return 0;
+ case Counter::CounterValueReference:
+ if (C.getCounterID() >= CounterValues.size())
+ return errorCodeToError(errc::argument_out_of_domain);
+ return CounterValues[C.getCounterID()];
+ case Counter::Expression: {
+ if (C.getExpressionID() >= Expressions.size())
+ return errorCodeToError(errc::argument_out_of_domain);
+ const auto &E = Expressions[C.getExpressionID()];
+ Expected<int64_t> LHS = evaluate(E.LHS);
+ if (!LHS)
+ return LHS;
+ Expected<int64_t> RHS = evaluate(E.RHS);
+ if (!RHS)
+ return RHS;
+ return E.Kind == CounterExpression::Subtract ? *LHS - *RHS : *LHS + *RHS;
+ }
+ }
+ llvm_unreachable("Unhandled CounterKind");
+}
+
+void FunctionRecordIterator::skipOtherFiles() {
+ while (Current != Records.end() && !Filename.empty() &&
+ Filename != Current->Filenames[0])
+ ++Current;
+ if (Current == Records.end())
+ *this = FunctionRecordIterator();
+}
+
+ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename(
+ StringRef Filename) const {
+ size_t FilenameHash = hash_value(Filename);
+ auto RecordIt = FilenameHash2RecordIndices.find(FilenameHash);
+ if (RecordIt == FilenameHash2RecordIndices.end())
+ return {};
+ return RecordIt->second;
+}
+
+Error CoverageMapping::loadFunctionRecord(
+ const CoverageMappingRecord &Record,
+ IndexedInstrProfReader &ProfileReader) {
+ StringRef OrigFuncName = Record.FunctionName;
+ if (OrigFuncName.empty())
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+
+ if (Record.Filenames.empty())
+ OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName);
+ else
+ OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]);
+
+ CounterMappingContext Ctx(Record.Expressions);
+
+ std::vector<uint64_t> Counts;
+ if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName,
+ Record.FunctionHash, Counts)) {
+ instrprof_error IPE = InstrProfError::take(std::move(E));
+ if (IPE == instrprof_error::hash_mismatch) {
+ FuncHashMismatches.emplace_back(Record.FunctionName, Record.FunctionHash);
+ return Error::success();
+ } else if (IPE != instrprof_error::unknown_function)
+ return make_error<InstrProfError>(IPE);
+ Counts.assign(Record.MappingRegions.size(), 0);
+ }
+ Ctx.setCounts(Counts);
+
+ assert(!Record.MappingRegions.empty() && "Function has no regions");
+
+ // This coverage record is a zero region for a function that's unused in
+ // some TU, but used in a different TU. Ignore it. The coverage maps from the
+ // the other TU will either be loaded (providing full region counts) or they
+ // won't (in which case we don't unintuitively report functions as uncovered
+ // when they have non-zero counts in the profile).
+ if (Record.MappingRegions.size() == 1 &&
+ Record.MappingRegions[0].Count.isZero() && Counts[0] > 0)
+ return Error::success();
+
+ FunctionRecord Function(OrigFuncName, Record.Filenames);
+ for (const auto &Region : Record.MappingRegions) {
+ Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count);
+ if (auto E = ExecutionCount.takeError()) {
+ consumeError(std::move(E));
+ return Error::success();
+ }
+ Function.pushRegion(Region, *ExecutionCount);
+ }
+
+ // Don't create records for (filenames, function) pairs we've already seen.
+ auto FilenamesHash = hash_combine_range(Record.Filenames.begin(),
+ Record.Filenames.end());
+ if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second)
+ return Error::success();
+
+ Functions.push_back(std::move(Function));
+
+ // Performance optimization: keep track of the indices of the function records
+ // which correspond to each filename. This can be used to substantially speed
+ // up queries for coverage info in a file.
+ unsigned RecordIndex = Functions.size() - 1;
+ for (StringRef Filename : Record.Filenames) {
+ auto &RecordIndices = FilenameHash2RecordIndices[hash_value(Filename)];
+ // Note that there may be duplicates in the filename set for a function
+ // record, because of e.g. macro expansions in the function in which both
+ // the macro and the function are defined in the same file.
+ if (RecordIndices.empty() || RecordIndices.back() != RecordIndex)
+ RecordIndices.push_back(RecordIndex);
+ }
+
+ return Error::success();
+}
+
+Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load(
+ ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders,
+ IndexedInstrProfReader &ProfileReader) {
+ auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping());
+
+ for (const auto &CoverageReader : CoverageReaders) {
+ for (auto RecordOrErr : *CoverageReader) {
+ if (Error E = RecordOrErr.takeError())
+ return std::move(E);
+ const auto &Record = *RecordOrErr;
+ if (Error E = Coverage->loadFunctionRecord(Record, ProfileReader))
+ return std::move(E);
+ }
+ }
+
+ return std::move(Coverage);
+}
+
+// If E is a no_data_found error, returns success. Otherwise returns E.
+static Error handleMaybeNoDataFoundError(Error E) {
+ return handleErrors(
+ std::move(E), [](const CoverageMapError &CME) {
+ if (CME.get() == coveragemap_error::no_data_found)
+ return static_cast<Error>(Error::success());
+ return make_error<CoverageMapError>(CME.get());
+ });
+}
+
+Expected<std::unique_ptr<CoverageMapping>>
+CoverageMapping::load(ArrayRef<StringRef> ObjectFilenames,
+ StringRef ProfileFilename, ArrayRef<StringRef> Arches) {
+ auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename);
+ if (Error E = ProfileReaderOrErr.takeError())
+ return std::move(E);
+ auto ProfileReader = std::move(ProfileReaderOrErr.get());
+
+ SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers;
+ SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers;
+ for (const auto &File : llvm::enumerate(ObjectFilenames)) {
+ auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN(File.value());
+ if (std::error_code EC = CovMappingBufOrErr.getError())
+ return errorCodeToError(EC);
+ StringRef Arch = Arches.empty() ? StringRef() : Arches[File.index()];
+ MemoryBufferRef CovMappingBufRef =
+ CovMappingBufOrErr.get()->getMemBufferRef();
+ auto CoverageReadersOrErr =
+ BinaryCoverageReader::create(CovMappingBufRef, Arch, Buffers);
+ if (Error E = CoverageReadersOrErr.takeError()) {
+ E = handleMaybeNoDataFoundError(std::move(E));
+ if (E)
+ return std::move(E);
+ // E == success (originally a no_data_found error).
+ continue;
+ }
+ for (auto &Reader : CoverageReadersOrErr.get())
+ Readers.push_back(std::move(Reader));
+ Buffers.push_back(std::move(CovMappingBufOrErr.get()));
+ }
+ // If no readers were created, either no objects were provided or none of them
+ // had coverage data. Return an error in the latter case.
+ if (Readers.empty() && !ObjectFilenames.empty())
+ return make_error<CoverageMapError>(coveragemap_error::no_data_found);
+ return load(Readers, *ProfileReader);
+}
+
+namespace {
+
+/// Distributes functions into instantiation sets.
+///
+/// An instantiation set is a collection of functions that have the same source
+/// code, ie, template functions specializations.
+class FunctionInstantiationSetCollector {
+ using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>;
+ MapT InstantiatedFunctions;
+
+public:
+ void insert(const FunctionRecord &Function, unsigned FileID) {
+ auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end();
+ while (I != E && I->FileID != FileID)
+ ++I;
+ assert(I != E && "function does not cover the given file");
+ auto &Functions = InstantiatedFunctions[I->startLoc()];
+ Functions.push_back(&Function);
+ }
+
+ MapT::iterator begin() { return InstantiatedFunctions.begin(); }
+ MapT::iterator end() { return InstantiatedFunctions.end(); }
+};
+
+class SegmentBuilder {
+ std::vector<CoverageSegment> &Segments;
+ SmallVector<const CountedRegion *, 8> ActiveRegions;
+
+ SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {}
+
+ /// Emit a segment with the count from \p Region starting at \p StartLoc.
+ //
+ /// \p IsRegionEntry: The segment is at the start of a new non-gap region.
+ /// \p EmitSkippedRegion: The segment must be emitted as a skipped region.
+ void startSegment(const CountedRegion &Region, LineColPair StartLoc,
+ bool IsRegionEntry, bool EmitSkippedRegion = false) {
+ bool HasCount = !EmitSkippedRegion &&
+ (Region.Kind != CounterMappingRegion::SkippedRegion);
+
+ // If the new segment wouldn't affect coverage rendering, skip it.
+ if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) {
+ const auto &Last = Segments.back();
+ if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount &&
+ !Last.IsRegionEntry)
+ return;
+ }
+
+ if (HasCount)
+ Segments.emplace_back(StartLoc.first, StartLoc.second,
+ Region.ExecutionCount, IsRegionEntry,
+ Region.Kind == CounterMappingRegion::GapRegion);
+ else
+ Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry);
+
+ LLVM_DEBUG({
+ const auto &Last = Segments.back();
+ dbgs() << "Segment at " << Last.Line << ":" << Last.Col
+ << " (count = " << Last.Count << ")"
+ << (Last.IsRegionEntry ? ", RegionEntry" : "")
+ << (!Last.HasCount ? ", Skipped" : "")
+ << (Last.IsGapRegion ? ", Gap" : "") << "\n";
+ });
+ }
+
+ /// Emit segments for active regions which end before \p Loc.
+ ///
+ /// \p Loc: The start location of the next region. If None, all active
+ /// regions are completed.
+ /// \p FirstCompletedRegion: Index of the first completed region.
+ void completeRegionsUntil(Optional<LineColPair> Loc,
+ unsigned FirstCompletedRegion) {
+ // Sort the completed regions by end location. This makes it simple to
+ // emit closing segments in sorted order.
+ auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion;
+ std::stable_sort(CompletedRegionsIt, ActiveRegions.end(),
+ [](const CountedRegion *L, const CountedRegion *R) {
+ return L->endLoc() < R->endLoc();
+ });
+
+ // Emit segments for all completed regions.
+ for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E;
+ ++I) {
+ const auto *CompletedRegion = ActiveRegions[I];
+ assert((!Loc || CompletedRegion->endLoc() <= *Loc) &&
+ "Completed region ends after start of new region");
+
+ const auto *PrevCompletedRegion = ActiveRegions[I - 1];
+ auto CompletedSegmentLoc = PrevCompletedRegion->endLoc();
+
+ // Don't emit any more segments if they start where the new region begins.
+ if (Loc && CompletedSegmentLoc == *Loc)
+ break;
+
+ // Don't emit a segment if the next completed region ends at the same
+ // location as this one.
+ if (CompletedSegmentLoc == CompletedRegion->endLoc())
+ continue;
+
+ // Use the count from the last completed region which ends at this loc.
+ for (unsigned J = I + 1; J < E; ++J)
+ if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc())
+ CompletedRegion = ActiveRegions[J];
+
+ startSegment(*CompletedRegion, CompletedSegmentLoc, false);
+ }
+
+ auto Last = ActiveRegions.back();
+ if (FirstCompletedRegion && Last->endLoc() != *Loc) {
+ // If there's a gap after the end of the last completed region and the
+ // start of the new region, use the last active region to fill the gap.
+ startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(),
+ false);
+ } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) {
+ // Emit a skipped segment if there are no more active regions. This
+ // ensures that gaps between functions are marked correctly.
+ startSegment(*Last, Last->endLoc(), false, true);
+ }
+
+ // Pop the completed regions.
+ ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end());
+ }
+
+ void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) {
+ for (const auto &CR : enumerate(Regions)) {
+ auto CurStartLoc = CR.value().startLoc();
+
+ // Active regions which end before the current region need to be popped.
+ auto CompletedRegions =
+ std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(),
+ [&](const CountedRegion *Region) {
+ return !(Region->endLoc() <= CurStartLoc);
+ });
+ if (CompletedRegions != ActiveRegions.end()) {
+ unsigned FirstCompletedRegion =
+ std::distance(ActiveRegions.begin(), CompletedRegions);
+ completeRegionsUntil(CurStartLoc, FirstCompletedRegion);
+ }
+
+ bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion;
+
+ // Try to emit a segment for the current region.
+ if (CurStartLoc == CR.value().endLoc()) {
+ // Avoid making zero-length regions active. If it's the last region,
+ // emit a skipped segment. Otherwise use its predecessor's count.
+ const bool Skipped = (CR.index() + 1) == Regions.size();
+ startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(),
+ CurStartLoc, !GapRegion, Skipped);
+ continue;
+ }
+ if (CR.index() + 1 == Regions.size() ||
+ CurStartLoc != Regions[CR.index() + 1].startLoc()) {
+ // Emit a segment if the next region doesn't start at the same location
+ // as this one.
+ startSegment(CR.value(), CurStartLoc, !GapRegion);
+ }
+
+ // This region is active (i.e not completed).
+ ActiveRegions.push_back(&CR.value());
+ }
+
+ // Complete any remaining active regions.
+ if (!ActiveRegions.empty())
+ completeRegionsUntil(None, 0);
+ }
+
+ /// Sort a nested sequence of regions from a single file.
+ static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) {
+ llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) {
+ if (LHS.startLoc() != RHS.startLoc())
+ return LHS.startLoc() < RHS.startLoc();
+ if (LHS.endLoc() != RHS.endLoc())
+ // When LHS completely contains RHS, we sort LHS first.
+ return RHS.endLoc() < LHS.endLoc();
+ // If LHS and RHS cover the same area, we need to sort them according
+ // to their kinds so that the most suitable region will become "active"
+ // in combineRegions(). Because we accumulate counter values only from
+ // regions of the same kind as the first region of the area, prefer
+ // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion.
+ static_assert(CounterMappingRegion::CodeRegion <
+ CounterMappingRegion::ExpansionRegion &&
+ CounterMappingRegion::ExpansionRegion <
+ CounterMappingRegion::SkippedRegion,
+ "Unexpected order of region kind values");
+ return LHS.Kind < RHS.Kind;
+ });
+ }
+
+ /// Combine counts of regions which cover the same area.
+ static ArrayRef<CountedRegion>
+ combineRegions(MutableArrayRef<CountedRegion> Regions) {
+ if (Regions.empty())
+ return Regions;
+ auto Active = Regions.begin();
+ auto End = Regions.end();
+ for (auto I = Regions.begin() + 1; I != End; ++I) {
+ if (Active->startLoc() != I->startLoc() ||
+ Active->endLoc() != I->endLoc()) {
+ // Shift to the next region.
+ ++Active;
+ if (Active != I)
+ *Active = *I;
+ continue;
+ }
+ // Merge duplicate region.
+ // If CodeRegions and ExpansionRegions cover the same area, it's probably
+ // a macro which is fully expanded to another macro. In that case, we need
+ // to accumulate counts only from CodeRegions, or else the area will be
+ // counted twice.
+ // On the other hand, a macro may have a nested macro in its body. If the
+ // outer macro is used several times, the ExpansionRegion for the nested
+ // macro will also be added several times. These ExpansionRegions cover
+ // the same source locations and have to be combined to reach the correct
+ // value for that area.
+ // We add counts of the regions of the same kind as the active region
+ // to handle the both situations.
+ if (I->Kind == Active->Kind)
+ Active->ExecutionCount += I->ExecutionCount;
+ }
+ return Regions.drop_back(std::distance(++Active, End));
+ }
+
+public:
+ /// Build a sorted list of CoverageSegments from a list of Regions.
+ static std::vector<CoverageSegment>
+ buildSegments(MutableArrayRef<CountedRegion> Regions) {
+ std::vector<CoverageSegment> Segments;
+ SegmentBuilder Builder(Segments);
+
+ sortNestedRegions(Regions);
+ ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions);
+
+ LLVM_DEBUG({
+ dbgs() << "Combined regions:\n";
+ for (const auto &CR : CombinedRegions)
+ dbgs() << " " << CR.LineStart << ":" << CR.ColumnStart << " -> "
+ << CR.LineEnd << ":" << CR.ColumnEnd
+ << " (count=" << CR.ExecutionCount << ")\n";
+ });
+
+ Builder.buildSegmentsImpl(CombinedRegions);
+
+#ifndef NDEBUG
+ for (unsigned I = 1, E = Segments.size(); I < E; ++I) {
+ const auto &L = Segments[I - 1];
+ const auto &R = Segments[I];
+ if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) {
+ LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col
+ << " followed by " << R.Line << ":" << R.Col << "\n");
+ assert(false && "Coverage segments not unique or sorted");
+ }
+ }
+#endif
+
+ return Segments;
+ }
+};
+
+} // end anonymous namespace
+
+std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const {
+ std::vector<StringRef> Filenames;
+ for (const auto &Function : getCoveredFunctions())
+ Filenames.insert(Filenames.end(), Function.Filenames.begin(),
+ Function.Filenames.end());
+ llvm::sort(Filenames);
+ auto Last = std::unique(Filenames.begin(), Filenames.end());
+ Filenames.erase(Last, Filenames.end());
+ return Filenames;
+}
+
+static SmallBitVector gatherFileIDs(StringRef SourceFile,
+ const FunctionRecord &Function) {
+ SmallBitVector FilenameEquivalence(Function.Filenames.size(), false);
+ for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I)
+ if (SourceFile == Function.Filenames[I])
+ FilenameEquivalence[I] = true;
+ return FilenameEquivalence;
+}
+
+/// Return the ID of the file where the definition of the function is located.
+static Optional<unsigned> findMainViewFileID(const FunctionRecord &Function) {
+ SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true);
+ for (const auto &CR : Function.CountedRegions)
+ if (CR.Kind == CounterMappingRegion::ExpansionRegion)
+ IsNotExpandedFile[CR.ExpandedFileID] = false;
+ int I = IsNotExpandedFile.find_first();
+ if (I == -1)
+ return None;
+ return I;
+}
+
+/// Check if SourceFile is the file that contains the definition of
+/// the Function. Return the ID of the file in that case or None otherwise.
+static Optional<unsigned> findMainViewFileID(StringRef SourceFile,
+ const FunctionRecord &Function) {
+ Optional<unsigned> I = findMainViewFileID(Function);
+ if (I && SourceFile == Function.Filenames[*I])
+ return I;
+ return None;
+}
+
+static bool isExpansion(const CountedRegion &R, unsigned FileID) {
+ return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID;
+}
+
+CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const {
+ CoverageData FileCoverage(Filename);
+ std::vector<CountedRegion> Regions;
+
+ // Look up the function records in the given file. Due to hash collisions on
+ // the filename, we may get back some records that are not in the file.
+ ArrayRef<unsigned> RecordIndices =
+ getImpreciseRecordIndicesForFilename(Filename);
+ for (unsigned RecordIndex : RecordIndices) {
+ const FunctionRecord &Function = Functions[RecordIndex];
+ auto MainFileID = findMainViewFileID(Filename, Function);
+ auto FileIDs = gatherFileIDs(Filename, Function);
+ for (const auto &CR : Function.CountedRegions)
+ if (FileIDs.test(CR.FileID)) {
+ Regions.push_back(CR);
+ if (MainFileID && isExpansion(CR, *MainFileID))
+ FileCoverage.Expansions.emplace_back(CR, Function);
+ }
+ }
+
+ LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n");
+ FileCoverage.Segments = SegmentBuilder::buildSegments(Regions);
+
+ return FileCoverage;
+}
+
+std::vector<InstantiationGroup>
+CoverageMapping::getInstantiationGroups(StringRef Filename) const {
+ FunctionInstantiationSetCollector InstantiationSetCollector;
+ // Look up the function records in the given file. Due to hash collisions on
+ // the filename, we may get back some records that are not in the file.
+ ArrayRef<unsigned> RecordIndices =
+ getImpreciseRecordIndicesForFilename(Filename);
+ for (unsigned RecordIndex : RecordIndices) {
+ const FunctionRecord &Function = Functions[RecordIndex];
+ auto MainFileID = findMainViewFileID(Filename, Function);
+ if (!MainFileID)
+ continue;
+ InstantiationSetCollector.insert(Function, *MainFileID);
+ }
+
+ std::vector<InstantiationGroup> Result;
+ for (auto &InstantiationSet : InstantiationSetCollector) {
+ InstantiationGroup IG{InstantiationSet.first.first,
+ InstantiationSet.first.second,
+ std::move(InstantiationSet.second)};
+ Result.emplace_back(std::move(IG));
+ }
+ return Result;
+}
+
+CoverageData
+CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const {
+ auto MainFileID = findMainViewFileID(Function);
+ if (!MainFileID)
+ return CoverageData();
+
+ CoverageData FunctionCoverage(Function.Filenames[*MainFileID]);
+ std::vector<CountedRegion> Regions;
+ for (const auto &CR : Function.CountedRegions)
+ if (CR.FileID == *MainFileID) {
+ Regions.push_back(CR);
+ if (isExpansion(CR, *MainFileID))
+ FunctionCoverage.Expansions.emplace_back(CR, Function);
+ }
+
+ LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name
+ << "\n");
+ FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions);
+
+ return FunctionCoverage;
+}
+
+CoverageData CoverageMapping::getCoverageForExpansion(
+ const ExpansionRecord &Expansion) const {
+ CoverageData ExpansionCoverage(
+ Expansion.Function.Filenames[Expansion.FileID]);
+ std::vector<CountedRegion> Regions;
+ for (const auto &CR : Expansion.Function.CountedRegions)
+ if (CR.FileID == Expansion.FileID) {
+ Regions.push_back(CR);
+ if (isExpansion(CR, Expansion.FileID))
+ ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function);
+ }
+
+ LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file "
+ << Expansion.FileID << "\n");
+ ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions);
+
+ return ExpansionCoverage;
+}
+
+LineCoverageStats::LineCoverageStats(
+ ArrayRef<const CoverageSegment *> LineSegments,
+ const CoverageSegment *WrappedSegment, unsigned Line)
+ : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line),
+ LineSegments(LineSegments), WrappedSegment(WrappedSegment) {
+ // Find the minimum number of regions which start in this line.
+ unsigned MinRegionCount = 0;
+ auto isStartOfRegion = [](const CoverageSegment *S) {
+ return !S->IsGapRegion && S->HasCount && S->IsRegionEntry;
+ };
+ for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I)
+ if (isStartOfRegion(LineSegments[I]))
+ ++MinRegionCount;
+
+ bool StartOfSkippedRegion = !LineSegments.empty() &&
+ !LineSegments.front()->HasCount &&
+ LineSegments.front()->IsRegionEntry;
+
+ HasMultipleRegions = MinRegionCount > 1;
+ Mapped =
+ !StartOfSkippedRegion &&
+ ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0));
+
+ if (!Mapped)
+ return;
+
+ // Pick the max count from the non-gap, region entry segments and the
+ // wrapped count.
+ if (WrappedSegment)
+ ExecutionCount = WrappedSegment->Count;
+ if (!MinRegionCount)
+ return;
+ for (const auto *LS : LineSegments)
+ if (isStartOfRegion(LS))
+ ExecutionCount = std::max(ExecutionCount, LS->Count);
+}
+
+LineCoverageIterator &LineCoverageIterator::operator++() {
+ if (Next == CD.end()) {
+ Stats = LineCoverageStats();
+ Ended = true;
+ return *this;
+ }
+ if (Segments.size())
+ WrappedSegment = Segments.back();
+ Segments.clear();
+ while (Next != CD.end() && Next->Line == Line)
+ Segments.push_back(&*Next++);
+ Stats = LineCoverageStats(Segments, WrappedSegment, Line);
+ ++Line;
+ return *this;
+}
+
+static std::string getCoverageMapErrString(coveragemap_error Err) {
+ switch (Err) {
+ case coveragemap_error::success:
+ return "Success";
+ case coveragemap_error::eof:
+ return "End of File";
+ case coveragemap_error::no_data_found:
+ return "No coverage data found";
+ case coveragemap_error::unsupported_version:
+ return "Unsupported coverage format version";
+ case coveragemap_error::truncated:
+ return "Truncated coverage data";
+ case coveragemap_error::malformed:
+ return "Malformed coverage data";
+ }
+ llvm_unreachable("A value of coveragemap_error has no message.");
+}
+
+namespace {
+
+// FIXME: This class is only here to support the transition to llvm::Error. It
+// will be removed once this transition is complete. Clients should prefer to
+// deal with the Error value directly, rather than converting to error_code.
+class CoverageMappingErrorCategoryType : public std::error_category {
+ const char *name() const noexcept override { return "llvm.coveragemap"; }
+ std::string message(int IE) const override {
+ return getCoverageMapErrString(static_cast<coveragemap_error>(IE));
+ }
+};
+
+} // end anonymous namespace
+
+std::string CoverageMapError::message() const {
+ return getCoverageMapErrString(Err);
+}
+
+static ManagedStatic<CoverageMappingErrorCategoryType> ErrorCategory;
+
+const std::error_category &llvm::coverage::coveragemap_category() {
+ return *ErrorCategory;
+}
+
+char CoverageMapError::ID = 0;
diff --git a/llvm/lib/ProfileData/Coverage/CoverageMappingReader.cpp b/llvm/lib/ProfileData/Coverage/CoverageMappingReader.cpp
new file mode 100644
index 000000000000..679ff3525eeb
--- /dev/null
+++ b/llvm/lib/ProfileData/Coverage/CoverageMappingReader.cpp
@@ -0,0 +1,831 @@
+//===- CoverageMappingReader.cpp - Code coverage mapping reader -----------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains support for reading coverage mapping data for
+// instrumentation based coverage.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/Object/Binary.h"
+#include "llvm/Object/Error.h"
+#include "llvm/Object/MachOUniversal.h"
+#include "llvm/Object/ObjectFile.h"
+#include "llvm/Object/COFF.h"
+#include "llvm/ProfileData/InstrProf.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Endian.h"
+#include "llvm/Support/Error.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/LEB128.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include <vector>
+
+using namespace llvm;
+using namespace coverage;
+using namespace object;
+
+#define DEBUG_TYPE "coverage-mapping"
+
+void CoverageMappingIterator::increment() {
+ if (ReadErr != coveragemap_error::success)
+ return;
+
+ // Check if all the records were read or if an error occurred while reading
+ // the next record.
+ if (auto E = Reader->readNextRecord(Record))
+ handleAllErrors(std::move(E), [&](const CoverageMapError &CME) {
+ if (CME.get() == coveragemap_error::eof)
+ *this = CoverageMappingIterator();
+ else
+ ReadErr = CME.get();
+ });
+}
+
+Error RawCoverageReader::readULEB128(uint64_t &Result) {
+ if (Data.empty())
+ return make_error<CoverageMapError>(coveragemap_error::truncated);
+ unsigned N = 0;
+ Result = decodeULEB128(Data.bytes_begin(), &N);
+ if (N > Data.size())
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ Data = Data.substr(N);
+ return Error::success();
+}
+
+Error RawCoverageReader::readIntMax(uint64_t &Result, uint64_t MaxPlus1) {
+ if (auto Err = readULEB128(Result))
+ return Err;
+ if (Result >= MaxPlus1)
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ return Error::success();
+}
+
+Error RawCoverageReader::readSize(uint64_t &Result) {
+ if (auto Err = readULEB128(Result))
+ return Err;
+ // Sanity check the number.
+ if (Result > Data.size())
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ return Error::success();
+}
+
+Error RawCoverageReader::readString(StringRef &Result) {
+ uint64_t Length;
+ if (auto Err = readSize(Length))
+ return Err;
+ Result = Data.substr(0, Length);
+ Data = Data.substr(Length);
+ return Error::success();
+}
+
+Error RawCoverageFilenamesReader::read() {
+ uint64_t NumFilenames;
+ if (auto Err = readSize(NumFilenames))
+ return Err;
+ for (size_t I = 0; I < NumFilenames; ++I) {
+ StringRef Filename;
+ if (auto Err = readString(Filename))
+ return Err;
+ Filenames.push_back(Filename);
+ }
+ return Error::success();
+}
+
+Error RawCoverageMappingReader::decodeCounter(unsigned Value, Counter &C) {
+ auto Tag = Value & Counter::EncodingTagMask;
+ switch (Tag) {
+ case Counter::Zero:
+ C = Counter::getZero();
+ return Error::success();
+ case Counter::CounterValueReference:
+ C = Counter::getCounter(Value >> Counter::EncodingTagBits);
+ return Error::success();
+ default:
+ break;
+ }
+ Tag -= Counter::Expression;
+ switch (Tag) {
+ case CounterExpression::Subtract:
+ case CounterExpression::Add: {
+ auto ID = Value >> Counter::EncodingTagBits;
+ if (ID >= Expressions.size())
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ Expressions[ID].Kind = CounterExpression::ExprKind(Tag);
+ C = Counter::getExpression(ID);
+ break;
+ }
+ default:
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ }
+ return Error::success();
+}
+
+Error RawCoverageMappingReader::readCounter(Counter &C) {
+ uint64_t EncodedCounter;
+ if (auto Err =
+ readIntMax(EncodedCounter, std::numeric_limits<unsigned>::max()))
+ return Err;
+ if (auto Err = decodeCounter(EncodedCounter, C))
+ return Err;
+ return Error::success();
+}
+
+static const unsigned EncodingExpansionRegionBit = 1
+ << Counter::EncodingTagBits;
+
+/// Read the sub-array of regions for the given inferred file id.
+/// \param NumFileIDs the number of file ids that are defined for this
+/// function.
+Error RawCoverageMappingReader::readMappingRegionsSubArray(
+ std::vector<CounterMappingRegion> &MappingRegions, unsigned InferredFileID,
+ size_t NumFileIDs) {
+ uint64_t NumRegions;
+ if (auto Err = readSize(NumRegions))
+ return Err;
+ unsigned LineStart = 0;
+ for (size_t I = 0; I < NumRegions; ++I) {
+ Counter C;
+ CounterMappingRegion::RegionKind Kind = CounterMappingRegion::CodeRegion;
+
+ // Read the combined counter + region kind.
+ uint64_t EncodedCounterAndRegion;
+ if (auto Err = readIntMax(EncodedCounterAndRegion,
+ std::numeric_limits<unsigned>::max()))
+ return Err;
+ unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask;
+ uint64_t ExpandedFileID = 0;
+ if (Tag != Counter::Zero) {
+ if (auto Err = decodeCounter(EncodedCounterAndRegion, C))
+ return Err;
+ } else {
+ // Is it an expansion region?
+ if (EncodedCounterAndRegion & EncodingExpansionRegionBit) {
+ Kind = CounterMappingRegion::ExpansionRegion;
+ ExpandedFileID = EncodedCounterAndRegion >>
+ Counter::EncodingCounterTagAndExpansionRegionTagBits;
+ if (ExpandedFileID >= NumFileIDs)
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ } else {
+ switch (EncodedCounterAndRegion >>
+ Counter::EncodingCounterTagAndExpansionRegionTagBits) {
+ case CounterMappingRegion::CodeRegion:
+ // Don't do anything when we have a code region with a zero counter.
+ break;
+ case CounterMappingRegion::SkippedRegion:
+ Kind = CounterMappingRegion::SkippedRegion;
+ break;
+ default:
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ }
+ }
+ }
+
+ // Read the source range.
+ uint64_t LineStartDelta, ColumnStart, NumLines, ColumnEnd;
+ if (auto Err =
+ readIntMax(LineStartDelta, std::numeric_limits<unsigned>::max()))
+ return Err;
+ if (auto Err = readULEB128(ColumnStart))
+ return Err;
+ if (ColumnStart > std::numeric_limits<unsigned>::max())
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ if (auto Err = readIntMax(NumLines, std::numeric_limits<unsigned>::max()))
+ return Err;
+ if (auto Err = readIntMax(ColumnEnd, std::numeric_limits<unsigned>::max()))
+ return Err;
+ LineStart += LineStartDelta;
+
+ // If the high bit of ColumnEnd is set, this is a gap region.
+ if (ColumnEnd & (1U << 31)) {
+ Kind = CounterMappingRegion::GapRegion;
+ ColumnEnd &= ~(1U << 31);
+ }
+
+ // Adjust the column locations for the empty regions that are supposed to
+ // cover whole lines. Those regions should be encoded with the
+ // column range (1 -> std::numeric_limits<unsigned>::max()), but because
+ // the encoded std::numeric_limits<unsigned>::max() is several bytes long,
+ // we set the column range to (0 -> 0) to ensure that the column start and
+ // column end take up one byte each.
+ // The std::numeric_limits<unsigned>::max() is used to represent a column
+ // position at the end of the line without knowing the length of that line.
+ if (ColumnStart == 0 && ColumnEnd == 0) {
+ ColumnStart = 1;
+ ColumnEnd = std::numeric_limits<unsigned>::max();
+ }
+
+ LLVM_DEBUG({
+ dbgs() << "Counter in file " << InferredFileID << " " << LineStart << ":"
+ << ColumnStart << " -> " << (LineStart + NumLines) << ":"
+ << ColumnEnd << ", ";
+ if (Kind == CounterMappingRegion::ExpansionRegion)
+ dbgs() << "Expands to file " << ExpandedFileID;
+ else
+ CounterMappingContext(Expressions).dump(C, dbgs());
+ dbgs() << "\n";
+ });
+
+ auto CMR = CounterMappingRegion(C, InferredFileID, ExpandedFileID,
+ LineStart, ColumnStart,
+ LineStart + NumLines, ColumnEnd, Kind);
+ if (CMR.startLoc() > CMR.endLoc())
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ MappingRegions.push_back(CMR);
+ }
+ return Error::success();
+}
+
+Error RawCoverageMappingReader::read() {
+ // Read the virtual file mapping.
+ SmallVector<unsigned, 8> VirtualFileMapping;
+ uint64_t NumFileMappings;
+ if (auto Err = readSize(NumFileMappings))
+ return Err;
+ for (size_t I = 0; I < NumFileMappings; ++I) {
+ uint64_t FilenameIndex;
+ if (auto Err = readIntMax(FilenameIndex, TranslationUnitFilenames.size()))
+ return Err;
+ VirtualFileMapping.push_back(FilenameIndex);
+ }
+
+ // Construct the files using unique filenames and virtual file mapping.
+ for (auto I : VirtualFileMapping) {
+ Filenames.push_back(TranslationUnitFilenames[I]);
+ }
+
+ // Read the expressions.
+ uint64_t NumExpressions;
+ if (auto Err = readSize(NumExpressions))
+ return Err;
+ // Create an array of dummy expressions that get the proper counters
+ // when the expressions are read, and the proper kinds when the counters
+ // are decoded.
+ Expressions.resize(
+ NumExpressions,
+ CounterExpression(CounterExpression::Subtract, Counter(), Counter()));
+ for (size_t I = 0; I < NumExpressions; ++I) {
+ if (auto Err = readCounter(Expressions[I].LHS))
+ return Err;
+ if (auto Err = readCounter(Expressions[I].RHS))
+ return Err;
+ }
+
+ // Read the mapping regions sub-arrays.
+ for (unsigned InferredFileID = 0, S = VirtualFileMapping.size();
+ InferredFileID < S; ++InferredFileID) {
+ if (auto Err = readMappingRegionsSubArray(MappingRegions, InferredFileID,
+ VirtualFileMapping.size()))
+ return Err;
+ }
+
+ // Set the counters for the expansion regions.
+ // i.e. Counter of expansion region = counter of the first region
+ // from the expanded file.
+ // Perform multiple passes to correctly propagate the counters through
+ // all the nested expansion regions.
+ SmallVector<CounterMappingRegion *, 8> FileIDExpansionRegionMapping;
+ FileIDExpansionRegionMapping.resize(VirtualFileMapping.size(), nullptr);
+ for (unsigned Pass = 1, S = VirtualFileMapping.size(); Pass < S; ++Pass) {
+ for (auto &R : MappingRegions) {
+ if (R.Kind != CounterMappingRegion::ExpansionRegion)
+ continue;
+ assert(!FileIDExpansionRegionMapping[R.ExpandedFileID]);
+ FileIDExpansionRegionMapping[R.ExpandedFileID] = &R;
+ }
+ for (auto &R : MappingRegions) {
+ if (FileIDExpansionRegionMapping[R.FileID]) {
+ FileIDExpansionRegionMapping[R.FileID]->Count = R.Count;
+ FileIDExpansionRegionMapping[R.FileID] = nullptr;
+ }
+ }
+ }
+
+ return Error::success();
+}
+
+Expected<bool> RawCoverageMappingDummyChecker::isDummy() {
+ // A dummy coverage mapping data consists of just one region with zero count.
+ uint64_t NumFileMappings;
+ if (Error Err = readSize(NumFileMappings))
+ return std::move(Err);
+ if (NumFileMappings != 1)
+ return false;
+ // We don't expect any specific value for the filename index, just skip it.
+ uint64_t FilenameIndex;
+ if (Error Err =
+ readIntMax(FilenameIndex, std::numeric_limits<unsigned>::max()))
+ return std::move(Err);
+ uint64_t NumExpressions;
+ if (Error Err = readSize(NumExpressions))
+ return std::move(Err);
+ if (NumExpressions != 0)
+ return false;
+ uint64_t NumRegions;
+ if (Error Err = readSize(NumRegions))
+ return std::move(Err);
+ if (NumRegions != 1)
+ return false;
+ uint64_t EncodedCounterAndRegion;
+ if (Error Err = readIntMax(EncodedCounterAndRegion,
+ std::numeric_limits<unsigned>::max()))
+ return std::move(Err);
+ unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask;
+ return Tag == Counter::Zero;
+}
+
+Error InstrProfSymtab::create(SectionRef &Section) {
+ Expected<StringRef> DataOrErr = Section.getContents();
+ if (!DataOrErr)
+ return DataOrErr.takeError();
+ Data = *DataOrErr;
+ Address = Section.getAddress();
+
+ // If this is a linked PE/COFF file, then we have to skip over the null byte
+ // that is allocated in the .lprfn$A section in the LLVM profiling runtime.
+ const ObjectFile *Obj = Section.getObject();
+ if (isa<COFFObjectFile>(Obj) && !Obj->isRelocatableObject())
+ Data = Data.drop_front(1);
+
+ return Error::success();
+}
+
+StringRef InstrProfSymtab::getFuncName(uint64_t Pointer, size_t Size) {
+ if (Pointer < Address)
+ return StringRef();
+ auto Offset = Pointer - Address;
+ if (Offset + Size > Data.size())
+ return StringRef();
+ return Data.substr(Pointer - Address, Size);
+}
+
+// Check if the mapping data is a dummy, i.e. is emitted for an unused function.
+static Expected<bool> isCoverageMappingDummy(uint64_t Hash, StringRef Mapping) {
+ // The hash value of dummy mapping records is always zero.
+ if (Hash)
+ return false;
+ return RawCoverageMappingDummyChecker(Mapping).isDummy();
+}
+
+namespace {
+
+struct CovMapFuncRecordReader {
+ virtual ~CovMapFuncRecordReader() = default;
+
+ // The interface to read coverage mapping function records for a module.
+ //
+ // \p Buf points to the buffer containing the \c CovHeader of the coverage
+ // mapping data associated with the module.
+ //
+ // Returns a pointer to the next \c CovHeader if it exists, or a pointer
+ // greater than \p End if not.
+ virtual Expected<const char *> readFunctionRecords(const char *Buf,
+ const char *End) = 0;
+
+ template <class IntPtrT, support::endianness Endian>
+ static Expected<std::unique_ptr<CovMapFuncRecordReader>>
+ get(CovMapVersion Version, InstrProfSymtab &P,
+ std::vector<BinaryCoverageReader::ProfileMappingRecord> &R,
+ std::vector<StringRef> &F);
+};
+
+// A class for reading coverage mapping function records for a module.
+template <CovMapVersion Version, class IntPtrT, support::endianness Endian>
+class VersionedCovMapFuncRecordReader : public CovMapFuncRecordReader {
+ using FuncRecordType =
+ typename CovMapTraits<Version, IntPtrT>::CovMapFuncRecordType;
+ using NameRefType = typename CovMapTraits<Version, IntPtrT>::NameRefType;
+
+ // Maps function's name references to the indexes of their records
+ // in \c Records.
+ DenseMap<NameRefType, size_t> FunctionRecords;
+ InstrProfSymtab &ProfileNames;
+ std::vector<StringRef> &Filenames;
+ std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records;
+
+ // Add the record to the collection if we don't already have a record that
+ // points to the same function name. This is useful to ignore the redundant
+ // records for the functions with ODR linkage.
+ // In addition, prefer records with real coverage mapping data to dummy
+ // records, which were emitted for inline functions which were seen but
+ // not used in the corresponding translation unit.
+ Error insertFunctionRecordIfNeeded(const FuncRecordType *CFR,
+ StringRef Mapping, size_t FilenamesBegin) {
+ uint64_t FuncHash = CFR->template getFuncHash<Endian>();
+ NameRefType NameRef = CFR->template getFuncNameRef<Endian>();
+ auto InsertResult =
+ FunctionRecords.insert(std::make_pair(NameRef, Records.size()));
+ if (InsertResult.second) {
+ StringRef FuncName;
+ if (Error Err = CFR->template getFuncName<Endian>(ProfileNames, FuncName))
+ return Err;
+ if (FuncName.empty())
+ return make_error<InstrProfError>(instrprof_error::malformed);
+ Records.emplace_back(Version, FuncName, FuncHash, Mapping, FilenamesBegin,
+ Filenames.size() - FilenamesBegin);
+ return Error::success();
+ }
+ // Update the existing record if it's a dummy and the new record is real.
+ size_t OldRecordIndex = InsertResult.first->second;
+ BinaryCoverageReader::ProfileMappingRecord &OldRecord =
+ Records[OldRecordIndex];
+ Expected<bool> OldIsDummyExpected = isCoverageMappingDummy(
+ OldRecord.FunctionHash, OldRecord.CoverageMapping);
+ if (Error Err = OldIsDummyExpected.takeError())
+ return Err;
+ if (!*OldIsDummyExpected)
+ return Error::success();
+ Expected<bool> NewIsDummyExpected =
+ isCoverageMappingDummy(FuncHash, Mapping);
+ if (Error Err = NewIsDummyExpected.takeError())
+ return Err;
+ if (*NewIsDummyExpected)
+ return Error::success();
+ OldRecord.FunctionHash = FuncHash;
+ OldRecord.CoverageMapping = Mapping;
+ OldRecord.FilenamesBegin = FilenamesBegin;
+ OldRecord.FilenamesSize = Filenames.size() - FilenamesBegin;
+ return Error::success();
+ }
+
+public:
+ VersionedCovMapFuncRecordReader(
+ InstrProfSymtab &P,
+ std::vector<BinaryCoverageReader::ProfileMappingRecord> &R,
+ std::vector<StringRef> &F)
+ : ProfileNames(P), Filenames(F), Records(R) {}
+
+ ~VersionedCovMapFuncRecordReader() override = default;
+
+ Expected<const char *> readFunctionRecords(const char *Buf,
+ const char *End) override {
+ using namespace support;
+
+ if (Buf + sizeof(CovMapHeader) > End)
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ auto CovHeader = reinterpret_cast<const CovMapHeader *>(Buf);
+ uint32_t NRecords = CovHeader->getNRecords<Endian>();
+ uint32_t FilenamesSize = CovHeader->getFilenamesSize<Endian>();
+ uint32_t CoverageSize = CovHeader->getCoverageSize<Endian>();
+ assert((CovMapVersion)CovHeader->getVersion<Endian>() == Version);
+ Buf = reinterpret_cast<const char *>(CovHeader + 1);
+
+ // Skip past the function records, saving the start and end for later.
+ const char *FunBuf = Buf;
+ Buf += NRecords * sizeof(FuncRecordType);
+ const char *FunEnd = Buf;
+
+ // Get the filenames.
+ if (Buf + FilenamesSize > End)
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ size_t FilenamesBegin = Filenames.size();
+ RawCoverageFilenamesReader Reader(StringRef(Buf, FilenamesSize), Filenames);
+ if (auto Err = Reader.read())
+ return std::move(Err);
+ Buf += FilenamesSize;
+
+ // We'll read the coverage mapping records in the loop below.
+ const char *CovBuf = Buf;
+ Buf += CoverageSize;
+ const char *CovEnd = Buf;
+
+ if (Buf > End)
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ // Each coverage map has an alignment of 8, so we need to adjust alignment
+ // before reading the next map.
+ Buf += offsetToAlignedAddr(Buf, Align(8));
+
+ auto CFR = reinterpret_cast<const FuncRecordType *>(FunBuf);
+ while ((const char *)CFR < FunEnd) {
+ // Read the function information
+ uint32_t DataSize = CFR->template getDataSize<Endian>();
+
+ // Now use that to read the coverage data.
+ if (CovBuf + DataSize > CovEnd)
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ auto Mapping = StringRef(CovBuf, DataSize);
+ CovBuf += DataSize;
+
+ if (Error Err =
+ insertFunctionRecordIfNeeded(CFR, Mapping, FilenamesBegin))
+ return std::move(Err);
+ CFR++;
+ }
+ return Buf;
+ }
+};
+
+} // end anonymous namespace
+
+template <class IntPtrT, support::endianness Endian>
+Expected<std::unique_ptr<CovMapFuncRecordReader>> CovMapFuncRecordReader::get(
+ CovMapVersion Version, InstrProfSymtab &P,
+ std::vector<BinaryCoverageReader::ProfileMappingRecord> &R,
+ std::vector<StringRef> &F) {
+ using namespace coverage;
+
+ switch (Version) {
+ case CovMapVersion::Version1:
+ return std::make_unique<VersionedCovMapFuncRecordReader<
+ CovMapVersion::Version1, IntPtrT, Endian>>(P, R, F);
+ case CovMapVersion::Version2:
+ case CovMapVersion::Version3:
+ // Decompress the name data.
+ if (Error E = P.create(P.getNameData()))
+ return std::move(E);
+ if (Version == CovMapVersion::Version2)
+ return std::make_unique<VersionedCovMapFuncRecordReader<
+ CovMapVersion::Version2, IntPtrT, Endian>>(P, R, F);
+ else
+ return std::make_unique<VersionedCovMapFuncRecordReader<
+ CovMapVersion::Version3, IntPtrT, Endian>>(P, R, F);
+ }
+ llvm_unreachable("Unsupported version");
+}
+
+template <typename T, support::endianness Endian>
+static Error readCoverageMappingData(
+ InstrProfSymtab &ProfileNames, StringRef Data,
+ std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records,
+ std::vector<StringRef> &Filenames) {
+ using namespace coverage;
+
+ // Read the records in the coverage data section.
+ auto CovHeader =
+ reinterpret_cast<const CovMapHeader *>(Data.data());
+ CovMapVersion Version = (CovMapVersion)CovHeader->getVersion<Endian>();
+ if (Version > CovMapVersion::CurrentVersion)
+ return make_error<CoverageMapError>(coveragemap_error::unsupported_version);
+ Expected<std::unique_ptr<CovMapFuncRecordReader>> ReaderExpected =
+ CovMapFuncRecordReader::get<T, Endian>(Version, ProfileNames, Records,
+ Filenames);
+ if (Error E = ReaderExpected.takeError())
+ return E;
+ auto Reader = std::move(ReaderExpected.get());
+ for (const char *Buf = Data.data(), *End = Buf + Data.size(); Buf < End;) {
+ auto NextHeaderOrErr = Reader->readFunctionRecords(Buf, End);
+ if (auto E = NextHeaderOrErr.takeError())
+ return E;
+ Buf = NextHeaderOrErr.get();
+ }
+ return Error::success();
+}
+
+static const char *TestingFormatMagic = "llvmcovmtestdata";
+
+Expected<std::unique_ptr<BinaryCoverageReader>>
+BinaryCoverageReader::createCoverageReaderFromBuffer(
+ StringRef Coverage, InstrProfSymtab &&ProfileNames, uint8_t BytesInAddress,
+ support::endianness Endian) {
+ std::unique_ptr<BinaryCoverageReader> Reader(new BinaryCoverageReader());
+ Reader->ProfileNames = std::move(ProfileNames);
+ if (BytesInAddress == 4 && Endian == support::endianness::little) {
+ if (Error E =
+ readCoverageMappingData<uint32_t, support::endianness::little>(
+ Reader->ProfileNames, Coverage, Reader->MappingRecords,
+ Reader->Filenames))
+ return std::move(E);
+ } else if (BytesInAddress == 4 && Endian == support::endianness::big) {
+ if (Error E = readCoverageMappingData<uint32_t, support::endianness::big>(
+ Reader->ProfileNames, Coverage, Reader->MappingRecords,
+ Reader->Filenames))
+ return std::move(E);
+ } else if (BytesInAddress == 8 && Endian == support::endianness::little) {
+ if (Error E =
+ readCoverageMappingData<uint64_t, support::endianness::little>(
+ Reader->ProfileNames, Coverage, Reader->MappingRecords,
+ Reader->Filenames))
+ return std::move(E);
+ } else if (BytesInAddress == 8 && Endian == support::endianness::big) {
+ if (Error E = readCoverageMappingData<uint64_t, support::endianness::big>(
+ Reader->ProfileNames, Coverage, Reader->MappingRecords,
+ Reader->Filenames))
+ return std::move(E);
+ } else
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ return std::move(Reader);
+}
+
+static Expected<std::unique_ptr<BinaryCoverageReader>>
+loadTestingFormat(StringRef Data) {
+ uint8_t BytesInAddress = 8;
+ support::endianness Endian = support::endianness::little;
+
+ Data = Data.substr(StringRef(TestingFormatMagic).size());
+ if (Data.empty())
+ return make_error<CoverageMapError>(coveragemap_error::truncated);
+ unsigned N = 0;
+ uint64_t ProfileNamesSize = decodeULEB128(Data.bytes_begin(), &N);
+ if (N > Data.size())
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ Data = Data.substr(N);
+ if (Data.empty())
+ return make_error<CoverageMapError>(coveragemap_error::truncated);
+ N = 0;
+ uint64_t Address = decodeULEB128(Data.bytes_begin(), &N);
+ if (N > Data.size())
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ Data = Data.substr(N);
+ if (Data.size() < ProfileNamesSize)
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ InstrProfSymtab ProfileNames;
+ if (Error E = ProfileNames.create(Data.substr(0, ProfileNamesSize), Address))
+ return std::move(E);
+ StringRef CoverageMapping = Data.substr(ProfileNamesSize);
+ // Skip the padding bytes because coverage map data has an alignment of 8.
+ if (CoverageMapping.empty())
+ return make_error<CoverageMapError>(coveragemap_error::truncated);
+ size_t Pad = offsetToAlignedAddr(CoverageMapping.data(), Align(8));
+ if (CoverageMapping.size() < Pad)
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+ CoverageMapping = CoverageMapping.substr(Pad);
+ return BinaryCoverageReader::createCoverageReaderFromBuffer(
+ CoverageMapping, std::move(ProfileNames), BytesInAddress, Endian);
+}
+
+static Expected<SectionRef> lookupSection(ObjectFile &OF, StringRef Name) {
+ // On COFF, the object file section name may end in "$M". This tells the
+ // linker to sort these sections between "$A" and "$Z". The linker removes the
+ // dollar and everything after it in the final binary. Do the same to match.
+ bool IsCOFF = isa<COFFObjectFile>(OF);
+ auto stripSuffix = [IsCOFF](StringRef N) {
+ return IsCOFF ? N.split('$').first : N;
+ };
+ Name = stripSuffix(Name);
+
+ for (const auto &Section : OF.sections()) {
+ Expected<StringRef> NameOrErr = Section.getName();
+ if (!NameOrErr)
+ return NameOrErr.takeError();
+ if (stripSuffix(*NameOrErr) == Name)
+ return Section;
+ }
+ return make_error<CoverageMapError>(coveragemap_error::no_data_found);
+}
+
+static Expected<std::unique_ptr<BinaryCoverageReader>>
+loadBinaryFormat(std::unique_ptr<Binary> Bin, StringRef Arch) {
+ std::unique_ptr<ObjectFile> OF;
+ if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin.get())) {
+ // If we have a universal binary, try to look up the object for the
+ // appropriate architecture.
+ auto ObjectFileOrErr = Universal->getMachOObjectForArch(Arch);
+ if (!ObjectFileOrErr)
+ return ObjectFileOrErr.takeError();
+ OF = std::move(ObjectFileOrErr.get());
+ } else if (isa<ObjectFile>(Bin.get())) {
+ // For any other object file, upcast and take ownership.
+ OF.reset(cast<ObjectFile>(Bin.release()));
+ // If we've asked for a particular arch, make sure they match.
+ if (!Arch.empty() && OF->getArch() != Triple(Arch).getArch())
+ return errorCodeToError(object_error::arch_not_found);
+ } else
+ // We can only handle object files.
+ return make_error<CoverageMapError>(coveragemap_error::malformed);
+
+ // The coverage uses native pointer sizes for the object it's written in.
+ uint8_t BytesInAddress = OF->getBytesInAddress();
+ support::endianness Endian = OF->isLittleEndian()
+ ? support::endianness::little
+ : support::endianness::big;
+
+ // Look for the sections that we are interested in.
+ auto ObjFormat = OF->getTripleObjectFormat();
+ auto NamesSection =
+ lookupSection(*OF, getInstrProfSectionName(IPSK_name, ObjFormat,
+ /*AddSegmentInfo=*/false));
+ if (auto E = NamesSection.takeError())
+ return std::move(E);
+ auto CoverageSection =
+ lookupSection(*OF, getInstrProfSectionName(IPSK_covmap, ObjFormat,
+ /*AddSegmentInfo=*/false));
+ if (auto E = CoverageSection.takeError())
+ return std::move(E);
+
+ // Get the contents of the given sections.
+ auto CoverageMappingOrErr = CoverageSection->getContents();
+ if (!CoverageMappingOrErr)
+ return CoverageMappingOrErr.takeError();
+
+ InstrProfSymtab ProfileNames;
+ if (Error E = ProfileNames.create(*NamesSection))
+ return std::move(E);
+
+ return BinaryCoverageReader::createCoverageReaderFromBuffer(
+ CoverageMappingOrErr.get(), std::move(ProfileNames), BytesInAddress,
+ Endian);
+}
+
+Expected<std::vector<std::unique_ptr<BinaryCoverageReader>>>
+BinaryCoverageReader::create(
+ MemoryBufferRef ObjectBuffer, StringRef Arch,
+ SmallVectorImpl<std::unique_ptr<MemoryBuffer>> &ObjectFileBuffers) {
+ std::vector<std::unique_ptr<BinaryCoverageReader>> Readers;
+
+ if (ObjectBuffer.getBuffer().startswith(TestingFormatMagic)) {
+ // This is a special format used for testing.
+ auto ReaderOrErr = loadTestingFormat(ObjectBuffer.getBuffer());
+ if (!ReaderOrErr)
+ return ReaderOrErr.takeError();
+ Readers.push_back(std::move(ReaderOrErr.get()));
+ return std::move(Readers);
+ }
+
+ auto BinOrErr = createBinary(ObjectBuffer);
+ if (!BinOrErr)
+ return BinOrErr.takeError();
+ std::unique_ptr<Binary> Bin = std::move(BinOrErr.get());
+
+ // MachO universal binaries which contain archives need to be treated as
+ // archives, not as regular binaries.
+ if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin.get())) {
+ for (auto &ObjForArch : Universal->objects()) {
+ // Skip slices within the universal binary which target the wrong arch.
+ std::string ObjArch = ObjForArch.getArchFlagName();
+ if (Arch != ObjArch)
+ continue;
+
+ auto ArchiveOrErr = ObjForArch.getAsArchive();
+ if (!ArchiveOrErr) {
+ // If this is not an archive, try treating it as a regular object.
+ consumeError(ArchiveOrErr.takeError());
+ break;
+ }
+
+ return BinaryCoverageReader::create(
+ ArchiveOrErr.get()->getMemoryBufferRef(), Arch, ObjectFileBuffers);
+ }
+ }
+
+ // Load coverage out of archive members.
+ if (auto *Ar = dyn_cast<Archive>(Bin.get())) {
+ Error Err = Error::success();
+ for (auto &Child : Ar->children(Err)) {
+ Expected<MemoryBufferRef> ChildBufOrErr = Child.getMemoryBufferRef();
+ if (!ChildBufOrErr)
+ return ChildBufOrErr.takeError();
+
+ auto ChildReadersOrErr = BinaryCoverageReader::create(
+ ChildBufOrErr.get(), Arch, ObjectFileBuffers);
+ if (!ChildReadersOrErr)
+ return ChildReadersOrErr.takeError();
+ for (auto &Reader : ChildReadersOrErr.get())
+ Readers.push_back(std::move(Reader));
+ }
+ if (Err)
+ return std::move(Err);
+
+ // Thin archives reference object files outside of the archive file, i.e.
+ // files which reside in memory not owned by the caller. Transfer ownership
+ // to the caller.
+ if (Ar->isThin())
+ for (auto &Buffer : Ar->takeThinBuffers())
+ ObjectFileBuffers.push_back(std::move(Buffer));
+
+ return std::move(Readers);
+ }
+
+ auto ReaderOrErr = loadBinaryFormat(std::move(Bin), Arch);
+ if (!ReaderOrErr)
+ return ReaderOrErr.takeError();
+ Readers.push_back(std::move(ReaderOrErr.get()));
+ return std::move(Readers);
+}
+
+Error BinaryCoverageReader::readNextRecord(CoverageMappingRecord &Record) {
+ if (CurrentRecord >= MappingRecords.size())
+ return make_error<CoverageMapError>(coveragemap_error::eof);
+
+ FunctionsFilenames.clear();
+ Expressions.clear();
+ MappingRegions.clear();
+ auto &R = MappingRecords[CurrentRecord];
+ RawCoverageMappingReader Reader(
+ R.CoverageMapping,
+ makeArrayRef(Filenames).slice(R.FilenamesBegin, R.FilenamesSize),
+ FunctionsFilenames, Expressions, MappingRegions);
+ if (auto Err = Reader.read())
+ return Err;
+
+ Record.FunctionName = R.FunctionName;
+ Record.FunctionHash = R.FunctionHash;
+ Record.Filenames = FunctionsFilenames;
+ Record.Expressions = Expressions;
+ Record.MappingRegions = MappingRegions;
+
+ ++CurrentRecord;
+ return Error::success();
+}
diff --git a/llvm/lib/ProfileData/Coverage/CoverageMappingWriter.cpp b/llvm/lib/ProfileData/Coverage/CoverageMappingWriter.cpp
new file mode 100644
index 000000000000..d75854a60d1e
--- /dev/null
+++ b/llvm/lib/ProfileData/Coverage/CoverageMappingWriter.cpp
@@ -0,0 +1,216 @@
+//===- CoverageMappingWriter.cpp - Code coverage mapping writer -----------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains support for writing coverage mapping data for
+// instrumentation based coverage.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ProfileData/Coverage/CoverageMappingWriter.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/LEB128.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <limits>
+#include <vector>
+
+using namespace llvm;
+using namespace coverage;
+
+CoverageFilenamesSectionWriter::CoverageFilenamesSectionWriter(
+ ArrayRef<StringRef> Filenames)
+ : Filenames(Filenames) {
+#ifndef NDEBUG
+ StringSet<> NameSet;
+ for (StringRef Name : Filenames)
+ assert(NameSet.insert(Name).second && "Duplicate filename");
+#endif
+}
+
+void CoverageFilenamesSectionWriter::write(raw_ostream &OS) {
+ encodeULEB128(Filenames.size(), OS);
+ for (const auto &Filename : Filenames) {
+ encodeULEB128(Filename.size(), OS);
+ OS << Filename;
+ }
+}
+
+namespace {
+
+/// Gather only the expressions that are used by the mapping
+/// regions in this function.
+class CounterExpressionsMinimizer {
+ ArrayRef<CounterExpression> Expressions;
+ SmallVector<CounterExpression, 16> UsedExpressions;
+ std::vector<unsigned> AdjustedExpressionIDs;
+
+public:
+ CounterExpressionsMinimizer(ArrayRef<CounterExpression> Expressions,
+ ArrayRef<CounterMappingRegion> MappingRegions)
+ : Expressions(Expressions) {
+ AdjustedExpressionIDs.resize(Expressions.size(), 0);
+ for (const auto &I : MappingRegions)
+ mark(I.Count);
+ for (const auto &I : MappingRegions)
+ gatherUsed(I.Count);
+ }
+
+ void mark(Counter C) {
+ if (!C.isExpression())
+ return;
+ unsigned ID = C.getExpressionID();
+ AdjustedExpressionIDs[ID] = 1;
+ mark(Expressions[ID].LHS);
+ mark(Expressions[ID].RHS);
+ }
+
+ void gatherUsed(Counter C) {
+ if (!C.isExpression() || !AdjustedExpressionIDs[C.getExpressionID()])
+ return;
+ AdjustedExpressionIDs[C.getExpressionID()] = UsedExpressions.size();
+ const auto &E = Expressions[C.getExpressionID()];
+ UsedExpressions.push_back(E);
+ gatherUsed(E.LHS);
+ gatherUsed(E.RHS);
+ }
+
+ ArrayRef<CounterExpression> getExpressions() const { return UsedExpressions; }
+
+ /// Adjust the given counter to correctly transition from the old
+ /// expression ids to the new expression ids.
+ Counter adjust(Counter C) const {
+ if (C.isExpression())
+ C = Counter::getExpression(AdjustedExpressionIDs[C.getExpressionID()]);
+ return C;
+ }
+};
+
+} // end anonymous namespace
+
+/// Encode the counter.
+///
+/// The encoding uses the following format:
+/// Low 2 bits - Tag:
+/// Counter::Zero(0) - A Counter with kind Counter::Zero
+/// Counter::CounterValueReference(1) - A counter with kind
+/// Counter::CounterValueReference
+/// Counter::Expression(2) + CounterExpression::Subtract(0) -
+/// A counter with kind Counter::Expression and an expression
+/// with kind CounterExpression::Subtract
+/// Counter::Expression(2) + CounterExpression::Add(1) -
+/// A counter with kind Counter::Expression and an expression
+/// with kind CounterExpression::Add
+/// Remaining bits - Counter/Expression ID.
+static unsigned encodeCounter(ArrayRef<CounterExpression> Expressions,
+ Counter C) {
+ unsigned Tag = unsigned(C.getKind());
+ if (C.isExpression())
+ Tag += Expressions[C.getExpressionID()].Kind;
+ unsigned ID = C.getCounterID();
+ assert(ID <=
+ (std::numeric_limits<unsigned>::max() >> Counter::EncodingTagBits));
+ return Tag | (ID << Counter::EncodingTagBits);
+}
+
+static void writeCounter(ArrayRef<CounterExpression> Expressions, Counter C,
+ raw_ostream &OS) {
+ encodeULEB128(encodeCounter(Expressions, C), OS);
+}
+
+void CoverageMappingWriter::write(raw_ostream &OS) {
+ // Check that we don't have any bogus regions.
+ assert(all_of(MappingRegions,
+ [](const CounterMappingRegion &CMR) {
+ return CMR.startLoc() <= CMR.endLoc();
+ }) &&
+ "Source region does not begin before it ends");
+
+ // Sort the regions in an ascending order by the file id and the starting
+ // location. Sort by region kinds to ensure stable order for tests.
+ llvm::stable_sort(MappingRegions, [](const CounterMappingRegion &LHS,
+ const CounterMappingRegion &RHS) {
+ if (LHS.FileID != RHS.FileID)
+ return LHS.FileID < RHS.FileID;
+ if (LHS.startLoc() != RHS.startLoc())
+ return LHS.startLoc() < RHS.startLoc();
+ return LHS.Kind < RHS.Kind;
+ });
+
+ // Write out the fileid -> filename mapping.
+ encodeULEB128(VirtualFileMapping.size(), OS);
+ for (const auto &FileID : VirtualFileMapping)
+ encodeULEB128(FileID, OS);
+
+ // Write out the expressions.
+ CounterExpressionsMinimizer Minimizer(Expressions, MappingRegions);
+ auto MinExpressions = Minimizer.getExpressions();
+ encodeULEB128(MinExpressions.size(), OS);
+ for (const auto &E : MinExpressions) {
+ writeCounter(MinExpressions, Minimizer.adjust(E.LHS), OS);
+ writeCounter(MinExpressions, Minimizer.adjust(E.RHS), OS);
+ }
+
+ // Write out the mapping regions.
+ // Split the regions into subarrays where each region in a
+ // subarray has a fileID which is the index of that subarray.
+ unsigned PrevLineStart = 0;
+ unsigned CurrentFileID = ~0U;
+ for (auto I = MappingRegions.begin(), E = MappingRegions.end(); I != E; ++I) {
+ if (I->FileID != CurrentFileID) {
+ // Ensure that all file ids have at least one mapping region.
+ assert(I->FileID == (CurrentFileID + 1));
+ // Find the number of regions with this file id.
+ unsigned RegionCount = 1;
+ for (auto J = I + 1; J != E && I->FileID == J->FileID; ++J)
+ ++RegionCount;
+ // Start a new region sub-array.
+ encodeULEB128(RegionCount, OS);
+
+ CurrentFileID = I->FileID;
+ PrevLineStart = 0;
+ }
+ Counter Count = Minimizer.adjust(I->Count);
+ switch (I->Kind) {
+ case CounterMappingRegion::CodeRegion:
+ case CounterMappingRegion::GapRegion:
+ writeCounter(MinExpressions, Count, OS);
+ break;
+ case CounterMappingRegion::ExpansionRegion: {
+ assert(Count.isZero());
+ assert(I->ExpandedFileID <=
+ (std::numeric_limits<unsigned>::max() >>
+ Counter::EncodingCounterTagAndExpansionRegionTagBits));
+ // Mark an expansion region with a set bit that follows the counter tag,
+ // and pack the expanded file id into the remaining bits.
+ unsigned EncodedTagExpandedFileID =
+ (1 << Counter::EncodingTagBits) |
+ (I->ExpandedFileID
+ << Counter::EncodingCounterTagAndExpansionRegionTagBits);
+ encodeULEB128(EncodedTagExpandedFileID, OS);
+ break;
+ }
+ case CounterMappingRegion::SkippedRegion:
+ assert(Count.isZero());
+ encodeULEB128(unsigned(I->Kind)
+ << Counter::EncodingCounterTagAndExpansionRegionTagBits,
+ OS);
+ break;
+ }
+ assert(I->LineStart >= PrevLineStart);
+ encodeULEB128(I->LineStart - PrevLineStart, OS);
+ encodeULEB128(I->ColumnStart, OS);
+ assert(I->LineEnd >= I->LineStart);
+ encodeULEB128(I->LineEnd - I->LineStart, OS);
+ encodeULEB128(I->ColumnEnd, OS);
+ PrevLineStart = I->LineStart;
+ }
+ // Ensure that all file ids have at least one mapping region.
+ assert(CurrentFileID == (VirtualFileMapping.size() - 1));
+}
diff --git a/llvm/lib/ProfileData/GCOV.cpp b/llvm/lib/ProfileData/GCOV.cpp
new file mode 100644
index 000000000000..00e6294c57a6
--- /dev/null
+++ b/llvm/lib/ProfileData/GCOV.cpp
@@ -0,0 +1,940 @@
+//===- GCOV.cpp - LLVM coverage tool --------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// GCOV implements the interface to read and write coverage files that use
+// 'gcov' format.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ProfileData/GCOV.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/MD5.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <system_error>
+
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// GCOVFile implementation.
+
+/// readGCNO - Read GCNO buffer.
+bool GCOVFile::readGCNO(GCOVBuffer &Buffer) {
+ if (!Buffer.readGCNOFormat())
+ return false;
+ if (!Buffer.readGCOVVersion(Version))
+ return false;
+
+ if (!Buffer.readInt(Checksum))
+ return false;
+ while (true) {
+ if (!Buffer.readFunctionTag())
+ break;
+ auto GFun = std::make_unique<GCOVFunction>(*this);
+ if (!GFun->readGCNO(Buffer, Version))
+ return false;
+ Functions.push_back(std::move(GFun));
+ }
+
+ GCNOInitialized = true;
+ return true;
+}
+
+/// readGCDA - Read GCDA buffer. It is required that readGCDA() can only be
+/// called after readGCNO().
+bool GCOVFile::readGCDA(GCOVBuffer &Buffer) {
+ assert(GCNOInitialized && "readGCDA() can only be called after readGCNO()");
+ if (!Buffer.readGCDAFormat())
+ return false;
+ GCOV::GCOVVersion GCDAVersion;
+ if (!Buffer.readGCOVVersion(GCDAVersion))
+ return false;
+ if (Version != GCDAVersion) {
+ errs() << "GCOV versions do not match.\n";
+ return false;
+ }
+
+ uint32_t GCDAChecksum;
+ if (!Buffer.readInt(GCDAChecksum))
+ return false;
+ if (Checksum != GCDAChecksum) {
+ errs() << "File checksums do not match: " << Checksum
+ << " != " << GCDAChecksum << ".\n";
+ return false;
+ }
+ for (size_t i = 0, e = Functions.size(); i < e; ++i) {
+ if (!Buffer.readFunctionTag()) {
+ errs() << "Unexpected number of functions.\n";
+ return false;
+ }
+ if (!Functions[i]->readGCDA(Buffer, Version))
+ return false;
+ }
+ if (Buffer.readObjectTag()) {
+ uint32_t Length;
+ uint32_t Dummy;
+ if (!Buffer.readInt(Length))
+ return false;
+ if (!Buffer.readInt(Dummy))
+ return false; // checksum
+ if (!Buffer.readInt(Dummy))
+ return false; // num
+ if (!Buffer.readInt(RunCount))
+ return false;
+ Buffer.advanceCursor(Length - 3);
+ }
+ while (Buffer.readProgramTag()) {
+ uint32_t Length;
+ if (!Buffer.readInt(Length))
+ return false;
+ Buffer.advanceCursor(Length);
+ ++ProgramCount;
+ }
+
+ return true;
+}
+
+void GCOVFile::print(raw_ostream &OS) const {
+ for (const auto &FPtr : Functions)
+ FPtr->print(OS);
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+/// dump - Dump GCOVFile content to dbgs() for debugging purposes.
+LLVM_DUMP_METHOD void GCOVFile::dump() const { print(dbgs()); }
+#endif
+
+/// collectLineCounts - Collect line counts. This must be used after
+/// reading .gcno and .gcda files.
+void GCOVFile::collectLineCounts(FileInfo &FI) {
+ for (const auto &FPtr : Functions)
+ FPtr->collectLineCounts(FI);
+ FI.setRunCount(RunCount);
+ FI.setProgramCount(ProgramCount);
+}
+
+//===----------------------------------------------------------------------===//
+// GCOVFunction implementation.
+
+/// readGCNO - Read a function from the GCNO buffer. Return false if an error
+/// occurs.
+bool GCOVFunction::readGCNO(GCOVBuffer &Buff, GCOV::GCOVVersion Version) {
+ uint32_t Dummy;
+ if (!Buff.readInt(Dummy))
+ return false; // Function header length
+ if (!Buff.readInt(Ident))
+ return false;
+ if (!Buff.readInt(Checksum))
+ return false;
+ if (Version != GCOV::V402) {
+ uint32_t CfgChecksum;
+ if (!Buff.readInt(CfgChecksum))
+ return false;
+ if (Parent.getChecksum() != CfgChecksum) {
+ errs() << "File checksums do not match: " << Parent.getChecksum()
+ << " != " << CfgChecksum << " in (" << Name << ").\n";
+ return false;
+ }
+ }
+ if (!Buff.readString(Name))
+ return false;
+ if (!Buff.readString(Filename))
+ return false;
+ if (!Buff.readInt(LineNumber))
+ return false;
+
+ // read blocks.
+ if (!Buff.readBlockTag()) {
+ errs() << "Block tag not found.\n";
+ return false;
+ }
+ uint32_t BlockCount;
+ if (!Buff.readInt(BlockCount))
+ return false;
+ for (uint32_t i = 0, e = BlockCount; i != e; ++i) {
+ if (!Buff.readInt(Dummy))
+ return false; // Block flags;
+ Blocks.push_back(std::make_unique<GCOVBlock>(*this, i));
+ }
+
+ // read edges.
+ while (Buff.readEdgeTag()) {
+ uint32_t EdgeCount;
+ if (!Buff.readInt(EdgeCount))
+ return false;
+ EdgeCount = (EdgeCount - 1) / 2;
+ uint32_t BlockNo;
+ if (!Buff.readInt(BlockNo))
+ return false;
+ if (BlockNo >= BlockCount) {
+ errs() << "Unexpected block number: " << BlockNo << " (in " << Name
+ << ").\n";
+ return false;
+ }
+ for (uint32_t i = 0, e = EdgeCount; i != e; ++i) {
+ uint32_t Dst;
+ if (!Buff.readInt(Dst))
+ return false;
+ Edges.push_back(std::make_unique<GCOVEdge>(*Blocks[BlockNo], *Blocks[Dst]));
+ GCOVEdge *Edge = Edges.back().get();
+ Blocks[BlockNo]->addDstEdge(Edge);
+ Blocks[Dst]->addSrcEdge(Edge);
+ if (!Buff.readInt(Dummy))
+ return false; // Edge flag
+ }
+ }
+
+ // read line table.
+ while (Buff.readLineTag()) {
+ uint32_t LineTableLength;
+ // Read the length of this line table.
+ if (!Buff.readInt(LineTableLength))
+ return false;
+ uint32_t EndPos = Buff.getCursor() + LineTableLength * 4;
+ uint32_t BlockNo;
+ // Read the block number this table is associated with.
+ if (!Buff.readInt(BlockNo))
+ return false;
+ if (BlockNo >= BlockCount) {
+ errs() << "Unexpected block number: " << BlockNo << " (in " << Name
+ << ").\n";
+ return false;
+ }
+ GCOVBlock &Block = *Blocks[BlockNo];
+ // Read the word that pads the beginning of the line table. This may be a
+ // flag of some sort, but seems to always be zero.
+ if (!Buff.readInt(Dummy))
+ return false;
+
+ // Line information starts here and continues up until the last word.
+ if (Buff.getCursor() != (EndPos - sizeof(uint32_t))) {
+ StringRef F;
+ // Read the source file name.
+ if (!Buff.readString(F))
+ return false;
+ if (Filename != F) {
+ errs() << "Multiple sources for a single basic block: " << Filename
+ << " != " << F << " (in " << Name << ").\n";
+ return false;
+ }
+ // Read lines up to, but not including, the null terminator.
+ while (Buff.getCursor() < (EndPos - 2 * sizeof(uint32_t))) {
+ uint32_t Line;
+ if (!Buff.readInt(Line))
+ return false;
+ // Line 0 means this instruction was injected by the compiler. Skip it.
+ if (!Line)
+ continue;
+ Block.addLine(Line);
+ }
+ // Read the null terminator.
+ if (!Buff.readInt(Dummy))
+ return false;
+ }
+ // The last word is either a flag or padding, it isn't clear which. Skip
+ // over it.
+ if (!Buff.readInt(Dummy))
+ return false;
+ }
+ return true;
+}
+
+/// readGCDA - Read a function from the GCDA buffer. Return false if an error
+/// occurs.
+bool GCOVFunction::readGCDA(GCOVBuffer &Buff, GCOV::GCOVVersion Version) {
+ uint32_t HeaderLength;
+ if (!Buff.readInt(HeaderLength))
+ return false; // Function header length
+
+ uint64_t EndPos = Buff.getCursor() + HeaderLength * sizeof(uint32_t);
+
+ uint32_t GCDAIdent;
+ if (!Buff.readInt(GCDAIdent))
+ return false;
+ if (Ident != GCDAIdent) {
+ errs() << "Function identifiers do not match: " << Ident
+ << " != " << GCDAIdent << " (in " << Name << ").\n";
+ return false;
+ }
+
+ uint32_t GCDAChecksum;
+ if (!Buff.readInt(GCDAChecksum))
+ return false;
+ if (Checksum != GCDAChecksum) {
+ errs() << "Function checksums do not match: " << Checksum
+ << " != " << GCDAChecksum << " (in " << Name << ").\n";
+ return false;
+ }
+
+ uint32_t CfgChecksum;
+ if (Version != GCOV::V402) {
+ if (!Buff.readInt(CfgChecksum))
+ return false;
+ if (Parent.getChecksum() != CfgChecksum) {
+ errs() << "File checksums do not match: " << Parent.getChecksum()
+ << " != " << CfgChecksum << " (in " << Name << ").\n";
+ return false;
+ }
+ }
+
+ if (Buff.getCursor() < EndPos) {
+ StringRef GCDAName;
+ if (!Buff.readString(GCDAName))
+ return false;
+ if (Name != GCDAName) {
+ errs() << "Function names do not match: " << Name << " != " << GCDAName
+ << ".\n";
+ return false;
+ }
+ }
+
+ if (!Buff.readArcTag()) {
+ errs() << "Arc tag not found (in " << Name << ").\n";
+ return false;
+ }
+
+ uint32_t Count;
+ if (!Buff.readInt(Count))
+ return false;
+ Count /= 2;
+
+ // This for loop adds the counts for each block. A second nested loop is
+ // required to combine the edge counts that are contained in the GCDA file.
+ for (uint32_t BlockNo = 0; Count > 0; ++BlockNo) {
+ // The last block is always reserved for exit block
+ if (BlockNo >= Blocks.size()) {
+ errs() << "Unexpected number of edges (in " << Name << ").\n";
+ return false;
+ }
+ if (BlockNo == Blocks.size() - 1)
+ errs() << "(" << Name << ") has arcs from exit block.\n";
+ GCOVBlock &Block = *Blocks[BlockNo];
+ for (size_t EdgeNo = 0, End = Block.getNumDstEdges(); EdgeNo < End;
+ ++EdgeNo) {
+ if (Count == 0) {
+ errs() << "Unexpected number of edges (in " << Name << ").\n";
+ return false;
+ }
+ uint64_t ArcCount;
+ if (!Buff.readInt64(ArcCount))
+ return false;
+ Block.addCount(EdgeNo, ArcCount);
+ --Count;
+ }
+ Block.sortDstEdges();
+ }
+ return true;
+}
+
+/// getEntryCount - Get the number of times the function was called by
+/// retrieving the entry block's count.
+uint64_t GCOVFunction::getEntryCount() const {
+ return Blocks.front()->getCount();
+}
+
+/// getExitCount - Get the number of times the function returned by retrieving
+/// the exit block's count.
+uint64_t GCOVFunction::getExitCount() const {
+ return Blocks.back()->getCount();
+}
+
+void GCOVFunction::print(raw_ostream &OS) const {
+ OS << "===== " << Name << " (" << Ident << ") @ " << Filename << ":"
+ << LineNumber << "\n";
+ for (const auto &Block : Blocks)
+ Block->print(OS);
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+/// dump - Dump GCOVFunction content to dbgs() for debugging purposes.
+LLVM_DUMP_METHOD void GCOVFunction::dump() const { print(dbgs()); }
+#endif
+
+/// collectLineCounts - Collect line counts. This must be used after
+/// reading .gcno and .gcda files.
+void GCOVFunction::collectLineCounts(FileInfo &FI) {
+ // If the line number is zero, this is a function that doesn't actually appear
+ // in the source file, so there isn't anything we can do with it.
+ if (LineNumber == 0)
+ return;
+
+ for (const auto &Block : Blocks)
+ Block->collectLineCounts(FI);
+ FI.addFunctionLine(Filename, LineNumber, this);
+}
+
+//===----------------------------------------------------------------------===//
+// GCOVBlock implementation.
+
+/// ~GCOVBlock - Delete GCOVBlock and its content.
+GCOVBlock::~GCOVBlock() {
+ SrcEdges.clear();
+ DstEdges.clear();
+ Lines.clear();
+}
+
+/// addCount - Add to block counter while storing the edge count. If the
+/// destination has no outgoing edges, also update that block's count too.
+void GCOVBlock::addCount(size_t DstEdgeNo, uint64_t N) {
+ assert(DstEdgeNo < DstEdges.size()); // up to caller to ensure EdgeNo is valid
+ DstEdges[DstEdgeNo]->Count = N;
+ Counter += N;
+ if (!DstEdges[DstEdgeNo]->Dst.getNumDstEdges())
+ DstEdges[DstEdgeNo]->Dst.Counter += N;
+}
+
+/// sortDstEdges - Sort destination edges by block number, nop if already
+/// sorted. This is required for printing branch info in the correct order.
+void GCOVBlock::sortDstEdges() {
+ if (!DstEdgesAreSorted)
+ llvm::stable_sort(DstEdges, [](const GCOVEdge *E1, const GCOVEdge *E2) {
+ return E1->Dst.Number < E2->Dst.Number;
+ });
+}
+
+/// collectLineCounts - Collect line counts. This must be used after
+/// reading .gcno and .gcda files.
+void GCOVBlock::collectLineCounts(FileInfo &FI) {
+ for (uint32_t N : Lines)
+ FI.addBlockLine(Parent.getFilename(), N, this);
+}
+
+void GCOVBlock::print(raw_ostream &OS) const {
+ OS << "Block : " << Number << " Counter : " << Counter << "\n";
+ if (!SrcEdges.empty()) {
+ OS << "\tSource Edges : ";
+ for (const GCOVEdge *Edge : SrcEdges)
+ OS << Edge->Src.Number << " (" << Edge->Count << "), ";
+ OS << "\n";
+ }
+ if (!DstEdges.empty()) {
+ OS << "\tDestination Edges : ";
+ for (const GCOVEdge *Edge : DstEdges)
+ OS << Edge->Dst.Number << " (" << Edge->Count << "), ";
+ OS << "\n";
+ }
+ if (!Lines.empty()) {
+ OS << "\tLines : ";
+ for (uint32_t N : Lines)
+ OS << (N) << ",";
+ OS << "\n";
+ }
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+/// dump - Dump GCOVBlock content to dbgs() for debugging purposes.
+LLVM_DUMP_METHOD void GCOVBlock::dump() const { print(dbgs()); }
+#endif
+
+//===----------------------------------------------------------------------===//
+// Cycles detection
+//
+// The algorithm in GCC is based on the algorihtm by Hawick & James:
+// "Enumerating Circuits and Loops in Graphs with Self-Arcs and Multiple-Arcs"
+// http://complexity.massey.ac.nz/cstn/013/cstn-013.pdf.
+
+/// Get the count for the detected cycle.
+uint64_t GCOVBlock::getCycleCount(const Edges &Path) {
+ uint64_t CycleCount = std::numeric_limits<uint64_t>::max();
+ for (auto E : Path) {
+ CycleCount = std::min(E->CyclesCount, CycleCount);
+ }
+ for (auto E : Path) {
+ E->CyclesCount -= CycleCount;
+ }
+ return CycleCount;
+}
+
+/// Unblock a vertex previously marked as blocked.
+void GCOVBlock::unblock(const GCOVBlock *U, BlockVector &Blocked,
+ BlockVectorLists &BlockLists) {
+ auto it = find(Blocked, U);
+ if (it == Blocked.end()) {
+ return;
+ }
+
+ const size_t index = it - Blocked.begin();
+ Blocked.erase(it);
+
+ const BlockVector ToUnblock(BlockLists[index]);
+ BlockLists.erase(BlockLists.begin() + index);
+ for (auto GB : ToUnblock) {
+ GCOVBlock::unblock(GB, Blocked, BlockLists);
+ }
+}
+
+bool GCOVBlock::lookForCircuit(const GCOVBlock *V, const GCOVBlock *Start,
+ Edges &Path, BlockVector &Blocked,
+ BlockVectorLists &BlockLists,
+ const BlockVector &Blocks, uint64_t &Count) {
+ Blocked.push_back(V);
+ BlockLists.emplace_back(BlockVector());
+ bool FoundCircuit = false;
+
+ for (auto E : V->dsts()) {
+ const GCOVBlock *W = &E->Dst;
+ if (W < Start || find(Blocks, W) == Blocks.end()) {
+ continue;
+ }
+
+ Path.push_back(E);
+
+ if (W == Start) {
+ // We've a cycle.
+ Count += GCOVBlock::getCycleCount(Path);
+ FoundCircuit = true;
+ } else if (find(Blocked, W) == Blocked.end() && // W is not blocked.
+ GCOVBlock::lookForCircuit(W, Start, Path, Blocked, BlockLists,
+ Blocks, Count)) {
+ FoundCircuit = true;
+ }
+
+ Path.pop_back();
+ }
+
+ if (FoundCircuit) {
+ GCOVBlock::unblock(V, Blocked, BlockLists);
+ } else {
+ for (auto E : V->dsts()) {
+ const GCOVBlock *W = &E->Dst;
+ if (W < Start || find(Blocks, W) == Blocks.end()) {
+ continue;
+ }
+ const size_t index = find(Blocked, W) - Blocked.begin();
+ BlockVector &List = BlockLists[index];
+ if (find(List, V) == List.end()) {
+ List.push_back(V);
+ }
+ }
+ }
+
+ return FoundCircuit;
+}
+
+/// Get the count for the list of blocks which lie on the same line.
+void GCOVBlock::getCyclesCount(const BlockVector &Blocks, uint64_t &Count) {
+ for (auto Block : Blocks) {
+ Edges Path;
+ BlockVector Blocked;
+ BlockVectorLists BlockLists;
+
+ GCOVBlock::lookForCircuit(Block, Block, Path, Blocked, BlockLists, Blocks,
+ Count);
+ }
+}
+
+/// Get the count for the list of blocks which lie on the same line.
+uint64_t GCOVBlock::getLineCount(const BlockVector &Blocks) {
+ uint64_t Count = 0;
+
+ for (auto Block : Blocks) {
+ if (Block->getNumSrcEdges() == 0) {
+ // The block has no predecessors and a non-null counter
+ // (can be the case with entry block in functions).
+ Count += Block->getCount();
+ } else {
+ // Add counts from predecessors that are not on the same line.
+ for (auto E : Block->srcs()) {
+ const GCOVBlock *W = &E->Src;
+ if (find(Blocks, W) == Blocks.end()) {
+ Count += E->Count;
+ }
+ }
+ }
+ for (auto E : Block->dsts()) {
+ E->CyclesCount = E->Count;
+ }
+ }
+
+ GCOVBlock::getCyclesCount(Blocks, Count);
+
+ return Count;
+}
+
+//===----------------------------------------------------------------------===//
+// FileInfo implementation.
+
+// Safe integer division, returns 0 if numerator is 0.
+static uint32_t safeDiv(uint64_t Numerator, uint64_t Divisor) {
+ if (!Numerator)
+ return 0;
+ return Numerator / Divisor;
+}
+
+// This custom division function mimics gcov's branch ouputs:
+// - Round to closest whole number
+// - Only output 0% or 100% if it's exactly that value
+static uint32_t branchDiv(uint64_t Numerator, uint64_t Divisor) {
+ if (!Numerator)
+ return 0;
+ if (Numerator == Divisor)
+ return 100;
+
+ uint8_t Res = (Numerator * 100 + Divisor / 2) / Divisor;
+ if (Res == 0)
+ return 1;
+ if (Res == 100)
+ return 99;
+ return Res;
+}
+
+namespace {
+struct formatBranchInfo {
+ formatBranchInfo(const GCOV::Options &Options, uint64_t Count, uint64_t Total)
+ : Options(Options), Count(Count), Total(Total) {}
+
+ void print(raw_ostream &OS) const {
+ if (!Total)
+ OS << "never executed";
+ else if (Options.BranchCount)
+ OS << "taken " << Count;
+ else
+ OS << "taken " << branchDiv(Count, Total) << "%";
+ }
+
+ const GCOV::Options &Options;
+ uint64_t Count;
+ uint64_t Total;
+};
+
+static raw_ostream &operator<<(raw_ostream &OS, const formatBranchInfo &FBI) {
+ FBI.print(OS);
+ return OS;
+}
+
+class LineConsumer {
+ std::unique_ptr<MemoryBuffer> Buffer;
+ StringRef Remaining;
+
+public:
+ LineConsumer(StringRef Filename) {
+ ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
+ MemoryBuffer::getFileOrSTDIN(Filename);
+ if (std::error_code EC = BufferOrErr.getError()) {
+ errs() << Filename << ": " << EC.message() << "\n";
+ Remaining = "";
+ } else {
+ Buffer = std::move(BufferOrErr.get());
+ Remaining = Buffer->getBuffer();
+ }
+ }
+ bool empty() { return Remaining.empty(); }
+ void printNext(raw_ostream &OS, uint32_t LineNum) {
+ StringRef Line;
+ if (empty())
+ Line = "/*EOF*/";
+ else
+ std::tie(Line, Remaining) = Remaining.split("\n");
+ OS << format("%5u:", LineNum) << Line << "\n";
+ }
+};
+} // end anonymous namespace
+
+/// Convert a path to a gcov filename. If PreservePaths is true, this
+/// translates "/" to "#", ".." to "^", and drops ".", to match gcov.
+static std::string mangleCoveragePath(StringRef Filename, bool PreservePaths) {
+ if (!PreservePaths)
+ return sys::path::filename(Filename).str();
+
+ // This behaviour is defined by gcov in terms of text replacements, so it's
+ // not likely to do anything useful on filesystems with different textual
+ // conventions.
+ llvm::SmallString<256> Result("");
+ StringRef::iterator I, S, E;
+ for (I = S = Filename.begin(), E = Filename.end(); I != E; ++I) {
+ if (*I != '/')
+ continue;
+
+ if (I - S == 1 && *S == '.') {
+ // ".", the current directory, is skipped.
+ } else if (I - S == 2 && *S == '.' && *(S + 1) == '.') {
+ // "..", the parent directory, is replaced with "^".
+ Result.append("^#");
+ } else {
+ if (S < I)
+ // Leave other components intact,
+ Result.append(S, I);
+ // And separate with "#".
+ Result.push_back('#');
+ }
+ S = I + 1;
+ }
+
+ if (S < I)
+ Result.append(S, I);
+ return Result.str();
+}
+
+std::string FileInfo::getCoveragePath(StringRef Filename,
+ StringRef MainFilename) {
+ if (Options.NoOutput)
+ // This is probably a bug in gcov, but when -n is specified, paths aren't
+ // mangled at all, and the -l and -p options are ignored. Here, we do the
+ // same.
+ return Filename;
+
+ std::string CoveragePath;
+ if (Options.LongFileNames && !Filename.equals(MainFilename))
+ CoveragePath =
+ mangleCoveragePath(MainFilename, Options.PreservePaths) + "##";
+ CoveragePath += mangleCoveragePath(Filename, Options.PreservePaths);
+ if (Options.HashFilenames) {
+ MD5 Hasher;
+ MD5::MD5Result Result;
+ Hasher.update(Filename.str());
+ Hasher.final(Result);
+ CoveragePath += "##" + Result.digest().str().str();
+ }
+ CoveragePath += ".gcov";
+ return CoveragePath;
+}
+
+std::unique_ptr<raw_ostream>
+FileInfo::openCoveragePath(StringRef CoveragePath) {
+ if (Options.NoOutput)
+ return std::make_unique<raw_null_ostream>();
+
+ std::error_code EC;
+ auto OS =
+ std::make_unique<raw_fd_ostream>(CoveragePath, EC, sys::fs::OF_Text);
+ if (EC) {
+ errs() << EC.message() << "\n";
+ return std::make_unique<raw_null_ostream>();
+ }
+ return std::move(OS);
+}
+
+/// print - Print source files with collected line count information.
+void FileInfo::print(raw_ostream &InfoOS, StringRef MainFilename,
+ StringRef GCNOFile, StringRef GCDAFile) {
+ SmallVector<StringRef, 4> Filenames;
+ for (const auto &LI : LineInfo)
+ Filenames.push_back(LI.first());
+ llvm::sort(Filenames);
+
+ for (StringRef Filename : Filenames) {
+ auto AllLines = LineConsumer(Filename);
+
+ std::string CoveragePath = getCoveragePath(Filename, MainFilename);
+ std::unique_ptr<raw_ostream> CovStream = openCoveragePath(CoveragePath);
+ raw_ostream &CovOS = *CovStream;
+
+ CovOS << " -: 0:Source:" << Filename << "\n";
+ CovOS << " -: 0:Graph:" << GCNOFile << "\n";
+ CovOS << " -: 0:Data:" << GCDAFile << "\n";
+ CovOS << " -: 0:Runs:" << RunCount << "\n";
+ CovOS << " -: 0:Programs:" << ProgramCount << "\n";
+
+ const LineData &Line = LineInfo[Filename];
+ GCOVCoverage FileCoverage(Filename);
+ for (uint32_t LineIndex = 0; LineIndex < Line.LastLine || !AllLines.empty();
+ ++LineIndex) {
+ if (Options.BranchInfo) {
+ FunctionLines::const_iterator FuncsIt = Line.Functions.find(LineIndex);
+ if (FuncsIt != Line.Functions.end())
+ printFunctionSummary(CovOS, FuncsIt->second);
+ }
+
+ BlockLines::const_iterator BlocksIt = Line.Blocks.find(LineIndex);
+ if (BlocksIt == Line.Blocks.end()) {
+ // No basic blocks are on this line. Not an executable line of code.
+ CovOS << " -:";
+ AllLines.printNext(CovOS, LineIndex + 1);
+ } else {
+ const BlockVector &Blocks = BlocksIt->second;
+
+ // Add up the block counts to form line counts.
+ DenseMap<const GCOVFunction *, bool> LineExecs;
+ for (const GCOVBlock *Block : Blocks) {
+ if (Options.FuncCoverage) {
+ // This is a slightly convoluted way to most accurately gather line
+ // statistics for functions. Basically what is happening is that we
+ // don't want to count a single line with multiple blocks more than
+ // once. However, we also don't simply want to give the total line
+ // count to every function that starts on the line. Thus, what is
+ // happening here are two things:
+ // 1) Ensure that the number of logical lines is only incremented
+ // once per function.
+ // 2) If there are multiple blocks on the same line, ensure that the
+ // number of lines executed is incremented as long as at least
+ // one of the blocks are executed.
+ const GCOVFunction *Function = &Block->getParent();
+ if (FuncCoverages.find(Function) == FuncCoverages.end()) {
+ std::pair<const GCOVFunction *, GCOVCoverage> KeyValue(
+ Function, GCOVCoverage(Function->getName()));
+ FuncCoverages.insert(KeyValue);
+ }
+ GCOVCoverage &FuncCoverage = FuncCoverages.find(Function)->second;
+
+ if (LineExecs.find(Function) == LineExecs.end()) {
+ if (Block->getCount()) {
+ ++FuncCoverage.LinesExec;
+ LineExecs[Function] = true;
+ } else {
+ LineExecs[Function] = false;
+ }
+ ++FuncCoverage.LogicalLines;
+ } else if (!LineExecs[Function] && Block->getCount()) {
+ ++FuncCoverage.LinesExec;
+ LineExecs[Function] = true;
+ }
+ }
+ }
+
+ const uint64_t LineCount = GCOVBlock::getLineCount(Blocks);
+ if (LineCount == 0)
+ CovOS << " #####:";
+ else {
+ CovOS << format("%9" PRIu64 ":", LineCount);
+ ++FileCoverage.LinesExec;
+ }
+ ++FileCoverage.LogicalLines;
+
+ AllLines.printNext(CovOS, LineIndex + 1);
+
+ uint32_t BlockNo = 0;
+ uint32_t EdgeNo = 0;
+ for (const GCOVBlock *Block : Blocks) {
+ // Only print block and branch information at the end of the block.
+ if (Block->getLastLine() != LineIndex + 1)
+ continue;
+ if (Options.AllBlocks)
+ printBlockInfo(CovOS, *Block, LineIndex, BlockNo);
+ if (Options.BranchInfo) {
+ size_t NumEdges = Block->getNumDstEdges();
+ if (NumEdges > 1)
+ printBranchInfo(CovOS, *Block, FileCoverage, EdgeNo);
+ else if (Options.UncondBranch && NumEdges == 1)
+ printUncondBranchInfo(CovOS, EdgeNo,
+ (*Block->dst_begin())->Count);
+ }
+ }
+ }
+ }
+ FileCoverages.push_back(std::make_pair(CoveragePath, FileCoverage));
+ }
+
+ // FIXME: There is no way to detect calls given current instrumentation.
+ if (Options.FuncCoverage)
+ printFuncCoverage(InfoOS);
+ printFileCoverage(InfoOS);
+}
+
+/// printFunctionSummary - Print function and block summary.
+void FileInfo::printFunctionSummary(raw_ostream &OS,
+ const FunctionVector &Funcs) const {
+ for (const GCOVFunction *Func : Funcs) {
+ uint64_t EntryCount = Func->getEntryCount();
+ uint32_t BlocksExec = 0;
+ for (const GCOVBlock &Block : Func->blocks())
+ if (Block.getNumDstEdges() && Block.getCount())
+ ++BlocksExec;
+
+ OS << "function " << Func->getName() << " called " << EntryCount
+ << " returned " << safeDiv(Func->getExitCount() * 100, EntryCount)
+ << "% blocks executed "
+ << safeDiv(BlocksExec * 100, Func->getNumBlocks() - 1) << "%\n";
+ }
+}
+
+/// printBlockInfo - Output counts for each block.
+void FileInfo::printBlockInfo(raw_ostream &OS, const GCOVBlock &Block,
+ uint32_t LineIndex, uint32_t &BlockNo) const {
+ if (Block.getCount() == 0)
+ OS << " $$$$$:";
+ else
+ OS << format("%9" PRIu64 ":", Block.getCount());
+ OS << format("%5u-block %2u\n", LineIndex + 1, BlockNo++);
+}
+
+/// printBranchInfo - Print conditional branch probabilities.
+void FileInfo::printBranchInfo(raw_ostream &OS, const GCOVBlock &Block,
+ GCOVCoverage &Coverage, uint32_t &EdgeNo) {
+ SmallVector<uint64_t, 16> BranchCounts;
+ uint64_t TotalCounts = 0;
+ for (const GCOVEdge *Edge : Block.dsts()) {
+ BranchCounts.push_back(Edge->Count);
+ TotalCounts += Edge->Count;
+ if (Block.getCount())
+ ++Coverage.BranchesExec;
+ if (Edge->Count)
+ ++Coverage.BranchesTaken;
+ ++Coverage.Branches;
+
+ if (Options.FuncCoverage) {
+ const GCOVFunction *Function = &Block.getParent();
+ GCOVCoverage &FuncCoverage = FuncCoverages.find(Function)->second;
+ if (Block.getCount())
+ ++FuncCoverage.BranchesExec;
+ if (Edge->Count)
+ ++FuncCoverage.BranchesTaken;
+ ++FuncCoverage.Branches;
+ }
+ }
+
+ for (uint64_t N : BranchCounts)
+ OS << format("branch %2u ", EdgeNo++)
+ << formatBranchInfo(Options, N, TotalCounts) << "\n";
+}
+
+/// printUncondBranchInfo - Print unconditional branch probabilities.
+void FileInfo::printUncondBranchInfo(raw_ostream &OS, uint32_t &EdgeNo,
+ uint64_t Count) const {
+ OS << format("unconditional %2u ", EdgeNo++)
+ << formatBranchInfo(Options, Count, Count) << "\n";
+}
+
+// printCoverage - Print generic coverage info used by both printFuncCoverage
+// and printFileCoverage.
+void FileInfo::printCoverage(raw_ostream &OS,
+ const GCOVCoverage &Coverage) const {
+ OS << format("Lines executed:%.2f%% of %u\n",
+ double(Coverage.LinesExec) * 100 / Coverage.LogicalLines,
+ Coverage.LogicalLines);
+ if (Options.BranchInfo) {
+ if (Coverage.Branches) {
+ OS << format("Branches executed:%.2f%% of %u\n",
+ double(Coverage.BranchesExec) * 100 / Coverage.Branches,
+ Coverage.Branches);
+ OS << format("Taken at least once:%.2f%% of %u\n",
+ double(Coverage.BranchesTaken) * 100 / Coverage.Branches,
+ Coverage.Branches);
+ } else {
+ OS << "No branches\n";
+ }
+ OS << "No calls\n"; // to be consistent with gcov
+ }
+}
+
+// printFuncCoverage - Print per-function coverage info.
+void FileInfo::printFuncCoverage(raw_ostream &OS) const {
+ for (const auto &FC : FuncCoverages) {
+ const GCOVCoverage &Coverage = FC.second;
+ OS << "Function '" << Coverage.Name << "'\n";
+ printCoverage(OS, Coverage);
+ OS << "\n";
+ }
+}
+
+// printFileCoverage - Print per-file coverage info.
+void FileInfo::printFileCoverage(raw_ostream &OS) const {
+ for (const auto &FC : FileCoverages) {
+ const std::string &Filename = FC.first;
+ const GCOVCoverage &Coverage = FC.second;
+ OS << "File '" << Coverage.Name << "'\n";
+ printCoverage(OS, Coverage);
+ if (!Options.NoOutput)
+ OS << Coverage.Name << ":creating '" << Filename << "'\n";
+ OS << "\n";
+ }
+}
diff --git a/llvm/lib/ProfileData/InstrProf.cpp b/llvm/lib/ProfileData/InstrProf.cpp
new file mode 100644
index 000000000000..57d4fbc59f83
--- /dev/null
+++ b/llvm/lib/ProfileData/InstrProf.cpp
@@ -0,0 +1,1280 @@
+//===- InstrProf.cpp - Instrumented profiling format support --------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains support for clang's instrumentation based PGO and
+// coverage.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ProfileData/InstrProf.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/ProfileData/InstrProfReader.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Compression.h"
+#include "llvm/Support/Endian.h"
+#include "llvm/Support/Error.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/LEB128.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/SwapByteOrder.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <cstring>
+#include <memory>
+#include <string>
+#include <system_error>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+static cl::opt<bool> StaticFuncFullModulePrefix(
+ "static-func-full-module-prefix", cl::init(true), cl::Hidden,
+ cl::desc("Use full module build paths in the profile counter names for "
+ "static functions."));
+
+// This option is tailored to users that have different top-level directory in
+// profile-gen and profile-use compilation. Users need to specific the number
+// of levels to strip. A value larger than the number of directories in the
+// source file will strip all the directory names and only leave the basename.
+//
+// Note current ThinLTO module importing for the indirect-calls assumes
+// the source directory name not being stripped. A non-zero option value here
+// can potentially prevent some inter-module indirect-call-promotions.
+static cl::opt<unsigned> StaticFuncStripDirNamePrefix(
+ "static-func-strip-dirname-prefix", cl::init(0), cl::Hidden,
+ cl::desc("Strip specified level of directory name from source path in "
+ "the profile counter name for static functions."));
+
+static std::string getInstrProfErrString(instrprof_error Err) {
+ switch (Err) {
+ case instrprof_error::success:
+ return "Success";
+ case instrprof_error::eof:
+ return "End of File";
+ case instrprof_error::unrecognized_format:
+ return "Unrecognized instrumentation profile encoding format";
+ case instrprof_error::bad_magic:
+ return "Invalid instrumentation profile data (bad magic)";
+ case instrprof_error::bad_header:
+ return "Invalid instrumentation profile data (file header is corrupt)";
+ case instrprof_error::unsupported_version:
+ return "Unsupported instrumentation profile format version";
+ case instrprof_error::unsupported_hash_type:
+ return "Unsupported instrumentation profile hash type";
+ case instrprof_error::too_large:
+ return "Too much profile data";
+ case instrprof_error::truncated:
+ return "Truncated profile data";
+ case instrprof_error::malformed:
+ return "Malformed instrumentation profile data";
+ case instrprof_error::unknown_function:
+ return "No profile data available for function";
+ case instrprof_error::hash_mismatch:
+ return "Function control flow change detected (hash mismatch)";
+ case instrprof_error::count_mismatch:
+ return "Function basic block count change detected (counter mismatch)";
+ case instrprof_error::counter_overflow:
+ return "Counter overflow";
+ case instrprof_error::value_site_count_mismatch:
+ return "Function value site count change detected (counter mismatch)";
+ case instrprof_error::compress_failed:
+ return "Failed to compress data (zlib)";
+ case instrprof_error::uncompress_failed:
+ return "Failed to uncompress data (zlib)";
+ case instrprof_error::empty_raw_profile:
+ return "Empty raw profile file";
+ case instrprof_error::zlib_unavailable:
+ return "Profile uses zlib compression but the profile reader was built without zlib support";
+ }
+ llvm_unreachable("A value of instrprof_error has no message.");
+}
+
+namespace {
+
+// FIXME: This class is only here to support the transition to llvm::Error. It
+// will be removed once this transition is complete. Clients should prefer to
+// deal with the Error value directly, rather than converting to error_code.
+class InstrProfErrorCategoryType : public std::error_category {
+ const char *name() const noexcept override { return "llvm.instrprof"; }
+
+ std::string message(int IE) const override {
+ return getInstrProfErrString(static_cast<instrprof_error>(IE));
+ }
+};
+
+} // end anonymous namespace
+
+static ManagedStatic<InstrProfErrorCategoryType> ErrorCategory;
+
+const std::error_category &llvm::instrprof_category() {
+ return *ErrorCategory;
+}
+
+namespace {
+
+const char *InstrProfSectNameCommon[] = {
+#define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \
+ SectNameCommon,
+#include "llvm/ProfileData/InstrProfData.inc"
+};
+
+const char *InstrProfSectNameCoff[] = {
+#define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \
+ SectNameCoff,
+#include "llvm/ProfileData/InstrProfData.inc"
+};
+
+const char *InstrProfSectNamePrefix[] = {
+#define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \
+ Prefix,
+#include "llvm/ProfileData/InstrProfData.inc"
+};
+
+} // namespace
+
+namespace llvm {
+
+std::string getInstrProfSectionName(InstrProfSectKind IPSK,
+ Triple::ObjectFormatType OF,
+ bool AddSegmentInfo) {
+ std::string SectName;
+
+ if (OF == Triple::MachO && AddSegmentInfo)
+ SectName = InstrProfSectNamePrefix[IPSK];
+
+ if (OF == Triple::COFF)
+ SectName += InstrProfSectNameCoff[IPSK];
+ else
+ SectName += InstrProfSectNameCommon[IPSK];
+
+ if (OF == Triple::MachO && IPSK == IPSK_data && AddSegmentInfo)
+ SectName += ",regular,live_support";
+
+ return SectName;
+}
+
+void SoftInstrProfErrors::addError(instrprof_error IE) {
+ if (IE == instrprof_error::success)
+ return;
+
+ if (FirstError == instrprof_error::success)
+ FirstError = IE;
+
+ switch (IE) {
+ case instrprof_error::hash_mismatch:
+ ++NumHashMismatches;
+ break;
+ case instrprof_error::count_mismatch:
+ ++NumCountMismatches;
+ break;
+ case instrprof_error::counter_overflow:
+ ++NumCounterOverflows;
+ break;
+ case instrprof_error::value_site_count_mismatch:
+ ++NumValueSiteCountMismatches;
+ break;
+ default:
+ llvm_unreachable("Not a soft error");
+ }
+}
+
+std::string InstrProfError::message() const {
+ return getInstrProfErrString(Err);
+}
+
+char InstrProfError::ID = 0;
+
+std::string getPGOFuncName(StringRef RawFuncName,
+ GlobalValue::LinkageTypes Linkage,
+ StringRef FileName,
+ uint64_t Version LLVM_ATTRIBUTE_UNUSED) {
+ return GlobalValue::getGlobalIdentifier(RawFuncName, Linkage, FileName);
+}
+
+// Strip NumPrefix level of directory name from PathNameStr. If the number of
+// directory separators is less than NumPrefix, strip all the directories and
+// leave base file name only.
+static StringRef stripDirPrefix(StringRef PathNameStr, uint32_t NumPrefix) {
+ uint32_t Count = NumPrefix;
+ uint32_t Pos = 0, LastPos = 0;
+ for (auto & CI : PathNameStr) {
+ ++Pos;
+ if (llvm::sys::path::is_separator(CI)) {
+ LastPos = Pos;
+ --Count;
+ }
+ if (Count == 0)
+ break;
+ }
+ return PathNameStr.substr(LastPos);
+}
+
+// Return the PGOFuncName. This function has some special handling when called
+// in LTO optimization. The following only applies when calling in LTO passes
+// (when \c InLTO is true): LTO's internalization privatizes many global linkage
+// symbols. This happens after value profile annotation, but those internal
+// linkage functions should not have a source prefix.
+// Additionally, for ThinLTO mode, exported internal functions are promoted
+// and renamed. We need to ensure that the original internal PGO name is
+// used when computing the GUID that is compared against the profiled GUIDs.
+// To differentiate compiler generated internal symbols from original ones,
+// PGOFuncName meta data are created and attached to the original internal
+// symbols in the value profile annotation step
+// (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta
+// data, its original linkage must be non-internal.
+std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) {
+ if (!InLTO) {
+ StringRef FileName(F.getParent()->getSourceFileName());
+ uint32_t StripLevel = StaticFuncFullModulePrefix ? 0 : (uint32_t)-1;
+ if (StripLevel < StaticFuncStripDirNamePrefix)
+ StripLevel = StaticFuncStripDirNamePrefix;
+ if (StripLevel)
+ FileName = stripDirPrefix(FileName, StripLevel);
+ return getPGOFuncName(F.getName(), F.getLinkage(), FileName, Version);
+ }
+
+ // In LTO mode (when InLTO is true), first check if there is a meta data.
+ if (MDNode *MD = getPGOFuncNameMetadata(F)) {
+ StringRef S = cast<MDString>(MD->getOperand(0))->getString();
+ return S.str();
+ }
+
+ // If there is no meta data, the function must be a global before the value
+ // profile annotation pass. Its current linkage may be internal if it is
+ // internalized in LTO mode.
+ return getPGOFuncName(F.getName(), GlobalValue::ExternalLinkage, "");
+}
+
+StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) {
+ if (FileName.empty())
+ return PGOFuncName;
+ // Drop the file name including ':'. See also getPGOFuncName.
+ if (PGOFuncName.startswith(FileName))
+ PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1);
+ return PGOFuncName;
+}
+
+// \p FuncName is the string used as profile lookup key for the function. A
+// symbol is created to hold the name. Return the legalized symbol name.
+std::string getPGOFuncNameVarName(StringRef FuncName,
+ GlobalValue::LinkageTypes Linkage) {
+ std::string VarName = getInstrProfNameVarPrefix();
+ VarName += FuncName;
+
+ if (!GlobalValue::isLocalLinkage(Linkage))
+ return VarName;
+
+ // Now fix up illegal chars in local VarName that may upset the assembler.
+ const char *InvalidChars = "-:<>/\"'";
+ size_t found = VarName.find_first_of(InvalidChars);
+ while (found != std::string::npos) {
+ VarName[found] = '_';
+ found = VarName.find_first_of(InvalidChars, found + 1);
+ }
+ return VarName;
+}
+
+GlobalVariable *createPGOFuncNameVar(Module &M,
+ GlobalValue::LinkageTypes Linkage,
+ StringRef PGOFuncName) {
+ // We generally want to match the function's linkage, but available_externally
+ // and extern_weak both have the wrong semantics, and anything that doesn't
+ // need to link across compilation units doesn't need to be visible at all.
+ if (Linkage == GlobalValue::ExternalWeakLinkage)
+ Linkage = GlobalValue::LinkOnceAnyLinkage;
+ else if (Linkage == GlobalValue::AvailableExternallyLinkage)
+ Linkage = GlobalValue::LinkOnceODRLinkage;
+ else if (Linkage == GlobalValue::InternalLinkage ||
+ Linkage == GlobalValue::ExternalLinkage)
+ Linkage = GlobalValue::PrivateLinkage;
+
+ auto *Value =
+ ConstantDataArray::getString(M.getContext(), PGOFuncName, false);
+ auto FuncNameVar =
+ new GlobalVariable(M, Value->getType(), true, Linkage, Value,
+ getPGOFuncNameVarName(PGOFuncName, Linkage));
+
+ // Hide the symbol so that we correctly get a copy for each executable.
+ if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage()))
+ FuncNameVar->setVisibility(GlobalValue::HiddenVisibility);
+
+ return FuncNameVar;
+}
+
+GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) {
+ return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), PGOFuncName);
+}
+
+Error InstrProfSymtab::create(Module &M, bool InLTO) {
+ for (Function &F : M) {
+ // Function may not have a name: like using asm("") to overwrite the name.
+ // Ignore in this case.
+ if (!F.hasName())
+ continue;
+ const std::string &PGOFuncName = getPGOFuncName(F, InLTO);
+ if (Error E = addFuncName(PGOFuncName))
+ return E;
+ MD5FuncMap.emplace_back(Function::getGUID(PGOFuncName), &F);
+ // In ThinLTO, local function may have been promoted to global and have
+ // suffix added to the function name. We need to add the stripped function
+ // name to the symbol table so that we can find a match from profile.
+ if (InLTO) {
+ auto pos = PGOFuncName.find('.');
+ if (pos != std::string::npos) {
+ const std::string &OtherFuncName = PGOFuncName.substr(0, pos);
+ if (Error E = addFuncName(OtherFuncName))
+ return E;
+ MD5FuncMap.emplace_back(Function::getGUID(OtherFuncName), &F);
+ }
+ }
+ }
+ Sorted = false;
+ finalizeSymtab();
+ return Error::success();
+}
+
+uint64_t InstrProfSymtab::getFunctionHashFromAddress(uint64_t Address) {
+ finalizeSymtab();
+ auto It = partition_point(AddrToMD5Map, [=](std::pair<uint64_t, uint64_t> A) {
+ return A.first < Address;
+ });
+ // Raw function pointer collected by value profiler may be from
+ // external functions that are not instrumented. They won't have
+ // mapping data to be used by the deserializer. Force the value to
+ // be 0 in this case.
+ if (It != AddrToMD5Map.end() && It->first == Address)
+ return (uint64_t)It->second;
+ return 0;
+}
+
+Error collectPGOFuncNameStrings(ArrayRef<std::string> NameStrs,
+ bool doCompression, std::string &Result) {
+ assert(!NameStrs.empty() && "No name data to emit");
+
+ uint8_t Header[16], *P = Header;
+ std::string UncompressedNameStrings =
+ join(NameStrs.begin(), NameStrs.end(), getInstrProfNameSeparator());
+
+ assert(StringRef(UncompressedNameStrings)
+ .count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) &&
+ "PGO name is invalid (contains separator token)");
+
+ unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P);
+ P += EncLen;
+
+ auto WriteStringToResult = [&](size_t CompressedLen, StringRef InputStr) {
+ EncLen = encodeULEB128(CompressedLen, P);
+ P += EncLen;
+ char *HeaderStr = reinterpret_cast<char *>(&Header[0]);
+ unsigned HeaderLen = P - &Header[0];
+ Result.append(HeaderStr, HeaderLen);
+ Result += InputStr;
+ return Error::success();
+ };
+
+ if (!doCompression) {
+ return WriteStringToResult(0, UncompressedNameStrings);
+ }
+
+ SmallString<128> CompressedNameStrings;
+ Error E = zlib::compress(StringRef(UncompressedNameStrings),
+ CompressedNameStrings, zlib::BestSizeCompression);
+ if (E) {
+ consumeError(std::move(E));
+ return make_error<InstrProfError>(instrprof_error::compress_failed);
+ }
+
+ return WriteStringToResult(CompressedNameStrings.size(),
+ CompressedNameStrings);
+}
+
+StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) {
+ auto *Arr = cast<ConstantDataArray>(NameVar->getInitializer());
+ StringRef NameStr =
+ Arr->isCString() ? Arr->getAsCString() : Arr->getAsString();
+ return NameStr;
+}
+
+Error collectPGOFuncNameStrings(ArrayRef<GlobalVariable *> NameVars,
+ std::string &Result, bool doCompression) {
+ std::vector<std::string> NameStrs;
+ for (auto *NameVar : NameVars) {
+ NameStrs.push_back(getPGOFuncNameVarInitializer(NameVar));
+ }
+ return collectPGOFuncNameStrings(
+ NameStrs, zlib::isAvailable() && doCompression, Result);
+}
+
+Error readPGOFuncNameStrings(StringRef NameStrings, InstrProfSymtab &Symtab) {
+ const uint8_t *P = NameStrings.bytes_begin();
+ const uint8_t *EndP = NameStrings.bytes_end();
+ while (P < EndP) {
+ uint32_t N;
+ uint64_t UncompressedSize = decodeULEB128(P, &N);
+ P += N;
+ uint64_t CompressedSize = decodeULEB128(P, &N);
+ P += N;
+ bool isCompressed = (CompressedSize != 0);
+ SmallString<128> UncompressedNameStrings;
+ StringRef NameStrings;
+ if (isCompressed) {
+ if (!llvm::zlib::isAvailable())
+ return make_error<InstrProfError>(instrprof_error::zlib_unavailable);
+
+ StringRef CompressedNameStrings(reinterpret_cast<const char *>(P),
+ CompressedSize);
+ if (Error E =
+ zlib::uncompress(CompressedNameStrings, UncompressedNameStrings,
+ UncompressedSize)) {
+ consumeError(std::move(E));
+ return make_error<InstrProfError>(instrprof_error::uncompress_failed);
+ }
+ P += CompressedSize;
+ NameStrings = StringRef(UncompressedNameStrings.data(),
+ UncompressedNameStrings.size());
+ } else {
+ NameStrings =
+ StringRef(reinterpret_cast<const char *>(P), UncompressedSize);
+ P += UncompressedSize;
+ }
+ // Now parse the name strings.
+ SmallVector<StringRef, 0> Names;
+ NameStrings.split(Names, getInstrProfNameSeparator());
+ for (StringRef &Name : Names)
+ if (Error E = Symtab.addFuncName(Name))
+ return E;
+
+ while (P < EndP && *P == 0)
+ P++;
+ }
+ return Error::success();
+}
+
+void InstrProfRecord::accumulateCounts(CountSumOrPercent &Sum) const {
+ uint64_t FuncSum = 0;
+ Sum.NumEntries += Counts.size();
+ for (size_t F = 0, E = Counts.size(); F < E; ++F)
+ FuncSum += Counts[F];
+ Sum.CountSum += FuncSum;
+
+ for (uint32_t VK = IPVK_First; VK <= IPVK_Last; ++VK) {
+ uint64_t KindSum = 0;
+ uint32_t NumValueSites = getNumValueSites(VK);
+ for (size_t I = 0; I < NumValueSites; ++I) {
+ uint32_t NV = getNumValueDataForSite(VK, I);
+ std::unique_ptr<InstrProfValueData[]> VD = getValueForSite(VK, I);
+ for (uint32_t V = 0; V < NV; V++)
+ KindSum += VD[V].Count;
+ }
+ Sum.ValueCounts[VK] += KindSum;
+ }
+}
+
+void InstrProfValueSiteRecord::overlap(InstrProfValueSiteRecord &Input,
+ uint32_t ValueKind,
+ OverlapStats &Overlap,
+ OverlapStats &FuncLevelOverlap) {
+ this->sortByTargetValues();
+ Input.sortByTargetValues();
+ double Score = 0.0f, FuncLevelScore = 0.0f;
+ auto I = ValueData.begin();
+ auto IE = ValueData.end();
+ auto J = Input.ValueData.begin();
+ auto JE = Input.ValueData.end();
+ while (I != IE && J != JE) {
+ if (I->Value == J->Value) {
+ Score += OverlapStats::score(I->Count, J->Count,
+ Overlap.Base.ValueCounts[ValueKind],
+ Overlap.Test.ValueCounts[ValueKind]);
+ FuncLevelScore += OverlapStats::score(
+ I->Count, J->Count, FuncLevelOverlap.Base.ValueCounts[ValueKind],
+ FuncLevelOverlap.Test.ValueCounts[ValueKind]);
+ ++I;
+ } else if (I->Value < J->Value) {
+ ++I;
+ continue;
+ }
+ ++J;
+ }
+ Overlap.Overlap.ValueCounts[ValueKind] += Score;
+ FuncLevelOverlap.Overlap.ValueCounts[ValueKind] += FuncLevelScore;
+}
+
+// Return false on mismatch.
+void InstrProfRecord::overlapValueProfData(uint32_t ValueKind,
+ InstrProfRecord &Other,
+ OverlapStats &Overlap,
+ OverlapStats &FuncLevelOverlap) {
+ uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
+ assert(ThisNumValueSites == Other.getNumValueSites(ValueKind));
+ if (!ThisNumValueSites)
+ return;
+
+ std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
+ getOrCreateValueSitesForKind(ValueKind);
+ MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
+ Other.getValueSitesForKind(ValueKind);
+ for (uint32_t I = 0; I < ThisNumValueSites; I++)
+ ThisSiteRecords[I].overlap(OtherSiteRecords[I], ValueKind, Overlap,
+ FuncLevelOverlap);
+}
+
+void InstrProfRecord::overlap(InstrProfRecord &Other, OverlapStats &Overlap,
+ OverlapStats &FuncLevelOverlap,
+ uint64_t ValueCutoff) {
+ // FuncLevel CountSum for other should already computed and nonzero.
+ assert(FuncLevelOverlap.Test.CountSum >= 1.0f);
+ accumulateCounts(FuncLevelOverlap.Base);
+ bool Mismatch = (Counts.size() != Other.Counts.size());
+
+ // Check if the value profiles mismatch.
+ if (!Mismatch) {
+ for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) {
+ uint32_t ThisNumValueSites = getNumValueSites(Kind);
+ uint32_t OtherNumValueSites = Other.getNumValueSites(Kind);
+ if (ThisNumValueSites != OtherNumValueSites) {
+ Mismatch = true;
+ break;
+ }
+ }
+ }
+ if (Mismatch) {
+ Overlap.addOneMismatch(FuncLevelOverlap.Test);
+ return;
+ }
+
+ // Compute overlap for value counts.
+ for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
+ overlapValueProfData(Kind, Other, Overlap, FuncLevelOverlap);
+
+ double Score = 0.0;
+ uint64_t MaxCount = 0;
+ // Compute overlap for edge counts.
+ for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
+ Score += OverlapStats::score(Counts[I], Other.Counts[I],
+ Overlap.Base.CountSum, Overlap.Test.CountSum);
+ MaxCount = std::max(Other.Counts[I], MaxCount);
+ }
+ Overlap.Overlap.CountSum += Score;
+ Overlap.Overlap.NumEntries += 1;
+
+ if (MaxCount >= ValueCutoff) {
+ double FuncScore = 0.0;
+ for (size_t I = 0, E = Other.Counts.size(); I < E; ++I)
+ FuncScore += OverlapStats::score(Counts[I], Other.Counts[I],
+ FuncLevelOverlap.Base.CountSum,
+ FuncLevelOverlap.Test.CountSum);
+ FuncLevelOverlap.Overlap.CountSum = FuncScore;
+ FuncLevelOverlap.Overlap.NumEntries = Other.Counts.size();
+ FuncLevelOverlap.Valid = true;
+ }
+}
+
+void InstrProfValueSiteRecord::merge(InstrProfValueSiteRecord &Input,
+ uint64_t Weight,
+ function_ref<void(instrprof_error)> Warn) {
+ this->sortByTargetValues();
+ Input.sortByTargetValues();
+ auto I = ValueData.begin();
+ auto IE = ValueData.end();
+ for (auto J = Input.ValueData.begin(), JE = Input.ValueData.end(); J != JE;
+ ++J) {
+ while (I != IE && I->Value < J->Value)
+ ++I;
+ if (I != IE && I->Value == J->Value) {
+ bool Overflowed;
+ I->Count = SaturatingMultiplyAdd(J->Count, Weight, I->Count, &Overflowed);
+ if (Overflowed)
+ Warn(instrprof_error::counter_overflow);
+ ++I;
+ continue;
+ }
+ ValueData.insert(I, *J);
+ }
+}
+
+void InstrProfValueSiteRecord::scale(uint64_t Weight,
+ function_ref<void(instrprof_error)> Warn) {
+ for (auto I = ValueData.begin(), IE = ValueData.end(); I != IE; ++I) {
+ bool Overflowed;
+ I->Count = SaturatingMultiply(I->Count, Weight, &Overflowed);
+ if (Overflowed)
+ Warn(instrprof_error::counter_overflow);
+ }
+}
+
+// Merge Value Profile data from Src record to this record for ValueKind.
+// Scale merged value counts by \p Weight.
+void InstrProfRecord::mergeValueProfData(
+ uint32_t ValueKind, InstrProfRecord &Src, uint64_t Weight,
+ function_ref<void(instrprof_error)> Warn) {
+ uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
+ uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind);
+ if (ThisNumValueSites != OtherNumValueSites) {
+ Warn(instrprof_error::value_site_count_mismatch);
+ return;
+ }
+ if (!ThisNumValueSites)
+ return;
+ std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
+ getOrCreateValueSitesForKind(ValueKind);
+ MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
+ Src.getValueSitesForKind(ValueKind);
+ for (uint32_t I = 0; I < ThisNumValueSites; I++)
+ ThisSiteRecords[I].merge(OtherSiteRecords[I], Weight, Warn);
+}
+
+void InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight,
+ function_ref<void(instrprof_error)> Warn) {
+ // If the number of counters doesn't match we either have bad data
+ // or a hash collision.
+ if (Counts.size() != Other.Counts.size()) {
+ Warn(instrprof_error::count_mismatch);
+ return;
+ }
+
+ for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
+ bool Overflowed;
+ Counts[I] =
+ SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed);
+ if (Overflowed)
+ Warn(instrprof_error::counter_overflow);
+ }
+
+ for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
+ mergeValueProfData(Kind, Other, Weight, Warn);
+}
+
+void InstrProfRecord::scaleValueProfData(
+ uint32_t ValueKind, uint64_t Weight,
+ function_ref<void(instrprof_error)> Warn) {
+ for (auto &R : getValueSitesForKind(ValueKind))
+ R.scale(Weight, Warn);
+}
+
+void InstrProfRecord::scale(uint64_t Weight,
+ function_ref<void(instrprof_error)> Warn) {
+ for (auto &Count : this->Counts) {
+ bool Overflowed;
+ Count = SaturatingMultiply(Count, Weight, &Overflowed);
+ if (Overflowed)
+ Warn(instrprof_error::counter_overflow);
+ }
+ for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
+ scaleValueProfData(Kind, Weight, Warn);
+}
+
+// Map indirect call target name hash to name string.
+uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind,
+ InstrProfSymtab *SymTab) {
+ if (!SymTab)
+ return Value;
+
+ if (ValueKind == IPVK_IndirectCallTarget)
+ return SymTab->getFunctionHashFromAddress(Value);
+
+ return Value;
+}
+
+void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site,
+ InstrProfValueData *VData, uint32_t N,
+ InstrProfSymtab *ValueMap) {
+ for (uint32_t I = 0; I < N; I++) {
+ VData[I].Value = remapValue(VData[I].Value, ValueKind, ValueMap);
+ }
+ std::vector<InstrProfValueSiteRecord> &ValueSites =
+ getOrCreateValueSitesForKind(ValueKind);
+ if (N == 0)
+ ValueSites.emplace_back();
+ else
+ ValueSites.emplace_back(VData, VData + N);
+}
+
+#define INSTR_PROF_COMMON_API_IMPL
+#include "llvm/ProfileData/InstrProfData.inc"
+
+/*!
+ * ValueProfRecordClosure Interface implementation for InstrProfRecord
+ * class. These C wrappers are used as adaptors so that C++ code can be
+ * invoked as callbacks.
+ */
+uint32_t getNumValueKindsInstrProf(const void *Record) {
+ return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds();
+}
+
+uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) {
+ return reinterpret_cast<const InstrProfRecord *>(Record)
+ ->getNumValueSites(VKind);
+}
+
+uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) {
+ return reinterpret_cast<const InstrProfRecord *>(Record)
+ ->getNumValueData(VKind);
+}
+
+uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK,
+ uint32_t S) {
+ return reinterpret_cast<const InstrProfRecord *>(R)
+ ->getNumValueDataForSite(VK, S);
+}
+
+void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst,
+ uint32_t K, uint32_t S) {
+ reinterpret_cast<const InstrProfRecord *>(R)->getValueForSite(Dst, K, S);
+}
+
+ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) {
+ ValueProfData *VD =
+ (ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData());
+ memset(VD, 0, TotalSizeInBytes);
+ return VD;
+}
+
+static ValueProfRecordClosure InstrProfRecordClosure = {
+ nullptr,
+ getNumValueKindsInstrProf,
+ getNumValueSitesInstrProf,
+ getNumValueDataInstrProf,
+ getNumValueDataForSiteInstrProf,
+ nullptr,
+ getValueForSiteInstrProf,
+ allocValueProfDataInstrProf};
+
+// Wrapper implementation using the closure mechanism.
+uint32_t ValueProfData::getSize(const InstrProfRecord &Record) {
+ auto Closure = InstrProfRecordClosure;
+ Closure.Record = &Record;
+ return getValueProfDataSize(&Closure);
+}
+
+// Wrapper implementation using the closure mechanism.
+std::unique_ptr<ValueProfData>
+ValueProfData::serializeFrom(const InstrProfRecord &Record) {
+ InstrProfRecordClosure.Record = &Record;
+
+ std::unique_ptr<ValueProfData> VPD(
+ serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr));
+ return VPD;
+}
+
+void ValueProfRecord::deserializeTo(InstrProfRecord &Record,
+ InstrProfSymtab *SymTab) {
+ Record.reserveSites(Kind, NumValueSites);
+
+ InstrProfValueData *ValueData = getValueProfRecordValueData(this);
+ for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) {
+ uint8_t ValueDataCount = this->SiteCountArray[VSite];
+ Record.addValueData(Kind, VSite, ValueData, ValueDataCount, SymTab);
+ ValueData += ValueDataCount;
+ }
+}
+
+// For writing/serializing, Old is the host endianness, and New is
+// byte order intended on disk. For Reading/deserialization, Old
+// is the on-disk source endianness, and New is the host endianness.
+void ValueProfRecord::swapBytes(support::endianness Old,
+ support::endianness New) {
+ using namespace support;
+
+ if (Old == New)
+ return;
+
+ if (getHostEndianness() != Old) {
+ sys::swapByteOrder<uint32_t>(NumValueSites);
+ sys::swapByteOrder<uint32_t>(Kind);
+ }
+ uint32_t ND = getValueProfRecordNumValueData(this);
+ InstrProfValueData *VD = getValueProfRecordValueData(this);
+
+ // No need to swap byte array: SiteCountArrray.
+ for (uint32_t I = 0; I < ND; I++) {
+ sys::swapByteOrder<uint64_t>(VD[I].Value);
+ sys::swapByteOrder<uint64_t>(VD[I].Count);
+ }
+ if (getHostEndianness() == Old) {
+ sys::swapByteOrder<uint32_t>(NumValueSites);
+ sys::swapByteOrder<uint32_t>(Kind);
+ }
+}
+
+void ValueProfData::deserializeTo(InstrProfRecord &Record,
+ InstrProfSymtab *SymTab) {
+ if (NumValueKinds == 0)
+ return;
+
+ ValueProfRecord *VR = getFirstValueProfRecord(this);
+ for (uint32_t K = 0; K < NumValueKinds; K++) {
+ VR->deserializeTo(Record, SymTab);
+ VR = getValueProfRecordNext(VR);
+ }
+}
+
+template <class T>
+static T swapToHostOrder(const unsigned char *&D, support::endianness Orig) {
+ using namespace support;
+
+ if (Orig == little)
+ return endian::readNext<T, little, unaligned>(D);
+ else
+ return endian::readNext<T, big, unaligned>(D);
+}
+
+static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) {
+ return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize))
+ ValueProfData());
+}
+
+Error ValueProfData::checkIntegrity() {
+ if (NumValueKinds > IPVK_Last + 1)
+ return make_error<InstrProfError>(instrprof_error::malformed);
+ // Total size needs to be mulltiple of quadword size.
+ if (TotalSize % sizeof(uint64_t))
+ return make_error<InstrProfError>(instrprof_error::malformed);
+
+ ValueProfRecord *VR = getFirstValueProfRecord(this);
+ for (uint32_t K = 0; K < this->NumValueKinds; K++) {
+ if (VR->Kind > IPVK_Last)
+ return make_error<InstrProfError>(instrprof_error::malformed);
+ VR = getValueProfRecordNext(VR);
+ if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize)
+ return make_error<InstrProfError>(instrprof_error::malformed);
+ }
+ return Error::success();
+}
+
+Expected<std::unique_ptr<ValueProfData>>
+ValueProfData::getValueProfData(const unsigned char *D,
+ const unsigned char *const BufferEnd,
+ support::endianness Endianness) {
+ using namespace support;
+
+ if (D + sizeof(ValueProfData) > BufferEnd)
+ return make_error<InstrProfError>(instrprof_error::truncated);
+
+ const unsigned char *Header = D;
+ uint32_t TotalSize = swapToHostOrder<uint32_t>(Header, Endianness);
+ if (D + TotalSize > BufferEnd)
+ return make_error<InstrProfError>(instrprof_error::too_large);
+
+ std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize);
+ memcpy(VPD.get(), D, TotalSize);
+ // Byte swap.
+ VPD->swapBytesToHost(Endianness);
+
+ Error E = VPD->checkIntegrity();
+ if (E)
+ return std::move(E);
+
+ return std::move(VPD);
+}
+
+void ValueProfData::swapBytesToHost(support::endianness Endianness) {
+ using namespace support;
+
+ if (Endianness == getHostEndianness())
+ return;
+
+ sys::swapByteOrder<uint32_t>(TotalSize);
+ sys::swapByteOrder<uint32_t>(NumValueKinds);
+
+ ValueProfRecord *VR = getFirstValueProfRecord(this);
+ for (uint32_t K = 0; K < NumValueKinds; K++) {
+ VR->swapBytes(Endianness, getHostEndianness());
+ VR = getValueProfRecordNext(VR);
+ }
+}
+
+void ValueProfData::swapBytesFromHost(support::endianness Endianness) {
+ using namespace support;
+
+ if (Endianness == getHostEndianness())
+ return;
+
+ ValueProfRecord *VR = getFirstValueProfRecord(this);
+ for (uint32_t K = 0; K < NumValueKinds; K++) {
+ ValueProfRecord *NVR = getValueProfRecordNext(VR);
+ VR->swapBytes(getHostEndianness(), Endianness);
+ VR = NVR;
+ }
+ sys::swapByteOrder<uint32_t>(TotalSize);
+ sys::swapByteOrder<uint32_t>(NumValueKinds);
+}
+
+void annotateValueSite(Module &M, Instruction &Inst,
+ const InstrProfRecord &InstrProfR,
+ InstrProfValueKind ValueKind, uint32_t SiteIdx,
+ uint32_t MaxMDCount) {
+ uint32_t NV = InstrProfR.getNumValueDataForSite(ValueKind, SiteIdx);
+ if (!NV)
+ return;
+
+ uint64_t Sum = 0;
+ std::unique_ptr<InstrProfValueData[]> VD =
+ InstrProfR.getValueForSite(ValueKind, SiteIdx, &Sum);
+
+ ArrayRef<InstrProfValueData> VDs(VD.get(), NV);
+ annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount);
+}
+
+void annotateValueSite(Module &M, Instruction &Inst,
+ ArrayRef<InstrProfValueData> VDs,
+ uint64_t Sum, InstrProfValueKind ValueKind,
+ uint32_t MaxMDCount) {
+ LLVMContext &Ctx = M.getContext();
+ MDBuilder MDHelper(Ctx);
+ SmallVector<Metadata *, 3> Vals;
+ // Tag
+ Vals.push_back(MDHelper.createString("VP"));
+ // Value Kind
+ Vals.push_back(MDHelper.createConstant(
+ ConstantInt::get(Type::getInt32Ty(Ctx), ValueKind)));
+ // Total Count
+ Vals.push_back(
+ MDHelper.createConstant(ConstantInt::get(Type::getInt64Ty(Ctx), Sum)));
+
+ // Value Profile Data
+ uint32_t MDCount = MaxMDCount;
+ for (auto &VD : VDs) {
+ Vals.push_back(MDHelper.createConstant(
+ ConstantInt::get(Type::getInt64Ty(Ctx), VD.Value)));
+ Vals.push_back(MDHelper.createConstant(
+ ConstantInt::get(Type::getInt64Ty(Ctx), VD.Count)));
+ if (--MDCount == 0)
+ break;
+ }
+ Inst.setMetadata(LLVMContext::MD_prof, MDNode::get(Ctx, Vals));
+}
+
+bool getValueProfDataFromInst(const Instruction &Inst,
+ InstrProfValueKind ValueKind,
+ uint32_t MaxNumValueData,
+ InstrProfValueData ValueData[],
+ uint32_t &ActualNumValueData, uint64_t &TotalC) {
+ MDNode *MD = Inst.getMetadata(LLVMContext::MD_prof);
+ if (!MD)
+ return false;
+
+ unsigned NOps = MD->getNumOperands();
+
+ if (NOps < 5)
+ return false;
+
+ // Operand 0 is a string tag "VP":
+ MDString *Tag = cast<MDString>(MD->getOperand(0));
+ if (!Tag)
+ return false;
+
+ if (!Tag->getString().equals("VP"))
+ return false;
+
+ // Now check kind:
+ ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
+ if (!KindInt)
+ return false;
+ if (KindInt->getZExtValue() != ValueKind)
+ return false;
+
+ // Get total count
+ ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
+ if (!TotalCInt)
+ return false;
+ TotalC = TotalCInt->getZExtValue();
+
+ ActualNumValueData = 0;
+
+ for (unsigned I = 3; I < NOps; I += 2) {
+ if (ActualNumValueData >= MaxNumValueData)
+ break;
+ ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD->getOperand(I));
+ ConstantInt *Count =
+ mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1));
+ if (!Value || !Count)
+ return false;
+ ValueData[ActualNumValueData].Value = Value->getZExtValue();
+ ValueData[ActualNumValueData].Count = Count->getZExtValue();
+ ActualNumValueData++;
+ }
+ return true;
+}
+
+MDNode *getPGOFuncNameMetadata(const Function &F) {
+ return F.getMetadata(getPGOFuncNameMetadataName());
+}
+
+void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName) {
+ // Only for internal linkage functions.
+ if (PGOFuncName == F.getName())
+ return;
+ // Don't create duplicated meta-data.
+ if (getPGOFuncNameMetadata(F))
+ return;
+ LLVMContext &C = F.getContext();
+ MDNode *N = MDNode::get(C, MDString::get(C, PGOFuncName));
+ F.setMetadata(getPGOFuncNameMetadataName(), N);
+}
+
+bool needsComdatForCounter(const Function &F, const Module &M) {
+ if (F.hasComdat())
+ return true;
+
+ if (!Triple(M.getTargetTriple()).supportsCOMDAT())
+ return false;
+
+ // See createPGOFuncNameVar for more details. To avoid link errors, profile
+ // counters for function with available_externally linkage needs to be changed
+ // to linkonce linkage. On ELF based systems, this leads to weak symbols to be
+ // created. Without using comdat, duplicate entries won't be removed by the
+ // linker leading to increased data segement size and raw profile size. Even
+ // worse, since the referenced counter from profile per-function data object
+ // will be resolved to the common strong definition, the profile counts for
+ // available_externally functions will end up being duplicated in raw profile
+ // data. This can result in distorted profile as the counts of those dups
+ // will be accumulated by the profile merger.
+ GlobalValue::LinkageTypes Linkage = F.getLinkage();
+ if (Linkage != GlobalValue::ExternalWeakLinkage &&
+ Linkage != GlobalValue::AvailableExternallyLinkage)
+ return false;
+
+ return true;
+}
+
+// Check if INSTR_PROF_RAW_VERSION_VAR is defined.
+bool isIRPGOFlagSet(const Module *M) {
+ auto IRInstrVar =
+ M->getNamedGlobal(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR));
+ if (!IRInstrVar || IRInstrVar->isDeclaration() ||
+ IRInstrVar->hasLocalLinkage())
+ return false;
+
+ // Check if the flag is set.
+ if (!IRInstrVar->hasInitializer())
+ return false;
+
+ auto *InitVal = dyn_cast_or_null<ConstantInt>(IRInstrVar->getInitializer());
+ if (!InitVal)
+ return false;
+ return (InitVal->getZExtValue() & VARIANT_MASK_IR_PROF) != 0;
+}
+
+// Check if we can safely rename this Comdat function.
+bool canRenameComdatFunc(const Function &F, bool CheckAddressTaken) {
+ if (F.getName().empty())
+ return false;
+ if (!needsComdatForCounter(F, *(F.getParent())))
+ return false;
+ // Unsafe to rename the address-taken function (which can be used in
+ // function comparison).
+ if (CheckAddressTaken && F.hasAddressTaken())
+ return false;
+ // Only safe to do if this function may be discarded if it is not used
+ // in the compilation unit.
+ if (!GlobalValue::isDiscardableIfUnused(F.getLinkage()))
+ return false;
+
+ // For AvailableExternallyLinkage functions.
+ if (!F.hasComdat()) {
+ assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage);
+ return true;
+ }
+ return true;
+}
+
+// Parse the value profile options.
+void getMemOPSizeRangeFromOption(StringRef MemOPSizeRange, int64_t &RangeStart,
+ int64_t &RangeLast) {
+ static const int64_t DefaultMemOPSizeRangeStart = 0;
+ static const int64_t DefaultMemOPSizeRangeLast = 8;
+ RangeStart = DefaultMemOPSizeRangeStart;
+ RangeLast = DefaultMemOPSizeRangeLast;
+
+ if (!MemOPSizeRange.empty()) {
+ auto Pos = MemOPSizeRange.find(':');
+ if (Pos != std::string::npos) {
+ if (Pos > 0)
+ MemOPSizeRange.substr(0, Pos).getAsInteger(10, RangeStart);
+ if (Pos < MemOPSizeRange.size() - 1)
+ MemOPSizeRange.substr(Pos + 1).getAsInteger(10, RangeLast);
+ } else
+ MemOPSizeRange.getAsInteger(10, RangeLast);
+ }
+ assert(RangeLast >= RangeStart);
+}
+
+// Create a COMDAT variable INSTR_PROF_RAW_VERSION_VAR to make the runtime
+// aware this is an ir_level profile so it can set the version flag.
+void createIRLevelProfileFlagVar(Module &M, bool IsCS) {
+ const StringRef VarName(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR));
+ Type *IntTy64 = Type::getInt64Ty(M.getContext());
+ uint64_t ProfileVersion = (INSTR_PROF_RAW_VERSION | VARIANT_MASK_IR_PROF);
+ if (IsCS)
+ ProfileVersion |= VARIANT_MASK_CSIR_PROF;
+ auto IRLevelVersionVariable = new GlobalVariable(
+ M, IntTy64, true, GlobalValue::WeakAnyLinkage,
+ Constant::getIntegerValue(IntTy64, APInt(64, ProfileVersion)), VarName);
+ IRLevelVersionVariable->setVisibility(GlobalValue::DefaultVisibility);
+ Triple TT(M.getTargetTriple());
+ if (TT.supportsCOMDAT()) {
+ IRLevelVersionVariable->setLinkage(GlobalValue::ExternalLinkage);
+ IRLevelVersionVariable->setComdat(M.getOrInsertComdat(VarName));
+ }
+}
+
+// Create the variable for the profile file name.
+void createProfileFileNameVar(Module &M, StringRef InstrProfileOutput) {
+ if (InstrProfileOutput.empty())
+ return;
+ Constant *ProfileNameConst =
+ ConstantDataArray::getString(M.getContext(), InstrProfileOutput, true);
+ GlobalVariable *ProfileNameVar = new GlobalVariable(
+ M, ProfileNameConst->getType(), true, GlobalValue::WeakAnyLinkage,
+ ProfileNameConst, INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR));
+ Triple TT(M.getTargetTriple());
+ if (TT.supportsCOMDAT()) {
+ ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage);
+ ProfileNameVar->setComdat(M.getOrInsertComdat(
+ StringRef(INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR))));
+ }
+}
+
+Error OverlapStats::accumulateCounts(const std::string &BaseFilename,
+ const std::string &TestFilename,
+ bool IsCS) {
+ auto getProfileSum = [IsCS](const std::string &Filename,
+ CountSumOrPercent &Sum) -> Error {
+ auto ReaderOrErr = InstrProfReader::create(Filename);
+ if (Error E = ReaderOrErr.takeError()) {
+ return E;
+ }
+ auto Reader = std::move(ReaderOrErr.get());
+ Reader->accumulateCounts(Sum, IsCS);
+ return Error::success();
+ };
+ auto Ret = getProfileSum(BaseFilename, Base);
+ if (Ret)
+ return Ret;
+ Ret = getProfileSum(TestFilename, Test);
+ if (Ret)
+ return Ret;
+ this->BaseFilename = &BaseFilename;
+ this->TestFilename = &TestFilename;
+ Valid = true;
+ return Error::success();
+}
+
+void OverlapStats::addOneMismatch(const CountSumOrPercent &MismatchFunc) {
+ Mismatch.NumEntries += 1;
+ Mismatch.CountSum += MismatchFunc.CountSum / Test.CountSum;
+ for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
+ if (Test.ValueCounts[I] >= 1.0f)
+ Mismatch.ValueCounts[I] +=
+ MismatchFunc.ValueCounts[I] / Test.ValueCounts[I];
+ }
+}
+
+void OverlapStats::addOneUnique(const CountSumOrPercent &UniqueFunc) {
+ Unique.NumEntries += 1;
+ Unique.CountSum += UniqueFunc.CountSum / Test.CountSum;
+ for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
+ if (Test.ValueCounts[I] >= 1.0f)
+ Unique.ValueCounts[I] += UniqueFunc.ValueCounts[I] / Test.ValueCounts[I];
+ }
+}
+
+void OverlapStats::dump(raw_fd_ostream &OS) const {
+ if (!Valid)
+ return;
+
+ const char *EntryName =
+ (Level == ProgramLevel ? "functions" : "edge counters");
+ if (Level == ProgramLevel) {
+ OS << "Profile overlap infomation for base_profile: " << *BaseFilename
+ << " and test_profile: " << *TestFilename << "\nProgram level:\n";
+ } else {
+ OS << "Function level:\n"
+ << " Function: " << FuncName << " (Hash=" << FuncHash << ")\n";
+ }
+
+ OS << " # of " << EntryName << " overlap: " << Overlap.NumEntries << "\n";
+ if (Mismatch.NumEntries)
+ OS << " # of " << EntryName << " mismatch: " << Mismatch.NumEntries
+ << "\n";
+ if (Unique.NumEntries)
+ OS << " # of " << EntryName
+ << " only in test_profile: " << Unique.NumEntries << "\n";
+
+ OS << " Edge profile overlap: " << format("%.3f%%", Overlap.CountSum * 100)
+ << "\n";
+ if (Mismatch.NumEntries)
+ OS << " Mismatched count percentage (Edge): "
+ << format("%.3f%%", Mismatch.CountSum * 100) << "\n";
+ if (Unique.NumEntries)
+ OS << " Percentage of Edge profile only in test_profile: "
+ << format("%.3f%%", Unique.CountSum * 100) << "\n";
+ OS << " Edge profile base count sum: " << format("%.0f", Base.CountSum)
+ << "\n"
+ << " Edge profile test count sum: " << format("%.0f", Test.CountSum)
+ << "\n";
+
+ for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
+ if (Base.ValueCounts[I] < 1.0f && Test.ValueCounts[I] < 1.0f)
+ continue;
+ char ProfileKindName[20];
+ switch (I) {
+ case IPVK_IndirectCallTarget:
+ strncpy(ProfileKindName, "IndirectCall", 19);
+ break;
+ case IPVK_MemOPSize:
+ strncpy(ProfileKindName, "MemOP", 19);
+ break;
+ default:
+ snprintf(ProfileKindName, 19, "VP[%d]", I);
+ break;
+ }
+ OS << " " << ProfileKindName
+ << " profile overlap: " << format("%.3f%%", Overlap.ValueCounts[I] * 100)
+ << "\n";
+ if (Mismatch.NumEntries)
+ OS << " Mismatched count percentage (" << ProfileKindName
+ << "): " << format("%.3f%%", Mismatch.ValueCounts[I] * 100) << "\n";
+ if (Unique.NumEntries)
+ OS << " Percentage of " << ProfileKindName
+ << " profile only in test_profile: "
+ << format("%.3f%%", Unique.ValueCounts[I] * 100) << "\n";
+ OS << " " << ProfileKindName
+ << " profile base count sum: " << format("%.0f", Base.ValueCounts[I])
+ << "\n"
+ << " " << ProfileKindName
+ << " profile test count sum: " << format("%.0f", Test.ValueCounts[I])
+ << "\n";
+ }
+}
+
+} // end namespace llvm
diff --git a/llvm/lib/ProfileData/InstrProfReader.cpp b/llvm/lib/ProfileData/InstrProfReader.cpp
new file mode 100644
index 000000000000..23d078a3ddee
--- /dev/null
+++ b/llvm/lib/ProfileData/InstrProfReader.cpp
@@ -0,0 +1,922 @@
+//===- InstrProfReader.cpp - Instrumented profiling reader ----------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains support for reading profiling data for clang's
+// instrumentation based PGO and coverage.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ProfileData/InstrProfReader.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/IR/ProfileSummary.h"
+#include "llvm/ProfileData/InstrProf.h"
+#include "llvm/ProfileData/ProfileCommon.h"
+#include "llvm/Support/Endian.h"
+#include "llvm/Support/Error.h"
+#include "llvm/Support/ErrorOr.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/SymbolRemappingReader.h"
+#include "llvm/Support/SwapByteOrder.h"
+#include <algorithm>
+#include <cctype>
+#include <cstddef>
+#include <cstdint>
+#include <limits>
+#include <memory>
+#include <system_error>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+static Expected<std::unique_ptr<MemoryBuffer>>
+setupMemoryBuffer(const Twine &Path) {
+ ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
+ MemoryBuffer::getFileOrSTDIN(Path);
+ if (std::error_code EC = BufferOrErr.getError())
+ return errorCodeToError(EC);
+ return std::move(BufferOrErr.get());
+}
+
+static Error initializeReader(InstrProfReader &Reader) {
+ return Reader.readHeader();
+}
+
+Expected<std::unique_ptr<InstrProfReader>>
+InstrProfReader::create(const Twine &Path) {
+ // Set up the buffer to read.
+ auto BufferOrError = setupMemoryBuffer(Path);
+ if (Error E = BufferOrError.takeError())
+ return std::move(E);
+ return InstrProfReader::create(std::move(BufferOrError.get()));
+}
+
+Expected<std::unique_ptr<InstrProfReader>>
+InstrProfReader::create(std::unique_ptr<MemoryBuffer> Buffer) {
+ // Sanity check the buffer.
+ if (uint64_t(Buffer->getBufferSize()) > std::numeric_limits<uint64_t>::max())
+ return make_error<InstrProfError>(instrprof_error::too_large);
+
+ if (Buffer->getBufferSize() == 0)
+ return make_error<InstrProfError>(instrprof_error::empty_raw_profile);
+
+ std::unique_ptr<InstrProfReader> Result;
+ // Create the reader.
+ if (IndexedInstrProfReader::hasFormat(*Buffer))
+ Result.reset(new IndexedInstrProfReader(std::move(Buffer)));
+ else if (RawInstrProfReader64::hasFormat(*Buffer))
+ Result.reset(new RawInstrProfReader64(std::move(Buffer)));
+ else if (RawInstrProfReader32::hasFormat(*Buffer))
+ Result.reset(new RawInstrProfReader32(std::move(Buffer)));
+ else if (TextInstrProfReader::hasFormat(*Buffer))
+ Result.reset(new TextInstrProfReader(std::move(Buffer)));
+ else
+ return make_error<InstrProfError>(instrprof_error::unrecognized_format);
+
+ // Initialize the reader and return the result.
+ if (Error E = initializeReader(*Result))
+ return std::move(E);
+
+ return std::move(Result);
+}
+
+Expected<std::unique_ptr<IndexedInstrProfReader>>
+IndexedInstrProfReader::create(const Twine &Path, const Twine &RemappingPath) {
+ // Set up the buffer to read.
+ auto BufferOrError = setupMemoryBuffer(Path);
+ if (Error E = BufferOrError.takeError())
+ return std::move(E);
+
+ // Set up the remapping buffer if requested.
+ std::unique_ptr<MemoryBuffer> RemappingBuffer;
+ std::string RemappingPathStr = RemappingPath.str();
+ if (!RemappingPathStr.empty()) {
+ auto RemappingBufferOrError = setupMemoryBuffer(RemappingPathStr);
+ if (Error E = RemappingBufferOrError.takeError())
+ return std::move(E);
+ RemappingBuffer = std::move(RemappingBufferOrError.get());
+ }
+
+ return IndexedInstrProfReader::create(std::move(BufferOrError.get()),
+ std::move(RemappingBuffer));
+}
+
+Expected<std::unique_ptr<IndexedInstrProfReader>>
+IndexedInstrProfReader::create(std::unique_ptr<MemoryBuffer> Buffer,
+ std::unique_ptr<MemoryBuffer> RemappingBuffer) {
+ // Sanity check the buffer.
+ if (uint64_t(Buffer->getBufferSize()) > std::numeric_limits<uint64_t>::max())
+ return make_error<InstrProfError>(instrprof_error::too_large);
+
+ // Create the reader.
+ if (!IndexedInstrProfReader::hasFormat(*Buffer))
+ return make_error<InstrProfError>(instrprof_error::bad_magic);
+ auto Result = std::make_unique<IndexedInstrProfReader>(
+ std::move(Buffer), std::move(RemappingBuffer));
+
+ // Initialize the reader and return the result.
+ if (Error E = initializeReader(*Result))
+ return std::move(E);
+
+ return std::move(Result);
+}
+
+void InstrProfIterator::Increment() {
+ if (auto E = Reader->readNextRecord(Record)) {
+ // Handle errors in the reader.
+ InstrProfError::take(std::move(E));
+ *this = InstrProfIterator();
+ }
+}
+
+bool TextInstrProfReader::hasFormat(const MemoryBuffer &Buffer) {
+ // Verify that this really looks like plain ASCII text by checking a
+ // 'reasonable' number of characters (up to profile magic size).
+ size_t count = std::min(Buffer.getBufferSize(), sizeof(uint64_t));
+ StringRef buffer = Buffer.getBufferStart();
+ return count == 0 ||
+ std::all_of(buffer.begin(), buffer.begin() + count,
+ [](char c) { return isPrint(c) || ::isspace(c); });
+}
+
+// Read the profile variant flag from the header: ":FE" means this is a FE
+// generated profile. ":IR" means this is an IR level profile. Other strings
+// with a leading ':' will be reported an error format.
+Error TextInstrProfReader::readHeader() {
+ Symtab.reset(new InstrProfSymtab());
+ bool IsIRInstr = false;
+ if (!Line->startswith(":")) {
+ IsIRLevelProfile = false;
+ return success();
+ }
+ StringRef Str = (Line)->substr(1);
+ if (Str.equals_lower("ir"))
+ IsIRInstr = true;
+ else if (Str.equals_lower("fe"))
+ IsIRInstr = false;
+ else if (Str.equals_lower("csir")) {
+ IsIRInstr = true;
+ HasCSIRLevelProfile = true;
+ } else
+ return error(instrprof_error::bad_header);
+
+ ++Line;
+ IsIRLevelProfile = IsIRInstr;
+ return success();
+}
+
+Error
+TextInstrProfReader::readValueProfileData(InstrProfRecord &Record) {
+
+#define CHECK_LINE_END(Line) \
+ if (Line.is_at_end()) \
+ return error(instrprof_error::truncated);
+#define READ_NUM(Str, Dst) \
+ if ((Str).getAsInteger(10, (Dst))) \
+ return error(instrprof_error::malformed);
+#define VP_READ_ADVANCE(Val) \
+ CHECK_LINE_END(Line); \
+ uint32_t Val; \
+ READ_NUM((*Line), (Val)); \
+ Line++;
+
+ if (Line.is_at_end())
+ return success();
+
+ uint32_t NumValueKinds;
+ if (Line->getAsInteger(10, NumValueKinds)) {
+ // No value profile data
+ return success();
+ }
+ if (NumValueKinds == 0 || NumValueKinds > IPVK_Last + 1)
+ return error(instrprof_error::malformed);
+ Line++;
+
+ for (uint32_t VK = 0; VK < NumValueKinds; VK++) {
+ VP_READ_ADVANCE(ValueKind);
+ if (ValueKind > IPVK_Last)
+ return error(instrprof_error::malformed);
+ VP_READ_ADVANCE(NumValueSites);
+ if (!NumValueSites)
+ continue;
+
+ Record.reserveSites(VK, NumValueSites);
+ for (uint32_t S = 0; S < NumValueSites; S++) {
+ VP_READ_ADVANCE(NumValueData);
+
+ std::vector<InstrProfValueData> CurrentValues;
+ for (uint32_t V = 0; V < NumValueData; V++) {
+ CHECK_LINE_END(Line);
+ std::pair<StringRef, StringRef> VD = Line->rsplit(':');
+ uint64_t TakenCount, Value;
+ if (ValueKind == IPVK_IndirectCallTarget) {
+ if (InstrProfSymtab::isExternalSymbol(VD.first)) {
+ Value = 0;
+ } else {
+ if (Error E = Symtab->addFuncName(VD.first))
+ return E;
+ Value = IndexedInstrProf::ComputeHash(VD.first);
+ }
+ } else {
+ READ_NUM(VD.first, Value);
+ }
+ READ_NUM(VD.second, TakenCount);
+ CurrentValues.push_back({Value, TakenCount});
+ Line++;
+ }
+ Record.addValueData(ValueKind, S, CurrentValues.data(), NumValueData,
+ nullptr);
+ }
+ }
+ return success();
+
+#undef CHECK_LINE_END
+#undef READ_NUM
+#undef VP_READ_ADVANCE
+}
+
+Error TextInstrProfReader::readNextRecord(NamedInstrProfRecord &Record) {
+ // Skip empty lines and comments.
+ while (!Line.is_at_end() && (Line->empty() || Line->startswith("#")))
+ ++Line;
+ // If we hit EOF while looking for a name, we're done.
+ if (Line.is_at_end()) {
+ return error(instrprof_error::eof);
+ }
+
+ // Read the function name.
+ Record.Name = *Line++;
+ if (Error E = Symtab->addFuncName(Record.Name))
+ return error(std::move(E));
+
+ // Read the function hash.
+ if (Line.is_at_end())
+ return error(instrprof_error::truncated);
+ if ((Line++)->getAsInteger(0, Record.Hash))
+ return error(instrprof_error::malformed);
+
+ // Read the number of counters.
+ uint64_t NumCounters;
+ if (Line.is_at_end())
+ return error(instrprof_error::truncated);
+ if ((Line++)->getAsInteger(10, NumCounters))
+ return error(instrprof_error::malformed);
+ if (NumCounters == 0)
+ return error(instrprof_error::malformed);
+
+ // Read each counter and fill our internal storage with the values.
+ Record.Clear();
+ Record.Counts.reserve(NumCounters);
+ for (uint64_t I = 0; I < NumCounters; ++I) {
+ if (Line.is_at_end())
+ return error(instrprof_error::truncated);
+ uint64_t Count;
+ if ((Line++)->getAsInteger(10, Count))
+ return error(instrprof_error::malformed);
+ Record.Counts.push_back(Count);
+ }
+
+ // Check if value profile data exists and read it if so.
+ if (Error E = readValueProfileData(Record))
+ return error(std::move(E));
+
+ return success();
+}
+
+template <class IntPtrT>
+bool RawInstrProfReader<IntPtrT>::hasFormat(const MemoryBuffer &DataBuffer) {
+ if (DataBuffer.getBufferSize() < sizeof(uint64_t))
+ return false;
+ uint64_t Magic =
+ *reinterpret_cast<const uint64_t *>(DataBuffer.getBufferStart());
+ return RawInstrProf::getMagic<IntPtrT>() == Magic ||
+ sys::getSwappedBytes(RawInstrProf::getMagic<IntPtrT>()) == Magic;
+}
+
+template <class IntPtrT>
+Error RawInstrProfReader<IntPtrT>::readHeader() {
+ if (!hasFormat(*DataBuffer))
+ return error(instrprof_error::bad_magic);
+ if (DataBuffer->getBufferSize() < sizeof(RawInstrProf::Header))
+ return error(instrprof_error::bad_header);
+ auto *Header = reinterpret_cast<const RawInstrProf::Header *>(
+ DataBuffer->getBufferStart());
+ ShouldSwapBytes = Header->Magic != RawInstrProf::getMagic<IntPtrT>();
+ return readHeader(*Header);
+}
+
+template <class IntPtrT>
+Error RawInstrProfReader<IntPtrT>::readNextHeader(const char *CurrentPos) {
+ const char *End = DataBuffer->getBufferEnd();
+ // Skip zero padding between profiles.
+ while (CurrentPos != End && *CurrentPos == 0)
+ ++CurrentPos;
+ // If there's nothing left, we're done.
+ if (CurrentPos == End)
+ return make_error<InstrProfError>(instrprof_error::eof);
+ // If there isn't enough space for another header, this is probably just
+ // garbage at the end of the file.
+ if (CurrentPos + sizeof(RawInstrProf::Header) > End)
+ return make_error<InstrProfError>(instrprof_error::malformed);
+ // The writer ensures each profile is padded to start at an aligned address.
+ if (reinterpret_cast<size_t>(CurrentPos) % alignof(uint64_t))
+ return make_error<InstrProfError>(instrprof_error::malformed);
+ // The magic should have the same byte order as in the previous header.
+ uint64_t Magic = *reinterpret_cast<const uint64_t *>(CurrentPos);
+ if (Magic != swap(RawInstrProf::getMagic<IntPtrT>()))
+ return make_error<InstrProfError>(instrprof_error::bad_magic);
+
+ // There's another profile to read, so we need to process the header.
+ auto *Header = reinterpret_cast<const RawInstrProf::Header *>(CurrentPos);
+ return readHeader(*Header);
+}
+
+template <class IntPtrT>
+Error RawInstrProfReader<IntPtrT>::createSymtab(InstrProfSymtab &Symtab) {
+ if (Error E = Symtab.create(StringRef(NamesStart, NamesSize)))
+ return error(std::move(E));
+ for (const RawInstrProf::ProfileData<IntPtrT> *I = Data; I != DataEnd; ++I) {
+ const IntPtrT FPtr = swap(I->FunctionPointer);
+ if (!FPtr)
+ continue;
+ Symtab.mapAddress(FPtr, I->NameRef);
+ }
+ return success();
+}
+
+template <class IntPtrT>
+Error RawInstrProfReader<IntPtrT>::readHeader(
+ const RawInstrProf::Header &Header) {
+ Version = swap(Header.Version);
+ if (GET_VERSION(Version) != RawInstrProf::Version)
+ return error(instrprof_error::unsupported_version);
+
+ CountersDelta = swap(Header.CountersDelta);
+ NamesDelta = swap(Header.NamesDelta);
+ auto DataSize = swap(Header.DataSize);
+ auto CountersSize = swap(Header.CountersSize);
+ NamesSize = swap(Header.NamesSize);
+ ValueKindLast = swap(Header.ValueKindLast);
+
+ auto DataSizeInBytes = DataSize * sizeof(RawInstrProf::ProfileData<IntPtrT>);
+ auto PaddingSize = getNumPaddingBytes(NamesSize);
+
+ ptrdiff_t DataOffset = sizeof(RawInstrProf::Header);
+ ptrdiff_t CountersOffset = DataOffset + DataSizeInBytes;
+ ptrdiff_t NamesOffset = CountersOffset + sizeof(uint64_t) * CountersSize;
+ ptrdiff_t ValueDataOffset = NamesOffset + NamesSize + PaddingSize;
+
+ auto *Start = reinterpret_cast<const char *>(&Header);
+ if (Start + ValueDataOffset > DataBuffer->getBufferEnd())
+ return error(instrprof_error::bad_header);
+
+ Data = reinterpret_cast<const RawInstrProf::ProfileData<IntPtrT> *>(
+ Start + DataOffset);
+ DataEnd = Data + DataSize;
+ CountersStart = reinterpret_cast<const uint64_t *>(Start + CountersOffset);
+ NamesStart = Start + NamesOffset;
+ ValueDataStart = reinterpret_cast<const uint8_t *>(Start + ValueDataOffset);
+
+ std::unique_ptr<InstrProfSymtab> NewSymtab = std::make_unique<InstrProfSymtab>();
+ if (Error E = createSymtab(*NewSymtab.get()))
+ return E;
+
+ Symtab = std::move(NewSymtab);
+ return success();
+}
+
+template <class IntPtrT>
+Error RawInstrProfReader<IntPtrT>::readName(NamedInstrProfRecord &Record) {
+ Record.Name = getName(Data->NameRef);
+ return success();
+}
+
+template <class IntPtrT>
+Error RawInstrProfReader<IntPtrT>::readFuncHash(NamedInstrProfRecord &Record) {
+ Record.Hash = swap(Data->FuncHash);
+ return success();
+}
+
+template <class IntPtrT>
+Error RawInstrProfReader<IntPtrT>::readRawCounts(
+ InstrProfRecord &Record) {
+ uint32_t NumCounters = swap(Data->NumCounters);
+ IntPtrT CounterPtr = Data->CounterPtr;
+ if (NumCounters == 0)
+ return error(instrprof_error::malformed);
+
+ auto *NamesStartAsCounter = reinterpret_cast<const uint64_t *>(NamesStart);
+ ptrdiff_t MaxNumCounters = NamesStartAsCounter - CountersStart;
+
+ // Check bounds. Note that the counter pointer embedded in the data record
+ // may itself be corrupt.
+ if (NumCounters > MaxNumCounters)
+ return error(instrprof_error::malformed);
+ ptrdiff_t CounterOffset = getCounterOffset(CounterPtr);
+ if (CounterOffset < 0 || CounterOffset > MaxNumCounters ||
+ (CounterOffset + NumCounters) > MaxNumCounters)
+ return error(instrprof_error::malformed);
+
+ auto RawCounts = makeArrayRef(getCounter(CounterOffset), NumCounters);
+
+ if (ShouldSwapBytes) {
+ Record.Counts.clear();
+ Record.Counts.reserve(RawCounts.size());
+ for (uint64_t Count : RawCounts)
+ Record.Counts.push_back(swap(Count));
+ } else
+ Record.Counts = RawCounts;
+
+ return success();
+}
+
+template <class IntPtrT>
+Error RawInstrProfReader<IntPtrT>::readValueProfilingData(
+ InstrProfRecord &Record) {
+ Record.clearValueData();
+ CurValueDataSize = 0;
+ // Need to match the logic in value profile dumper code in compiler-rt:
+ uint32_t NumValueKinds = 0;
+ for (uint32_t I = 0; I < IPVK_Last + 1; I++)
+ NumValueKinds += (Data->NumValueSites[I] != 0);
+
+ if (!NumValueKinds)
+ return success();
+
+ Expected<std::unique_ptr<ValueProfData>> VDataPtrOrErr =
+ ValueProfData::getValueProfData(
+ ValueDataStart, (const unsigned char *)DataBuffer->getBufferEnd(),
+ getDataEndianness());
+
+ if (Error E = VDataPtrOrErr.takeError())
+ return E;
+
+ // Note that besides deserialization, this also performs the conversion for
+ // indirect call targets. The function pointers from the raw profile are
+ // remapped into function name hashes.
+ VDataPtrOrErr.get()->deserializeTo(Record, Symtab.get());
+ CurValueDataSize = VDataPtrOrErr.get()->getSize();
+ return success();
+}
+
+template <class IntPtrT>
+Error RawInstrProfReader<IntPtrT>::readNextRecord(NamedInstrProfRecord &Record) {
+ if (atEnd())
+ // At this point, ValueDataStart field points to the next header.
+ if (Error E = readNextHeader(getNextHeaderPos()))
+ return error(std::move(E));
+
+ // Read name ad set it in Record.
+ if (Error E = readName(Record))
+ return error(std::move(E));
+
+ // Read FuncHash and set it in Record.
+ if (Error E = readFuncHash(Record))
+ return error(std::move(E));
+
+ // Read raw counts and set Record.
+ if (Error E = readRawCounts(Record))
+ return error(std::move(E));
+
+ // Read value data and set Record.
+ if (Error E = readValueProfilingData(Record))
+ return error(std::move(E));
+
+ // Iterate.
+ advanceData();
+ return success();
+}
+
+namespace llvm {
+
+template class RawInstrProfReader<uint32_t>;
+template class RawInstrProfReader<uint64_t>;
+
+} // end namespace llvm
+
+InstrProfLookupTrait::hash_value_type
+InstrProfLookupTrait::ComputeHash(StringRef K) {
+ return IndexedInstrProf::ComputeHash(HashType, K);
+}
+
+using data_type = InstrProfLookupTrait::data_type;
+using offset_type = InstrProfLookupTrait::offset_type;
+
+bool InstrProfLookupTrait::readValueProfilingData(
+ const unsigned char *&D, const unsigned char *const End) {
+ Expected<std::unique_ptr<ValueProfData>> VDataPtrOrErr =
+ ValueProfData::getValueProfData(D, End, ValueProfDataEndianness);
+
+ if (VDataPtrOrErr.takeError())
+ return false;
+
+ VDataPtrOrErr.get()->deserializeTo(DataBuffer.back(), nullptr);
+ D += VDataPtrOrErr.get()->TotalSize;
+
+ return true;
+}
+
+data_type InstrProfLookupTrait::ReadData(StringRef K, const unsigned char *D,
+ offset_type N) {
+ using namespace support;
+
+ // Check if the data is corrupt. If so, don't try to read it.
+ if (N % sizeof(uint64_t))
+ return data_type();
+
+ DataBuffer.clear();
+ std::vector<uint64_t> CounterBuffer;
+
+ const unsigned char *End = D + N;
+ while (D < End) {
+ // Read hash.
+ if (D + sizeof(uint64_t) >= End)
+ return data_type();
+ uint64_t Hash = endian::readNext<uint64_t, little, unaligned>(D);
+
+ // Initialize number of counters for GET_VERSION(FormatVersion) == 1.
+ uint64_t CountsSize = N / sizeof(uint64_t) - 1;
+ // If format version is different then read the number of counters.
+ if (GET_VERSION(FormatVersion) != IndexedInstrProf::ProfVersion::Version1) {
+ if (D + sizeof(uint64_t) > End)
+ return data_type();
+ CountsSize = endian::readNext<uint64_t, little, unaligned>(D);
+ }
+ // Read counter values.
+ if (D + CountsSize * sizeof(uint64_t) > End)
+ return data_type();
+
+ CounterBuffer.clear();
+ CounterBuffer.reserve(CountsSize);
+ for (uint64_t J = 0; J < CountsSize; ++J)
+ CounterBuffer.push_back(endian::readNext<uint64_t, little, unaligned>(D));
+
+ DataBuffer.emplace_back(K, Hash, std::move(CounterBuffer));
+
+ // Read value profiling data.
+ if (GET_VERSION(FormatVersion) > IndexedInstrProf::ProfVersion::Version2 &&
+ !readValueProfilingData(D, End)) {
+ DataBuffer.clear();
+ return data_type();
+ }
+ }
+ return DataBuffer;
+}
+
+template <typename HashTableImpl>
+Error InstrProfReaderIndex<HashTableImpl>::getRecords(
+ StringRef FuncName, ArrayRef<NamedInstrProfRecord> &Data) {
+ auto Iter = HashTable->find(FuncName);
+ if (Iter == HashTable->end())
+ return make_error<InstrProfError>(instrprof_error::unknown_function);
+
+ Data = (*Iter);
+ if (Data.empty())
+ return make_error<InstrProfError>(instrprof_error::malformed);
+
+ return Error::success();
+}
+
+template <typename HashTableImpl>
+Error InstrProfReaderIndex<HashTableImpl>::getRecords(
+ ArrayRef<NamedInstrProfRecord> &Data) {
+ if (atEnd())
+ return make_error<InstrProfError>(instrprof_error::eof);
+
+ Data = *RecordIterator;
+
+ if (Data.empty())
+ return make_error<InstrProfError>(instrprof_error::malformed);
+
+ return Error::success();
+}
+
+template <typename HashTableImpl>
+InstrProfReaderIndex<HashTableImpl>::InstrProfReaderIndex(
+ const unsigned char *Buckets, const unsigned char *const Payload,
+ const unsigned char *const Base, IndexedInstrProf::HashT HashType,
+ uint64_t Version) {
+ FormatVersion = Version;
+ HashTable.reset(HashTableImpl::Create(
+ Buckets, Payload, Base,
+ typename HashTableImpl::InfoType(HashType, Version)));
+ RecordIterator = HashTable->data_begin();
+}
+
+namespace {
+/// A remapper that does not apply any remappings.
+class InstrProfReaderNullRemapper : public InstrProfReaderRemapper {
+ InstrProfReaderIndexBase &Underlying;
+
+public:
+ InstrProfReaderNullRemapper(InstrProfReaderIndexBase &Underlying)
+ : Underlying(Underlying) {}
+
+ Error getRecords(StringRef FuncName,
+ ArrayRef<NamedInstrProfRecord> &Data) override {
+ return Underlying.getRecords(FuncName, Data);
+ }
+};
+}
+
+/// A remapper that applies remappings based on a symbol remapping file.
+template <typename HashTableImpl>
+class llvm::InstrProfReaderItaniumRemapper
+ : public InstrProfReaderRemapper {
+public:
+ InstrProfReaderItaniumRemapper(
+ std::unique_ptr<MemoryBuffer> RemapBuffer,
+ InstrProfReaderIndex<HashTableImpl> &Underlying)
+ : RemapBuffer(std::move(RemapBuffer)), Underlying(Underlying) {
+ }
+
+ /// Extract the original function name from a PGO function name.
+ static StringRef extractName(StringRef Name) {
+ // We can have multiple :-separated pieces; there can be pieces both
+ // before and after the mangled name. Find the first part that starts
+ // with '_Z'; we'll assume that's the mangled name we want.
+ std::pair<StringRef, StringRef> Parts = {StringRef(), Name};
+ while (true) {
+ Parts = Parts.second.split(':');
+ if (Parts.first.startswith("_Z"))
+ return Parts.first;
+ if (Parts.second.empty())
+ return Name;
+ }
+ }
+
+ /// Given a mangled name extracted from a PGO function name, and a new
+ /// form for that mangled name, reconstitute the name.
+ static void reconstituteName(StringRef OrigName, StringRef ExtractedName,
+ StringRef Replacement,
+ SmallVectorImpl<char> &Out) {
+ Out.reserve(OrigName.size() + Replacement.size() - ExtractedName.size());
+ Out.insert(Out.end(), OrigName.begin(), ExtractedName.begin());
+ Out.insert(Out.end(), Replacement.begin(), Replacement.end());
+ Out.insert(Out.end(), ExtractedName.end(), OrigName.end());
+ }
+
+ Error populateRemappings() override {
+ if (Error E = Remappings.read(*RemapBuffer))
+ return E;
+ for (StringRef Name : Underlying.HashTable->keys()) {
+ StringRef RealName = extractName(Name);
+ if (auto Key = Remappings.insert(RealName)) {
+ // FIXME: We could theoretically map the same equivalence class to
+ // multiple names in the profile data. If that happens, we should
+ // return NamedInstrProfRecords from all of them.
+ MappedNames.insert({Key, RealName});
+ }
+ }
+ return Error::success();
+ }
+
+ Error getRecords(StringRef FuncName,
+ ArrayRef<NamedInstrProfRecord> &Data) override {
+ StringRef RealName = extractName(FuncName);
+ if (auto Key = Remappings.lookup(RealName)) {
+ StringRef Remapped = MappedNames.lookup(Key);
+ if (!Remapped.empty()) {
+ if (RealName.begin() == FuncName.begin() &&
+ RealName.end() == FuncName.end())
+ FuncName = Remapped;
+ else {
+ // Try rebuilding the name from the given remapping.
+ SmallString<256> Reconstituted;
+ reconstituteName(FuncName, RealName, Remapped, Reconstituted);
+ Error E = Underlying.getRecords(Reconstituted, Data);
+ if (!E)
+ return E;
+
+ // If we failed because the name doesn't exist, fall back to asking
+ // about the original name.
+ if (Error Unhandled = handleErrors(
+ std::move(E), [](std::unique_ptr<InstrProfError> Err) {
+ return Err->get() == instrprof_error::unknown_function
+ ? Error::success()
+ : Error(std::move(Err));
+ }))
+ return Unhandled;
+ }
+ }
+ }
+ return Underlying.getRecords(FuncName, Data);
+ }
+
+private:
+ /// The memory buffer containing the remapping configuration. Remappings
+ /// holds pointers into this buffer.
+ std::unique_ptr<MemoryBuffer> RemapBuffer;
+
+ /// The mangling remapper.
+ SymbolRemappingReader Remappings;
+
+ /// Mapping from mangled name keys to the name used for the key in the
+ /// profile data.
+ /// FIXME: Can we store a location within the on-disk hash table instead of
+ /// redoing lookup?
+ DenseMap<SymbolRemappingReader::Key, StringRef> MappedNames;
+
+ /// The real profile data reader.
+ InstrProfReaderIndex<HashTableImpl> &Underlying;
+};
+
+bool IndexedInstrProfReader::hasFormat(const MemoryBuffer &DataBuffer) {
+ using namespace support;
+
+ if (DataBuffer.getBufferSize() < 8)
+ return false;
+ uint64_t Magic =
+ endian::read<uint64_t, little, aligned>(DataBuffer.getBufferStart());
+ // Verify that it's magical.
+ return Magic == IndexedInstrProf::Magic;
+}
+
+const unsigned char *
+IndexedInstrProfReader::readSummary(IndexedInstrProf::ProfVersion Version,
+ const unsigned char *Cur, bool UseCS) {
+ using namespace IndexedInstrProf;
+ using namespace support;
+
+ if (Version >= IndexedInstrProf::Version4) {
+ const IndexedInstrProf::Summary *SummaryInLE =
+ reinterpret_cast<const IndexedInstrProf::Summary *>(Cur);
+ uint64_t NFields =
+ endian::byte_swap<uint64_t, little>(SummaryInLE->NumSummaryFields);
+ uint64_t NEntries =
+ endian::byte_swap<uint64_t, little>(SummaryInLE->NumCutoffEntries);
+ uint32_t SummarySize =
+ IndexedInstrProf::Summary::getSize(NFields, NEntries);
+ std::unique_ptr<IndexedInstrProf::Summary> SummaryData =
+ IndexedInstrProf::allocSummary(SummarySize);
+
+ const uint64_t *Src = reinterpret_cast<const uint64_t *>(SummaryInLE);
+ uint64_t *Dst = reinterpret_cast<uint64_t *>(SummaryData.get());
+ for (unsigned I = 0; I < SummarySize / sizeof(uint64_t); I++)
+ Dst[I] = endian::byte_swap<uint64_t, little>(Src[I]);
+
+ SummaryEntryVector DetailedSummary;
+ for (unsigned I = 0; I < SummaryData->NumCutoffEntries; I++) {
+ const IndexedInstrProf::Summary::Entry &Ent = SummaryData->getEntry(I);
+ DetailedSummary.emplace_back((uint32_t)Ent.Cutoff, Ent.MinBlockCount,
+ Ent.NumBlocks);
+ }
+ std::unique_ptr<llvm::ProfileSummary> &Summary =
+ UseCS ? this->CS_Summary : this->Summary;
+
+ // initialize InstrProfSummary using the SummaryData from disk.
+ Summary = std::make_unique<ProfileSummary>(
+ UseCS ? ProfileSummary::PSK_CSInstr : ProfileSummary::PSK_Instr,
+ DetailedSummary, SummaryData->get(Summary::TotalBlockCount),
+ SummaryData->get(Summary::MaxBlockCount),
+ SummaryData->get(Summary::MaxInternalBlockCount),
+ SummaryData->get(Summary::MaxFunctionCount),
+ SummaryData->get(Summary::TotalNumBlocks),
+ SummaryData->get(Summary::TotalNumFunctions));
+ return Cur + SummarySize;
+ } else {
+ // The older versions do not support a profile summary. This just computes
+ // an empty summary, which will not result in accurate hot/cold detection.
+ // We would need to call addRecord for all NamedInstrProfRecords to get the
+ // correct summary. However, this version is old (prior to early 2016) and
+ // has not been supporting an accurate summary for several years.
+ InstrProfSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs);
+ Summary = Builder.getSummary();
+ return Cur;
+ }
+}
+
+Error IndexedInstrProfReader::readHeader() {
+ using namespace support;
+
+ const unsigned char *Start =
+ (const unsigned char *)DataBuffer->getBufferStart();
+ const unsigned char *Cur = Start;
+ if ((const unsigned char *)DataBuffer->getBufferEnd() - Cur < 24)
+ return error(instrprof_error::truncated);
+
+ auto *Header = reinterpret_cast<const IndexedInstrProf::Header *>(Cur);
+ Cur += sizeof(IndexedInstrProf::Header);
+
+ // Check the magic number.
+ uint64_t Magic = endian::byte_swap<uint64_t, little>(Header->Magic);
+ if (Magic != IndexedInstrProf::Magic)
+ return error(instrprof_error::bad_magic);
+
+ // Read the version.
+ uint64_t FormatVersion = endian::byte_swap<uint64_t, little>(Header->Version);
+ if (GET_VERSION(FormatVersion) >
+ IndexedInstrProf::ProfVersion::CurrentVersion)
+ return error(instrprof_error::unsupported_version);
+
+ Cur = readSummary((IndexedInstrProf::ProfVersion)FormatVersion, Cur,
+ /* UseCS */ false);
+ if (FormatVersion & VARIANT_MASK_CSIR_PROF)
+ Cur = readSummary((IndexedInstrProf::ProfVersion)FormatVersion, Cur,
+ /* UseCS */ true);
+
+ // Read the hash type and start offset.
+ IndexedInstrProf::HashT HashType = static_cast<IndexedInstrProf::HashT>(
+ endian::byte_swap<uint64_t, little>(Header->HashType));
+ if (HashType > IndexedInstrProf::HashT::Last)
+ return error(instrprof_error::unsupported_hash_type);
+
+ uint64_t HashOffset = endian::byte_swap<uint64_t, little>(Header->HashOffset);
+
+ // The rest of the file is an on disk hash table.
+ auto IndexPtr =
+ std::make_unique<InstrProfReaderIndex<OnDiskHashTableImplV3>>(
+ Start + HashOffset, Cur, Start, HashType, FormatVersion);
+
+ // Load the remapping table now if requested.
+ if (RemappingBuffer) {
+ Remapper = std::make_unique<
+ InstrProfReaderItaniumRemapper<OnDiskHashTableImplV3>>(
+ std::move(RemappingBuffer), *IndexPtr);
+ if (Error E = Remapper->populateRemappings())
+ return E;
+ } else {
+ Remapper = std::make_unique<InstrProfReaderNullRemapper>(*IndexPtr);
+ }
+ Index = std::move(IndexPtr);
+
+ return success();
+}
+
+InstrProfSymtab &IndexedInstrProfReader::getSymtab() {
+ if (Symtab.get())
+ return *Symtab.get();
+
+ std::unique_ptr<InstrProfSymtab> NewSymtab = std::make_unique<InstrProfSymtab>();
+ if (Error E = Index->populateSymtab(*NewSymtab.get())) {
+ consumeError(error(InstrProfError::take(std::move(E))));
+ }
+
+ Symtab = std::move(NewSymtab);
+ return *Symtab.get();
+}
+
+Expected<InstrProfRecord>
+IndexedInstrProfReader::getInstrProfRecord(StringRef FuncName,
+ uint64_t FuncHash) {
+ ArrayRef<NamedInstrProfRecord> Data;
+ Error Err = Remapper->getRecords(FuncName, Data);
+ if (Err)
+ return std::move(Err);
+ // Found it. Look for counters with the right hash.
+ for (unsigned I = 0, E = Data.size(); I < E; ++I) {
+ // Check for a match and fill the vector if there is one.
+ if (Data[I].Hash == FuncHash) {
+ return std::move(Data[I]);
+ }
+ }
+ return error(instrprof_error::hash_mismatch);
+}
+
+Error IndexedInstrProfReader::getFunctionCounts(StringRef FuncName,
+ uint64_t FuncHash,
+ std::vector<uint64_t> &Counts) {
+ Expected<InstrProfRecord> Record = getInstrProfRecord(FuncName, FuncHash);
+ if (Error E = Record.takeError())
+ return error(std::move(E));
+
+ Counts = Record.get().Counts;
+ return success();
+}
+
+Error IndexedInstrProfReader::readNextRecord(NamedInstrProfRecord &Record) {
+ ArrayRef<NamedInstrProfRecord> Data;
+
+ Error E = Index->getRecords(Data);
+ if (E)
+ return error(std::move(E));
+
+ Record = Data[RecordIndex++];
+ if (RecordIndex >= Data.size()) {
+ Index->advanceToNextKey();
+ RecordIndex = 0;
+ }
+ return success();
+}
+
+void InstrProfReader::accumulateCounts(CountSumOrPercent &Sum, bool IsCS) {
+ uint64_t NumFuncs = 0;
+ for (const auto &Func : *this) {
+ if (isIRLevelProfile()) {
+ bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash);
+ if (FuncIsCS != IsCS)
+ continue;
+ }
+ Func.accumulateCounts(Sum);
+ ++NumFuncs;
+ }
+ Sum.NumEntries = NumFuncs;
+}
diff --git a/llvm/lib/ProfileData/InstrProfWriter.cpp b/llvm/lib/ProfileData/InstrProfWriter.cpp
new file mode 100644
index 000000000000..ccb270e0b719
--- /dev/null
+++ b/llvm/lib/ProfileData/InstrProfWriter.cpp
@@ -0,0 +1,471 @@
+//===- InstrProfWriter.cpp - Instrumented profiling writer ----------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains support for writing profiling data for clang's
+// instrumentation based PGO and coverage.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ProfileData/InstrProfWriter.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/IR/ProfileSummary.h"
+#include "llvm/ProfileData/InstrProf.h"
+#include "llvm/ProfileData/ProfileCommon.h"
+#include "llvm/Support/Endian.h"
+#include "llvm/Support/EndianStream.h"
+#include "llvm/Support/Error.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/OnDiskHashTable.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cstdint>
+#include <memory>
+#include <string>
+#include <tuple>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+// A struct to define how the data stream should be patched. For Indexed
+// profiling, only uint64_t data type is needed.
+struct PatchItem {
+ uint64_t Pos; // Where to patch.
+ uint64_t *D; // Pointer to an array of source data.
+ int N; // Number of elements in \c D array.
+};
+
+namespace llvm {
+
+// A wrapper class to abstract writer stream with support of bytes
+// back patching.
+class ProfOStream {
+public:
+ ProfOStream(raw_fd_ostream &FD)
+ : IsFDOStream(true), OS(FD), LE(FD, support::little) {}
+ ProfOStream(raw_string_ostream &STR)
+ : IsFDOStream(false), OS(STR), LE(STR, support::little) {}
+
+ uint64_t tell() { return OS.tell(); }
+ void write(uint64_t V) { LE.write<uint64_t>(V); }
+
+ // \c patch can only be called when all data is written and flushed.
+ // For raw_string_ostream, the patch is done on the target string
+ // directly and it won't be reflected in the stream's internal buffer.
+ void patch(PatchItem *P, int NItems) {
+ using namespace support;
+
+ if (IsFDOStream) {
+ raw_fd_ostream &FDOStream = static_cast<raw_fd_ostream &>(OS);
+ for (int K = 0; K < NItems; K++) {
+ FDOStream.seek(P[K].Pos);
+ for (int I = 0; I < P[K].N; I++)
+ write(P[K].D[I]);
+ }
+ } else {
+ raw_string_ostream &SOStream = static_cast<raw_string_ostream &>(OS);
+ std::string &Data = SOStream.str(); // with flush
+ for (int K = 0; K < NItems; K++) {
+ for (int I = 0; I < P[K].N; I++) {
+ uint64_t Bytes = endian::byte_swap<uint64_t, little>(P[K].D[I]);
+ Data.replace(P[K].Pos + I * sizeof(uint64_t), sizeof(uint64_t),
+ (const char *)&Bytes, sizeof(uint64_t));
+ }
+ }
+ }
+ }
+
+ // If \c OS is an instance of \c raw_fd_ostream, this field will be
+ // true. Otherwise, \c OS will be an raw_string_ostream.
+ bool IsFDOStream;
+ raw_ostream &OS;
+ support::endian::Writer LE;
+};
+
+class InstrProfRecordWriterTrait {
+public:
+ using key_type = StringRef;
+ using key_type_ref = StringRef;
+
+ using data_type = const InstrProfWriter::ProfilingData *const;
+ using data_type_ref = const InstrProfWriter::ProfilingData *const;
+
+ using hash_value_type = uint64_t;
+ using offset_type = uint64_t;
+
+ support::endianness ValueProfDataEndianness = support::little;
+ InstrProfSummaryBuilder *SummaryBuilder;
+ InstrProfSummaryBuilder *CSSummaryBuilder;
+
+ InstrProfRecordWriterTrait() = default;
+
+ static hash_value_type ComputeHash(key_type_ref K) {
+ return IndexedInstrProf::ComputeHash(K);
+ }
+
+ static std::pair<offset_type, offset_type>
+ EmitKeyDataLength(raw_ostream &Out, key_type_ref K, data_type_ref V) {
+ using namespace support;
+
+ endian::Writer LE(Out, little);
+
+ offset_type N = K.size();
+ LE.write<offset_type>(N);
+
+ offset_type M = 0;
+ for (const auto &ProfileData : *V) {
+ const InstrProfRecord &ProfRecord = ProfileData.second;
+ M += sizeof(uint64_t); // The function hash
+ M += sizeof(uint64_t); // The size of the Counts vector
+ M += ProfRecord.Counts.size() * sizeof(uint64_t);
+
+ // Value data
+ M += ValueProfData::getSize(ProfileData.second);
+ }
+ LE.write<offset_type>(M);
+
+ return std::make_pair(N, M);
+ }
+
+ void EmitKey(raw_ostream &Out, key_type_ref K, offset_type N) {
+ Out.write(K.data(), N);
+ }
+
+ void EmitData(raw_ostream &Out, key_type_ref, data_type_ref V, offset_type) {
+ using namespace support;
+
+ endian::Writer LE(Out, little);
+ for (const auto &ProfileData : *V) {
+ const InstrProfRecord &ProfRecord = ProfileData.second;
+ if (NamedInstrProfRecord::hasCSFlagInHash(ProfileData.first))
+ CSSummaryBuilder->addRecord(ProfRecord);
+ else
+ SummaryBuilder->addRecord(ProfRecord);
+
+ LE.write<uint64_t>(ProfileData.first); // Function hash
+ LE.write<uint64_t>(ProfRecord.Counts.size());
+ for (uint64_t I : ProfRecord.Counts)
+ LE.write<uint64_t>(I);
+
+ // Write value data
+ std::unique_ptr<ValueProfData> VDataPtr =
+ ValueProfData::serializeFrom(ProfileData.second);
+ uint32_t S = VDataPtr->getSize();
+ VDataPtr->swapBytesFromHost(ValueProfDataEndianness);
+ Out.write((const char *)VDataPtr.get(), S);
+ }
+ }
+};
+
+} // end namespace llvm
+
+InstrProfWriter::InstrProfWriter(bool Sparse)
+ : Sparse(Sparse), InfoObj(new InstrProfRecordWriterTrait()) {}
+
+InstrProfWriter::~InstrProfWriter() { delete InfoObj; }
+
+// Internal interface for testing purpose only.
+void InstrProfWriter::setValueProfDataEndianness(
+ support::endianness Endianness) {
+ InfoObj->ValueProfDataEndianness = Endianness;
+}
+
+void InstrProfWriter::setOutputSparse(bool Sparse) {
+ this->Sparse = Sparse;
+}
+
+void InstrProfWriter::addRecord(NamedInstrProfRecord &&I, uint64_t Weight,
+ function_ref<void(Error)> Warn) {
+ auto Name = I.Name;
+ auto Hash = I.Hash;
+ addRecord(Name, Hash, std::move(I), Weight, Warn);
+}
+
+void InstrProfWriter::overlapRecord(NamedInstrProfRecord &&Other,
+ OverlapStats &Overlap,
+ OverlapStats &FuncLevelOverlap,
+ const OverlapFuncFilters &FuncFilter) {
+ auto Name = Other.Name;
+ auto Hash = Other.Hash;
+ Other.accumulateCounts(FuncLevelOverlap.Test);
+ if (FunctionData.find(Name) == FunctionData.end()) {
+ Overlap.addOneUnique(FuncLevelOverlap.Test);
+ return;
+ }
+ if (FuncLevelOverlap.Test.CountSum < 1.0f) {
+ Overlap.Overlap.NumEntries += 1;
+ return;
+ }
+ auto &ProfileDataMap = FunctionData[Name];
+ bool NewFunc;
+ ProfilingData::iterator Where;
+ std::tie(Where, NewFunc) =
+ ProfileDataMap.insert(std::make_pair(Hash, InstrProfRecord()));
+ if (NewFunc) {
+ Overlap.addOneMismatch(FuncLevelOverlap.Test);
+ return;
+ }
+ InstrProfRecord &Dest = Where->second;
+
+ uint64_t ValueCutoff = FuncFilter.ValueCutoff;
+ if (!FuncFilter.NameFilter.empty() &&
+ Name.find(FuncFilter.NameFilter) != Name.npos)
+ ValueCutoff = 0;
+
+ Dest.overlap(Other, Overlap, FuncLevelOverlap, ValueCutoff);
+}
+
+void InstrProfWriter::addRecord(StringRef Name, uint64_t Hash,
+ InstrProfRecord &&I, uint64_t Weight,
+ function_ref<void(Error)> Warn) {
+ auto &ProfileDataMap = FunctionData[Name];
+
+ bool NewFunc;
+ ProfilingData::iterator Where;
+ std::tie(Where, NewFunc) =
+ ProfileDataMap.insert(std::make_pair(Hash, InstrProfRecord()));
+ InstrProfRecord &Dest = Where->second;
+
+ auto MapWarn = [&](instrprof_error E) {
+ Warn(make_error<InstrProfError>(E));
+ };
+
+ if (NewFunc) {
+ // We've never seen a function with this name and hash, add it.
+ Dest = std::move(I);
+ if (Weight > 1)
+ Dest.scale(Weight, MapWarn);
+ } else {
+ // We're updating a function we've seen before.
+ Dest.merge(I, Weight, MapWarn);
+ }
+
+ Dest.sortValueData();
+}
+
+void InstrProfWriter::mergeRecordsFromWriter(InstrProfWriter &&IPW,
+ function_ref<void(Error)> Warn) {
+ for (auto &I : IPW.FunctionData)
+ for (auto &Func : I.getValue())
+ addRecord(I.getKey(), Func.first, std::move(Func.second), 1, Warn);
+}
+
+bool InstrProfWriter::shouldEncodeData(const ProfilingData &PD) {
+ if (!Sparse)
+ return true;
+ for (const auto &Func : PD) {
+ const InstrProfRecord &IPR = Func.second;
+ if (llvm::any_of(IPR.Counts, [](uint64_t Count) { return Count > 0; }))
+ return true;
+ }
+ return false;
+}
+
+static void setSummary(IndexedInstrProf::Summary *TheSummary,
+ ProfileSummary &PS) {
+ using namespace IndexedInstrProf;
+
+ std::vector<ProfileSummaryEntry> &Res = PS.getDetailedSummary();
+ TheSummary->NumSummaryFields = Summary::NumKinds;
+ TheSummary->NumCutoffEntries = Res.size();
+ TheSummary->set(Summary::MaxFunctionCount, PS.getMaxFunctionCount());
+ TheSummary->set(Summary::MaxBlockCount, PS.getMaxCount());
+ TheSummary->set(Summary::MaxInternalBlockCount, PS.getMaxInternalCount());
+ TheSummary->set(Summary::TotalBlockCount, PS.getTotalCount());
+ TheSummary->set(Summary::TotalNumBlocks, PS.getNumCounts());
+ TheSummary->set(Summary::TotalNumFunctions, PS.getNumFunctions());
+ for (unsigned I = 0; I < Res.size(); I++)
+ TheSummary->setEntry(I, Res[I]);
+}
+
+void InstrProfWriter::writeImpl(ProfOStream &OS) {
+ using namespace IndexedInstrProf;
+
+ OnDiskChainedHashTableGenerator<InstrProfRecordWriterTrait> Generator;
+
+ InstrProfSummaryBuilder ISB(ProfileSummaryBuilder::DefaultCutoffs);
+ InfoObj->SummaryBuilder = &ISB;
+ InstrProfSummaryBuilder CSISB(ProfileSummaryBuilder::DefaultCutoffs);
+ InfoObj->CSSummaryBuilder = &CSISB;
+
+ // Populate the hash table generator.
+ for (const auto &I : FunctionData)
+ if (shouldEncodeData(I.getValue()))
+ Generator.insert(I.getKey(), &I.getValue());
+ // Write the header.
+ IndexedInstrProf::Header Header;
+ Header.Magic = IndexedInstrProf::Magic;
+ Header.Version = IndexedInstrProf::ProfVersion::CurrentVersion;
+ if (ProfileKind == PF_IRLevel)
+ Header.Version |= VARIANT_MASK_IR_PROF;
+ if (ProfileKind == PF_IRLevelWithCS) {
+ Header.Version |= VARIANT_MASK_IR_PROF;
+ Header.Version |= VARIANT_MASK_CSIR_PROF;
+ }
+ Header.Unused = 0;
+ Header.HashType = static_cast<uint64_t>(IndexedInstrProf::HashType);
+ Header.HashOffset = 0;
+ int N = sizeof(IndexedInstrProf::Header) / sizeof(uint64_t);
+
+ // Only write out all the fields except 'HashOffset'. We need
+ // to remember the offset of that field to allow back patching
+ // later.
+ for (int I = 0; I < N - 1; I++)
+ OS.write(reinterpret_cast<uint64_t *>(&Header)[I]);
+
+ // Save the location of Header.HashOffset field in \c OS.
+ uint64_t HashTableStartFieldOffset = OS.tell();
+ // Reserve the space for HashOffset field.
+ OS.write(0);
+
+ // Reserve space to write profile summary data.
+ uint32_t NumEntries = ProfileSummaryBuilder::DefaultCutoffs.size();
+ uint32_t SummarySize = Summary::getSize(Summary::NumKinds, NumEntries);
+ // Remember the summary offset.
+ uint64_t SummaryOffset = OS.tell();
+ for (unsigned I = 0; I < SummarySize / sizeof(uint64_t); I++)
+ OS.write(0);
+ uint64_t CSSummaryOffset = 0;
+ uint64_t CSSummarySize = 0;
+ if (ProfileKind == PF_IRLevelWithCS) {
+ CSSummaryOffset = OS.tell();
+ CSSummarySize = SummarySize / sizeof(uint64_t);
+ for (unsigned I = 0; I < CSSummarySize; I++)
+ OS.write(0);
+ }
+
+ // Write the hash table.
+ uint64_t HashTableStart = Generator.Emit(OS.OS, *InfoObj);
+
+ // Allocate space for data to be serialized out.
+ std::unique_ptr<IndexedInstrProf::Summary> TheSummary =
+ IndexedInstrProf::allocSummary(SummarySize);
+ // Compute the Summary and copy the data to the data
+ // structure to be serialized out (to disk or buffer).
+ std::unique_ptr<ProfileSummary> PS = ISB.getSummary();
+ setSummary(TheSummary.get(), *PS);
+ InfoObj->SummaryBuilder = nullptr;
+
+ // For Context Sensitive summary.
+ std::unique_ptr<IndexedInstrProf::Summary> TheCSSummary = nullptr;
+ if (ProfileKind == PF_IRLevelWithCS) {
+ TheCSSummary = IndexedInstrProf::allocSummary(SummarySize);
+ std::unique_ptr<ProfileSummary> CSPS = CSISB.getSummary();
+ setSummary(TheCSSummary.get(), *CSPS);
+ }
+ InfoObj->CSSummaryBuilder = nullptr;
+
+ // Now do the final patch:
+ PatchItem PatchItems[] = {
+ // Patch the Header.HashOffset field.
+ {HashTableStartFieldOffset, &HashTableStart, 1},
+ // Patch the summary data.
+ {SummaryOffset, reinterpret_cast<uint64_t *>(TheSummary.get()),
+ (int)(SummarySize / sizeof(uint64_t))},
+ {CSSummaryOffset, reinterpret_cast<uint64_t *>(TheCSSummary.get()),
+ (int)CSSummarySize}};
+
+ OS.patch(PatchItems, sizeof(PatchItems) / sizeof(*PatchItems));
+}
+
+void InstrProfWriter::write(raw_fd_ostream &OS) {
+ // Write the hash table.
+ ProfOStream POS(OS);
+ writeImpl(POS);
+}
+
+std::unique_ptr<MemoryBuffer> InstrProfWriter::writeBuffer() {
+ std::string Data;
+ raw_string_ostream OS(Data);
+ ProfOStream POS(OS);
+ // Write the hash table.
+ writeImpl(POS);
+ // Return this in an aligned memory buffer.
+ return MemoryBuffer::getMemBufferCopy(Data);
+}
+
+static const char *ValueProfKindStr[] = {
+#define VALUE_PROF_KIND(Enumerator, Value, Descr) #Enumerator,
+#include "llvm/ProfileData/InstrProfData.inc"
+};
+
+void InstrProfWriter::writeRecordInText(StringRef Name, uint64_t Hash,
+ const InstrProfRecord &Func,
+ InstrProfSymtab &Symtab,
+ raw_fd_ostream &OS) {
+ OS << Name << "\n";
+ OS << "# Func Hash:\n" << Hash << "\n";
+ OS << "# Num Counters:\n" << Func.Counts.size() << "\n";
+ OS << "# Counter Values:\n";
+ for (uint64_t Count : Func.Counts)
+ OS << Count << "\n";
+
+ uint32_t NumValueKinds = Func.getNumValueKinds();
+ if (!NumValueKinds) {
+ OS << "\n";
+ return;
+ }
+
+ OS << "# Num Value Kinds:\n" << Func.getNumValueKinds() << "\n";
+ for (uint32_t VK = 0; VK < IPVK_Last + 1; VK++) {
+ uint32_t NS = Func.getNumValueSites(VK);
+ if (!NS)
+ continue;
+ OS << "# ValueKind = " << ValueProfKindStr[VK] << ":\n" << VK << "\n";
+ OS << "# NumValueSites:\n" << NS << "\n";
+ for (uint32_t S = 0; S < NS; S++) {
+ uint32_t ND = Func.getNumValueDataForSite(VK, S);
+ OS << ND << "\n";
+ std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, S);
+ for (uint32_t I = 0; I < ND; I++) {
+ if (VK == IPVK_IndirectCallTarget)
+ OS << Symtab.getFuncNameOrExternalSymbol(VD[I].Value) << ":"
+ << VD[I].Count << "\n";
+ else
+ OS << VD[I].Value << ":" << VD[I].Count << "\n";
+ }
+ }
+ }
+
+ OS << "\n";
+}
+
+Error InstrProfWriter::writeText(raw_fd_ostream &OS) {
+ if (ProfileKind == PF_IRLevel)
+ OS << "# IR level Instrumentation Flag\n:ir\n";
+ else if (ProfileKind == PF_IRLevelWithCS)
+ OS << "# CSIR level Instrumentation Flag\n:csir\n";
+ InstrProfSymtab Symtab;
+
+ using FuncPair = detail::DenseMapPair<uint64_t, InstrProfRecord>;
+ using RecordType = std::pair<StringRef, FuncPair>;
+ SmallVector<RecordType, 4> OrderedFuncData;
+
+ for (const auto &I : FunctionData) {
+ if (shouldEncodeData(I.getValue())) {
+ if (Error E = Symtab.addFuncName(I.getKey()))
+ return E;
+ for (const auto &Func : I.getValue())
+ OrderedFuncData.push_back(std::make_pair(I.getKey(), Func));
+ }
+ }
+
+ llvm::sort(OrderedFuncData, [](const RecordType &A, const RecordType &B) {
+ return std::tie(A.first, A.second.first) <
+ std::tie(B.first, B.second.first);
+ });
+
+ for (const auto &record : OrderedFuncData) {
+ const StringRef &Name = record.first;
+ const FuncPair &Func = record.second;
+ writeRecordInText(Name, Func.first, Func.second, Symtab, OS);
+ }
+
+ return Error::success();
+}
diff --git a/llvm/lib/ProfileData/ProfileSummaryBuilder.cpp b/llvm/lib/ProfileData/ProfileSummaryBuilder.cpp
new file mode 100644
index 000000000000..3299b5f92069
--- /dev/null
+++ b/llvm/lib/ProfileData/ProfileSummaryBuilder.cpp
@@ -0,0 +1,119 @@
+//=-- ProfilesummaryBuilder.cpp - Profile summary computation ---------------=//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains support for computing profile summary data.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Type.h"
+#include "llvm/ProfileData/InstrProf.h"
+#include "llvm/ProfileData/ProfileCommon.h"
+#include "llvm/ProfileData/SampleProf.h"
+#include "llvm/Support/Casting.h"
+
+using namespace llvm;
+
+// A set of cutoff values. Each value, when divided by ProfileSummary::Scale
+// (which is 1000000) is a desired percentile of total counts.
+static const uint32_t DefaultCutoffsData[] = {
+ 10000, /* 1% */
+ 100000, /* 10% */
+ 200000, 300000, 400000, 500000, 600000, 700000, 800000,
+ 900000, 950000, 990000, 999000, 999900, 999990, 999999};
+const ArrayRef<uint32_t> ProfileSummaryBuilder::DefaultCutoffs =
+ DefaultCutoffsData;
+
+void InstrProfSummaryBuilder::addRecord(const InstrProfRecord &R) {
+ // The first counter is not necessarily an entry count for IR
+ // instrumentation profiles.
+ // Eventually MaxFunctionCount will become obsolete and this can be
+ // removed.
+ addEntryCount(R.Counts[0]);
+ for (size_t I = 1, E = R.Counts.size(); I < E; ++I)
+ addInternalCount(R.Counts[I]);
+}
+
+// To compute the detailed summary, we consider each line containing samples as
+// equivalent to a block with a count in the instrumented profile.
+void SampleProfileSummaryBuilder::addRecord(
+ const sampleprof::FunctionSamples &FS, bool isCallsiteSample) {
+ if (!isCallsiteSample) {
+ NumFunctions++;
+ if (FS.getHeadSamples() > MaxFunctionCount)
+ MaxFunctionCount = FS.getHeadSamples();
+ }
+ for (const auto &I : FS.getBodySamples())
+ addCount(I.second.getSamples());
+ for (const auto &I : FS.getCallsiteSamples())
+ for (const auto &CS : I.second)
+ addRecord(CS.second, true);
+}
+
+// The argument to this method is a vector of cutoff percentages and the return
+// value is a vector of (Cutoff, MinCount, NumCounts) triplets.
+void ProfileSummaryBuilder::computeDetailedSummary() {
+ if (DetailedSummaryCutoffs.empty())
+ return;
+ llvm::sort(DetailedSummaryCutoffs);
+ auto Iter = CountFrequencies.begin();
+ const auto End = CountFrequencies.end();
+
+ uint32_t CountsSeen = 0;
+ uint64_t CurrSum = 0, Count = 0;
+
+ for (const uint32_t Cutoff : DetailedSummaryCutoffs) {
+ assert(Cutoff <= 999999);
+ APInt Temp(128, TotalCount);
+ APInt N(128, Cutoff);
+ APInt D(128, ProfileSummary::Scale);
+ Temp *= N;
+ Temp = Temp.sdiv(D);
+ uint64_t DesiredCount = Temp.getZExtValue();
+ assert(DesiredCount <= TotalCount);
+ while (CurrSum < DesiredCount && Iter != End) {
+ Count = Iter->first;
+ uint32_t Freq = Iter->second;
+ CurrSum += (Count * Freq);
+ CountsSeen += Freq;
+ Iter++;
+ }
+ assert(CurrSum >= DesiredCount);
+ ProfileSummaryEntry PSE = {Cutoff, Count, CountsSeen};
+ DetailedSummary.push_back(PSE);
+ }
+}
+
+std::unique_ptr<ProfileSummary> SampleProfileSummaryBuilder::getSummary() {
+ computeDetailedSummary();
+ return std::make_unique<ProfileSummary>(
+ ProfileSummary::PSK_Sample, DetailedSummary, TotalCount, MaxCount, 0,
+ MaxFunctionCount, NumCounts, NumFunctions);
+}
+
+std::unique_ptr<ProfileSummary> InstrProfSummaryBuilder::getSummary() {
+ computeDetailedSummary();
+ return std::make_unique<ProfileSummary>(
+ ProfileSummary::PSK_Instr, DetailedSummary, TotalCount, MaxCount,
+ MaxInternalBlockCount, MaxFunctionCount, NumCounts, NumFunctions);
+}
+
+void InstrProfSummaryBuilder::addEntryCount(uint64_t Count) {
+ addCount(Count);
+ NumFunctions++;
+ if (Count > MaxFunctionCount)
+ MaxFunctionCount = Count;
+}
+
+void InstrProfSummaryBuilder::addInternalCount(uint64_t Count) {
+ addCount(Count);
+ if (Count > MaxInternalBlockCount)
+ MaxInternalBlockCount = Count;
+}
diff --git a/llvm/lib/ProfileData/SampleProf.cpp b/llvm/lib/ProfileData/SampleProf.cpp
new file mode 100644
index 000000000000..003e8d4d4296
--- /dev/null
+++ b/llvm/lib/ProfileData/SampleProf.cpp
@@ -0,0 +1,240 @@
+//=-- SampleProf.cpp - Sample profiling format support --------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains common definitions used in the reading and writing of
+// sample profile data.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ProfileData/SampleProf.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Error.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/LEB128.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/raw_ostream.h"
+#include <string>
+#include <system_error>
+
+using namespace llvm;
+using namespace sampleprof;
+
+namespace llvm {
+namespace sampleprof {
+SampleProfileFormat FunctionSamples::Format;
+} // namespace sampleprof
+} // namespace llvm
+
+namespace {
+
+// FIXME: This class is only here to support the transition to llvm::Error. It
+// will be removed once this transition is complete. Clients should prefer to
+// deal with the Error value directly, rather than converting to error_code.
+class SampleProfErrorCategoryType : public std::error_category {
+ const char *name() const noexcept override { return "llvm.sampleprof"; }
+
+ std::string message(int IE) const override {
+ sampleprof_error E = static_cast<sampleprof_error>(IE);
+ switch (E) {
+ case sampleprof_error::success:
+ return "Success";
+ case sampleprof_error::bad_magic:
+ return "Invalid sample profile data (bad magic)";
+ case sampleprof_error::unsupported_version:
+ return "Unsupported sample profile format version";
+ case sampleprof_error::too_large:
+ return "Too much profile data";
+ case sampleprof_error::truncated:
+ return "Truncated profile data";
+ case sampleprof_error::malformed:
+ return "Malformed sample profile data";
+ case sampleprof_error::unrecognized_format:
+ return "Unrecognized sample profile encoding format";
+ case sampleprof_error::unsupported_writing_format:
+ return "Profile encoding format unsupported for writing operations";
+ case sampleprof_error::truncated_name_table:
+ return "Truncated function name table";
+ case sampleprof_error::not_implemented:
+ return "Unimplemented feature";
+ case sampleprof_error::counter_overflow:
+ return "Counter overflow";
+ case sampleprof_error::ostream_seek_unsupported:
+ return "Ostream does not support seek";
+ case sampleprof_error::compress_failed:
+ return "Compress failure";
+ case sampleprof_error::uncompress_failed:
+ return "Uncompress failure";
+ case sampleprof_error::zlib_unavailable:
+ return "Zlib is unavailable";
+ }
+ llvm_unreachable("A value of sampleprof_error has no message.");
+ }
+};
+
+} // end anonymous namespace
+
+static ManagedStatic<SampleProfErrorCategoryType> ErrorCategory;
+
+const std::error_category &llvm::sampleprof_category() {
+ return *ErrorCategory;
+}
+
+void LineLocation::print(raw_ostream &OS) const {
+ OS << LineOffset;
+ if (Discriminator > 0)
+ OS << "." << Discriminator;
+}
+
+raw_ostream &llvm::sampleprof::operator<<(raw_ostream &OS,
+ const LineLocation &Loc) {
+ Loc.print(OS);
+ return OS;
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void LineLocation::dump() const { print(dbgs()); }
+#endif
+
+/// Print the sample record to the stream \p OS indented by \p Indent.
+void SampleRecord::print(raw_ostream &OS, unsigned Indent) const {
+ OS << NumSamples;
+ if (hasCalls()) {
+ OS << ", calls:";
+ for (const auto &I : getSortedCallTargets())
+ OS << " " << I.first << ":" << I.second;
+ }
+ OS << "\n";
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void SampleRecord::dump() const { print(dbgs(), 0); }
+#endif
+
+raw_ostream &llvm::sampleprof::operator<<(raw_ostream &OS,
+ const SampleRecord &Sample) {
+ Sample.print(OS, 0);
+ return OS;
+}
+
+/// Print the samples collected for a function on stream \p OS.
+void FunctionSamples::print(raw_ostream &OS, unsigned Indent) const {
+ OS << TotalSamples << ", " << TotalHeadSamples << ", " << BodySamples.size()
+ << " sampled lines\n";
+
+ OS.indent(Indent);
+ if (!BodySamples.empty()) {
+ OS << "Samples collected in the function's body {\n";
+ SampleSorter<LineLocation, SampleRecord> SortedBodySamples(BodySamples);
+ for (const auto &SI : SortedBodySamples.get()) {
+ OS.indent(Indent + 2);
+ OS << SI->first << ": " << SI->second;
+ }
+ OS.indent(Indent);
+ OS << "}\n";
+ } else {
+ OS << "No samples collected in the function's body\n";
+ }
+
+ OS.indent(Indent);
+ if (!CallsiteSamples.empty()) {
+ OS << "Samples collected in inlined callsites {\n";
+ SampleSorter<LineLocation, FunctionSamplesMap> SortedCallsiteSamples(
+ CallsiteSamples);
+ for (const auto &CS : SortedCallsiteSamples.get()) {
+ for (const auto &FS : CS->second) {
+ OS.indent(Indent + 2);
+ OS << CS->first << ": inlined callee: " << FS.second.getName() << ": ";
+ FS.second.print(OS, Indent + 4);
+ }
+ }
+ OS.indent(Indent);
+ OS << "}\n";
+ } else {
+ OS << "No inlined callsites in this function\n";
+ }
+}
+
+raw_ostream &llvm::sampleprof::operator<<(raw_ostream &OS,
+ const FunctionSamples &FS) {
+ FS.print(OS);
+ return OS;
+}
+
+unsigned FunctionSamples::getOffset(const DILocation *DIL) {
+ return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) &
+ 0xffff;
+}
+
+const FunctionSamples *
+FunctionSamples::findFunctionSamples(const DILocation *DIL) const {
+ assert(DIL);
+ SmallVector<std::pair<LineLocation, StringRef>, 10> S;
+
+ const DILocation *PrevDIL = DIL;
+ for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) {
+ S.push_back(std::make_pair(
+ LineLocation(getOffset(DIL), DIL->getBaseDiscriminator()),
+ PrevDIL->getScope()->getSubprogram()->getLinkageName()));
+ PrevDIL = DIL;
+ }
+ if (S.size() == 0)
+ return this;
+ const FunctionSamples *FS = this;
+ for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) {
+ FS = FS->findFunctionSamplesAt(S[i].first, S[i].second);
+ }
+ return FS;
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void FunctionSamples::dump() const { print(dbgs(), 0); }
+#endif
+
+std::error_code ProfileSymbolList::read(const uint8_t *Data,
+ uint64_t ListSize) {
+ const char *ListStart = reinterpret_cast<const char *>(Data);
+ uint64_t Size = 0;
+ while (Size < ListSize) {
+ StringRef Str(ListStart + Size);
+ add(Str);
+ Size += Str.size() + 1;
+ }
+ if (Size != ListSize)
+ return sampleprof_error::malformed;
+ return sampleprof_error::success;
+}
+
+std::error_code ProfileSymbolList::write(raw_ostream &OS) {
+ // Sort the symbols before output. If doing compression.
+ // It will make the compression much more effective.
+ std::vector<StringRef> SortedList;
+ SortedList.insert(SortedList.begin(), Syms.begin(), Syms.end());
+ llvm::sort(SortedList);
+
+ std::string OutputString;
+ for (auto &Sym : SortedList) {
+ OutputString.append(Sym.str());
+ OutputString.append(1, '\0');
+ }
+
+ OS << OutputString;
+ return sampleprof_error::success;
+}
+
+void ProfileSymbolList::dump(raw_ostream &OS) const {
+ OS << "======== Dump profile symbol list ========\n";
+ std::vector<StringRef> SortedList;
+ SortedList.insert(SortedList.begin(), Syms.begin(), Syms.end());
+ llvm::sort(SortedList);
+
+ for (auto &Sym : SortedList)
+ OS << Sym << "\n";
+}
diff --git a/llvm/lib/ProfileData/SampleProfReader.cpp b/llvm/lib/ProfileData/SampleProfReader.cpp
new file mode 100644
index 000000000000..001aafce7bfd
--- /dev/null
+++ b/llvm/lib/ProfileData/SampleProfReader.cpp
@@ -0,0 +1,1377 @@
+//===- SampleProfReader.cpp - Read LLVM sample profile data ---------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the class that reads LLVM sample profiles. It
+// supports three file formats: text, binary and gcov.
+//
+// The textual representation is useful for debugging and testing purposes. The
+// binary representation is more compact, resulting in smaller file sizes.
+//
+// The gcov encoding is the one generated by GCC's AutoFDO profile creation
+// tool (https://github.com/google/autofdo)
+//
+// All three encodings can be used interchangeably as an input sample profile.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ProfileData/SampleProfReader.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/IR/ProfileSummary.h"
+#include "llvm/ProfileData/ProfileCommon.h"
+#include "llvm/ProfileData/SampleProf.h"
+#include "llvm/Support/Compression.h"
+#include "llvm/Support/ErrorOr.h"
+#include "llvm/Support/LEB128.h"
+#include "llvm/Support/LineIterator.h"
+#include "llvm/Support/MD5.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cstddef>
+#include <cstdint>
+#include <limits>
+#include <memory>
+#include <system_error>
+#include <vector>
+
+using namespace llvm;
+using namespace sampleprof;
+
+/// Dump the function profile for \p FName.
+///
+/// \param FName Name of the function to print.
+/// \param OS Stream to emit the output to.
+void SampleProfileReader::dumpFunctionProfile(StringRef FName,
+ raw_ostream &OS) {
+ OS << "Function: " << FName << ": " << Profiles[FName];
+}
+
+/// Dump all the function profiles found on stream \p OS.
+void SampleProfileReader::dump(raw_ostream &OS) {
+ for (const auto &I : Profiles)
+ dumpFunctionProfile(I.getKey(), OS);
+}
+
+/// Parse \p Input as function head.
+///
+/// Parse one line of \p Input, and update function name in \p FName,
+/// function's total sample count in \p NumSamples, function's entry
+/// count in \p NumHeadSamples.
+///
+/// \returns true if parsing is successful.
+static bool ParseHead(const StringRef &Input, StringRef &FName,
+ uint64_t &NumSamples, uint64_t &NumHeadSamples) {
+ if (Input[0] == ' ')
+ return false;
+ size_t n2 = Input.rfind(':');
+ size_t n1 = Input.rfind(':', n2 - 1);
+ FName = Input.substr(0, n1);
+ if (Input.substr(n1 + 1, n2 - n1 - 1).getAsInteger(10, NumSamples))
+ return false;
+ if (Input.substr(n2 + 1).getAsInteger(10, NumHeadSamples))
+ return false;
+ return true;
+}
+
+/// Returns true if line offset \p L is legal (only has 16 bits).
+static bool isOffsetLegal(unsigned L) { return (L & 0xffff) == L; }
+
+/// Parse \p Input as line sample.
+///
+/// \param Input input line.
+/// \param IsCallsite true if the line represents an inlined callsite.
+/// \param Depth the depth of the inline stack.
+/// \param NumSamples total samples of the line/inlined callsite.
+/// \param LineOffset line offset to the start of the function.
+/// \param Discriminator discriminator of the line.
+/// \param TargetCountMap map from indirect call target to count.
+///
+/// returns true if parsing is successful.
+static bool ParseLine(const StringRef &Input, bool &IsCallsite, uint32_t &Depth,
+ uint64_t &NumSamples, uint32_t &LineOffset,
+ uint32_t &Discriminator, StringRef &CalleeName,
+ DenseMap<StringRef, uint64_t> &TargetCountMap) {
+ for (Depth = 0; Input[Depth] == ' '; Depth++)
+ ;
+ if (Depth == 0)
+ return false;
+
+ size_t n1 = Input.find(':');
+ StringRef Loc = Input.substr(Depth, n1 - Depth);
+ size_t n2 = Loc.find('.');
+ if (n2 == StringRef::npos) {
+ if (Loc.getAsInteger(10, LineOffset) || !isOffsetLegal(LineOffset))
+ return false;
+ Discriminator = 0;
+ } else {
+ if (Loc.substr(0, n2).getAsInteger(10, LineOffset))
+ return false;
+ if (Loc.substr(n2 + 1).getAsInteger(10, Discriminator))
+ return false;
+ }
+
+ StringRef Rest = Input.substr(n1 + 2);
+ if (Rest[0] >= '0' && Rest[0] <= '9') {
+ IsCallsite = false;
+ size_t n3 = Rest.find(' ');
+ if (n3 == StringRef::npos) {
+ if (Rest.getAsInteger(10, NumSamples))
+ return false;
+ } else {
+ if (Rest.substr(0, n3).getAsInteger(10, NumSamples))
+ return false;
+ }
+ // Find call targets and their sample counts.
+ // Note: In some cases, there are symbols in the profile which are not
+ // mangled. To accommodate such cases, use colon + integer pairs as the
+ // anchor points.
+ // An example:
+ // _M_construct<char *>:1000 string_view<std::allocator<char> >:437
+ // ":1000" and ":437" are used as anchor points so the string above will
+ // be interpreted as
+ // target: _M_construct<char *>
+ // count: 1000
+ // target: string_view<std::allocator<char> >
+ // count: 437
+ while (n3 != StringRef::npos) {
+ n3 += Rest.substr(n3).find_first_not_of(' ');
+ Rest = Rest.substr(n3);
+ n3 = Rest.find_first_of(':');
+ if (n3 == StringRef::npos || n3 == 0)
+ return false;
+
+ StringRef Target;
+ uint64_t count, n4;
+ while (true) {
+ // Get the segment after the current colon.
+ StringRef AfterColon = Rest.substr(n3 + 1);
+ // Get the target symbol before the current colon.
+ Target = Rest.substr(0, n3);
+ // Check if the word after the current colon is an integer.
+ n4 = AfterColon.find_first_of(' ');
+ n4 = (n4 != StringRef::npos) ? n3 + n4 + 1 : Rest.size();
+ StringRef WordAfterColon = Rest.substr(n3 + 1, n4 - n3 - 1);
+ if (!WordAfterColon.getAsInteger(10, count))
+ break;
+
+ // Try to find the next colon.
+ uint64_t n5 = AfterColon.find_first_of(':');
+ if (n5 == StringRef::npos)
+ return false;
+ n3 += n5 + 1;
+ }
+
+ // An anchor point is found. Save the {target, count} pair
+ TargetCountMap[Target] = count;
+ if (n4 == Rest.size())
+ break;
+ // Change n3 to the next blank space after colon + integer pair.
+ n3 = n4;
+ }
+ } else {
+ IsCallsite = true;
+ size_t n3 = Rest.find_last_of(':');
+ CalleeName = Rest.substr(0, n3);
+ if (Rest.substr(n3 + 1).getAsInteger(10, NumSamples))
+ return false;
+ }
+ return true;
+}
+
+/// Load samples from a text file.
+///
+/// See the documentation at the top of the file for an explanation of
+/// the expected format.
+///
+/// \returns true if the file was loaded successfully, false otherwise.
+std::error_code SampleProfileReaderText::readImpl() {
+ line_iterator LineIt(*Buffer, /*SkipBlanks=*/true, '#');
+ sampleprof_error Result = sampleprof_error::success;
+
+ InlineCallStack InlineStack;
+
+ for (; !LineIt.is_at_eof(); ++LineIt) {
+ if ((*LineIt)[(*LineIt).find_first_not_of(' ')] == '#')
+ continue;
+ // Read the header of each function.
+ //
+ // Note that for function identifiers we are actually expecting
+ // mangled names, but we may not always get them. This happens when
+ // the compiler decides not to emit the function (e.g., it was inlined
+ // and removed). In this case, the binary will not have the linkage
+ // name for the function, so the profiler will emit the function's
+ // unmangled name, which may contain characters like ':' and '>' in its
+ // name (member functions, templates, etc).
+ //
+ // The only requirement we place on the identifier, then, is that it
+ // should not begin with a number.
+ if ((*LineIt)[0] != ' ') {
+ uint64_t NumSamples, NumHeadSamples;
+ StringRef FName;
+ if (!ParseHead(*LineIt, FName, NumSamples, NumHeadSamples)) {
+ reportError(LineIt.line_number(),
+ "Expected 'mangled_name:NUM:NUM', found " + *LineIt);
+ return sampleprof_error::malformed;
+ }
+ Profiles[FName] = FunctionSamples();
+ FunctionSamples &FProfile = Profiles[FName];
+ FProfile.setName(FName);
+ MergeResult(Result, FProfile.addTotalSamples(NumSamples));
+ MergeResult(Result, FProfile.addHeadSamples(NumHeadSamples));
+ InlineStack.clear();
+ InlineStack.push_back(&FProfile);
+ } else {
+ uint64_t NumSamples;
+ StringRef FName;
+ DenseMap<StringRef, uint64_t> TargetCountMap;
+ bool IsCallsite;
+ uint32_t Depth, LineOffset, Discriminator;
+ if (!ParseLine(*LineIt, IsCallsite, Depth, NumSamples, LineOffset,
+ Discriminator, FName, TargetCountMap)) {
+ reportError(LineIt.line_number(),
+ "Expected 'NUM[.NUM]: NUM[ mangled_name:NUM]*', found " +
+ *LineIt);
+ return sampleprof_error::malformed;
+ }
+ if (IsCallsite) {
+ while (InlineStack.size() > Depth) {
+ InlineStack.pop_back();
+ }
+ FunctionSamples &FSamples = InlineStack.back()->functionSamplesAt(
+ LineLocation(LineOffset, Discriminator))[FName];
+ FSamples.setName(FName);
+ MergeResult(Result, FSamples.addTotalSamples(NumSamples));
+ InlineStack.push_back(&FSamples);
+ } else {
+ while (InlineStack.size() > Depth) {
+ InlineStack.pop_back();
+ }
+ FunctionSamples &FProfile = *InlineStack.back();
+ for (const auto &name_count : TargetCountMap) {
+ MergeResult(Result, FProfile.addCalledTargetSamples(
+ LineOffset, Discriminator, name_count.first,
+ name_count.second));
+ }
+ MergeResult(Result, FProfile.addBodySamples(LineOffset, Discriminator,
+ NumSamples));
+ }
+ }
+ }
+ if (Result == sampleprof_error::success)
+ computeSummary();
+
+ return Result;
+}
+
+bool SampleProfileReaderText::hasFormat(const MemoryBuffer &Buffer) {
+ bool result = false;
+
+ // Check that the first non-comment line is a valid function header.
+ line_iterator LineIt(Buffer, /*SkipBlanks=*/true, '#');
+ if (!LineIt.is_at_eof()) {
+ if ((*LineIt)[0] != ' ') {
+ uint64_t NumSamples, NumHeadSamples;
+ StringRef FName;
+ result = ParseHead(*LineIt, FName, NumSamples, NumHeadSamples);
+ }
+ }
+
+ return result;
+}
+
+template <typename T> ErrorOr<T> SampleProfileReaderBinary::readNumber() {
+ unsigned NumBytesRead = 0;
+ std::error_code EC;
+ uint64_t Val = decodeULEB128(Data, &NumBytesRead);
+
+ if (Val > std::numeric_limits<T>::max())
+ EC = sampleprof_error::malformed;
+ else if (Data + NumBytesRead > End)
+ EC = sampleprof_error::truncated;
+ else
+ EC = sampleprof_error::success;
+
+ if (EC) {
+ reportError(0, EC.message());
+ return EC;
+ }
+
+ Data += NumBytesRead;
+ return static_cast<T>(Val);
+}
+
+ErrorOr<StringRef> SampleProfileReaderBinary::readString() {
+ std::error_code EC;
+ StringRef Str(reinterpret_cast<const char *>(Data));
+ if (Data + Str.size() + 1 > End) {
+ EC = sampleprof_error::truncated;
+ reportError(0, EC.message());
+ return EC;
+ }
+
+ Data += Str.size() + 1;
+ return Str;
+}
+
+template <typename T>
+ErrorOr<T> SampleProfileReaderBinary::readUnencodedNumber() {
+ std::error_code EC;
+
+ if (Data + sizeof(T) > End) {
+ EC = sampleprof_error::truncated;
+ reportError(0, EC.message());
+ return EC;
+ }
+
+ using namespace support;
+ T Val = endian::readNext<T, little, unaligned>(Data);
+ return Val;
+}
+
+template <typename T>
+inline ErrorOr<uint32_t> SampleProfileReaderBinary::readStringIndex(T &Table) {
+ std::error_code EC;
+ auto Idx = readNumber<uint32_t>();
+ if (std::error_code EC = Idx.getError())
+ return EC;
+ if (*Idx >= Table.size())
+ return sampleprof_error::truncated_name_table;
+ return *Idx;
+}
+
+ErrorOr<StringRef> SampleProfileReaderBinary::readStringFromTable() {
+ auto Idx = readStringIndex(NameTable);
+ if (std::error_code EC = Idx.getError())
+ return EC;
+
+ return NameTable[*Idx];
+}
+
+ErrorOr<StringRef> SampleProfileReaderCompactBinary::readStringFromTable() {
+ auto Idx = readStringIndex(NameTable);
+ if (std::error_code EC = Idx.getError())
+ return EC;
+
+ return StringRef(NameTable[*Idx]);
+}
+
+std::error_code
+SampleProfileReaderBinary::readProfile(FunctionSamples &FProfile) {
+ auto NumSamples = readNumber<uint64_t>();
+ if (std::error_code EC = NumSamples.getError())
+ return EC;
+ FProfile.addTotalSamples(*NumSamples);
+
+ // Read the samples in the body.
+ auto NumRecords = readNumber<uint32_t>();
+ if (std::error_code EC = NumRecords.getError())
+ return EC;
+
+ for (uint32_t I = 0; I < *NumRecords; ++I) {
+ auto LineOffset = readNumber<uint64_t>();
+ if (std::error_code EC = LineOffset.getError())
+ return EC;
+
+ if (!isOffsetLegal(*LineOffset)) {
+ return std::error_code();
+ }
+
+ auto Discriminator = readNumber<uint64_t>();
+ if (std::error_code EC = Discriminator.getError())
+ return EC;
+
+ auto NumSamples = readNumber<uint64_t>();
+ if (std::error_code EC = NumSamples.getError())
+ return EC;
+
+ auto NumCalls = readNumber<uint32_t>();
+ if (std::error_code EC = NumCalls.getError())
+ return EC;
+
+ for (uint32_t J = 0; J < *NumCalls; ++J) {
+ auto CalledFunction(readStringFromTable());
+ if (std::error_code EC = CalledFunction.getError())
+ return EC;
+
+ auto CalledFunctionSamples = readNumber<uint64_t>();
+ if (std::error_code EC = CalledFunctionSamples.getError())
+ return EC;
+
+ FProfile.addCalledTargetSamples(*LineOffset, *Discriminator,
+ *CalledFunction, *CalledFunctionSamples);
+ }
+
+ FProfile.addBodySamples(*LineOffset, *Discriminator, *NumSamples);
+ }
+
+ // Read all the samples for inlined function calls.
+ auto NumCallsites = readNumber<uint32_t>();
+ if (std::error_code EC = NumCallsites.getError())
+ return EC;
+
+ for (uint32_t J = 0; J < *NumCallsites; ++J) {
+ auto LineOffset = readNumber<uint64_t>();
+ if (std::error_code EC = LineOffset.getError())
+ return EC;
+
+ auto Discriminator = readNumber<uint64_t>();
+ if (std::error_code EC = Discriminator.getError())
+ return EC;
+
+ auto FName(readStringFromTable());
+ if (std::error_code EC = FName.getError())
+ return EC;
+
+ FunctionSamples &CalleeProfile = FProfile.functionSamplesAt(
+ LineLocation(*LineOffset, *Discriminator))[*FName];
+ CalleeProfile.setName(*FName);
+ if (std::error_code EC = readProfile(CalleeProfile))
+ return EC;
+ }
+
+ return sampleprof_error::success;
+}
+
+std::error_code
+SampleProfileReaderBinary::readFuncProfile(const uint8_t *Start) {
+ Data = Start;
+ auto NumHeadSamples = readNumber<uint64_t>();
+ if (std::error_code EC = NumHeadSamples.getError())
+ return EC;
+
+ auto FName(readStringFromTable());
+ if (std::error_code EC = FName.getError())
+ return EC;
+
+ Profiles[*FName] = FunctionSamples();
+ FunctionSamples &FProfile = Profiles[*FName];
+ FProfile.setName(*FName);
+
+ FProfile.addHeadSamples(*NumHeadSamples);
+
+ if (std::error_code EC = readProfile(FProfile))
+ return EC;
+ return sampleprof_error::success;
+}
+
+std::error_code SampleProfileReaderBinary::readImpl() {
+ while (!at_eof()) {
+ if (std::error_code EC = readFuncProfile(Data))
+ return EC;
+ }
+
+ return sampleprof_error::success;
+}
+
+std::error_code
+SampleProfileReaderExtBinary::readOneSection(const uint8_t *Start,
+ uint64_t Size, SecType Type) {
+ Data = Start;
+ End = Start + Size;
+ switch (Type) {
+ case SecProfSummary:
+ if (std::error_code EC = readSummary())
+ return EC;
+ break;
+ case SecNameTable:
+ if (std::error_code EC = readNameTable())
+ return EC;
+ break;
+ case SecLBRProfile:
+ if (std::error_code EC = readFuncProfiles())
+ return EC;
+ break;
+ case SecProfileSymbolList:
+ if (std::error_code EC = readProfileSymbolList())
+ return EC;
+ break;
+ case SecFuncOffsetTable:
+ if (std::error_code EC = readFuncOffsetTable())
+ return EC;
+ break;
+ default:
+ break;
+ }
+ return sampleprof_error::success;
+}
+
+void SampleProfileReaderExtBinary::collectFuncsFrom(const Module &M) {
+ UseAllFuncs = false;
+ FuncsToUse.clear();
+ for (auto &F : M)
+ FuncsToUse.insert(FunctionSamples::getCanonicalFnName(F));
+}
+
+std::error_code SampleProfileReaderExtBinary::readFuncOffsetTable() {
+ auto Size = readNumber<uint64_t>();
+ if (std::error_code EC = Size.getError())
+ return EC;
+
+ FuncOffsetTable.reserve(*Size);
+ for (uint32_t I = 0; I < *Size; ++I) {
+ auto FName(readStringFromTable());
+ if (std::error_code EC = FName.getError())
+ return EC;
+
+ auto Offset = readNumber<uint64_t>();
+ if (std::error_code EC = Offset.getError())
+ return EC;
+
+ FuncOffsetTable[*FName] = *Offset;
+ }
+ return sampleprof_error::success;
+}
+
+std::error_code SampleProfileReaderExtBinary::readFuncProfiles() {
+ const uint8_t *Start = Data;
+ if (UseAllFuncs) {
+ while (Data < End) {
+ if (std::error_code EC = readFuncProfile(Data))
+ return EC;
+ }
+ assert(Data == End && "More data is read than expected");
+ return sampleprof_error::success;
+ }
+
+ if (Remapper) {
+ for (auto Name : FuncsToUse) {
+ Remapper->insert(Name);
+ }
+ }
+
+ for (auto NameOffset : FuncOffsetTable) {
+ auto FuncName = NameOffset.first;
+ if (!FuncsToUse.count(FuncName) &&
+ (!Remapper || !Remapper->exist(FuncName)))
+ continue;
+ const uint8_t *FuncProfileAddr = Start + NameOffset.second;
+ assert(FuncProfileAddr < End && "out of LBRProfile section");
+ if (std::error_code EC = readFuncProfile(FuncProfileAddr))
+ return EC;
+ }
+
+ Data = End;
+ return sampleprof_error::success;
+}
+
+std::error_code SampleProfileReaderExtBinary::readProfileSymbolList() {
+ if (!ProfSymList)
+ ProfSymList = std::make_unique<ProfileSymbolList>();
+
+ if (std::error_code EC = ProfSymList->read(Data, End - Data))
+ return EC;
+
+ Data = End;
+ return sampleprof_error::success;
+}
+
+std::error_code SampleProfileReaderExtBinaryBase::decompressSection(
+ const uint8_t *SecStart, const uint64_t SecSize,
+ const uint8_t *&DecompressBuf, uint64_t &DecompressBufSize) {
+ Data = SecStart;
+ End = SecStart + SecSize;
+ auto DecompressSize = readNumber<uint64_t>();
+ if (std::error_code EC = DecompressSize.getError())
+ return EC;
+ DecompressBufSize = *DecompressSize;
+
+ auto CompressSize = readNumber<uint64_t>();
+ if (std::error_code EC = CompressSize.getError())
+ return EC;
+
+ if (!llvm::zlib::isAvailable())
+ return sampleprof_error::zlib_unavailable;
+
+ StringRef CompressedStrings(reinterpret_cast<const char *>(Data),
+ *CompressSize);
+ char *Buffer = Allocator.Allocate<char>(DecompressBufSize);
+ size_t UCSize = DecompressBufSize;
+ llvm::Error E =
+ zlib::uncompress(CompressedStrings, Buffer, UCSize);
+ if (E)
+ return sampleprof_error::uncompress_failed;
+ DecompressBuf = reinterpret_cast<const uint8_t *>(Buffer);
+ return sampleprof_error::success;
+}
+
+std::error_code SampleProfileReaderExtBinaryBase::readImpl() {
+ const uint8_t *BufStart =
+ reinterpret_cast<const uint8_t *>(Buffer->getBufferStart());
+
+ for (auto &Entry : SecHdrTable) {
+ // Skip empty section.
+ if (!Entry.Size)
+ continue;
+
+ const uint8_t *SecStart = BufStart + Entry.Offset;
+ uint64_t SecSize = Entry.Size;
+
+ // If the section is compressed, decompress it into a buffer
+ // DecompressBuf before reading the actual data. The pointee of
+ // 'Data' will be changed to buffer hold by DecompressBuf
+ // temporarily when reading the actual data.
+ bool isCompressed = hasSecFlag(Entry, SecFlagCompress);
+ if (isCompressed) {
+ const uint8_t *DecompressBuf;
+ uint64_t DecompressBufSize;
+ if (std::error_code EC = decompressSection(
+ SecStart, SecSize, DecompressBuf, DecompressBufSize))
+ return EC;
+ SecStart = DecompressBuf;
+ SecSize = DecompressBufSize;
+ }
+
+ if (std::error_code EC = readOneSection(SecStart, SecSize, Entry.Type))
+ return EC;
+ if (Data != SecStart + SecSize)
+ return sampleprof_error::malformed;
+
+ // Change the pointee of 'Data' from DecompressBuf to original Buffer.
+ if (isCompressed) {
+ Data = BufStart + Entry.Offset;
+ End = BufStart + Buffer->getBufferSize();
+ }
+ }
+
+ return sampleprof_error::success;
+}
+
+std::error_code SampleProfileReaderCompactBinary::readImpl() {
+ std::vector<uint64_t> OffsetsToUse;
+ if (UseAllFuncs) {
+ for (auto FuncEntry : FuncOffsetTable) {
+ OffsetsToUse.push_back(FuncEntry.second);
+ }
+ }
+ else {
+ for (auto Name : FuncsToUse) {
+ auto GUID = std::to_string(MD5Hash(Name));
+ auto iter = FuncOffsetTable.find(StringRef(GUID));
+ if (iter == FuncOffsetTable.end())
+ continue;
+ OffsetsToUse.push_back(iter->second);
+ }
+ }
+
+ for (auto Offset : OffsetsToUse) {
+ const uint8_t *SavedData = Data;
+ if (std::error_code EC = readFuncProfile(
+ reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()) +
+ Offset))
+ return EC;
+ Data = SavedData;
+ }
+ return sampleprof_error::success;
+}
+
+std::error_code SampleProfileReaderRawBinary::verifySPMagic(uint64_t Magic) {
+ if (Magic == SPMagic())
+ return sampleprof_error::success;
+ return sampleprof_error::bad_magic;
+}
+
+std::error_code SampleProfileReaderExtBinary::verifySPMagic(uint64_t Magic) {
+ if (Magic == SPMagic(SPF_Ext_Binary))
+ return sampleprof_error::success;
+ return sampleprof_error::bad_magic;
+}
+
+std::error_code
+SampleProfileReaderCompactBinary::verifySPMagic(uint64_t Magic) {
+ if (Magic == SPMagic(SPF_Compact_Binary))
+ return sampleprof_error::success;
+ return sampleprof_error::bad_magic;
+}
+
+std::error_code SampleProfileReaderBinary::readNameTable() {
+ auto Size = readNumber<uint32_t>();
+ if (std::error_code EC = Size.getError())
+ return EC;
+ NameTable.reserve(*Size);
+ for (uint32_t I = 0; I < *Size; ++I) {
+ auto Name(readString());
+ if (std::error_code EC = Name.getError())
+ return EC;
+ NameTable.push_back(*Name);
+ }
+
+ return sampleprof_error::success;
+}
+
+std::error_code SampleProfileReaderCompactBinary::readNameTable() {
+ auto Size = readNumber<uint64_t>();
+ if (std::error_code EC = Size.getError())
+ return EC;
+ NameTable.reserve(*Size);
+ for (uint32_t I = 0; I < *Size; ++I) {
+ auto FID = readNumber<uint64_t>();
+ if (std::error_code EC = FID.getError())
+ return EC;
+ NameTable.push_back(std::to_string(*FID));
+ }
+ return sampleprof_error::success;
+}
+
+std::error_code SampleProfileReaderExtBinaryBase::readSecHdrTableEntry() {
+ SecHdrTableEntry Entry;
+ auto Type = readUnencodedNumber<uint64_t>();
+ if (std::error_code EC = Type.getError())
+ return EC;
+ Entry.Type = static_cast<SecType>(*Type);
+
+ auto Flags = readUnencodedNumber<uint64_t>();
+ if (std::error_code EC = Flags.getError())
+ return EC;
+ Entry.Flags = *Flags;
+
+ auto Offset = readUnencodedNumber<uint64_t>();
+ if (std::error_code EC = Offset.getError())
+ return EC;
+ Entry.Offset = *Offset;
+
+ auto Size = readUnencodedNumber<uint64_t>();
+ if (std::error_code EC = Size.getError())
+ return EC;
+ Entry.Size = *Size;
+
+ SecHdrTable.push_back(std::move(Entry));
+ return sampleprof_error::success;
+}
+
+std::error_code SampleProfileReaderExtBinaryBase::readSecHdrTable() {
+ auto EntryNum = readUnencodedNumber<uint64_t>();
+ if (std::error_code EC = EntryNum.getError())
+ return EC;
+
+ for (uint32_t i = 0; i < (*EntryNum); i++)
+ if (std::error_code EC = readSecHdrTableEntry())
+ return EC;
+
+ return sampleprof_error::success;
+}
+
+std::error_code SampleProfileReaderExtBinaryBase::readHeader() {
+ const uint8_t *BufStart =
+ reinterpret_cast<const uint8_t *>(Buffer->getBufferStart());
+ Data = BufStart;
+ End = BufStart + Buffer->getBufferSize();
+
+ if (std::error_code EC = readMagicIdent())
+ return EC;
+
+ if (std::error_code EC = readSecHdrTable())
+ return EC;
+
+ return sampleprof_error::success;
+}
+
+uint64_t SampleProfileReaderExtBinaryBase::getSectionSize(SecType Type) {
+ for (auto &Entry : SecHdrTable) {
+ if (Entry.Type == Type)
+ return Entry.Size;
+ }
+ return 0;
+}
+
+uint64_t SampleProfileReaderExtBinaryBase::getFileSize() {
+ // Sections in SecHdrTable is not necessarily in the same order as
+ // sections in the profile because section like FuncOffsetTable needs
+ // to be written after section LBRProfile but needs to be read before
+ // section LBRProfile, so we cannot simply use the last entry in
+ // SecHdrTable to calculate the file size.
+ uint64_t FileSize = 0;
+ for (auto &Entry : SecHdrTable) {
+ FileSize = std::max(Entry.Offset + Entry.Size, FileSize);
+ }
+ return FileSize;
+}
+
+bool SampleProfileReaderExtBinaryBase::dumpSectionInfo(raw_ostream &OS) {
+ uint64_t TotalSecsSize = 0;
+ for (auto &Entry : SecHdrTable) {
+ OS << getSecName(Entry.Type) << " - Offset: " << Entry.Offset
+ << ", Size: " << Entry.Size << "\n";
+ TotalSecsSize += getSectionSize(Entry.Type);
+ }
+ uint64_t HeaderSize = SecHdrTable.front().Offset;
+ assert(HeaderSize + TotalSecsSize == getFileSize() &&
+ "Size of 'header + sections' doesn't match the total size of profile");
+
+ OS << "Header Size: " << HeaderSize << "\n";
+ OS << "Total Sections Size: " << TotalSecsSize << "\n";
+ OS << "File Size: " << getFileSize() << "\n";
+ return true;
+}
+
+std::error_code SampleProfileReaderBinary::readMagicIdent() {
+ // Read and check the magic identifier.
+ auto Magic = readNumber<uint64_t>();
+ if (std::error_code EC = Magic.getError())
+ return EC;
+ else if (std::error_code EC = verifySPMagic(*Magic))
+ return EC;
+
+ // Read the version number.
+ auto Version = readNumber<uint64_t>();
+ if (std::error_code EC = Version.getError())
+ return EC;
+ else if (*Version != SPVersion())
+ return sampleprof_error::unsupported_version;
+
+ return sampleprof_error::success;
+}
+
+std::error_code SampleProfileReaderBinary::readHeader() {
+ Data = reinterpret_cast<const uint8_t *>(Buffer->getBufferStart());
+ End = Data + Buffer->getBufferSize();
+
+ if (std::error_code EC = readMagicIdent())
+ return EC;
+
+ if (std::error_code EC = readSummary())
+ return EC;
+
+ if (std::error_code EC = readNameTable())
+ return EC;
+ return sampleprof_error::success;
+}
+
+std::error_code SampleProfileReaderCompactBinary::readHeader() {
+ SampleProfileReaderBinary::readHeader();
+ if (std::error_code EC = readFuncOffsetTable())
+ return EC;
+ return sampleprof_error::success;
+}
+
+std::error_code SampleProfileReaderCompactBinary::readFuncOffsetTable() {
+ auto TableOffset = readUnencodedNumber<uint64_t>();
+ if (std::error_code EC = TableOffset.getError())
+ return EC;
+
+ const uint8_t *SavedData = Data;
+ const uint8_t *TableStart =
+ reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()) +
+ *TableOffset;
+ Data = TableStart;
+
+ auto Size = readNumber<uint64_t>();
+ if (std::error_code EC = Size.getError())
+ return EC;
+
+ FuncOffsetTable.reserve(*Size);
+ for (uint32_t I = 0; I < *Size; ++I) {
+ auto FName(readStringFromTable());
+ if (std::error_code EC = FName.getError())
+ return EC;
+
+ auto Offset = readNumber<uint64_t>();
+ if (std::error_code EC = Offset.getError())
+ return EC;
+
+ FuncOffsetTable[*FName] = *Offset;
+ }
+ End = TableStart;
+ Data = SavedData;
+ return sampleprof_error::success;
+}
+
+void SampleProfileReaderCompactBinary::collectFuncsFrom(const Module &M) {
+ UseAllFuncs = false;
+ FuncsToUse.clear();
+ for (auto &F : M)
+ FuncsToUse.insert(FunctionSamples::getCanonicalFnName(F));
+}
+
+std::error_code SampleProfileReaderBinary::readSummaryEntry(
+ std::vector<ProfileSummaryEntry> &Entries) {
+ auto Cutoff = readNumber<uint64_t>();
+ if (std::error_code EC = Cutoff.getError())
+ return EC;
+
+ auto MinBlockCount = readNumber<uint64_t>();
+ if (std::error_code EC = MinBlockCount.getError())
+ return EC;
+
+ auto NumBlocks = readNumber<uint64_t>();
+ if (std::error_code EC = NumBlocks.getError())
+ return EC;
+
+ Entries.emplace_back(*Cutoff, *MinBlockCount, *NumBlocks);
+ return sampleprof_error::success;
+}
+
+std::error_code SampleProfileReaderBinary::readSummary() {
+ auto TotalCount = readNumber<uint64_t>();
+ if (std::error_code EC = TotalCount.getError())
+ return EC;
+
+ auto MaxBlockCount = readNumber<uint64_t>();
+ if (std::error_code EC = MaxBlockCount.getError())
+ return EC;
+
+ auto MaxFunctionCount = readNumber<uint64_t>();
+ if (std::error_code EC = MaxFunctionCount.getError())
+ return EC;
+
+ auto NumBlocks = readNumber<uint64_t>();
+ if (std::error_code EC = NumBlocks.getError())
+ return EC;
+
+ auto NumFunctions = readNumber<uint64_t>();
+ if (std::error_code EC = NumFunctions.getError())
+ return EC;
+
+ auto NumSummaryEntries = readNumber<uint64_t>();
+ if (std::error_code EC = NumSummaryEntries.getError())
+ return EC;
+
+ std::vector<ProfileSummaryEntry> Entries;
+ for (unsigned i = 0; i < *NumSummaryEntries; i++) {
+ std::error_code EC = readSummaryEntry(Entries);
+ if (EC != sampleprof_error::success)
+ return EC;
+ }
+ Summary = std::make_unique<ProfileSummary>(
+ ProfileSummary::PSK_Sample, Entries, *TotalCount, *MaxBlockCount, 0,
+ *MaxFunctionCount, *NumBlocks, *NumFunctions);
+
+ return sampleprof_error::success;
+}
+
+bool SampleProfileReaderRawBinary::hasFormat(const MemoryBuffer &Buffer) {
+ const uint8_t *Data =
+ reinterpret_cast<const uint8_t *>(Buffer.getBufferStart());
+ uint64_t Magic = decodeULEB128(Data);
+ return Magic == SPMagic();
+}
+
+bool SampleProfileReaderExtBinary::hasFormat(const MemoryBuffer &Buffer) {
+ const uint8_t *Data =
+ reinterpret_cast<const uint8_t *>(Buffer.getBufferStart());
+ uint64_t Magic = decodeULEB128(Data);
+ return Magic == SPMagic(SPF_Ext_Binary);
+}
+
+bool SampleProfileReaderCompactBinary::hasFormat(const MemoryBuffer &Buffer) {
+ const uint8_t *Data =
+ reinterpret_cast<const uint8_t *>(Buffer.getBufferStart());
+ uint64_t Magic = decodeULEB128(Data);
+ return Magic == SPMagic(SPF_Compact_Binary);
+}
+
+std::error_code SampleProfileReaderGCC::skipNextWord() {
+ uint32_t dummy;
+ if (!GcovBuffer.readInt(dummy))
+ return sampleprof_error::truncated;
+ return sampleprof_error::success;
+}
+
+template <typename T> ErrorOr<T> SampleProfileReaderGCC::readNumber() {
+ if (sizeof(T) <= sizeof(uint32_t)) {
+ uint32_t Val;
+ if (GcovBuffer.readInt(Val) && Val <= std::numeric_limits<T>::max())
+ return static_cast<T>(Val);
+ } else if (sizeof(T) <= sizeof(uint64_t)) {
+ uint64_t Val;
+ if (GcovBuffer.readInt64(Val) && Val <= std::numeric_limits<T>::max())
+ return static_cast<T>(Val);
+ }
+
+ std::error_code EC = sampleprof_error::malformed;
+ reportError(0, EC.message());
+ return EC;
+}
+
+ErrorOr<StringRef> SampleProfileReaderGCC::readString() {
+ StringRef Str;
+ if (!GcovBuffer.readString(Str))
+ return sampleprof_error::truncated;
+ return Str;
+}
+
+std::error_code SampleProfileReaderGCC::readHeader() {
+ // Read the magic identifier.
+ if (!GcovBuffer.readGCDAFormat())
+ return sampleprof_error::unrecognized_format;
+
+ // Read the version number. Note - the GCC reader does not validate this
+ // version, but the profile creator generates v704.
+ GCOV::GCOVVersion version;
+ if (!GcovBuffer.readGCOVVersion(version))
+ return sampleprof_error::unrecognized_format;
+
+ if (version != GCOV::V704)
+ return sampleprof_error::unsupported_version;
+
+ // Skip the empty integer.
+ if (std::error_code EC = skipNextWord())
+ return EC;
+
+ return sampleprof_error::success;
+}
+
+std::error_code SampleProfileReaderGCC::readSectionTag(uint32_t Expected) {
+ uint32_t Tag;
+ if (!GcovBuffer.readInt(Tag))
+ return sampleprof_error::truncated;
+
+ if (Tag != Expected)
+ return sampleprof_error::malformed;
+
+ if (std::error_code EC = skipNextWord())
+ return EC;
+
+ return sampleprof_error::success;
+}
+
+std::error_code SampleProfileReaderGCC::readNameTable() {
+ if (std::error_code EC = readSectionTag(GCOVTagAFDOFileNames))
+ return EC;
+
+ uint32_t Size;
+ if (!GcovBuffer.readInt(Size))
+ return sampleprof_error::truncated;
+
+ for (uint32_t I = 0; I < Size; ++I) {
+ StringRef Str;
+ if (!GcovBuffer.readString(Str))
+ return sampleprof_error::truncated;
+ Names.push_back(Str);
+ }
+
+ return sampleprof_error::success;
+}
+
+std::error_code SampleProfileReaderGCC::readFunctionProfiles() {
+ if (std::error_code EC = readSectionTag(GCOVTagAFDOFunction))
+ return EC;
+
+ uint32_t NumFunctions;
+ if (!GcovBuffer.readInt(NumFunctions))
+ return sampleprof_error::truncated;
+
+ InlineCallStack Stack;
+ for (uint32_t I = 0; I < NumFunctions; ++I)
+ if (std::error_code EC = readOneFunctionProfile(Stack, true, 0))
+ return EC;
+
+ computeSummary();
+ return sampleprof_error::success;
+}
+
+std::error_code SampleProfileReaderGCC::readOneFunctionProfile(
+ const InlineCallStack &InlineStack, bool Update, uint32_t Offset) {
+ uint64_t HeadCount = 0;
+ if (InlineStack.size() == 0)
+ if (!GcovBuffer.readInt64(HeadCount))
+ return sampleprof_error::truncated;
+
+ uint32_t NameIdx;
+ if (!GcovBuffer.readInt(NameIdx))
+ return sampleprof_error::truncated;
+
+ StringRef Name(Names[NameIdx]);
+
+ uint32_t NumPosCounts;
+ if (!GcovBuffer.readInt(NumPosCounts))
+ return sampleprof_error::truncated;
+
+ uint32_t NumCallsites;
+ if (!GcovBuffer.readInt(NumCallsites))
+ return sampleprof_error::truncated;
+
+ FunctionSamples *FProfile = nullptr;
+ if (InlineStack.size() == 0) {
+ // If this is a top function that we have already processed, do not
+ // update its profile again. This happens in the presence of
+ // function aliases. Since these aliases share the same function
+ // body, there will be identical replicated profiles for the
+ // original function. In this case, we simply not bother updating
+ // the profile of the original function.
+ FProfile = &Profiles[Name];
+ FProfile->addHeadSamples(HeadCount);
+ if (FProfile->getTotalSamples() > 0)
+ Update = false;
+ } else {
+ // Otherwise, we are reading an inlined instance. The top of the
+ // inline stack contains the profile of the caller. Insert this
+ // callee in the caller's CallsiteMap.
+ FunctionSamples *CallerProfile = InlineStack.front();
+ uint32_t LineOffset = Offset >> 16;
+ uint32_t Discriminator = Offset & 0xffff;
+ FProfile = &CallerProfile->functionSamplesAt(
+ LineLocation(LineOffset, Discriminator))[Name];
+ }
+ FProfile->setName(Name);
+
+ for (uint32_t I = 0; I < NumPosCounts; ++I) {
+ uint32_t Offset;
+ if (!GcovBuffer.readInt(Offset))
+ return sampleprof_error::truncated;
+
+ uint32_t NumTargets;
+ if (!GcovBuffer.readInt(NumTargets))
+ return sampleprof_error::truncated;
+
+ uint64_t Count;
+ if (!GcovBuffer.readInt64(Count))
+ return sampleprof_error::truncated;
+
+ // The line location is encoded in the offset as:
+ // high 16 bits: line offset to the start of the function.
+ // low 16 bits: discriminator.
+ uint32_t LineOffset = Offset >> 16;
+ uint32_t Discriminator = Offset & 0xffff;
+
+ InlineCallStack NewStack;
+ NewStack.push_back(FProfile);
+ NewStack.insert(NewStack.end(), InlineStack.begin(), InlineStack.end());
+ if (Update) {
+ // Walk up the inline stack, adding the samples on this line to
+ // the total sample count of the callers in the chain.
+ for (auto CallerProfile : NewStack)
+ CallerProfile->addTotalSamples(Count);
+
+ // Update the body samples for the current profile.
+ FProfile->addBodySamples(LineOffset, Discriminator, Count);
+ }
+
+ // Process the list of functions called at an indirect call site.
+ // These are all the targets that a function pointer (or virtual
+ // function) resolved at runtime.
+ for (uint32_t J = 0; J < NumTargets; J++) {
+ uint32_t HistVal;
+ if (!GcovBuffer.readInt(HistVal))
+ return sampleprof_error::truncated;
+
+ if (HistVal != HIST_TYPE_INDIR_CALL_TOPN)
+ return sampleprof_error::malformed;
+
+ uint64_t TargetIdx;
+ if (!GcovBuffer.readInt64(TargetIdx))
+ return sampleprof_error::truncated;
+ StringRef TargetName(Names[TargetIdx]);
+
+ uint64_t TargetCount;
+ if (!GcovBuffer.readInt64(TargetCount))
+ return sampleprof_error::truncated;
+
+ if (Update)
+ FProfile->addCalledTargetSamples(LineOffset, Discriminator,
+ TargetName, TargetCount);
+ }
+ }
+
+ // Process all the inlined callers into the current function. These
+ // are all the callsites that were inlined into this function.
+ for (uint32_t I = 0; I < NumCallsites; I++) {
+ // The offset is encoded as:
+ // high 16 bits: line offset to the start of the function.
+ // low 16 bits: discriminator.
+ uint32_t Offset;
+ if (!GcovBuffer.readInt(Offset))
+ return sampleprof_error::truncated;
+ InlineCallStack NewStack;
+ NewStack.push_back(FProfile);
+ NewStack.insert(NewStack.end(), InlineStack.begin(), InlineStack.end());
+ if (std::error_code EC = readOneFunctionProfile(NewStack, Update, Offset))
+ return EC;
+ }
+
+ return sampleprof_error::success;
+}
+
+/// Read a GCC AutoFDO profile.
+///
+/// This format is generated by the Linux Perf conversion tool at
+/// https://github.com/google/autofdo.
+std::error_code SampleProfileReaderGCC::readImpl() {
+ // Read the string table.
+ if (std::error_code EC = readNameTable())
+ return EC;
+
+ // Read the source profile.
+ if (std::error_code EC = readFunctionProfiles())
+ return EC;
+
+ return sampleprof_error::success;
+}
+
+bool SampleProfileReaderGCC::hasFormat(const MemoryBuffer &Buffer) {
+ StringRef Magic(reinterpret_cast<const char *>(Buffer.getBufferStart()));
+ return Magic == "adcg*704";
+}
+
+void SampleProfileReaderItaniumRemapper::applyRemapping(LLVMContext &Ctx) {
+ // If the reader is in compact format, we can't remap it because
+ // we don't know what the original function names were.
+ if (Reader.getFormat() == SPF_Compact_Binary) {
+ Ctx.diagnose(DiagnosticInfoSampleProfile(
+ Reader.getBuffer()->getBufferIdentifier(),
+ "Profile data remapping cannot be applied to profile data "
+ "in compact format (original mangled names are not available).",
+ DS_Warning));
+ return;
+ }
+
+ assert(Remappings && "should be initialized while creating remapper");
+ for (auto &Sample : Reader.getProfiles())
+ if (auto Key = Remappings->insert(Sample.first()))
+ SampleMap.insert({Key, &Sample.second});
+
+ RemappingApplied = true;
+}
+
+FunctionSamples *
+SampleProfileReaderItaniumRemapper::getSamplesFor(StringRef Fname) {
+ if (auto Key = Remappings->lookup(Fname))
+ return SampleMap.lookup(Key);
+ return nullptr;
+}
+
+/// Prepare a memory buffer for the contents of \p Filename.
+///
+/// \returns an error code indicating the status of the buffer.
+static ErrorOr<std::unique_ptr<MemoryBuffer>>
+setupMemoryBuffer(const Twine &Filename) {
+ auto BufferOrErr = MemoryBuffer::getFileOrSTDIN(Filename);
+ if (std::error_code EC = BufferOrErr.getError())
+ return EC;
+ auto Buffer = std::move(BufferOrErr.get());
+
+ // Sanity check the file.
+ if (uint64_t(Buffer->getBufferSize()) > std::numeric_limits<uint32_t>::max())
+ return sampleprof_error::too_large;
+
+ return std::move(Buffer);
+}
+
+/// Create a sample profile reader based on the format of the input file.
+///
+/// \param Filename The file to open.
+///
+/// \param C The LLVM context to use to emit diagnostics.
+///
+/// \param RemapFilename The file used for profile remapping.
+///
+/// \returns an error code indicating the status of the created reader.
+ErrorOr<std::unique_ptr<SampleProfileReader>>
+SampleProfileReader::create(const std::string Filename, LLVMContext &C,
+ const std::string RemapFilename) {
+ auto BufferOrError = setupMemoryBuffer(Filename);
+ if (std::error_code EC = BufferOrError.getError())
+ return EC;
+ return create(BufferOrError.get(), C, RemapFilename);
+}
+
+/// Create a sample profile remapper from the given input, to remap the
+/// function names in the given profile data.
+///
+/// \param Filename The file to open.
+///
+/// \param Reader The profile reader the remapper is going to be applied to.
+///
+/// \param C The LLVM context to use to emit diagnostics.
+///
+/// \returns an error code indicating the status of the created reader.
+ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>>
+SampleProfileReaderItaniumRemapper::create(const std::string Filename,
+ SampleProfileReader &Reader,
+ LLVMContext &C) {
+ auto BufferOrError = setupMemoryBuffer(Filename);
+ if (std::error_code EC = BufferOrError.getError())
+ return EC;
+ return create(BufferOrError.get(), Reader, C);
+}
+
+/// Create a sample profile remapper from the given input, to remap the
+/// function names in the given profile data.
+///
+/// \param B The memory buffer to create the reader from (assumes ownership).
+///
+/// \param C The LLVM context to use to emit diagnostics.
+///
+/// \param Reader The profile reader the remapper is going to be applied to.
+///
+/// \returns an error code indicating the status of the created reader.
+ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>>
+SampleProfileReaderItaniumRemapper::create(std::unique_ptr<MemoryBuffer> &B,
+ SampleProfileReader &Reader,
+ LLVMContext &C) {
+ auto Remappings = std::make_unique<SymbolRemappingReader>();
+ if (Error E = Remappings->read(*B.get())) {
+ handleAllErrors(
+ std::move(E), [&](const SymbolRemappingParseError &ParseError) {
+ C.diagnose(DiagnosticInfoSampleProfile(B->getBufferIdentifier(),
+ ParseError.getLineNum(),
+ ParseError.getMessage()));
+ });
+ return sampleprof_error::malformed;
+ }
+
+ return std::make_unique<SampleProfileReaderItaniumRemapper>(
+ std::move(B), std::move(Remappings), Reader);
+}
+
+/// Create a sample profile reader based on the format of the input data.
+///
+/// \param B The memory buffer to create the reader from (assumes ownership).
+///
+/// \param C The LLVM context to use to emit diagnostics.
+///
+/// \param RemapFilename The file used for profile remapping.
+///
+/// \returns an error code indicating the status of the created reader.
+ErrorOr<std::unique_ptr<SampleProfileReader>>
+SampleProfileReader::create(std::unique_ptr<MemoryBuffer> &B, LLVMContext &C,
+ const std::string RemapFilename) {
+ std::unique_ptr<SampleProfileReader> Reader;
+ if (SampleProfileReaderRawBinary::hasFormat(*B))
+ Reader.reset(new SampleProfileReaderRawBinary(std::move(B), C));
+ else if (SampleProfileReaderExtBinary::hasFormat(*B))
+ Reader.reset(new SampleProfileReaderExtBinary(std::move(B), C));
+ else if (SampleProfileReaderCompactBinary::hasFormat(*B))
+ Reader.reset(new SampleProfileReaderCompactBinary(std::move(B), C));
+ else if (SampleProfileReaderGCC::hasFormat(*B))
+ Reader.reset(new SampleProfileReaderGCC(std::move(B), C));
+ else if (SampleProfileReaderText::hasFormat(*B))
+ Reader.reset(new SampleProfileReaderText(std::move(B), C));
+ else
+ return sampleprof_error::unrecognized_format;
+
+ if (!RemapFilename.empty()) {
+ auto ReaderOrErr =
+ SampleProfileReaderItaniumRemapper::create(RemapFilename, *Reader, C);
+ if (std::error_code EC = ReaderOrErr.getError()) {
+ std::string Msg = "Could not create remapper: " + EC.message();
+ C.diagnose(DiagnosticInfoSampleProfile(RemapFilename, Msg));
+ return EC;
+ }
+ Reader->Remapper = std::move(ReaderOrErr.get());
+ }
+
+ FunctionSamples::Format = Reader->getFormat();
+ if (std::error_code EC = Reader->readHeader()) {
+ return EC;
+ }
+
+ return std::move(Reader);
+}
+
+// For text and GCC file formats, we compute the summary after reading the
+// profile. Binary format has the profile summary in its header.
+void SampleProfileReader::computeSummary() {
+ SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs);
+ for (const auto &I : Profiles) {
+ const FunctionSamples &Profile = I.second;
+ Builder.addRecord(Profile);
+ }
+ Summary = Builder.getSummary();
+}
diff --git a/llvm/lib/ProfileData/SampleProfWriter.cpp b/llvm/lib/ProfileData/SampleProfWriter.cpp
new file mode 100644
index 000000000000..8d09af31f94b
--- /dev/null
+++ b/llvm/lib/ProfileData/SampleProfWriter.cpp
@@ -0,0 +1,621 @@
+//===- SampleProfWriter.cpp - Write LLVM sample profile data --------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the class that writes LLVM sample profiles. It
+// supports two file formats: text and binary. The textual representation
+// is useful for debugging and testing purposes. The binary representation
+// is more compact, resulting in smaller file sizes. However, they can
+// both be used interchangeably.
+//
+// See lib/ProfileData/SampleProfReader.cpp for documentation on each of the
+// supported formats.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ProfileData/SampleProfWriter.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ProfileData/ProfileCommon.h"
+#include "llvm/ProfileData/SampleProf.h"
+#include "llvm/Support/Compression.h"
+#include "llvm/Support/Endian.h"
+#include "llvm/Support/EndianStream.h"
+#include "llvm/Support/ErrorOr.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/LEB128.h"
+#include "llvm/Support/MD5.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cstdint>
+#include <memory>
+#include <set>
+#include <system_error>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+using namespace sampleprof;
+
+std::error_code SampleProfileWriter::writeFuncProfiles(
+ const StringMap<FunctionSamples> &ProfileMap) {
+ // Sort the ProfileMap by total samples.
+ typedef std::pair<StringRef, const FunctionSamples *> NameFunctionSamples;
+ std::vector<NameFunctionSamples> V;
+ for (const auto &I : ProfileMap)
+ V.push_back(std::make_pair(I.getKey(), &I.second));
+
+ llvm::stable_sort(
+ V, [](const NameFunctionSamples &A, const NameFunctionSamples &B) {
+ if (A.second->getTotalSamples() == B.second->getTotalSamples())
+ return A.first > B.first;
+ return A.second->getTotalSamples() > B.second->getTotalSamples();
+ });
+
+ for (const auto &I : V) {
+ if (std::error_code EC = writeSample(*I.second))
+ return EC;
+ }
+ return sampleprof_error::success;
+}
+
+std::error_code
+SampleProfileWriter::write(const StringMap<FunctionSamples> &ProfileMap) {
+ if (std::error_code EC = writeHeader(ProfileMap))
+ return EC;
+
+ if (std::error_code EC = writeFuncProfiles(ProfileMap))
+ return EC;
+
+ return sampleprof_error::success;
+}
+
+SecHdrTableEntry &
+SampleProfileWriterExtBinaryBase::getEntryInLayout(SecType Type) {
+ auto SecIt = std::find_if(
+ SectionHdrLayout.begin(), SectionHdrLayout.end(),
+ [=](const auto &Entry) -> bool { return Entry.Type == Type; });
+ return *SecIt;
+}
+
+/// Return the current position and prepare to use it as the start
+/// position of a section.
+uint64_t SampleProfileWriterExtBinaryBase::markSectionStart(SecType Type) {
+ uint64_t SectionStart = OutputStream->tell();
+ auto &Entry = getEntryInLayout(Type);
+ // Use LocalBuf as a temporary output for writting data.
+ if (hasSecFlag(Entry, SecFlagCompress))
+ LocalBufStream.swap(OutputStream);
+ return SectionStart;
+}
+
+std::error_code SampleProfileWriterExtBinaryBase::compressAndOutput() {
+ if (!llvm::zlib::isAvailable())
+ return sampleprof_error::zlib_unavailable;
+ std::string &UncompressedStrings =
+ static_cast<raw_string_ostream *>(LocalBufStream.get())->str();
+ if (UncompressedStrings.size() == 0)
+ return sampleprof_error::success;
+ auto &OS = *OutputStream;
+ SmallString<128> CompressedStrings;
+ llvm::Error E = zlib::compress(UncompressedStrings, CompressedStrings,
+ zlib::BestSizeCompression);
+ if (E)
+ return sampleprof_error::compress_failed;
+ encodeULEB128(UncompressedStrings.size(), OS);
+ encodeULEB128(CompressedStrings.size(), OS);
+ OS << CompressedStrings.str();
+ UncompressedStrings.clear();
+ return sampleprof_error::success;
+}
+
+/// Add a new section into section header table.
+std::error_code
+SampleProfileWriterExtBinaryBase::addNewSection(SecType Type,
+ uint64_t SectionStart) {
+ auto Entry = getEntryInLayout(Type);
+ if (hasSecFlag(Entry, SecFlagCompress)) {
+ LocalBufStream.swap(OutputStream);
+ if (std::error_code EC = compressAndOutput())
+ return EC;
+ }
+ SecHdrTable.push_back({Type, Entry.Flags, SectionStart - FileStart,
+ OutputStream->tell() - SectionStart});
+ return sampleprof_error::success;
+}
+
+std::error_code SampleProfileWriterExtBinaryBase::write(
+ const StringMap<FunctionSamples> &ProfileMap) {
+ if (std::error_code EC = writeHeader(ProfileMap))
+ return EC;
+
+ std::string LocalBuf;
+ LocalBufStream = std::make_unique<raw_string_ostream>(LocalBuf);
+ if (std::error_code EC = writeSections(ProfileMap))
+ return EC;
+
+ if (std::error_code EC = writeSecHdrTable())
+ return EC;
+
+ return sampleprof_error::success;
+}
+
+std::error_code
+SampleProfileWriterExtBinary::writeSample(const FunctionSamples &S) {
+ uint64_t Offset = OutputStream->tell();
+ StringRef Name = S.getName();
+ FuncOffsetTable[Name] = Offset - SecLBRProfileStart;
+ encodeULEB128(S.getHeadSamples(), *OutputStream);
+ return writeBody(S);
+}
+
+std::error_code SampleProfileWriterExtBinary::writeFuncOffsetTable() {
+ auto &OS = *OutputStream;
+
+ // Write out the table size.
+ encodeULEB128(FuncOffsetTable.size(), OS);
+
+ // Write out FuncOffsetTable.
+ for (auto entry : FuncOffsetTable) {
+ writeNameIdx(entry.first);
+ encodeULEB128(entry.second, OS);
+ }
+ return sampleprof_error::success;
+}
+
+std::error_code SampleProfileWriterExtBinary::writeSections(
+ const StringMap<FunctionSamples> &ProfileMap) {
+ uint64_t SectionStart = markSectionStart(SecProfSummary);
+ computeSummary(ProfileMap);
+ if (auto EC = writeSummary())
+ return EC;
+ if (std::error_code EC = addNewSection(SecProfSummary, SectionStart))
+ return EC;
+
+ // Generate the name table for all the functions referenced in the profile.
+ SectionStart = markSectionStart(SecNameTable);
+ for (const auto &I : ProfileMap) {
+ addName(I.first());
+ addNames(I.second);
+ }
+ writeNameTable();
+ if (std::error_code EC = addNewSection(SecNameTable, SectionStart))
+ return EC;
+
+ SectionStart = markSectionStart(SecLBRProfile);
+ SecLBRProfileStart = OutputStream->tell();
+ if (std::error_code EC = writeFuncProfiles(ProfileMap))
+ return EC;
+ if (std::error_code EC = addNewSection(SecLBRProfile, SectionStart))
+ return EC;
+
+ if (ProfSymList && ProfSymList->toCompress())
+ setToCompressSection(SecProfileSymbolList);
+
+ SectionStart = markSectionStart(SecProfileSymbolList);
+ if (ProfSymList && ProfSymList->size() > 0)
+ if (std::error_code EC = ProfSymList->write(*OutputStream))
+ return EC;
+ if (std::error_code EC = addNewSection(SecProfileSymbolList, SectionStart))
+ return EC;
+
+ SectionStart = markSectionStart(SecFuncOffsetTable);
+ if (std::error_code EC = writeFuncOffsetTable())
+ return EC;
+ if (std::error_code EC = addNewSection(SecFuncOffsetTable, SectionStart))
+ return EC;
+
+ return sampleprof_error::success;
+}
+
+std::error_code SampleProfileWriterCompactBinary::write(
+ const StringMap<FunctionSamples> &ProfileMap) {
+ if (std::error_code EC = SampleProfileWriter::write(ProfileMap))
+ return EC;
+ if (std::error_code EC = writeFuncOffsetTable())
+ return EC;
+ return sampleprof_error::success;
+}
+
+/// Write samples to a text file.
+///
+/// Note: it may be tempting to implement this in terms of
+/// FunctionSamples::print(). Please don't. The dump functionality is intended
+/// for debugging and has no specified form.
+///
+/// The format used here is more structured and deliberate because
+/// it needs to be parsed by the SampleProfileReaderText class.
+std::error_code SampleProfileWriterText::writeSample(const FunctionSamples &S) {
+ auto &OS = *OutputStream;
+ OS << S.getName() << ":" << S.getTotalSamples();
+ if (Indent == 0)
+ OS << ":" << S.getHeadSamples();
+ OS << "\n";
+
+ SampleSorter<LineLocation, SampleRecord> SortedSamples(S.getBodySamples());
+ for (const auto &I : SortedSamples.get()) {
+ LineLocation Loc = I->first;
+ const SampleRecord &Sample = I->second;
+ OS.indent(Indent + 1);
+ if (Loc.Discriminator == 0)
+ OS << Loc.LineOffset << ": ";
+ else
+ OS << Loc.LineOffset << "." << Loc.Discriminator << ": ";
+
+ OS << Sample.getSamples();
+
+ for (const auto &J : Sample.getSortedCallTargets())
+ OS << " " << J.first << ":" << J.second;
+ OS << "\n";
+ }
+
+ SampleSorter<LineLocation, FunctionSamplesMap> SortedCallsiteSamples(
+ S.getCallsiteSamples());
+ Indent += 1;
+ for (const auto &I : SortedCallsiteSamples.get())
+ for (const auto &FS : I->second) {
+ LineLocation Loc = I->first;
+ const FunctionSamples &CalleeSamples = FS.second;
+ OS.indent(Indent);
+ if (Loc.Discriminator == 0)
+ OS << Loc.LineOffset << ": ";
+ else
+ OS << Loc.LineOffset << "." << Loc.Discriminator << ": ";
+ if (std::error_code EC = writeSample(CalleeSamples))
+ return EC;
+ }
+ Indent -= 1;
+
+ return sampleprof_error::success;
+}
+
+std::error_code SampleProfileWriterBinary::writeNameIdx(StringRef FName) {
+ const auto &ret = NameTable.find(FName);
+ if (ret == NameTable.end())
+ return sampleprof_error::truncated_name_table;
+ encodeULEB128(ret->second, *OutputStream);
+ return sampleprof_error::success;
+}
+
+void SampleProfileWriterBinary::addName(StringRef FName) {
+ NameTable.insert(std::make_pair(FName, 0));
+}
+
+void SampleProfileWriterBinary::addNames(const FunctionSamples &S) {
+ // Add all the names in indirect call targets.
+ for (const auto &I : S.getBodySamples()) {
+ const SampleRecord &Sample = I.second;
+ for (const auto &J : Sample.getCallTargets())
+ addName(J.first());
+ }
+
+ // Recursively add all the names for inlined callsites.
+ for (const auto &J : S.getCallsiteSamples())
+ for (const auto &FS : J.second) {
+ const FunctionSamples &CalleeSamples = FS.second;
+ addName(CalleeSamples.getName());
+ addNames(CalleeSamples);
+ }
+}
+
+void SampleProfileWriterBinary::stablizeNameTable(std::set<StringRef> &V) {
+ // Sort the names to make NameTable deterministic.
+ for (const auto &I : NameTable)
+ V.insert(I.first);
+ int i = 0;
+ for (const StringRef &N : V)
+ NameTable[N] = i++;
+}
+
+std::error_code SampleProfileWriterBinary::writeNameTable() {
+ auto &OS = *OutputStream;
+ std::set<StringRef> V;
+ stablizeNameTable(V);
+
+ // Write out the name table.
+ encodeULEB128(NameTable.size(), OS);
+ for (auto N : V) {
+ OS << N;
+ encodeULEB128(0, OS);
+ }
+ return sampleprof_error::success;
+}
+
+std::error_code SampleProfileWriterCompactBinary::writeFuncOffsetTable() {
+ auto &OS = *OutputStream;
+
+ // Fill the slot remembered by TableOffset with the offset of FuncOffsetTable.
+ auto &OFS = static_cast<raw_fd_ostream &>(OS);
+ uint64_t FuncOffsetTableStart = OS.tell();
+ if (OFS.seek(TableOffset) == (uint64_t)-1)
+ return sampleprof_error::ostream_seek_unsupported;
+ support::endian::Writer Writer(*OutputStream, support::little);
+ Writer.write(FuncOffsetTableStart);
+ if (OFS.seek(FuncOffsetTableStart) == (uint64_t)-1)
+ return sampleprof_error::ostream_seek_unsupported;
+
+ // Write out the table size.
+ encodeULEB128(FuncOffsetTable.size(), OS);
+
+ // Write out FuncOffsetTable.
+ for (auto entry : FuncOffsetTable) {
+ writeNameIdx(entry.first);
+ encodeULEB128(entry.second, OS);
+ }
+ return sampleprof_error::success;
+}
+
+std::error_code SampleProfileWriterCompactBinary::writeNameTable() {
+ auto &OS = *OutputStream;
+ std::set<StringRef> V;
+ stablizeNameTable(V);
+
+ // Write out the name table.
+ encodeULEB128(NameTable.size(), OS);
+ for (auto N : V) {
+ encodeULEB128(MD5Hash(N), OS);
+ }
+ return sampleprof_error::success;
+}
+
+std::error_code
+SampleProfileWriterBinary::writeMagicIdent(SampleProfileFormat Format) {
+ auto &OS = *OutputStream;
+ // Write file magic identifier.
+ encodeULEB128(SPMagic(Format), OS);
+ encodeULEB128(SPVersion(), OS);
+ return sampleprof_error::success;
+}
+
+std::error_code SampleProfileWriterBinary::writeHeader(
+ const StringMap<FunctionSamples> &ProfileMap) {
+ writeMagicIdent(Format);
+
+ computeSummary(ProfileMap);
+ if (auto EC = writeSummary())
+ return EC;
+
+ // Generate the name table for all the functions referenced in the profile.
+ for (const auto &I : ProfileMap) {
+ addName(I.first());
+ addNames(I.second);
+ }
+
+ writeNameTable();
+ return sampleprof_error::success;
+}
+
+void SampleProfileWriterExtBinaryBase::setToCompressAllSections() {
+ for (auto &Entry : SectionHdrLayout)
+ addSecFlags(Entry, SecFlagCompress);
+}
+
+void SampleProfileWriterExtBinaryBase::setToCompressSection(SecType Type) {
+ addSectionFlags(Type, SecFlagCompress);
+}
+
+void SampleProfileWriterExtBinaryBase::addSectionFlags(SecType Type,
+ SecFlags Flags) {
+ for (auto &Entry : SectionHdrLayout) {
+ if (Entry.Type == Type)
+ addSecFlags(Entry, Flags);
+ }
+}
+
+void SampleProfileWriterExtBinaryBase::allocSecHdrTable() {
+ support::endian::Writer Writer(*OutputStream, support::little);
+
+ Writer.write(static_cast<uint64_t>(SectionHdrLayout.size()));
+ SecHdrTableOffset = OutputStream->tell();
+ for (uint32_t i = 0; i < SectionHdrLayout.size(); i++) {
+ Writer.write(static_cast<uint64_t>(-1));
+ Writer.write(static_cast<uint64_t>(-1));
+ Writer.write(static_cast<uint64_t>(-1));
+ Writer.write(static_cast<uint64_t>(-1));
+ }
+}
+
+std::error_code SampleProfileWriterExtBinaryBase::writeSecHdrTable() {
+ auto &OFS = static_cast<raw_fd_ostream &>(*OutputStream);
+ uint64_t Saved = OutputStream->tell();
+
+ // Set OutputStream to the location saved in SecHdrTableOffset.
+ if (OFS.seek(SecHdrTableOffset) == (uint64_t)-1)
+ return sampleprof_error::ostream_seek_unsupported;
+ support::endian::Writer Writer(*OutputStream, support::little);
+
+ DenseMap<uint32_t, uint32_t> IndexMap;
+ for (uint32_t i = 0; i < SecHdrTable.size(); i++) {
+ IndexMap.insert({static_cast<uint32_t>(SecHdrTable[i].Type), i});
+ }
+
+ // Write the section header table in the order specified in
+ // SectionHdrLayout. That is the sections order Reader will see.
+ // Note that the sections order in which Reader expects to read
+ // may be different from the order in which Writer is able to
+ // write, so we need to adjust the order in SecHdrTable to be
+ // consistent with SectionHdrLayout when we write SecHdrTable
+ // to the memory.
+ for (uint32_t i = 0; i < SectionHdrLayout.size(); i++) {
+ uint32_t idx = IndexMap[static_cast<uint32_t>(SectionHdrLayout[i].Type)];
+ Writer.write(static_cast<uint64_t>(SecHdrTable[idx].Type));
+ Writer.write(static_cast<uint64_t>(SecHdrTable[idx].Flags));
+ Writer.write(static_cast<uint64_t>(SecHdrTable[idx].Offset));
+ Writer.write(static_cast<uint64_t>(SecHdrTable[idx].Size));
+ }
+
+ // Reset OutputStream.
+ if (OFS.seek(Saved) == (uint64_t)-1)
+ return sampleprof_error::ostream_seek_unsupported;
+
+ return sampleprof_error::success;
+}
+
+std::error_code SampleProfileWriterExtBinaryBase::writeHeader(
+ const StringMap<FunctionSamples> &ProfileMap) {
+ auto &OS = *OutputStream;
+ FileStart = OS.tell();
+ writeMagicIdent(Format);
+
+ allocSecHdrTable();
+ return sampleprof_error::success;
+}
+
+std::error_code SampleProfileWriterCompactBinary::writeHeader(
+ const StringMap<FunctionSamples> &ProfileMap) {
+ support::endian::Writer Writer(*OutputStream, support::little);
+ if (auto EC = SampleProfileWriterBinary::writeHeader(ProfileMap))
+ return EC;
+
+ // Reserve a slot for the offset of function offset table. The slot will
+ // be populated with the offset of FuncOffsetTable later.
+ TableOffset = OutputStream->tell();
+ Writer.write(static_cast<uint64_t>(-2));
+ return sampleprof_error::success;
+}
+
+std::error_code SampleProfileWriterBinary::writeSummary() {
+ auto &OS = *OutputStream;
+ encodeULEB128(Summary->getTotalCount(), OS);
+ encodeULEB128(Summary->getMaxCount(), OS);
+ encodeULEB128(Summary->getMaxFunctionCount(), OS);
+ encodeULEB128(Summary->getNumCounts(), OS);
+ encodeULEB128(Summary->getNumFunctions(), OS);
+ std::vector<ProfileSummaryEntry> &Entries = Summary->getDetailedSummary();
+ encodeULEB128(Entries.size(), OS);
+ for (auto Entry : Entries) {
+ encodeULEB128(Entry.Cutoff, OS);
+ encodeULEB128(Entry.MinCount, OS);
+ encodeULEB128(Entry.NumCounts, OS);
+ }
+ return sampleprof_error::success;
+}
+std::error_code SampleProfileWriterBinary::writeBody(const FunctionSamples &S) {
+ auto &OS = *OutputStream;
+
+ if (std::error_code EC = writeNameIdx(S.getName()))
+ return EC;
+
+ encodeULEB128(S.getTotalSamples(), OS);
+
+ // Emit all the body samples.
+ encodeULEB128(S.getBodySamples().size(), OS);
+ for (const auto &I : S.getBodySamples()) {
+ LineLocation Loc = I.first;
+ const SampleRecord &Sample = I.second;
+ encodeULEB128(Loc.LineOffset, OS);
+ encodeULEB128(Loc.Discriminator, OS);
+ encodeULEB128(Sample.getSamples(), OS);
+ encodeULEB128(Sample.getCallTargets().size(), OS);
+ for (const auto &J : Sample.getSortedCallTargets()) {
+ StringRef Callee = J.first;
+ uint64_t CalleeSamples = J.second;
+ if (std::error_code EC = writeNameIdx(Callee))
+ return EC;
+ encodeULEB128(CalleeSamples, OS);
+ }
+ }
+
+ // Recursively emit all the callsite samples.
+ uint64_t NumCallsites = 0;
+ for (const auto &J : S.getCallsiteSamples())
+ NumCallsites += J.second.size();
+ encodeULEB128(NumCallsites, OS);
+ for (const auto &J : S.getCallsiteSamples())
+ for (const auto &FS : J.second) {
+ LineLocation Loc = J.first;
+ const FunctionSamples &CalleeSamples = FS.second;
+ encodeULEB128(Loc.LineOffset, OS);
+ encodeULEB128(Loc.Discriminator, OS);
+ if (std::error_code EC = writeBody(CalleeSamples))
+ return EC;
+ }
+
+ return sampleprof_error::success;
+}
+
+/// Write samples of a top-level function to a binary file.
+///
+/// \returns true if the samples were written successfully, false otherwise.
+std::error_code
+SampleProfileWriterBinary::writeSample(const FunctionSamples &S) {
+ encodeULEB128(S.getHeadSamples(), *OutputStream);
+ return writeBody(S);
+}
+
+std::error_code
+SampleProfileWriterCompactBinary::writeSample(const FunctionSamples &S) {
+ uint64_t Offset = OutputStream->tell();
+ StringRef Name = S.getName();
+ FuncOffsetTable[Name] = Offset;
+ encodeULEB128(S.getHeadSamples(), *OutputStream);
+ return writeBody(S);
+}
+
+/// Create a sample profile file writer based on the specified format.
+///
+/// \param Filename The file to create.
+///
+/// \param Format Encoding format for the profile file.
+///
+/// \returns an error code indicating the status of the created writer.
+ErrorOr<std::unique_ptr<SampleProfileWriter>>
+SampleProfileWriter::create(StringRef Filename, SampleProfileFormat Format) {
+ std::error_code EC;
+ std::unique_ptr<raw_ostream> OS;
+ if (Format == SPF_Binary || Format == SPF_Ext_Binary ||
+ Format == SPF_Compact_Binary)
+ OS.reset(new raw_fd_ostream(Filename, EC, sys::fs::OF_None));
+ else
+ OS.reset(new raw_fd_ostream(Filename, EC, sys::fs::OF_Text));
+ if (EC)
+ return EC;
+
+ return create(OS, Format);
+}
+
+/// Create a sample profile stream writer based on the specified format.
+///
+/// \param OS The output stream to store the profile data to.
+///
+/// \param Format Encoding format for the profile file.
+///
+/// \returns an error code indicating the status of the created writer.
+ErrorOr<std::unique_ptr<SampleProfileWriter>>
+SampleProfileWriter::create(std::unique_ptr<raw_ostream> &OS,
+ SampleProfileFormat Format) {
+ std::error_code EC;
+ std::unique_ptr<SampleProfileWriter> Writer;
+
+ if (Format == SPF_Binary)
+ Writer.reset(new SampleProfileWriterRawBinary(OS));
+ else if (Format == SPF_Ext_Binary)
+ Writer.reset(new SampleProfileWriterExtBinary(OS));
+ else if (Format == SPF_Compact_Binary)
+ Writer.reset(new SampleProfileWriterCompactBinary(OS));
+ else if (Format == SPF_Text)
+ Writer.reset(new SampleProfileWriterText(OS));
+ else if (Format == SPF_GCC)
+ EC = sampleprof_error::unsupported_writing_format;
+ else
+ EC = sampleprof_error::unrecognized_format;
+
+ if (EC)
+ return EC;
+
+ Writer->Format = Format;
+ return std::move(Writer);
+}
+
+void SampleProfileWriter::computeSummary(
+ const StringMap<FunctionSamples> &ProfileMap) {
+ SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs);
+ for (const auto &I : ProfileMap) {
+ const FunctionSamples &Profile = I.second;
+ Builder.addRecord(Profile);
+ }
+ Summary = Builder.getSummary();
+}