summaryrefslogtreecommitdiff
path: root/llvm/lib/Support/Host.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Support/Host.cpp')
-rw-r--r--llvm/lib/Support/Host.cpp1540
1 files changed, 1540 insertions, 0 deletions
diff --git a/llvm/lib/Support/Host.cpp b/llvm/lib/Support/Host.cpp
new file mode 100644
index 000000000000..2a473a1994c2
--- /dev/null
+++ b/llvm/lib/Support/Host.cpp
@@ -0,0 +1,1540 @@
+//===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the operating system Host concept.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/Host.h"
+#include "llvm/Support/TargetParser.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/raw_ostream.h"
+#include <assert.h>
+#include <string.h>
+
+// Include the platform-specific parts of this class.
+#ifdef LLVM_ON_UNIX
+#include "Unix/Host.inc"
+#endif
+#ifdef _WIN32
+#include "Windows/Host.inc"
+#endif
+#ifdef _MSC_VER
+#include <intrin.h>
+#endif
+#if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
+#include <mach/host_info.h>
+#include <mach/mach.h>
+#include <mach/mach_host.h>
+#include <mach/machine.h>
+#endif
+
+#define DEBUG_TYPE "host-detection"
+
+//===----------------------------------------------------------------------===//
+//
+// Implementations of the CPU detection routines
+//
+//===----------------------------------------------------------------------===//
+
+using namespace llvm;
+
+static std::unique_ptr<llvm::MemoryBuffer>
+ LLVM_ATTRIBUTE_UNUSED getProcCpuinfoContent() {
+ llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
+ llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
+ if (std::error_code EC = Text.getError()) {
+ llvm::errs() << "Can't read "
+ << "/proc/cpuinfo: " << EC.message() << "\n";
+ return nullptr;
+ }
+ return std::move(*Text);
+}
+
+StringRef sys::detail::getHostCPUNameForPowerPC(StringRef ProcCpuinfoContent) {
+ // Access to the Processor Version Register (PVR) on PowerPC is privileged,
+ // and so we must use an operating-system interface to determine the current
+ // processor type. On Linux, this is exposed through the /proc/cpuinfo file.
+ const char *generic = "generic";
+
+ // The cpu line is second (after the 'processor: 0' line), so if this
+ // buffer is too small then something has changed (or is wrong).
+ StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin();
+ StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end();
+
+ StringRef::const_iterator CIP = CPUInfoStart;
+
+ StringRef::const_iterator CPUStart = 0;
+ size_t CPULen = 0;
+
+ // We need to find the first line which starts with cpu, spaces, and a colon.
+ // After the colon, there may be some additional spaces and then the cpu type.
+ while (CIP < CPUInfoEnd && CPUStart == 0) {
+ if (CIP < CPUInfoEnd && *CIP == '\n')
+ ++CIP;
+
+ if (CIP < CPUInfoEnd && *CIP == 'c') {
+ ++CIP;
+ if (CIP < CPUInfoEnd && *CIP == 'p') {
+ ++CIP;
+ if (CIP < CPUInfoEnd && *CIP == 'u') {
+ ++CIP;
+ while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
+ ++CIP;
+
+ if (CIP < CPUInfoEnd && *CIP == ':') {
+ ++CIP;
+ while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
+ ++CIP;
+
+ if (CIP < CPUInfoEnd) {
+ CPUStart = CIP;
+ while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&
+ *CIP != ',' && *CIP != '\n'))
+ ++CIP;
+ CPULen = CIP - CPUStart;
+ }
+ }
+ }
+ }
+ }
+
+ if (CPUStart == 0)
+ while (CIP < CPUInfoEnd && *CIP != '\n')
+ ++CIP;
+ }
+
+ if (CPUStart == 0)
+ return generic;
+
+ return StringSwitch<const char *>(StringRef(CPUStart, CPULen))
+ .Case("604e", "604e")
+ .Case("604", "604")
+ .Case("7400", "7400")
+ .Case("7410", "7400")
+ .Case("7447", "7400")
+ .Case("7455", "7450")
+ .Case("G4", "g4")
+ .Case("POWER4", "970")
+ .Case("PPC970FX", "970")
+ .Case("PPC970MP", "970")
+ .Case("G5", "g5")
+ .Case("POWER5", "g5")
+ .Case("A2", "a2")
+ .Case("POWER6", "pwr6")
+ .Case("POWER7", "pwr7")
+ .Case("POWER8", "pwr8")
+ .Case("POWER8E", "pwr8")
+ .Case("POWER8NVL", "pwr8")
+ .Case("POWER9", "pwr9")
+ .Default(generic);
+}
+
+StringRef sys::detail::getHostCPUNameForARM(StringRef ProcCpuinfoContent) {
+ // The cpuid register on arm is not accessible from user space. On Linux,
+ // it is exposed through the /proc/cpuinfo file.
+
+ // Read 32 lines from /proc/cpuinfo, which should contain the CPU part line
+ // in all cases.
+ SmallVector<StringRef, 32> Lines;
+ ProcCpuinfoContent.split(Lines, "\n");
+
+ // Look for the CPU implementer line.
+ StringRef Implementer;
+ StringRef Hardware;
+ for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
+ if (Lines[I].startswith("CPU implementer"))
+ Implementer = Lines[I].substr(15).ltrim("\t :");
+ if (Lines[I].startswith("Hardware"))
+ Hardware = Lines[I].substr(8).ltrim("\t :");
+ }
+
+ if (Implementer == "0x41") { // ARM Ltd.
+ // MSM8992/8994 may give cpu part for the core that the kernel is running on,
+ // which is undeterministic and wrong. Always return cortex-a53 for these SoC.
+ if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996"))
+ return "cortex-a53";
+
+
+ // Look for the CPU part line.
+ for (unsigned I = 0, E = Lines.size(); I != E; ++I)
+ if (Lines[I].startswith("CPU part"))
+ // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
+ // values correspond to the "Part number" in the CP15/c0 register. The
+ // contents are specified in the various processor manuals.
+ return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
+ .Case("0x926", "arm926ej-s")
+ .Case("0xb02", "mpcore")
+ .Case("0xb36", "arm1136j-s")
+ .Case("0xb56", "arm1156t2-s")
+ .Case("0xb76", "arm1176jz-s")
+ .Case("0xc08", "cortex-a8")
+ .Case("0xc09", "cortex-a9")
+ .Case("0xc0f", "cortex-a15")
+ .Case("0xc20", "cortex-m0")
+ .Case("0xc23", "cortex-m3")
+ .Case("0xc24", "cortex-m4")
+ .Case("0xd04", "cortex-a35")
+ .Case("0xd03", "cortex-a53")
+ .Case("0xd07", "cortex-a57")
+ .Case("0xd08", "cortex-a72")
+ .Case("0xd09", "cortex-a73")
+ .Case("0xd0a", "cortex-a75")
+ .Case("0xd0b", "cortex-a76")
+ .Default("generic");
+ }
+
+ if (Implementer == "0x42" || Implementer == "0x43") { // Broadcom | Cavium.
+ for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
+ if (Lines[I].startswith("CPU part")) {
+ return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
+ .Case("0x516", "thunderx2t99")
+ .Case("0x0516", "thunderx2t99")
+ .Case("0xaf", "thunderx2t99")
+ .Case("0x0af", "thunderx2t99")
+ .Case("0xa1", "thunderxt88")
+ .Case("0x0a1", "thunderxt88")
+ .Default("generic");
+ }
+ }
+ }
+
+ if (Implementer == "0x48") // HiSilicon Technologies, Inc.
+ // Look for the CPU part line.
+ for (unsigned I = 0, E = Lines.size(); I != E; ++I)
+ if (Lines[I].startswith("CPU part"))
+ // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
+ // values correspond to the "Part number" in the CP15/c0 register. The
+ // contents are specified in the various processor manuals.
+ return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
+ .Case("0xd01", "tsv110")
+ .Default("generic");
+
+ if (Implementer == "0x51") // Qualcomm Technologies, Inc.
+ // Look for the CPU part line.
+ for (unsigned I = 0, E = Lines.size(); I != E; ++I)
+ if (Lines[I].startswith("CPU part"))
+ // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
+ // values correspond to the "Part number" in the CP15/c0 register. The
+ // contents are specified in the various processor manuals.
+ return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
+ .Case("0x06f", "krait") // APQ8064
+ .Case("0x201", "kryo")
+ .Case("0x205", "kryo")
+ .Case("0x211", "kryo")
+ .Case("0x800", "cortex-a73")
+ .Case("0x801", "cortex-a73")
+ .Case("0x802", "cortex-a73")
+ .Case("0x803", "cortex-a73")
+ .Case("0x804", "cortex-a73")
+ .Case("0x805", "cortex-a73")
+ .Case("0xc00", "falkor")
+ .Case("0xc01", "saphira")
+ .Default("generic");
+
+ if (Implementer == "0x53") { // Samsung Electronics Co., Ltd.
+ // The Exynos chips have a convoluted ID scheme that doesn't seem to follow
+ // any predictive pattern across variants and parts.
+ unsigned Variant = 0, Part = 0;
+
+ // Look for the CPU variant line, whose value is a 1 digit hexadecimal
+ // number, corresponding to the Variant bits in the CP15/C0 register.
+ for (auto I : Lines)
+ if (I.consume_front("CPU variant"))
+ I.ltrim("\t :").getAsInteger(0, Variant);
+
+ // Look for the CPU part line, whose value is a 3 digit hexadecimal
+ // number, corresponding to the PartNum bits in the CP15/C0 register.
+ for (auto I : Lines)
+ if (I.consume_front("CPU part"))
+ I.ltrim("\t :").getAsInteger(0, Part);
+
+ unsigned Exynos = (Variant << 12) | Part;
+ switch (Exynos) {
+ default:
+ // Default by falling through to Exynos M1.
+ LLVM_FALLTHROUGH;
+
+ case 0x1001:
+ return "exynos-m1";
+
+ case 0x4001:
+ return "exynos-m2";
+ }
+ }
+
+ return "generic";
+}
+
+StringRef sys::detail::getHostCPUNameForS390x(StringRef ProcCpuinfoContent) {
+ // STIDP is a privileged operation, so use /proc/cpuinfo instead.
+
+ // The "processor 0:" line comes after a fair amount of other information,
+ // including a cache breakdown, but this should be plenty.
+ SmallVector<StringRef, 32> Lines;
+ ProcCpuinfoContent.split(Lines, "\n");
+
+ // Look for the CPU features.
+ SmallVector<StringRef, 32> CPUFeatures;
+ for (unsigned I = 0, E = Lines.size(); I != E; ++I)
+ if (Lines[I].startswith("features")) {
+ size_t Pos = Lines[I].find(":");
+ if (Pos != StringRef::npos) {
+ Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' ');
+ break;
+ }
+ }
+
+ // We need to check for the presence of vector support independently of
+ // the machine type, since we may only use the vector register set when
+ // supported by the kernel (and hypervisor).
+ bool HaveVectorSupport = false;
+ for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
+ if (CPUFeatures[I] == "vx")
+ HaveVectorSupport = true;
+ }
+
+ // Now check the processor machine type.
+ for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
+ if (Lines[I].startswith("processor ")) {
+ size_t Pos = Lines[I].find("machine = ");
+ if (Pos != StringRef::npos) {
+ Pos += sizeof("machine = ") - 1;
+ unsigned int Id;
+ if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) {
+ if (Id >= 8561 && HaveVectorSupport)
+ return "z15";
+ if (Id >= 3906 && HaveVectorSupport)
+ return "z14";
+ if (Id >= 2964 && HaveVectorSupport)
+ return "z13";
+ if (Id >= 2827)
+ return "zEC12";
+ if (Id >= 2817)
+ return "z196";
+ }
+ }
+ break;
+ }
+ }
+
+ return "generic";
+}
+
+StringRef sys::detail::getHostCPUNameForBPF() {
+#if !defined(__linux__) || !defined(__x86_64__)
+ return "generic";
+#else
+ uint8_t v3_insns[40] __attribute__ ((aligned (8))) =
+ /* BPF_MOV64_IMM(BPF_REG_0, 0) */
+ { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
+ /* BPF_MOV64_IMM(BPF_REG_2, 1) */
+ 0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
+ /* BPF_JMP32_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */
+ 0xae, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0,
+ /* BPF_MOV64_IMM(BPF_REG_0, 1) */
+ 0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
+ /* BPF_EXIT_INSN() */
+ 0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 };
+
+ uint8_t v2_insns[40] __attribute__ ((aligned (8))) =
+ /* BPF_MOV64_IMM(BPF_REG_0, 0) */
+ { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
+ /* BPF_MOV64_IMM(BPF_REG_2, 1) */
+ 0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
+ /* BPF_JMP_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */
+ 0xad, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0,
+ /* BPF_MOV64_IMM(BPF_REG_0, 1) */
+ 0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
+ /* BPF_EXIT_INSN() */
+ 0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 };
+
+ struct bpf_prog_load_attr {
+ uint32_t prog_type;
+ uint32_t insn_cnt;
+ uint64_t insns;
+ uint64_t license;
+ uint32_t log_level;
+ uint32_t log_size;
+ uint64_t log_buf;
+ uint32_t kern_version;
+ uint32_t prog_flags;
+ } attr = {};
+ attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */
+ attr.insn_cnt = 5;
+ attr.insns = (uint64_t)v3_insns;
+ attr.license = (uint64_t)"DUMMY";
+
+ int fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr,
+ sizeof(attr));
+ if (fd >= 0) {
+ close(fd);
+ return "v3";
+ }
+
+ /* Clear the whole attr in case its content changed by syscall. */
+ memset(&attr, 0, sizeof(attr));
+ attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */
+ attr.insn_cnt = 5;
+ attr.insns = (uint64_t)v2_insns;
+ attr.license = (uint64_t)"DUMMY";
+ fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr, sizeof(attr));
+ if (fd >= 0) {
+ close(fd);
+ return "v2";
+ }
+ return "v1";
+#endif
+}
+
+#if defined(__i386__) || defined(_M_IX86) || \
+ defined(__x86_64__) || defined(_M_X64)
+
+enum VendorSignatures {
+ SIG_INTEL = 0x756e6547 /* Genu */,
+ SIG_AMD = 0x68747541 /* Auth */
+};
+
+// The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max).
+// Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID
+// support. Consequently, for i386, the presence of CPUID is checked first
+// via the corresponding eflags bit.
+// Removal of cpuid.h header motivated by PR30384
+// Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp
+// or test-suite, but are used in external projects e.g. libstdcxx
+static bool isCpuIdSupported() {
+#if defined(__GNUC__) || defined(__clang__)
+#if defined(__i386__)
+ int __cpuid_supported;
+ __asm__(" pushfl\n"
+ " popl %%eax\n"
+ " movl %%eax,%%ecx\n"
+ " xorl $0x00200000,%%eax\n"
+ " pushl %%eax\n"
+ " popfl\n"
+ " pushfl\n"
+ " popl %%eax\n"
+ " movl $0,%0\n"
+ " cmpl %%eax,%%ecx\n"
+ " je 1f\n"
+ " movl $1,%0\n"
+ "1:"
+ : "=r"(__cpuid_supported)
+ :
+ : "eax", "ecx");
+ if (!__cpuid_supported)
+ return false;
+#endif
+ return true;
+#endif
+ return true;
+}
+
+/// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in
+/// the specified arguments. If we can't run cpuid on the host, return true.
+static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
+ unsigned *rECX, unsigned *rEDX) {
+#if defined(__GNUC__) || defined(__clang__)
+#if defined(__x86_64__)
+ // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
+ // FIXME: should we save this for Clang?
+ __asm__("movq\t%%rbx, %%rsi\n\t"
+ "cpuid\n\t"
+ "xchgq\t%%rbx, %%rsi\n\t"
+ : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
+ : "a"(value));
+ return false;
+#elif defined(__i386__)
+ __asm__("movl\t%%ebx, %%esi\n\t"
+ "cpuid\n\t"
+ "xchgl\t%%ebx, %%esi\n\t"
+ : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
+ : "a"(value));
+ return false;
+#else
+ return true;
+#endif
+#elif defined(_MSC_VER)
+ // The MSVC intrinsic is portable across x86 and x64.
+ int registers[4];
+ __cpuid(registers, value);
+ *rEAX = registers[0];
+ *rEBX = registers[1];
+ *rECX = registers[2];
+ *rEDX = registers[3];
+ return false;
+#else
+ return true;
+#endif
+}
+
+/// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return
+/// the 4 values in the specified arguments. If we can't run cpuid on the host,
+/// return true.
+static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
+ unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
+ unsigned *rEDX) {
+#if defined(__GNUC__) || defined(__clang__)
+#if defined(__x86_64__)
+ // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
+ // FIXME: should we save this for Clang?
+ __asm__("movq\t%%rbx, %%rsi\n\t"
+ "cpuid\n\t"
+ "xchgq\t%%rbx, %%rsi\n\t"
+ : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
+ : "a"(value), "c"(subleaf));
+ return false;
+#elif defined(__i386__)
+ __asm__("movl\t%%ebx, %%esi\n\t"
+ "cpuid\n\t"
+ "xchgl\t%%ebx, %%esi\n\t"
+ : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
+ : "a"(value), "c"(subleaf));
+ return false;
+#else
+ return true;
+#endif
+#elif defined(_MSC_VER)
+ int registers[4];
+ __cpuidex(registers, value, subleaf);
+ *rEAX = registers[0];
+ *rEBX = registers[1];
+ *rECX = registers[2];
+ *rEDX = registers[3];
+ return false;
+#else
+ return true;
+#endif
+}
+
+// Read control register 0 (XCR0). Used to detect features such as AVX.
+static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) {
+#if defined(__GNUC__) || defined(__clang__)
+ // Check xgetbv; this uses a .byte sequence instead of the instruction
+ // directly because older assemblers do not include support for xgetbv and
+ // there is no easy way to conditionally compile based on the assembler used.
+ __asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0));
+ return false;
+#elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
+ unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
+ *rEAX = Result;
+ *rEDX = Result >> 32;
+ return false;
+#else
+ return true;
+#endif
+}
+
+static void detectX86FamilyModel(unsigned EAX, unsigned *Family,
+ unsigned *Model) {
+ *Family = (EAX >> 8) & 0xf; // Bits 8 - 11
+ *Model = (EAX >> 4) & 0xf; // Bits 4 - 7
+ if (*Family == 6 || *Family == 0xf) {
+ if (*Family == 0xf)
+ // Examine extended family ID if family ID is F.
+ *Family += (EAX >> 20) & 0xff; // Bits 20 - 27
+ // Examine extended model ID if family ID is 6 or F.
+ *Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
+ }
+}
+
+static void
+getIntelProcessorTypeAndSubtype(unsigned Family, unsigned Model,
+ unsigned Brand_id, unsigned Features,
+ unsigned Features2, unsigned Features3,
+ unsigned *Type, unsigned *Subtype) {
+ if (Brand_id != 0)
+ return;
+ switch (Family) {
+ case 3:
+ *Type = X86::INTEL_i386;
+ break;
+ case 4:
+ *Type = X86::INTEL_i486;
+ break;
+ case 5:
+ if (Features & (1 << X86::FEATURE_MMX)) {
+ *Type = X86::INTEL_PENTIUM_MMX;
+ break;
+ }
+ *Type = X86::INTEL_PENTIUM;
+ break;
+ case 6:
+ switch (Model) {
+ case 0x01: // Pentium Pro processor
+ *Type = X86::INTEL_PENTIUM_PRO;
+ break;
+ case 0x03: // Intel Pentium II OverDrive processor, Pentium II processor,
+ // model 03
+ case 0x05: // Pentium II processor, model 05, Pentium II Xeon processor,
+ // model 05, and Intel Celeron processor, model 05
+ case 0x06: // Celeron processor, model 06
+ *Type = X86::INTEL_PENTIUM_II;
+ break;
+ case 0x07: // Pentium III processor, model 07, and Pentium III Xeon
+ // processor, model 07
+ case 0x08: // Pentium III processor, model 08, Pentium III Xeon processor,
+ // model 08, and Celeron processor, model 08
+ case 0x0a: // Pentium III Xeon processor, model 0Ah
+ case 0x0b: // Pentium III processor, model 0Bh
+ *Type = X86::INTEL_PENTIUM_III;
+ break;
+ case 0x09: // Intel Pentium M processor, Intel Celeron M processor model 09.
+ case 0x0d: // Intel Pentium M processor, Intel Celeron M processor, model
+ // 0Dh. All processors are manufactured using the 90 nm process.
+ case 0x15: // Intel EP80579 Integrated Processor and Intel EP80579
+ // Integrated Processor with Intel QuickAssist Technology
+ *Type = X86::INTEL_PENTIUM_M;
+ break;
+ case 0x0e: // Intel Core Duo processor, Intel Core Solo processor, model
+ // 0Eh. All processors are manufactured using the 65 nm process.
+ *Type = X86::INTEL_CORE_DUO;
+ break; // yonah
+ case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
+ // processor, Intel Core 2 Quad processor, Intel Core 2 Quad
+ // mobile processor, Intel Core 2 Extreme processor, Intel
+ // Pentium Dual-Core processor, Intel Xeon processor, model
+ // 0Fh. All processors are manufactured using the 65 nm process.
+ case 0x16: // Intel Celeron processor model 16h. All processors are
+ // manufactured using the 65 nm process
+ *Type = X86::INTEL_CORE2; // "core2"
+ *Subtype = X86::INTEL_CORE2_65;
+ break;
+ case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model
+ // 17h. All processors are manufactured using the 45 nm process.
+ //
+ // 45nm: Penryn , Wolfdale, Yorkfield (XE)
+ case 0x1d: // Intel Xeon processor MP. All processors are manufactured using
+ // the 45 nm process.
+ *Type = X86::INTEL_CORE2; // "penryn"
+ *Subtype = X86::INTEL_CORE2_45;
+ break;
+ case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All
+ // processors are manufactured using the 45 nm process.
+ case 0x1e: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz.
+ // As found in a Summer 2010 model iMac.
+ case 0x1f:
+ case 0x2e: // Nehalem EX
+ *Type = X86::INTEL_COREI7; // "nehalem"
+ *Subtype = X86::INTEL_COREI7_NEHALEM;
+ break;
+ case 0x25: // Intel Core i7, laptop version.
+ case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All
+ // processors are manufactured using the 32 nm process.
+ case 0x2f: // Westmere EX
+ *Type = X86::INTEL_COREI7; // "westmere"
+ *Subtype = X86::INTEL_COREI7_WESTMERE;
+ break;
+ case 0x2a: // Intel Core i7 processor. All processors are manufactured
+ // using the 32 nm process.
+ case 0x2d:
+ *Type = X86::INTEL_COREI7; //"sandybridge"
+ *Subtype = X86::INTEL_COREI7_SANDYBRIDGE;
+ break;
+ case 0x3a:
+ case 0x3e: // Ivy Bridge EP
+ *Type = X86::INTEL_COREI7; // "ivybridge"
+ *Subtype = X86::INTEL_COREI7_IVYBRIDGE;
+ break;
+
+ // Haswell:
+ case 0x3c:
+ case 0x3f:
+ case 0x45:
+ case 0x46:
+ *Type = X86::INTEL_COREI7; // "haswell"
+ *Subtype = X86::INTEL_COREI7_HASWELL;
+ break;
+
+ // Broadwell:
+ case 0x3d:
+ case 0x47:
+ case 0x4f:
+ case 0x56:
+ *Type = X86::INTEL_COREI7; // "broadwell"
+ *Subtype = X86::INTEL_COREI7_BROADWELL;
+ break;
+
+ // Skylake:
+ case 0x4e: // Skylake mobile
+ case 0x5e: // Skylake desktop
+ case 0x8e: // Kaby Lake mobile
+ case 0x9e: // Kaby Lake desktop
+ *Type = X86::INTEL_COREI7; // "skylake"
+ *Subtype = X86::INTEL_COREI7_SKYLAKE;
+ break;
+
+ // Skylake Xeon:
+ case 0x55:
+ *Type = X86::INTEL_COREI7;
+ if (Features2 & (1 << (X86::FEATURE_AVX512BF16 - 32)))
+ *Subtype = X86::INTEL_COREI7_COOPERLAKE; // "cooperlake"
+ else if (Features2 & (1 << (X86::FEATURE_AVX512VNNI - 32)))
+ *Subtype = X86::INTEL_COREI7_CASCADELAKE; // "cascadelake"
+ else
+ *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512; // "skylake-avx512"
+ break;
+
+ // Cannonlake:
+ case 0x66:
+ *Type = X86::INTEL_COREI7;
+ *Subtype = X86::INTEL_COREI7_CANNONLAKE; // "cannonlake"
+ break;
+
+ // Icelake:
+ case 0x7d:
+ case 0x7e:
+ *Type = X86::INTEL_COREI7;
+ *Subtype = X86::INTEL_COREI7_ICELAKE_CLIENT; // "icelake-client"
+ break;
+
+ // Icelake Xeon:
+ case 0x6a:
+ case 0x6c:
+ *Type = X86::INTEL_COREI7;
+ *Subtype = X86::INTEL_COREI7_ICELAKE_SERVER; // "icelake-server"
+ break;
+
+ case 0x1c: // Most 45 nm Intel Atom processors
+ case 0x26: // 45 nm Atom Lincroft
+ case 0x27: // 32 nm Atom Medfield
+ case 0x35: // 32 nm Atom Midview
+ case 0x36: // 32 nm Atom Midview
+ *Type = X86::INTEL_BONNELL;
+ break; // "bonnell"
+
+ // Atom Silvermont codes from the Intel software optimization guide.
+ case 0x37:
+ case 0x4a:
+ case 0x4d:
+ case 0x5a:
+ case 0x5d:
+ case 0x4c: // really airmont
+ *Type = X86::INTEL_SILVERMONT;
+ break; // "silvermont"
+ // Goldmont:
+ case 0x5c: // Apollo Lake
+ case 0x5f: // Denverton
+ *Type = X86::INTEL_GOLDMONT;
+ break; // "goldmont"
+ case 0x7a:
+ *Type = X86::INTEL_GOLDMONT_PLUS;
+ break;
+ case 0x86:
+ *Type = X86::INTEL_TREMONT;
+ break;
+
+ case 0x57:
+ *Type = X86::INTEL_KNL; // knl
+ break;
+
+ case 0x85:
+ *Type = X86::INTEL_KNM; // knm
+ break;
+
+ default: // Unknown family 6 CPU, try to guess.
+ // TODO detect tigerlake host
+ if (Features3 & (1 << (X86::FEATURE_AVX512VP2INTERSECT - 64))) {
+ *Type = X86::INTEL_COREI7;
+ *Subtype = X86::INTEL_COREI7_TIGERLAKE;
+ break;
+ }
+
+ if (Features & (1 << X86::FEATURE_AVX512VBMI2)) {
+ *Type = X86::INTEL_COREI7;
+ *Subtype = X86::INTEL_COREI7_ICELAKE_CLIENT;
+ break;
+ }
+
+ if (Features & (1 << X86::FEATURE_AVX512VBMI)) {
+ *Type = X86::INTEL_COREI7;
+ *Subtype = X86::INTEL_COREI7_CANNONLAKE;
+ break;
+ }
+
+ if (Features2 & (1 << (X86::FEATURE_AVX512BF16 - 32))) {
+ *Type = X86::INTEL_COREI7;
+ *Subtype = X86::INTEL_COREI7_COOPERLAKE;
+ break;
+ }
+
+ if (Features2 & (1 << (X86::FEATURE_AVX512VNNI - 32))) {
+ *Type = X86::INTEL_COREI7;
+ *Subtype = X86::INTEL_COREI7_CASCADELAKE;
+ break;
+ }
+
+ if (Features & (1 << X86::FEATURE_AVX512VL)) {
+ *Type = X86::INTEL_COREI7;
+ *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512;
+ break;
+ }
+
+ if (Features & (1 << X86::FEATURE_AVX512ER)) {
+ *Type = X86::INTEL_KNL; // knl
+ break;
+ }
+
+ if (Features3 & (1 << (X86::FEATURE_CLFLUSHOPT - 64))) {
+ if (Features3 & (1 << (X86::FEATURE_SHA - 64))) {
+ *Type = X86::INTEL_GOLDMONT;
+ } else {
+ *Type = X86::INTEL_COREI7;
+ *Subtype = X86::INTEL_COREI7_SKYLAKE;
+ }
+ break;
+ }
+ if (Features3 & (1 << (X86::FEATURE_ADX - 64))) {
+ *Type = X86::INTEL_COREI7;
+ *Subtype = X86::INTEL_COREI7_BROADWELL;
+ break;
+ }
+ if (Features & (1 << X86::FEATURE_AVX2)) {
+ *Type = X86::INTEL_COREI7;
+ *Subtype = X86::INTEL_COREI7_HASWELL;
+ break;
+ }
+ if (Features & (1 << X86::FEATURE_AVX)) {
+ *Type = X86::INTEL_COREI7;
+ *Subtype = X86::INTEL_COREI7_SANDYBRIDGE;
+ break;
+ }
+ if (Features & (1 << X86::FEATURE_SSE4_2)) {
+ if (Features3 & (1 << (X86::FEATURE_MOVBE - 64))) {
+ *Type = X86::INTEL_SILVERMONT;
+ } else {
+ *Type = X86::INTEL_COREI7;
+ *Subtype = X86::INTEL_COREI7_NEHALEM;
+ }
+ break;
+ }
+ if (Features & (1 << X86::FEATURE_SSE4_1)) {
+ *Type = X86::INTEL_CORE2; // "penryn"
+ *Subtype = X86::INTEL_CORE2_45;
+ break;
+ }
+ if (Features & (1 << X86::FEATURE_SSSE3)) {
+ if (Features3 & (1 << (X86::FEATURE_MOVBE - 64))) {
+ *Type = X86::INTEL_BONNELL; // "bonnell"
+ } else {
+ *Type = X86::INTEL_CORE2; // "core2"
+ *Subtype = X86::INTEL_CORE2_65;
+ }
+ break;
+ }
+ if (Features3 & (1 << (X86::FEATURE_EM64T - 64))) {
+ *Type = X86::INTEL_CORE2; // "core2"
+ *Subtype = X86::INTEL_CORE2_65;
+ break;
+ }
+ if (Features & (1 << X86::FEATURE_SSE3)) {
+ *Type = X86::INTEL_CORE_DUO;
+ break;
+ }
+ if (Features & (1 << X86::FEATURE_SSE2)) {
+ *Type = X86::INTEL_PENTIUM_M;
+ break;
+ }
+ if (Features & (1 << X86::FEATURE_SSE)) {
+ *Type = X86::INTEL_PENTIUM_III;
+ break;
+ }
+ if (Features & (1 << X86::FEATURE_MMX)) {
+ *Type = X86::INTEL_PENTIUM_II;
+ break;
+ }
+ *Type = X86::INTEL_PENTIUM_PRO;
+ break;
+ }
+ break;
+ case 15: {
+ if (Features3 & (1 << (X86::FEATURE_EM64T - 64))) {
+ *Type = X86::INTEL_NOCONA;
+ break;
+ }
+ if (Features & (1 << X86::FEATURE_SSE3)) {
+ *Type = X86::INTEL_PRESCOTT;
+ break;
+ }
+ *Type = X86::INTEL_PENTIUM_IV;
+ break;
+ }
+ default:
+ break; /*"generic"*/
+ }
+}
+
+static void getAMDProcessorTypeAndSubtype(unsigned Family, unsigned Model,
+ unsigned Features, unsigned *Type,
+ unsigned *Subtype) {
+ // FIXME: this poorly matches the generated SubtargetFeatureKV table. There
+ // appears to be no way to generate the wide variety of AMD-specific targets
+ // from the information returned from CPUID.
+ switch (Family) {
+ case 4:
+ *Type = X86::AMD_i486;
+ break;
+ case 5:
+ *Type = X86::AMDPENTIUM;
+ switch (Model) {
+ case 6:
+ case 7:
+ *Subtype = X86::AMDPENTIUM_K6;
+ break; // "k6"
+ case 8:
+ *Subtype = X86::AMDPENTIUM_K62;
+ break; // "k6-2"
+ case 9:
+ case 13:
+ *Subtype = X86::AMDPENTIUM_K63;
+ break; // "k6-3"
+ case 10:
+ *Subtype = X86::AMDPENTIUM_GEODE;
+ break; // "geode"
+ }
+ break;
+ case 6:
+ if (Features & (1 << X86::FEATURE_SSE)) {
+ *Type = X86::AMD_ATHLON_XP;
+ break; // "athlon-xp"
+ }
+ *Type = X86::AMD_ATHLON;
+ break; // "athlon"
+ case 15:
+ if (Features & (1 << X86::FEATURE_SSE3)) {
+ *Type = X86::AMD_K8SSE3;
+ break; // "k8-sse3"
+ }
+ *Type = X86::AMD_K8;
+ break; // "k8"
+ case 16:
+ *Type = X86::AMDFAM10H; // "amdfam10"
+ switch (Model) {
+ case 2:
+ *Subtype = X86::AMDFAM10H_BARCELONA;
+ break;
+ case 4:
+ *Subtype = X86::AMDFAM10H_SHANGHAI;
+ break;
+ case 8:
+ *Subtype = X86::AMDFAM10H_ISTANBUL;
+ break;
+ }
+ break;
+ case 20:
+ *Type = X86::AMD_BTVER1;
+ break; // "btver1";
+ case 21:
+ *Type = X86::AMDFAM15H;
+ if (Model >= 0x60 && Model <= 0x7f) {
+ *Subtype = X86::AMDFAM15H_BDVER4;
+ break; // "bdver4"; 60h-7Fh: Excavator
+ }
+ if (Model >= 0x30 && Model <= 0x3f) {
+ *Subtype = X86::AMDFAM15H_BDVER3;
+ break; // "bdver3"; 30h-3Fh: Steamroller
+ }
+ if ((Model >= 0x10 && Model <= 0x1f) || Model == 0x02) {
+ *Subtype = X86::AMDFAM15H_BDVER2;
+ break; // "bdver2"; 02h, 10h-1Fh: Piledriver
+ }
+ if (Model <= 0x0f) {
+ *Subtype = X86::AMDFAM15H_BDVER1;
+ break; // "bdver1"; 00h-0Fh: Bulldozer
+ }
+ break;
+ case 22:
+ *Type = X86::AMD_BTVER2;
+ break; // "btver2"
+ case 23:
+ *Type = X86::AMDFAM17H;
+ if (Model >= 0x30 && Model <= 0x3f) {
+ *Subtype = X86::AMDFAM17H_ZNVER2;
+ break; // "znver2"; 30h-3fh: Zen2
+ }
+ if (Model <= 0x0f) {
+ *Subtype = X86::AMDFAM17H_ZNVER1;
+ break; // "znver1"; 00h-0Fh: Zen1
+ }
+ break;
+ default:
+ break; // "generic"
+ }
+}
+
+static void getAvailableFeatures(unsigned ECX, unsigned EDX, unsigned MaxLeaf,
+ unsigned *FeaturesOut, unsigned *Features2Out,
+ unsigned *Features3Out) {
+ unsigned Features = 0;
+ unsigned Features2 = 0;
+ unsigned Features3 = 0;
+ unsigned EAX, EBX;
+
+ auto setFeature = [&](unsigned F) {
+ if (F < 32)
+ Features |= 1U << (F & 0x1f);
+ else if (F < 64)
+ Features2 |= 1U << ((F - 32) & 0x1f);
+ else if (F < 96)
+ Features3 |= 1U << ((F - 64) & 0x1f);
+ else
+ llvm_unreachable("Unexpected FeatureBit");
+ };
+
+ if ((EDX >> 15) & 1)
+ setFeature(X86::FEATURE_CMOV);
+ if ((EDX >> 23) & 1)
+ setFeature(X86::FEATURE_MMX);
+ if ((EDX >> 25) & 1)
+ setFeature(X86::FEATURE_SSE);
+ if ((EDX >> 26) & 1)
+ setFeature(X86::FEATURE_SSE2);
+
+ if ((ECX >> 0) & 1)
+ setFeature(X86::FEATURE_SSE3);
+ if ((ECX >> 1) & 1)
+ setFeature(X86::FEATURE_PCLMUL);
+ if ((ECX >> 9) & 1)
+ setFeature(X86::FEATURE_SSSE3);
+ if ((ECX >> 12) & 1)
+ setFeature(X86::FEATURE_FMA);
+ if ((ECX >> 19) & 1)
+ setFeature(X86::FEATURE_SSE4_1);
+ if ((ECX >> 20) & 1)
+ setFeature(X86::FEATURE_SSE4_2);
+ if ((ECX >> 23) & 1)
+ setFeature(X86::FEATURE_POPCNT);
+ if ((ECX >> 25) & 1)
+ setFeature(X86::FEATURE_AES);
+
+ if ((ECX >> 22) & 1)
+ setFeature(X86::FEATURE_MOVBE);
+
+ // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
+ // indicates that the AVX registers will be saved and restored on context
+ // switch, then we have full AVX support.
+ const unsigned AVXBits = (1 << 27) | (1 << 28);
+ bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) &&
+ ((EAX & 0x6) == 0x6);
+ bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);
+
+ if (HasAVX)
+ setFeature(X86::FEATURE_AVX);
+
+ bool HasLeaf7 =
+ MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
+
+ if (HasLeaf7 && ((EBX >> 3) & 1))
+ setFeature(X86::FEATURE_BMI);
+ if (HasLeaf7 && ((EBX >> 5) & 1) && HasAVX)
+ setFeature(X86::FEATURE_AVX2);
+ if (HasLeaf7 && ((EBX >> 8) & 1))
+ setFeature(X86::FEATURE_BMI2);
+ if (HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save)
+ setFeature(X86::FEATURE_AVX512F);
+ if (HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save)
+ setFeature(X86::FEATURE_AVX512DQ);
+ if (HasLeaf7 && ((EBX >> 19) & 1))
+ setFeature(X86::FEATURE_ADX);
+ if (HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save)
+ setFeature(X86::FEATURE_AVX512IFMA);
+ if (HasLeaf7 && ((EBX >> 23) & 1))
+ setFeature(X86::FEATURE_CLFLUSHOPT);
+ if (HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save)
+ setFeature(X86::FEATURE_AVX512PF);
+ if (HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save)
+ setFeature(X86::FEATURE_AVX512ER);
+ if (HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save)
+ setFeature(X86::FEATURE_AVX512CD);
+ if (HasLeaf7 && ((EBX >> 29) & 1))
+ setFeature(X86::FEATURE_SHA);
+ if (HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save)
+ setFeature(X86::FEATURE_AVX512BW);
+ if (HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save)
+ setFeature(X86::FEATURE_AVX512VL);
+
+ if (HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save)
+ setFeature(X86::FEATURE_AVX512VBMI);
+ if (HasLeaf7 && ((ECX >> 6) & 1) && HasAVX512Save)
+ setFeature(X86::FEATURE_AVX512VBMI2);
+ if (HasLeaf7 && ((ECX >> 8) & 1))
+ setFeature(X86::FEATURE_GFNI);
+ if (HasLeaf7 && ((ECX >> 10) & 1) && HasAVX)
+ setFeature(X86::FEATURE_VPCLMULQDQ);
+ if (HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save)
+ setFeature(X86::FEATURE_AVX512VNNI);
+ if (HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save)
+ setFeature(X86::FEATURE_AVX512BITALG);
+ if (HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save)
+ setFeature(X86::FEATURE_AVX512VPOPCNTDQ);
+
+ if (HasLeaf7 && ((EDX >> 2) & 1) && HasAVX512Save)
+ setFeature(X86::FEATURE_AVX5124VNNIW);
+ if (HasLeaf7 && ((EDX >> 3) & 1) && HasAVX512Save)
+ setFeature(X86::FEATURE_AVX5124FMAPS);
+ if (HasLeaf7 && ((EDX >> 8) & 1) && HasAVX512Save)
+ setFeature(X86::FEATURE_AVX512VP2INTERSECT);
+
+ bool HasLeaf7Subleaf1 =
+ MaxLeaf >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x1, &EAX, &EBX, &ECX, &EDX);
+ if (HasLeaf7Subleaf1 && ((EAX >> 5) & 1) && HasAVX512Save)
+ setFeature(X86::FEATURE_AVX512BF16);
+
+ unsigned MaxExtLevel;
+ getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
+
+ bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
+ !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
+ if (HasExtLeaf1 && ((ECX >> 6) & 1))
+ setFeature(X86::FEATURE_SSE4_A);
+ if (HasExtLeaf1 && ((ECX >> 11) & 1))
+ setFeature(X86::FEATURE_XOP);
+ if (HasExtLeaf1 && ((ECX >> 16) & 1))
+ setFeature(X86::FEATURE_FMA4);
+
+ if (HasExtLeaf1 && ((EDX >> 29) & 1))
+ setFeature(X86::FEATURE_EM64T);
+
+ *FeaturesOut = Features;
+ *Features2Out = Features2;
+ *Features3Out = Features3;
+}
+
+StringRef sys::getHostCPUName() {
+ unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
+ unsigned MaxLeaf, Vendor;
+
+#if defined(__GNUC__) || defined(__clang__)
+ //FIXME: include cpuid.h from clang or copy __get_cpuid_max here
+ // and simplify it to not invoke __cpuid (like cpu_model.c in
+ // compiler-rt/lib/builtins/cpu_model.c?
+ // Opting for the second option.
+ if(!isCpuIdSupported())
+ return "generic";
+#endif
+ if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX) || MaxLeaf < 1)
+ return "generic";
+ getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
+
+ unsigned Brand_id = EBX & 0xff;
+ unsigned Family = 0, Model = 0;
+ unsigned Features = 0, Features2 = 0, Features3 = 0;
+ detectX86FamilyModel(EAX, &Family, &Model);
+ getAvailableFeatures(ECX, EDX, MaxLeaf, &Features, &Features2, &Features3);
+
+ unsigned Type = 0;
+ unsigned Subtype = 0;
+
+ if (Vendor == SIG_INTEL) {
+ getIntelProcessorTypeAndSubtype(Family, Model, Brand_id, Features,
+ Features2, Features3, &Type, &Subtype);
+ } else if (Vendor == SIG_AMD) {
+ getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type, &Subtype);
+ }
+
+ // Check subtypes first since those are more specific.
+#define X86_CPU_SUBTYPE(ARCHNAME, ENUM) \
+ if (Subtype == X86::ENUM) \
+ return ARCHNAME;
+#include "llvm/Support/X86TargetParser.def"
+
+ // Now check types.
+#define X86_CPU_TYPE(ARCHNAME, ENUM) \
+ if (Type == X86::ENUM) \
+ return ARCHNAME;
+#include "llvm/Support/X86TargetParser.def"
+
+ return "generic";
+}
+
+#elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
+StringRef sys::getHostCPUName() {
+ host_basic_info_data_t hostInfo;
+ mach_msg_type_number_t infoCount;
+
+ infoCount = HOST_BASIC_INFO_COUNT;
+ mach_port_t hostPort = mach_host_self();
+ host_info(hostPort, HOST_BASIC_INFO, (host_info_t)&hostInfo,
+ &infoCount);
+ mach_port_deallocate(mach_task_self(), hostPort);
+
+ if (hostInfo.cpu_type != CPU_TYPE_POWERPC)
+ return "generic";
+
+ switch (hostInfo.cpu_subtype) {
+ case CPU_SUBTYPE_POWERPC_601:
+ return "601";
+ case CPU_SUBTYPE_POWERPC_602:
+ return "602";
+ case CPU_SUBTYPE_POWERPC_603:
+ return "603";
+ case CPU_SUBTYPE_POWERPC_603e:
+ return "603e";
+ case CPU_SUBTYPE_POWERPC_603ev:
+ return "603ev";
+ case CPU_SUBTYPE_POWERPC_604:
+ return "604";
+ case CPU_SUBTYPE_POWERPC_604e:
+ return "604e";
+ case CPU_SUBTYPE_POWERPC_620:
+ return "620";
+ case CPU_SUBTYPE_POWERPC_750:
+ return "750";
+ case CPU_SUBTYPE_POWERPC_7400:
+ return "7400";
+ case CPU_SUBTYPE_POWERPC_7450:
+ return "7450";
+ case CPU_SUBTYPE_POWERPC_970:
+ return "970";
+ default:;
+ }
+
+ return "generic";
+}
+#elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__))
+StringRef sys::getHostCPUName() {
+ std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
+ StringRef Content = P ? P->getBuffer() : "";
+ return detail::getHostCPUNameForPowerPC(Content);
+}
+#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
+StringRef sys::getHostCPUName() {
+ std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
+ StringRef Content = P ? P->getBuffer() : "";
+ return detail::getHostCPUNameForARM(Content);
+}
+#elif defined(__linux__) && defined(__s390x__)
+StringRef sys::getHostCPUName() {
+ std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
+ StringRef Content = P ? P->getBuffer() : "";
+ return detail::getHostCPUNameForS390x(Content);
+}
+#else
+StringRef sys::getHostCPUName() { return "generic"; }
+#endif
+
+#if defined(__linux__) && defined(__x86_64__)
+// On Linux, the number of physical cores can be computed from /proc/cpuinfo,
+// using the number of unique physical/core id pairs. The following
+// implementation reads the /proc/cpuinfo format on an x86_64 system.
+static int computeHostNumPhysicalCores() {
+ // Read /proc/cpuinfo as a stream (until EOF reached). It cannot be
+ // mmapped because it appears to have 0 size.
+ llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
+ llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
+ if (std::error_code EC = Text.getError()) {
+ llvm::errs() << "Can't read "
+ << "/proc/cpuinfo: " << EC.message() << "\n";
+ return -1;
+ }
+ SmallVector<StringRef, 8> strs;
+ (*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1,
+ /*KeepEmpty=*/false);
+ int CurPhysicalId = -1;
+ int CurCoreId = -1;
+ SmallSet<std::pair<int, int>, 32> UniqueItems;
+ for (auto &Line : strs) {
+ Line = Line.trim();
+ if (!Line.startswith("physical id") && !Line.startswith("core id"))
+ continue;
+ std::pair<StringRef, StringRef> Data = Line.split(':');
+ auto Name = Data.first.trim();
+ auto Val = Data.second.trim();
+ if (Name == "physical id") {
+ assert(CurPhysicalId == -1 &&
+ "Expected a core id before seeing another physical id");
+ Val.getAsInteger(10, CurPhysicalId);
+ }
+ if (Name == "core id") {
+ assert(CurCoreId == -1 &&
+ "Expected a physical id before seeing another core id");
+ Val.getAsInteger(10, CurCoreId);
+ }
+ if (CurPhysicalId != -1 && CurCoreId != -1) {
+ UniqueItems.insert(std::make_pair(CurPhysicalId, CurCoreId));
+ CurPhysicalId = -1;
+ CurCoreId = -1;
+ }
+ }
+ return UniqueItems.size();
+}
+#elif defined(__APPLE__) && defined(__x86_64__)
+#include <sys/param.h>
+#include <sys/sysctl.h>
+
+// Gets the number of *physical cores* on the machine.
+static int computeHostNumPhysicalCores() {
+ uint32_t count;
+ size_t len = sizeof(count);
+ sysctlbyname("hw.physicalcpu", &count, &len, NULL, 0);
+ if (count < 1) {
+ int nm[2];
+ nm[0] = CTL_HW;
+ nm[1] = HW_AVAILCPU;
+ sysctl(nm, 2, &count, &len, NULL, 0);
+ if (count < 1)
+ return -1;
+ }
+ return count;
+}
+#else
+// On other systems, return -1 to indicate unknown.
+static int computeHostNumPhysicalCores() { return -1; }
+#endif
+
+int sys::getHostNumPhysicalCores() {
+ static int NumCores = computeHostNumPhysicalCores();
+ return NumCores;
+}
+
+#if defined(__i386__) || defined(_M_IX86) || \
+ defined(__x86_64__) || defined(_M_X64)
+bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
+ unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
+ unsigned MaxLevel;
+ union {
+ unsigned u[3];
+ char c[12];
+ } text;
+
+ if (getX86CpuIDAndInfo(0, &MaxLevel, text.u + 0, text.u + 2, text.u + 1) ||
+ MaxLevel < 1)
+ return false;
+
+ getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);
+
+ Features["cx8"] = (EDX >> 8) & 1;
+ Features["cmov"] = (EDX >> 15) & 1;
+ Features["mmx"] = (EDX >> 23) & 1;
+ Features["fxsr"] = (EDX >> 24) & 1;
+ Features["sse"] = (EDX >> 25) & 1;
+ Features["sse2"] = (EDX >> 26) & 1;
+
+ Features["sse3"] = (ECX >> 0) & 1;
+ Features["pclmul"] = (ECX >> 1) & 1;
+ Features["ssse3"] = (ECX >> 9) & 1;
+ Features["cx16"] = (ECX >> 13) & 1;
+ Features["sse4.1"] = (ECX >> 19) & 1;
+ Features["sse4.2"] = (ECX >> 20) & 1;
+ Features["movbe"] = (ECX >> 22) & 1;
+ Features["popcnt"] = (ECX >> 23) & 1;
+ Features["aes"] = (ECX >> 25) & 1;
+ Features["rdrnd"] = (ECX >> 30) & 1;
+
+ // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
+ // indicates that the AVX registers will be saved and restored on context
+ // switch, then we have full AVX support.
+ bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) &&
+ !getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6);
+ // AVX512 requires additional context to be saved by the OS.
+ bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0);
+
+ Features["avx"] = HasAVXSave;
+ Features["fma"] = ((ECX >> 12) & 1) && HasAVXSave;
+ // Only enable XSAVE if OS has enabled support for saving YMM state.
+ Features["xsave"] = ((ECX >> 26) & 1) && HasAVXSave;
+ Features["f16c"] = ((ECX >> 29) & 1) && HasAVXSave;
+
+ unsigned MaxExtLevel;
+ getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
+
+ bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
+ !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
+ Features["sahf"] = HasExtLeaf1 && ((ECX >> 0) & 1);
+ Features["lzcnt"] = HasExtLeaf1 && ((ECX >> 5) & 1);
+ Features["sse4a"] = HasExtLeaf1 && ((ECX >> 6) & 1);
+ Features["prfchw"] = HasExtLeaf1 && ((ECX >> 8) & 1);
+ Features["xop"] = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave;
+ Features["lwp"] = HasExtLeaf1 && ((ECX >> 15) & 1);
+ Features["fma4"] = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave;
+ Features["tbm"] = HasExtLeaf1 && ((ECX >> 21) & 1);
+ Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1);
+
+ Features["64bit"] = HasExtLeaf1 && ((EDX >> 29) & 1);
+
+ // Miscellaneous memory related features, detected by
+ // using the 0x80000008 leaf of the CPUID instruction
+ bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 &&
+ !getX86CpuIDAndInfo(0x80000008, &EAX, &EBX, &ECX, &EDX);
+ Features["clzero"] = HasExtLeaf8 && ((EBX >> 0) & 1);
+ Features["wbnoinvd"] = HasExtLeaf8 && ((EBX >> 9) & 1);
+
+ bool HasLeaf7 =
+ MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
+
+ Features["fsgsbase"] = HasLeaf7 && ((EBX >> 0) & 1);
+ Features["sgx"] = HasLeaf7 && ((EBX >> 2) & 1);
+ Features["bmi"] = HasLeaf7 && ((EBX >> 3) & 1);
+ // AVX2 is only supported if we have the OS save support from AVX.
+ Features["avx2"] = HasLeaf7 && ((EBX >> 5) & 1) && HasAVXSave;
+ Features["bmi2"] = HasLeaf7 && ((EBX >> 8) & 1);
+ Features["invpcid"] = HasLeaf7 && ((EBX >> 10) & 1);
+ Features["rtm"] = HasLeaf7 && ((EBX >> 11) & 1);
+ // AVX512 is only supported if the OS supports the context save for it.
+ Features["avx512f"] = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save;
+ Features["avx512dq"] = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save;
+ Features["rdseed"] = HasLeaf7 && ((EBX >> 18) & 1);
+ Features["adx"] = HasLeaf7 && ((EBX >> 19) & 1);
+ Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save;
+ Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1);
+ Features["clwb"] = HasLeaf7 && ((EBX >> 24) & 1);
+ Features["avx512pf"] = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save;
+ Features["avx512er"] = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save;
+ Features["avx512cd"] = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save;
+ Features["sha"] = HasLeaf7 && ((EBX >> 29) & 1);
+ Features["avx512bw"] = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save;
+ Features["avx512vl"] = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save;
+
+ Features["prefetchwt1"] = HasLeaf7 && ((ECX >> 0) & 1);
+ Features["avx512vbmi"] = HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save;
+ Features["pku"] = HasLeaf7 && ((ECX >> 4) & 1);
+ Features["waitpkg"] = HasLeaf7 && ((ECX >> 5) & 1);
+ Features["avx512vbmi2"] = HasLeaf7 && ((ECX >> 6) & 1) && HasAVX512Save;
+ Features["shstk"] = HasLeaf7 && ((ECX >> 7) & 1);
+ Features["gfni"] = HasLeaf7 && ((ECX >> 8) & 1);
+ Features["vaes"] = HasLeaf7 && ((ECX >> 9) & 1) && HasAVXSave;
+ Features["vpclmulqdq"] = HasLeaf7 && ((ECX >> 10) & 1) && HasAVXSave;
+ Features["avx512vnni"] = HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save;
+ Features["avx512bitalg"] = HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save;
+ Features["avx512vpopcntdq"] = HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save;
+ Features["rdpid"] = HasLeaf7 && ((ECX >> 22) & 1);
+ Features["cldemote"] = HasLeaf7 && ((ECX >> 25) & 1);
+ Features["movdiri"] = HasLeaf7 && ((ECX >> 27) & 1);
+ Features["movdir64b"] = HasLeaf7 && ((ECX >> 28) & 1);
+ Features["enqcmd"] = HasLeaf7 && ((ECX >> 29) & 1);
+
+ // There are two CPUID leafs which information associated with the pconfig
+ // instruction:
+ // EAX=0x7, ECX=0x0 indicates the availability of the instruction (via the 18th
+ // bit of EDX), while the EAX=0x1b leaf returns information on the
+ // availability of specific pconfig leafs.
+ // The target feature here only refers to the the first of these two.
+ // Users might need to check for the availability of specific pconfig
+ // leaves using cpuid, since that information is ignored while
+ // detecting features using the "-march=native" flag.
+ // For more info, see X86 ISA docs.
+ Features["pconfig"] = HasLeaf7 && ((EDX >> 18) & 1);
+ bool HasLeaf7Subleaf1 =
+ MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x1, &EAX, &EBX, &ECX, &EDX);
+ Features["avx512bf16"] = HasLeaf7Subleaf1 && ((EAX >> 5) & 1) && HasAVX512Save;
+
+ bool HasLeafD = MaxLevel >= 0xd &&
+ !getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX);
+
+ // Only enable XSAVE if OS has enabled support for saving YMM state.
+ Features["xsaveopt"] = HasLeafD && ((EAX >> 0) & 1) && HasAVXSave;
+ Features["xsavec"] = HasLeafD && ((EAX >> 1) & 1) && HasAVXSave;
+ Features["xsaves"] = HasLeafD && ((EAX >> 3) & 1) && HasAVXSave;
+
+ bool HasLeaf14 = MaxLevel >= 0x14 &&
+ !getX86CpuIDAndInfoEx(0x14, 0x0, &EAX, &EBX, &ECX, &EDX);
+
+ Features["ptwrite"] = HasLeaf14 && ((EBX >> 4) & 1);
+
+ return true;
+}
+#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
+bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
+ std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
+ if (!P)
+ return false;
+
+ SmallVector<StringRef, 32> Lines;
+ P->getBuffer().split(Lines, "\n");
+
+ SmallVector<StringRef, 32> CPUFeatures;
+
+ // Look for the CPU features.
+ for (unsigned I = 0, E = Lines.size(); I != E; ++I)
+ if (Lines[I].startswith("Features")) {
+ Lines[I].split(CPUFeatures, ' ');
+ break;
+ }
+
+#if defined(__aarch64__)
+ // Keep track of which crypto features we have seen
+ enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 };
+ uint32_t crypto = 0;
+#endif
+
+ for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
+ StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])
+#if defined(__aarch64__)
+ .Case("asimd", "neon")
+ .Case("fp", "fp-armv8")
+ .Case("crc32", "crc")
+#else
+ .Case("half", "fp16")
+ .Case("neon", "neon")
+ .Case("vfpv3", "vfp3")
+ .Case("vfpv3d16", "d16")
+ .Case("vfpv4", "vfp4")
+ .Case("idiva", "hwdiv-arm")
+ .Case("idivt", "hwdiv")
+#endif
+ .Default("");
+
+#if defined(__aarch64__)
+ // We need to check crypto separately since we need all of the crypto
+ // extensions to enable the subtarget feature
+ if (CPUFeatures[I] == "aes")
+ crypto |= CAP_AES;
+ else if (CPUFeatures[I] == "pmull")
+ crypto |= CAP_PMULL;
+ else if (CPUFeatures[I] == "sha1")
+ crypto |= CAP_SHA1;
+ else if (CPUFeatures[I] == "sha2")
+ crypto |= CAP_SHA2;
+#endif
+
+ if (LLVMFeatureStr != "")
+ Features[LLVMFeatureStr] = true;
+ }
+
+#if defined(__aarch64__)
+ // If we have all crypto bits we can add the feature
+ if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2))
+ Features["crypto"] = true;
+#endif
+
+ return true;
+}
+#elif defined(_WIN32) && (defined(__aarch64__) || defined(_M_ARM64))
+bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
+ if (IsProcessorFeaturePresent(PF_ARM_NEON_INSTRUCTIONS_AVAILABLE))
+ Features["neon"] = true;
+ if (IsProcessorFeaturePresent(PF_ARM_V8_CRC32_INSTRUCTIONS_AVAILABLE))
+ Features["crc"] = true;
+ if (IsProcessorFeaturePresent(PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE))
+ Features["crypto"] = true;
+
+ return true;
+}
+#else
+bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; }
+#endif
+
+std::string sys::getProcessTriple() {
+ std::string TargetTripleString = updateTripleOSVersion(LLVM_HOST_TRIPLE);
+ Triple PT(Triple::normalize(TargetTripleString));
+
+ if (sizeof(void *) == 8 && PT.isArch32Bit())
+ PT = PT.get64BitArchVariant();
+ if (sizeof(void *) == 4 && PT.isArch64Bit())
+ PT = PT.get32BitArchVariant();
+
+ return PT.str();
+}