diff options
Diffstat (limited to 'llvm/lib/Support/StringMap.cpp')
| -rw-r--r-- | llvm/lib/Support/StringMap.cpp | 261 | 
1 files changed, 261 insertions, 0 deletions
diff --git a/llvm/lib/Support/StringMap.cpp b/llvm/lib/Support/StringMap.cpp new file mode 100644 index 000000000000..6b5ea020dd46 --- /dev/null +++ b/llvm/lib/Support/StringMap.cpp @@ -0,0 +1,261 @@ +//===--- StringMap.cpp - String Hash table map implementation -------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the StringMap class. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/StringMap.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/DJB.h" +#include "llvm/Support/MathExtras.h" +#include <cassert> + +using namespace llvm; + +/// Returns the number of buckets to allocate to ensure that the DenseMap can +/// accommodate \p NumEntries without need to grow(). +static unsigned getMinBucketToReserveForEntries(unsigned NumEntries) { +  // Ensure that "NumEntries * 4 < NumBuckets * 3" +  if (NumEntries == 0) +    return 0; +  // +1 is required because of the strict equality. +  // For example if NumEntries is 48, we need to return 401. +  return NextPowerOf2(NumEntries * 4 / 3 + 1); +} + +StringMapImpl::StringMapImpl(unsigned InitSize, unsigned itemSize) { +  ItemSize = itemSize; + +  // If a size is specified, initialize the table with that many buckets. +  if (InitSize) { +    // The table will grow when the number of entries reach 3/4 of the number of +    // buckets. To guarantee that "InitSize" number of entries can be inserted +    // in the table without growing, we allocate just what is needed here. +    init(getMinBucketToReserveForEntries(InitSize)); +    return; +  } + +  // Otherwise, initialize it with zero buckets to avoid the allocation. +  TheTable = nullptr; +  NumBuckets = 0; +  NumItems = 0; +  NumTombstones = 0; +} + +void StringMapImpl::init(unsigned InitSize) { +  assert((InitSize & (InitSize-1)) == 0 && +         "Init Size must be a power of 2 or zero!"); + +  unsigned NewNumBuckets = InitSize ? InitSize : 16; +  NumItems = 0; +  NumTombstones = 0; + +  TheTable = static_cast<StringMapEntryBase **>( +      safe_calloc(NewNumBuckets+1, +                  sizeof(StringMapEntryBase **) + sizeof(unsigned))); + +  // Set the member only if TheTable was successfully allocated +  NumBuckets = NewNumBuckets; + +  // Allocate one extra bucket, set it to look filled so the iterators stop at +  // end. +  TheTable[NumBuckets] = (StringMapEntryBase*)2; +} + +/// LookupBucketFor - Look up the bucket that the specified string should end +/// up in.  If it already exists as a key in the map, the Item pointer for the +/// specified bucket will be non-null.  Otherwise, it will be null.  In either +/// case, the FullHashValue field of the bucket will be set to the hash value +/// of the string. +unsigned StringMapImpl::LookupBucketFor(StringRef Name) { +  unsigned HTSize = NumBuckets; +  if (HTSize == 0) {  // Hash table unallocated so far? +    init(16); +    HTSize = NumBuckets; +  } +  unsigned FullHashValue = djbHash(Name, 0); +  unsigned BucketNo = FullHashValue & (HTSize-1); +  unsigned *HashTable = (unsigned *)(TheTable + NumBuckets + 1); + +  unsigned ProbeAmt = 1; +  int FirstTombstone = -1; +  while (true) { +    StringMapEntryBase *BucketItem = TheTable[BucketNo]; +    // If we found an empty bucket, this key isn't in the table yet, return it. +    if (LLVM_LIKELY(!BucketItem)) { +      // If we found a tombstone, we want to reuse the tombstone instead of an +      // empty bucket.  This reduces probing. +      if (FirstTombstone != -1) { +        HashTable[FirstTombstone] = FullHashValue; +        return FirstTombstone; +      } + +      HashTable[BucketNo] = FullHashValue; +      return BucketNo; +    } + +    if (BucketItem == getTombstoneVal()) { +      // Skip over tombstones.  However, remember the first one we see. +      if (FirstTombstone == -1) FirstTombstone = BucketNo; +    } else if (LLVM_LIKELY(HashTable[BucketNo] == FullHashValue)) { +      // If the full hash value matches, check deeply for a match.  The common +      // case here is that we are only looking at the buckets (for item info +      // being non-null and for the full hash value) not at the items.  This +      // is important for cache locality. + +      // Do the comparison like this because Name isn't necessarily +      // null-terminated! +      char *ItemStr = (char*)BucketItem+ItemSize; +      if (Name == StringRef(ItemStr, BucketItem->getKeyLength())) { +        // We found a match! +        return BucketNo; +      } +    } + +    // Okay, we didn't find the item.  Probe to the next bucket. +    BucketNo = (BucketNo+ProbeAmt) & (HTSize-1); + +    // Use quadratic probing, it has fewer clumping artifacts than linear +    // probing and has good cache behavior in the common case. +    ++ProbeAmt; +  } +} + +/// FindKey - Look up the bucket that contains the specified key. If it exists +/// in the map, return the bucket number of the key.  Otherwise return -1. +/// This does not modify the map. +int StringMapImpl::FindKey(StringRef Key) const { +  unsigned HTSize = NumBuckets; +  if (HTSize == 0) return -1;  // Really empty table? +  unsigned FullHashValue = djbHash(Key, 0); +  unsigned BucketNo = FullHashValue & (HTSize-1); +  unsigned *HashTable = (unsigned *)(TheTable + NumBuckets + 1); + +  unsigned ProbeAmt = 1; +  while (true) { +    StringMapEntryBase *BucketItem = TheTable[BucketNo]; +    // If we found an empty bucket, this key isn't in the table yet, return. +    if (LLVM_LIKELY(!BucketItem)) +      return -1; + +    if (BucketItem == getTombstoneVal()) { +      // Ignore tombstones. +    } else if (LLVM_LIKELY(HashTable[BucketNo] == FullHashValue)) { +      // If the full hash value matches, check deeply for a match.  The common +      // case here is that we are only looking at the buckets (for item info +      // being non-null and for the full hash value) not at the items.  This +      // is important for cache locality. + +      // Do the comparison like this because NameStart isn't necessarily +      // null-terminated! +      char *ItemStr = (char*)BucketItem+ItemSize; +      if (Key == StringRef(ItemStr, BucketItem->getKeyLength())) { +        // We found a match! +        return BucketNo; +      } +    } + +    // Okay, we didn't find the item.  Probe to the next bucket. +    BucketNo = (BucketNo+ProbeAmt) & (HTSize-1); + +    // Use quadratic probing, it has fewer clumping artifacts than linear +    // probing and has good cache behavior in the common case. +    ++ProbeAmt; +  } +} + +/// RemoveKey - Remove the specified StringMapEntry from the table, but do not +/// delete it.  This aborts if the value isn't in the table. +void StringMapImpl::RemoveKey(StringMapEntryBase *V) { +  const char *VStr = (char*)V + ItemSize; +  StringMapEntryBase *V2 = RemoveKey(StringRef(VStr, V->getKeyLength())); +  (void)V2; +  assert(V == V2 && "Didn't find key?"); +} + +/// RemoveKey - Remove the StringMapEntry for the specified key from the +/// table, returning it.  If the key is not in the table, this returns null. +StringMapEntryBase *StringMapImpl::RemoveKey(StringRef Key) { +  int Bucket = FindKey(Key); +  if (Bucket == -1) return nullptr; + +  StringMapEntryBase *Result = TheTable[Bucket]; +  TheTable[Bucket] = getTombstoneVal(); +  --NumItems; +  ++NumTombstones; +  assert(NumItems + NumTombstones <= NumBuckets); + +  return Result; +} + +/// RehashTable - Grow the table, redistributing values into the buckets with +/// the appropriate mod-of-hashtable-size. +unsigned StringMapImpl::RehashTable(unsigned BucketNo) { +  unsigned NewSize; +  unsigned *HashTable = (unsigned *)(TheTable + NumBuckets + 1); + +  // If the hash table is now more than 3/4 full, or if fewer than 1/8 of +  // the buckets are empty (meaning that many are filled with tombstones), +  // grow/rehash the table. +  if (LLVM_UNLIKELY(NumItems * 4 > NumBuckets * 3)) { +    NewSize = NumBuckets*2; +  } else if (LLVM_UNLIKELY(NumBuckets - (NumItems + NumTombstones) <= +                           NumBuckets / 8)) { +    NewSize = NumBuckets; +  } else { +    return BucketNo; +  } + +  unsigned NewBucketNo = BucketNo; +  // Allocate one extra bucket which will always be non-empty.  This allows the +  // iterators to stop at end. +  auto NewTableArray = static_cast<StringMapEntryBase **>( +      safe_calloc(NewSize+1, sizeof(StringMapEntryBase *) + sizeof(unsigned))); + +  unsigned *NewHashArray = (unsigned *)(NewTableArray + NewSize + 1); +  NewTableArray[NewSize] = (StringMapEntryBase*)2; + +  // Rehash all the items into their new buckets.  Luckily :) we already have +  // the hash values available, so we don't have to rehash any strings. +  for (unsigned I = 0, E = NumBuckets; I != E; ++I) { +    StringMapEntryBase *Bucket = TheTable[I]; +    if (Bucket && Bucket != getTombstoneVal()) { +      // Fast case, bucket available. +      unsigned FullHash = HashTable[I]; +      unsigned NewBucket = FullHash & (NewSize-1); +      if (!NewTableArray[NewBucket]) { +        NewTableArray[FullHash & (NewSize-1)] = Bucket; +        NewHashArray[FullHash & (NewSize-1)] = FullHash; +        if (I == BucketNo) +          NewBucketNo = NewBucket; +        continue; +      } + +      // Otherwise probe for a spot. +      unsigned ProbeSize = 1; +      do { +        NewBucket = (NewBucket + ProbeSize++) & (NewSize-1); +      } while (NewTableArray[NewBucket]); + +      // Finally found a slot.  Fill it in. +      NewTableArray[NewBucket] = Bucket; +      NewHashArray[NewBucket] = FullHash; +      if (I == BucketNo) +        NewBucketNo = NewBucket; +    } +  } + +  free(TheTable); + +  TheTable = NewTableArray; +  NumBuckets = NewSize; +  NumTombstones = 0; +  return NewBucketNo; +}  | 
