diff options
Diffstat (limited to 'llvm/lib/Target/AMDGPU/AMDGPUAtomicOptimizer.cpp')
-rw-r--r-- | llvm/lib/Target/AMDGPU/AMDGPUAtomicOptimizer.cpp | 669 |
1 files changed, 669 insertions, 0 deletions
diff --git a/llvm/lib/Target/AMDGPU/AMDGPUAtomicOptimizer.cpp b/llvm/lib/Target/AMDGPU/AMDGPUAtomicOptimizer.cpp new file mode 100644 index 000000000000..ba8343142c63 --- /dev/null +++ b/llvm/lib/Target/AMDGPU/AMDGPUAtomicOptimizer.cpp @@ -0,0 +1,669 @@ +//===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +/// \file +/// This pass optimizes atomic operations by using a single lane of a wavefront +/// to perform the atomic operation, thus reducing contention on that memory +/// location. +// +//===----------------------------------------------------------------------===// + +#include "AMDGPU.h" +#include "AMDGPUSubtarget.h" +#include "SIDefines.h" +#include "llvm/Analysis/LegacyDivergenceAnalysis.h" +#include "llvm/CodeGen/TargetPassConfig.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstVisitor.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" + +#define DEBUG_TYPE "amdgpu-atomic-optimizer" + +using namespace llvm; +using namespace llvm::AMDGPU; + +namespace { + +struct ReplacementInfo { + Instruction *I; + AtomicRMWInst::BinOp Op; + unsigned ValIdx; + bool ValDivergent; +}; + +class AMDGPUAtomicOptimizer : public FunctionPass, + public InstVisitor<AMDGPUAtomicOptimizer> { +private: + SmallVector<ReplacementInfo, 8> ToReplace; + const LegacyDivergenceAnalysis *DA; + const DataLayout *DL; + DominatorTree *DT; + const GCNSubtarget *ST; + bool IsPixelShader; + + Value *buildScan(IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *V, + Value *const Identity) const; + Value *buildShiftRight(IRBuilder<> &B, Value *V, Value *const Identity) const; + void optimizeAtomic(Instruction &I, AtomicRMWInst::BinOp Op, unsigned ValIdx, + bool ValDivergent) const; + +public: + static char ID; + + AMDGPUAtomicOptimizer() : FunctionPass(ID) {} + + bool runOnFunction(Function &F) override; + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addPreserved<DominatorTreeWrapperPass>(); + AU.addRequired<LegacyDivergenceAnalysis>(); + AU.addRequired<TargetPassConfig>(); + } + + void visitAtomicRMWInst(AtomicRMWInst &I); + void visitIntrinsicInst(IntrinsicInst &I); +}; + +} // namespace + +char AMDGPUAtomicOptimizer::ID = 0; + +char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID; + +bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) { + if (skipFunction(F)) { + return false; + } + + DA = &getAnalysis<LegacyDivergenceAnalysis>(); + DL = &F.getParent()->getDataLayout(); + DominatorTreeWrapperPass *const DTW = + getAnalysisIfAvailable<DominatorTreeWrapperPass>(); + DT = DTW ? &DTW->getDomTree() : nullptr; + const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>(); + const TargetMachine &TM = TPC.getTM<TargetMachine>(); + ST = &TM.getSubtarget<GCNSubtarget>(F); + IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS; + + visit(F); + + const bool Changed = !ToReplace.empty(); + + for (ReplacementInfo &Info : ToReplace) { + optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent); + } + + ToReplace.clear(); + + return Changed; +} + +void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) { + // Early exit for unhandled address space atomic instructions. + switch (I.getPointerAddressSpace()) { + default: + return; + case AMDGPUAS::GLOBAL_ADDRESS: + case AMDGPUAS::LOCAL_ADDRESS: + break; + } + + AtomicRMWInst::BinOp Op = I.getOperation(); + + switch (Op) { + default: + return; + case AtomicRMWInst::Add: + case AtomicRMWInst::Sub: + case AtomicRMWInst::And: + case AtomicRMWInst::Or: + case AtomicRMWInst::Xor: + case AtomicRMWInst::Max: + case AtomicRMWInst::Min: + case AtomicRMWInst::UMax: + case AtomicRMWInst::UMin: + break; + } + + const unsigned PtrIdx = 0; + const unsigned ValIdx = 1; + + // If the pointer operand is divergent, then each lane is doing an atomic + // operation on a different address, and we cannot optimize that. + if (DA->isDivergentUse(&I.getOperandUse(PtrIdx))) { + return; + } + + const bool ValDivergent = DA->isDivergentUse(&I.getOperandUse(ValIdx)); + + // If the value operand is divergent, each lane is contributing a different + // value to the atomic calculation. We can only optimize divergent values if + // we have DPP available on our subtarget, and the atomic operation is 32 + // bits. + if (ValDivergent && + (!ST->hasDPP() || DL->getTypeSizeInBits(I.getType()) != 32)) { + return; + } + + // If we get here, we can optimize the atomic using a single wavefront-wide + // atomic operation to do the calculation for the entire wavefront, so + // remember the instruction so we can come back to it. + const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent}; + + ToReplace.push_back(Info); +} + +void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) { + AtomicRMWInst::BinOp Op; + + switch (I.getIntrinsicID()) { + default: + return; + case Intrinsic::amdgcn_buffer_atomic_add: + case Intrinsic::amdgcn_struct_buffer_atomic_add: + case Intrinsic::amdgcn_raw_buffer_atomic_add: + Op = AtomicRMWInst::Add; + break; + case Intrinsic::amdgcn_buffer_atomic_sub: + case Intrinsic::amdgcn_struct_buffer_atomic_sub: + case Intrinsic::amdgcn_raw_buffer_atomic_sub: + Op = AtomicRMWInst::Sub; + break; + case Intrinsic::amdgcn_buffer_atomic_and: + case Intrinsic::amdgcn_struct_buffer_atomic_and: + case Intrinsic::amdgcn_raw_buffer_atomic_and: + Op = AtomicRMWInst::And; + break; + case Intrinsic::amdgcn_buffer_atomic_or: + case Intrinsic::amdgcn_struct_buffer_atomic_or: + case Intrinsic::amdgcn_raw_buffer_atomic_or: + Op = AtomicRMWInst::Or; + break; + case Intrinsic::amdgcn_buffer_atomic_xor: + case Intrinsic::amdgcn_struct_buffer_atomic_xor: + case Intrinsic::amdgcn_raw_buffer_atomic_xor: + Op = AtomicRMWInst::Xor; + break; + case Intrinsic::amdgcn_buffer_atomic_smin: + case Intrinsic::amdgcn_struct_buffer_atomic_smin: + case Intrinsic::amdgcn_raw_buffer_atomic_smin: + Op = AtomicRMWInst::Min; + break; + case Intrinsic::amdgcn_buffer_atomic_umin: + case Intrinsic::amdgcn_struct_buffer_atomic_umin: + case Intrinsic::amdgcn_raw_buffer_atomic_umin: + Op = AtomicRMWInst::UMin; + break; + case Intrinsic::amdgcn_buffer_atomic_smax: + case Intrinsic::amdgcn_struct_buffer_atomic_smax: + case Intrinsic::amdgcn_raw_buffer_atomic_smax: + Op = AtomicRMWInst::Max; + break; + case Intrinsic::amdgcn_buffer_atomic_umax: + case Intrinsic::amdgcn_struct_buffer_atomic_umax: + case Intrinsic::amdgcn_raw_buffer_atomic_umax: + Op = AtomicRMWInst::UMax; + break; + } + + const unsigned ValIdx = 0; + + const bool ValDivergent = DA->isDivergentUse(&I.getOperandUse(ValIdx)); + + // If the value operand is divergent, each lane is contributing a different + // value to the atomic calculation. We can only optimize divergent values if + // we have DPP available on our subtarget, and the atomic operation is 32 + // bits. + if (ValDivergent && + (!ST->hasDPP() || DL->getTypeSizeInBits(I.getType()) != 32)) { + return; + } + + // If any of the other arguments to the intrinsic are divergent, we can't + // optimize the operation. + for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) { + if (DA->isDivergentUse(&I.getOperandUse(Idx))) { + return; + } + } + + // If we get here, we can optimize the atomic using a single wavefront-wide + // atomic operation to do the calculation for the entire wavefront, so + // remember the instruction so we can come back to it. + const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent}; + + ToReplace.push_back(Info); +} + +// Use the builder to create the non-atomic counterpart of the specified +// atomicrmw binary op. +static Value *buildNonAtomicBinOp(IRBuilder<> &B, AtomicRMWInst::BinOp Op, + Value *LHS, Value *RHS) { + CmpInst::Predicate Pred; + + switch (Op) { + default: + llvm_unreachable("Unhandled atomic op"); + case AtomicRMWInst::Add: + return B.CreateBinOp(Instruction::Add, LHS, RHS); + case AtomicRMWInst::Sub: + return B.CreateBinOp(Instruction::Sub, LHS, RHS); + case AtomicRMWInst::And: + return B.CreateBinOp(Instruction::And, LHS, RHS); + case AtomicRMWInst::Or: + return B.CreateBinOp(Instruction::Or, LHS, RHS); + case AtomicRMWInst::Xor: + return B.CreateBinOp(Instruction::Xor, LHS, RHS); + + case AtomicRMWInst::Max: + Pred = CmpInst::ICMP_SGT; + break; + case AtomicRMWInst::Min: + Pred = CmpInst::ICMP_SLT; + break; + case AtomicRMWInst::UMax: + Pred = CmpInst::ICMP_UGT; + break; + case AtomicRMWInst::UMin: + Pred = CmpInst::ICMP_ULT; + break; + } + Value *Cond = B.CreateICmp(Pred, LHS, RHS); + return B.CreateSelect(Cond, LHS, RHS); +} + +// Use the builder to create an inclusive scan of V across the wavefront, with +// all lanes active. +Value *AMDGPUAtomicOptimizer::buildScan(IRBuilder<> &B, AtomicRMWInst::BinOp Op, + Value *V, Value *const Identity) const { + Type *const Ty = V->getType(); + Module *M = B.GetInsertBlock()->getModule(); + Function *UpdateDPP = + Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, Ty); + Function *PermLaneX16 = + Intrinsic::getDeclaration(M, Intrinsic::amdgcn_permlanex16, {}); + Function *ReadLane = + Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, {}); + + for (unsigned Idx = 0; Idx < 4; Idx++) { + V = buildNonAtomicBinOp( + B, Op, V, + B.CreateCall(UpdateDPP, + {Identity, V, B.getInt32(DPP::ROW_SHR0 | 1 << Idx), + B.getInt32(0xf), B.getInt32(0xf), B.getFalse()})); + } + if (ST->hasDPPBroadcasts()) { + // GFX9 has DPP row broadcast operations. + V = buildNonAtomicBinOp( + B, Op, V, + B.CreateCall(UpdateDPP, + {Identity, V, B.getInt32(DPP::BCAST15), B.getInt32(0xa), + B.getInt32(0xf), B.getFalse()})); + V = buildNonAtomicBinOp( + B, Op, V, + B.CreateCall(UpdateDPP, + {Identity, V, B.getInt32(DPP::BCAST31), B.getInt32(0xc), + B.getInt32(0xf), B.getFalse()})); + } else { + // On GFX10 all DPP operations are confined to a single row. To get cross- + // row operations we have to use permlane or readlane. + + // Combine lane 15 into lanes 16..31 (and, for wave 64, lane 47 into lanes + // 48..63). + Value *const PermX = + B.CreateCall(PermLaneX16, {V, V, B.getInt32(-1), B.getInt32(-1), + B.getFalse(), B.getFalse()}); + V = buildNonAtomicBinOp( + B, Op, V, + B.CreateCall(UpdateDPP, + {Identity, PermX, B.getInt32(DPP::QUAD_PERM_ID), + B.getInt32(0xa), B.getInt32(0xf), B.getFalse()})); + if (!ST->isWave32()) { + // Combine lane 31 into lanes 32..63. + Value *const Lane31 = B.CreateCall(ReadLane, {V, B.getInt32(31)}); + V = buildNonAtomicBinOp( + B, Op, V, + B.CreateCall(UpdateDPP, + {Identity, Lane31, B.getInt32(DPP::QUAD_PERM_ID), + B.getInt32(0xc), B.getInt32(0xf), B.getFalse()})); + } + } + return V; +} + +// Use the builder to create a shift right of V across the wavefront, with all +// lanes active, to turn an inclusive scan into an exclusive scan. +Value *AMDGPUAtomicOptimizer::buildShiftRight(IRBuilder<> &B, Value *V, + Value *const Identity) const { + Type *const Ty = V->getType(); + Module *M = B.GetInsertBlock()->getModule(); + Function *UpdateDPP = + Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, Ty); + Function *ReadLane = + Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, {}); + Function *WriteLane = + Intrinsic::getDeclaration(M, Intrinsic::amdgcn_writelane, {}); + + if (ST->hasDPPWavefrontShifts()) { + // GFX9 has DPP wavefront shift operations. + V = B.CreateCall(UpdateDPP, + {Identity, V, B.getInt32(DPP::WAVE_SHR1), B.getInt32(0xf), + B.getInt32(0xf), B.getFalse()}); + } else { + // On GFX10 all DPP operations are confined to a single row. To get cross- + // row operations we have to use permlane or readlane. + Value *Old = V; + V = B.CreateCall(UpdateDPP, + {Identity, V, B.getInt32(DPP::ROW_SHR0 + 1), + B.getInt32(0xf), B.getInt32(0xf), B.getFalse()}); + + // Copy the old lane 15 to the new lane 16. + V = B.CreateCall(WriteLane, {B.CreateCall(ReadLane, {Old, B.getInt32(15)}), + B.getInt32(16), V}); + + if (!ST->isWave32()) { + // Copy the old lane 31 to the new lane 32. + V = B.CreateCall( + WriteLane, + {B.CreateCall(ReadLane, {Old, B.getInt32(31)}), B.getInt32(32), V}); + + // Copy the old lane 47 to the new lane 48. + V = B.CreateCall( + WriteLane, + {B.CreateCall(ReadLane, {Old, B.getInt32(47)}), B.getInt32(48), V}); + } + } + + return V; +} + +static APInt getIdentityValueForAtomicOp(AtomicRMWInst::BinOp Op, + unsigned BitWidth) { + switch (Op) { + default: + llvm_unreachable("Unhandled atomic op"); + case AtomicRMWInst::Add: + case AtomicRMWInst::Sub: + case AtomicRMWInst::Or: + case AtomicRMWInst::Xor: + case AtomicRMWInst::UMax: + return APInt::getMinValue(BitWidth); + case AtomicRMWInst::And: + case AtomicRMWInst::UMin: + return APInt::getMaxValue(BitWidth); + case AtomicRMWInst::Max: + return APInt::getSignedMinValue(BitWidth); + case AtomicRMWInst::Min: + return APInt::getSignedMaxValue(BitWidth); + } +} + +void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I, + AtomicRMWInst::BinOp Op, + unsigned ValIdx, + bool ValDivergent) const { + // Start building just before the instruction. + IRBuilder<> B(&I); + + // If we are in a pixel shader, because of how we have to mask out helper + // lane invocations, we need to record the entry and exit BB's. + BasicBlock *PixelEntryBB = nullptr; + BasicBlock *PixelExitBB = nullptr; + + // If we're optimizing an atomic within a pixel shader, we need to wrap the + // entire atomic operation in a helper-lane check. We do not want any helper + // lanes that are around only for the purposes of derivatives to take part + // in any cross-lane communication, and we use a branch on whether the lane is + // live to do this. + if (IsPixelShader) { + // Record I's original position as the entry block. + PixelEntryBB = I.getParent(); + + Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {}); + Instruction *const NonHelperTerminator = + SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr); + + // Record I's new position as the exit block. + PixelExitBB = I.getParent(); + + I.moveBefore(NonHelperTerminator); + B.SetInsertPoint(&I); + } + + Type *const Ty = I.getType(); + const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty); + Type *const VecTy = VectorType::get(B.getInt32Ty(), 2); + + // This is the value in the atomic operation we need to combine in order to + // reduce the number of atomic operations. + Value *const V = I.getOperand(ValIdx); + + // We need to know how many lanes are active within the wavefront, and we do + // this by doing a ballot of active lanes. + Type *const WaveTy = B.getIntNTy(ST->getWavefrontSize()); + CallInst *const Ballot = B.CreateIntrinsic( + Intrinsic::amdgcn_icmp, {WaveTy, B.getInt32Ty()}, + {B.getInt32(1), B.getInt32(0), B.getInt32(CmpInst::ICMP_NE)}); + + // We need to know how many lanes are active within the wavefront that are + // below us. If we counted each lane linearly starting from 0, a lane is + // below us only if its associated index was less than ours. We do this by + // using the mbcnt intrinsic. + Value *Mbcnt; + if (ST->isWave32()) { + Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {}, + {Ballot, B.getInt32(0)}); + } else { + Value *const BitCast = B.CreateBitCast(Ballot, VecTy); + Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0)); + Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1)); + Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {}, + {ExtractLo, B.getInt32(0)}); + Mbcnt = + B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {}, {ExtractHi, Mbcnt}); + } + Mbcnt = B.CreateIntCast(Mbcnt, Ty, false); + + Value *const Identity = B.getInt(getIdentityValueForAtomicOp(Op, TyBitWidth)); + + Value *ExclScan = nullptr; + Value *NewV = nullptr; + + // If we have a divergent value in each lane, we need to combine the value + // using DPP. + if (ValDivergent) { + // First we need to set all inactive invocations to the identity value, so + // that they can correctly contribute to the final result. + NewV = B.CreateIntrinsic(Intrinsic::amdgcn_set_inactive, Ty, {V, Identity}); + + const AtomicRMWInst::BinOp ScanOp = + Op == AtomicRMWInst::Sub ? AtomicRMWInst::Add : Op; + NewV = buildScan(B, ScanOp, NewV, Identity); + ExclScan = buildShiftRight(B, NewV, Identity); + + // Read the value from the last lane, which has accumlated the values of + // each active lane in the wavefront. This will be our new value which we + // will provide to the atomic operation. + Value *const LastLaneIdx = B.getInt32(ST->getWavefrontSize() - 1); + if (TyBitWidth == 64) { + Value *const ExtractLo = B.CreateTrunc(NewV, B.getInt32Ty()); + Value *const ExtractHi = + B.CreateTrunc(B.CreateLShr(NewV, 32), B.getInt32Ty()); + CallInst *const ReadLaneLo = B.CreateIntrinsic( + Intrinsic::amdgcn_readlane, {}, {ExtractLo, LastLaneIdx}); + CallInst *const ReadLaneHi = B.CreateIntrinsic( + Intrinsic::amdgcn_readlane, {}, {ExtractHi, LastLaneIdx}); + Value *const PartialInsert = B.CreateInsertElement( + UndefValue::get(VecTy), ReadLaneLo, B.getInt32(0)); + Value *const Insert = + B.CreateInsertElement(PartialInsert, ReadLaneHi, B.getInt32(1)); + NewV = B.CreateBitCast(Insert, Ty); + } else if (TyBitWidth == 32) { + NewV = B.CreateIntrinsic(Intrinsic::amdgcn_readlane, {}, + {NewV, LastLaneIdx}); + } else { + llvm_unreachable("Unhandled atomic bit width"); + } + + // Finally mark the readlanes in the WWM section. + NewV = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV); + } else { + switch (Op) { + default: + llvm_unreachable("Unhandled atomic op"); + + case AtomicRMWInst::Add: + case AtomicRMWInst::Sub: { + // The new value we will be contributing to the atomic operation is the + // old value times the number of active lanes. + Value *const Ctpop = B.CreateIntCast( + B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false); + NewV = B.CreateMul(V, Ctpop); + break; + } + + case AtomicRMWInst::And: + case AtomicRMWInst::Or: + case AtomicRMWInst::Max: + case AtomicRMWInst::Min: + case AtomicRMWInst::UMax: + case AtomicRMWInst::UMin: + // These operations with a uniform value are idempotent: doing the atomic + // operation multiple times has the same effect as doing it once. + NewV = V; + break; + + case AtomicRMWInst::Xor: + // The new value we will be contributing to the atomic operation is the + // old value times the parity of the number of active lanes. + Value *const Ctpop = B.CreateIntCast( + B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false); + NewV = B.CreateMul(V, B.CreateAnd(Ctpop, 1)); + break; + } + } + + // We only want a single lane to enter our new control flow, and we do this + // by checking if there are any active lanes below us. Only one lane will + // have 0 active lanes below us, so that will be the only one to progress. + Value *const Cond = B.CreateICmpEQ(Mbcnt, B.getIntN(TyBitWidth, 0)); + + // Store I's original basic block before we split the block. + BasicBlock *const EntryBB = I.getParent(); + + // We need to introduce some new control flow to force a single lane to be + // active. We do this by splitting I's basic block at I, and introducing the + // new block such that: + // entry --> single_lane -\ + // \------------------> exit + Instruction *const SingleLaneTerminator = + SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr); + + // Move the IR builder into single_lane next. + B.SetInsertPoint(SingleLaneTerminator); + + // Clone the original atomic operation into single lane, replacing the + // original value with our newly created one. + Instruction *const NewI = I.clone(); + B.Insert(NewI); + NewI->setOperand(ValIdx, NewV); + + // Move the IR builder into exit next, and start inserting just before the + // original instruction. + B.SetInsertPoint(&I); + + const bool NeedResult = !I.use_empty(); + if (NeedResult) { + // Create a PHI node to get our new atomic result into the exit block. + PHINode *const PHI = B.CreatePHI(Ty, 2); + PHI->addIncoming(UndefValue::get(Ty), EntryBB); + PHI->addIncoming(NewI, SingleLaneTerminator->getParent()); + + // We need to broadcast the value who was the lowest active lane (the first + // lane) to all other lanes in the wavefront. We use an intrinsic for this, + // but have to handle 64-bit broadcasts with two calls to this intrinsic. + Value *BroadcastI = nullptr; + + if (TyBitWidth == 64) { + Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty()); + Value *const ExtractHi = + B.CreateTrunc(B.CreateLShr(PHI, 32), B.getInt32Ty()); + CallInst *const ReadFirstLaneLo = + B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo); + CallInst *const ReadFirstLaneHi = + B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi); + Value *const PartialInsert = B.CreateInsertElement( + UndefValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0)); + Value *const Insert = + B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1)); + BroadcastI = B.CreateBitCast(Insert, Ty); + } else if (TyBitWidth == 32) { + + BroadcastI = B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI); + } else { + llvm_unreachable("Unhandled atomic bit width"); + } + + // Now that we have the result of our single atomic operation, we need to + // get our individual lane's slice into the result. We use the lane offset + // we previously calculated combined with the atomic result value we got + // from the first lane, to get our lane's index into the atomic result. + Value *LaneOffset = nullptr; + if (ValDivergent) { + LaneOffset = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, ExclScan); + } else { + switch (Op) { + default: + llvm_unreachable("Unhandled atomic op"); + case AtomicRMWInst::Add: + case AtomicRMWInst::Sub: + LaneOffset = B.CreateMul(V, Mbcnt); + break; + case AtomicRMWInst::And: + case AtomicRMWInst::Or: + case AtomicRMWInst::Max: + case AtomicRMWInst::Min: + case AtomicRMWInst::UMax: + case AtomicRMWInst::UMin: + LaneOffset = B.CreateSelect(Cond, Identity, V); + break; + case AtomicRMWInst::Xor: + LaneOffset = B.CreateMul(V, B.CreateAnd(Mbcnt, 1)); + break; + } + } + Value *const Result = buildNonAtomicBinOp(B, Op, BroadcastI, LaneOffset); + + if (IsPixelShader) { + // Need a final PHI to reconverge to above the helper lane branch mask. + B.SetInsertPoint(PixelExitBB->getFirstNonPHI()); + + PHINode *const PHI = B.CreatePHI(Ty, 2); + PHI->addIncoming(UndefValue::get(Ty), PixelEntryBB); + PHI->addIncoming(Result, I.getParent()); + I.replaceAllUsesWith(PHI); + } else { + // Replace the original atomic instruction with the new one. + I.replaceAllUsesWith(Result); + } + } + + // And delete the original. + I.eraseFromParent(); +} + +INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE, + "AMDGPU atomic optimizations", false, false) +INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) +INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) +INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE, + "AMDGPU atomic optimizations", false, false) + +FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() { + return new AMDGPUAtomicOptimizer(); +} |