summaryrefslogtreecommitdiff
path: root/llvm/lib/Target/AMDGPU/AMDGPUAtomicOptimizer.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Target/AMDGPU/AMDGPUAtomicOptimizer.cpp')
-rw-r--r--llvm/lib/Target/AMDGPU/AMDGPUAtomicOptimizer.cpp669
1 files changed, 669 insertions, 0 deletions
diff --git a/llvm/lib/Target/AMDGPU/AMDGPUAtomicOptimizer.cpp b/llvm/lib/Target/AMDGPU/AMDGPUAtomicOptimizer.cpp
new file mode 100644
index 000000000000..ba8343142c63
--- /dev/null
+++ b/llvm/lib/Target/AMDGPU/AMDGPUAtomicOptimizer.cpp
@@ -0,0 +1,669 @@
+//===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// This pass optimizes atomic operations by using a single lane of a wavefront
+/// to perform the atomic operation, thus reducing contention on that memory
+/// location.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPU.h"
+#include "AMDGPUSubtarget.h"
+#include "SIDefines.h"
+#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstVisitor.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+
+#define DEBUG_TYPE "amdgpu-atomic-optimizer"
+
+using namespace llvm;
+using namespace llvm::AMDGPU;
+
+namespace {
+
+struct ReplacementInfo {
+ Instruction *I;
+ AtomicRMWInst::BinOp Op;
+ unsigned ValIdx;
+ bool ValDivergent;
+};
+
+class AMDGPUAtomicOptimizer : public FunctionPass,
+ public InstVisitor<AMDGPUAtomicOptimizer> {
+private:
+ SmallVector<ReplacementInfo, 8> ToReplace;
+ const LegacyDivergenceAnalysis *DA;
+ const DataLayout *DL;
+ DominatorTree *DT;
+ const GCNSubtarget *ST;
+ bool IsPixelShader;
+
+ Value *buildScan(IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *V,
+ Value *const Identity) const;
+ Value *buildShiftRight(IRBuilder<> &B, Value *V, Value *const Identity) const;
+ void optimizeAtomic(Instruction &I, AtomicRMWInst::BinOp Op, unsigned ValIdx,
+ bool ValDivergent) const;
+
+public:
+ static char ID;
+
+ AMDGPUAtomicOptimizer() : FunctionPass(ID) {}
+
+ bool runOnFunction(Function &F) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ AU.addRequired<LegacyDivergenceAnalysis>();
+ AU.addRequired<TargetPassConfig>();
+ }
+
+ void visitAtomicRMWInst(AtomicRMWInst &I);
+ void visitIntrinsicInst(IntrinsicInst &I);
+};
+
+} // namespace
+
+char AMDGPUAtomicOptimizer::ID = 0;
+
+char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID;
+
+bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) {
+ if (skipFunction(F)) {
+ return false;
+ }
+
+ DA = &getAnalysis<LegacyDivergenceAnalysis>();
+ DL = &F.getParent()->getDataLayout();
+ DominatorTreeWrapperPass *const DTW =
+ getAnalysisIfAvailable<DominatorTreeWrapperPass>();
+ DT = DTW ? &DTW->getDomTree() : nullptr;
+ const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
+ const TargetMachine &TM = TPC.getTM<TargetMachine>();
+ ST = &TM.getSubtarget<GCNSubtarget>(F);
+ IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS;
+
+ visit(F);
+
+ const bool Changed = !ToReplace.empty();
+
+ for (ReplacementInfo &Info : ToReplace) {
+ optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent);
+ }
+
+ ToReplace.clear();
+
+ return Changed;
+}
+
+void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) {
+ // Early exit for unhandled address space atomic instructions.
+ switch (I.getPointerAddressSpace()) {
+ default:
+ return;
+ case AMDGPUAS::GLOBAL_ADDRESS:
+ case AMDGPUAS::LOCAL_ADDRESS:
+ break;
+ }
+
+ AtomicRMWInst::BinOp Op = I.getOperation();
+
+ switch (Op) {
+ default:
+ return;
+ case AtomicRMWInst::Add:
+ case AtomicRMWInst::Sub:
+ case AtomicRMWInst::And:
+ case AtomicRMWInst::Or:
+ case AtomicRMWInst::Xor:
+ case AtomicRMWInst::Max:
+ case AtomicRMWInst::Min:
+ case AtomicRMWInst::UMax:
+ case AtomicRMWInst::UMin:
+ break;
+ }
+
+ const unsigned PtrIdx = 0;
+ const unsigned ValIdx = 1;
+
+ // If the pointer operand is divergent, then each lane is doing an atomic
+ // operation on a different address, and we cannot optimize that.
+ if (DA->isDivergentUse(&I.getOperandUse(PtrIdx))) {
+ return;
+ }
+
+ const bool ValDivergent = DA->isDivergentUse(&I.getOperandUse(ValIdx));
+
+ // If the value operand is divergent, each lane is contributing a different
+ // value to the atomic calculation. We can only optimize divergent values if
+ // we have DPP available on our subtarget, and the atomic operation is 32
+ // bits.
+ if (ValDivergent &&
+ (!ST->hasDPP() || DL->getTypeSizeInBits(I.getType()) != 32)) {
+ return;
+ }
+
+ // If we get here, we can optimize the atomic using a single wavefront-wide
+ // atomic operation to do the calculation for the entire wavefront, so
+ // remember the instruction so we can come back to it.
+ const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
+
+ ToReplace.push_back(Info);
+}
+
+void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) {
+ AtomicRMWInst::BinOp Op;
+
+ switch (I.getIntrinsicID()) {
+ default:
+ return;
+ case Intrinsic::amdgcn_buffer_atomic_add:
+ case Intrinsic::amdgcn_struct_buffer_atomic_add:
+ case Intrinsic::amdgcn_raw_buffer_atomic_add:
+ Op = AtomicRMWInst::Add;
+ break;
+ case Intrinsic::amdgcn_buffer_atomic_sub:
+ case Intrinsic::amdgcn_struct_buffer_atomic_sub:
+ case Intrinsic::amdgcn_raw_buffer_atomic_sub:
+ Op = AtomicRMWInst::Sub;
+ break;
+ case Intrinsic::amdgcn_buffer_atomic_and:
+ case Intrinsic::amdgcn_struct_buffer_atomic_and:
+ case Intrinsic::amdgcn_raw_buffer_atomic_and:
+ Op = AtomicRMWInst::And;
+ break;
+ case Intrinsic::amdgcn_buffer_atomic_or:
+ case Intrinsic::amdgcn_struct_buffer_atomic_or:
+ case Intrinsic::amdgcn_raw_buffer_atomic_or:
+ Op = AtomicRMWInst::Or;
+ break;
+ case Intrinsic::amdgcn_buffer_atomic_xor:
+ case Intrinsic::amdgcn_struct_buffer_atomic_xor:
+ case Intrinsic::amdgcn_raw_buffer_atomic_xor:
+ Op = AtomicRMWInst::Xor;
+ break;
+ case Intrinsic::amdgcn_buffer_atomic_smin:
+ case Intrinsic::amdgcn_struct_buffer_atomic_smin:
+ case Intrinsic::amdgcn_raw_buffer_atomic_smin:
+ Op = AtomicRMWInst::Min;
+ break;
+ case Intrinsic::amdgcn_buffer_atomic_umin:
+ case Intrinsic::amdgcn_struct_buffer_atomic_umin:
+ case Intrinsic::amdgcn_raw_buffer_atomic_umin:
+ Op = AtomicRMWInst::UMin;
+ break;
+ case Intrinsic::amdgcn_buffer_atomic_smax:
+ case Intrinsic::amdgcn_struct_buffer_atomic_smax:
+ case Intrinsic::amdgcn_raw_buffer_atomic_smax:
+ Op = AtomicRMWInst::Max;
+ break;
+ case Intrinsic::amdgcn_buffer_atomic_umax:
+ case Intrinsic::amdgcn_struct_buffer_atomic_umax:
+ case Intrinsic::amdgcn_raw_buffer_atomic_umax:
+ Op = AtomicRMWInst::UMax;
+ break;
+ }
+
+ const unsigned ValIdx = 0;
+
+ const bool ValDivergent = DA->isDivergentUse(&I.getOperandUse(ValIdx));
+
+ // If the value operand is divergent, each lane is contributing a different
+ // value to the atomic calculation. We can only optimize divergent values if
+ // we have DPP available on our subtarget, and the atomic operation is 32
+ // bits.
+ if (ValDivergent &&
+ (!ST->hasDPP() || DL->getTypeSizeInBits(I.getType()) != 32)) {
+ return;
+ }
+
+ // If any of the other arguments to the intrinsic are divergent, we can't
+ // optimize the operation.
+ for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) {
+ if (DA->isDivergentUse(&I.getOperandUse(Idx))) {
+ return;
+ }
+ }
+
+ // If we get here, we can optimize the atomic using a single wavefront-wide
+ // atomic operation to do the calculation for the entire wavefront, so
+ // remember the instruction so we can come back to it.
+ const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
+
+ ToReplace.push_back(Info);
+}
+
+// Use the builder to create the non-atomic counterpart of the specified
+// atomicrmw binary op.
+static Value *buildNonAtomicBinOp(IRBuilder<> &B, AtomicRMWInst::BinOp Op,
+ Value *LHS, Value *RHS) {
+ CmpInst::Predicate Pred;
+
+ switch (Op) {
+ default:
+ llvm_unreachable("Unhandled atomic op");
+ case AtomicRMWInst::Add:
+ return B.CreateBinOp(Instruction::Add, LHS, RHS);
+ case AtomicRMWInst::Sub:
+ return B.CreateBinOp(Instruction::Sub, LHS, RHS);
+ case AtomicRMWInst::And:
+ return B.CreateBinOp(Instruction::And, LHS, RHS);
+ case AtomicRMWInst::Or:
+ return B.CreateBinOp(Instruction::Or, LHS, RHS);
+ case AtomicRMWInst::Xor:
+ return B.CreateBinOp(Instruction::Xor, LHS, RHS);
+
+ case AtomicRMWInst::Max:
+ Pred = CmpInst::ICMP_SGT;
+ break;
+ case AtomicRMWInst::Min:
+ Pred = CmpInst::ICMP_SLT;
+ break;
+ case AtomicRMWInst::UMax:
+ Pred = CmpInst::ICMP_UGT;
+ break;
+ case AtomicRMWInst::UMin:
+ Pred = CmpInst::ICMP_ULT;
+ break;
+ }
+ Value *Cond = B.CreateICmp(Pred, LHS, RHS);
+ return B.CreateSelect(Cond, LHS, RHS);
+}
+
+// Use the builder to create an inclusive scan of V across the wavefront, with
+// all lanes active.
+Value *AMDGPUAtomicOptimizer::buildScan(IRBuilder<> &B, AtomicRMWInst::BinOp Op,
+ Value *V, Value *const Identity) const {
+ Type *const Ty = V->getType();
+ Module *M = B.GetInsertBlock()->getModule();
+ Function *UpdateDPP =
+ Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, Ty);
+ Function *PermLaneX16 =
+ Intrinsic::getDeclaration(M, Intrinsic::amdgcn_permlanex16, {});
+ Function *ReadLane =
+ Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, {});
+
+ for (unsigned Idx = 0; Idx < 4; Idx++) {
+ V = buildNonAtomicBinOp(
+ B, Op, V,
+ B.CreateCall(UpdateDPP,
+ {Identity, V, B.getInt32(DPP::ROW_SHR0 | 1 << Idx),
+ B.getInt32(0xf), B.getInt32(0xf), B.getFalse()}));
+ }
+ if (ST->hasDPPBroadcasts()) {
+ // GFX9 has DPP row broadcast operations.
+ V = buildNonAtomicBinOp(
+ B, Op, V,
+ B.CreateCall(UpdateDPP,
+ {Identity, V, B.getInt32(DPP::BCAST15), B.getInt32(0xa),
+ B.getInt32(0xf), B.getFalse()}));
+ V = buildNonAtomicBinOp(
+ B, Op, V,
+ B.CreateCall(UpdateDPP,
+ {Identity, V, B.getInt32(DPP::BCAST31), B.getInt32(0xc),
+ B.getInt32(0xf), B.getFalse()}));
+ } else {
+ // On GFX10 all DPP operations are confined to a single row. To get cross-
+ // row operations we have to use permlane or readlane.
+
+ // Combine lane 15 into lanes 16..31 (and, for wave 64, lane 47 into lanes
+ // 48..63).
+ Value *const PermX =
+ B.CreateCall(PermLaneX16, {V, V, B.getInt32(-1), B.getInt32(-1),
+ B.getFalse(), B.getFalse()});
+ V = buildNonAtomicBinOp(
+ B, Op, V,
+ B.CreateCall(UpdateDPP,
+ {Identity, PermX, B.getInt32(DPP::QUAD_PERM_ID),
+ B.getInt32(0xa), B.getInt32(0xf), B.getFalse()}));
+ if (!ST->isWave32()) {
+ // Combine lane 31 into lanes 32..63.
+ Value *const Lane31 = B.CreateCall(ReadLane, {V, B.getInt32(31)});
+ V = buildNonAtomicBinOp(
+ B, Op, V,
+ B.CreateCall(UpdateDPP,
+ {Identity, Lane31, B.getInt32(DPP::QUAD_PERM_ID),
+ B.getInt32(0xc), B.getInt32(0xf), B.getFalse()}));
+ }
+ }
+ return V;
+}
+
+// Use the builder to create a shift right of V across the wavefront, with all
+// lanes active, to turn an inclusive scan into an exclusive scan.
+Value *AMDGPUAtomicOptimizer::buildShiftRight(IRBuilder<> &B, Value *V,
+ Value *const Identity) const {
+ Type *const Ty = V->getType();
+ Module *M = B.GetInsertBlock()->getModule();
+ Function *UpdateDPP =
+ Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, Ty);
+ Function *ReadLane =
+ Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, {});
+ Function *WriteLane =
+ Intrinsic::getDeclaration(M, Intrinsic::amdgcn_writelane, {});
+
+ if (ST->hasDPPWavefrontShifts()) {
+ // GFX9 has DPP wavefront shift operations.
+ V = B.CreateCall(UpdateDPP,
+ {Identity, V, B.getInt32(DPP::WAVE_SHR1), B.getInt32(0xf),
+ B.getInt32(0xf), B.getFalse()});
+ } else {
+ // On GFX10 all DPP operations are confined to a single row. To get cross-
+ // row operations we have to use permlane or readlane.
+ Value *Old = V;
+ V = B.CreateCall(UpdateDPP,
+ {Identity, V, B.getInt32(DPP::ROW_SHR0 + 1),
+ B.getInt32(0xf), B.getInt32(0xf), B.getFalse()});
+
+ // Copy the old lane 15 to the new lane 16.
+ V = B.CreateCall(WriteLane, {B.CreateCall(ReadLane, {Old, B.getInt32(15)}),
+ B.getInt32(16), V});
+
+ if (!ST->isWave32()) {
+ // Copy the old lane 31 to the new lane 32.
+ V = B.CreateCall(
+ WriteLane,
+ {B.CreateCall(ReadLane, {Old, B.getInt32(31)}), B.getInt32(32), V});
+
+ // Copy the old lane 47 to the new lane 48.
+ V = B.CreateCall(
+ WriteLane,
+ {B.CreateCall(ReadLane, {Old, B.getInt32(47)}), B.getInt32(48), V});
+ }
+ }
+
+ return V;
+}
+
+static APInt getIdentityValueForAtomicOp(AtomicRMWInst::BinOp Op,
+ unsigned BitWidth) {
+ switch (Op) {
+ default:
+ llvm_unreachable("Unhandled atomic op");
+ case AtomicRMWInst::Add:
+ case AtomicRMWInst::Sub:
+ case AtomicRMWInst::Or:
+ case AtomicRMWInst::Xor:
+ case AtomicRMWInst::UMax:
+ return APInt::getMinValue(BitWidth);
+ case AtomicRMWInst::And:
+ case AtomicRMWInst::UMin:
+ return APInt::getMaxValue(BitWidth);
+ case AtomicRMWInst::Max:
+ return APInt::getSignedMinValue(BitWidth);
+ case AtomicRMWInst::Min:
+ return APInt::getSignedMaxValue(BitWidth);
+ }
+}
+
+void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I,
+ AtomicRMWInst::BinOp Op,
+ unsigned ValIdx,
+ bool ValDivergent) const {
+ // Start building just before the instruction.
+ IRBuilder<> B(&I);
+
+ // If we are in a pixel shader, because of how we have to mask out helper
+ // lane invocations, we need to record the entry and exit BB's.
+ BasicBlock *PixelEntryBB = nullptr;
+ BasicBlock *PixelExitBB = nullptr;
+
+ // If we're optimizing an atomic within a pixel shader, we need to wrap the
+ // entire atomic operation in a helper-lane check. We do not want any helper
+ // lanes that are around only for the purposes of derivatives to take part
+ // in any cross-lane communication, and we use a branch on whether the lane is
+ // live to do this.
+ if (IsPixelShader) {
+ // Record I's original position as the entry block.
+ PixelEntryBB = I.getParent();
+
+ Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {});
+ Instruction *const NonHelperTerminator =
+ SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
+
+ // Record I's new position as the exit block.
+ PixelExitBB = I.getParent();
+
+ I.moveBefore(NonHelperTerminator);
+ B.SetInsertPoint(&I);
+ }
+
+ Type *const Ty = I.getType();
+ const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty);
+ Type *const VecTy = VectorType::get(B.getInt32Ty(), 2);
+
+ // This is the value in the atomic operation we need to combine in order to
+ // reduce the number of atomic operations.
+ Value *const V = I.getOperand(ValIdx);
+
+ // We need to know how many lanes are active within the wavefront, and we do
+ // this by doing a ballot of active lanes.
+ Type *const WaveTy = B.getIntNTy(ST->getWavefrontSize());
+ CallInst *const Ballot = B.CreateIntrinsic(
+ Intrinsic::amdgcn_icmp, {WaveTy, B.getInt32Ty()},
+ {B.getInt32(1), B.getInt32(0), B.getInt32(CmpInst::ICMP_NE)});
+
+ // We need to know how many lanes are active within the wavefront that are
+ // below us. If we counted each lane linearly starting from 0, a lane is
+ // below us only if its associated index was less than ours. We do this by
+ // using the mbcnt intrinsic.
+ Value *Mbcnt;
+ if (ST->isWave32()) {
+ Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {},
+ {Ballot, B.getInt32(0)});
+ } else {
+ Value *const BitCast = B.CreateBitCast(Ballot, VecTy);
+ Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0));
+ Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1));
+ Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {},
+ {ExtractLo, B.getInt32(0)});
+ Mbcnt =
+ B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {}, {ExtractHi, Mbcnt});
+ }
+ Mbcnt = B.CreateIntCast(Mbcnt, Ty, false);
+
+ Value *const Identity = B.getInt(getIdentityValueForAtomicOp(Op, TyBitWidth));
+
+ Value *ExclScan = nullptr;
+ Value *NewV = nullptr;
+
+ // If we have a divergent value in each lane, we need to combine the value
+ // using DPP.
+ if (ValDivergent) {
+ // First we need to set all inactive invocations to the identity value, so
+ // that they can correctly contribute to the final result.
+ NewV = B.CreateIntrinsic(Intrinsic::amdgcn_set_inactive, Ty, {V, Identity});
+
+ const AtomicRMWInst::BinOp ScanOp =
+ Op == AtomicRMWInst::Sub ? AtomicRMWInst::Add : Op;
+ NewV = buildScan(B, ScanOp, NewV, Identity);
+ ExclScan = buildShiftRight(B, NewV, Identity);
+
+ // Read the value from the last lane, which has accumlated the values of
+ // each active lane in the wavefront. This will be our new value which we
+ // will provide to the atomic operation.
+ Value *const LastLaneIdx = B.getInt32(ST->getWavefrontSize() - 1);
+ if (TyBitWidth == 64) {
+ Value *const ExtractLo = B.CreateTrunc(NewV, B.getInt32Ty());
+ Value *const ExtractHi =
+ B.CreateTrunc(B.CreateLShr(NewV, 32), B.getInt32Ty());
+ CallInst *const ReadLaneLo = B.CreateIntrinsic(
+ Intrinsic::amdgcn_readlane, {}, {ExtractLo, LastLaneIdx});
+ CallInst *const ReadLaneHi = B.CreateIntrinsic(
+ Intrinsic::amdgcn_readlane, {}, {ExtractHi, LastLaneIdx});
+ Value *const PartialInsert = B.CreateInsertElement(
+ UndefValue::get(VecTy), ReadLaneLo, B.getInt32(0));
+ Value *const Insert =
+ B.CreateInsertElement(PartialInsert, ReadLaneHi, B.getInt32(1));
+ NewV = B.CreateBitCast(Insert, Ty);
+ } else if (TyBitWidth == 32) {
+ NewV = B.CreateIntrinsic(Intrinsic::amdgcn_readlane, {},
+ {NewV, LastLaneIdx});
+ } else {
+ llvm_unreachable("Unhandled atomic bit width");
+ }
+
+ // Finally mark the readlanes in the WWM section.
+ NewV = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV);
+ } else {
+ switch (Op) {
+ default:
+ llvm_unreachable("Unhandled atomic op");
+
+ case AtomicRMWInst::Add:
+ case AtomicRMWInst::Sub: {
+ // The new value we will be contributing to the atomic operation is the
+ // old value times the number of active lanes.
+ Value *const Ctpop = B.CreateIntCast(
+ B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false);
+ NewV = B.CreateMul(V, Ctpop);
+ break;
+ }
+
+ case AtomicRMWInst::And:
+ case AtomicRMWInst::Or:
+ case AtomicRMWInst::Max:
+ case AtomicRMWInst::Min:
+ case AtomicRMWInst::UMax:
+ case AtomicRMWInst::UMin:
+ // These operations with a uniform value are idempotent: doing the atomic
+ // operation multiple times has the same effect as doing it once.
+ NewV = V;
+ break;
+
+ case AtomicRMWInst::Xor:
+ // The new value we will be contributing to the atomic operation is the
+ // old value times the parity of the number of active lanes.
+ Value *const Ctpop = B.CreateIntCast(
+ B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false);
+ NewV = B.CreateMul(V, B.CreateAnd(Ctpop, 1));
+ break;
+ }
+ }
+
+ // We only want a single lane to enter our new control flow, and we do this
+ // by checking if there are any active lanes below us. Only one lane will
+ // have 0 active lanes below us, so that will be the only one to progress.
+ Value *const Cond = B.CreateICmpEQ(Mbcnt, B.getIntN(TyBitWidth, 0));
+
+ // Store I's original basic block before we split the block.
+ BasicBlock *const EntryBB = I.getParent();
+
+ // We need to introduce some new control flow to force a single lane to be
+ // active. We do this by splitting I's basic block at I, and introducing the
+ // new block such that:
+ // entry --> single_lane -\
+ // \------------------> exit
+ Instruction *const SingleLaneTerminator =
+ SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
+
+ // Move the IR builder into single_lane next.
+ B.SetInsertPoint(SingleLaneTerminator);
+
+ // Clone the original atomic operation into single lane, replacing the
+ // original value with our newly created one.
+ Instruction *const NewI = I.clone();
+ B.Insert(NewI);
+ NewI->setOperand(ValIdx, NewV);
+
+ // Move the IR builder into exit next, and start inserting just before the
+ // original instruction.
+ B.SetInsertPoint(&I);
+
+ const bool NeedResult = !I.use_empty();
+ if (NeedResult) {
+ // Create a PHI node to get our new atomic result into the exit block.
+ PHINode *const PHI = B.CreatePHI(Ty, 2);
+ PHI->addIncoming(UndefValue::get(Ty), EntryBB);
+ PHI->addIncoming(NewI, SingleLaneTerminator->getParent());
+
+ // We need to broadcast the value who was the lowest active lane (the first
+ // lane) to all other lanes in the wavefront. We use an intrinsic for this,
+ // but have to handle 64-bit broadcasts with two calls to this intrinsic.
+ Value *BroadcastI = nullptr;
+
+ if (TyBitWidth == 64) {
+ Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty());
+ Value *const ExtractHi =
+ B.CreateTrunc(B.CreateLShr(PHI, 32), B.getInt32Ty());
+ CallInst *const ReadFirstLaneLo =
+ B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo);
+ CallInst *const ReadFirstLaneHi =
+ B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi);
+ Value *const PartialInsert = B.CreateInsertElement(
+ UndefValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0));
+ Value *const Insert =
+ B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1));
+ BroadcastI = B.CreateBitCast(Insert, Ty);
+ } else if (TyBitWidth == 32) {
+
+ BroadcastI = B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI);
+ } else {
+ llvm_unreachable("Unhandled atomic bit width");
+ }
+
+ // Now that we have the result of our single atomic operation, we need to
+ // get our individual lane's slice into the result. We use the lane offset
+ // we previously calculated combined with the atomic result value we got
+ // from the first lane, to get our lane's index into the atomic result.
+ Value *LaneOffset = nullptr;
+ if (ValDivergent) {
+ LaneOffset = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, ExclScan);
+ } else {
+ switch (Op) {
+ default:
+ llvm_unreachable("Unhandled atomic op");
+ case AtomicRMWInst::Add:
+ case AtomicRMWInst::Sub:
+ LaneOffset = B.CreateMul(V, Mbcnt);
+ break;
+ case AtomicRMWInst::And:
+ case AtomicRMWInst::Or:
+ case AtomicRMWInst::Max:
+ case AtomicRMWInst::Min:
+ case AtomicRMWInst::UMax:
+ case AtomicRMWInst::UMin:
+ LaneOffset = B.CreateSelect(Cond, Identity, V);
+ break;
+ case AtomicRMWInst::Xor:
+ LaneOffset = B.CreateMul(V, B.CreateAnd(Mbcnt, 1));
+ break;
+ }
+ }
+ Value *const Result = buildNonAtomicBinOp(B, Op, BroadcastI, LaneOffset);
+
+ if (IsPixelShader) {
+ // Need a final PHI to reconverge to above the helper lane branch mask.
+ B.SetInsertPoint(PixelExitBB->getFirstNonPHI());
+
+ PHINode *const PHI = B.CreatePHI(Ty, 2);
+ PHI->addIncoming(UndefValue::get(Ty), PixelEntryBB);
+ PHI->addIncoming(Result, I.getParent());
+ I.replaceAllUsesWith(PHI);
+ } else {
+ // Replace the original atomic instruction with the new one.
+ I.replaceAllUsesWith(Result);
+ }
+ }
+
+ // And delete the original.
+ I.eraseFromParent();
+}
+
+INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE,
+ "AMDGPU atomic optimizations", false, false)
+INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
+INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
+INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE,
+ "AMDGPU atomic optimizations", false, false)
+
+FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() {
+ return new AMDGPUAtomicOptimizer();
+}