summaryrefslogtreecommitdiff
path: root/llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp')
-rw-r--r--llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp716
1 files changed, 716 insertions, 0 deletions
diff --git a/llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp b/llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp
new file mode 100644
index 000000000000..58c44acde1a7
--- /dev/null
+++ b/llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp
@@ -0,0 +1,716 @@
+//===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// This file implements the lowering of LLVM calls to machine code calls for
+/// GlobalISel.
+///
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPUCallLowering.h"
+#include "AMDGPU.h"
+#include "AMDGPUISelLowering.h"
+#include "AMDGPUSubtarget.h"
+#include "SIISelLowering.h"
+#include "SIMachineFunctionInfo.h"
+#include "SIRegisterInfo.h"
+#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
+#include "llvm/CodeGen/Analysis.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/Support/LowLevelTypeImpl.h"
+
+using namespace llvm;
+
+namespace {
+
+struct OutgoingValueHandler : public CallLowering::ValueHandler {
+ OutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
+ MachineInstrBuilder MIB, CCAssignFn *AssignFn)
+ : ValueHandler(B, MRI, AssignFn), MIB(MIB) {}
+
+ MachineInstrBuilder MIB;
+
+ bool isIncomingArgumentHandler() const override { return false; }
+
+ Register getStackAddress(uint64_t Size, int64_t Offset,
+ MachinePointerInfo &MPO) override {
+ llvm_unreachable("not implemented");
+ }
+
+ void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
+ MachinePointerInfo &MPO, CCValAssign &VA) override {
+ llvm_unreachable("not implemented");
+ }
+
+ void assignValueToReg(Register ValVReg, Register PhysReg,
+ CCValAssign &VA) override {
+ Register ExtReg;
+ if (VA.getLocVT().getSizeInBits() < 32) {
+ // 16-bit types are reported as legal for 32-bit registers. We need to
+ // extend and do a 32-bit copy to avoid the verifier complaining about it.
+ ExtReg = MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
+ } else
+ ExtReg = extendRegister(ValVReg, VA);
+
+ MIRBuilder.buildCopy(PhysReg, ExtReg);
+ MIB.addUse(PhysReg, RegState::Implicit);
+ }
+
+ bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
+ CCValAssign::LocInfo LocInfo,
+ const CallLowering::ArgInfo &Info,
+ ISD::ArgFlagsTy Flags,
+ CCState &State) override {
+ return AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
+ }
+};
+
+struct IncomingArgHandler : public CallLowering::ValueHandler {
+ uint64_t StackUsed = 0;
+
+ IncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
+ CCAssignFn *AssignFn)
+ : ValueHandler(B, MRI, AssignFn) {}
+
+ Register getStackAddress(uint64_t Size, int64_t Offset,
+ MachinePointerInfo &MPO) override {
+ auto &MFI = MIRBuilder.getMF().getFrameInfo();
+ int FI = MFI.CreateFixedObject(Size, Offset, true);
+ MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
+ Register AddrReg = MRI.createGenericVirtualRegister(
+ LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32));
+ MIRBuilder.buildFrameIndex(AddrReg, FI);
+ StackUsed = std::max(StackUsed, Size + Offset);
+ return AddrReg;
+ }
+
+ void assignValueToReg(Register ValVReg, Register PhysReg,
+ CCValAssign &VA) override {
+ markPhysRegUsed(PhysReg);
+
+ if (VA.getLocVT().getSizeInBits() < 32) {
+ // 16-bit types are reported as legal for 32-bit registers. We need to do
+ // a 32-bit copy, and truncate to avoid the verifier complaining about it.
+ auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
+ MIRBuilder.buildTrunc(ValVReg, Copy);
+ return;
+ }
+
+ switch (VA.getLocInfo()) {
+ case CCValAssign::LocInfo::SExt:
+ case CCValAssign::LocInfo::ZExt:
+ case CCValAssign::LocInfo::AExt: {
+ auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
+ MIRBuilder.buildTrunc(ValVReg, Copy);
+ break;
+ }
+ default:
+ MIRBuilder.buildCopy(ValVReg, PhysReg);
+ break;
+ }
+ }
+
+ void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
+ MachinePointerInfo &MPO, CCValAssign &VA) override {
+ // FIXME: Get alignment
+ auto MMO = MIRBuilder.getMF().getMachineMemOperand(
+ MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, Size, 1);
+ MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
+ }
+
+ /// How the physical register gets marked varies between formal
+ /// parameters (it's a basic-block live-in), and a call instruction
+ /// (it's an implicit-def of the BL).
+ virtual void markPhysRegUsed(unsigned PhysReg) = 0;
+
+ // FIXME: What is the point of this being a callback?
+ bool isIncomingArgumentHandler() const override { return true; }
+};
+
+struct FormalArgHandler : public IncomingArgHandler {
+ FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
+ CCAssignFn *AssignFn)
+ : IncomingArgHandler(B, MRI, AssignFn) {}
+
+ void markPhysRegUsed(unsigned PhysReg) override {
+ MIRBuilder.getMBB().addLiveIn(PhysReg);
+ }
+};
+
+}
+
+AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
+ : CallLowering(&TLI) {
+}
+
+void AMDGPUCallLowering::splitToValueTypes(
+ const ArgInfo &OrigArg, SmallVectorImpl<ArgInfo> &SplitArgs,
+ const DataLayout &DL, MachineRegisterInfo &MRI, CallingConv::ID CallConv,
+ SplitArgTy PerformArgSplit) const {
+ const SITargetLowering &TLI = *getTLI<SITargetLowering>();
+ LLVMContext &Ctx = OrigArg.Ty->getContext();
+
+ if (OrigArg.Ty->isVoidTy())
+ return;
+
+ SmallVector<EVT, 4> SplitVTs;
+ ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs);
+
+ assert(OrigArg.Regs.size() == SplitVTs.size());
+
+ int SplitIdx = 0;
+ for (EVT VT : SplitVTs) {
+ unsigned NumParts = TLI.getNumRegistersForCallingConv(Ctx, CallConv, VT);
+ Type *Ty = VT.getTypeForEVT(Ctx);
+
+
+
+ if (NumParts == 1) {
+ // No splitting to do, but we want to replace the original type (e.g. [1 x
+ // double] -> double).
+ SplitArgs.emplace_back(OrigArg.Regs[SplitIdx], Ty,
+ OrigArg.Flags, OrigArg.IsFixed);
+
+ ++SplitIdx;
+ continue;
+ }
+
+ LLT LLTy = getLLTForType(*Ty, DL);
+
+ SmallVector<Register, 8> SplitRegs;
+
+ EVT PartVT = TLI.getRegisterTypeForCallingConv(Ctx, CallConv, VT);
+ Type *PartTy = PartVT.getTypeForEVT(Ctx);
+ LLT PartLLT = getLLTForType(*PartTy, DL);
+
+ // FIXME: Should we be reporting all of the part registers for a single
+ // argument, and let handleAssignments take care of the repacking?
+ for (unsigned i = 0; i < NumParts; ++i) {
+ Register PartReg = MRI.createGenericVirtualRegister(PartLLT);
+ SplitRegs.push_back(PartReg);
+ SplitArgs.emplace_back(ArrayRef<Register>(PartReg), PartTy, OrigArg.Flags);
+ }
+
+ PerformArgSplit(SplitRegs, LLTy, PartLLT, SplitIdx);
+
+ ++SplitIdx;
+ }
+}
+
+// Get the appropriate type to make \p OrigTy \p Factor times bigger.
+static LLT getMultipleType(LLT OrigTy, int Factor) {
+ if (OrigTy.isVector()) {
+ return LLT::vector(OrigTy.getNumElements() * Factor,
+ OrigTy.getElementType());
+ }
+
+ return LLT::scalar(OrigTy.getSizeInBits() * Factor);
+}
+
+// TODO: Move to generic code
+static void unpackRegsToOrigType(MachineIRBuilder &B,
+ ArrayRef<Register> DstRegs,
+ Register SrcReg,
+ LLT SrcTy,
+ LLT PartTy) {
+ assert(DstRegs.size() > 1 && "Nothing to unpack");
+
+ MachineFunction &MF = B.getMF();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+
+ const unsigned SrcSize = SrcTy.getSizeInBits();
+ const unsigned PartSize = PartTy.getSizeInBits();
+
+ if (SrcTy.isVector() && !PartTy.isVector() &&
+ PartSize > SrcTy.getElementType().getSizeInBits()) {
+ // Vector was scalarized, and the elements extended.
+ auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(),
+ SrcReg);
+ for (int i = 0, e = DstRegs.size(); i != e; ++i)
+ B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
+ return;
+ }
+
+ if (SrcSize % PartSize == 0) {
+ B.buildUnmerge(DstRegs, SrcReg);
+ return;
+ }
+
+ const int NumRoundedParts = (SrcSize + PartSize - 1) / PartSize;
+
+ LLT BigTy = getMultipleType(PartTy, NumRoundedParts);
+ auto ImpDef = B.buildUndef(BigTy);
+
+ Register BigReg = MRI.createGenericVirtualRegister(BigTy);
+ B.buildInsert(BigReg, ImpDef.getReg(0), SrcReg, 0).getReg(0);
+
+ int64_t Offset = 0;
+ for (unsigned i = 0, e = DstRegs.size(); i != e; ++i, Offset += PartSize)
+ B.buildExtract(DstRegs[i], BigReg, Offset);
+}
+
+/// Lower the return value for the already existing \p Ret. This assumes that
+/// \p B's insertion point is correct.
+bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
+ const Value *Val, ArrayRef<Register> VRegs,
+ MachineInstrBuilder &Ret) const {
+ if (!Val)
+ return true;
+
+ auto &MF = B.getMF();
+ const auto &F = MF.getFunction();
+ const DataLayout &DL = MF.getDataLayout();
+
+ CallingConv::ID CC = F.getCallingConv();
+ const SITargetLowering &TLI = *getTLI<SITargetLowering>();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+
+ ArgInfo OrigRetInfo(VRegs, Val->getType());
+ setArgFlags(OrigRetInfo, AttributeList::ReturnIndex, DL, F);
+ SmallVector<ArgInfo, 4> SplitRetInfos;
+
+ splitToValueTypes(
+ OrigRetInfo, SplitRetInfos, DL, MRI, CC,
+ [&](ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, int VTSplitIdx) {
+ unpackRegsToOrigType(B, Regs, VRegs[VTSplitIdx], LLTy, PartLLT);
+ });
+
+ CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
+
+ OutgoingValueHandler RetHandler(B, MF.getRegInfo(), Ret, AssignFn);
+ return handleAssignments(B, SplitRetInfos, RetHandler);
+}
+
+bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B,
+ const Value *Val,
+ ArrayRef<Register> VRegs) const {
+
+ MachineFunction &MF = B.getMF();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
+ MFI->setIfReturnsVoid(!Val);
+
+ assert(!Val == VRegs.empty() && "Return value without a vreg");
+
+ CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
+ const bool IsShader = AMDGPU::isShader(CC);
+ const bool IsWaveEnd = (IsShader && MFI->returnsVoid()) ||
+ AMDGPU::isKernel(CC);
+ if (IsWaveEnd) {
+ B.buildInstr(AMDGPU::S_ENDPGM)
+ .addImm(0);
+ return true;
+ }
+
+ auto const &ST = B.getMF().getSubtarget<GCNSubtarget>();
+
+ unsigned ReturnOpc =
+ IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return;
+
+ auto Ret = B.buildInstrNoInsert(ReturnOpc);
+ Register ReturnAddrVReg;
+ if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
+ ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass);
+ Ret.addUse(ReturnAddrVReg);
+ }
+
+ if (!lowerReturnVal(B, Val, VRegs, Ret))
+ return false;
+
+ if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
+ const SIRegisterInfo *TRI = ST.getRegisterInfo();
+ Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF),
+ &AMDGPU::SGPR_64RegClass);
+ B.buildCopy(ReturnAddrVReg, LiveInReturn);
+ }
+
+ // TODO: Handle CalleeSavedRegsViaCopy.
+
+ B.insertInstr(Ret);
+ return true;
+}
+
+Register AMDGPUCallLowering::lowerParameterPtr(MachineIRBuilder &B,
+ Type *ParamTy,
+ uint64_t Offset) const {
+
+ MachineFunction &MF = B.getMF();
+ const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ const Function &F = MF.getFunction();
+ const DataLayout &DL = F.getParent()->getDataLayout();
+ PointerType *PtrTy = PointerType::get(ParamTy, AMDGPUAS::CONSTANT_ADDRESS);
+ LLT PtrType = getLLTForType(*PtrTy, DL);
+ Register DstReg = MRI.createGenericVirtualRegister(PtrType);
+ Register KernArgSegmentPtr =
+ MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
+ Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
+
+ Register OffsetReg = MRI.createGenericVirtualRegister(LLT::scalar(64));
+ B.buildConstant(OffsetReg, Offset);
+
+ B.buildGEP(DstReg, KernArgSegmentVReg, OffsetReg);
+
+ return DstReg;
+}
+
+void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B,
+ Type *ParamTy, uint64_t Offset,
+ unsigned Align,
+ Register DstReg) const {
+ MachineFunction &MF = B.getMF();
+ const Function &F = MF.getFunction();
+ const DataLayout &DL = F.getParent()->getDataLayout();
+ PointerType *PtrTy = PointerType::get(ParamTy, AMDGPUAS::CONSTANT_ADDRESS);
+ MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
+ unsigned TypeSize = DL.getTypeStoreSize(ParamTy);
+ Register PtrReg = lowerParameterPtr(B, ParamTy, Offset);
+
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad |
+ MachineMemOperand::MODereferenceable |
+ MachineMemOperand::MOInvariant,
+ TypeSize, Align);
+
+ B.buildLoad(DstReg, PtrReg, *MMO);
+}
+
+// Allocate special inputs passed in user SGPRs.
+static void allocateHSAUserSGPRs(CCState &CCInfo,
+ MachineIRBuilder &B,
+ MachineFunction &MF,
+ const SIRegisterInfo &TRI,
+ SIMachineFunctionInfo &Info) {
+ // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
+ if (Info.hasPrivateSegmentBuffer()) {
+ unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
+ MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
+ CCInfo.AllocateReg(PrivateSegmentBufferReg);
+ }
+
+ if (Info.hasDispatchPtr()) {
+ unsigned DispatchPtrReg = Info.addDispatchPtr(TRI);
+ MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
+ CCInfo.AllocateReg(DispatchPtrReg);
+ }
+
+ if (Info.hasQueuePtr()) {
+ unsigned QueuePtrReg = Info.addQueuePtr(TRI);
+ MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
+ CCInfo.AllocateReg(QueuePtrReg);
+ }
+
+ if (Info.hasKernargSegmentPtr()) {
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
+ const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
+ Register VReg = MRI.createGenericVirtualRegister(P4);
+ MRI.addLiveIn(InputPtrReg, VReg);
+ B.getMBB().addLiveIn(InputPtrReg);
+ B.buildCopy(VReg, InputPtrReg);
+ CCInfo.AllocateReg(InputPtrReg);
+ }
+
+ if (Info.hasDispatchID()) {
+ unsigned DispatchIDReg = Info.addDispatchID(TRI);
+ MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
+ CCInfo.AllocateReg(DispatchIDReg);
+ }
+
+ if (Info.hasFlatScratchInit()) {
+ unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI);
+ MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
+ CCInfo.AllocateReg(FlatScratchInitReg);
+ }
+
+ // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
+ // these from the dispatch pointer.
+}
+
+bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
+ MachineIRBuilder &B, const Function &F,
+ ArrayRef<ArrayRef<Register>> VRegs) const {
+ MachineFunction &MF = B.getMF();
+ const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
+ const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
+ const SITargetLowering &TLI = *getTLI<SITargetLowering>();
+
+ const DataLayout &DL = F.getParent()->getDataLayout();
+
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
+
+ allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
+
+ unsigned i = 0;
+ const unsigned KernArgBaseAlign = 16;
+ const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
+ uint64_t ExplicitArgOffset = 0;
+
+ // TODO: Align down to dword alignment and extract bits for extending loads.
+ for (auto &Arg : F.args()) {
+ Type *ArgTy = Arg.getType();
+ unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
+ if (AllocSize == 0)
+ continue;
+
+ unsigned ABIAlign = DL.getABITypeAlignment(ArgTy);
+
+ uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
+ ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
+
+ ArrayRef<Register> OrigArgRegs = VRegs[i];
+ Register ArgReg =
+ OrigArgRegs.size() == 1
+ ? OrigArgRegs[0]
+ : MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL));
+ unsigned Align = MinAlign(KernArgBaseAlign, ArgOffset);
+ ArgOffset = alignTo(ArgOffset, DL.getABITypeAlignment(ArgTy));
+ lowerParameter(B, ArgTy, ArgOffset, Align, ArgReg);
+ if (OrigArgRegs.size() > 1)
+ unpackRegs(OrigArgRegs, ArgReg, ArgTy, B);
+ ++i;
+ }
+
+ TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
+ TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
+ return true;
+}
+
+// TODO: Move this to generic code
+static void packSplitRegsToOrigType(MachineIRBuilder &B,
+ ArrayRef<Register> OrigRegs,
+ ArrayRef<Register> Regs,
+ LLT LLTy,
+ LLT PartLLT) {
+ if (!LLTy.isVector() && !PartLLT.isVector()) {
+ B.buildMerge(OrigRegs[0], Regs);
+ return;
+ }
+
+ if (LLTy.isVector() && PartLLT.isVector()) {
+ assert(LLTy.getElementType() == PartLLT.getElementType());
+
+ int DstElts = LLTy.getNumElements();
+ int PartElts = PartLLT.getNumElements();
+ if (DstElts % PartElts == 0)
+ B.buildConcatVectors(OrigRegs[0], Regs);
+ else {
+ // Deal with v3s16 split into v2s16
+ assert(PartElts == 2 && DstElts % 2 != 0);
+ int RoundedElts = PartElts * ((DstElts + PartElts - 1) / PartElts);
+
+ LLT RoundedDestTy = LLT::vector(RoundedElts, PartLLT.getElementType());
+ auto RoundedConcat = B.buildConcatVectors(RoundedDestTy, Regs);
+ B.buildExtract(OrigRegs[0], RoundedConcat, 0);
+ }
+
+ return;
+ }
+
+ assert(LLTy.isVector() && !PartLLT.isVector());
+
+ LLT DstEltTy = LLTy.getElementType();
+ if (DstEltTy == PartLLT) {
+ // Vector was trivially scalarized.
+ B.buildBuildVector(OrigRegs[0], Regs);
+ } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
+ // Deal with vector with 64-bit elements decomposed to 32-bit
+ // registers. Need to create intermediate 64-bit elements.
+ SmallVector<Register, 8> EltMerges;
+ int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
+
+ assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
+
+ for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
+ auto Merge = B.buildMerge(DstEltTy,
+ Regs.take_front(PartsPerElt));
+ EltMerges.push_back(Merge.getReg(0));
+ Regs = Regs.drop_front(PartsPerElt);
+ }
+
+ B.buildBuildVector(OrigRegs[0], EltMerges);
+ } else {
+ // Vector was split, and elements promoted to a wider type.
+ LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT);
+ auto BV = B.buildBuildVector(BVType, Regs);
+ B.buildTrunc(OrigRegs[0], BV);
+ }
+}
+
+bool AMDGPUCallLowering::lowerFormalArguments(
+ MachineIRBuilder &B, const Function &F,
+ ArrayRef<ArrayRef<Register>> VRegs) const {
+ CallingConv::ID CC = F.getCallingConv();
+
+ // The infrastructure for normal calling convention lowering is essentially
+ // useless for kernels. We want to avoid any kind of legalization or argument
+ // splitting.
+ if (CC == CallingConv::AMDGPU_KERNEL)
+ return lowerFormalArgumentsKernel(B, F, VRegs);
+
+ const bool IsShader = AMDGPU::isShader(CC);
+ const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
+
+ MachineFunction &MF = B.getMF();
+ MachineBasicBlock &MBB = B.getMBB();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
+ const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
+ const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
+ const DataLayout &DL = F.getParent()->getDataLayout();
+
+
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
+
+ if (!IsEntryFunc) {
+ Register ReturnAddrReg = TRI->getReturnAddressReg(MF);
+ Register LiveInReturn = MF.addLiveIn(ReturnAddrReg,
+ &AMDGPU::SGPR_64RegClass);
+ MBB.addLiveIn(ReturnAddrReg);
+ B.buildCopy(LiveInReturn, ReturnAddrReg);
+ }
+
+ if (Info->hasImplicitBufferPtr()) {
+ Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
+ MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
+ CCInfo.AllocateReg(ImplicitBufferPtrReg);
+ }
+
+
+ SmallVector<ArgInfo, 32> SplitArgs;
+ unsigned Idx = 0;
+ unsigned PSInputNum = 0;
+
+ for (auto &Arg : F.args()) {
+ if (DL.getTypeStoreSize(Arg.getType()) == 0)
+ continue;
+
+ const bool InReg = Arg.hasAttribute(Attribute::InReg);
+
+ // SGPR arguments to functions not implemented.
+ if (!IsShader && InReg)
+ return false;
+
+ if (Arg.hasAttribute(Attribute::SwiftSelf) ||
+ Arg.hasAttribute(Attribute::SwiftError) ||
+ Arg.hasAttribute(Attribute::Nest))
+ return false;
+
+ if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
+ const bool ArgUsed = !Arg.use_empty();
+ bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
+
+ if (!SkipArg) {
+ Info->markPSInputAllocated(PSInputNum);
+ if (ArgUsed)
+ Info->markPSInputEnabled(PSInputNum);
+ }
+
+ ++PSInputNum;
+
+ if (SkipArg) {
+ for (int I = 0, E = VRegs[Idx].size(); I != E; ++I)
+ B.buildUndef(VRegs[Idx][I]);
+
+ ++Idx;
+ continue;
+ }
+ }
+
+ ArgInfo OrigArg(VRegs[Idx], Arg.getType());
+ setArgFlags(OrigArg, Idx + AttributeList::FirstArgIndex, DL, F);
+
+ splitToValueTypes(
+ OrigArg, SplitArgs, DL, MRI, CC,
+ // FIXME: We should probably be passing multiple registers to
+ // handleAssignments to do this
+ [&](ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, int VTSplitIdx) {
+ packSplitRegsToOrigType(B, VRegs[Idx][VTSplitIdx], Regs,
+ LLTy, PartLLT);
+ });
+
+ ++Idx;
+ }
+
+ // At least one interpolation mode must be enabled or else the GPU will
+ // hang.
+ //
+ // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
+ // set PSInputAddr, the user wants to enable some bits after the compilation
+ // based on run-time states. Since we can't know what the final PSInputEna
+ // will look like, so we shouldn't do anything here and the user should take
+ // responsibility for the correct programming.
+ //
+ // Otherwise, the following restrictions apply:
+ // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
+ // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
+ // enabled too.
+ if (CC == CallingConv::AMDGPU_PS) {
+ if ((Info->getPSInputAddr() & 0x7F) == 0 ||
+ ((Info->getPSInputAddr() & 0xF) == 0 &&
+ Info->isPSInputAllocated(11))) {
+ CCInfo.AllocateReg(AMDGPU::VGPR0);
+ CCInfo.AllocateReg(AMDGPU::VGPR1);
+ Info->markPSInputAllocated(0);
+ Info->markPSInputEnabled(0);
+ }
+
+ if (Subtarget.isAmdPalOS()) {
+ // For isAmdPalOS, the user does not enable some bits after compilation
+ // based on run-time states; the register values being generated here are
+ // the final ones set in hardware. Therefore we need to apply the
+ // workaround to PSInputAddr and PSInputEnable together. (The case where
+ // a bit is set in PSInputAddr but not PSInputEnable is where the frontend
+ // set up an input arg for a particular interpolation mode, but nothing
+ // uses that input arg. Really we should have an earlier pass that removes
+ // such an arg.)
+ unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
+ if ((PsInputBits & 0x7F) == 0 ||
+ ((PsInputBits & 0xF) == 0 &&
+ (PsInputBits >> 11 & 1)))
+ Info->markPSInputEnabled(
+ countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
+ }
+ }
+
+ const SITargetLowering &TLI = *getTLI<SITargetLowering>();
+ CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
+
+ if (!MBB.empty())
+ B.setInstr(*MBB.begin());
+
+ FormalArgHandler Handler(B, MRI, AssignFn);
+ if (!handleAssignments(CCInfo, ArgLocs, B, SplitArgs, Handler))
+ return false;
+
+ if (!IsEntryFunc) {
+ // Special inputs come after user arguments.
+ TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
+ }
+
+ // Start adding system SGPRs.
+ if (IsEntryFunc) {
+ TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsShader);
+ } else {
+ CCInfo.AllocateReg(Info->getScratchRSrcReg());
+ CCInfo.AllocateReg(Info->getScratchWaveOffsetReg());
+ CCInfo.AllocateReg(Info->getFrameOffsetReg());
+ TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
+ }
+
+ // Move back to the end of the basic block.
+ B.setMBB(MBB);
+
+ return true;
+}