diff options
Diffstat (limited to 'llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp')
-rw-r--r-- | llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp | 4684 |
1 files changed, 4684 insertions, 0 deletions
diff --git a/llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp b/llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp new file mode 100644 index 000000000000..1115d8c23620 --- /dev/null +++ b/llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp @@ -0,0 +1,4684 @@ +//===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +/// \file +/// This is the parent TargetLowering class for hardware code gen +/// targets. +// +//===----------------------------------------------------------------------===// + +#include "AMDGPUISelLowering.h" +#include "AMDGPU.h" +#include "AMDGPUCallLowering.h" +#include "AMDGPUFrameLowering.h" +#include "AMDGPURegisterInfo.h" +#include "AMDGPUSubtarget.h" +#include "AMDGPUTargetMachine.h" +#include "Utils/AMDGPUBaseInfo.h" +#include "R600MachineFunctionInfo.h" +#include "SIInstrInfo.h" +#include "SIMachineFunctionInfo.h" +#include "MCTargetDesc/AMDGPUMCTargetDesc.h" +#include "llvm/CodeGen/Analysis.h" +#include "llvm/CodeGen/CallingConvLower.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DiagnosticInfo.h" +#include "llvm/Support/KnownBits.h" +#include "llvm/Support/MathExtras.h" +using namespace llvm; + +#include "AMDGPUGenCallingConv.inc" + +// Find a larger type to do a load / store of a vector with. +EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { + unsigned StoreSize = VT.getStoreSizeInBits(); + if (StoreSize <= 32) + return EVT::getIntegerVT(Ctx, StoreSize); + + assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); + return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); +} + +unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { + EVT VT = Op.getValueType(); + KnownBits Known = DAG.computeKnownBits(Op); + return VT.getSizeInBits() - Known.countMinLeadingZeros(); +} + +unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { + EVT VT = Op.getValueType(); + + // In order for this to be a signed 24-bit value, bit 23, must + // be a sign bit. + return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); +} + +AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, + const AMDGPUSubtarget &STI) + : TargetLowering(TM), Subtarget(&STI) { + // Lower floating point store/load to integer store/load to reduce the number + // of patterns in tablegen. + setOperationAction(ISD::LOAD, MVT::f32, Promote); + AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); + + setOperationAction(ISD::LOAD, MVT::v2f32, Promote); + AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); + + setOperationAction(ISD::LOAD, MVT::v3f32, Promote); + AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); + + setOperationAction(ISD::LOAD, MVT::v4f32, Promote); + AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); + + setOperationAction(ISD::LOAD, MVT::v5f32, Promote); + AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); + + setOperationAction(ISD::LOAD, MVT::v8f32, Promote); + AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); + + setOperationAction(ISD::LOAD, MVT::v16f32, Promote); + AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); + + setOperationAction(ISD::LOAD, MVT::v32f32, Promote); + AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32); + + setOperationAction(ISD::LOAD, MVT::i64, Promote); + AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); + + setOperationAction(ISD::LOAD, MVT::v2i64, Promote); + AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); + + setOperationAction(ISD::LOAD, MVT::f64, Promote); + AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); + + setOperationAction(ISD::LOAD, MVT::v2f64, Promote); + AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); + + // There are no 64-bit extloads. These should be done as a 32-bit extload and + // an extension to 64-bit. + for (MVT VT : MVT::integer_valuetypes()) { + setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); + setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); + setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); + } + + for (MVT VT : MVT::integer_valuetypes()) { + if (VT == MVT::i64) + continue; + + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); + + setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); + setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); + setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); + setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); + + setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); + } + + for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { + setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); + setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); + setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); + setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand); + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand); + setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); + setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); + } + + setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); + setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); + setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand); + setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); + setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); + setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand); + setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand); + + setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); + setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); + setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); + setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); + + setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); + setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); + setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); + setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); + + setOperationAction(ISD::STORE, MVT::f32, Promote); + AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); + + setOperationAction(ISD::STORE, MVT::v2f32, Promote); + AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); + + setOperationAction(ISD::STORE, MVT::v3f32, Promote); + AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); + + setOperationAction(ISD::STORE, MVT::v4f32, Promote); + AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); + + setOperationAction(ISD::STORE, MVT::v5f32, Promote); + AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); + + setOperationAction(ISD::STORE, MVT::v8f32, Promote); + AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); + + setOperationAction(ISD::STORE, MVT::v16f32, Promote); + AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); + + setOperationAction(ISD::STORE, MVT::v32f32, Promote); + AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32); + + setOperationAction(ISD::STORE, MVT::i64, Promote); + AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); + + setOperationAction(ISD::STORE, MVT::v2i64, Promote); + AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); + + setOperationAction(ISD::STORE, MVT::f64, Promote); + AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); + + setOperationAction(ISD::STORE, MVT::v2f64, Promote); + AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); + + setTruncStoreAction(MVT::i64, MVT::i1, Expand); + setTruncStoreAction(MVT::i64, MVT::i8, Expand); + setTruncStoreAction(MVT::i64, MVT::i16, Expand); + setTruncStoreAction(MVT::i64, MVT::i32, Expand); + + setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); + setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); + setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); + setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); + + setTruncStoreAction(MVT::f32, MVT::f16, Expand); + setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); + setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand); + setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); + setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); + setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand); + setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand); + + setTruncStoreAction(MVT::f64, MVT::f16, Expand); + setTruncStoreAction(MVT::f64, MVT::f32, Expand); + + setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); + setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); + + setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); + setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); + + setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); + setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); + + + setOperationAction(ISD::Constant, MVT::i32, Legal); + setOperationAction(ISD::Constant, MVT::i64, Legal); + setOperationAction(ISD::ConstantFP, MVT::f32, Legal); + setOperationAction(ISD::ConstantFP, MVT::f64, Legal); + + setOperationAction(ISD::BR_JT, MVT::Other, Expand); + setOperationAction(ISD::BRIND, MVT::Other, Expand); + + // This is totally unsupported, just custom lower to produce an error. + setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); + + // Library functions. These default to Expand, but we have instructions + // for them. + setOperationAction(ISD::FCEIL, MVT::f32, Legal); + setOperationAction(ISD::FEXP2, MVT::f32, Legal); + setOperationAction(ISD::FPOW, MVT::f32, Legal); + setOperationAction(ISD::FLOG2, MVT::f32, Legal); + setOperationAction(ISD::FABS, MVT::f32, Legal); + setOperationAction(ISD::FFLOOR, MVT::f32, Legal); + setOperationAction(ISD::FRINT, MVT::f32, Legal); + setOperationAction(ISD::FTRUNC, MVT::f32, Legal); + setOperationAction(ISD::FMINNUM, MVT::f32, Legal); + setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); + + setOperationAction(ISD::FROUND, MVT::f32, Custom); + setOperationAction(ISD::FROUND, MVT::f64, Custom); + + setOperationAction(ISD::FLOG, MVT::f32, Custom); + setOperationAction(ISD::FLOG10, MVT::f32, Custom); + setOperationAction(ISD::FEXP, MVT::f32, Custom); + + + setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); + setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); + + setOperationAction(ISD::FREM, MVT::f32, Custom); + setOperationAction(ISD::FREM, MVT::f64, Custom); + + // Expand to fneg + fadd. + setOperationAction(ISD::FSUB, MVT::f64, Expand); + + setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); + setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); + setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); + setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); + setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); + setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); + setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); + setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); + setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); + setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); + setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); + setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom); + setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom); + setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom); + setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom); + + setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); + setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); + setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); + + const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; + for (MVT VT : ScalarIntVTs) { + // These should use [SU]DIVREM, so set them to expand + setOperationAction(ISD::SDIV, VT, Expand); + setOperationAction(ISD::UDIV, VT, Expand); + setOperationAction(ISD::SREM, VT, Expand); + setOperationAction(ISD::UREM, VT, Expand); + + // GPU does not have divrem function for signed or unsigned. + setOperationAction(ISD::SDIVREM, VT, Custom); + setOperationAction(ISD::UDIVREM, VT, Custom); + + // GPU does not have [S|U]MUL_LOHI functions as a single instruction. + setOperationAction(ISD::SMUL_LOHI, VT, Expand); + setOperationAction(ISD::UMUL_LOHI, VT, Expand); + + setOperationAction(ISD::BSWAP, VT, Expand); + setOperationAction(ISD::CTTZ, VT, Expand); + setOperationAction(ISD::CTLZ, VT, Expand); + + // AMDGPU uses ADDC/SUBC/ADDE/SUBE + setOperationAction(ISD::ADDC, VT, Legal); + setOperationAction(ISD::SUBC, VT, Legal); + setOperationAction(ISD::ADDE, VT, Legal); + setOperationAction(ISD::SUBE, VT, Legal); + } + + // The hardware supports 32-bit ROTR, but not ROTL. + setOperationAction(ISD::ROTL, MVT::i32, Expand); + setOperationAction(ISD::ROTL, MVT::i64, Expand); + setOperationAction(ISD::ROTR, MVT::i64, Expand); + + setOperationAction(ISD::MUL, MVT::i64, Expand); + setOperationAction(ISD::MULHU, MVT::i64, Expand); + setOperationAction(ISD::MULHS, MVT::i64, Expand); + setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); + setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); + setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); + setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); + setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); + + setOperationAction(ISD::SMIN, MVT::i32, Legal); + setOperationAction(ISD::UMIN, MVT::i32, Legal); + setOperationAction(ISD::SMAX, MVT::i32, Legal); + setOperationAction(ISD::UMAX, MVT::i32, Legal); + + setOperationAction(ISD::CTTZ, MVT::i64, Custom); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); + setOperationAction(ISD::CTLZ, MVT::i64, Custom); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); + + static const MVT::SimpleValueType VectorIntTypes[] = { + MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32 + }; + + for (MVT VT : VectorIntTypes) { + // Expand the following operations for the current type by default. + setOperationAction(ISD::ADD, VT, Expand); + setOperationAction(ISD::AND, VT, Expand); + setOperationAction(ISD::FP_TO_SINT, VT, Expand); + setOperationAction(ISD::FP_TO_UINT, VT, Expand); + setOperationAction(ISD::MUL, VT, Expand); + setOperationAction(ISD::MULHU, VT, Expand); + setOperationAction(ISD::MULHS, VT, Expand); + setOperationAction(ISD::OR, VT, Expand); + setOperationAction(ISD::SHL, VT, Expand); + setOperationAction(ISD::SRA, VT, Expand); + setOperationAction(ISD::SRL, VT, Expand); + setOperationAction(ISD::ROTL, VT, Expand); + setOperationAction(ISD::ROTR, VT, Expand); + setOperationAction(ISD::SUB, VT, Expand); + setOperationAction(ISD::SINT_TO_FP, VT, Expand); + setOperationAction(ISD::UINT_TO_FP, VT, Expand); + setOperationAction(ISD::SDIV, VT, Expand); + setOperationAction(ISD::UDIV, VT, Expand); + setOperationAction(ISD::SREM, VT, Expand); + setOperationAction(ISD::UREM, VT, Expand); + setOperationAction(ISD::SMUL_LOHI, VT, Expand); + setOperationAction(ISD::UMUL_LOHI, VT, Expand); + setOperationAction(ISD::SDIVREM, VT, Custom); + setOperationAction(ISD::UDIVREM, VT, Expand); + setOperationAction(ISD::SELECT, VT, Expand); + setOperationAction(ISD::VSELECT, VT, Expand); + setOperationAction(ISD::SELECT_CC, VT, Expand); + setOperationAction(ISD::XOR, VT, Expand); + setOperationAction(ISD::BSWAP, VT, Expand); + setOperationAction(ISD::CTPOP, VT, Expand); + setOperationAction(ISD::CTTZ, VT, Expand); + setOperationAction(ISD::CTLZ, VT, Expand); + setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); + setOperationAction(ISD::SETCC, VT, Expand); + } + + static const MVT::SimpleValueType FloatVectorTypes[] = { + MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32 + }; + + for (MVT VT : FloatVectorTypes) { + setOperationAction(ISD::FABS, VT, Expand); + setOperationAction(ISD::FMINNUM, VT, Expand); + setOperationAction(ISD::FMAXNUM, VT, Expand); + setOperationAction(ISD::FADD, VT, Expand); + setOperationAction(ISD::FCEIL, VT, Expand); + setOperationAction(ISD::FCOS, VT, Expand); + setOperationAction(ISD::FDIV, VT, Expand); + setOperationAction(ISD::FEXP2, VT, Expand); + setOperationAction(ISD::FEXP, VT, Expand); + setOperationAction(ISD::FLOG2, VT, Expand); + setOperationAction(ISD::FREM, VT, Expand); + setOperationAction(ISD::FLOG, VT, Expand); + setOperationAction(ISD::FLOG10, VT, Expand); + setOperationAction(ISD::FPOW, VT, Expand); + setOperationAction(ISD::FFLOOR, VT, Expand); + setOperationAction(ISD::FTRUNC, VT, Expand); + setOperationAction(ISD::FMUL, VT, Expand); + setOperationAction(ISD::FMA, VT, Expand); + setOperationAction(ISD::FRINT, VT, Expand); + setOperationAction(ISD::FNEARBYINT, VT, Expand); + setOperationAction(ISD::FSQRT, VT, Expand); + setOperationAction(ISD::FSIN, VT, Expand); + setOperationAction(ISD::FSUB, VT, Expand); + setOperationAction(ISD::FNEG, VT, Expand); + setOperationAction(ISD::VSELECT, VT, Expand); + setOperationAction(ISD::SELECT_CC, VT, Expand); + setOperationAction(ISD::FCOPYSIGN, VT, Expand); + setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); + setOperationAction(ISD::SETCC, VT, Expand); + setOperationAction(ISD::FCANONICALIZE, VT, Expand); + } + + // This causes using an unrolled select operation rather than expansion with + // bit operations. This is in general better, but the alternative using BFI + // instructions may be better if the select sources are SGPRs. + setOperationAction(ISD::SELECT, MVT::v2f32, Promote); + AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); + + setOperationAction(ISD::SELECT, MVT::v3f32, Promote); + AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); + + setOperationAction(ISD::SELECT, MVT::v4f32, Promote); + AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); + + setOperationAction(ISD::SELECT, MVT::v5f32, Promote); + AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); + + // There are no libcalls of any kind. + for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) + setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); + + setBooleanContents(ZeroOrNegativeOneBooleanContent); + setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); + + setSchedulingPreference(Sched::RegPressure); + setJumpIsExpensive(true); + + // FIXME: This is only partially true. If we have to do vector compares, any + // SGPR pair can be a condition register. If we have a uniform condition, we + // are better off doing SALU operations, where there is only one SCC. For now, + // we don't have a way of knowing during instruction selection if a condition + // will be uniform and we always use vector compares. Assume we are using + // vector compares until that is fixed. + setHasMultipleConditionRegisters(true); + + setMinCmpXchgSizeInBits(32); + setSupportsUnalignedAtomics(false); + + PredictableSelectIsExpensive = false; + + // We want to find all load dependencies for long chains of stores to enable + // merging into very wide vectors. The problem is with vectors with > 4 + // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 + // vectors are a legal type, even though we have to split the loads + // usually. When we can more precisely specify load legality per address + // space, we should be able to make FindBetterChain/MergeConsecutiveStores + // smarter so that they can figure out what to do in 2 iterations without all + // N > 4 stores on the same chain. + GatherAllAliasesMaxDepth = 16; + + // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry + // about these during lowering. + MaxStoresPerMemcpy = 0xffffffff; + MaxStoresPerMemmove = 0xffffffff; + MaxStoresPerMemset = 0xffffffff; + + setTargetDAGCombine(ISD::BITCAST); + setTargetDAGCombine(ISD::SHL); + setTargetDAGCombine(ISD::SRA); + setTargetDAGCombine(ISD::SRL); + setTargetDAGCombine(ISD::TRUNCATE); + setTargetDAGCombine(ISD::MUL); + setTargetDAGCombine(ISD::MULHU); + setTargetDAGCombine(ISD::MULHS); + setTargetDAGCombine(ISD::SELECT); + setTargetDAGCombine(ISD::SELECT_CC); + setTargetDAGCombine(ISD::STORE); + setTargetDAGCombine(ISD::FADD); + setTargetDAGCombine(ISD::FSUB); + setTargetDAGCombine(ISD::FNEG); + setTargetDAGCombine(ISD::FABS); + setTargetDAGCombine(ISD::AssertZext); + setTargetDAGCombine(ISD::AssertSext); + setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); +} + +//===----------------------------------------------------------------------===// +// Target Information +//===----------------------------------------------------------------------===// + +LLVM_READNONE +static bool fnegFoldsIntoOp(unsigned Opc) { + switch (Opc) { + case ISD::FADD: + case ISD::FSUB: + case ISD::FMUL: + case ISD::FMA: + case ISD::FMAD: + case ISD::FMINNUM: + case ISD::FMAXNUM: + case ISD::FMINNUM_IEEE: + case ISD::FMAXNUM_IEEE: + case ISD::FSIN: + case ISD::FTRUNC: + case ISD::FRINT: + case ISD::FNEARBYINT: + case ISD::FCANONICALIZE: + case AMDGPUISD::RCP: + case AMDGPUISD::RCP_LEGACY: + case AMDGPUISD::RCP_IFLAG: + case AMDGPUISD::SIN_HW: + case AMDGPUISD::FMUL_LEGACY: + case AMDGPUISD::FMIN_LEGACY: + case AMDGPUISD::FMAX_LEGACY: + case AMDGPUISD::FMED3: + return true; + default: + return false; + } +} + +/// \p returns true if the operation will definitely need to use a 64-bit +/// encoding, and thus will use a VOP3 encoding regardless of the source +/// modifiers. +LLVM_READONLY +static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { + return N->getNumOperands() > 2 || VT == MVT::f64; +} + +// Most FP instructions support source modifiers, but this could be refined +// slightly. +LLVM_READONLY +static bool hasSourceMods(const SDNode *N) { + if (isa<MemSDNode>(N)) + return false; + + switch (N->getOpcode()) { + case ISD::CopyToReg: + case ISD::SELECT: + case ISD::FDIV: + case ISD::FREM: + case ISD::INLINEASM: + case ISD::INLINEASM_BR: + case AMDGPUISD::DIV_SCALE: + case ISD::INTRINSIC_W_CHAIN: + + // TODO: Should really be looking at the users of the bitcast. These are + // problematic because bitcasts are used to legalize all stores to integer + // types. + case ISD::BITCAST: + return false; + case ISD::INTRINSIC_WO_CHAIN: { + switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { + case Intrinsic::amdgcn_interp_p1: + case Intrinsic::amdgcn_interp_p2: + case Intrinsic::amdgcn_interp_mov: + case Intrinsic::amdgcn_interp_p1_f16: + case Intrinsic::amdgcn_interp_p2_f16: + return false; + default: + return true; + } + } + default: + return true; + } +} + +bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, + unsigned CostThreshold) { + // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus + // it is truly free to use a source modifier in all cases. If there are + // multiple users but for each one will necessitate using VOP3, there will be + // a code size increase. Try to avoid increasing code size unless we know it + // will save on the instruction count. + unsigned NumMayIncreaseSize = 0; + MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); + + // XXX - Should this limit number of uses to check? + for (const SDNode *U : N->uses()) { + if (!hasSourceMods(U)) + return false; + + if (!opMustUseVOP3Encoding(U, VT)) { + if (++NumMayIncreaseSize > CostThreshold) + return false; + } + } + + return true; +} + +MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { + return MVT::i32; +} + +bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { + return true; +} + +// The backend supports 32 and 64 bit floating point immediates. +// FIXME: Why are we reporting vectors of FP immediates as legal? +bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, + bool ForCodeSize) const { + EVT ScalarVT = VT.getScalarType(); + return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || + (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); +} + +// We don't want to shrink f64 / f32 constants. +bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { + EVT ScalarVT = VT.getScalarType(); + return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); +} + +bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, + ISD::LoadExtType ExtTy, + EVT NewVT) const { + // TODO: This may be worth removing. Check regression tests for diffs. + if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) + return false; + + unsigned NewSize = NewVT.getStoreSizeInBits(); + + // If we are reducing to a 32-bit load, this is always better. + if (NewSize == 32) + return true; + + EVT OldVT = N->getValueType(0); + unsigned OldSize = OldVT.getStoreSizeInBits(); + + MemSDNode *MN = cast<MemSDNode>(N); + unsigned AS = MN->getAddressSpace(); + // Do not shrink an aligned scalar load to sub-dword. + // Scalar engine cannot do sub-dword loads. + if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && + (AS == AMDGPUAS::CONSTANT_ADDRESS || + AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || + (isa<LoadSDNode>(N) && + AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && + AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) + return false; + + // Don't produce extloads from sub 32-bit types. SI doesn't have scalar + // extloads, so doing one requires using a buffer_load. In cases where we + // still couldn't use a scalar load, using the wider load shouldn't really + // hurt anything. + + // If the old size already had to be an extload, there's no harm in continuing + // to reduce the width. + return (OldSize < 32); +} + +bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, + const SelectionDAG &DAG, + const MachineMemOperand &MMO) const { + + assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); + + if (LoadTy.getScalarType() == MVT::i32) + return false; + + unsigned LScalarSize = LoadTy.getScalarSizeInBits(); + unsigned CastScalarSize = CastTy.getScalarSizeInBits(); + + if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) + return false; + + bool Fast = false; + return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), + CastTy, MMO, &Fast) && + Fast; +} + +// SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also +// profitable with the expansion for 64-bit since it's generally good to +// speculate things. +// FIXME: These should really have the size as a parameter. +bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { + return true; +} + +bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { + return true; +} + +bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const { + switch (N->getOpcode()) { + default: + return false; + case ISD::EntryToken: + case ISD::TokenFactor: + return true; + case ISD::INTRINSIC_WO_CHAIN: + { + unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); + switch (IntrID) { + default: + return false; + case Intrinsic::amdgcn_readfirstlane: + case Intrinsic::amdgcn_readlane: + return true; + } + } + break; + case ISD::LOAD: + { + if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() == + AMDGPUAS::CONSTANT_ADDRESS_32BIT) + return true; + return false; + } + break; + } +} + +//===---------------------------------------------------------------------===// +// Target Properties +//===---------------------------------------------------------------------===// + +bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { + assert(VT.isFloatingPoint()); + + // Packed operations do not have a fabs modifier. + return VT == MVT::f32 || VT == MVT::f64 || + (Subtarget->has16BitInsts() && VT == MVT::f16); +} + +bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { + assert(VT.isFloatingPoint()); + return VT == MVT::f32 || VT == MVT::f64 || + (Subtarget->has16BitInsts() && VT == MVT::f16) || + (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); +} + +bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, + unsigned NumElem, + unsigned AS) const { + return true; +} + +bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { + // There are few operations which truly have vector input operands. Any vector + // operation is going to involve operations on each component, and a + // build_vector will be a copy per element, so it always makes sense to use a + // build_vector input in place of the extracted element to avoid a copy into a + // super register. + // + // We should probably only do this if all users are extracts only, but this + // should be the common case. + return true; +} + +bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { + // Truncate is just accessing a subregister. + + unsigned SrcSize = Source.getSizeInBits(); + unsigned DestSize = Dest.getSizeInBits(); + + return DestSize < SrcSize && DestSize % 32 == 0 ; +} + +bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { + // Truncate is just accessing a subregister. + + unsigned SrcSize = Source->getScalarSizeInBits(); + unsigned DestSize = Dest->getScalarSizeInBits(); + + if (DestSize== 16 && Subtarget->has16BitInsts()) + return SrcSize >= 32; + + return DestSize < SrcSize && DestSize % 32 == 0; +} + +bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { + unsigned SrcSize = Src->getScalarSizeInBits(); + unsigned DestSize = Dest->getScalarSizeInBits(); + + if (SrcSize == 16 && Subtarget->has16BitInsts()) + return DestSize >= 32; + + return SrcSize == 32 && DestSize == 64; +} + +bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { + // Any register load of a 64-bit value really requires 2 32-bit moves. For all + // practical purposes, the extra mov 0 to load a 64-bit is free. As used, + // this will enable reducing 64-bit operations the 32-bit, which is always + // good. + + if (Src == MVT::i16) + return Dest == MVT::i32 ||Dest == MVT::i64 ; + + return Src == MVT::i32 && Dest == MVT::i64; +} + +bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { + return isZExtFree(Val.getValueType(), VT2); +} + +bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { + // There aren't really 64-bit registers, but pairs of 32-bit ones and only a + // limited number of native 64-bit operations. Shrinking an operation to fit + // in a single 32-bit register should always be helpful. As currently used, + // this is much less general than the name suggests, and is only used in + // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is + // not profitable, and may actually be harmful. + return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; +} + +//===---------------------------------------------------------------------===// +// TargetLowering Callbacks +//===---------------------------------------------------------------------===// + +CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, + bool IsVarArg) { + switch (CC) { + case CallingConv::AMDGPU_VS: + case CallingConv::AMDGPU_GS: + case CallingConv::AMDGPU_PS: + case CallingConv::AMDGPU_CS: + case CallingConv::AMDGPU_HS: + case CallingConv::AMDGPU_ES: + case CallingConv::AMDGPU_LS: + return CC_AMDGPU; + case CallingConv::C: + case CallingConv::Fast: + case CallingConv::Cold: + return CC_AMDGPU_Func; + case CallingConv::AMDGPU_KERNEL: + case CallingConv::SPIR_KERNEL: + default: + report_fatal_error("Unsupported calling convention for call"); + } +} + +CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, + bool IsVarArg) { + switch (CC) { + case CallingConv::AMDGPU_KERNEL: + case CallingConv::SPIR_KERNEL: + llvm_unreachable("kernels should not be handled here"); + case CallingConv::AMDGPU_VS: + case CallingConv::AMDGPU_GS: + case CallingConv::AMDGPU_PS: + case CallingConv::AMDGPU_CS: + case CallingConv::AMDGPU_HS: + case CallingConv::AMDGPU_ES: + case CallingConv::AMDGPU_LS: + return RetCC_SI_Shader; + case CallingConv::C: + case CallingConv::Fast: + case CallingConv::Cold: + return RetCC_AMDGPU_Func; + default: + report_fatal_error("Unsupported calling convention."); + } +} + +/// The SelectionDAGBuilder will automatically promote function arguments +/// with illegal types. However, this does not work for the AMDGPU targets +/// since the function arguments are stored in memory as these illegal types. +/// In order to handle this properly we need to get the original types sizes +/// from the LLVM IR Function and fixup the ISD:InputArg values before +/// passing them to AnalyzeFormalArguments() + +/// When the SelectionDAGBuilder computes the Ins, it takes care of splitting +/// input values across multiple registers. Each item in the Ins array +/// represents a single value that will be stored in registers. Ins[x].VT is +/// the value type of the value that will be stored in the register, so +/// whatever SDNode we lower the argument to needs to be this type. +/// +/// In order to correctly lower the arguments we need to know the size of each +/// argument. Since Ins[x].VT gives us the size of the register that will +/// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type +/// for the orignal function argument so that we can deduce the correct memory +/// type to use for Ins[x]. In most cases the correct memory type will be +/// Ins[x].ArgVT. However, this will not always be the case. If, for example, +/// we have a kernel argument of type v8i8, this argument will be split into +/// 8 parts and each part will be represented by its own item in the Ins array. +/// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of +/// the argument before it was split. From this, we deduce that the memory type +/// for each individual part is i8. We pass the memory type as LocVT to the +/// calling convention analysis function and the register type (Ins[x].VT) as +/// the ValVT. +void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( + CCState &State, + const SmallVectorImpl<ISD::InputArg> &Ins) const { + const MachineFunction &MF = State.getMachineFunction(); + const Function &Fn = MF.getFunction(); + LLVMContext &Ctx = Fn.getParent()->getContext(); + const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); + const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); + CallingConv::ID CC = Fn.getCallingConv(); + + unsigned MaxAlign = 1; + uint64_t ExplicitArgOffset = 0; + const DataLayout &DL = Fn.getParent()->getDataLayout(); + + unsigned InIndex = 0; + + for (const Argument &Arg : Fn.args()) { + Type *BaseArgTy = Arg.getType(); + unsigned Align = DL.getABITypeAlignment(BaseArgTy); + MaxAlign = std::max(Align, MaxAlign); + unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy); + + uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset; + ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize; + + // We're basically throwing away everything passed into us and starting over + // to get accurate in-memory offsets. The "PartOffset" is completely useless + // to us as computed in Ins. + // + // We also need to figure out what type legalization is trying to do to get + // the correct memory offsets. + + SmallVector<EVT, 16> ValueVTs; + SmallVector<uint64_t, 16> Offsets; + ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); + + for (unsigned Value = 0, NumValues = ValueVTs.size(); + Value != NumValues; ++Value) { + uint64_t BasePartOffset = Offsets[Value]; + + EVT ArgVT = ValueVTs[Value]; + EVT MemVT = ArgVT; + MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); + unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); + + if (NumRegs == 1) { + // This argument is not split, so the IR type is the memory type. + if (ArgVT.isExtended()) { + // We have an extended type, like i24, so we should just use the + // register type. + MemVT = RegisterVT; + } else { + MemVT = ArgVT; + } + } else if (ArgVT.isVector() && RegisterVT.isVector() && + ArgVT.getScalarType() == RegisterVT.getScalarType()) { + assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); + // We have a vector value which has been split into a vector with + // the same scalar type, but fewer elements. This should handle + // all the floating-point vector types. + MemVT = RegisterVT; + } else if (ArgVT.isVector() && + ArgVT.getVectorNumElements() == NumRegs) { + // This arg has been split so that each element is stored in a separate + // register. + MemVT = ArgVT.getScalarType(); + } else if (ArgVT.isExtended()) { + // We have an extended type, like i65. + MemVT = RegisterVT; + } else { + unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; + assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); + if (RegisterVT.isInteger()) { + MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); + } else if (RegisterVT.isVector()) { + assert(!RegisterVT.getScalarType().isFloatingPoint()); + unsigned NumElements = RegisterVT.getVectorNumElements(); + assert(MemoryBits % NumElements == 0); + // This vector type has been split into another vector type with + // a different elements size. + EVT ScalarVT = EVT::getIntegerVT(State.getContext(), + MemoryBits / NumElements); + MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); + } else { + llvm_unreachable("cannot deduce memory type."); + } + } + + // Convert one element vectors to scalar. + if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) + MemVT = MemVT.getScalarType(); + + // Round up vec3/vec5 argument. + if (MemVT.isVector() && !MemVT.isPow2VectorType()) { + assert(MemVT.getVectorNumElements() == 3 || + MemVT.getVectorNumElements() == 5); + MemVT = MemVT.getPow2VectorType(State.getContext()); + } + + unsigned PartOffset = 0; + for (unsigned i = 0; i != NumRegs; ++i) { + State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, + BasePartOffset + PartOffset, + MemVT.getSimpleVT(), + CCValAssign::Full)); + PartOffset += MemVT.getStoreSize(); + } + } + } +} + +SDValue AMDGPUTargetLowering::LowerReturn( + SDValue Chain, CallingConv::ID CallConv, + bool isVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + const SDLoc &DL, SelectionDAG &DAG) const { + // FIXME: Fails for r600 tests + //assert(!isVarArg && Outs.empty() && OutVals.empty() && + // "wave terminate should not have return values"); + return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); +} + +//===---------------------------------------------------------------------===// +// Target specific lowering +//===---------------------------------------------------------------------===// + +/// Selects the correct CCAssignFn for a given CallingConvention value. +CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, + bool IsVarArg) { + return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); +} + +CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, + bool IsVarArg) { + return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); +} + +SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, + SelectionDAG &DAG, + MachineFrameInfo &MFI, + int ClobberedFI) const { + SmallVector<SDValue, 8> ArgChains; + int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); + int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; + + // Include the original chain at the beginning of the list. When this is + // used by target LowerCall hooks, this helps legalize find the + // CALLSEQ_BEGIN node. + ArgChains.push_back(Chain); + + // Add a chain value for each stack argument corresponding + for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), + UE = DAG.getEntryNode().getNode()->use_end(); + U != UE; ++U) { + if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { + if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { + if (FI->getIndex() < 0) { + int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); + int64_t InLastByte = InFirstByte; + InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; + + if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || + (FirstByte <= InFirstByte && InFirstByte <= LastByte)) + ArgChains.push_back(SDValue(L, 1)); + } + } + } + } + + // Build a tokenfactor for all the chains. + return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); +} + +SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, + SmallVectorImpl<SDValue> &InVals, + StringRef Reason) const { + SDValue Callee = CLI.Callee; + SelectionDAG &DAG = CLI.DAG; + + const Function &Fn = DAG.getMachineFunction().getFunction(); + + StringRef FuncName("<unknown>"); + + if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) + FuncName = G->getSymbol(); + else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) + FuncName = G->getGlobal()->getName(); + + DiagnosticInfoUnsupported NoCalls( + Fn, Reason + FuncName, CLI.DL.getDebugLoc()); + DAG.getContext()->diagnose(NoCalls); + + if (!CLI.IsTailCall) { + for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) + InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); + } + + return DAG.getEntryNode(); +} + +SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, + SmallVectorImpl<SDValue> &InVals) const { + return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); +} + +SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, + SelectionDAG &DAG) const { + const Function &Fn = DAG.getMachineFunction().getFunction(); + + DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", + SDLoc(Op).getDebugLoc()); + DAG.getContext()->diagnose(NoDynamicAlloca); + auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; + return DAG.getMergeValues(Ops, SDLoc()); +} + +SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, + SelectionDAG &DAG) const { + switch (Op.getOpcode()) { + default: + Op->print(errs(), &DAG); + llvm_unreachable("Custom lowering code for this" + "instruction is not implemented yet!"); + break; + case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); + case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); + case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); + case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); + case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); + case ISD::FREM: return LowerFREM(Op, DAG); + case ISD::FCEIL: return LowerFCEIL(Op, DAG); + case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); + case ISD::FRINT: return LowerFRINT(Op, DAG); + case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); + case ISD::FROUND: return LowerFROUND(Op, DAG); + case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); + case ISD::FLOG: + return LowerFLOG(Op, DAG, 1.0F / numbers::log2ef); + case ISD::FLOG10: + return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f); + case ISD::FEXP: + return lowerFEXP(Op, DAG); + case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); + case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); + case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); + case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); + case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); + case ISD::CTTZ: + case ISD::CTTZ_ZERO_UNDEF: + case ISD::CTLZ: + case ISD::CTLZ_ZERO_UNDEF: + return LowerCTLZ_CTTZ(Op, DAG); + case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); + } + return Op; +} + +void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, + SmallVectorImpl<SDValue> &Results, + SelectionDAG &DAG) const { + switch (N->getOpcode()) { + case ISD::SIGN_EXTEND_INREG: + // Different parts of legalization seem to interpret which type of + // sign_extend_inreg is the one to check for custom lowering. The extended + // from type is what really matters, but some places check for custom + // lowering of the result type. This results in trying to use + // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do + // nothing here and let the illegal result integer be handled normally. + return; + default: + return; + } +} + +bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) { + const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); + if (!GVar || !GVar->hasInitializer()) + return false; + + return !isa<UndefValue>(GVar->getInitializer()); +} + +SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, + SDValue Op, + SelectionDAG &DAG) const { + + const DataLayout &DL = DAG.getDataLayout(); + GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); + const GlobalValue *GV = G->getGlobal(); + + if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || + G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { + if (!MFI->isEntryFunction()) { + const Function &Fn = DAG.getMachineFunction().getFunction(); + DiagnosticInfoUnsupported BadLDSDecl( + Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc()); + DAG.getContext()->diagnose(BadLDSDecl); + } + + // XXX: What does the value of G->getOffset() mean? + assert(G->getOffset() == 0 && + "Do not know what to do with an non-zero offset"); + + // TODO: We could emit code to handle the initialization somewhere. + if (!hasDefinedInitializer(GV)) { + unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); + return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); + } + } + + const Function &Fn = DAG.getMachineFunction().getFunction(); + DiagnosticInfoUnsupported BadInit( + Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); + DAG.getContext()->diagnose(BadInit); + return SDValue(); +} + +SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, + SelectionDAG &DAG) const { + SmallVector<SDValue, 8> Args; + + EVT VT = Op.getValueType(); + if (VT == MVT::v4i16 || VT == MVT::v4f16) { + SDLoc SL(Op); + SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); + SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); + + SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); + return DAG.getNode(ISD::BITCAST, SL, VT, BV); + } + + for (const SDUse &U : Op->ops()) + DAG.ExtractVectorElements(U.get(), Args); + + return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); +} + +SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, + SelectionDAG &DAG) const { + + SmallVector<SDValue, 8> Args; + unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); + EVT VT = Op.getValueType(); + DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, + VT.getVectorNumElements()); + + return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); +} + +/// Generate Min/Max node +SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, + SDValue LHS, SDValue RHS, + SDValue True, SDValue False, + SDValue CC, + DAGCombinerInfo &DCI) const { + if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) + return SDValue(); + + SelectionDAG &DAG = DCI.DAG; + ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); + switch (CCOpcode) { + case ISD::SETOEQ: + case ISD::SETONE: + case ISD::SETUNE: + case ISD::SETNE: + case ISD::SETUEQ: + case ISD::SETEQ: + case ISD::SETFALSE: + case ISD::SETFALSE2: + case ISD::SETTRUE: + case ISD::SETTRUE2: + case ISD::SETUO: + case ISD::SETO: + break; + case ISD::SETULE: + case ISD::SETULT: { + if (LHS == True) + return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); + return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); + } + case ISD::SETOLE: + case ISD::SETOLT: + case ISD::SETLE: + case ISD::SETLT: { + // Ordered. Assume ordered for undefined. + + // Only do this after legalization to avoid interfering with other combines + // which might occur. + if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && + !DCI.isCalledByLegalizer()) + return SDValue(); + + // We need to permute the operands to get the correct NaN behavior. The + // selected operand is the second one based on the failing compare with NaN, + // so permute it based on the compare type the hardware uses. + if (LHS == True) + return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); + return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); + } + case ISD::SETUGE: + case ISD::SETUGT: { + if (LHS == True) + return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); + return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); + } + case ISD::SETGT: + case ISD::SETGE: + case ISD::SETOGE: + case ISD::SETOGT: { + if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && + !DCI.isCalledByLegalizer()) + return SDValue(); + + if (LHS == True) + return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); + return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); + } + case ISD::SETCC_INVALID: + llvm_unreachable("Invalid setcc condcode!"); + } + return SDValue(); +} + +std::pair<SDValue, SDValue> +AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { + SDLoc SL(Op); + + SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); + + const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); + const SDValue One = DAG.getConstant(1, SL, MVT::i32); + + SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); + SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); + + return std::make_pair(Lo, Hi); +} + +SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { + SDLoc SL(Op); + + SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); + const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); +} + +SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { + SDLoc SL(Op); + + SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); + const SDValue One = DAG.getConstant(1, SL, MVT::i32); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); +} + +// Split a vector type into two parts. The first part is a power of two vector. +// The second part is whatever is left over, and is a scalar if it would +// otherwise be a 1-vector. +std::pair<EVT, EVT> +AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { + EVT LoVT, HiVT; + EVT EltVT = VT.getVectorElementType(); + unsigned NumElts = VT.getVectorNumElements(); + unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); + LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); + HiVT = NumElts - LoNumElts == 1 + ? EltVT + : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); + return std::make_pair(LoVT, HiVT); +} + +// Split a vector value into two parts of types LoVT and HiVT. HiVT could be +// scalar. +std::pair<SDValue, SDValue> +AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, + const EVT &LoVT, const EVT &HiVT, + SelectionDAG &DAG) const { + assert(LoVT.getVectorNumElements() + + (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= + N.getValueType().getVectorNumElements() && + "More vector elements requested than available!"); + auto IdxTy = getVectorIdxTy(DAG.getDataLayout()); + SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, + DAG.getConstant(0, DL, IdxTy)); + SDValue Hi = DAG.getNode( + HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, + HiVT, N, DAG.getConstant(LoVT.getVectorNumElements(), DL, IdxTy)); + return std::make_pair(Lo, Hi); +} + +SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, + SelectionDAG &DAG) const { + LoadSDNode *Load = cast<LoadSDNode>(Op); + EVT VT = Op.getValueType(); + + + // If this is a 2 element vector, we really want to scalarize and not create + // weird 1 element vectors. + if (VT.getVectorNumElements() == 2) + return scalarizeVectorLoad(Load, DAG); + + SDValue BasePtr = Load->getBasePtr(); + EVT MemVT = Load->getMemoryVT(); + SDLoc SL(Op); + + const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); + + EVT LoVT, HiVT; + EVT LoMemVT, HiMemVT; + SDValue Lo, Hi; + + std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); + std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); + std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); + + unsigned Size = LoMemVT.getStoreSize(); + unsigned BaseAlign = Load->getAlignment(); + unsigned HiAlign = MinAlign(BaseAlign, Size); + + SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, + Load->getChain(), BasePtr, SrcValue, LoMemVT, + BaseAlign, Load->getMemOperand()->getFlags()); + SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size); + SDValue HiLoad = + DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), + HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), + HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); + + auto IdxTy = getVectorIdxTy(DAG.getDataLayout()); + SDValue Join; + if (LoVT == HiVT) { + // This is the case that the vector is power of two so was evenly split. + Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); + } else { + Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, + DAG.getConstant(0, SL, IdxTy)); + Join = DAG.getNode(HiVT.isVector() ? ISD::INSERT_SUBVECTOR + : ISD::INSERT_VECTOR_ELT, + SL, VT, Join, HiLoad, + DAG.getConstant(LoVT.getVectorNumElements(), SL, IdxTy)); + } + + SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, + LoLoad.getValue(1), HiLoad.getValue(1))}; + + return DAG.getMergeValues(Ops, SL); +} + +// Widen a vector load from vec3 to vec4. +SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op, + SelectionDAG &DAG) const { + LoadSDNode *Load = cast<LoadSDNode>(Op); + EVT VT = Op.getValueType(); + assert(VT.getVectorNumElements() == 3); + SDValue BasePtr = Load->getBasePtr(); + EVT MemVT = Load->getMemoryVT(); + SDLoc SL(Op); + const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); + unsigned BaseAlign = Load->getAlignment(); + + EVT WideVT = + EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); + EVT WideMemVT = + EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); + SDValue WideLoad = DAG.getExtLoad( + Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, + WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); + return DAG.getMergeValues( + {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, + DAG.getConstant(0, SL, getVectorIdxTy(DAG.getDataLayout()))), + WideLoad.getValue(1)}, + SL); +} + +SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, + SelectionDAG &DAG) const { + StoreSDNode *Store = cast<StoreSDNode>(Op); + SDValue Val = Store->getValue(); + EVT VT = Val.getValueType(); + + // If this is a 2 element vector, we really want to scalarize and not create + // weird 1 element vectors. + if (VT.getVectorNumElements() == 2) + return scalarizeVectorStore(Store, DAG); + + EVT MemVT = Store->getMemoryVT(); + SDValue Chain = Store->getChain(); + SDValue BasePtr = Store->getBasePtr(); + SDLoc SL(Op); + + EVT LoVT, HiVT; + EVT LoMemVT, HiMemVT; + SDValue Lo, Hi; + + std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); + std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); + std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); + + SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); + + const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); + unsigned BaseAlign = Store->getAlignment(); + unsigned Size = LoMemVT.getStoreSize(); + unsigned HiAlign = MinAlign(BaseAlign, Size); + + SDValue LoStore = + DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, + Store->getMemOperand()->getFlags()); + SDValue HiStore = + DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), + HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); + + return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); +} + +// This is a shortcut for integer division because we have fast i32<->f32 +// conversions, and fast f32 reciprocal instructions. The fractional part of a +// float is enough to accurately represent up to a 24-bit signed integer. +SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, + bool Sign) const { + SDLoc DL(Op); + EVT VT = Op.getValueType(); + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + MVT IntVT = MVT::i32; + MVT FltVT = MVT::f32; + + unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); + if (LHSSignBits < 9) + return SDValue(); + + unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); + if (RHSSignBits < 9) + return SDValue(); + + unsigned BitSize = VT.getSizeInBits(); + unsigned SignBits = std::min(LHSSignBits, RHSSignBits); + unsigned DivBits = BitSize - SignBits; + if (Sign) + ++DivBits; + + ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; + ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; + + SDValue jq = DAG.getConstant(1, DL, IntVT); + + if (Sign) { + // char|short jq = ia ^ ib; + jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); + + // jq = jq >> (bitsize - 2) + jq = DAG.getNode(ISD::SRA, DL, VT, jq, + DAG.getConstant(BitSize - 2, DL, VT)); + + // jq = jq | 0x1 + jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); + } + + // int ia = (int)LHS; + SDValue ia = LHS; + + // int ib, (int)RHS; + SDValue ib = RHS; + + // float fa = (float)ia; + SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); + + // float fb = (float)ib; + SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); + + SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, + fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); + + // fq = trunc(fq); + fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); + + // float fqneg = -fq; + SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); + + // float fr = mad(fqneg, fb, fa); + unsigned OpCode = Subtarget->hasFP32Denormals() ? + (unsigned)AMDGPUISD::FMAD_FTZ : + (unsigned)ISD::FMAD; + SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); + + // int iq = (int)fq; + SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); + + // fr = fabs(fr); + fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); + + // fb = fabs(fb); + fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); + + EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); + + // int cv = fr >= fb; + SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); + + // jq = (cv ? jq : 0); + jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); + + // dst = iq + jq; + SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); + + // Rem needs compensation, it's easier to recompute it + SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); + Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); + + // Truncate to number of bits this divide really is. + if (Sign) { + SDValue InRegSize + = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); + Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); + Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); + } else { + SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); + Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); + Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); + } + + return DAG.getMergeValues({ Div, Rem }, DL); +} + +void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, + SelectionDAG &DAG, + SmallVectorImpl<SDValue> &Results) const { + SDLoc DL(Op); + EVT VT = Op.getValueType(); + + assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); + + EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); + + SDValue One = DAG.getConstant(1, DL, HalfVT); + SDValue Zero = DAG.getConstant(0, DL, HalfVT); + + //HiLo split + SDValue LHS = Op.getOperand(0); + SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); + SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); + + SDValue RHS = Op.getOperand(1); + SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); + SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); + + if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && + DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { + + SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), + LHS_Lo, RHS_Lo); + + SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); + SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); + + Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); + Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); + return; + } + + if (isTypeLegal(MVT::i64)) { + // Compute denominator reciprocal. + unsigned FMAD = Subtarget->hasFP32Denormals() ? + (unsigned)AMDGPUISD::FMAD_FTZ : + (unsigned)ISD::FMAD; + + SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); + SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); + SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, + DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), + Cvt_Lo); + SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); + SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, + DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); + SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, + DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); + SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); + SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, + DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), + Mul1); + SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); + SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); + SDValue Rcp64 = DAG.getBitcast(VT, + DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); + + SDValue Zero64 = DAG.getConstant(0, DL, VT); + SDValue One64 = DAG.getConstant(1, DL, VT); + SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); + SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); + + SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); + SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); + SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); + SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, + Zero); + SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, + One); + + SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, + Mulhi1_Lo, Zero1); + SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, + Mulhi1_Hi, Add1_Lo.getValue(1)); + SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); + SDValue Add1 = DAG.getBitcast(VT, + DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); + + SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); + SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); + SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, + Zero); + SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, + One); + + SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, + Mulhi2_Lo, Zero1); + SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, + Mulhi2_Hi, Add1_Lo.getValue(1)); + SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, + Zero, Add2_Lo.getValue(1)); + SDValue Add2 = DAG.getBitcast(VT, + DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); + SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); + + SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); + + SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); + SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); + SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, + Mul3_Lo, Zero1); + SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, + Mul3_Hi, Sub1_Lo.getValue(1)); + SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); + SDValue Sub1 = DAG.getBitcast(VT, + DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); + + SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); + SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, + ISD::SETUGE); + SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, + ISD::SETUGE); + SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); + + // TODO: Here and below portions of the code can be enclosed into if/endif. + // Currently control flow is unconditional and we have 4 selects after + // potential endif to substitute PHIs. + + // if C3 != 0 ... + SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, + RHS_Lo, Zero1); + SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, + RHS_Hi, Sub1_Lo.getValue(1)); + SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, + Zero, Sub2_Lo.getValue(1)); + SDValue Sub2 = DAG.getBitcast(VT, + DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); + + SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); + + SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, + ISD::SETUGE); + SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, + ISD::SETUGE); + SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); + + // if (C6 != 0) + SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); + + SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, + RHS_Lo, Zero1); + SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, + RHS_Hi, Sub2_Lo.getValue(1)); + SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, + Zero, Sub3_Lo.getValue(1)); + SDValue Sub3 = DAG.getBitcast(VT, + DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); + + // endif C6 + // endif C3 + + SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); + SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); + + SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); + SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); + + Results.push_back(Div); + Results.push_back(Rem); + + return; + } + + // r600 expandion. + // Get Speculative values + SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); + SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); + + SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); + SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); + REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); + + SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); + SDValue DIV_Lo = Zero; + + const unsigned halfBitWidth = HalfVT.getSizeInBits(); + + for (unsigned i = 0; i < halfBitWidth; ++i) { + const unsigned bitPos = halfBitWidth - i - 1; + SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); + // Get value of high bit + SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); + HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); + HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); + + // Shift + REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); + // Add LHS high bit + REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); + + SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); + SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); + + DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); + + // Update REM + SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); + REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); + } + + SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); + DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); + Results.push_back(DIV); + Results.push_back(REM); +} + +SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + EVT VT = Op.getValueType(); + + if (VT == MVT::i64) { + SmallVector<SDValue, 2> Results; + LowerUDIVREM64(Op, DAG, Results); + return DAG.getMergeValues(Results, DL); + } + + if (VT == MVT::i32) { + if (SDValue Res = LowerDIVREM24(Op, DAG, false)) + return Res; + } + + SDValue Num = Op.getOperand(0); + SDValue Den = Op.getOperand(1); + + // RCP = URECIP(Den) = 2^32 / Den + e + // e is rounding error. + SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); + + // RCP_LO = mul(RCP, Den) */ + SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); + + // RCP_HI = mulhu (RCP, Den) */ + SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); + + // NEG_RCP_LO = -RCP_LO + SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), + RCP_LO); + + // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) + SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), + NEG_RCP_LO, RCP_LO, + ISD::SETEQ); + // Calculate the rounding error from the URECIP instruction + // E = mulhu(ABS_RCP_LO, RCP) + SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); + + // RCP_A_E = RCP + E + SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); + + // RCP_S_E = RCP - E + SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); + + // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) + SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), + RCP_A_E, RCP_S_E, + ISD::SETEQ); + // Quotient = mulhu(Tmp0, Num) + SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); + + // Num_S_Remainder = Quotient * Den + SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); + + // Remainder = Num - Num_S_Remainder + SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); + + // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) + SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, + DAG.getConstant(-1, DL, VT), + DAG.getConstant(0, DL, VT), + ISD::SETUGE); + // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) + SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, + Num_S_Remainder, + DAG.getConstant(-1, DL, VT), + DAG.getConstant(0, DL, VT), + ISD::SETUGE); + // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero + SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, + Remainder_GE_Zero); + + // Calculate Division result: + + // Quotient_A_One = Quotient + 1 + SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, + DAG.getConstant(1, DL, VT)); + + // Quotient_S_One = Quotient - 1 + SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, + DAG.getConstant(1, DL, VT)); + + // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) + SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), + Quotient, Quotient_A_One, ISD::SETEQ); + + // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) + Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), + Quotient_S_One, Div, ISD::SETEQ); + + // Calculate Rem result: + + // Remainder_S_Den = Remainder - Den + SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); + + // Remainder_A_Den = Remainder + Den + SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); + + // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) + SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), + Remainder, Remainder_S_Den, ISD::SETEQ); + + // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) + Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), + Remainder_A_Den, Rem, ISD::SETEQ); + SDValue Ops[2] = { + Div, + Rem + }; + return DAG.getMergeValues(Ops, DL); +} + +SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + EVT VT = Op.getValueType(); + + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + + SDValue Zero = DAG.getConstant(0, DL, VT); + SDValue NegOne = DAG.getConstant(-1, DL, VT); + + if (VT == MVT::i32) { + if (SDValue Res = LowerDIVREM24(Op, DAG, true)) + return Res; + } + + if (VT == MVT::i64 && + DAG.ComputeNumSignBits(LHS) > 32 && + DAG.ComputeNumSignBits(RHS) > 32) { + EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); + + //HiLo split + SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); + SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); + SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), + LHS_Lo, RHS_Lo); + SDValue Res[2] = { + DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), + DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) + }; + return DAG.getMergeValues(Res, DL); + } + + SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); + SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); + SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); + SDValue RSign = LHSign; // Remainder sign is the same as LHS + + LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); + RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); + + LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); + RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); + + SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); + SDValue Rem = Div.getValue(1); + + Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); + Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); + + Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); + Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); + + SDValue Res[2] = { + Div, + Rem + }; + return DAG.getMergeValues(Res, DL); +} + +// (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) +SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { + SDLoc SL(Op); + EVT VT = Op.getValueType(); + SDValue X = Op.getOperand(0); + SDValue Y = Op.getOperand(1); + + // TODO: Should this propagate fast-math-flags? + + SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); + SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); + SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); + + return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); +} + +SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { + SDLoc SL(Op); + SDValue Src = Op.getOperand(0); + + // result = trunc(src) + // if (src > 0.0 && src != result) + // result += 1.0 + + SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); + + const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); + const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); + + EVT SetCCVT = + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); + + SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); + SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); + SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); + + SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); + // TODO: Should this propagate fast-math-flags? + return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); +} + +static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, + SelectionDAG &DAG) { + const unsigned FractBits = 52; + const unsigned ExpBits = 11; + + SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, + Hi, + DAG.getConstant(FractBits - 32, SL, MVT::i32), + DAG.getConstant(ExpBits, SL, MVT::i32)); + SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, + DAG.getConstant(1023, SL, MVT::i32)); + + return Exp; +} + +SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { + SDLoc SL(Op); + SDValue Src = Op.getOperand(0); + + assert(Op.getValueType() == MVT::f64); + + const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); + const SDValue One = DAG.getConstant(1, SL, MVT::i32); + + SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); + + // Extract the upper half, since this is where we will find the sign and + // exponent. + SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); + + SDValue Exp = extractF64Exponent(Hi, SL, DAG); + + const unsigned FractBits = 52; + + // Extract the sign bit. + const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); + SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); + + // Extend back to 64-bits. + SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); + SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); + + SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); + const SDValue FractMask + = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); + + SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); + SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); + SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); + + EVT SetCCVT = + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); + + const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); + + SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); + SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); + + SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); + SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); + + return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); +} + +SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { + SDLoc SL(Op); + SDValue Src = Op.getOperand(0); + + assert(Op.getValueType() == MVT::f64); + + APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); + SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); + SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); + + // TODO: Should this propagate fast-math-flags? + + SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); + SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); + + SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); + + APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); + SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); + + EVT SetCCVT = + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); + SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); + + return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); +} + +SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { + // FNEARBYINT and FRINT are the same, except in their handling of FP + // exceptions. Those aren't really meaningful for us, and OpenCL only has + // rint, so just treat them as equivalent. + return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); +} + +// XXX - May require not supporting f32 denormals? + +// Don't handle v2f16. The extra instructions to scalarize and repack around the +// compare and vselect end up producing worse code than scalarizing the whole +// operation. +SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const { + SDLoc SL(Op); + SDValue X = Op.getOperand(0); + EVT VT = Op.getValueType(); + + SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); + + // TODO: Should this propagate fast-math-flags? + + SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); + + SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); + + const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); + const SDValue One = DAG.getConstantFP(1.0, SL, VT); + const SDValue Half = DAG.getConstantFP(0.5, SL, VT); + + SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); + + EVT SetCCVT = + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); + + SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); + + SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); + + return DAG.getNode(ISD::FADD, SL, VT, T, Sel); +} + +SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { + SDLoc SL(Op); + SDValue X = Op.getOperand(0); + + SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); + + const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); + const SDValue One = DAG.getConstant(1, SL, MVT::i32); + const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); + const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); + EVT SetCCVT = + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); + + SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); + + SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); + + SDValue Exp = extractF64Exponent(Hi, SL, DAG); + + const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, + MVT::i64); + + SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); + SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, + DAG.getConstant(INT64_C(0x0008000000000000), SL, + MVT::i64), + Exp); + + SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); + SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, + DAG.getConstant(0, SL, MVT::i64), Tmp0, + ISD::SETNE); + + SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, + D, DAG.getConstant(0, SL, MVT::i64)); + SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); + + K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); + K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); + + SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); + SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); + SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); + + SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, + ExpEqNegOne, + DAG.getConstantFP(1.0, SL, MVT::f64), + DAG.getConstantFP(0.0, SL, MVT::f64)); + + SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); + + K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); + K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); + + return K; +} + +SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + + if (VT == MVT::f32 || VT == MVT::f16) + return LowerFROUND32_16(Op, DAG); + + if (VT == MVT::f64) + return LowerFROUND64(Op, DAG); + + llvm_unreachable("unhandled type"); +} + +SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { + SDLoc SL(Op); + SDValue Src = Op.getOperand(0); + + // result = trunc(src); + // if (src < 0.0 && src != result) + // result += -1.0. + + SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); + + const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); + const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); + + EVT SetCCVT = + getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); + + SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); + SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); + SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); + + SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); + // TODO: Should this propagate fast-math-flags? + return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); +} + +SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, + double Log2BaseInverted) const { + EVT VT = Op.getValueType(); + + SDLoc SL(Op); + SDValue Operand = Op.getOperand(0); + SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); + SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); + + return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); +} + +// exp2(M_LOG2E_F * f); +SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + SDLoc SL(Op); + SDValue Src = Op.getOperand(0); + + const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT); + SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); + return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); +} + +static bool isCtlzOpc(unsigned Opc) { + return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; +} + +static bool isCttzOpc(unsigned Opc) { + return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; +} + +SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { + SDLoc SL(Op); + SDValue Src = Op.getOperand(0); + bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || + Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; + + unsigned ISDOpc, NewOpc; + if (isCtlzOpc(Op.getOpcode())) { + ISDOpc = ISD::CTLZ_ZERO_UNDEF; + NewOpc = AMDGPUISD::FFBH_U32; + } else if (isCttzOpc(Op.getOpcode())) { + ISDOpc = ISD::CTTZ_ZERO_UNDEF; + NewOpc = AMDGPUISD::FFBL_B32; + } else + llvm_unreachable("Unexpected OPCode!!!"); + + + if (ZeroUndef && Src.getValueType() == MVT::i32) + return DAG.getNode(NewOpc, SL, MVT::i32, Src); + + SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); + + const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); + const SDValue One = DAG.getConstant(1, SL, MVT::i32); + + SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); + SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); + + EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), + *DAG.getContext(), MVT::i32); + + SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; + SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); + + SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); + SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); + + const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); + SDValue Add, NewOpr; + if (isCtlzOpc(Op.getOpcode())) { + Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); + // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) + NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); + } else { + Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); + // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) + NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); + } + + if (!ZeroUndef) { + // Test if the full 64-bit input is zero. + + // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, + // which we probably don't want. + SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; + SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); + SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); + + // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction + // with the same cycles, otherwise it is slower. + // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, + // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); + + const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); + + // The instruction returns -1 for 0 input, but the defined intrinsic + // behavior is to return the number of bits. + NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, + SrcIsZero, Bits32, NewOpr); + } + + return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); +} + +SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, + bool Signed) const { + // Unsigned + // cul2f(ulong u) + //{ + // uint lz = clz(u); + // uint e = (u != 0) ? 127U + 63U - lz : 0; + // u = (u << lz) & 0x7fffffffffffffffUL; + // ulong t = u & 0xffffffffffUL; + // uint v = (e << 23) | (uint)(u >> 40); + // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); + // return as_float(v + r); + //} + // Signed + // cl2f(long l) + //{ + // long s = l >> 63; + // float r = cul2f((l + s) ^ s); + // return s ? -r : r; + //} + + SDLoc SL(Op); + SDValue Src = Op.getOperand(0); + SDValue L = Src; + + SDValue S; + if (Signed) { + const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); + S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); + + SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); + L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); + } + + EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), + *DAG.getContext(), MVT::f32); + + + SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); + SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); + SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); + LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); + + SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); + SDValue E = DAG.getSelect(SL, MVT::i32, + DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), + DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), + ZeroI32); + + SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, + DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), + DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); + + SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, + DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); + + SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, + U, DAG.getConstant(40, SL, MVT::i64)); + + SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, + DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), + DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); + + SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); + SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); + SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); + + SDValue One = DAG.getConstant(1, SL, MVT::i32); + + SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); + + SDValue R = DAG.getSelect(SL, MVT::i32, + RCmp, + One, + DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); + R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); + R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); + + if (!Signed) + return R; + + SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); + return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); +} + +SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, + bool Signed) const { + SDLoc SL(Op); + SDValue Src = Op.getOperand(0); + + SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); + + SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, + DAG.getConstant(0, SL, MVT::i32)); + SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, + DAG.getConstant(1, SL, MVT::i32)); + + SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, + SL, MVT::f64, Hi); + + SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); + + SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, + DAG.getConstant(32, SL, MVT::i32)); + // TODO: Should this propagate fast-math-flags? + return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); +} + +SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, + SelectionDAG &DAG) const { + assert(Op.getOperand(0).getValueType() == MVT::i64 && + "operation should be legal"); + + // TODO: Factor out code common with LowerSINT_TO_FP. + + EVT DestVT = Op.getValueType(); + if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { + SDLoc DL(Op); + SDValue Src = Op.getOperand(0); + + SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); + SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); + SDValue FPRound = + DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); + + return FPRound; + } + + if (DestVT == MVT::f32) + return LowerINT_TO_FP32(Op, DAG, false); + + assert(DestVT == MVT::f64); + return LowerINT_TO_FP64(Op, DAG, false); +} + +SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, + SelectionDAG &DAG) const { + assert(Op.getOperand(0).getValueType() == MVT::i64 && + "operation should be legal"); + + // TODO: Factor out code common with LowerUINT_TO_FP. + + EVT DestVT = Op.getValueType(); + if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { + SDLoc DL(Op); + SDValue Src = Op.getOperand(0); + + SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); + SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); + SDValue FPRound = + DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); + + return FPRound; + } + + if (DestVT == MVT::f32) + return LowerINT_TO_FP32(Op, DAG, true); + + assert(DestVT == MVT::f64); + return LowerINT_TO_FP64(Op, DAG, true); +} + +SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, + bool Signed) const { + SDLoc SL(Op); + + SDValue Src = Op.getOperand(0); + + SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); + + SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, + MVT::f64); + SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, + MVT::f64); + // TODO: Should this propagate fast-math-flags? + SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); + + SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); + + + SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); + + SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, + MVT::i32, FloorMul); + SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); + + SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); + + return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); +} + +SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { + SDLoc DL(Op); + SDValue N0 = Op.getOperand(0); + + // Convert to target node to get known bits + if (N0.getValueType() == MVT::f32) + return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); + + if (getTargetMachine().Options.UnsafeFPMath) { + // There is a generic expand for FP_TO_FP16 with unsafe fast math. + return SDValue(); + } + + assert(N0.getSimpleValueType() == MVT::f64); + + // f64 -> f16 conversion using round-to-nearest-even rounding mode. + const unsigned ExpMask = 0x7ff; + const unsigned ExpBiasf64 = 1023; + const unsigned ExpBiasf16 = 15; + SDValue Zero = DAG.getConstant(0, DL, MVT::i32); + SDValue One = DAG.getConstant(1, DL, MVT::i32); + SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); + SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, + DAG.getConstant(32, DL, MVT::i64)); + UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); + U = DAG.getZExtOrTrunc(U, DL, MVT::i32); + SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, + DAG.getConstant(20, DL, MVT::i64)); + E = DAG.getNode(ISD::AND, DL, MVT::i32, E, + DAG.getConstant(ExpMask, DL, MVT::i32)); + // Subtract the fp64 exponent bias (1023) to get the real exponent and + // add the f16 bias (15) to get the biased exponent for the f16 format. + E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, + DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); + + SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, + DAG.getConstant(8, DL, MVT::i32)); + M = DAG.getNode(ISD::AND, DL, MVT::i32, M, + DAG.getConstant(0xffe, DL, MVT::i32)); + + SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, + DAG.getConstant(0x1ff, DL, MVT::i32)); + MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); + + SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); + M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); + + // (M != 0 ? 0x0200 : 0) | 0x7c00; + SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, + DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), + Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); + + // N = M | (E << 12); + SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, + DAG.getNode(ISD::SHL, DL, MVT::i32, E, + DAG.getConstant(12, DL, MVT::i32))); + + // B = clamp(1-E, 0, 13); + SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, + One, E); + SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); + B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, + DAG.getConstant(13, DL, MVT::i32)); + + SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, + DAG.getConstant(0x1000, DL, MVT::i32)); + + SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); + SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); + SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); + D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); + + SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); + SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, + DAG.getConstant(0x7, DL, MVT::i32)); + V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, + DAG.getConstant(2, DL, MVT::i32)); + SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), + One, Zero, ISD::SETEQ); + SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), + One, Zero, ISD::SETGT); + V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); + V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); + + V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), + DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); + V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), + I, V, ISD::SETEQ); + + // Extract the sign bit. + SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, + DAG.getConstant(16, DL, MVT::i32)); + Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, + DAG.getConstant(0x8000, DL, MVT::i32)); + + V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); + return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); +} + +SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, + SelectionDAG &DAG) const { + SDValue Src = Op.getOperand(0); + + // TODO: Factor out code common with LowerFP_TO_UINT. + + EVT SrcVT = Src.getValueType(); + if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { + SDLoc DL(Op); + + SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); + SDValue FpToInt32 = + DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); + + return FpToInt32; + } + + if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) + return LowerFP64_TO_INT(Op, DAG, true); + + return SDValue(); +} + +SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, + SelectionDAG &DAG) const { + SDValue Src = Op.getOperand(0); + + // TODO: Factor out code common with LowerFP_TO_SINT. + + EVT SrcVT = Src.getValueType(); + if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { + SDLoc DL(Op); + + SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); + SDValue FpToInt32 = + DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); + + return FpToInt32; + } + + if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) + return LowerFP64_TO_INT(Op, DAG, false); + + return SDValue(); +} + +SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, + SelectionDAG &DAG) const { + EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); + MVT VT = Op.getSimpleValueType(); + MVT ScalarVT = VT.getScalarType(); + + assert(VT.isVector()); + + SDValue Src = Op.getOperand(0); + SDLoc DL(Op); + + // TODO: Don't scalarize on Evergreen? + unsigned NElts = VT.getVectorNumElements(); + SmallVector<SDValue, 8> Args; + DAG.ExtractVectorElements(Src, Args, 0, NElts); + + SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); + for (unsigned I = 0; I < NElts; ++I) + Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); + + return DAG.getBuildVector(VT, DL, Args); +} + +//===----------------------------------------------------------------------===// +// Custom DAG optimizations +//===----------------------------------------------------------------------===// + +static bool isU24(SDValue Op, SelectionDAG &DAG) { + return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; +} + +static bool isI24(SDValue Op, SelectionDAG &DAG) { + EVT VT = Op.getValueType(); + return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated + // as unsigned 24-bit values. + AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; +} + +static SDValue simplifyI24(SDNode *Node24, + TargetLowering::DAGCombinerInfo &DCI) { + SelectionDAG &DAG = DCI.DAG; + bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN; + + SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0); + SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1); + unsigned NewOpcode = Node24->getOpcode(); + if (IsIntrin) { + unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue(); + NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ? + AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; + } + + APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); + + // First try to simplify using GetDemandedBits which allows the operands to + // have other uses, but will only perform simplifications that involve + // bypassing some nodes for this user. + SDValue DemandedLHS = DAG.GetDemandedBits(LHS, Demanded); + SDValue DemandedRHS = DAG.GetDemandedBits(RHS, Demanded); + if (DemandedLHS || DemandedRHS) + return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(), + DemandedLHS ? DemandedLHS : LHS, + DemandedRHS ? DemandedRHS : RHS); + + // Now try SimplifyDemandedBits which can simplify the nodes used by our + // operands if this node is the only user. + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) + return SDValue(Node24, 0); + if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) + return SDValue(Node24, 0); + + return SDValue(); +} + +template <typename IntTy> +static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, + uint32_t Width, const SDLoc &DL) { + if (Width + Offset < 32) { + uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); + IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); + return DAG.getConstant(Result, DL, MVT::i32); + } + + return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); +} + +static bool hasVolatileUser(SDNode *Val) { + for (SDNode *U : Val->uses()) { + if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { + if (M->isVolatile()) + return true; + } + } + + return false; +} + +bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { + // i32 vectors are the canonical memory type. + if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) + return false; + + if (!VT.isByteSized()) + return false; + + unsigned Size = VT.getStoreSize(); + + if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) + return false; + + if (Size == 3 || (Size > 4 && (Size % 4 != 0))) + return false; + + return true; +} + +// Replace load of an illegal type with a store of a bitcast to a friendlier +// type. +SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + if (!DCI.isBeforeLegalize()) + return SDValue(); + + LoadSDNode *LN = cast<LoadSDNode>(N); + if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) + return SDValue(); + + SDLoc SL(N); + SelectionDAG &DAG = DCI.DAG; + EVT VT = LN->getMemoryVT(); + + unsigned Size = VT.getStoreSize(); + unsigned Align = LN->getAlignment(); + if (Align < Size && isTypeLegal(VT)) { + bool IsFast; + unsigned AS = LN->getAddressSpace(); + + // Expand unaligned loads earlier than legalization. Due to visitation order + // problems during legalization, the emitted instructions to pack and unpack + // the bytes again are not eliminated in the case of an unaligned copy. + if (!allowsMisalignedMemoryAccesses( + VT, AS, Align, LN->getMemOperand()->getFlags(), &IsFast)) { + if (VT.isVector()) + return scalarizeVectorLoad(LN, DAG); + + SDValue Ops[2]; + std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); + return DAG.getMergeValues(Ops, SDLoc(N)); + } + + if (!IsFast) + return SDValue(); + } + + if (!shouldCombineMemoryType(VT)) + return SDValue(); + + EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); + + SDValue NewLoad + = DAG.getLoad(NewVT, SL, LN->getChain(), + LN->getBasePtr(), LN->getMemOperand()); + + SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); + DCI.CombineTo(N, BC, NewLoad.getValue(1)); + return SDValue(N, 0); +} + +// Replace store of an illegal type with a store of a bitcast to a friendlier +// type. +SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + if (!DCI.isBeforeLegalize()) + return SDValue(); + + StoreSDNode *SN = cast<StoreSDNode>(N); + if (SN->isVolatile() || !ISD::isNormalStore(SN)) + return SDValue(); + + EVT VT = SN->getMemoryVT(); + unsigned Size = VT.getStoreSize(); + + SDLoc SL(N); + SelectionDAG &DAG = DCI.DAG; + unsigned Align = SN->getAlignment(); + if (Align < Size && isTypeLegal(VT)) { + bool IsFast; + unsigned AS = SN->getAddressSpace(); + + // Expand unaligned stores earlier than legalization. Due to visitation + // order problems during legalization, the emitted instructions to pack and + // unpack the bytes again are not eliminated in the case of an unaligned + // copy. + if (!allowsMisalignedMemoryAccesses( + VT, AS, Align, SN->getMemOperand()->getFlags(), &IsFast)) { + if (VT.isVector()) + return scalarizeVectorStore(SN, DAG); + + return expandUnalignedStore(SN, DAG); + } + + if (!IsFast) + return SDValue(); + } + + if (!shouldCombineMemoryType(VT)) + return SDValue(); + + EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); + SDValue Val = SN->getValue(); + + //DCI.AddToWorklist(Val.getNode()); + + bool OtherUses = !Val.hasOneUse(); + SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); + if (OtherUses) { + SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); + DAG.ReplaceAllUsesOfValueWith(Val, CastBack); + } + + return DAG.getStore(SN->getChain(), SL, CastVal, + SN->getBasePtr(), SN->getMemOperand()); +} + +// FIXME: This should go in generic DAG combiner with an isTruncateFree check, +// but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU +// issues. +SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + SDValue N0 = N->getOperand(0); + + // (vt2 (assertzext (truncate vt0:x), vt1)) -> + // (vt2 (truncate (assertzext vt0:x, vt1))) + if (N0.getOpcode() == ISD::TRUNCATE) { + SDValue N1 = N->getOperand(1); + EVT ExtVT = cast<VTSDNode>(N1)->getVT(); + SDLoc SL(N); + + SDValue Src = N0.getOperand(0); + EVT SrcVT = Src.getValueType(); + if (SrcVT.bitsGE(ExtVT)) { + SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); + return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); + } + } + + return SDValue(); +} + +SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine( + SDNode *N, DAGCombinerInfo &DCI) const { + unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); + switch (IID) { + case Intrinsic::amdgcn_mul_i24: + case Intrinsic::amdgcn_mul_u24: + return simplifyI24(N, DCI); + default: + return SDValue(); + } +} + +/// Split the 64-bit value \p LHS into two 32-bit components, and perform the +/// binary operation \p Opc to it with the corresponding constant operands. +SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( + DAGCombinerInfo &DCI, const SDLoc &SL, + unsigned Opc, SDValue LHS, + uint32_t ValLo, uint32_t ValHi) const { + SelectionDAG &DAG = DCI.DAG; + SDValue Lo, Hi; + std::tie(Lo, Hi) = split64BitValue(LHS, DAG); + + SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); + SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); + + SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); + SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); + + // Re-visit the ands. It's possible we eliminated one of them and it could + // simplify the vector. + DCI.AddToWorklist(Lo.getNode()); + DCI.AddToWorklist(Hi.getNode()); + + SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); + return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); +} + +SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + EVT VT = N->getValueType(0); + + ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); + if (!RHS) + return SDValue(); + + SDValue LHS = N->getOperand(0); + unsigned RHSVal = RHS->getZExtValue(); + if (!RHSVal) + return LHS; + + SDLoc SL(N); + SelectionDAG &DAG = DCI.DAG; + + switch (LHS->getOpcode()) { + default: + break; + case ISD::ZERO_EXTEND: + case ISD::SIGN_EXTEND: + case ISD::ANY_EXTEND: { + SDValue X = LHS->getOperand(0); + + if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && + isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { + // Prefer build_vector as the canonical form if packed types are legal. + // (shl ([asz]ext i16:x), 16 -> build_vector 0, x + SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, + { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); + return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); + } + + // shl (ext x) => zext (shl x), if shift does not overflow int + if (VT != MVT::i64) + break; + KnownBits Known = DAG.computeKnownBits(X); + unsigned LZ = Known.countMinLeadingZeros(); + if (LZ < RHSVal) + break; + EVT XVT = X.getValueType(); + SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); + return DAG.getZExtOrTrunc(Shl, SL, VT); + } + } + + if (VT != MVT::i64) + return SDValue(); + + // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) + + // On some subtargets, 64-bit shift is a quarter rate instruction. In the + // common case, splitting this into a move and a 32-bit shift is faster and + // the same code size. + if (RHSVal < 32) + return SDValue(); + + SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); + + SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); + SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); + + const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); + + SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); + return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); +} + +SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + if (N->getValueType(0) != MVT::i64) + return SDValue(); + + const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); + if (!RHS) + return SDValue(); + + SelectionDAG &DAG = DCI.DAG; + SDLoc SL(N); + unsigned RHSVal = RHS->getZExtValue(); + + // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) + if (RHSVal == 32) { + SDValue Hi = getHiHalf64(N->getOperand(0), DAG); + SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, + DAG.getConstant(31, SL, MVT::i32)); + + SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); + return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); + } + + // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) + if (RHSVal == 63) { + SDValue Hi = getHiHalf64(N->getOperand(0), DAG); + SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, + DAG.getConstant(31, SL, MVT::i32)); + SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); + return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); + } + + return SDValue(); +} + +SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); + if (!RHS) + return SDValue(); + + EVT VT = N->getValueType(0); + SDValue LHS = N->getOperand(0); + unsigned ShiftAmt = RHS->getZExtValue(); + SelectionDAG &DAG = DCI.DAG; + SDLoc SL(N); + + // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) + // this improves the ability to match BFE patterns in isel. + if (LHS.getOpcode() == ISD::AND) { + if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { + if (Mask->getAPIntValue().isShiftedMask() && + Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) { + return DAG.getNode( + ISD::AND, SL, VT, + DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), + DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); + } + } + } + + if (VT != MVT::i64) + return SDValue(); + + if (ShiftAmt < 32) + return SDValue(); + + // srl i64:x, C for C >= 32 + // => + // build_pair (srl hi_32(x), C - 32), 0 + SDValue One = DAG.getConstant(1, SL, MVT::i32); + SDValue Zero = DAG.getConstant(0, SL, MVT::i32); + + SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS); + SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One); + + SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); + SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); + + SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); + + return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); +} + +SDValue AMDGPUTargetLowering::performTruncateCombine( + SDNode *N, DAGCombinerInfo &DCI) const { + SDLoc SL(N); + SelectionDAG &DAG = DCI.DAG; + EVT VT = N->getValueType(0); + SDValue Src = N->getOperand(0); + + // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) + if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { + SDValue Vec = Src.getOperand(0); + if (Vec.getOpcode() == ISD::BUILD_VECTOR) { + SDValue Elt0 = Vec.getOperand(0); + EVT EltVT = Elt0.getValueType(); + if (VT.getSizeInBits() <= EltVT.getSizeInBits()) { + if (EltVT.isFloatingPoint()) { + Elt0 = DAG.getNode(ISD::BITCAST, SL, + EltVT.changeTypeToInteger(), Elt0); + } + + return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); + } + } + } + + // Equivalent of above for accessing the high element of a vector as an + // integer operation. + // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) + if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { + if (auto K = isConstOrConstSplat(Src.getOperand(1))) { + if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { + SDValue BV = stripBitcast(Src.getOperand(0)); + if (BV.getOpcode() == ISD::BUILD_VECTOR && + BV.getValueType().getVectorNumElements() == 2) { + SDValue SrcElt = BV.getOperand(1); + EVT SrcEltVT = SrcElt.getValueType(); + if (SrcEltVT.isFloatingPoint()) { + SrcElt = DAG.getNode(ISD::BITCAST, SL, + SrcEltVT.changeTypeToInteger(), SrcElt); + } + + return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); + } + } + } + } + + // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. + // + // i16 (trunc (srl i64:x, K)), K <= 16 -> + // i16 (trunc (srl (i32 (trunc x), K))) + if (VT.getScalarSizeInBits() < 32) { + EVT SrcVT = Src.getValueType(); + if (SrcVT.getScalarSizeInBits() > 32 && + (Src.getOpcode() == ISD::SRL || + Src.getOpcode() == ISD::SRA || + Src.getOpcode() == ISD::SHL)) { + SDValue Amt = Src.getOperand(1); + KnownBits Known = DAG.computeKnownBits(Amt); + unsigned Size = VT.getScalarSizeInBits(); + if ((Known.isConstant() && Known.getConstant().ule(Size)) || + (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) { + EVT MidVT = VT.isVector() ? + EVT::getVectorVT(*DAG.getContext(), MVT::i32, + VT.getVectorNumElements()) : MVT::i32; + + EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); + SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, + Src.getOperand(0)); + DCI.AddToWorklist(Trunc.getNode()); + + if (Amt.getValueType() != NewShiftVT) { + Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); + DCI.AddToWorklist(Amt.getNode()); + } + + SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, + Trunc, Amt); + return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); + } + } + } + + return SDValue(); +} + +// We need to specifically handle i64 mul here to avoid unnecessary conversion +// instructions. If we only match on the legalized i64 mul expansion, +// SimplifyDemandedBits will be unable to remove them because there will be +// multiple uses due to the separate mul + mulh[su]. +static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, + SDValue N0, SDValue N1, unsigned Size, bool Signed) { + if (Size <= 32) { + unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; + return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); + } + + // Because we want to eliminate extension instructions before the + // operation, we need to create a single user here (i.e. not the separate + // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. + + unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; + + SDValue Mul = DAG.getNode(MulOpc, SL, + DAG.getVTList(MVT::i32, MVT::i32), N0, N1); + + return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, + Mul.getValue(0), Mul.getValue(1)); +} + +SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + EVT VT = N->getValueType(0); + + unsigned Size = VT.getSizeInBits(); + if (VT.isVector() || Size > 64) + return SDValue(); + + // There are i16 integer mul/mad. + if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) + return SDValue(); + + SelectionDAG &DAG = DCI.DAG; + SDLoc DL(N); + + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + + // SimplifyDemandedBits has the annoying habit of turning useful zero_extends + // in the source into any_extends if the result of the mul is truncated. Since + // we can assume the high bits are whatever we want, use the underlying value + // to avoid the unknown high bits from interfering. + if (N0.getOpcode() == ISD::ANY_EXTEND) + N0 = N0.getOperand(0); + + if (N1.getOpcode() == ISD::ANY_EXTEND) + N1 = N1.getOperand(0); + + SDValue Mul; + + if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { + N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); + N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); + Mul = getMul24(DAG, DL, N0, N1, Size, false); + } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { + N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); + N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); + Mul = getMul24(DAG, DL, N0, N1, Size, true); + } else { + return SDValue(); + } + + // We need to use sext even for MUL_U24, because MUL_U24 is used + // for signed multiply of 8 and 16-bit types. + return DAG.getSExtOrTrunc(Mul, DL, VT); +} + +SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + EVT VT = N->getValueType(0); + + if (!Subtarget->hasMulI24() || VT.isVector()) + return SDValue(); + + SelectionDAG &DAG = DCI.DAG; + SDLoc DL(N); + + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + + if (!isI24(N0, DAG) || !isI24(N1, DAG)) + return SDValue(); + + N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); + N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); + + SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); + DCI.AddToWorklist(Mulhi.getNode()); + return DAG.getSExtOrTrunc(Mulhi, DL, VT); +} + +SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + EVT VT = N->getValueType(0); + + if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) + return SDValue(); + + SelectionDAG &DAG = DCI.DAG; + SDLoc DL(N); + + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + + if (!isU24(N0, DAG) || !isU24(N1, DAG)) + return SDValue(); + + N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); + N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); + + SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); + DCI.AddToWorklist(Mulhi.getNode()); + return DAG.getZExtOrTrunc(Mulhi, DL, VT); +} + +SDValue AMDGPUTargetLowering::performMulLoHi24Combine( + SDNode *N, DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + + // Simplify demanded bits before splitting into multiple users. + if (SDValue V = simplifyI24(N, DCI)) + return V; + + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + + bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); + + unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; + unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; + + SDLoc SL(N); + + SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); + SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); + return DAG.getMergeValues({ MulLo, MulHi }, SL); +} + +static bool isNegativeOne(SDValue Val) { + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) + return C->isAllOnesValue(); + return false; +} + +SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, + SDValue Op, + const SDLoc &DL, + unsigned Opc) const { + EVT VT = Op.getValueType(); + EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); + if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && + LegalVT != MVT::i16)) + return SDValue(); + + if (VT != MVT::i32) + Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); + + SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); + if (VT != MVT::i32) + FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); + + return FFBX; +} + +// The native instructions return -1 on 0 input. Optimize out a select that +// produces -1 on 0. +// +// TODO: If zero is not undef, we could also do this if the output is compared +// against the bitwidth. +// +// TODO: Should probably combine against FFBH_U32 instead of ctlz directly. +SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, + SDValue LHS, SDValue RHS, + DAGCombinerInfo &DCI) const { + ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); + if (!CmpRhs || !CmpRhs->isNullValue()) + return SDValue(); + + SelectionDAG &DAG = DCI.DAG; + ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); + SDValue CmpLHS = Cond.getOperand(0); + + unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : + AMDGPUISD::FFBH_U32; + + // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x + // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x + if (CCOpcode == ISD::SETEQ && + (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && + RHS.getOperand(0) == CmpLHS && + isNegativeOne(LHS)) { + return getFFBX_U32(DAG, CmpLHS, SL, Opc); + } + + // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x + // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x + if (CCOpcode == ISD::SETNE && + (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && + LHS.getOperand(0) == CmpLHS && + isNegativeOne(RHS)) { + return getFFBX_U32(DAG, CmpLHS, SL, Opc); + } + + return SDValue(); +} + +static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, + unsigned Op, + const SDLoc &SL, + SDValue Cond, + SDValue N1, + SDValue N2) { + SelectionDAG &DAG = DCI.DAG; + EVT VT = N1.getValueType(); + + SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, + N1.getOperand(0), N2.getOperand(0)); + DCI.AddToWorklist(NewSelect.getNode()); + return DAG.getNode(Op, SL, VT, NewSelect); +} + +// Pull a free FP operation out of a select so it may fold into uses. +// +// select c, (fneg x), (fneg y) -> fneg (select c, x, y) +// select c, (fneg x), k -> fneg (select c, x, (fneg k)) +// +// select c, (fabs x), (fabs y) -> fabs (select c, x, y) +// select c, (fabs x), +k -> fabs (select c, x, k) +static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, + SDValue N) { + SelectionDAG &DAG = DCI.DAG; + SDValue Cond = N.getOperand(0); + SDValue LHS = N.getOperand(1); + SDValue RHS = N.getOperand(2); + + EVT VT = N.getValueType(); + if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || + (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { + return distributeOpThroughSelect(DCI, LHS.getOpcode(), + SDLoc(N), Cond, LHS, RHS); + } + + bool Inv = false; + if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { + std::swap(LHS, RHS); + Inv = true; + } + + // TODO: Support vector constants. + ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); + if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { + SDLoc SL(N); + // If one side is an fneg/fabs and the other is a constant, we can push the + // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. + SDValue NewLHS = LHS.getOperand(0); + SDValue NewRHS = RHS; + + // Careful: if the neg can be folded up, don't try to pull it back down. + bool ShouldFoldNeg = true; + + if (NewLHS.hasOneUse()) { + unsigned Opc = NewLHS.getOpcode(); + if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) + ShouldFoldNeg = false; + if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) + ShouldFoldNeg = false; + } + + if (ShouldFoldNeg) { + if (LHS.getOpcode() == ISD::FNEG) + NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); + else if (CRHS->isNegative()) + return SDValue(); + + if (Inv) + std::swap(NewLHS, NewRHS); + + SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, + Cond, NewLHS, NewRHS); + DCI.AddToWorklist(NewSelect.getNode()); + return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); + } + } + + return SDValue(); +} + + +SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) + return Folded; + + SDValue Cond = N->getOperand(0); + if (Cond.getOpcode() != ISD::SETCC) + return SDValue(); + + EVT VT = N->getValueType(0); + SDValue LHS = Cond.getOperand(0); + SDValue RHS = Cond.getOperand(1); + SDValue CC = Cond.getOperand(2); + + SDValue True = N->getOperand(1); + SDValue False = N->getOperand(2); + + if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. + SelectionDAG &DAG = DCI.DAG; + if (DAG.isConstantValueOfAnyType(True) && + !DAG.isConstantValueOfAnyType(False)) { + // Swap cmp + select pair to move constant to false input. + // This will allow using VOPC cndmasks more often. + // select (setcc x, y), k, x -> select (setccinv x, y), x, k + + SDLoc SL(N); + ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), + LHS.getValueType().isInteger()); + + SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); + return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); + } + + if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { + SDValue MinMax + = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); + // Revisit this node so we can catch min3/max3/med3 patterns. + //DCI.AddToWorklist(MinMax.getNode()); + return MinMax; + } + } + + // There's no reason to not do this if the condition has other uses. + return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); +} + +static bool isInv2Pi(const APFloat &APF) { + static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); + static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); + static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); + + return APF.bitwiseIsEqual(KF16) || + APF.bitwiseIsEqual(KF32) || + APF.bitwiseIsEqual(KF64); +} + +// 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an +// additional cost to negate them. +bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { + if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { + if (C->isZero() && !C->isNegative()) + return true; + + if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) + return true; + } + + return false; +} + +static unsigned inverseMinMax(unsigned Opc) { + switch (Opc) { + case ISD::FMAXNUM: + return ISD::FMINNUM; + case ISD::FMINNUM: + return ISD::FMAXNUM; + case ISD::FMAXNUM_IEEE: + return ISD::FMINNUM_IEEE; + case ISD::FMINNUM_IEEE: + return ISD::FMAXNUM_IEEE; + case AMDGPUISD::FMAX_LEGACY: + return AMDGPUISD::FMIN_LEGACY; + case AMDGPUISD::FMIN_LEGACY: + return AMDGPUISD::FMAX_LEGACY; + default: + llvm_unreachable("invalid min/max opcode"); + } +} + +SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + + unsigned Opc = N0.getOpcode(); + + // If the input has multiple uses and we can either fold the negate down, or + // the other uses cannot, give up. This both prevents unprofitable + // transformations and infinite loops: we won't repeatedly try to fold around + // a negate that has no 'good' form. + if (N0.hasOneUse()) { + // This may be able to fold into the source, but at a code size cost. Don't + // fold if the fold into the user is free. + if (allUsesHaveSourceMods(N, 0)) + return SDValue(); + } else { + if (fnegFoldsIntoOp(Opc) && + (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) + return SDValue(); + } + + SDLoc SL(N); + switch (Opc) { + case ISD::FADD: { + if (!mayIgnoreSignedZero(N0)) + return SDValue(); + + // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) + SDValue LHS = N0.getOperand(0); + SDValue RHS = N0.getOperand(1); + + if (LHS.getOpcode() != ISD::FNEG) + LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); + else + LHS = LHS.getOperand(0); + + if (RHS.getOpcode() != ISD::FNEG) + RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); + else + RHS = RHS.getOperand(0); + + SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); + if (Res.getOpcode() != ISD::FADD) + return SDValue(); // Op got folded away. + if (!N0.hasOneUse()) + DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); + return Res; + } + case ISD::FMUL: + case AMDGPUISD::FMUL_LEGACY: { + // (fneg (fmul x, y)) -> (fmul x, (fneg y)) + // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) + SDValue LHS = N0.getOperand(0); + SDValue RHS = N0.getOperand(1); + + if (LHS.getOpcode() == ISD::FNEG) + LHS = LHS.getOperand(0); + else if (RHS.getOpcode() == ISD::FNEG) + RHS = RHS.getOperand(0); + else + RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); + + SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); + if (Res.getOpcode() != Opc) + return SDValue(); // Op got folded away. + if (!N0.hasOneUse()) + DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); + return Res; + } + case ISD::FMA: + case ISD::FMAD: { + if (!mayIgnoreSignedZero(N0)) + return SDValue(); + + // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) + SDValue LHS = N0.getOperand(0); + SDValue MHS = N0.getOperand(1); + SDValue RHS = N0.getOperand(2); + + if (LHS.getOpcode() == ISD::FNEG) + LHS = LHS.getOperand(0); + else if (MHS.getOpcode() == ISD::FNEG) + MHS = MHS.getOperand(0); + else + MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); + + if (RHS.getOpcode() != ISD::FNEG) + RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); + else + RHS = RHS.getOperand(0); + + SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); + if (Res.getOpcode() != Opc) + return SDValue(); // Op got folded away. + if (!N0.hasOneUse()) + DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); + return Res; + } + case ISD::FMAXNUM: + case ISD::FMINNUM: + case ISD::FMAXNUM_IEEE: + case ISD::FMINNUM_IEEE: + case AMDGPUISD::FMAX_LEGACY: + case AMDGPUISD::FMIN_LEGACY: { + // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) + // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) + // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) + // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) + + SDValue LHS = N0.getOperand(0); + SDValue RHS = N0.getOperand(1); + + // 0 doesn't have a negated inline immediate. + // TODO: This constant check should be generalized to other operations. + if (isConstantCostlierToNegate(RHS)) + return SDValue(); + + SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); + SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); + unsigned Opposite = inverseMinMax(Opc); + + SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); + if (Res.getOpcode() != Opposite) + return SDValue(); // Op got folded away. + if (!N0.hasOneUse()) + DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); + return Res; + } + case AMDGPUISD::FMED3: { + SDValue Ops[3]; + for (unsigned I = 0; I < 3; ++I) + Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); + + SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); + if (Res.getOpcode() != AMDGPUISD::FMED3) + return SDValue(); // Op got folded away. + if (!N0.hasOneUse()) + DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); + return Res; + } + case ISD::FP_EXTEND: + case ISD::FTRUNC: + case ISD::FRINT: + case ISD::FNEARBYINT: // XXX - Should fround be handled? + case ISD::FSIN: + case ISD::FCANONICALIZE: + case AMDGPUISD::RCP: + case AMDGPUISD::RCP_LEGACY: + case AMDGPUISD::RCP_IFLAG: + case AMDGPUISD::SIN_HW: { + SDValue CvtSrc = N0.getOperand(0); + if (CvtSrc.getOpcode() == ISD::FNEG) { + // (fneg (fp_extend (fneg x))) -> (fp_extend x) + // (fneg (rcp (fneg x))) -> (rcp x) + return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); + } + + if (!N0.hasOneUse()) + return SDValue(); + + // (fneg (fp_extend x)) -> (fp_extend (fneg x)) + // (fneg (rcp x)) -> (rcp (fneg x)) + SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); + return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); + } + case ISD::FP_ROUND: { + SDValue CvtSrc = N0.getOperand(0); + + if (CvtSrc.getOpcode() == ISD::FNEG) { + // (fneg (fp_round (fneg x))) -> (fp_round x) + return DAG.getNode(ISD::FP_ROUND, SL, VT, + CvtSrc.getOperand(0), N0.getOperand(1)); + } + + if (!N0.hasOneUse()) + return SDValue(); + + // (fneg (fp_round x)) -> (fp_round (fneg x)) + SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); + return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); + } + case ISD::FP16_TO_FP: { + // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal + // f16, but legalization of f16 fneg ends up pulling it out of the source. + // Put the fneg back as a legal source operation that can be matched later. + SDLoc SL(N); + + SDValue Src = N0.getOperand(0); + EVT SrcVT = Src.getValueType(); + + // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) + SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, + DAG.getConstant(0x8000, SL, SrcVT)); + return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); + } + default: + return SDValue(); + } +} + +SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + SDValue N0 = N->getOperand(0); + + if (!N0.hasOneUse()) + return SDValue(); + + switch (N0.getOpcode()) { + case ISD::FP16_TO_FP: { + assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); + SDLoc SL(N); + SDValue Src = N0.getOperand(0); + EVT SrcVT = Src.getValueType(); + + // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) + SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, + DAG.getConstant(0x7fff, SL, SrcVT)); + return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); + } + default: + return SDValue(); + } +} + +SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); + if (!CFP) + return SDValue(); + + // XXX - Should this flush denormals? + const APFloat &Val = CFP->getValueAPF(); + APFloat One(Val.getSemantics(), "1.0"); + return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); +} + +SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + SDLoc DL(N); + + switch(N->getOpcode()) { + default: + break; + case ISD::BITCAST: { + EVT DestVT = N->getValueType(0); + + // Push casts through vector builds. This helps avoid emitting a large + // number of copies when materializing floating point vector constants. + // + // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => + // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) + if (DestVT.isVector()) { + SDValue Src = N->getOperand(0); + if (Src.getOpcode() == ISD::BUILD_VECTOR) { + EVT SrcVT = Src.getValueType(); + unsigned NElts = DestVT.getVectorNumElements(); + + if (SrcVT.getVectorNumElements() == NElts) { + EVT DestEltVT = DestVT.getVectorElementType(); + + SmallVector<SDValue, 8> CastedElts; + SDLoc SL(N); + for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { + SDValue Elt = Src.getOperand(I); + CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); + } + + return DAG.getBuildVector(DestVT, SL, CastedElts); + } + } + } + + if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) + break; + + // Fold bitcasts of constants. + // + // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) + // TODO: Generalize and move to DAGCombiner + SDValue Src = N->getOperand(0); + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { + if (Src.getValueType() == MVT::i64) { + SDLoc SL(N); + uint64_t CVal = C->getZExtValue(); + SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, + DAG.getConstant(Lo_32(CVal), SL, MVT::i32), + DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); + return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); + } + } + + if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { + const APInt &Val = C->getValueAPF().bitcastToAPInt(); + SDLoc SL(N); + uint64_t CVal = Val.getZExtValue(); + SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, + DAG.getConstant(Lo_32(CVal), SL, MVT::i32), + DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); + + return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); + } + + break; + } + case ISD::SHL: { + if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) + break; + + return performShlCombine(N, DCI); + } + case ISD::SRL: { + if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) + break; + + return performSrlCombine(N, DCI); + } + case ISD::SRA: { + if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) + break; + + return performSraCombine(N, DCI); + } + case ISD::TRUNCATE: + return performTruncateCombine(N, DCI); + case ISD::MUL: + return performMulCombine(N, DCI); + case ISD::MULHS: + return performMulhsCombine(N, DCI); + case ISD::MULHU: + return performMulhuCombine(N, DCI); + case AMDGPUISD::MUL_I24: + case AMDGPUISD::MUL_U24: + case AMDGPUISD::MULHI_I24: + case AMDGPUISD::MULHI_U24: { + if (SDValue V = simplifyI24(N, DCI)) + return V; + return SDValue(); + } + case AMDGPUISD::MUL_LOHI_I24: + case AMDGPUISD::MUL_LOHI_U24: + return performMulLoHi24Combine(N, DCI); + case ISD::SELECT: + return performSelectCombine(N, DCI); + case ISD::FNEG: + return performFNegCombine(N, DCI); + case ISD::FABS: + return performFAbsCombine(N, DCI); + case AMDGPUISD::BFE_I32: + case AMDGPUISD::BFE_U32: { + assert(!N->getValueType(0).isVector() && + "Vector handling of BFE not implemented"); + ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); + if (!Width) + break; + + uint32_t WidthVal = Width->getZExtValue() & 0x1f; + if (WidthVal == 0) + return DAG.getConstant(0, DL, MVT::i32); + + ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); + if (!Offset) + break; + + SDValue BitsFrom = N->getOperand(0); + uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; + + bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; + + if (OffsetVal == 0) { + // This is already sign / zero extended, so try to fold away extra BFEs. + unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); + + unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); + if (OpSignBits >= SignBits) + return BitsFrom; + + EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); + if (Signed) { + // This is a sign_extend_inreg. Replace it to take advantage of existing + // DAG Combines. If not eliminated, we will match back to BFE during + // selection. + + // TODO: The sext_inreg of extended types ends, although we can could + // handle them in a single BFE. + return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, + DAG.getValueType(SmallVT)); + } + + return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); + } + + if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { + if (Signed) { + return constantFoldBFE<int32_t>(DAG, + CVal->getSExtValue(), + OffsetVal, + WidthVal, + DL); + } + + return constantFoldBFE<uint32_t>(DAG, + CVal->getZExtValue(), + OffsetVal, + WidthVal, + DL); + } + + if ((OffsetVal + WidthVal) >= 32 && + !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { + SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); + return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, + BitsFrom, ShiftVal); + } + + if (BitsFrom.hasOneUse()) { + APInt Demanded = APInt::getBitsSet(32, + OffsetVal, + OffsetVal + WidthVal); + + KnownBits Known; + TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), + !DCI.isBeforeLegalizeOps()); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || + TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { + DCI.CommitTargetLoweringOpt(TLO); + } + } + + break; + } + case ISD::LOAD: + return performLoadCombine(N, DCI); + case ISD::STORE: + return performStoreCombine(N, DCI); + case AMDGPUISD::RCP: + case AMDGPUISD::RCP_IFLAG: + return performRcpCombine(N, DCI); + case ISD::AssertZext: + case ISD::AssertSext: + return performAssertSZExtCombine(N, DCI); + case ISD::INTRINSIC_WO_CHAIN: + return performIntrinsicWOChainCombine(N, DCI); + } + return SDValue(); +} + +//===----------------------------------------------------------------------===// +// Helper functions +//===----------------------------------------------------------------------===// + +SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, + const TargetRegisterClass *RC, + unsigned Reg, EVT VT, + const SDLoc &SL, + bool RawReg) const { + MachineFunction &MF = DAG.getMachineFunction(); + MachineRegisterInfo &MRI = MF.getRegInfo(); + unsigned VReg; + + if (!MRI.isLiveIn(Reg)) { + VReg = MRI.createVirtualRegister(RC); + MRI.addLiveIn(Reg, VReg); + } else { + VReg = MRI.getLiveInVirtReg(Reg); + } + + if (RawReg) + return DAG.getRegister(VReg, VT); + + return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); +} + +// This may be called multiple times, and nothing prevents creating multiple +// objects at the same offset. See if we already defined this object. +static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size, + int64_t Offset) { + for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { + if (MFI.getObjectOffset(I) == Offset) { + assert(MFI.getObjectSize(I) == Size); + return I; + } + } + + return MFI.CreateFixedObject(Size, Offset, true); +} + +SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, + EVT VT, + const SDLoc &SL, + int64_t Offset) const { + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo &MFI = MF.getFrameInfo(); + int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset); + + auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); + SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); + + return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4, + MachineMemOperand::MODereferenceable | + MachineMemOperand::MOInvariant); +} + +SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, + const SDLoc &SL, + SDValue Chain, + SDValue ArgVal, + int64_t Offset) const { + MachineFunction &MF = DAG.getMachineFunction(); + MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); + + SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); + SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4, + MachineMemOperand::MODereferenceable); + return Store; +} + +SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, + const TargetRegisterClass *RC, + EVT VT, const SDLoc &SL, + const ArgDescriptor &Arg) const { + assert(Arg && "Attempting to load missing argument"); + + SDValue V = Arg.isRegister() ? + CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) : + loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); + + if (!Arg.isMasked()) + return V; + + unsigned Mask = Arg.getMask(); + unsigned Shift = countTrailingZeros<unsigned>(Mask); + V = DAG.getNode(ISD::SRL, SL, VT, V, + DAG.getShiftAmountConstant(Shift, VT, SL)); + return DAG.getNode(ISD::AND, SL, VT, V, + DAG.getConstant(Mask >> Shift, SL, VT)); +} + +uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( + const MachineFunction &MF, const ImplicitParameter Param) const { + const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); + const AMDGPUSubtarget &ST = + AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); + unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); + const Align Alignment = ST.getAlignmentForImplicitArgPtr(); + uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + + ExplicitArgOffset; + switch (Param) { + case GRID_DIM: + return ArgOffset; + case GRID_OFFSET: + return ArgOffset + 4; + } + llvm_unreachable("unexpected implicit parameter type"); +} + +#define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; + +const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { + switch ((AMDGPUISD::NodeType)Opcode) { + case AMDGPUISD::FIRST_NUMBER: break; + // AMDIL DAG nodes + NODE_NAME_CASE(UMUL); + NODE_NAME_CASE(BRANCH_COND); + + // AMDGPU DAG nodes + NODE_NAME_CASE(IF) + NODE_NAME_CASE(ELSE) + NODE_NAME_CASE(LOOP) + NODE_NAME_CASE(CALL) + NODE_NAME_CASE(TC_RETURN) + NODE_NAME_CASE(TRAP) + NODE_NAME_CASE(RET_FLAG) + NODE_NAME_CASE(RETURN_TO_EPILOG) + NODE_NAME_CASE(ENDPGM) + NODE_NAME_CASE(DWORDADDR) + NODE_NAME_CASE(FRACT) + NODE_NAME_CASE(SETCC) + NODE_NAME_CASE(SETREG) + NODE_NAME_CASE(DENORM_MODE) + NODE_NAME_CASE(FMA_W_CHAIN) + NODE_NAME_CASE(FMUL_W_CHAIN) + NODE_NAME_CASE(CLAMP) + NODE_NAME_CASE(COS_HW) + NODE_NAME_CASE(SIN_HW) + NODE_NAME_CASE(FMAX_LEGACY) + NODE_NAME_CASE(FMIN_LEGACY) + NODE_NAME_CASE(FMAX3) + NODE_NAME_CASE(SMAX3) + NODE_NAME_CASE(UMAX3) + NODE_NAME_CASE(FMIN3) + NODE_NAME_CASE(SMIN3) + NODE_NAME_CASE(UMIN3) + NODE_NAME_CASE(FMED3) + NODE_NAME_CASE(SMED3) + NODE_NAME_CASE(UMED3) + NODE_NAME_CASE(FDOT2) + NODE_NAME_CASE(URECIP) + NODE_NAME_CASE(DIV_SCALE) + NODE_NAME_CASE(DIV_FMAS) + NODE_NAME_CASE(DIV_FIXUP) + NODE_NAME_CASE(FMAD_FTZ) + NODE_NAME_CASE(TRIG_PREOP) + NODE_NAME_CASE(RCP) + NODE_NAME_CASE(RSQ) + NODE_NAME_CASE(RCP_LEGACY) + NODE_NAME_CASE(RSQ_LEGACY) + NODE_NAME_CASE(RCP_IFLAG) + NODE_NAME_CASE(FMUL_LEGACY) + NODE_NAME_CASE(RSQ_CLAMP) + NODE_NAME_CASE(LDEXP) + NODE_NAME_CASE(FP_CLASS) + NODE_NAME_CASE(DOT4) + NODE_NAME_CASE(CARRY) + NODE_NAME_CASE(BORROW) + NODE_NAME_CASE(BFE_U32) + NODE_NAME_CASE(BFE_I32) + NODE_NAME_CASE(BFI) + NODE_NAME_CASE(BFM) + NODE_NAME_CASE(FFBH_U32) + NODE_NAME_CASE(FFBH_I32) + NODE_NAME_CASE(FFBL_B32) + NODE_NAME_CASE(MUL_U24) + NODE_NAME_CASE(MUL_I24) + NODE_NAME_CASE(MULHI_U24) + NODE_NAME_CASE(MULHI_I24) + NODE_NAME_CASE(MUL_LOHI_U24) + NODE_NAME_CASE(MUL_LOHI_I24) + NODE_NAME_CASE(MAD_U24) + NODE_NAME_CASE(MAD_I24) + NODE_NAME_CASE(MAD_I64_I32) + NODE_NAME_CASE(MAD_U64_U32) + NODE_NAME_CASE(PERM) + NODE_NAME_CASE(TEXTURE_FETCH) + NODE_NAME_CASE(EXPORT) + NODE_NAME_CASE(EXPORT_DONE) + NODE_NAME_CASE(R600_EXPORT) + NODE_NAME_CASE(CONST_ADDRESS) + NODE_NAME_CASE(REGISTER_LOAD) + NODE_NAME_CASE(REGISTER_STORE) + NODE_NAME_CASE(SAMPLE) + NODE_NAME_CASE(SAMPLEB) + NODE_NAME_CASE(SAMPLED) + NODE_NAME_CASE(SAMPLEL) + NODE_NAME_CASE(CVT_F32_UBYTE0) + NODE_NAME_CASE(CVT_F32_UBYTE1) + NODE_NAME_CASE(CVT_F32_UBYTE2) + NODE_NAME_CASE(CVT_F32_UBYTE3) + NODE_NAME_CASE(CVT_PKRTZ_F16_F32) + NODE_NAME_CASE(CVT_PKNORM_I16_F32) + NODE_NAME_CASE(CVT_PKNORM_U16_F32) + NODE_NAME_CASE(CVT_PK_I16_I32) + NODE_NAME_CASE(CVT_PK_U16_U32) + NODE_NAME_CASE(FP_TO_FP16) + NODE_NAME_CASE(FP16_ZEXT) + NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) + NODE_NAME_CASE(CONST_DATA_PTR) + NODE_NAME_CASE(PC_ADD_REL_OFFSET) + NODE_NAME_CASE(LDS) + NODE_NAME_CASE(KILL) + NODE_NAME_CASE(DUMMY_CHAIN) + case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; + NODE_NAME_CASE(INTERP_P1LL_F16) + NODE_NAME_CASE(INTERP_P1LV_F16) + NODE_NAME_CASE(INTERP_P2_F16) + NODE_NAME_CASE(LOAD_D16_HI) + NODE_NAME_CASE(LOAD_D16_LO) + NODE_NAME_CASE(LOAD_D16_HI_I8) + NODE_NAME_CASE(LOAD_D16_HI_U8) + NODE_NAME_CASE(LOAD_D16_LO_I8) + NODE_NAME_CASE(LOAD_D16_LO_U8) + NODE_NAME_CASE(STORE_MSKOR) + NODE_NAME_CASE(LOAD_CONSTANT) + NODE_NAME_CASE(TBUFFER_STORE_FORMAT) + NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) + NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) + NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) + NODE_NAME_CASE(DS_ORDERED_COUNT) + NODE_NAME_CASE(ATOMIC_CMP_SWAP) + NODE_NAME_CASE(ATOMIC_INC) + NODE_NAME_CASE(ATOMIC_DEC) + NODE_NAME_CASE(ATOMIC_LOAD_FMIN) + NODE_NAME_CASE(ATOMIC_LOAD_FMAX) + NODE_NAME_CASE(BUFFER_LOAD) + NODE_NAME_CASE(BUFFER_LOAD_UBYTE) + NODE_NAME_CASE(BUFFER_LOAD_USHORT) + NODE_NAME_CASE(BUFFER_LOAD_BYTE) + NODE_NAME_CASE(BUFFER_LOAD_SHORT) + NODE_NAME_CASE(BUFFER_LOAD_FORMAT) + NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) + NODE_NAME_CASE(SBUFFER_LOAD) + NODE_NAME_CASE(BUFFER_STORE) + NODE_NAME_CASE(BUFFER_STORE_BYTE) + NODE_NAME_CASE(BUFFER_STORE_SHORT) + NODE_NAME_CASE(BUFFER_STORE_FORMAT) + NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) + NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) + NODE_NAME_CASE(BUFFER_ATOMIC_ADD) + NODE_NAME_CASE(BUFFER_ATOMIC_SUB) + NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) + NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) + NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) + NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) + NODE_NAME_CASE(BUFFER_ATOMIC_AND) + NODE_NAME_CASE(BUFFER_ATOMIC_OR) + NODE_NAME_CASE(BUFFER_ATOMIC_XOR) + NODE_NAME_CASE(BUFFER_ATOMIC_INC) + NODE_NAME_CASE(BUFFER_ATOMIC_DEC) + NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) + NODE_NAME_CASE(BUFFER_ATOMIC_FADD) + NODE_NAME_CASE(BUFFER_ATOMIC_PK_FADD) + NODE_NAME_CASE(ATOMIC_FADD) + NODE_NAME_CASE(ATOMIC_PK_FADD) + + case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; + } + return nullptr; +} + +SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, + SelectionDAG &DAG, int Enabled, + int &RefinementSteps, + bool &UseOneConstNR, + bool Reciprocal) const { + EVT VT = Operand.getValueType(); + + if (VT == MVT::f32) { + RefinementSteps = 0; + return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); + } + + // TODO: There is also f64 rsq instruction, but the documentation is less + // clear on its precision. + + return SDValue(); +} + +SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, + SelectionDAG &DAG, int Enabled, + int &RefinementSteps) const { + EVT VT = Operand.getValueType(); + + if (VT == MVT::f32) { + // Reciprocal, < 1 ulp error. + // + // This reciprocal approximation converges to < 0.5 ulp error with one + // newton rhapson performed with two fused multiple adds (FMAs). + + RefinementSteps = 0; + return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); + } + + // TODO: There is also f64 rcp instruction, but the documentation is less + // clear on its precision. + + return SDValue(); +} + +void AMDGPUTargetLowering::computeKnownBitsForTargetNode( + const SDValue Op, KnownBits &Known, + const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { + + Known.resetAll(); // Don't know anything. + + unsigned Opc = Op.getOpcode(); + + switch (Opc) { + default: + break; + case AMDGPUISD::CARRY: + case AMDGPUISD::BORROW: { + Known.Zero = APInt::getHighBitsSet(32, 31); + break; + } + + case AMDGPUISD::BFE_I32: + case AMDGPUISD::BFE_U32: { + ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); + if (!CWidth) + return; + + uint32_t Width = CWidth->getZExtValue() & 0x1f; + + if (Opc == AMDGPUISD::BFE_U32) + Known.Zero = APInt::getHighBitsSet(32, 32 - Width); + + break; + } + case AMDGPUISD::FP_TO_FP16: + case AMDGPUISD::FP16_ZEXT: { + unsigned BitWidth = Known.getBitWidth(); + + // High bits are zero. + Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); + break; + } + case AMDGPUISD::MUL_U24: + case AMDGPUISD::MUL_I24: { + KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); + KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); + unsigned TrailZ = LHSKnown.countMinTrailingZeros() + + RHSKnown.countMinTrailingZeros(); + Known.Zero.setLowBits(std::min(TrailZ, 32u)); + + // Truncate to 24 bits. + LHSKnown = LHSKnown.trunc(24); + RHSKnown = RHSKnown.trunc(24); + + bool Negative = false; + if (Opc == AMDGPUISD::MUL_I24) { + unsigned LHSValBits = 24 - LHSKnown.countMinSignBits(); + unsigned RHSValBits = 24 - RHSKnown.countMinSignBits(); + unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); + if (MaxValBits >= 32) + break; + bool LHSNegative = LHSKnown.isNegative(); + bool LHSPositive = LHSKnown.isNonNegative(); + bool RHSNegative = RHSKnown.isNegative(); + bool RHSPositive = RHSKnown.isNonNegative(); + if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive)) + break; + Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative); + if (Negative) + Known.One.setHighBits(32 - MaxValBits); + else + Known.Zero.setHighBits(32 - MaxValBits); + } else { + unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros(); + unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros(); + unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); + if (MaxValBits >= 32) + break; + Known.Zero.setHighBits(32 - MaxValBits); + } + break; + } + case AMDGPUISD::PERM: { + ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); + if (!CMask) + return; + + KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); + KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); + unsigned Sel = CMask->getZExtValue(); + + for (unsigned I = 0; I < 32; I += 8) { + unsigned SelBits = Sel & 0xff; + if (SelBits < 4) { + SelBits *= 8; + Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; + Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; + } else if (SelBits < 7) { + SelBits = (SelBits & 3) * 8; + Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; + Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; + } else if (SelBits == 0x0c) { + Known.Zero |= 0xFFull << I; + } else if (SelBits > 0x0c) { + Known.One |= 0xFFull << I; + } + Sel >>= 8; + } + break; + } + case AMDGPUISD::BUFFER_LOAD_UBYTE: { + Known.Zero.setHighBits(24); + break; + } + case AMDGPUISD::BUFFER_LOAD_USHORT: { + Known.Zero.setHighBits(16); + break; + } + case AMDGPUISD::LDS: { + auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode()); + unsigned Align = GA->getGlobal()->getAlignment(); + + Known.Zero.setHighBits(16); + if (Align) + Known.Zero.setLowBits(Log2_32(Align)); + break; + } + case ISD::INTRINSIC_WO_CHAIN: { + unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + switch (IID) { + case Intrinsic::amdgcn_mbcnt_lo: + case Intrinsic::amdgcn_mbcnt_hi: { + const GCNSubtarget &ST = + DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); + // These return at most the wavefront size - 1. + unsigned Size = Op.getValueType().getSizeInBits(); + Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); + break; + } + default: + break; + } + } + } +} + +unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( + SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, + unsigned Depth) const { + switch (Op.getOpcode()) { + case AMDGPUISD::BFE_I32: { + ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); + if (!Width) + return 1; + + unsigned SignBits = 32 - Width->getZExtValue() + 1; + if (!isNullConstant(Op.getOperand(1))) + return SignBits; + + // TODO: Could probably figure something out with non-0 offsets. + unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); + return std::max(SignBits, Op0SignBits); + } + + case AMDGPUISD::BFE_U32: { + ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); + return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; + } + + case AMDGPUISD::CARRY: + case AMDGPUISD::BORROW: + return 31; + case AMDGPUISD::BUFFER_LOAD_BYTE: + return 25; + case AMDGPUISD::BUFFER_LOAD_SHORT: + return 17; + case AMDGPUISD::BUFFER_LOAD_UBYTE: + return 24; + case AMDGPUISD::BUFFER_LOAD_USHORT: + return 16; + case AMDGPUISD::FP_TO_FP16: + case AMDGPUISD::FP16_ZEXT: + return 16; + default: + return 1; + } +} + +bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, + const SelectionDAG &DAG, + bool SNaN, + unsigned Depth) const { + unsigned Opcode = Op.getOpcode(); + switch (Opcode) { + case AMDGPUISD::FMIN_LEGACY: + case AMDGPUISD::FMAX_LEGACY: { + if (SNaN) + return true; + + // TODO: Can check no nans on one of the operands for each one, but which + // one? + return false; + } + case AMDGPUISD::FMUL_LEGACY: + case AMDGPUISD::CVT_PKRTZ_F16_F32: { + if (SNaN) + return true; + return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && + DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); + } + case AMDGPUISD::FMED3: + case AMDGPUISD::FMIN3: + case AMDGPUISD::FMAX3: + case AMDGPUISD::FMAD_FTZ: { + if (SNaN) + return true; + return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && + DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && + DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); + } + case AMDGPUISD::CVT_F32_UBYTE0: + case AMDGPUISD::CVT_F32_UBYTE1: + case AMDGPUISD::CVT_F32_UBYTE2: + case AMDGPUISD::CVT_F32_UBYTE3: + return true; + + case AMDGPUISD::RCP: + case AMDGPUISD::RSQ: + case AMDGPUISD::RCP_LEGACY: + case AMDGPUISD::RSQ_LEGACY: + case AMDGPUISD::RSQ_CLAMP: { + if (SNaN) + return true; + + // TODO: Need is known positive check. + return false; + } + case AMDGPUISD::LDEXP: + case AMDGPUISD::FRACT: { + if (SNaN) + return true; + return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); + } + case AMDGPUISD::DIV_SCALE: + case AMDGPUISD::DIV_FMAS: + case AMDGPUISD::DIV_FIXUP: + case AMDGPUISD::TRIG_PREOP: + // TODO: Refine on operands. + return SNaN; + case AMDGPUISD::SIN_HW: + case AMDGPUISD::COS_HW: { + // TODO: Need check for infinity + return SNaN; + } + case ISD::INTRINSIC_WO_CHAIN: { + unsigned IntrinsicID + = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + // TODO: Handle more intrinsics + switch (IntrinsicID) { + case Intrinsic::amdgcn_cubeid: + return true; + + case Intrinsic::amdgcn_frexp_mant: { + if (SNaN) + return true; + return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); + } + case Intrinsic::amdgcn_cvt_pkrtz: { + if (SNaN) + return true; + return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && + DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); + } + case Intrinsic::amdgcn_fdot2: + // TODO: Refine on operand + return SNaN; + default: + return false; + } + } + default: + return false; + } +} + +TargetLowering::AtomicExpansionKind +AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { + switch (RMW->getOperation()) { + case AtomicRMWInst::Nand: + case AtomicRMWInst::FAdd: + case AtomicRMWInst::FSub: + return AtomicExpansionKind::CmpXChg; + default: + return AtomicExpansionKind::None; + } +} |