diff options
Diffstat (limited to 'llvm/lib/Target/AMDGPU/AMDGPUPromoteAlloca.cpp')
-rw-r--r-- | llvm/lib/Target/AMDGPU/AMDGPUPromoteAlloca.cpp | 941 |
1 files changed, 941 insertions, 0 deletions
diff --git a/llvm/lib/Target/AMDGPU/AMDGPUPromoteAlloca.cpp b/llvm/lib/Target/AMDGPU/AMDGPUPromoteAlloca.cpp new file mode 100644 index 000000000000..3e9dcca114a3 --- /dev/null +++ b/llvm/lib/Target/AMDGPU/AMDGPUPromoteAlloca.cpp @@ -0,0 +1,941 @@ +//===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This pass eliminates allocas by either converting them into vectors or +// by migrating them to local address space. +// +//===----------------------------------------------------------------------===// + +#include "AMDGPU.h" +#include "AMDGPUSubtarget.h" +#include "Utils/AMDGPUBaseInfo.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/Triple.h" +#include "llvm/ADT/Twine.h" +#include "llvm/Analysis/CaptureTracking.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/CodeGen/TargetPassConfig.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <map> +#include <tuple> +#include <utility> +#include <vector> + +#define DEBUG_TYPE "amdgpu-promote-alloca" + +using namespace llvm; + +namespace { + +static cl::opt<bool> DisablePromoteAllocaToVector( + "disable-promote-alloca-to-vector", + cl::desc("Disable promote alloca to vector"), + cl::init(false)); + +static cl::opt<bool> DisablePromoteAllocaToLDS( + "disable-promote-alloca-to-lds", + cl::desc("Disable promote alloca to LDS"), + cl::init(false)); + +// FIXME: This can create globals so should be a module pass. +class AMDGPUPromoteAlloca : public FunctionPass { +private: + const TargetMachine *TM; + Module *Mod = nullptr; + const DataLayout *DL = nullptr; + + // FIXME: This should be per-kernel. + uint32_t LocalMemLimit = 0; + uint32_t CurrentLocalMemUsage = 0; + + bool IsAMDGCN = false; + bool IsAMDHSA = false; + + std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); + Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); + + /// BaseAlloca is the alloca root the search started from. + /// Val may be that alloca or a recursive user of it. + bool collectUsesWithPtrTypes(Value *BaseAlloca, + Value *Val, + std::vector<Value*> &WorkList) const; + + /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand + /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). + /// Returns true if both operands are derived from the same alloca. Val should + /// be the same value as one of the input operands of UseInst. + bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, + Instruction *UseInst, + int OpIdx0, int OpIdx1) const; + + /// Check whether we have enough local memory for promotion. + bool hasSufficientLocalMem(const Function &F); + +public: + static char ID; + + AMDGPUPromoteAlloca() : FunctionPass(ID) {} + + bool doInitialization(Module &M) override; + bool runOnFunction(Function &F) override; + + StringRef getPassName() const override { return "AMDGPU Promote Alloca"; } + + bool handleAlloca(AllocaInst &I, bool SufficientLDS); + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesCFG(); + FunctionPass::getAnalysisUsage(AU); + } +}; + +} // end anonymous namespace + +char AMDGPUPromoteAlloca::ID = 0; + +INITIALIZE_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE, + "AMDGPU promote alloca to vector or LDS", false, false) + +char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; + +bool AMDGPUPromoteAlloca::doInitialization(Module &M) { + Mod = &M; + DL = &Mod->getDataLayout(); + + return false; +} + +bool AMDGPUPromoteAlloca::runOnFunction(Function &F) { + if (skipFunction(F)) + return false; + + if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) + TM = &TPC->getTM<TargetMachine>(); + else + return false; + + const Triple &TT = TM->getTargetTriple(); + IsAMDGCN = TT.getArch() == Triple::amdgcn; + IsAMDHSA = TT.getOS() == Triple::AMDHSA; + + const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F); + if (!ST.isPromoteAllocaEnabled()) + return false; + + bool SufficientLDS = hasSufficientLocalMem(F); + bool Changed = false; + BasicBlock &EntryBB = *F.begin(); + + SmallVector<AllocaInst *, 16> Allocas; + for (Instruction &I : EntryBB) { + if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) + Allocas.push_back(AI); + } + + for (AllocaInst *AI : Allocas) { + if (handleAlloca(*AI, SufficientLDS)) + Changed = true; + } + + return Changed; +} + +std::pair<Value *, Value *> +AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) { + const Function &F = *Builder.GetInsertBlock()->getParent(); + const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F); + + if (!IsAMDHSA) { + Function *LocalSizeYFn + = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); + Function *LocalSizeZFn + = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); + + CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); + CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); + + ST.makeLIDRangeMetadata(LocalSizeY); + ST.makeLIDRangeMetadata(LocalSizeZ); + + return std::make_pair(LocalSizeY, LocalSizeZ); + } + + // We must read the size out of the dispatch pointer. + assert(IsAMDGCN); + + // We are indexing into this struct, and want to extract the workgroup_size_* + // fields. + // + // typedef struct hsa_kernel_dispatch_packet_s { + // uint16_t header; + // uint16_t setup; + // uint16_t workgroup_size_x ; + // uint16_t workgroup_size_y; + // uint16_t workgroup_size_z; + // uint16_t reserved0; + // uint32_t grid_size_x ; + // uint32_t grid_size_y ; + // uint32_t grid_size_z; + // + // uint32_t private_segment_size; + // uint32_t group_segment_size; + // uint64_t kernel_object; + // + // #ifdef HSA_LARGE_MODEL + // void *kernarg_address; + // #elif defined HSA_LITTLE_ENDIAN + // void *kernarg_address; + // uint32_t reserved1; + // #else + // uint32_t reserved1; + // void *kernarg_address; + // #endif + // uint64_t reserved2; + // hsa_signal_t completion_signal; // uint64_t wrapper + // } hsa_kernel_dispatch_packet_t + // + Function *DispatchPtrFn + = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); + + CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); + DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NoAlias); + DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull); + + // Size of the dispatch packet struct. + DispatchPtr->addDereferenceableAttr(AttributeList::ReturnIndex, 64); + + Type *I32Ty = Type::getInt32Ty(Mod->getContext()); + Value *CastDispatchPtr = Builder.CreateBitCast( + DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS)); + + // We could do a single 64-bit load here, but it's likely that the basic + // 32-bit and extract sequence is already present, and it is probably easier + // to CSE this. The loads should be mergable later anyway. + Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1); + LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, 4); + + Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2); + LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, 4); + + MDNode *MD = MDNode::get(Mod->getContext(), None); + LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); + LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); + ST.makeLIDRangeMetadata(LoadZU); + + // Extract y component. Upper half of LoadZU should be zero already. + Value *Y = Builder.CreateLShr(LoadXY, 16); + + return std::make_pair(Y, LoadZU); +} + +Value *AMDGPUPromoteAlloca::getWorkitemID(IRBuilder<> &Builder, unsigned N) { + const AMDGPUSubtarget &ST = + AMDGPUSubtarget::get(*TM, *Builder.GetInsertBlock()->getParent()); + Intrinsic::ID IntrID = Intrinsic::ID::not_intrinsic; + + switch (N) { + case 0: + IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_x + : Intrinsic::r600_read_tidig_x; + break; + case 1: + IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_y + : Intrinsic::r600_read_tidig_y; + break; + + case 2: + IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_z + : Intrinsic::r600_read_tidig_z; + break; + default: + llvm_unreachable("invalid dimension"); + } + + Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); + CallInst *CI = Builder.CreateCall(WorkitemIdFn); + ST.makeLIDRangeMetadata(CI); + + return CI; +} + +static VectorType *arrayTypeToVecType(ArrayType *ArrayTy) { + return VectorType::get(ArrayTy->getElementType(), + ArrayTy->getNumElements()); +} + +static Value * +calculateVectorIndex(Value *Ptr, + const std::map<GetElementPtrInst *, Value *> &GEPIdx) { + GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr); + + auto I = GEPIdx.find(GEP); + return I == GEPIdx.end() ? nullptr : I->second; +} + +static Value* GEPToVectorIndex(GetElementPtrInst *GEP) { + // FIXME we only support simple cases + if (GEP->getNumOperands() != 3) + return nullptr; + + ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1)); + if (!I0 || !I0->isZero()) + return nullptr; + + return GEP->getOperand(2); +} + +// Not an instruction handled below to turn into a vector. +// +// TODO: Check isTriviallyVectorizable for calls and handle other +// instructions. +static bool canVectorizeInst(Instruction *Inst, User *User) { + switch (Inst->getOpcode()) { + case Instruction::Load: { + // Currently only handle the case where the Pointer Operand is a GEP. + // Also we could not vectorize volatile or atomic loads. + LoadInst *LI = cast<LoadInst>(Inst); + if (isa<AllocaInst>(User) && + LI->getPointerOperandType() == User->getType() && + isa<VectorType>(LI->getType())) + return true; + return isa<GetElementPtrInst>(LI->getPointerOperand()) && LI->isSimple(); + } + case Instruction::BitCast: + return true; + case Instruction::Store: { + // Must be the stored pointer operand, not a stored value, plus + // since it should be canonical form, the User should be a GEP. + // Also we could not vectorize volatile or atomic stores. + StoreInst *SI = cast<StoreInst>(Inst); + if (isa<AllocaInst>(User) && + SI->getPointerOperandType() == User->getType() && + isa<VectorType>(SI->getValueOperand()->getType())) + return true; + return (SI->getPointerOperand() == User) && isa<GetElementPtrInst>(User) && SI->isSimple(); + } + default: + return false; + } +} + +static bool tryPromoteAllocaToVector(AllocaInst *Alloca) { + + if (DisablePromoteAllocaToVector) { + LLVM_DEBUG(dbgs() << " Promotion alloca to vector is disabled\n"); + return false; + } + + Type *AT = Alloca->getAllocatedType(); + SequentialType *AllocaTy = dyn_cast<SequentialType>(AT); + + LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n"); + + // FIXME: There is no reason why we can't support larger arrays, we + // are just being conservative for now. + // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these + // could also be promoted but we don't currently handle this case + if (!AllocaTy || + AllocaTy->getNumElements() > 16 || + AllocaTy->getNumElements() < 2 || + !VectorType::isValidElementType(AllocaTy->getElementType())) { + LLVM_DEBUG(dbgs() << " Cannot convert type to vector\n"); + return false; + } + + std::map<GetElementPtrInst*, Value*> GEPVectorIdx; + std::vector<Value*> WorkList; + for (User *AllocaUser : Alloca->users()) { + GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser); + if (!GEP) { + if (!canVectorizeInst(cast<Instruction>(AllocaUser), Alloca)) + return false; + + WorkList.push_back(AllocaUser); + continue; + } + + Value *Index = GEPToVectorIndex(GEP); + + // If we can't compute a vector index from this GEP, then we can't + // promote this alloca to vector. + if (!Index) { + LLVM_DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP + << '\n'); + return false; + } + + GEPVectorIdx[GEP] = Index; + for (User *GEPUser : AllocaUser->users()) { + if (!canVectorizeInst(cast<Instruction>(GEPUser), AllocaUser)) + return false; + + WorkList.push_back(GEPUser); + } + } + + VectorType *VectorTy = dyn_cast<VectorType>(AllocaTy); + if (!VectorTy) + VectorTy = arrayTypeToVecType(cast<ArrayType>(AllocaTy)); + + LLVM_DEBUG(dbgs() << " Converting alloca to vector " << *AllocaTy << " -> " + << *VectorTy << '\n'); + + for (Value *V : WorkList) { + Instruction *Inst = cast<Instruction>(V); + IRBuilder<> Builder(Inst); + switch (Inst->getOpcode()) { + case Instruction::Load: { + if (Inst->getType() == AT) + break; + + Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); + Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand(); + Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); + + Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); + Value *VecValue = Builder.CreateLoad(VectorTy, BitCast); + Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index); + Inst->replaceAllUsesWith(ExtractElement); + Inst->eraseFromParent(); + break; + } + case Instruction::Store: { + StoreInst *SI = cast<StoreInst>(Inst); + if (SI->getValueOperand()->getType() == AT) + break; + + Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); + Value *Ptr = SI->getPointerOperand(); + Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); + Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); + Value *VecValue = Builder.CreateLoad(VectorTy, BitCast); + Value *NewVecValue = Builder.CreateInsertElement(VecValue, + SI->getValueOperand(), + Index); + Builder.CreateStore(NewVecValue, BitCast); + Inst->eraseFromParent(); + break; + } + case Instruction::BitCast: + case Instruction::AddrSpaceCast: + break; + + default: + llvm_unreachable("Inconsistency in instructions promotable to vector"); + } + } + return true; +} + +static bool isCallPromotable(CallInst *CI) { + IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); + if (!II) + return false; + + switch (II->getIntrinsicID()) { + case Intrinsic::memcpy: + case Intrinsic::memmove: + case Intrinsic::memset: + case Intrinsic::lifetime_start: + case Intrinsic::lifetime_end: + case Intrinsic::invariant_start: + case Intrinsic::invariant_end: + case Intrinsic::launder_invariant_group: + case Intrinsic::strip_invariant_group: + case Intrinsic::objectsize: + return true; + default: + return false; + } +} + +bool AMDGPUPromoteAlloca::binaryOpIsDerivedFromSameAlloca(Value *BaseAlloca, + Value *Val, + Instruction *Inst, + int OpIdx0, + int OpIdx1) const { + // Figure out which operand is the one we might not be promoting. + Value *OtherOp = Inst->getOperand(OpIdx0); + if (Val == OtherOp) + OtherOp = Inst->getOperand(OpIdx1); + + if (isa<ConstantPointerNull>(OtherOp)) + return true; + + Value *OtherObj = GetUnderlyingObject(OtherOp, *DL); + if (!isa<AllocaInst>(OtherObj)) + return false; + + // TODO: We should be able to replace undefs with the right pointer type. + + // TODO: If we know the other base object is another promotable + // alloca, not necessarily this alloca, we can do this. The + // important part is both must have the same address space at + // the end. + if (OtherObj != BaseAlloca) { + LLVM_DEBUG( + dbgs() << "Found a binary instruction with another alloca object\n"); + return false; + } + + return true; +} + +bool AMDGPUPromoteAlloca::collectUsesWithPtrTypes( + Value *BaseAlloca, + Value *Val, + std::vector<Value*> &WorkList) const { + + for (User *User : Val->users()) { + if (is_contained(WorkList, User)) + continue; + + if (CallInst *CI = dyn_cast<CallInst>(User)) { + if (!isCallPromotable(CI)) + return false; + + WorkList.push_back(User); + continue; + } + + Instruction *UseInst = cast<Instruction>(User); + if (UseInst->getOpcode() == Instruction::PtrToInt) + return false; + + if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) { + if (LI->isVolatile()) + return false; + + continue; + } + + if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) { + if (SI->isVolatile()) + return false; + + // Reject if the stored value is not the pointer operand. + if (SI->getPointerOperand() != Val) + return false; + } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) { + if (RMW->isVolatile()) + return false; + } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) { + if (CAS->isVolatile()) + return false; + } + + // Only promote a select if we know that the other select operand + // is from another pointer that will also be promoted. + if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { + if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1)) + return false; + + // May need to rewrite constant operands. + WorkList.push_back(ICmp); + } + + if (UseInst->getOpcode() == Instruction::AddrSpaceCast) { + // Give up if the pointer may be captured. + if (PointerMayBeCaptured(UseInst, true, true)) + return false; + // Don't collect the users of this. + WorkList.push_back(User); + continue; + } + + if (!User->getType()->isPointerTy()) + continue; + + if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { + // Be conservative if an address could be computed outside the bounds of + // the alloca. + if (!GEP->isInBounds()) + return false; + } + + // Only promote a select if we know that the other select operand is from + // another pointer that will also be promoted. + if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) { + if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2)) + return false; + } + + // Repeat for phis. + if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) { + // TODO: Handle more complex cases. We should be able to replace loops + // over arrays. + switch (Phi->getNumIncomingValues()) { + case 1: + break; + case 2: + if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1)) + return false; + break; + default: + return false; + } + } + + WorkList.push_back(User); + if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList)) + return false; + } + + return true; +} + +bool AMDGPUPromoteAlloca::hasSufficientLocalMem(const Function &F) { + + FunctionType *FTy = F.getFunctionType(); + const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F); + + // If the function has any arguments in the local address space, then it's + // possible these arguments require the entire local memory space, so + // we cannot use local memory in the pass. + for (Type *ParamTy : FTy->params()) { + PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); + if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { + LocalMemLimit = 0; + LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to " + "local memory disabled.\n"); + return false; + } + } + + LocalMemLimit = ST.getLocalMemorySize(); + if (LocalMemLimit == 0) + return false; + + const DataLayout &DL = Mod->getDataLayout(); + + // Check how much local memory is being used by global objects + CurrentLocalMemUsage = 0; + for (GlobalVariable &GV : Mod->globals()) { + if (GV.getType()->getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) + continue; + + for (const User *U : GV.users()) { + const Instruction *Use = dyn_cast<Instruction>(U); + if (!Use) + continue; + + if (Use->getParent()->getParent() == &F) { + unsigned Align = GV.getAlignment(); + if (Align == 0) + Align = DL.getABITypeAlignment(GV.getValueType()); + + // FIXME: Try to account for padding here. The padding is currently + // determined from the inverse order of uses in the function. I'm not + // sure if the use list order is in any way connected to this, so the + // total reported size is likely incorrect. + uint64_t AllocSize = DL.getTypeAllocSize(GV.getValueType()); + CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Align); + CurrentLocalMemUsage += AllocSize; + break; + } + } + } + + unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage, + F); + + // Restrict local memory usage so that we don't drastically reduce occupancy, + // unless it is already significantly reduced. + + // TODO: Have some sort of hint or other heuristics to guess occupancy based + // on other factors.. + unsigned OccupancyHint = ST.getWavesPerEU(F).second; + if (OccupancyHint == 0) + OccupancyHint = 7; + + // Clamp to max value. + OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU()); + + // Check the hint but ignore it if it's obviously wrong from the existing LDS + // usage. + MaxOccupancy = std::min(OccupancyHint, MaxOccupancy); + + + // Round up to the next tier of usage. + unsigned MaxSizeWithWaveCount + = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F); + + // Program is possibly broken by using more local mem than available. + if (CurrentLocalMemUsage > MaxSizeWithWaveCount) + return false; + + LocalMemLimit = MaxSizeWithWaveCount; + + LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage + << " bytes of LDS\n" + << " Rounding size to " << MaxSizeWithWaveCount + << " with a maximum occupancy of " << MaxOccupancy << '\n' + << " and " << (LocalMemLimit - CurrentLocalMemUsage) + << " available for promotion\n"); + + return true; +} + +// FIXME: Should try to pick the most likely to be profitable allocas first. +bool AMDGPUPromoteAlloca::handleAlloca(AllocaInst &I, bool SufficientLDS) { + // Array allocations are probably not worth handling, since an allocation of + // the array type is the canonical form. + if (!I.isStaticAlloca() || I.isArrayAllocation()) + return false; + + IRBuilder<> Builder(&I); + + // First try to replace the alloca with a vector + Type *AllocaTy = I.getAllocatedType(); + + LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n'); + + if (tryPromoteAllocaToVector(&I)) + return true; // Promoted to vector. + + if (DisablePromoteAllocaToLDS) + return false; + + const Function &ContainingFunction = *I.getParent()->getParent(); + CallingConv::ID CC = ContainingFunction.getCallingConv(); + + // Don't promote the alloca to LDS for shader calling conventions as the work + // item ID intrinsics are not supported for these calling conventions. + // Furthermore not all LDS is available for some of the stages. + switch (CC) { + case CallingConv::AMDGPU_KERNEL: + case CallingConv::SPIR_KERNEL: + break; + default: + LLVM_DEBUG( + dbgs() + << " promote alloca to LDS not supported with calling convention.\n"); + return false; + } + + // Not likely to have sufficient local memory for promotion. + if (!SufficientLDS) + return false; + + const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, ContainingFunction); + unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second; + + const DataLayout &DL = Mod->getDataLayout(); + + unsigned Align = I.getAlignment(); + if (Align == 0) + Align = DL.getABITypeAlignment(I.getAllocatedType()); + + // FIXME: This computed padding is likely wrong since it depends on inverse + // usage order. + // + // FIXME: It is also possible that if we're allowed to use all of the memory + // could could end up using more than the maximum due to alignment padding. + + uint32_t NewSize = alignTo(CurrentLocalMemUsage, Align); + uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy); + NewSize += AllocSize; + + if (NewSize > LocalMemLimit) { + LLVM_DEBUG(dbgs() << " " << AllocSize + << " bytes of local memory not available to promote\n"); + return false; + } + + CurrentLocalMemUsage = NewSize; + + std::vector<Value*> WorkList; + + if (!collectUsesWithPtrTypes(&I, &I, WorkList)) { + LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n"); + return false; + } + + LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n"); + + Function *F = I.getParent()->getParent(); + + Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); + GlobalVariable *GV = new GlobalVariable( + *Mod, GVTy, false, GlobalValue::InternalLinkage, + UndefValue::get(GVTy), + Twine(F->getName()) + Twine('.') + I.getName(), + nullptr, + GlobalVariable::NotThreadLocal, + AMDGPUAS::LOCAL_ADDRESS); + GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); + GV->setAlignment(MaybeAlign(I.getAlignment())); + + Value *TCntY, *TCntZ; + + std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); + Value *TIdX = getWorkitemID(Builder, 0); + Value *TIdY = getWorkitemID(Builder, 1); + Value *TIdZ = getWorkitemID(Builder, 2); + + Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); + Tmp0 = Builder.CreateMul(Tmp0, TIdX); + Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); + Value *TID = Builder.CreateAdd(Tmp0, Tmp1); + TID = Builder.CreateAdd(TID, TIdZ); + + Value *Indices[] = { + Constant::getNullValue(Type::getInt32Ty(Mod->getContext())), + TID + }; + + Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); + I.mutateType(Offset->getType()); + I.replaceAllUsesWith(Offset); + I.eraseFromParent(); + + for (Value *V : WorkList) { + CallInst *Call = dyn_cast<CallInst>(V); + if (!Call) { + if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) { + Value *Src0 = CI->getOperand(0); + Type *EltTy = Src0->getType()->getPointerElementType(); + PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS); + + if (isa<ConstantPointerNull>(CI->getOperand(0))) + CI->setOperand(0, ConstantPointerNull::get(NewTy)); + + if (isa<ConstantPointerNull>(CI->getOperand(1))) + CI->setOperand(1, ConstantPointerNull::get(NewTy)); + + continue; + } + + // The operand's value should be corrected on its own and we don't want to + // touch the users. + if (isa<AddrSpaceCastInst>(V)) + continue; + + Type *EltTy = V->getType()->getPointerElementType(); + PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS); + + // FIXME: It doesn't really make sense to try to do this for all + // instructions. + V->mutateType(NewTy); + + // Adjust the types of any constant operands. + if (SelectInst *SI = dyn_cast<SelectInst>(V)) { + if (isa<ConstantPointerNull>(SI->getOperand(1))) + SI->setOperand(1, ConstantPointerNull::get(NewTy)); + + if (isa<ConstantPointerNull>(SI->getOperand(2))) + SI->setOperand(2, ConstantPointerNull::get(NewTy)); + } else if (PHINode *Phi = dyn_cast<PHINode>(V)) { + for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { + if (isa<ConstantPointerNull>(Phi->getIncomingValue(I))) + Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy)); + } + } + + continue; + } + + IntrinsicInst *Intr = cast<IntrinsicInst>(Call); + Builder.SetInsertPoint(Intr); + switch (Intr->getIntrinsicID()) { + case Intrinsic::lifetime_start: + case Intrinsic::lifetime_end: + // These intrinsics are for address space 0 only + Intr->eraseFromParent(); + continue; + case Intrinsic::memcpy: { + MemCpyInst *MemCpy = cast<MemCpyInst>(Intr); + Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getDestAlignment(), + MemCpy->getRawSource(), MemCpy->getSourceAlignment(), + MemCpy->getLength(), MemCpy->isVolatile()); + Intr->eraseFromParent(); + continue; + } + case Intrinsic::memmove: { + MemMoveInst *MemMove = cast<MemMoveInst>(Intr); + Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getDestAlignment(), + MemMove->getRawSource(), MemMove->getSourceAlignment(), + MemMove->getLength(), MemMove->isVolatile()); + Intr->eraseFromParent(); + continue; + } + case Intrinsic::memset: { + MemSetInst *MemSet = cast<MemSetInst>(Intr); + Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(), + MemSet->getLength(), MemSet->getDestAlignment(), + MemSet->isVolatile()); + Intr->eraseFromParent(); + continue; + } + case Intrinsic::invariant_start: + case Intrinsic::invariant_end: + case Intrinsic::launder_invariant_group: + case Intrinsic::strip_invariant_group: + Intr->eraseFromParent(); + // FIXME: I think the invariant marker should still theoretically apply, + // but the intrinsics need to be changed to accept pointers with any + // address space. + continue; + case Intrinsic::objectsize: { + Value *Src = Intr->getOperand(0); + Type *SrcTy = Src->getType()->getPointerElementType(); + Function *ObjectSize = Intrinsic::getDeclaration(Mod, + Intrinsic::objectsize, + { Intr->getType(), PointerType::get(SrcTy, AMDGPUAS::LOCAL_ADDRESS) } + ); + + CallInst *NewCall = Builder.CreateCall( + ObjectSize, + {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)}); + Intr->replaceAllUsesWith(NewCall); + Intr->eraseFromParent(); + continue; + } + default: + Intr->print(errs()); + llvm_unreachable("Don't know how to promote alloca intrinsic use."); + } + } + return true; +} + +FunctionPass *llvm::createAMDGPUPromoteAlloca() { + return new AMDGPUPromoteAlloca(); +} |