summaryrefslogtreecommitdiff
path: root/llvm/lib/Target/AMDGPU/AMDGPUPromoteAlloca.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Target/AMDGPU/AMDGPUPromoteAlloca.cpp')
-rw-r--r--llvm/lib/Target/AMDGPU/AMDGPUPromoteAlloca.cpp941
1 files changed, 941 insertions, 0 deletions
diff --git a/llvm/lib/Target/AMDGPU/AMDGPUPromoteAlloca.cpp b/llvm/lib/Target/AMDGPU/AMDGPUPromoteAlloca.cpp
new file mode 100644
index 000000000000..3e9dcca114a3
--- /dev/null
+++ b/llvm/lib/Target/AMDGPU/AMDGPUPromoteAlloca.cpp
@@ -0,0 +1,941 @@
+//===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass eliminates allocas by either converting them into vectors or
+// by migrating them to local address space.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPU.h"
+#include "AMDGPUSubtarget.h"
+#include "Utils/AMDGPUBaseInfo.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/Analysis/CaptureTracking.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <map>
+#include <tuple>
+#include <utility>
+#include <vector>
+
+#define DEBUG_TYPE "amdgpu-promote-alloca"
+
+using namespace llvm;
+
+namespace {
+
+static cl::opt<bool> DisablePromoteAllocaToVector(
+ "disable-promote-alloca-to-vector",
+ cl::desc("Disable promote alloca to vector"),
+ cl::init(false));
+
+static cl::opt<bool> DisablePromoteAllocaToLDS(
+ "disable-promote-alloca-to-lds",
+ cl::desc("Disable promote alloca to LDS"),
+ cl::init(false));
+
+// FIXME: This can create globals so should be a module pass.
+class AMDGPUPromoteAlloca : public FunctionPass {
+private:
+ const TargetMachine *TM;
+ Module *Mod = nullptr;
+ const DataLayout *DL = nullptr;
+
+ // FIXME: This should be per-kernel.
+ uint32_t LocalMemLimit = 0;
+ uint32_t CurrentLocalMemUsage = 0;
+
+ bool IsAMDGCN = false;
+ bool IsAMDHSA = false;
+
+ std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder);
+ Value *getWorkitemID(IRBuilder<> &Builder, unsigned N);
+
+ /// BaseAlloca is the alloca root the search started from.
+ /// Val may be that alloca or a recursive user of it.
+ bool collectUsesWithPtrTypes(Value *BaseAlloca,
+ Value *Val,
+ std::vector<Value*> &WorkList) const;
+
+ /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand
+ /// indices to an instruction with 2 pointer inputs (e.g. select, icmp).
+ /// Returns true if both operands are derived from the same alloca. Val should
+ /// be the same value as one of the input operands of UseInst.
+ bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val,
+ Instruction *UseInst,
+ int OpIdx0, int OpIdx1) const;
+
+ /// Check whether we have enough local memory for promotion.
+ bool hasSufficientLocalMem(const Function &F);
+
+public:
+ static char ID;
+
+ AMDGPUPromoteAlloca() : FunctionPass(ID) {}
+
+ bool doInitialization(Module &M) override;
+ bool runOnFunction(Function &F) override;
+
+ StringRef getPassName() const override { return "AMDGPU Promote Alloca"; }
+
+ bool handleAlloca(AllocaInst &I, bool SufficientLDS);
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ FunctionPass::getAnalysisUsage(AU);
+ }
+};
+
+} // end anonymous namespace
+
+char AMDGPUPromoteAlloca::ID = 0;
+
+INITIALIZE_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE,
+ "AMDGPU promote alloca to vector or LDS", false, false)
+
+char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID;
+
+bool AMDGPUPromoteAlloca::doInitialization(Module &M) {
+ Mod = &M;
+ DL = &Mod->getDataLayout();
+
+ return false;
+}
+
+bool AMDGPUPromoteAlloca::runOnFunction(Function &F) {
+ if (skipFunction(F))
+ return false;
+
+ if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>())
+ TM = &TPC->getTM<TargetMachine>();
+ else
+ return false;
+
+ const Triple &TT = TM->getTargetTriple();
+ IsAMDGCN = TT.getArch() == Triple::amdgcn;
+ IsAMDHSA = TT.getOS() == Triple::AMDHSA;
+
+ const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F);
+ if (!ST.isPromoteAllocaEnabled())
+ return false;
+
+ bool SufficientLDS = hasSufficientLocalMem(F);
+ bool Changed = false;
+ BasicBlock &EntryBB = *F.begin();
+
+ SmallVector<AllocaInst *, 16> Allocas;
+ for (Instruction &I : EntryBB) {
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
+ Allocas.push_back(AI);
+ }
+
+ for (AllocaInst *AI : Allocas) {
+ if (handleAlloca(*AI, SufficientLDS))
+ Changed = true;
+ }
+
+ return Changed;
+}
+
+std::pair<Value *, Value *>
+AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) {
+ const Function &F = *Builder.GetInsertBlock()->getParent();
+ const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F);
+
+ if (!IsAMDHSA) {
+ Function *LocalSizeYFn
+ = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y);
+ Function *LocalSizeZFn
+ = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z);
+
+ CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {});
+ CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {});
+
+ ST.makeLIDRangeMetadata(LocalSizeY);
+ ST.makeLIDRangeMetadata(LocalSizeZ);
+
+ return std::make_pair(LocalSizeY, LocalSizeZ);
+ }
+
+ // We must read the size out of the dispatch pointer.
+ assert(IsAMDGCN);
+
+ // We are indexing into this struct, and want to extract the workgroup_size_*
+ // fields.
+ //
+ // typedef struct hsa_kernel_dispatch_packet_s {
+ // uint16_t header;
+ // uint16_t setup;
+ // uint16_t workgroup_size_x ;
+ // uint16_t workgroup_size_y;
+ // uint16_t workgroup_size_z;
+ // uint16_t reserved0;
+ // uint32_t grid_size_x ;
+ // uint32_t grid_size_y ;
+ // uint32_t grid_size_z;
+ //
+ // uint32_t private_segment_size;
+ // uint32_t group_segment_size;
+ // uint64_t kernel_object;
+ //
+ // #ifdef HSA_LARGE_MODEL
+ // void *kernarg_address;
+ // #elif defined HSA_LITTLE_ENDIAN
+ // void *kernarg_address;
+ // uint32_t reserved1;
+ // #else
+ // uint32_t reserved1;
+ // void *kernarg_address;
+ // #endif
+ // uint64_t reserved2;
+ // hsa_signal_t completion_signal; // uint64_t wrapper
+ // } hsa_kernel_dispatch_packet_t
+ //
+ Function *DispatchPtrFn
+ = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr);
+
+ CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {});
+ DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NoAlias);
+ DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
+
+ // Size of the dispatch packet struct.
+ DispatchPtr->addDereferenceableAttr(AttributeList::ReturnIndex, 64);
+
+ Type *I32Ty = Type::getInt32Ty(Mod->getContext());
+ Value *CastDispatchPtr = Builder.CreateBitCast(
+ DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS));
+
+ // We could do a single 64-bit load here, but it's likely that the basic
+ // 32-bit and extract sequence is already present, and it is probably easier
+ // to CSE this. The loads should be mergable later anyway.
+ Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1);
+ LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, 4);
+
+ Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2);
+ LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, 4);
+
+ MDNode *MD = MDNode::get(Mod->getContext(), None);
+ LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD);
+ LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD);
+ ST.makeLIDRangeMetadata(LoadZU);
+
+ // Extract y component. Upper half of LoadZU should be zero already.
+ Value *Y = Builder.CreateLShr(LoadXY, 16);
+
+ return std::make_pair(Y, LoadZU);
+}
+
+Value *AMDGPUPromoteAlloca::getWorkitemID(IRBuilder<> &Builder, unsigned N) {
+ const AMDGPUSubtarget &ST =
+ AMDGPUSubtarget::get(*TM, *Builder.GetInsertBlock()->getParent());
+ Intrinsic::ID IntrID = Intrinsic::ID::not_intrinsic;
+
+ switch (N) {
+ case 0:
+ IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_x
+ : Intrinsic::r600_read_tidig_x;
+ break;
+ case 1:
+ IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_y
+ : Intrinsic::r600_read_tidig_y;
+ break;
+
+ case 2:
+ IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_z
+ : Intrinsic::r600_read_tidig_z;
+ break;
+ default:
+ llvm_unreachable("invalid dimension");
+ }
+
+ Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID);
+ CallInst *CI = Builder.CreateCall(WorkitemIdFn);
+ ST.makeLIDRangeMetadata(CI);
+
+ return CI;
+}
+
+static VectorType *arrayTypeToVecType(ArrayType *ArrayTy) {
+ return VectorType::get(ArrayTy->getElementType(),
+ ArrayTy->getNumElements());
+}
+
+static Value *
+calculateVectorIndex(Value *Ptr,
+ const std::map<GetElementPtrInst *, Value *> &GEPIdx) {
+ GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr);
+
+ auto I = GEPIdx.find(GEP);
+ return I == GEPIdx.end() ? nullptr : I->second;
+}
+
+static Value* GEPToVectorIndex(GetElementPtrInst *GEP) {
+ // FIXME we only support simple cases
+ if (GEP->getNumOperands() != 3)
+ return nullptr;
+
+ ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1));
+ if (!I0 || !I0->isZero())
+ return nullptr;
+
+ return GEP->getOperand(2);
+}
+
+// Not an instruction handled below to turn into a vector.
+//
+// TODO: Check isTriviallyVectorizable for calls and handle other
+// instructions.
+static bool canVectorizeInst(Instruction *Inst, User *User) {
+ switch (Inst->getOpcode()) {
+ case Instruction::Load: {
+ // Currently only handle the case where the Pointer Operand is a GEP.
+ // Also we could not vectorize volatile or atomic loads.
+ LoadInst *LI = cast<LoadInst>(Inst);
+ if (isa<AllocaInst>(User) &&
+ LI->getPointerOperandType() == User->getType() &&
+ isa<VectorType>(LI->getType()))
+ return true;
+ return isa<GetElementPtrInst>(LI->getPointerOperand()) && LI->isSimple();
+ }
+ case Instruction::BitCast:
+ return true;
+ case Instruction::Store: {
+ // Must be the stored pointer operand, not a stored value, plus
+ // since it should be canonical form, the User should be a GEP.
+ // Also we could not vectorize volatile or atomic stores.
+ StoreInst *SI = cast<StoreInst>(Inst);
+ if (isa<AllocaInst>(User) &&
+ SI->getPointerOperandType() == User->getType() &&
+ isa<VectorType>(SI->getValueOperand()->getType()))
+ return true;
+ return (SI->getPointerOperand() == User) && isa<GetElementPtrInst>(User) && SI->isSimple();
+ }
+ default:
+ return false;
+ }
+}
+
+static bool tryPromoteAllocaToVector(AllocaInst *Alloca) {
+
+ if (DisablePromoteAllocaToVector) {
+ LLVM_DEBUG(dbgs() << " Promotion alloca to vector is disabled\n");
+ return false;
+ }
+
+ Type *AT = Alloca->getAllocatedType();
+ SequentialType *AllocaTy = dyn_cast<SequentialType>(AT);
+
+ LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n");
+
+ // FIXME: There is no reason why we can't support larger arrays, we
+ // are just being conservative for now.
+ // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these
+ // could also be promoted but we don't currently handle this case
+ if (!AllocaTy ||
+ AllocaTy->getNumElements() > 16 ||
+ AllocaTy->getNumElements() < 2 ||
+ !VectorType::isValidElementType(AllocaTy->getElementType())) {
+ LLVM_DEBUG(dbgs() << " Cannot convert type to vector\n");
+ return false;
+ }
+
+ std::map<GetElementPtrInst*, Value*> GEPVectorIdx;
+ std::vector<Value*> WorkList;
+ for (User *AllocaUser : Alloca->users()) {
+ GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser);
+ if (!GEP) {
+ if (!canVectorizeInst(cast<Instruction>(AllocaUser), Alloca))
+ return false;
+
+ WorkList.push_back(AllocaUser);
+ continue;
+ }
+
+ Value *Index = GEPToVectorIndex(GEP);
+
+ // If we can't compute a vector index from this GEP, then we can't
+ // promote this alloca to vector.
+ if (!Index) {
+ LLVM_DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP
+ << '\n');
+ return false;
+ }
+
+ GEPVectorIdx[GEP] = Index;
+ for (User *GEPUser : AllocaUser->users()) {
+ if (!canVectorizeInst(cast<Instruction>(GEPUser), AllocaUser))
+ return false;
+
+ WorkList.push_back(GEPUser);
+ }
+ }
+
+ VectorType *VectorTy = dyn_cast<VectorType>(AllocaTy);
+ if (!VectorTy)
+ VectorTy = arrayTypeToVecType(cast<ArrayType>(AllocaTy));
+
+ LLVM_DEBUG(dbgs() << " Converting alloca to vector " << *AllocaTy << " -> "
+ << *VectorTy << '\n');
+
+ for (Value *V : WorkList) {
+ Instruction *Inst = cast<Instruction>(V);
+ IRBuilder<> Builder(Inst);
+ switch (Inst->getOpcode()) {
+ case Instruction::Load: {
+ if (Inst->getType() == AT)
+ break;
+
+ Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
+ Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand();
+ Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
+
+ Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
+ Value *VecValue = Builder.CreateLoad(VectorTy, BitCast);
+ Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index);
+ Inst->replaceAllUsesWith(ExtractElement);
+ Inst->eraseFromParent();
+ break;
+ }
+ case Instruction::Store: {
+ StoreInst *SI = cast<StoreInst>(Inst);
+ if (SI->getValueOperand()->getType() == AT)
+ break;
+
+ Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
+ Value *Ptr = SI->getPointerOperand();
+ Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
+ Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
+ Value *VecValue = Builder.CreateLoad(VectorTy, BitCast);
+ Value *NewVecValue = Builder.CreateInsertElement(VecValue,
+ SI->getValueOperand(),
+ Index);
+ Builder.CreateStore(NewVecValue, BitCast);
+ Inst->eraseFromParent();
+ break;
+ }
+ case Instruction::BitCast:
+ case Instruction::AddrSpaceCast:
+ break;
+
+ default:
+ llvm_unreachable("Inconsistency in instructions promotable to vector");
+ }
+ }
+ return true;
+}
+
+static bool isCallPromotable(CallInst *CI) {
+ IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
+ if (!II)
+ return false;
+
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::memcpy:
+ case Intrinsic::memmove:
+ case Intrinsic::memset:
+ case Intrinsic::lifetime_start:
+ case Intrinsic::lifetime_end:
+ case Intrinsic::invariant_start:
+ case Intrinsic::invariant_end:
+ case Intrinsic::launder_invariant_group:
+ case Intrinsic::strip_invariant_group:
+ case Intrinsic::objectsize:
+ return true;
+ default:
+ return false;
+ }
+}
+
+bool AMDGPUPromoteAlloca::binaryOpIsDerivedFromSameAlloca(Value *BaseAlloca,
+ Value *Val,
+ Instruction *Inst,
+ int OpIdx0,
+ int OpIdx1) const {
+ // Figure out which operand is the one we might not be promoting.
+ Value *OtherOp = Inst->getOperand(OpIdx0);
+ if (Val == OtherOp)
+ OtherOp = Inst->getOperand(OpIdx1);
+
+ if (isa<ConstantPointerNull>(OtherOp))
+ return true;
+
+ Value *OtherObj = GetUnderlyingObject(OtherOp, *DL);
+ if (!isa<AllocaInst>(OtherObj))
+ return false;
+
+ // TODO: We should be able to replace undefs with the right pointer type.
+
+ // TODO: If we know the other base object is another promotable
+ // alloca, not necessarily this alloca, we can do this. The
+ // important part is both must have the same address space at
+ // the end.
+ if (OtherObj != BaseAlloca) {
+ LLVM_DEBUG(
+ dbgs() << "Found a binary instruction with another alloca object\n");
+ return false;
+ }
+
+ return true;
+}
+
+bool AMDGPUPromoteAlloca::collectUsesWithPtrTypes(
+ Value *BaseAlloca,
+ Value *Val,
+ std::vector<Value*> &WorkList) const {
+
+ for (User *User : Val->users()) {
+ if (is_contained(WorkList, User))
+ continue;
+
+ if (CallInst *CI = dyn_cast<CallInst>(User)) {
+ if (!isCallPromotable(CI))
+ return false;
+
+ WorkList.push_back(User);
+ continue;
+ }
+
+ Instruction *UseInst = cast<Instruction>(User);
+ if (UseInst->getOpcode() == Instruction::PtrToInt)
+ return false;
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) {
+ if (LI->isVolatile())
+ return false;
+
+ continue;
+ }
+
+ if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) {
+ if (SI->isVolatile())
+ return false;
+
+ // Reject if the stored value is not the pointer operand.
+ if (SI->getPointerOperand() != Val)
+ return false;
+ } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) {
+ if (RMW->isVolatile())
+ return false;
+ } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) {
+ if (CAS->isVolatile())
+ return false;
+ }
+
+ // Only promote a select if we know that the other select operand
+ // is from another pointer that will also be promoted.
+ if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
+ if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1))
+ return false;
+
+ // May need to rewrite constant operands.
+ WorkList.push_back(ICmp);
+ }
+
+ if (UseInst->getOpcode() == Instruction::AddrSpaceCast) {
+ // Give up if the pointer may be captured.
+ if (PointerMayBeCaptured(UseInst, true, true))
+ return false;
+ // Don't collect the users of this.
+ WorkList.push_back(User);
+ continue;
+ }
+
+ if (!User->getType()->isPointerTy())
+ continue;
+
+ if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) {
+ // Be conservative if an address could be computed outside the bounds of
+ // the alloca.
+ if (!GEP->isInBounds())
+ return false;
+ }
+
+ // Only promote a select if we know that the other select operand is from
+ // another pointer that will also be promoted.
+ if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) {
+ if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2))
+ return false;
+ }
+
+ // Repeat for phis.
+ if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) {
+ // TODO: Handle more complex cases. We should be able to replace loops
+ // over arrays.
+ switch (Phi->getNumIncomingValues()) {
+ case 1:
+ break;
+ case 2:
+ if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1))
+ return false;
+ break;
+ default:
+ return false;
+ }
+ }
+
+ WorkList.push_back(User);
+ if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList))
+ return false;
+ }
+
+ return true;
+}
+
+bool AMDGPUPromoteAlloca::hasSufficientLocalMem(const Function &F) {
+
+ FunctionType *FTy = F.getFunctionType();
+ const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F);
+
+ // If the function has any arguments in the local address space, then it's
+ // possible these arguments require the entire local memory space, so
+ // we cannot use local memory in the pass.
+ for (Type *ParamTy : FTy->params()) {
+ PointerType *PtrTy = dyn_cast<PointerType>(ParamTy);
+ if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
+ LocalMemLimit = 0;
+ LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to "
+ "local memory disabled.\n");
+ return false;
+ }
+ }
+
+ LocalMemLimit = ST.getLocalMemorySize();
+ if (LocalMemLimit == 0)
+ return false;
+
+ const DataLayout &DL = Mod->getDataLayout();
+
+ // Check how much local memory is being used by global objects
+ CurrentLocalMemUsage = 0;
+ for (GlobalVariable &GV : Mod->globals()) {
+ if (GV.getType()->getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS)
+ continue;
+
+ for (const User *U : GV.users()) {
+ const Instruction *Use = dyn_cast<Instruction>(U);
+ if (!Use)
+ continue;
+
+ if (Use->getParent()->getParent() == &F) {
+ unsigned Align = GV.getAlignment();
+ if (Align == 0)
+ Align = DL.getABITypeAlignment(GV.getValueType());
+
+ // FIXME: Try to account for padding here. The padding is currently
+ // determined from the inverse order of uses in the function. I'm not
+ // sure if the use list order is in any way connected to this, so the
+ // total reported size is likely incorrect.
+ uint64_t AllocSize = DL.getTypeAllocSize(GV.getValueType());
+ CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Align);
+ CurrentLocalMemUsage += AllocSize;
+ break;
+ }
+ }
+ }
+
+ unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage,
+ F);
+
+ // Restrict local memory usage so that we don't drastically reduce occupancy,
+ // unless it is already significantly reduced.
+
+ // TODO: Have some sort of hint or other heuristics to guess occupancy based
+ // on other factors..
+ unsigned OccupancyHint = ST.getWavesPerEU(F).second;
+ if (OccupancyHint == 0)
+ OccupancyHint = 7;
+
+ // Clamp to max value.
+ OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU());
+
+ // Check the hint but ignore it if it's obviously wrong from the existing LDS
+ // usage.
+ MaxOccupancy = std::min(OccupancyHint, MaxOccupancy);
+
+
+ // Round up to the next tier of usage.
+ unsigned MaxSizeWithWaveCount
+ = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F);
+
+ // Program is possibly broken by using more local mem than available.
+ if (CurrentLocalMemUsage > MaxSizeWithWaveCount)
+ return false;
+
+ LocalMemLimit = MaxSizeWithWaveCount;
+
+ LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage
+ << " bytes of LDS\n"
+ << " Rounding size to " << MaxSizeWithWaveCount
+ << " with a maximum occupancy of " << MaxOccupancy << '\n'
+ << " and " << (LocalMemLimit - CurrentLocalMemUsage)
+ << " available for promotion\n");
+
+ return true;
+}
+
+// FIXME: Should try to pick the most likely to be profitable allocas first.
+bool AMDGPUPromoteAlloca::handleAlloca(AllocaInst &I, bool SufficientLDS) {
+ // Array allocations are probably not worth handling, since an allocation of
+ // the array type is the canonical form.
+ if (!I.isStaticAlloca() || I.isArrayAllocation())
+ return false;
+
+ IRBuilder<> Builder(&I);
+
+ // First try to replace the alloca with a vector
+ Type *AllocaTy = I.getAllocatedType();
+
+ LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n');
+
+ if (tryPromoteAllocaToVector(&I))
+ return true; // Promoted to vector.
+
+ if (DisablePromoteAllocaToLDS)
+ return false;
+
+ const Function &ContainingFunction = *I.getParent()->getParent();
+ CallingConv::ID CC = ContainingFunction.getCallingConv();
+
+ // Don't promote the alloca to LDS for shader calling conventions as the work
+ // item ID intrinsics are not supported for these calling conventions.
+ // Furthermore not all LDS is available for some of the stages.
+ switch (CC) {
+ case CallingConv::AMDGPU_KERNEL:
+ case CallingConv::SPIR_KERNEL:
+ break;
+ default:
+ LLVM_DEBUG(
+ dbgs()
+ << " promote alloca to LDS not supported with calling convention.\n");
+ return false;
+ }
+
+ // Not likely to have sufficient local memory for promotion.
+ if (!SufficientLDS)
+ return false;
+
+ const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, ContainingFunction);
+ unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second;
+
+ const DataLayout &DL = Mod->getDataLayout();
+
+ unsigned Align = I.getAlignment();
+ if (Align == 0)
+ Align = DL.getABITypeAlignment(I.getAllocatedType());
+
+ // FIXME: This computed padding is likely wrong since it depends on inverse
+ // usage order.
+ //
+ // FIXME: It is also possible that if we're allowed to use all of the memory
+ // could could end up using more than the maximum due to alignment padding.
+
+ uint32_t NewSize = alignTo(CurrentLocalMemUsage, Align);
+ uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy);
+ NewSize += AllocSize;
+
+ if (NewSize > LocalMemLimit) {
+ LLVM_DEBUG(dbgs() << " " << AllocSize
+ << " bytes of local memory not available to promote\n");
+ return false;
+ }
+
+ CurrentLocalMemUsage = NewSize;
+
+ std::vector<Value*> WorkList;
+
+ if (!collectUsesWithPtrTypes(&I, &I, WorkList)) {
+ LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n");
+ return false;
+ }
+
+ LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n");
+
+ Function *F = I.getParent()->getParent();
+
+ Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize);
+ GlobalVariable *GV = new GlobalVariable(
+ *Mod, GVTy, false, GlobalValue::InternalLinkage,
+ UndefValue::get(GVTy),
+ Twine(F->getName()) + Twine('.') + I.getName(),
+ nullptr,
+ GlobalVariable::NotThreadLocal,
+ AMDGPUAS::LOCAL_ADDRESS);
+ GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
+ GV->setAlignment(MaybeAlign(I.getAlignment()));
+
+ Value *TCntY, *TCntZ;
+
+ std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder);
+ Value *TIdX = getWorkitemID(Builder, 0);
+ Value *TIdY = getWorkitemID(Builder, 1);
+ Value *TIdZ = getWorkitemID(Builder, 2);
+
+ Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true);
+ Tmp0 = Builder.CreateMul(Tmp0, TIdX);
+ Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true);
+ Value *TID = Builder.CreateAdd(Tmp0, Tmp1);
+ TID = Builder.CreateAdd(TID, TIdZ);
+
+ Value *Indices[] = {
+ Constant::getNullValue(Type::getInt32Ty(Mod->getContext())),
+ TID
+ };
+
+ Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices);
+ I.mutateType(Offset->getType());
+ I.replaceAllUsesWith(Offset);
+ I.eraseFromParent();
+
+ for (Value *V : WorkList) {
+ CallInst *Call = dyn_cast<CallInst>(V);
+ if (!Call) {
+ if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) {
+ Value *Src0 = CI->getOperand(0);
+ Type *EltTy = Src0->getType()->getPointerElementType();
+ PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS);
+
+ if (isa<ConstantPointerNull>(CI->getOperand(0)))
+ CI->setOperand(0, ConstantPointerNull::get(NewTy));
+
+ if (isa<ConstantPointerNull>(CI->getOperand(1)))
+ CI->setOperand(1, ConstantPointerNull::get(NewTy));
+
+ continue;
+ }
+
+ // The operand's value should be corrected on its own and we don't want to
+ // touch the users.
+ if (isa<AddrSpaceCastInst>(V))
+ continue;
+
+ Type *EltTy = V->getType()->getPointerElementType();
+ PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS);
+
+ // FIXME: It doesn't really make sense to try to do this for all
+ // instructions.
+ V->mutateType(NewTy);
+
+ // Adjust the types of any constant operands.
+ if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
+ if (isa<ConstantPointerNull>(SI->getOperand(1)))
+ SI->setOperand(1, ConstantPointerNull::get(NewTy));
+
+ if (isa<ConstantPointerNull>(SI->getOperand(2)))
+ SI->setOperand(2, ConstantPointerNull::get(NewTy));
+ } else if (PHINode *Phi = dyn_cast<PHINode>(V)) {
+ for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
+ if (isa<ConstantPointerNull>(Phi->getIncomingValue(I)))
+ Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy));
+ }
+ }
+
+ continue;
+ }
+
+ IntrinsicInst *Intr = cast<IntrinsicInst>(Call);
+ Builder.SetInsertPoint(Intr);
+ switch (Intr->getIntrinsicID()) {
+ case Intrinsic::lifetime_start:
+ case Intrinsic::lifetime_end:
+ // These intrinsics are for address space 0 only
+ Intr->eraseFromParent();
+ continue;
+ case Intrinsic::memcpy: {
+ MemCpyInst *MemCpy = cast<MemCpyInst>(Intr);
+ Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getDestAlignment(),
+ MemCpy->getRawSource(), MemCpy->getSourceAlignment(),
+ MemCpy->getLength(), MemCpy->isVolatile());
+ Intr->eraseFromParent();
+ continue;
+ }
+ case Intrinsic::memmove: {
+ MemMoveInst *MemMove = cast<MemMoveInst>(Intr);
+ Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getDestAlignment(),
+ MemMove->getRawSource(), MemMove->getSourceAlignment(),
+ MemMove->getLength(), MemMove->isVolatile());
+ Intr->eraseFromParent();
+ continue;
+ }
+ case Intrinsic::memset: {
+ MemSetInst *MemSet = cast<MemSetInst>(Intr);
+ Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(),
+ MemSet->getLength(), MemSet->getDestAlignment(),
+ MemSet->isVolatile());
+ Intr->eraseFromParent();
+ continue;
+ }
+ case Intrinsic::invariant_start:
+ case Intrinsic::invariant_end:
+ case Intrinsic::launder_invariant_group:
+ case Intrinsic::strip_invariant_group:
+ Intr->eraseFromParent();
+ // FIXME: I think the invariant marker should still theoretically apply,
+ // but the intrinsics need to be changed to accept pointers with any
+ // address space.
+ continue;
+ case Intrinsic::objectsize: {
+ Value *Src = Intr->getOperand(0);
+ Type *SrcTy = Src->getType()->getPointerElementType();
+ Function *ObjectSize = Intrinsic::getDeclaration(Mod,
+ Intrinsic::objectsize,
+ { Intr->getType(), PointerType::get(SrcTy, AMDGPUAS::LOCAL_ADDRESS) }
+ );
+
+ CallInst *NewCall = Builder.CreateCall(
+ ObjectSize,
+ {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)});
+ Intr->replaceAllUsesWith(NewCall);
+ Intr->eraseFromParent();
+ continue;
+ }
+ default:
+ Intr->print(errs());
+ llvm_unreachable("Don't know how to promote alloca intrinsic use.");
+ }
+ }
+ return true;
+}
+
+FunctionPass *llvm::createAMDGPUPromoteAlloca() {
+ return new AMDGPUPromoteAlloca();
+}