diff options
Diffstat (limited to 'llvm/lib/Target/AMDGPU/AMDGPUSubtarget.cpp')
-rw-r--r-- | llvm/lib/Target/AMDGPU/AMDGPUSubtarget.cpp | 901 |
1 files changed, 901 insertions, 0 deletions
diff --git a/llvm/lib/Target/AMDGPU/AMDGPUSubtarget.cpp b/llvm/lib/Target/AMDGPU/AMDGPUSubtarget.cpp new file mode 100644 index 000000000000..3bb6dd4571c0 --- /dev/null +++ b/llvm/lib/Target/AMDGPU/AMDGPUSubtarget.cpp @@ -0,0 +1,901 @@ +//===-- AMDGPUSubtarget.cpp - AMDGPU Subtarget Information ----------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +/// \file +/// Implements the AMDGPU specific subclass of TargetSubtarget. +// +//===----------------------------------------------------------------------===// + +#include "AMDGPUSubtarget.h" +#include "AMDGPU.h" +#include "AMDGPUTargetMachine.h" +#include "AMDGPUCallLowering.h" +#include "AMDGPUInstructionSelector.h" +#include "AMDGPULegalizerInfo.h" +#include "AMDGPURegisterBankInfo.h" +#include "SIMachineFunctionInfo.h" +#include "MCTargetDesc/AMDGPUMCTargetDesc.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/CodeGen/MachineScheduler.h" +#include "llvm/MC/MCSubtargetInfo.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/CodeGen/TargetFrameLowering.h" +#include <algorithm> + +using namespace llvm; + +#define DEBUG_TYPE "amdgpu-subtarget" + +#define GET_SUBTARGETINFO_TARGET_DESC +#define GET_SUBTARGETINFO_CTOR +#define AMDGPUSubtarget GCNSubtarget +#include "AMDGPUGenSubtargetInfo.inc" +#define GET_SUBTARGETINFO_TARGET_DESC +#define GET_SUBTARGETINFO_CTOR +#undef AMDGPUSubtarget +#include "R600GenSubtargetInfo.inc" + +static cl::opt<bool> DisablePowerSched( + "amdgpu-disable-power-sched", + cl::desc("Disable scheduling to minimize mAI power bursts"), + cl::init(false)); + +GCNSubtarget::~GCNSubtarget() = default; + +R600Subtarget & +R600Subtarget::initializeSubtargetDependencies(const Triple &TT, + StringRef GPU, StringRef FS) { + SmallString<256> FullFS("+promote-alloca,"); + FullFS += FS; + ParseSubtargetFeatures(GPU, FullFS); + + // FIXME: I don't think think Evergreen has any useful support for + // denormals, but should be checked. Should we issue a warning somewhere + // if someone tries to enable these? + if (getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) { + FP32Denormals = false; + } + + HasMulU24 = getGeneration() >= EVERGREEN; + HasMulI24 = hasCaymanISA(); + + return *this; +} + +GCNSubtarget & +GCNSubtarget::initializeSubtargetDependencies(const Triple &TT, + StringRef GPU, StringRef FS) { + // Determine default and user-specified characteristics + // On SI+, we want FP64 denormals to be on by default. FP32 denormals can be + // enabled, but some instructions do not respect them and they run at the + // double precision rate, so don't enable by default. + // + // We want to be able to turn these off, but making this a subtarget feature + // for SI has the unhelpful behavior that it unsets everything else if you + // disable it. + // + // Similarly we want enable-prt-strict-null to be on by default and not to + // unset everything else if it is disabled + + // Assuming ECC is enabled is the conservative default. + SmallString<256> FullFS("+promote-alloca,+load-store-opt,+sram-ecc,+xnack,"); + + if (isAmdHsaOS()) // Turn on FlatForGlobal for HSA. + FullFS += "+flat-for-global,+unaligned-buffer-access,+trap-handler,"; + + // FIXME: I don't think think Evergreen has any useful support for + // denormals, but should be checked. Should we issue a warning somewhere + // if someone tries to enable these? + if (getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) { + FullFS += "+fp64-fp16-denormals,"; + } else { + FullFS += "-fp32-denormals,"; + } + + FullFS += "+enable-prt-strict-null,"; // This is overridden by a disable in FS + + // Disable mutually exclusive bits. + if (FS.find_lower("+wavefrontsize") != StringRef::npos) { + if (FS.find_lower("wavefrontsize16") == StringRef::npos) + FullFS += "-wavefrontsize16,"; + if (FS.find_lower("wavefrontsize32") == StringRef::npos) + FullFS += "-wavefrontsize32,"; + if (FS.find_lower("wavefrontsize64") == StringRef::npos) + FullFS += "-wavefrontsize64,"; + } + + FullFS += FS; + + ParseSubtargetFeatures(GPU, FullFS); + + // We don't support FP64 for EG/NI atm. + assert(!hasFP64() || (getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS)); + + // Unless +-flat-for-global is specified, turn on FlatForGlobal for all OS-es + // on VI and newer hardware to avoid assertion failures due to missing ADDR64 + // variants of MUBUF instructions. + if (!hasAddr64() && !FS.contains("flat-for-global")) { + FlatForGlobal = true; + } + + // Set defaults if needed. + if (MaxPrivateElementSize == 0) + MaxPrivateElementSize = 4; + + if (LDSBankCount == 0) + LDSBankCount = 32; + + if (TT.getArch() == Triple::amdgcn) { + if (LocalMemorySize == 0) + LocalMemorySize = 32768; + + // Do something sensible for unspecified target. + if (!HasMovrel && !HasVGPRIndexMode) + HasMovrel = true; + } + + // Don't crash on invalid devices. + if (WavefrontSize == 0) + WavefrontSize = 64; + + HasFminFmaxLegacy = getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS; + + if (DoesNotSupportXNACK && EnableXNACK) { + ToggleFeature(AMDGPU::FeatureXNACK); + EnableXNACK = false; + } + + // ECC is on by default, but turn it off if the hardware doesn't support it + // anyway. This matters for the gfx9 targets with d16 loads, but don't support + // ECC. + if (DoesNotSupportSRAMECC && EnableSRAMECC) { + ToggleFeature(AMDGPU::FeatureSRAMECC); + EnableSRAMECC = false; + } + + return *this; +} + +AMDGPUSubtarget::AMDGPUSubtarget(const Triple &TT) : + TargetTriple(TT), + Has16BitInsts(false), + HasMadMixInsts(false), + FP32Denormals(false), + FPExceptions(false), + HasSDWA(false), + HasVOP3PInsts(false), + HasMulI24(true), + HasMulU24(true), + HasInv2PiInlineImm(false), + HasFminFmaxLegacy(true), + EnablePromoteAlloca(false), + HasTrigReducedRange(false), + MaxWavesPerEU(10), + LocalMemorySize(0), + WavefrontSize(0) + { } + +GCNSubtarget::GCNSubtarget(const Triple &TT, StringRef GPU, StringRef FS, + const GCNTargetMachine &TM) : + AMDGPUGenSubtargetInfo(TT, GPU, FS), + AMDGPUSubtarget(TT), + TargetTriple(TT), + Gen(TT.getOS() == Triple::AMDHSA ? SEA_ISLANDS : SOUTHERN_ISLANDS), + InstrItins(getInstrItineraryForCPU(GPU)), + LDSBankCount(0), + MaxPrivateElementSize(0), + + FastFMAF32(false), + HalfRate64Ops(false), + + FP64FP16Denormals(false), + FlatForGlobal(false), + AutoWaitcntBeforeBarrier(false), + CodeObjectV3(false), + UnalignedScratchAccess(false), + UnalignedBufferAccess(false), + + HasApertureRegs(false), + EnableXNACK(false), + DoesNotSupportXNACK(false), + EnableCuMode(false), + TrapHandler(false), + + EnableLoadStoreOpt(false), + EnableUnsafeDSOffsetFolding(false), + EnableSIScheduler(false), + EnableDS128(false), + EnablePRTStrictNull(false), + DumpCode(false), + + FP64(false), + GCN3Encoding(false), + CIInsts(false), + GFX8Insts(false), + GFX9Insts(false), + GFX10Insts(false), + GFX7GFX8GFX9Insts(false), + SGPRInitBug(false), + HasSMemRealTime(false), + HasIntClamp(false), + HasFmaMixInsts(false), + HasMovrel(false), + HasVGPRIndexMode(false), + HasScalarStores(false), + HasScalarAtomics(false), + HasSDWAOmod(false), + HasSDWAScalar(false), + HasSDWASdst(false), + HasSDWAMac(false), + HasSDWAOutModsVOPC(false), + HasDPP(false), + HasDPP8(false), + HasR128A16(false), + HasNSAEncoding(false), + HasDLInsts(false), + HasDot1Insts(false), + HasDot2Insts(false), + HasDot3Insts(false), + HasDot4Insts(false), + HasDot5Insts(false), + HasDot6Insts(false), + HasMAIInsts(false), + HasPkFmacF16Inst(false), + HasAtomicFaddInsts(false), + EnableSRAMECC(false), + DoesNotSupportSRAMECC(false), + HasNoSdstCMPX(false), + HasVscnt(false), + HasRegisterBanking(false), + HasVOP3Literal(false), + HasNoDataDepHazard(false), + FlatAddressSpace(false), + FlatInstOffsets(false), + FlatGlobalInsts(false), + FlatScratchInsts(false), + ScalarFlatScratchInsts(false), + AddNoCarryInsts(false), + HasUnpackedD16VMem(false), + LDSMisalignedBug(false), + HasMFMAInlineLiteralBug(false), + + ScalarizeGlobal(false), + + HasVcmpxPermlaneHazard(false), + HasVMEMtoScalarWriteHazard(false), + HasSMEMtoVectorWriteHazard(false), + HasInstFwdPrefetchBug(false), + HasVcmpxExecWARHazard(false), + HasLdsBranchVmemWARHazard(false), + HasNSAtoVMEMBug(false), + HasOffset3fBug(false), + HasFlatSegmentOffsetBug(false), + + FeatureDisable(false), + InstrInfo(initializeSubtargetDependencies(TT, GPU, FS)), + TLInfo(TM, *this), + FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0) { + MaxWavesPerEU = AMDGPU::IsaInfo::getMaxWavesPerEU(this); + CallLoweringInfo.reset(new AMDGPUCallLowering(*getTargetLowering())); + Legalizer.reset(new AMDGPULegalizerInfo(*this, TM)); + RegBankInfo.reset(new AMDGPURegisterBankInfo(*this)); + InstSelector.reset(new AMDGPUInstructionSelector( + *this, *static_cast<AMDGPURegisterBankInfo *>(RegBankInfo.get()), TM)); +} + +unsigned GCNSubtarget::getConstantBusLimit(unsigned Opcode) const { + if (getGeneration() < GFX10) + return 1; + + switch (Opcode) { + case AMDGPU::V_LSHLREV_B64: + case AMDGPU::V_LSHLREV_B64_gfx10: + case AMDGPU::V_LSHL_B64: + case AMDGPU::V_LSHRREV_B64: + case AMDGPU::V_LSHRREV_B64_gfx10: + case AMDGPU::V_LSHR_B64: + case AMDGPU::V_ASHRREV_I64: + case AMDGPU::V_ASHRREV_I64_gfx10: + case AMDGPU::V_ASHR_I64: + return 1; + } + + return 2; +} + +unsigned AMDGPUSubtarget::getMaxLocalMemSizeWithWaveCount(unsigned NWaves, + const Function &F) const { + if (NWaves == 1) + return getLocalMemorySize(); + unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second; + unsigned WorkGroupsPerCu = getMaxWorkGroupsPerCU(WorkGroupSize); + if (!WorkGroupsPerCu) + return 0; + unsigned MaxWaves = getMaxWavesPerEU(); + return getLocalMemorySize() * MaxWaves / WorkGroupsPerCu / NWaves; +} + +unsigned AMDGPUSubtarget::getOccupancyWithLocalMemSize(uint32_t Bytes, + const Function &F) const { + unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second; + unsigned WorkGroupsPerCu = getMaxWorkGroupsPerCU(WorkGroupSize); + if (!WorkGroupsPerCu) + return 0; + unsigned MaxWaves = getMaxWavesPerEU(); + unsigned Limit = getLocalMemorySize() * MaxWaves / WorkGroupsPerCu; + unsigned NumWaves = Limit / (Bytes ? Bytes : 1u); + NumWaves = std::min(NumWaves, MaxWaves); + NumWaves = std::max(NumWaves, 1u); + return NumWaves; +} + +unsigned +AMDGPUSubtarget::getOccupancyWithLocalMemSize(const MachineFunction &MF) const { + const auto *MFI = MF.getInfo<SIMachineFunctionInfo>(); + return getOccupancyWithLocalMemSize(MFI->getLDSSize(), MF.getFunction()); +} + +std::pair<unsigned, unsigned> +AMDGPUSubtarget::getDefaultFlatWorkGroupSize(CallingConv::ID CC) const { + switch (CC) { + case CallingConv::AMDGPU_CS: + case CallingConv::AMDGPU_KERNEL: + case CallingConv::SPIR_KERNEL: + return std::make_pair(getWavefrontSize() * 2, + std::max(getWavefrontSize() * 4, 256u)); + case CallingConv::AMDGPU_VS: + case CallingConv::AMDGPU_LS: + case CallingConv::AMDGPU_HS: + case CallingConv::AMDGPU_ES: + case CallingConv::AMDGPU_GS: + case CallingConv::AMDGPU_PS: + return std::make_pair(1, getWavefrontSize()); + default: + return std::make_pair(1, 16 * getWavefrontSize()); + } +} + +std::pair<unsigned, unsigned> AMDGPUSubtarget::getFlatWorkGroupSizes( + const Function &F) const { + // FIXME: 1024 if function. + // Default minimum/maximum flat work group sizes. + std::pair<unsigned, unsigned> Default = + getDefaultFlatWorkGroupSize(F.getCallingConv()); + + // Requested minimum/maximum flat work group sizes. + std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute( + F, "amdgpu-flat-work-group-size", Default); + + // Make sure requested minimum is less than requested maximum. + if (Requested.first > Requested.second) + return Default; + + // Make sure requested values do not violate subtarget's specifications. + if (Requested.first < getMinFlatWorkGroupSize()) + return Default; + if (Requested.second > getMaxFlatWorkGroupSize()) + return Default; + + return Requested; +} + +std::pair<unsigned, unsigned> AMDGPUSubtarget::getWavesPerEU( + const Function &F) const { + // Default minimum/maximum number of waves per execution unit. + std::pair<unsigned, unsigned> Default(1, getMaxWavesPerEU()); + + // Default/requested minimum/maximum flat work group sizes. + std::pair<unsigned, unsigned> FlatWorkGroupSizes = getFlatWorkGroupSizes(F); + + // If minimum/maximum flat work group sizes were explicitly requested using + // "amdgpu-flat-work-group-size" attribute, then set default minimum/maximum + // number of waves per execution unit to values implied by requested + // minimum/maximum flat work group sizes. + unsigned MinImpliedByFlatWorkGroupSize = + getMaxWavesPerEU(FlatWorkGroupSizes.second); + bool RequestedFlatWorkGroupSize = false; + + if (F.hasFnAttribute("amdgpu-flat-work-group-size")) { + Default.first = MinImpliedByFlatWorkGroupSize; + RequestedFlatWorkGroupSize = true; + } + + // Requested minimum/maximum number of waves per execution unit. + std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute( + F, "amdgpu-waves-per-eu", Default, true); + + // Make sure requested minimum is less than requested maximum. + if (Requested.second && Requested.first > Requested.second) + return Default; + + // Make sure requested values do not violate subtarget's specifications. + if (Requested.first < getMinWavesPerEU() || + Requested.first > getMaxWavesPerEU()) + return Default; + if (Requested.second > getMaxWavesPerEU()) + return Default; + + // Make sure requested values are compatible with values implied by requested + // minimum/maximum flat work group sizes. + if (RequestedFlatWorkGroupSize && + Requested.first < MinImpliedByFlatWorkGroupSize) + return Default; + + return Requested; +} + +bool AMDGPUSubtarget::makeLIDRangeMetadata(Instruction *I) const { + Function *Kernel = I->getParent()->getParent(); + unsigned MinSize = 0; + unsigned MaxSize = getFlatWorkGroupSizes(*Kernel).second; + bool IdQuery = false; + + // If reqd_work_group_size is present it narrows value down. + if (auto *CI = dyn_cast<CallInst>(I)) { + const Function *F = CI->getCalledFunction(); + if (F) { + unsigned Dim = UINT_MAX; + switch (F->getIntrinsicID()) { + case Intrinsic::amdgcn_workitem_id_x: + case Intrinsic::r600_read_tidig_x: + IdQuery = true; + LLVM_FALLTHROUGH; + case Intrinsic::r600_read_local_size_x: + Dim = 0; + break; + case Intrinsic::amdgcn_workitem_id_y: + case Intrinsic::r600_read_tidig_y: + IdQuery = true; + LLVM_FALLTHROUGH; + case Intrinsic::r600_read_local_size_y: + Dim = 1; + break; + case Intrinsic::amdgcn_workitem_id_z: + case Intrinsic::r600_read_tidig_z: + IdQuery = true; + LLVM_FALLTHROUGH; + case Intrinsic::r600_read_local_size_z: + Dim = 2; + break; + default: + break; + } + if (Dim <= 3) { + if (auto Node = Kernel->getMetadata("reqd_work_group_size")) + if (Node->getNumOperands() == 3) + MinSize = MaxSize = mdconst::extract<ConstantInt>( + Node->getOperand(Dim))->getZExtValue(); + } + } + } + + if (!MaxSize) + return false; + + // Range metadata is [Lo, Hi). For ID query we need to pass max size + // as Hi. For size query we need to pass Hi + 1. + if (IdQuery) + MinSize = 0; + else + ++MaxSize; + + MDBuilder MDB(I->getContext()); + MDNode *MaxWorkGroupSizeRange = MDB.createRange(APInt(32, MinSize), + APInt(32, MaxSize)); + I->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); + return true; +} + +uint64_t AMDGPUSubtarget::getExplicitKernArgSize(const Function &F, + Align &MaxAlign) const { + assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL || + F.getCallingConv() == CallingConv::SPIR_KERNEL); + + const DataLayout &DL = F.getParent()->getDataLayout(); + uint64_t ExplicitArgBytes = 0; + MaxAlign = Align::None(); + + for (const Argument &Arg : F.args()) { + Type *ArgTy = Arg.getType(); + + const Align Alignment(DL.getABITypeAlignment(ArgTy)); + uint64_t AllocSize = DL.getTypeAllocSize(ArgTy); + ExplicitArgBytes = alignTo(ExplicitArgBytes, Alignment) + AllocSize; + MaxAlign = std::max(MaxAlign, Alignment); + } + + return ExplicitArgBytes; +} + +unsigned AMDGPUSubtarget::getKernArgSegmentSize(const Function &F, + Align &MaxAlign) const { + uint64_t ExplicitArgBytes = getExplicitKernArgSize(F, MaxAlign); + + unsigned ExplicitOffset = getExplicitKernelArgOffset(F); + + uint64_t TotalSize = ExplicitOffset + ExplicitArgBytes; + unsigned ImplicitBytes = getImplicitArgNumBytes(F); + if (ImplicitBytes != 0) { + const Align Alignment = getAlignmentForImplicitArgPtr(); + TotalSize = alignTo(ExplicitArgBytes, Alignment) + ImplicitBytes; + } + + // Being able to dereference past the end is useful for emitting scalar loads. + return alignTo(TotalSize, 4); +} + +R600Subtarget::R600Subtarget(const Triple &TT, StringRef GPU, StringRef FS, + const TargetMachine &TM) : + R600GenSubtargetInfo(TT, GPU, FS), + AMDGPUSubtarget(TT), + InstrInfo(*this), + FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0), + FMA(false), + CaymanISA(false), + CFALUBug(false), + HasVertexCache(false), + R600ALUInst(false), + FP64(false), + TexVTXClauseSize(0), + Gen(R600), + TLInfo(TM, initializeSubtargetDependencies(TT, GPU, FS)), + InstrItins(getInstrItineraryForCPU(GPU)) { } + +void GCNSubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy, + unsigned NumRegionInstrs) const { + // Track register pressure so the scheduler can try to decrease + // pressure once register usage is above the threshold defined by + // SIRegisterInfo::getRegPressureSetLimit() + Policy.ShouldTrackPressure = true; + + // Enabling both top down and bottom up scheduling seems to give us less + // register spills than just using one of these approaches on its own. + Policy.OnlyTopDown = false; + Policy.OnlyBottomUp = false; + + // Enabling ShouldTrackLaneMasks crashes the SI Machine Scheduler. + if (!enableSIScheduler()) + Policy.ShouldTrackLaneMasks = true; +} + +bool GCNSubtarget::hasMadF16() const { + return InstrInfo.pseudoToMCOpcode(AMDGPU::V_MAD_F16) != -1; +} + +unsigned GCNSubtarget::getOccupancyWithNumSGPRs(unsigned SGPRs) const { + if (getGeneration() >= AMDGPUSubtarget::GFX10) + return getMaxWavesPerEU(); + + if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { + if (SGPRs <= 80) + return 10; + if (SGPRs <= 88) + return 9; + if (SGPRs <= 100) + return 8; + return 7; + } + if (SGPRs <= 48) + return 10; + if (SGPRs <= 56) + return 9; + if (SGPRs <= 64) + return 8; + if (SGPRs <= 72) + return 7; + if (SGPRs <= 80) + return 6; + return 5; +} + +unsigned GCNSubtarget::getOccupancyWithNumVGPRs(unsigned VGPRs) const { + unsigned MaxWaves = getMaxWavesPerEU(); + unsigned Granule = getVGPRAllocGranule(); + if (VGPRs < Granule) + return MaxWaves; + unsigned RoundedRegs = ((VGPRs + Granule - 1) / Granule) * Granule; + return std::min(std::max(getTotalNumVGPRs() / RoundedRegs, 1u), MaxWaves); +} + +unsigned GCNSubtarget::getReservedNumSGPRs(const MachineFunction &MF) const { + const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); + if (getGeneration() >= AMDGPUSubtarget::GFX10) + return 2; // VCC. FLAT_SCRATCH and XNACK are no longer in SGPRs. + + if (MFI.hasFlatScratchInit()) { + if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) + return 6; // FLAT_SCRATCH, XNACK, VCC (in that order). + if (getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) + return 4; // FLAT_SCRATCH, VCC (in that order). + } + + if (isXNACKEnabled()) + return 4; // XNACK, VCC (in that order). + return 2; // VCC. +} + +unsigned GCNSubtarget::computeOccupancy(const MachineFunction &MF, + unsigned LDSSize, + unsigned NumSGPRs, + unsigned NumVGPRs) const { + unsigned Occupancy = + std::min(getMaxWavesPerEU(), + getOccupancyWithLocalMemSize(LDSSize, MF.getFunction())); + if (NumSGPRs) + Occupancy = std::min(Occupancy, getOccupancyWithNumSGPRs(NumSGPRs)); + if (NumVGPRs) + Occupancy = std::min(Occupancy, getOccupancyWithNumVGPRs(NumVGPRs)); + return Occupancy; +} + +unsigned GCNSubtarget::getMaxNumSGPRs(const MachineFunction &MF) const { + const Function &F = MF.getFunction(); + const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); + + // Compute maximum number of SGPRs function can use using default/requested + // minimum number of waves per execution unit. + std::pair<unsigned, unsigned> WavesPerEU = MFI.getWavesPerEU(); + unsigned MaxNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, false); + unsigned MaxAddressableNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, true); + + // Check if maximum number of SGPRs was explicitly requested using + // "amdgpu-num-sgpr" attribute. + if (F.hasFnAttribute("amdgpu-num-sgpr")) { + unsigned Requested = AMDGPU::getIntegerAttribute( + F, "amdgpu-num-sgpr", MaxNumSGPRs); + + // Make sure requested value does not violate subtarget's specifications. + if (Requested && (Requested <= getReservedNumSGPRs(MF))) + Requested = 0; + + // If more SGPRs are required to support the input user/system SGPRs, + // increase to accommodate them. + // + // FIXME: This really ends up using the requested number of SGPRs + number + // of reserved special registers in total. Theoretically you could re-use + // the last input registers for these special registers, but this would + // require a lot of complexity to deal with the weird aliasing. + unsigned InputNumSGPRs = MFI.getNumPreloadedSGPRs(); + if (Requested && Requested < InputNumSGPRs) + Requested = InputNumSGPRs; + + // Make sure requested value is compatible with values implied by + // default/requested minimum/maximum number of waves per execution unit. + if (Requested && Requested > getMaxNumSGPRs(WavesPerEU.first, false)) + Requested = 0; + if (WavesPerEU.second && + Requested && Requested < getMinNumSGPRs(WavesPerEU.second)) + Requested = 0; + + if (Requested) + MaxNumSGPRs = Requested; + } + + if (hasSGPRInitBug()) + MaxNumSGPRs = AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; + + return std::min(MaxNumSGPRs - getReservedNumSGPRs(MF), + MaxAddressableNumSGPRs); +} + +unsigned GCNSubtarget::getMaxNumVGPRs(const MachineFunction &MF) const { + const Function &F = MF.getFunction(); + const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); + + // Compute maximum number of VGPRs function can use using default/requested + // minimum number of waves per execution unit. + std::pair<unsigned, unsigned> WavesPerEU = MFI.getWavesPerEU(); + unsigned MaxNumVGPRs = getMaxNumVGPRs(WavesPerEU.first); + + // Check if maximum number of VGPRs was explicitly requested using + // "amdgpu-num-vgpr" attribute. + if (F.hasFnAttribute("amdgpu-num-vgpr")) { + unsigned Requested = AMDGPU::getIntegerAttribute( + F, "amdgpu-num-vgpr", MaxNumVGPRs); + + // Make sure requested value is compatible with values implied by + // default/requested minimum/maximum number of waves per execution unit. + if (Requested && Requested > getMaxNumVGPRs(WavesPerEU.first)) + Requested = 0; + if (WavesPerEU.second && + Requested && Requested < getMinNumVGPRs(WavesPerEU.second)) + Requested = 0; + + if (Requested) + MaxNumVGPRs = Requested; + } + + return MaxNumVGPRs; +} + +namespace { +struct MemOpClusterMutation : ScheduleDAGMutation { + const SIInstrInfo *TII; + + MemOpClusterMutation(const SIInstrInfo *tii) : TII(tii) {} + + void apply(ScheduleDAGInstrs *DAG) override { + SUnit *SUa = nullptr; + // Search for two consequent memory operations and link them + // to prevent scheduler from moving them apart. + // In DAG pre-process SUnits are in the original order of + // the instructions before scheduling. + for (SUnit &SU : DAG->SUnits) { + MachineInstr &MI2 = *SU.getInstr(); + if (!MI2.mayLoad() && !MI2.mayStore()) { + SUa = nullptr; + continue; + } + if (!SUa) { + SUa = &SU; + continue; + } + + MachineInstr &MI1 = *SUa->getInstr(); + if ((TII->isVMEM(MI1) && TII->isVMEM(MI2)) || + (TII->isFLAT(MI1) && TII->isFLAT(MI2)) || + (TII->isSMRD(MI1) && TII->isSMRD(MI2)) || + (TII->isDS(MI1) && TII->isDS(MI2))) { + SU.addPredBarrier(SUa); + + for (const SDep &SI : SU.Preds) { + if (SI.getSUnit() != SUa) + SUa->addPred(SDep(SI.getSUnit(), SDep::Artificial)); + } + + if (&SU != &DAG->ExitSU) { + for (const SDep &SI : SUa->Succs) { + if (SI.getSUnit() != &SU) + SI.getSUnit()->addPred(SDep(&SU, SDep::Artificial)); + } + } + } + + SUa = &SU; + } + } +}; + +struct FillMFMAShadowMutation : ScheduleDAGMutation { + const SIInstrInfo *TII; + + ScheduleDAGMI *DAG; + + FillMFMAShadowMutation(const SIInstrInfo *tii) : TII(tii) {} + + bool isSALU(const SUnit *SU) const { + const MachineInstr *MI = SU->getInstr(); + return MI && TII->isSALU(*MI) && !MI->isTerminator(); + } + + bool canAddEdge(const SUnit *Succ, const SUnit *Pred) const { + if (Pred->NodeNum < Succ->NodeNum) + return true; + + SmallVector<const SUnit*, 64> Succs({Succ}), Preds({Pred}); + + for (unsigned I = 0; I < Succs.size(); ++I) { + for (const SDep &SI : Succs[I]->Succs) { + const SUnit *SU = SI.getSUnit(); + if (SU != Succs[I] && llvm::find(Succs, SU) == Succs.end()) + Succs.push_back(SU); + } + } + + SmallPtrSet<const SUnit*, 32> Visited; + while (!Preds.empty()) { + const SUnit *SU = Preds.pop_back_val(); + if (llvm::find(Succs, SU) != Succs.end()) + return false; + Visited.insert(SU); + for (const SDep &SI : SU->Preds) + if (SI.getSUnit() != SU && !Visited.count(SI.getSUnit())) + Preds.push_back(SI.getSUnit()); + } + + return true; + } + + // Link as much SALU intructions in chain as possible. Return the size + // of the chain. Links up to MaxChain instructions. + unsigned linkSALUChain(SUnit *From, SUnit *To, unsigned MaxChain, + SmallPtrSetImpl<SUnit *> &Visited) const { + SmallVector<SUnit *, 8> Worklist({To}); + unsigned Linked = 0; + + while (!Worklist.empty() && MaxChain-- > 0) { + SUnit *SU = Worklist.pop_back_val(); + if (!Visited.insert(SU).second) + continue; + + LLVM_DEBUG(dbgs() << "Inserting edge from\n" ; DAG->dumpNode(*From); + dbgs() << "to\n"; DAG->dumpNode(*SU); dbgs() << '\n'); + + if (SU->addPred(SDep(From, SDep::Artificial), false)) + ++Linked; + + for (SDep &SI : From->Succs) { + SUnit *SUv = SI.getSUnit(); + if (SUv != From && TII->isVALU(*SUv->getInstr()) && canAddEdge(SUv, SU)) + SUv->addPred(SDep(SU, SDep::Artificial), false); + } + + for (SDep &SI : SU->Succs) { + SUnit *Succ = SI.getSUnit(); + if (Succ != SU && isSALU(Succ) && canAddEdge(From, Succ)) + Worklist.push_back(Succ); + } + } + + return Linked; + } + + void apply(ScheduleDAGInstrs *DAGInstrs) override { + const GCNSubtarget &ST = DAGInstrs->MF.getSubtarget<GCNSubtarget>(); + if (!ST.hasMAIInsts() || DisablePowerSched) + return; + DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); + const TargetSchedModel *TSchedModel = DAGInstrs->getSchedModel(); + if (!TSchedModel || DAG->SUnits.empty()) + return; + + // Scan for MFMA long latency instructions and try to add a dependency + // of available SALU instructions to give them a chance to fill MFMA + // shadow. That is desirable to fill MFMA shadow with SALU instructions + // rather than VALU to prevent power consumption bursts and throttle. + auto LastSALU = DAG->SUnits.begin(); + auto E = DAG->SUnits.end(); + SmallPtrSet<SUnit*, 32> Visited; + for (SUnit &SU : DAG->SUnits) { + MachineInstr &MAI = *SU.getInstr(); + if (!TII->isMAI(MAI) || + MAI.getOpcode() == AMDGPU::V_ACCVGPR_WRITE_B32 || + MAI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32) + continue; + + unsigned Lat = TSchedModel->computeInstrLatency(&MAI) - 1; + + LLVM_DEBUG(dbgs() << "Found MFMA: "; DAG->dumpNode(SU); + dbgs() << "Need " << Lat + << " instructions to cover latency.\n"); + + // Find up to Lat independent scalar instructions as early as + // possible such that they can be scheduled after this MFMA. + for ( ; Lat && LastSALU != E; ++LastSALU) { + if (Visited.count(&*LastSALU)) + continue; + + if (!isSALU(&*LastSALU) || !canAddEdge(&*LastSALU, &SU)) + continue; + + Lat -= linkSALUChain(&SU, &*LastSALU, Lat, Visited); + } + } + } +}; +} // namespace + +void GCNSubtarget::getPostRAMutations( + std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const { + Mutations.push_back(std::make_unique<MemOpClusterMutation>(&InstrInfo)); + Mutations.push_back(std::make_unique<FillMFMAShadowMutation>(&InstrInfo)); +} + +const AMDGPUSubtarget &AMDGPUSubtarget::get(const MachineFunction &MF) { + if (MF.getTarget().getTargetTriple().getArch() == Triple::amdgcn) + return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<GCNSubtarget>()); + else + return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<R600Subtarget>()); +} + +const AMDGPUSubtarget &AMDGPUSubtarget::get(const TargetMachine &TM, const Function &F) { + if (TM.getTargetTriple().getArch() == Triple::amdgcn) + return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<GCNSubtarget>(F)); + else + return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<R600Subtarget>(F)); +} |