diff options
Diffstat (limited to 'llvm/lib/Target/ARM/ARMCodeGenPrepare.cpp')
| -rw-r--r-- | llvm/lib/Target/ARM/ARMCodeGenPrepare.cpp | 1069 |
1 files changed, 1069 insertions, 0 deletions
diff --git a/llvm/lib/Target/ARM/ARMCodeGenPrepare.cpp b/llvm/lib/Target/ARM/ARMCodeGenPrepare.cpp new file mode 100644 index 000000000000..1c2c8aef55bb --- /dev/null +++ b/llvm/lib/Target/ARM/ARMCodeGenPrepare.cpp @@ -0,0 +1,1069 @@ +//===----- ARMCodeGenPrepare.cpp ------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +/// \file +/// This pass inserts intrinsics to handle small types that would otherwise be +/// promoted during legalization. Here we can manually promote types or insert +/// intrinsics which can handle narrow types that aren't supported by the +/// register classes. +// +//===----------------------------------------------------------------------===// + +#include "ARM.h" +#include "ARMSubtarget.h" +#include "ARMTargetMachine.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/CodeGen/TargetPassConfig.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/Verifier.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" + +#define DEBUG_TYPE "arm-codegenprepare" + +using namespace llvm; + +static cl::opt<bool> +DisableCGP("arm-disable-cgp", cl::Hidden, cl::init(true), + cl::desc("Disable ARM specific CodeGenPrepare pass")); + +static cl::opt<bool> +EnableDSP("arm-enable-scalar-dsp", cl::Hidden, cl::init(false), + cl::desc("Use DSP instructions for scalar operations")); + +static cl::opt<bool> +EnableDSPWithImms("arm-enable-scalar-dsp-imms", cl::Hidden, cl::init(false), + cl::desc("Use DSP instructions for scalar operations\ + with immediate operands")); + +// The goal of this pass is to enable more efficient code generation for +// operations on narrow types (i.e. types with < 32-bits) and this is a +// motivating IR code example: +// +// define hidden i32 @cmp(i8 zeroext) { +// %2 = add i8 %0, -49 +// %3 = icmp ult i8 %2, 3 +// .. +// } +// +// The issue here is that i8 is type-legalized to i32 because i8 is not a +// legal type. Thus, arithmetic is done in integer-precision, but then the +// byte value is masked out as follows: +// +// t19: i32 = add t4, Constant:i32<-49> +// t24: i32 = and t19, Constant:i32<255> +// +// Consequently, we generate code like this: +// +// subs r0, #49 +// uxtb r1, r0 +// cmp r1, #3 +// +// This shows that masking out the byte value results in generation of +// the UXTB instruction. This is not optimal as r0 already contains the byte +// value we need, and so instead we can just generate: +// +// sub.w r1, r0, #49 +// cmp r1, #3 +// +// We achieve this by type promoting the IR to i32 like so for this example: +// +// define i32 @cmp(i8 zeroext %c) { +// %0 = zext i8 %c to i32 +// %c.off = add i32 %0, -49 +// %1 = icmp ult i32 %c.off, 3 +// .. +// } +// +// For this to be valid and legal, we need to prove that the i32 add is +// producing the same value as the i8 addition, and that e.g. no overflow +// happens. +// +// A brief sketch of the algorithm and some terminology. +// We pattern match interesting IR patterns: +// - which have "sources": instructions producing narrow values (i8, i16), and +// - they have "sinks": instructions consuming these narrow values. +// +// We collect all instruction connecting sources and sinks in a worklist, so +// that we can mutate these instruction and perform type promotion when it is +// legal to do so. + +namespace { +class IRPromoter { + SmallPtrSet<Value*, 8> NewInsts; + SmallPtrSet<Instruction*, 4> InstsToRemove; + DenseMap<Value*, SmallVector<Type*, 4>> TruncTysMap; + SmallPtrSet<Value*, 8> Promoted; + Module *M = nullptr; + LLVMContext &Ctx; + // The type we promote to: always i32 + IntegerType *ExtTy = nullptr; + // The type of the value that the search began from, either i8 or i16. + // This defines the max range of the values that we allow in the promoted + // tree. + IntegerType *OrigTy = nullptr; + SetVector<Value*> *Visited; + SmallPtrSetImpl<Value*> *Sources; + SmallPtrSetImpl<Instruction*> *Sinks; + SmallPtrSetImpl<Instruction*> *SafeToPromote; + SmallPtrSetImpl<Instruction*> *SafeWrap; + + void ReplaceAllUsersOfWith(Value *From, Value *To); + void PrepareWrappingAdds(void); + void ExtendSources(void); + void ConvertTruncs(void); + void PromoteTree(void); + void TruncateSinks(void); + void Cleanup(void); + +public: + IRPromoter(Module *M) : M(M), Ctx(M->getContext()), + ExtTy(Type::getInt32Ty(Ctx)) { } + + + void Mutate(Type *OrigTy, + SetVector<Value*> &Visited, + SmallPtrSetImpl<Value*> &Sources, + SmallPtrSetImpl<Instruction*> &Sinks, + SmallPtrSetImpl<Instruction*> &SafeToPromote, + SmallPtrSetImpl<Instruction*> &SafeWrap); +}; + +class ARMCodeGenPrepare : public FunctionPass { + const ARMSubtarget *ST = nullptr; + IRPromoter *Promoter = nullptr; + std::set<Value*> AllVisited; + SmallPtrSet<Instruction*, 8> SafeToPromote; + SmallPtrSet<Instruction*, 4> SafeWrap; + + bool isSafeWrap(Instruction *I); + bool isSupportedValue(Value *V); + bool isLegalToPromote(Value *V); + bool TryToPromote(Value *V); + +public: + static char ID; + static unsigned TypeSize; + Type *OrigTy = nullptr; + + ARMCodeGenPrepare() : FunctionPass(ID) {} + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<TargetPassConfig>(); + } + + StringRef getPassName() const override { return "ARM IR optimizations"; } + + bool doInitialization(Module &M) override; + bool runOnFunction(Function &F) override; + bool doFinalization(Module &M) override; +}; + +} + +static bool GenerateSignBits(Value *V) { + if (!isa<Instruction>(V)) + return false; + + unsigned Opc = cast<Instruction>(V)->getOpcode(); + return Opc == Instruction::AShr || Opc == Instruction::SDiv || + Opc == Instruction::SRem || Opc == Instruction::SExt; +} + +static bool EqualTypeSize(Value *V) { + return V->getType()->getScalarSizeInBits() == ARMCodeGenPrepare::TypeSize; +} + +static bool LessOrEqualTypeSize(Value *V) { + return V->getType()->getScalarSizeInBits() <= ARMCodeGenPrepare::TypeSize; +} + +static bool GreaterThanTypeSize(Value *V) { + return V->getType()->getScalarSizeInBits() > ARMCodeGenPrepare::TypeSize; +} + +static bool LessThanTypeSize(Value *V) { + return V->getType()->getScalarSizeInBits() < ARMCodeGenPrepare::TypeSize; +} + +/// Some instructions can use 8- and 16-bit operands, and we don't need to +/// promote anything larger. We disallow booleans to make life easier when +/// dealing with icmps but allow any other integer that is <= 16 bits. Void +/// types are accepted so we can handle switches. +static bool isSupportedType(Value *V) { + Type *Ty = V->getType(); + + // Allow voids and pointers, these won't be promoted. + if (Ty->isVoidTy() || Ty->isPointerTy()) + return true; + + if (auto *Ld = dyn_cast<LoadInst>(V)) + Ty = cast<PointerType>(Ld->getPointerOperandType())->getElementType(); + + if (!isa<IntegerType>(Ty) || + cast<IntegerType>(V->getType())->getBitWidth() == 1) + return false; + + return LessOrEqualTypeSize(V); +} + +/// Return true if the given value is a source in the use-def chain, producing +/// a narrow 'TypeSize' value. These values will be zext to start the promotion +/// of the tree to i32. We guarantee that these won't populate the upper bits +/// of the register. ZExt on the loads will be free, and the same for call +/// return values because we only accept ones that guarantee a zeroext ret val. +/// Many arguments will have the zeroext attribute too, so those would be free +/// too. +static bool isSource(Value *V) { + if (!isa<IntegerType>(V->getType())) + return false; + + // TODO Allow zext to be sources. + if (isa<Argument>(V)) + return true; + else if (isa<LoadInst>(V)) + return true; + else if (isa<BitCastInst>(V)) + return true; + else if (auto *Call = dyn_cast<CallInst>(V)) + return Call->hasRetAttr(Attribute::AttrKind::ZExt); + else if (auto *Trunc = dyn_cast<TruncInst>(V)) + return EqualTypeSize(Trunc); + return false; +} + +/// Return true if V will require any promoted values to be truncated for the +/// the IR to remain valid. We can't mutate the value type of these +/// instructions. +static bool isSink(Value *V) { + // TODO The truncate also isn't actually necessary because we would already + // proved that the data value is kept within the range of the original data + // type. + + // Sinks are: + // - points where the value in the register is being observed, such as an + // icmp, switch or store. + // - points where value types have to match, such as calls and returns. + // - zext are included to ease the transformation and are generally removed + // later on. + if (auto *Store = dyn_cast<StoreInst>(V)) + return LessOrEqualTypeSize(Store->getValueOperand()); + if (auto *Return = dyn_cast<ReturnInst>(V)) + return LessOrEqualTypeSize(Return->getReturnValue()); + if (auto *ZExt = dyn_cast<ZExtInst>(V)) + return GreaterThanTypeSize(ZExt); + if (auto *Switch = dyn_cast<SwitchInst>(V)) + return LessThanTypeSize(Switch->getCondition()); + if (auto *ICmp = dyn_cast<ICmpInst>(V)) + return ICmp->isSigned() || LessThanTypeSize(ICmp->getOperand(0)); + + return isa<CallInst>(V); +} + +/// Return whether this instruction can safely wrap. +bool ARMCodeGenPrepare::isSafeWrap(Instruction *I) { + // We can support a, potentially, wrapping instruction (I) if: + // - It is only used by an unsigned icmp. + // - The icmp uses a constant. + // - The wrapping value (I) is decreasing, i.e would underflow - wrapping + // around zero to become a larger number than before. + // - The wrapping instruction (I) also uses a constant. + // + // We can then use the two constants to calculate whether the result would + // wrap in respect to itself in the original bitwidth. If it doesn't wrap, + // just underflows the range, the icmp would give the same result whether the + // result has been truncated or not. We calculate this by: + // - Zero extending both constants, if needed, to 32-bits. + // - Take the absolute value of I's constant, adding this to the icmp const. + // - Check that this value is not out of range for small type. If it is, it + // means that it has underflowed enough to wrap around the icmp constant. + // + // For example: + // + // %sub = sub i8 %a, 2 + // %cmp = icmp ule i8 %sub, 254 + // + // If %a = 0, %sub = -2 == FE == 254 + // But if this is evalulated as a i32 + // %sub = -2 == FF FF FF FE == 4294967294 + // So the unsigned compares (i8 and i32) would not yield the same result. + // + // Another way to look at it is: + // %a - 2 <= 254 + // %a + 2 <= 254 + 2 + // %a <= 256 + // And we can't represent 256 in the i8 format, so we don't support it. + // + // Whereas: + // + // %sub i8 %a, 1 + // %cmp = icmp ule i8 %sub, 254 + // + // If %a = 0, %sub = -1 == FF == 255 + // As i32: + // %sub = -1 == FF FF FF FF == 4294967295 + // + // In this case, the unsigned compare results would be the same and this + // would also be true for ult, uge and ugt: + // - (255 < 254) == (0xFFFFFFFF < 254) == false + // - (255 <= 254) == (0xFFFFFFFF <= 254) == false + // - (255 > 254) == (0xFFFFFFFF > 254) == true + // - (255 >= 254) == (0xFFFFFFFF >= 254) == true + // + // To demonstrate why we can't handle increasing values: + // + // %add = add i8 %a, 2 + // %cmp = icmp ult i8 %add, 127 + // + // If %a = 254, %add = 256 == (i8 1) + // As i32: + // %add = 256 + // + // (1 < 127) != (256 < 127) + + unsigned Opc = I->getOpcode(); + if (Opc != Instruction::Add && Opc != Instruction::Sub) + return false; + + if (!I->hasOneUse() || + !isa<ICmpInst>(*I->user_begin()) || + !isa<ConstantInt>(I->getOperand(1))) + return false; + + ConstantInt *OverflowConst = cast<ConstantInt>(I->getOperand(1)); + bool NegImm = OverflowConst->isNegative(); + bool IsDecreasing = ((Opc == Instruction::Sub) && !NegImm) || + ((Opc == Instruction::Add) && NegImm); + if (!IsDecreasing) + return false; + + // Don't support an icmp that deals with sign bits. + auto *CI = cast<ICmpInst>(*I->user_begin()); + if (CI->isSigned() || CI->isEquality()) + return false; + + ConstantInt *ICmpConst = nullptr; + if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(0))) + ICmpConst = Const; + else if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(1))) + ICmpConst = Const; + else + return false; + + // Now check that the result can't wrap on itself. + APInt Total = ICmpConst->getValue().getBitWidth() < 32 ? + ICmpConst->getValue().zext(32) : ICmpConst->getValue(); + + Total += OverflowConst->getValue().getBitWidth() < 32 ? + OverflowConst->getValue().abs().zext(32) : OverflowConst->getValue().abs(); + + APInt Max = APInt::getAllOnesValue(ARMCodeGenPrepare::TypeSize); + + if (Total.getBitWidth() > Max.getBitWidth()) { + if (Total.ugt(Max.zext(Total.getBitWidth()))) + return false; + } else if (Max.getBitWidth() > Total.getBitWidth()) { + if (Total.zext(Max.getBitWidth()).ugt(Max)) + return false; + } else if (Total.ugt(Max)) + return false; + + LLVM_DEBUG(dbgs() << "ARM CGP: Allowing safe overflow for " << *I << "\n"); + SafeWrap.insert(I); + return true; +} + +static bool shouldPromote(Value *V) { + if (!isa<IntegerType>(V->getType()) || isSink(V)) + return false; + + if (isSource(V)) + return true; + + auto *I = dyn_cast<Instruction>(V); + if (!I) + return false; + + if (isa<ICmpInst>(I)) + return false; + + return true; +} + +/// Return whether we can safely mutate V's type to ExtTy without having to be +/// concerned with zero extending or truncation. +static bool isPromotedResultSafe(Value *V) { + if (GenerateSignBits(V)) + return false; + + if (!isa<Instruction>(V)) + return true; + + if (!isa<OverflowingBinaryOperator>(V)) + return true; + + return cast<Instruction>(V)->hasNoUnsignedWrap(); +} + +/// Return the intrinsic for the instruction that can perform the same +/// operation but on a narrow type. This is using the parallel dsp intrinsics +/// on scalar values. +static Intrinsic::ID getNarrowIntrinsic(Instruction *I) { + // Whether we use the signed or unsigned versions of these intrinsics + // doesn't matter because we're not using the GE bits that they set in + // the APSR. + switch(I->getOpcode()) { + default: + break; + case Instruction::Add: + return ARMCodeGenPrepare::TypeSize == 16 ? Intrinsic::arm_uadd16 : + Intrinsic::arm_uadd8; + case Instruction::Sub: + return ARMCodeGenPrepare::TypeSize == 16 ? Intrinsic::arm_usub16 : + Intrinsic::arm_usub8; + } + llvm_unreachable("unhandled opcode for narrow intrinsic"); +} + +void IRPromoter::ReplaceAllUsersOfWith(Value *From, Value *To) { + SmallVector<Instruction*, 4> Users; + Instruction *InstTo = dyn_cast<Instruction>(To); + bool ReplacedAll = true; + + LLVM_DEBUG(dbgs() << "ARM CGP: Replacing " << *From << " with " << *To + << "\n"); + + for (Use &U : From->uses()) { + auto *User = cast<Instruction>(U.getUser()); + if (InstTo && User->isIdenticalTo(InstTo)) { + ReplacedAll = false; + continue; + } + Users.push_back(User); + } + + for (auto *U : Users) + U->replaceUsesOfWith(From, To); + + if (ReplacedAll) + if (auto *I = dyn_cast<Instruction>(From)) + InstsToRemove.insert(I); +} + +void IRPromoter::PrepareWrappingAdds() { + LLVM_DEBUG(dbgs() << "ARM CGP: Prepare underflowing adds.\n"); + IRBuilder<> Builder{Ctx}; + + // For adds that safely wrap and use a negative immediate as operand 1, we + // create an equivalent instruction using a positive immediate. + // That positive immediate can then be zext along with all the other + // immediates later. + for (auto *I : *SafeWrap) { + if (I->getOpcode() != Instruction::Add) + continue; + + LLVM_DEBUG(dbgs() << "ARM CGP: Adjusting " << *I << "\n"); + assert((isa<ConstantInt>(I->getOperand(1)) && + cast<ConstantInt>(I->getOperand(1))->isNegative()) && + "Wrapping should have a negative immediate as the second operand"); + + auto Const = cast<ConstantInt>(I->getOperand(1)); + auto *NewConst = ConstantInt::get(Ctx, Const->getValue().abs()); + Builder.SetInsertPoint(I); + Value *NewVal = Builder.CreateSub(I->getOperand(0), NewConst); + if (auto *NewInst = dyn_cast<Instruction>(NewVal)) { + NewInst->copyIRFlags(I); + NewInsts.insert(NewInst); + } + InstsToRemove.insert(I); + I->replaceAllUsesWith(NewVal); + LLVM_DEBUG(dbgs() << "ARM CGP: New equivalent: " << *NewVal << "\n"); + } + for (auto *I : NewInsts) + Visited->insert(I); +} + +void IRPromoter::ExtendSources() { + IRBuilder<> Builder{Ctx}; + + auto InsertZExt = [&](Value *V, Instruction *InsertPt) { + assert(V->getType() != ExtTy && "zext already extends to i32"); + LLVM_DEBUG(dbgs() << "ARM CGP: Inserting ZExt for " << *V << "\n"); + Builder.SetInsertPoint(InsertPt); + if (auto *I = dyn_cast<Instruction>(V)) + Builder.SetCurrentDebugLocation(I->getDebugLoc()); + + Value *ZExt = Builder.CreateZExt(V, ExtTy); + if (auto *I = dyn_cast<Instruction>(ZExt)) { + if (isa<Argument>(V)) + I->moveBefore(InsertPt); + else + I->moveAfter(InsertPt); + NewInsts.insert(I); + } + + ReplaceAllUsersOfWith(V, ZExt); + }; + + // Now, insert extending instructions between the sources and their users. + LLVM_DEBUG(dbgs() << "ARM CGP: Promoting sources:\n"); + for (auto V : *Sources) { + LLVM_DEBUG(dbgs() << " - " << *V << "\n"); + if (auto *I = dyn_cast<Instruction>(V)) + InsertZExt(I, I); + else if (auto *Arg = dyn_cast<Argument>(V)) { + BasicBlock &BB = Arg->getParent()->front(); + InsertZExt(Arg, &*BB.getFirstInsertionPt()); + } else { + llvm_unreachable("unhandled source that needs extending"); + } + Promoted.insert(V); + } +} + +void IRPromoter::PromoteTree() { + LLVM_DEBUG(dbgs() << "ARM CGP: Mutating the tree..\n"); + + IRBuilder<> Builder{Ctx}; + + // Mutate the types of the instructions within the tree. Here we handle + // constant operands. + for (auto *V : *Visited) { + if (Sources->count(V)) + continue; + + auto *I = cast<Instruction>(V); + if (Sinks->count(I)) + continue; + + for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) { + Value *Op = I->getOperand(i); + if ((Op->getType() == ExtTy) || !isa<IntegerType>(Op->getType())) + continue; + + if (auto *Const = dyn_cast<ConstantInt>(Op)) { + Constant *NewConst = ConstantExpr::getZExt(Const, ExtTy); + I->setOperand(i, NewConst); + } else if (isa<UndefValue>(Op)) + I->setOperand(i, UndefValue::get(ExtTy)); + } + + if (shouldPromote(I)) { + I->mutateType(ExtTy); + Promoted.insert(I); + } + } + + // Finally, any instructions that should be promoted but haven't yet been, + // need to be handled using intrinsics. + for (auto *V : *Visited) { + auto *I = dyn_cast<Instruction>(V); + if (!I) + continue; + + if (Sources->count(I) || Sinks->count(I)) + continue; + + if (!shouldPromote(I) || SafeToPromote->count(I) || NewInsts.count(I)) + continue; + + assert(EnableDSP && "DSP intrinisc insertion not enabled!"); + + // Replace unsafe instructions with appropriate intrinsic calls. + LLVM_DEBUG(dbgs() << "ARM CGP: Inserting DSP intrinsic for " + << *I << "\n"); + Function *DSPInst = + Intrinsic::getDeclaration(M, getNarrowIntrinsic(I)); + Builder.SetInsertPoint(I); + Builder.SetCurrentDebugLocation(I->getDebugLoc()); + Value *Args[] = { I->getOperand(0), I->getOperand(1) }; + CallInst *Call = Builder.CreateCall(DSPInst, Args); + NewInsts.insert(Call); + ReplaceAllUsersOfWith(I, Call); + } +} + +void IRPromoter::TruncateSinks() { + LLVM_DEBUG(dbgs() << "ARM CGP: Fixing up the sinks:\n"); + + IRBuilder<> Builder{Ctx}; + + auto InsertTrunc = [&](Value *V, Type *TruncTy) -> Instruction* { + if (!isa<Instruction>(V) || !isa<IntegerType>(V->getType())) + return nullptr; + + if ((!Promoted.count(V) && !NewInsts.count(V)) || Sources->count(V)) + return nullptr; + + LLVM_DEBUG(dbgs() << "ARM CGP: Creating " << *TruncTy << " Trunc for " + << *V << "\n"); + Builder.SetInsertPoint(cast<Instruction>(V)); + auto *Trunc = dyn_cast<Instruction>(Builder.CreateTrunc(V, TruncTy)); + if (Trunc) + NewInsts.insert(Trunc); + return Trunc; + }; + + // Fix up any stores or returns that use the results of the promoted + // chain. + for (auto I : *Sinks) { + LLVM_DEBUG(dbgs() << "ARM CGP: For Sink: " << *I << "\n"); + + // Handle calls separately as we need to iterate over arg operands. + if (auto *Call = dyn_cast<CallInst>(I)) { + for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) { + Value *Arg = Call->getArgOperand(i); + Type *Ty = TruncTysMap[Call][i]; + if (Instruction *Trunc = InsertTrunc(Arg, Ty)) { + Trunc->moveBefore(Call); + Call->setArgOperand(i, Trunc); + } + } + continue; + } + + // Special case switches because we need to truncate the condition. + if (auto *Switch = dyn_cast<SwitchInst>(I)) { + Type *Ty = TruncTysMap[Switch][0]; + if (Instruction *Trunc = InsertTrunc(Switch->getCondition(), Ty)) { + Trunc->moveBefore(Switch); + Switch->setCondition(Trunc); + } + continue; + } + + // Now handle the others. + for (unsigned i = 0; i < I->getNumOperands(); ++i) { + Type *Ty = TruncTysMap[I][i]; + if (Instruction *Trunc = InsertTrunc(I->getOperand(i), Ty)) { + Trunc->moveBefore(I); + I->setOperand(i, Trunc); + } + } + } +} + +void IRPromoter::Cleanup() { + LLVM_DEBUG(dbgs() << "ARM CGP: Cleanup..\n"); + // Some zexts will now have become redundant, along with their trunc + // operands, so remove them + for (auto V : *Visited) { + if (!isa<ZExtInst>(V)) + continue; + + auto ZExt = cast<ZExtInst>(V); + if (ZExt->getDestTy() != ExtTy) + continue; + + Value *Src = ZExt->getOperand(0); + if (ZExt->getSrcTy() == ZExt->getDestTy()) { + LLVM_DEBUG(dbgs() << "ARM CGP: Removing unnecessary cast: " << *ZExt + << "\n"); + ReplaceAllUsersOfWith(ZExt, Src); + continue; + } + + // Unless they produce a value that is narrower than ExtTy, we can + // replace the result of the zext with the input of a newly inserted + // trunc. + if (NewInsts.count(Src) && isa<TruncInst>(Src) && + Src->getType() == OrigTy) { + auto *Trunc = cast<TruncInst>(Src); + assert(Trunc->getOperand(0)->getType() == ExtTy && + "expected inserted trunc to be operating on i32"); + ReplaceAllUsersOfWith(ZExt, Trunc->getOperand(0)); + } + } + + for (auto *I : InstsToRemove) { + LLVM_DEBUG(dbgs() << "ARM CGP: Removing " << *I << "\n"); + I->dropAllReferences(); + I->eraseFromParent(); + } + + InstsToRemove.clear(); + NewInsts.clear(); + TruncTysMap.clear(); + Promoted.clear(); + SafeToPromote->clear(); + SafeWrap->clear(); +} + +void IRPromoter::ConvertTruncs() { + LLVM_DEBUG(dbgs() << "ARM CGP: Converting truncs..\n"); + IRBuilder<> Builder{Ctx}; + + for (auto *V : *Visited) { + if (!isa<TruncInst>(V) || Sources->count(V)) + continue; + + auto *Trunc = cast<TruncInst>(V); + Builder.SetInsertPoint(Trunc); + IntegerType *SrcTy = cast<IntegerType>(Trunc->getOperand(0)->getType()); + IntegerType *DestTy = cast<IntegerType>(TruncTysMap[Trunc][0]); + + unsigned NumBits = DestTy->getScalarSizeInBits(); + ConstantInt *Mask = + ConstantInt::get(SrcTy, APInt::getMaxValue(NumBits).getZExtValue()); + Value *Masked = Builder.CreateAnd(Trunc->getOperand(0), Mask); + + if (auto *I = dyn_cast<Instruction>(Masked)) + NewInsts.insert(I); + + ReplaceAllUsersOfWith(Trunc, Masked); + } +} + +void IRPromoter::Mutate(Type *OrigTy, + SetVector<Value*> &Visited, + SmallPtrSetImpl<Value*> &Sources, + SmallPtrSetImpl<Instruction*> &Sinks, + SmallPtrSetImpl<Instruction*> &SafeToPromote, + SmallPtrSetImpl<Instruction*> &SafeWrap) { + LLVM_DEBUG(dbgs() << "ARM CGP: Promoting use-def chains to from " + << ARMCodeGenPrepare::TypeSize << " to 32-bits\n"); + + assert(isa<IntegerType>(OrigTy) && "expected integer type"); + this->OrigTy = cast<IntegerType>(OrigTy); + assert(OrigTy->getPrimitiveSizeInBits() < ExtTy->getPrimitiveSizeInBits() && + "original type not smaller than extended type"); + + this->Visited = &Visited; + this->Sources = &Sources; + this->Sinks = &Sinks; + this->SafeToPromote = &SafeToPromote; + this->SafeWrap = &SafeWrap; + + // Cache original types of the values that will likely need truncating + for (auto *I : Sinks) { + if (auto *Call = dyn_cast<CallInst>(I)) { + for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) { + Value *Arg = Call->getArgOperand(i); + TruncTysMap[Call].push_back(Arg->getType()); + } + } else if (auto *Switch = dyn_cast<SwitchInst>(I)) + TruncTysMap[I].push_back(Switch->getCondition()->getType()); + else { + for (unsigned i = 0; i < I->getNumOperands(); ++i) + TruncTysMap[I].push_back(I->getOperand(i)->getType()); + } + } + for (auto *V : Visited) { + if (!isa<TruncInst>(V) || Sources.count(V)) + continue; + auto *Trunc = cast<TruncInst>(V); + TruncTysMap[Trunc].push_back(Trunc->getDestTy()); + } + + // Convert adds using negative immediates to equivalent instructions that use + // positive constants. + PrepareWrappingAdds(); + + // Insert zext instructions between sources and their users. + ExtendSources(); + + // Promote visited instructions, mutating their types in place. Also insert + // DSP intrinsics, if enabled, for adds and subs which would be unsafe to + // promote. + PromoteTree(); + + // Convert any truncs, that aren't sources, into AND masks. + ConvertTruncs(); + + // Insert trunc instructions for use by calls, stores etc... + TruncateSinks(); + + // Finally, remove unecessary zexts and truncs, delete old instructions and + // clear the data structures. + Cleanup(); + + LLVM_DEBUG(dbgs() << "ARM CGP: Mutation complete\n"); +} + +/// We accept most instructions, as well as Arguments and ConstantInsts. We +/// Disallow casts other than zext and truncs and only allow calls if their +/// return value is zeroext. We don't allow opcodes that can introduce sign +/// bits. +bool ARMCodeGenPrepare::isSupportedValue(Value *V) { + if (auto *I = dyn_cast<Instruction>(V)) { + switch (I->getOpcode()) { + default: + return isa<BinaryOperator>(I) && isSupportedType(I) && + !GenerateSignBits(I); + case Instruction::GetElementPtr: + case Instruction::Store: + case Instruction::Br: + case Instruction::Switch: + return true; + case Instruction::PHI: + case Instruction::Select: + case Instruction::Ret: + case Instruction::Load: + case Instruction::Trunc: + case Instruction::BitCast: + return isSupportedType(I); + case Instruction::ZExt: + return isSupportedType(I->getOperand(0)); + case Instruction::ICmp: + // Now that we allow small types than TypeSize, only allow icmp of + // TypeSize because they will require a trunc to be legalised. + // TODO: Allow icmp of smaller types, and calculate at the end + // whether the transform would be beneficial. + if (isa<PointerType>(I->getOperand(0)->getType())) + return true; + return EqualTypeSize(I->getOperand(0)); + case Instruction::Call: { + // Special cases for calls as we need to check for zeroext + // TODO We should accept calls even if they don't have zeroext, as they + // can still be sinks. + auto *Call = cast<CallInst>(I); + return isSupportedType(Call) && + Call->hasRetAttr(Attribute::AttrKind::ZExt); + } + } + } else if (isa<Constant>(V) && !isa<ConstantExpr>(V)) { + return isSupportedType(V); + } else if (isa<Argument>(V)) + return isSupportedType(V); + + return isa<BasicBlock>(V); +} + +/// Check that the type of V would be promoted and that the original type is +/// smaller than the targeted promoted type. Check that we're not trying to +/// promote something larger than our base 'TypeSize' type. +bool ARMCodeGenPrepare::isLegalToPromote(Value *V) { + + auto *I = dyn_cast<Instruction>(V); + if (!I) + return true; + + if (SafeToPromote.count(I)) + return true; + + if (isPromotedResultSafe(V) || isSafeWrap(I)) { + SafeToPromote.insert(I); + return true; + } + + if (I->getOpcode() != Instruction::Add && I->getOpcode() != Instruction::Sub) + return false; + + // If promotion is not safe, can we use a DSP instruction to natively + // handle the narrow type? + if (!ST->hasDSP() || !EnableDSP || !isSupportedType(I)) + return false; + + if (ST->isThumb() && !ST->hasThumb2()) + return false; + + // TODO + // Would it be profitable? For Thumb code, these parallel DSP instructions + // are only Thumb-2, so we wouldn't be able to dual issue on Cortex-M33. For + // Cortex-A, specifically Cortex-A72, the latency is double and throughput is + // halved. They also do not take immediates as operands. + for (auto &Op : I->operands()) { + if (isa<Constant>(Op)) { + if (!EnableDSPWithImms) + return false; + } + } + LLVM_DEBUG(dbgs() << "ARM CGP: Will use an intrinsic for: " << *I << "\n"); + return true; +} + +bool ARMCodeGenPrepare::TryToPromote(Value *V) { + OrigTy = V->getType(); + TypeSize = OrigTy->getPrimitiveSizeInBits(); + if (TypeSize > 16 || TypeSize < 8) + return false; + + SafeToPromote.clear(); + SafeWrap.clear(); + + if (!isSupportedValue(V) || !shouldPromote(V) || !isLegalToPromote(V)) + return false; + + LLVM_DEBUG(dbgs() << "ARM CGP: TryToPromote: " << *V << ", TypeSize = " + << TypeSize << "\n"); + + SetVector<Value*> WorkList; + SmallPtrSet<Value*, 8> Sources; + SmallPtrSet<Instruction*, 4> Sinks; + SetVector<Value*> CurrentVisited; + WorkList.insert(V); + + // Return true if V was added to the worklist as a supported instruction, + // if it was already visited, or if we don't need to explore it (e.g. + // pointer values and GEPs), and false otherwise. + auto AddLegalInst = [&](Value *V) { + if (CurrentVisited.count(V)) + return true; + + // Ignore GEPs because they don't need promoting and the constant indices + // will prevent the transformation. + if (isa<GetElementPtrInst>(V)) + return true; + + if (!isSupportedValue(V) || (shouldPromote(V) && !isLegalToPromote(V))) { + LLVM_DEBUG(dbgs() << "ARM CGP: Can't handle: " << *V << "\n"); + return false; + } + + WorkList.insert(V); + return true; + }; + + // Iterate through, and add to, a tree of operands and users in the use-def. + while (!WorkList.empty()) { + Value *V = WorkList.back(); + WorkList.pop_back(); + if (CurrentVisited.count(V)) + continue; + + // Ignore non-instructions, other than arguments. + if (!isa<Instruction>(V) && !isSource(V)) + continue; + + // If we've already visited this value from somewhere, bail now because + // the tree has already been explored. + // TODO: This could limit the transform, ie if we try to promote something + // from an i8 and fail first, before trying an i16. + if (AllVisited.count(V)) + return false; + + CurrentVisited.insert(V); + AllVisited.insert(V); + + // Calls can be both sources and sinks. + if (isSink(V)) + Sinks.insert(cast<Instruction>(V)); + + if (isSource(V)) + Sources.insert(V); + + if (!isSink(V) && !isSource(V)) { + if (auto *I = dyn_cast<Instruction>(V)) { + // Visit operands of any instruction visited. + for (auto &U : I->operands()) { + if (!AddLegalInst(U)) + return false; + } + } + } + + // Don't visit users of a node which isn't going to be mutated unless its a + // source. + if (isSource(V) || shouldPromote(V)) { + for (Use &U : V->uses()) { + if (!AddLegalInst(U.getUser())) + return false; + } + } + } + + LLVM_DEBUG(dbgs() << "ARM CGP: Visited nodes:\n"; + for (auto *I : CurrentVisited) + I->dump(); + ); + unsigned ToPromote = 0; + for (auto *V : CurrentVisited) { + if (Sources.count(V)) + continue; + if (Sinks.count(cast<Instruction>(V))) + continue; + ++ToPromote; + } + + if (ToPromote < 2) + return false; + + Promoter->Mutate(OrigTy, CurrentVisited, Sources, Sinks, SafeToPromote, + SafeWrap); + return true; +} + +bool ARMCodeGenPrepare::doInitialization(Module &M) { + Promoter = new IRPromoter(&M); + return false; +} + +bool ARMCodeGenPrepare::runOnFunction(Function &F) { + if (skipFunction(F) || DisableCGP) + return false; + + auto *TPC = &getAnalysis<TargetPassConfig>(); + if (!TPC) + return false; + + const TargetMachine &TM = TPC->getTM<TargetMachine>(); + ST = &TM.getSubtarget<ARMSubtarget>(F); + bool MadeChange = false; + LLVM_DEBUG(dbgs() << "ARM CGP: Running on " << F.getName() << "\n"); + + // Search up from icmps to try to promote their operands. + for (BasicBlock &BB : F) { + auto &Insts = BB.getInstList(); + for (auto &I : Insts) { + if (AllVisited.count(&I)) + continue; + + if (isa<ICmpInst>(I)) { + auto &CI = cast<ICmpInst>(I); + + // Skip signed or pointer compares + if (CI.isSigned() || !isa<IntegerType>(CI.getOperand(0)->getType())) + continue; + + LLVM_DEBUG(dbgs() << "ARM CGP: Searching from: " << CI << "\n"); + + for (auto &Op : CI.operands()) { + if (auto *I = dyn_cast<Instruction>(Op)) + MadeChange |= TryToPromote(I); + } + } + } + LLVM_DEBUG(if (verifyFunction(F, &dbgs())) { + dbgs() << F; + report_fatal_error("Broken function after type promotion"); + }); + } + if (MadeChange) + LLVM_DEBUG(dbgs() << "After ARMCodeGenPrepare: " << F << "\n"); + + return MadeChange; +} + +bool ARMCodeGenPrepare::doFinalization(Module &M) { + delete Promoter; + return false; +} + +INITIALIZE_PASS_BEGIN(ARMCodeGenPrepare, DEBUG_TYPE, + "ARM IR optimizations", false, false) +INITIALIZE_PASS_END(ARMCodeGenPrepare, DEBUG_TYPE, "ARM IR optimizations", + false, false) + +char ARMCodeGenPrepare::ID = 0; +unsigned ARMCodeGenPrepare::TypeSize = 0; + +FunctionPass *llvm::createARMCodeGenPreparePass() { + return new ARMCodeGenPrepare(); +} |
