diff options
Diffstat (limited to 'llvm/lib/Target/ARM/ARMFastISel.cpp')
| -rw-r--r-- | llvm/lib/Target/ARM/ARMFastISel.cpp | 3081 | 
1 files changed, 3081 insertions, 0 deletions
| diff --git a/llvm/lib/Target/ARM/ARMFastISel.cpp b/llvm/lib/Target/ARM/ARMFastISel.cpp new file mode 100644 index 000000000000..1fc5ff6921c6 --- /dev/null +++ b/llvm/lib/Target/ARM/ARMFastISel.cpp @@ -0,0 +1,3081 @@ +//===- ARMFastISel.cpp - ARM FastISel implementation ----------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines the ARM-specific support for the FastISel class. Some +// of the target-specific code is generated by tablegen in the file +// ARMGenFastISel.inc, which is #included here. +// +//===----------------------------------------------------------------------===// + +#include "ARM.h" +#include "ARMBaseInstrInfo.h" +#include "ARMBaseRegisterInfo.h" +#include "ARMCallingConv.h" +#include "ARMConstantPoolValue.h" +#include "ARMISelLowering.h" +#include "ARMMachineFunctionInfo.h" +#include "ARMSubtarget.h" +#include "MCTargetDesc/ARMAddressingModes.h" +#include "MCTargetDesc/ARMBaseInfo.h" +#include "Utils/ARMBaseInfo.h" +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/CodeGen/CallingConvLower.h" +#include "llvm/CodeGen/FastISel.h" +#include "llvm/CodeGen/FunctionLoweringInfo.h" +#include "llvm/CodeGen/ISDOpcodes.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineConstantPool.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/RuntimeLibcalls.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetOpcodes.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/IR/Argument.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/MC/MCInstrDesc.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MachineValueType.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetOptions.h" +#include <cassert> +#include <cstdint> +#include <utility> + +using namespace llvm; + +namespace { + +  // All possible address modes, plus some. +  struct Address { +    enum { +      RegBase, +      FrameIndexBase +    } BaseType = RegBase; + +    union { +      unsigned Reg; +      int FI; +    } Base; + +    int Offset = 0; + +    // Innocuous defaults for our address. +    Address() { +      Base.Reg = 0; +    } +  }; + +class ARMFastISel final : public FastISel { +  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can +  /// make the right decision when generating code for different targets. +  const ARMSubtarget *Subtarget; +  Module &M; +  const TargetMachine &TM; +  const TargetInstrInfo &TII; +  const TargetLowering &TLI; +  ARMFunctionInfo *AFI; + +  // Convenience variables to avoid some queries. +  bool isThumb2; +  LLVMContext *Context; + +  public: +    explicit ARMFastISel(FunctionLoweringInfo &funcInfo, +                         const TargetLibraryInfo *libInfo) +        : FastISel(funcInfo, libInfo), +          Subtarget( +              &static_cast<const ARMSubtarget &>(funcInfo.MF->getSubtarget())), +          M(const_cast<Module &>(*funcInfo.Fn->getParent())), +          TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()), +          TLI(*Subtarget->getTargetLowering()) { +      AFI = funcInfo.MF->getInfo<ARMFunctionInfo>(); +      isThumb2 = AFI->isThumbFunction(); +      Context = &funcInfo.Fn->getContext(); +    } + +  private: +    // Code from FastISel.cpp. + +    unsigned fastEmitInst_r(unsigned MachineInstOpcode, +                            const TargetRegisterClass *RC, +                            unsigned Op0, bool Op0IsKill); +    unsigned fastEmitInst_rr(unsigned MachineInstOpcode, +                             const TargetRegisterClass *RC, +                             unsigned Op0, bool Op0IsKill, +                             unsigned Op1, bool Op1IsKill); +    unsigned fastEmitInst_ri(unsigned MachineInstOpcode, +                             const TargetRegisterClass *RC, +                             unsigned Op0, bool Op0IsKill, +                             uint64_t Imm); +    unsigned fastEmitInst_i(unsigned MachineInstOpcode, +                            const TargetRegisterClass *RC, +                            uint64_t Imm); + +    // Backend specific FastISel code. + +    bool fastSelectInstruction(const Instruction *I) override; +    unsigned fastMaterializeConstant(const Constant *C) override; +    unsigned fastMaterializeAlloca(const AllocaInst *AI) override; +    bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, +                             const LoadInst *LI) override; +    bool fastLowerArguments() override; + +  #include "ARMGenFastISel.inc" + +    // Instruction selection routines. + +    bool SelectLoad(const Instruction *I); +    bool SelectStore(const Instruction *I); +    bool SelectBranch(const Instruction *I); +    bool SelectIndirectBr(const Instruction *I); +    bool SelectCmp(const Instruction *I); +    bool SelectFPExt(const Instruction *I); +    bool SelectFPTrunc(const Instruction *I); +    bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); +    bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode); +    bool SelectIToFP(const Instruction *I, bool isSigned); +    bool SelectFPToI(const Instruction *I, bool isSigned); +    bool SelectDiv(const Instruction *I, bool isSigned); +    bool SelectRem(const Instruction *I, bool isSigned); +    bool SelectCall(const Instruction *I, const char *IntrMemName); +    bool SelectIntrinsicCall(const IntrinsicInst &I); +    bool SelectSelect(const Instruction *I); +    bool SelectRet(const Instruction *I); +    bool SelectTrunc(const Instruction *I); +    bool SelectIntExt(const Instruction *I); +    bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy); + +    // Utility routines. + +    bool isPositionIndependent() const; +    bool isTypeLegal(Type *Ty, MVT &VT); +    bool isLoadTypeLegal(Type *Ty, MVT &VT); +    bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, +                    bool isZExt); +    bool ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr, +                     unsigned Alignment = 0, bool isZExt = true, +                     bool allocReg = true); +    bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, +                      unsigned Alignment = 0); +    bool ARMComputeAddress(const Value *Obj, Address &Addr); +    void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3); +    bool ARMIsMemCpySmall(uint64_t Len); +    bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, +                               unsigned Alignment); +    unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt); +    unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT); +    unsigned ARMMaterializeInt(const Constant *C, MVT VT); +    unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT); +    unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg); +    unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg); +    unsigned ARMSelectCallOp(bool UseReg); +    unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT); + +    const TargetLowering *getTargetLowering() { return &TLI; } + +    // Call handling routines. + +    CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, +                                  bool Return, +                                  bool isVarArg); +    bool ProcessCallArgs(SmallVectorImpl<Value*> &Args, +                         SmallVectorImpl<Register> &ArgRegs, +                         SmallVectorImpl<MVT> &ArgVTs, +                         SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, +                         SmallVectorImpl<Register> &RegArgs, +                         CallingConv::ID CC, +                         unsigned &NumBytes, +                         bool isVarArg); +    unsigned getLibcallReg(const Twine &Name); +    bool FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs, +                    const Instruction *I, CallingConv::ID CC, +                    unsigned &NumBytes, bool isVarArg); +    bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call); + +    // OptionalDef handling routines. + +    bool isARMNEONPred(const MachineInstr *MI); +    bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR); +    const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB); +    void AddLoadStoreOperands(MVT VT, Address &Addr, +                              const MachineInstrBuilder &MIB, +                              MachineMemOperand::Flags Flags, bool useAM3); +}; + +} // end anonymous namespace + +// DefinesOptionalPredicate - This is different from DefinesPredicate in that +// we don't care about implicit defs here, just places we'll need to add a +// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR. +bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) { +  if (!MI->hasOptionalDef()) +    return false; + +  // Look to see if our OptionalDef is defining CPSR or CCR. +  for (const MachineOperand &MO : MI->operands()) { +    if (!MO.isReg() || !MO.isDef()) continue; +    if (MO.getReg() == ARM::CPSR) +      *CPSR = true; +  } +  return true; +} + +bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) { +  const MCInstrDesc &MCID = MI->getDesc(); + +  // If we're a thumb2 or not NEON function we'll be handled via isPredicable. +  if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON || +       AFI->isThumb2Function()) +    return MI->isPredicable(); + +  for (const MCOperandInfo &opInfo : MCID.operands()) +    if (opInfo.isPredicate()) +      return true; + +  return false; +} + +// If the machine is predicable go ahead and add the predicate operands, if +// it needs default CC operands add those. +// TODO: If we want to support thumb1 then we'll need to deal with optional +// CPSR defs that need to be added before the remaining operands. See s_cc_out +// for descriptions why. +const MachineInstrBuilder & +ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) { +  MachineInstr *MI = &*MIB; + +  // Do we use a predicate? or... +  // Are we NEON in ARM mode and have a predicate operand? If so, I know +  // we're not predicable but add it anyways. +  if (isARMNEONPred(MI)) +    MIB.add(predOps(ARMCC::AL)); + +  // Do we optionally set a predicate?  Preds is size > 0 iff the predicate +  // defines CPSR. All other OptionalDefines in ARM are the CCR register. +  bool CPSR = false; +  if (DefinesOptionalPredicate(MI, &CPSR)) +    MIB.add(CPSR ? t1CondCodeOp() : condCodeOp()); +  return MIB; +} + +unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode, +                                     const TargetRegisterClass *RC, +                                     unsigned Op0, bool Op0IsKill) { +  Register ResultReg = createResultReg(RC); +  const MCInstrDesc &II = TII.get(MachineInstOpcode); + +  // Make sure the input operand is sufficiently constrained to be legal +  // for this instruction. +  Op0 = constrainOperandRegClass(II, Op0, 1); +  if (II.getNumDefs() >= 1) { +    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, +                            ResultReg).addReg(Op0, Op0IsKill * RegState::Kill)); +  } else { +    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) +                   .addReg(Op0, Op0IsKill * RegState::Kill)); +    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                   TII.get(TargetOpcode::COPY), ResultReg) +                   .addReg(II.ImplicitDefs[0])); +  } +  return ResultReg; +} + +unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, +                                      const TargetRegisterClass *RC, +                                      unsigned Op0, bool Op0IsKill, +                                      unsigned Op1, bool Op1IsKill) { +  unsigned ResultReg = createResultReg(RC); +  const MCInstrDesc &II = TII.get(MachineInstOpcode); + +  // Make sure the input operands are sufficiently constrained to be legal +  // for this instruction. +  Op0 = constrainOperandRegClass(II, Op0, 1); +  Op1 = constrainOperandRegClass(II, Op1, 2); + +  if (II.getNumDefs() >= 1) { +    AddOptionalDefs( +        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) +            .addReg(Op0, Op0IsKill * RegState::Kill) +            .addReg(Op1, Op1IsKill * RegState::Kill)); +  } else { +    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) +                   .addReg(Op0, Op0IsKill * RegState::Kill) +                   .addReg(Op1, Op1IsKill * RegState::Kill)); +    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                           TII.get(TargetOpcode::COPY), ResultReg) +                   .addReg(II.ImplicitDefs[0])); +  } +  return ResultReg; +} + +unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, +                                      const TargetRegisterClass *RC, +                                      unsigned Op0, bool Op0IsKill, +                                      uint64_t Imm) { +  unsigned ResultReg = createResultReg(RC); +  const MCInstrDesc &II = TII.get(MachineInstOpcode); + +  // Make sure the input operand is sufficiently constrained to be legal +  // for this instruction. +  Op0 = constrainOperandRegClass(II, Op0, 1); +  if (II.getNumDefs() >= 1) { +    AddOptionalDefs( +        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) +            .addReg(Op0, Op0IsKill * RegState::Kill) +            .addImm(Imm)); +  } else { +    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) +                   .addReg(Op0, Op0IsKill * RegState::Kill) +                   .addImm(Imm)); +    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                           TII.get(TargetOpcode::COPY), ResultReg) +                   .addReg(II.ImplicitDefs[0])); +  } +  return ResultReg; +} + +unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode, +                                     const TargetRegisterClass *RC, +                                     uint64_t Imm) { +  unsigned ResultReg = createResultReg(RC); +  const MCInstrDesc &II = TII.get(MachineInstOpcode); + +  if (II.getNumDefs() >= 1) { +    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, +                            ResultReg).addImm(Imm)); +  } else { +    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) +                   .addImm(Imm)); +    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                           TII.get(TargetOpcode::COPY), ResultReg) +                   .addReg(II.ImplicitDefs[0])); +  } +  return ResultReg; +} + +// TODO: Don't worry about 64-bit now, but when this is fixed remove the +// checks from the various callers. +unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) { +  if (VT == MVT::f64) return 0; + +  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); +  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                          TII.get(ARM::VMOVSR), MoveReg) +                  .addReg(SrcReg)); +  return MoveReg; +} + +unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) { +  if (VT == MVT::i64) return 0; + +  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); +  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                          TII.get(ARM::VMOVRS), MoveReg) +                  .addReg(SrcReg)); +  return MoveReg; +} + +// For double width floating point we need to materialize two constants +// (the high and the low) into integer registers then use a move to get +// the combined constant into an FP reg. +unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) { +  const APFloat Val = CFP->getValueAPF(); +  bool is64bit = VT == MVT::f64; + +  // This checks to see if we can use VFP3 instructions to materialize +  // a constant, otherwise we have to go through the constant pool. +  if (TLI.isFPImmLegal(Val, VT)) { +    int Imm; +    unsigned Opc; +    if (is64bit) { +      Imm = ARM_AM::getFP64Imm(Val); +      Opc = ARM::FCONSTD; +    } else { +      Imm = ARM_AM::getFP32Imm(Val); +      Opc = ARM::FCONSTS; +    } +    unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); +    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                            TII.get(Opc), DestReg).addImm(Imm)); +    return DestReg; +  } + +  // Require VFP2 for loading fp constants. +  if (!Subtarget->hasVFP2Base()) return false; + +  // MachineConstantPool wants an explicit alignment. +  unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); +  if (Align == 0) { +    // TODO: Figure out if this is correct. +    Align = DL.getTypeAllocSize(CFP->getType()); +  } +  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); +  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); +  unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS; + +  // The extra reg is for addrmode5. +  AddOptionalDefs( +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) +          .addConstantPoolIndex(Idx) +          .addReg(0)); +  return DestReg; +} + +unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) { +  if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) +    return 0; + +  // If we can do this in a single instruction without a constant pool entry +  // do so now. +  const ConstantInt *CI = cast<ConstantInt>(C); +  if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) { +    unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16; +    const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : +      &ARM::GPRRegClass; +    unsigned ImmReg = createResultReg(RC); +    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                            TII.get(Opc), ImmReg) +                    .addImm(CI->getZExtValue())); +    return ImmReg; +  } + +  // Use MVN to emit negative constants. +  if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) { +    unsigned Imm = (unsigned)~(CI->getSExtValue()); +    bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : +      (ARM_AM::getSOImmVal(Imm) != -1); +    if (UseImm) { +      unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi; +      const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : +                                                 &ARM::GPRRegClass; +      unsigned ImmReg = createResultReg(RC); +      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                              TII.get(Opc), ImmReg) +                      .addImm(Imm)); +      return ImmReg; +    } +  } + +  unsigned ResultReg = 0; +  if (Subtarget->useMovt()) +    ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); + +  if (ResultReg) +    return ResultReg; + +  // Load from constant pool.  For now 32-bit only. +  if (VT != MVT::i32) +    return 0; + +  // MachineConstantPool wants an explicit alignment. +  unsigned Align = DL.getPrefTypeAlignment(C->getType()); +  if (Align == 0) { +    // TODO: Figure out if this is correct. +    Align = DL.getTypeAllocSize(C->getType()); +  } +  unsigned Idx = MCP.getConstantPoolIndex(C, Align); +  ResultReg = createResultReg(TLI.getRegClassFor(VT)); +  if (isThumb2) +    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                            TII.get(ARM::t2LDRpci), ResultReg) +                      .addConstantPoolIndex(Idx)); +  else { +    // The extra immediate is for addrmode2. +    ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0); +    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                            TII.get(ARM::LDRcp), ResultReg) +                      .addConstantPoolIndex(Idx) +                      .addImm(0)); +  } +  return ResultReg; +} + +bool ARMFastISel::isPositionIndependent() const { +  return TLI.isPositionIndependent(); +} + +unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) { +  // For now 32-bit only. +  if (VT != MVT::i32 || GV->isThreadLocal()) return 0; + +  // ROPI/RWPI not currently supported. +  if (Subtarget->isROPI() || Subtarget->isRWPI()) +    return 0; + +  bool IsIndirect = Subtarget->isGVIndirectSymbol(GV); +  const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass +                                           : &ARM::GPRRegClass; +  unsigned DestReg = createResultReg(RC); + +  // FastISel TLS support on non-MachO is broken, punt to SelectionDAG. +  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); +  bool IsThreadLocal = GVar && GVar->isThreadLocal(); +  if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0; + +  bool IsPositionIndependent = isPositionIndependent(); +  // Use movw+movt when possible, it avoids constant pool entries. +  // Non-darwin targets only support static movt relocations in FastISel. +  if (Subtarget->useMovt() && +      (Subtarget->isTargetMachO() || !IsPositionIndependent)) { +    unsigned Opc; +    unsigned char TF = 0; +    if (Subtarget->isTargetMachO()) +      TF = ARMII::MO_NONLAZY; + +    if (IsPositionIndependent) +      Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel; +    else +      Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm; +    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                            TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF)); +  } else { +    // MachineConstantPool wants an explicit alignment. +    unsigned Align = DL.getPrefTypeAlignment(GV->getType()); +    if (Align == 0) { +      // TODO: Figure out if this is correct. +      Align = DL.getTypeAllocSize(GV->getType()); +    } + +    if (Subtarget->isTargetELF() && IsPositionIndependent) +      return ARMLowerPICELF(GV, Align, VT); + +    // Grab index. +    unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0; +    unsigned Id = AFI->createPICLabelUId(); +    ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id, +                                                                ARMCP::CPValue, +                                                                PCAdj); +    unsigned Idx = MCP.getConstantPoolIndex(CPV, Align); + +    // Load value. +    MachineInstrBuilder MIB; +    if (isThumb2) { +      unsigned Opc = IsPositionIndependent ? ARM::t2LDRpci_pic : ARM::t2LDRpci; +      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), +                    DestReg).addConstantPoolIndex(Idx); +      if (IsPositionIndependent) +        MIB.addImm(Id); +      AddOptionalDefs(MIB); +    } else { +      // The extra immediate is for addrmode2. +      DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0); +      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                    TII.get(ARM::LDRcp), DestReg) +                .addConstantPoolIndex(Idx) +                .addImm(0); +      AddOptionalDefs(MIB); + +      if (IsPositionIndependent) { +        unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD; +        unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); + +        MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, +                                          DbgLoc, TII.get(Opc), NewDestReg) +                                  .addReg(DestReg) +                                  .addImm(Id); +        AddOptionalDefs(MIB); +        return NewDestReg; +      } +    } +  } + +  if (IsIndirect) { +    MachineInstrBuilder MIB; +    unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); +    if (isThumb2) +      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                    TII.get(ARM::t2LDRi12), NewDestReg) +            .addReg(DestReg) +            .addImm(0); +    else +      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                    TII.get(ARM::LDRi12), NewDestReg) +                .addReg(DestReg) +                .addImm(0); +    DestReg = NewDestReg; +    AddOptionalDefs(MIB); +  } + +  return DestReg; +} + +unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) { +  EVT CEVT = TLI.getValueType(DL, C->getType(), true); + +  // Only handle simple types. +  if (!CEVT.isSimple()) return 0; +  MVT VT = CEVT.getSimpleVT(); + +  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) +    return ARMMaterializeFP(CFP, VT); +  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) +    return ARMMaterializeGV(GV, VT); +  else if (isa<ConstantInt>(C)) +    return ARMMaterializeInt(C, VT); + +  return 0; +} + +// TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF); + +unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) { +  // Don't handle dynamic allocas. +  if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; + +  MVT VT; +  if (!isLoadTypeLegal(AI->getType(), VT)) return 0; + +  DenseMap<const AllocaInst*, int>::iterator SI = +    FuncInfo.StaticAllocaMap.find(AI); + +  // This will get lowered later into the correct offsets and registers +  // via rewriteXFrameIndex. +  if (SI != FuncInfo.StaticAllocaMap.end()) { +    unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; +    const TargetRegisterClass* RC = TLI.getRegClassFor(VT); +    unsigned ResultReg = createResultReg(RC); +    ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0); + +    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                            TII.get(Opc), ResultReg) +                            .addFrameIndex(SI->second) +                            .addImm(0)); +    return ResultReg; +  } + +  return 0; +} + +bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) { +  EVT evt = TLI.getValueType(DL, Ty, true); + +  // Only handle simple types. +  if (evt == MVT::Other || !evt.isSimple()) return false; +  VT = evt.getSimpleVT(); + +  // Handle all legal types, i.e. a register that will directly hold this +  // value. +  return TLI.isTypeLegal(VT); +} + +bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { +  if (isTypeLegal(Ty, VT)) return true; + +  // If this is a type than can be sign or zero-extended to a basic operation +  // go ahead and accept it now. +  if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) +    return true; + +  return false; +} + +// Computes the address to get to an object. +bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) { +  // Some boilerplate from the X86 FastISel. +  const User *U = nullptr; +  unsigned Opcode = Instruction::UserOp1; +  if (const Instruction *I = dyn_cast<Instruction>(Obj)) { +    // Don't walk into other basic blocks unless the object is an alloca from +    // another block, otherwise it may not have a virtual register assigned. +    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || +        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { +      Opcode = I->getOpcode(); +      U = I; +    } +  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { +    Opcode = C->getOpcode(); +    U = C; +  } + +  if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType())) +    if (Ty->getAddressSpace() > 255) +      // Fast instruction selection doesn't support the special +      // address spaces. +      return false; + +  switch (Opcode) { +    default: +    break; +    case Instruction::BitCast: +      // Look through bitcasts. +      return ARMComputeAddress(U->getOperand(0), Addr); +    case Instruction::IntToPtr: +      // Look past no-op inttoptrs. +      if (TLI.getValueType(DL, U->getOperand(0)->getType()) == +          TLI.getPointerTy(DL)) +        return ARMComputeAddress(U->getOperand(0), Addr); +      break; +    case Instruction::PtrToInt: +      // Look past no-op ptrtoints. +      if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) +        return ARMComputeAddress(U->getOperand(0), Addr); +      break; +    case Instruction::GetElementPtr: { +      Address SavedAddr = Addr; +      int TmpOffset = Addr.Offset; + +      // Iterate through the GEP folding the constants into offsets where +      // we can. +      gep_type_iterator GTI = gep_type_begin(U); +      for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); +           i != e; ++i, ++GTI) { +        const Value *Op = *i; +        if (StructType *STy = GTI.getStructTypeOrNull()) { +          const StructLayout *SL = DL.getStructLayout(STy); +          unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); +          TmpOffset += SL->getElementOffset(Idx); +        } else { +          uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); +          while (true) { +            if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { +              // Constant-offset addressing. +              TmpOffset += CI->getSExtValue() * S; +              break; +            } +            if (canFoldAddIntoGEP(U, Op)) { +              // A compatible add with a constant operand. Fold the constant. +              ConstantInt *CI = +              cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); +              TmpOffset += CI->getSExtValue() * S; +              // Iterate on the other operand. +              Op = cast<AddOperator>(Op)->getOperand(0); +              continue; +            } +            // Unsupported +            goto unsupported_gep; +          } +        } +      } + +      // Try to grab the base operand now. +      Addr.Offset = TmpOffset; +      if (ARMComputeAddress(U->getOperand(0), Addr)) return true; + +      // We failed, restore everything and try the other options. +      Addr = SavedAddr; + +      unsupported_gep: +      break; +    } +    case Instruction::Alloca: { +      const AllocaInst *AI = cast<AllocaInst>(Obj); +      DenseMap<const AllocaInst*, int>::iterator SI = +        FuncInfo.StaticAllocaMap.find(AI); +      if (SI != FuncInfo.StaticAllocaMap.end()) { +        Addr.BaseType = Address::FrameIndexBase; +        Addr.Base.FI = SI->second; +        return true; +      } +      break; +    } +  } + +  // Try to get this in a register if nothing else has worked. +  if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj); +  return Addr.Base.Reg != 0; +} + +void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) { +  bool needsLowering = false; +  switch (VT.SimpleTy) { +    default: llvm_unreachable("Unhandled load/store type!"); +    case MVT::i1: +    case MVT::i8: +    case MVT::i16: +    case MVT::i32: +      if (!useAM3) { +        // Integer loads/stores handle 12-bit offsets. +        needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset); +        // Handle negative offsets. +        if (needsLowering && isThumb2) +          needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 && +                            Addr.Offset > -256); +      } else { +        // ARM halfword load/stores and signed byte loads use +/-imm8 offsets. +        needsLowering = (Addr.Offset > 255 || Addr.Offset < -255); +      } +      break; +    case MVT::f32: +    case MVT::f64: +      // Floating point operands handle 8-bit offsets. +      needsLowering = ((Addr.Offset & 0xff) != Addr.Offset); +      break; +  } + +  // If this is a stack pointer and the offset needs to be simplified then +  // put the alloca address into a register, set the base type back to +  // register and continue. This should almost never happen. +  if (needsLowering && Addr.BaseType == Address::FrameIndexBase) { +    const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass +                                             : &ARM::GPRRegClass; +    unsigned ResultReg = createResultReg(RC); +    unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; +    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                            TII.get(Opc), ResultReg) +                            .addFrameIndex(Addr.Base.FI) +                            .addImm(0)); +    Addr.Base.Reg = ResultReg; +    Addr.BaseType = Address::RegBase; +  } + +  // Since the offset is too large for the load/store instruction +  // get the reg+offset into a register. +  if (needsLowering) { +    Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg, +                                 /*Op0IsKill*/false, Addr.Offset, MVT::i32); +    Addr.Offset = 0; +  } +} + +void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr, +                                       const MachineInstrBuilder &MIB, +                                       MachineMemOperand::Flags Flags, +                                       bool useAM3) { +  // addrmode5 output depends on the selection dag addressing dividing the +  // offset by 4 that it then later multiplies. Do this here as well. +  if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64) +    Addr.Offset /= 4; + +  // Frame base works a bit differently. Handle it separately. +  if (Addr.BaseType == Address::FrameIndexBase) { +    int FI = Addr.Base.FI; +    int Offset = Addr.Offset; +    MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( +        MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags, +        MFI.getObjectSize(FI), MFI.getObjectAlignment(FI)); +    // Now add the rest of the operands. +    MIB.addFrameIndex(FI); + +    // ARM halfword load/stores and signed byte loads need an additional +    // operand. +    if (useAM3) { +      int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; +      MIB.addReg(0); +      MIB.addImm(Imm); +    } else { +      MIB.addImm(Addr.Offset); +    } +    MIB.addMemOperand(MMO); +  } else { +    // Now add the rest of the operands. +    MIB.addReg(Addr.Base.Reg); + +    // ARM halfword load/stores and signed byte loads need an additional +    // operand. +    if (useAM3) { +      int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; +      MIB.addReg(0); +      MIB.addImm(Imm); +    } else { +      MIB.addImm(Addr.Offset); +    } +  } +  AddOptionalDefs(MIB); +} + +bool ARMFastISel::ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr, +                              unsigned Alignment, bool isZExt, bool allocReg) { +  unsigned Opc; +  bool useAM3 = false; +  bool needVMOV = false; +  const TargetRegisterClass *RC; +  switch (VT.SimpleTy) { +    // This is mostly going to be Neon/vector support. +    default: return false; +    case MVT::i1: +    case MVT::i8: +      if (isThumb2) { +        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) +          Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8; +        else +          Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12; +      } else { +        if (isZExt) { +          Opc = ARM::LDRBi12; +        } else { +          Opc = ARM::LDRSB; +          useAM3 = true; +        } +      } +      RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; +      break; +    case MVT::i16: +      if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) +        return false; + +      if (isThumb2) { +        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) +          Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8; +        else +          Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12; +      } else { +        Opc = isZExt ? ARM::LDRH : ARM::LDRSH; +        useAM3 = true; +      } +      RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; +      break; +    case MVT::i32: +      if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) +        return false; + +      if (isThumb2) { +        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) +          Opc = ARM::t2LDRi8; +        else +          Opc = ARM::t2LDRi12; +      } else { +        Opc = ARM::LDRi12; +      } +      RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; +      break; +    case MVT::f32: +      if (!Subtarget->hasVFP2Base()) return false; +      // Unaligned loads need special handling. Floats require word-alignment. +      if (Alignment && Alignment < 4) { +        needVMOV = true; +        VT = MVT::i32; +        Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; +        RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; +      } else { +        Opc = ARM::VLDRS; +        RC = TLI.getRegClassFor(VT); +      } +      break; +    case MVT::f64: +      // Can load and store double precision even without FeatureFP64 +      if (!Subtarget->hasVFP2Base()) return false; +      // FIXME: Unaligned loads need special handling.  Doublewords require +      // word-alignment. +      if (Alignment && Alignment < 4) +        return false; + +      Opc = ARM::VLDRD; +      RC = TLI.getRegClassFor(VT); +      break; +  } +  // Simplify this down to something we can handle. +  ARMSimplifyAddress(Addr, VT, useAM3); + +  // Create the base instruction, then add the operands. +  if (allocReg) +    ResultReg = createResultReg(RC); +  assert(ResultReg > 255 && "Expected an allocated virtual register."); +  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                                    TII.get(Opc), ResultReg); +  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3); + +  // If we had an unaligned load of a float we've converted it to an regular +  // load.  Now we must move from the GRP to the FP register. +  if (needVMOV) { +    unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32)); +    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                            TII.get(ARM::VMOVSR), MoveReg) +                    .addReg(ResultReg)); +    ResultReg = MoveReg; +  } +  return true; +} + +bool ARMFastISel::SelectLoad(const Instruction *I) { +  // Atomic loads need special handling. +  if (cast<LoadInst>(I)->isAtomic()) +    return false; + +  const Value *SV = I->getOperand(0); +  if (TLI.supportSwiftError()) { +    // Swifterror values can come from either a function parameter with +    // swifterror attribute or an alloca with swifterror attribute. +    if (const Argument *Arg = dyn_cast<Argument>(SV)) { +      if (Arg->hasSwiftErrorAttr()) +        return false; +    } + +    if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { +      if (Alloca->isSwiftError()) +        return false; +    } +  } + +  // Verify we have a legal type before going any further. +  MVT VT; +  if (!isLoadTypeLegal(I->getType(), VT)) +    return false; + +  // See if we can handle this address. +  Address Addr; +  if (!ARMComputeAddress(I->getOperand(0), Addr)) return false; + +  Register ResultReg; +  if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment())) +    return false; +  updateValueMap(I, ResultReg); +  return true; +} + +bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, +                               unsigned Alignment) { +  unsigned StrOpc; +  bool useAM3 = false; +  switch (VT.SimpleTy) { +    // This is mostly going to be Neon/vector support. +    default: return false; +    case MVT::i1: { +      unsigned Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass +                                              : &ARM::GPRRegClass); +      unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri; +      SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1); +      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                              TII.get(Opc), Res) +                      .addReg(SrcReg).addImm(1)); +      SrcReg = Res; +      LLVM_FALLTHROUGH; +    } +    case MVT::i8: +      if (isThumb2) { +        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) +          StrOpc = ARM::t2STRBi8; +        else +          StrOpc = ARM::t2STRBi12; +      } else { +        StrOpc = ARM::STRBi12; +      } +      break; +    case MVT::i16: +      if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) +        return false; + +      if (isThumb2) { +        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) +          StrOpc = ARM::t2STRHi8; +        else +          StrOpc = ARM::t2STRHi12; +      } else { +        StrOpc = ARM::STRH; +        useAM3 = true; +      } +      break; +    case MVT::i32: +      if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) +        return false; + +      if (isThumb2) { +        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) +          StrOpc = ARM::t2STRi8; +        else +          StrOpc = ARM::t2STRi12; +      } else { +        StrOpc = ARM::STRi12; +      } +      break; +    case MVT::f32: +      if (!Subtarget->hasVFP2Base()) return false; +      // Unaligned stores need special handling. Floats require word-alignment. +      if (Alignment && Alignment < 4) { +        unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32)); +        AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                                TII.get(ARM::VMOVRS), MoveReg) +                        .addReg(SrcReg)); +        SrcReg = MoveReg; +        VT = MVT::i32; +        StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12; +      } else { +        StrOpc = ARM::VSTRS; +      } +      break; +    case MVT::f64: +      // Can load and store double precision even without FeatureFP64 +      if (!Subtarget->hasVFP2Base()) return false; +      // FIXME: Unaligned stores need special handling.  Doublewords require +      // word-alignment. +      if (Alignment && Alignment < 4) +          return false; + +      StrOpc = ARM::VSTRD; +      break; +  } +  // Simplify this down to something we can handle. +  ARMSimplifyAddress(Addr, VT, useAM3); + +  // Create the base instruction, then add the operands. +  SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0); +  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                                    TII.get(StrOpc)) +                            .addReg(SrcReg); +  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3); +  return true; +} + +bool ARMFastISel::SelectStore(const Instruction *I) { +  Value *Op0 = I->getOperand(0); +  unsigned SrcReg = 0; + +  // Atomic stores need special handling. +  if (cast<StoreInst>(I)->isAtomic()) +    return false; + +  const Value *PtrV = I->getOperand(1); +  if (TLI.supportSwiftError()) { +    // Swifterror values can come from either a function parameter with +    // swifterror attribute or an alloca with swifterror attribute. +    if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { +      if (Arg->hasSwiftErrorAttr()) +        return false; +    } + +    if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { +      if (Alloca->isSwiftError()) +        return false; +    } +  } + +  // Verify we have a legal type before going any further. +  MVT VT; +  if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) +    return false; + +  // Get the value to be stored into a register. +  SrcReg = getRegForValue(Op0); +  if (SrcReg == 0) return false; + +  // See if we can handle this address. +  Address Addr; +  if (!ARMComputeAddress(I->getOperand(1), Addr)) +    return false; + +  if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment())) +    return false; +  return true; +} + +static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) { +  switch (Pred) { +    // Needs two compares... +    case CmpInst::FCMP_ONE: +    case CmpInst::FCMP_UEQ: +    default: +      // AL is our "false" for now. The other two need more compares. +      return ARMCC::AL; +    case CmpInst::ICMP_EQ: +    case CmpInst::FCMP_OEQ: +      return ARMCC::EQ; +    case CmpInst::ICMP_SGT: +    case CmpInst::FCMP_OGT: +      return ARMCC::GT; +    case CmpInst::ICMP_SGE: +    case CmpInst::FCMP_OGE: +      return ARMCC::GE; +    case CmpInst::ICMP_UGT: +    case CmpInst::FCMP_UGT: +      return ARMCC::HI; +    case CmpInst::FCMP_OLT: +      return ARMCC::MI; +    case CmpInst::ICMP_ULE: +    case CmpInst::FCMP_OLE: +      return ARMCC::LS; +    case CmpInst::FCMP_ORD: +      return ARMCC::VC; +    case CmpInst::FCMP_UNO: +      return ARMCC::VS; +    case CmpInst::FCMP_UGE: +      return ARMCC::PL; +    case CmpInst::ICMP_SLT: +    case CmpInst::FCMP_ULT: +      return ARMCC::LT; +    case CmpInst::ICMP_SLE: +    case CmpInst::FCMP_ULE: +      return ARMCC::LE; +    case CmpInst::FCMP_UNE: +    case CmpInst::ICMP_NE: +      return ARMCC::NE; +    case CmpInst::ICMP_UGE: +      return ARMCC::HS; +    case CmpInst::ICMP_ULT: +      return ARMCC::LO; +  } +} + +bool ARMFastISel::SelectBranch(const Instruction *I) { +  const BranchInst *BI = cast<BranchInst>(I); +  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; +  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; + +  // Simple branch support. + +  // If we can, avoid recomputing the compare - redoing it could lead to wonky +  // behavior. +  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { +    if (CI->hasOneUse() && (CI->getParent() == I->getParent())) { +      // Get the compare predicate. +      // Try to take advantage of fallthrough opportunities. +      CmpInst::Predicate Predicate = CI->getPredicate(); +      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { +        std::swap(TBB, FBB); +        Predicate = CmpInst::getInversePredicate(Predicate); +      } + +      ARMCC::CondCodes ARMPred = getComparePred(Predicate); + +      // We may not handle every CC for now. +      if (ARMPred == ARMCC::AL) return false; + +      // Emit the compare. +      if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) +        return false; + +      unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) +      .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR); +      finishCondBranch(BI->getParent(), TBB, FBB); +      return true; +    } +  } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { +    MVT SourceVT; +    if (TI->hasOneUse() && TI->getParent() == I->getParent() && +        (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) { +      unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; +      unsigned OpReg = getRegForValue(TI->getOperand(0)); +      OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0); +      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                              TII.get(TstOpc)) +                      .addReg(OpReg).addImm(1)); + +      unsigned CCMode = ARMCC::NE; +      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { +        std::swap(TBB, FBB); +        CCMode = ARMCC::EQ; +      } + +      unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) +      .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); + +      finishCondBranch(BI->getParent(), TBB, FBB); +      return true; +    } +  } else if (const ConstantInt *CI = +             dyn_cast<ConstantInt>(BI->getCondition())) { +    uint64_t Imm = CI->getZExtValue(); +    MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; +    fastEmitBranch(Target, DbgLoc); +    return true; +  } + +  unsigned CmpReg = getRegForValue(BI->getCondition()); +  if (CmpReg == 0) return false; + +  // We've been divorced from our compare!  Our block was split, and +  // now our compare lives in a predecessor block.  We musn't +  // re-compare here, as the children of the compare aren't guaranteed +  // live across the block boundary (we *could* check for this). +  // Regardless, the compare has been done in the predecessor block, +  // and it left a value for us in a virtual register.  Ergo, we test +  // the one-bit value left in the virtual register. +  unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; +  CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0); +  AddOptionalDefs( +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc)) +          .addReg(CmpReg) +          .addImm(1)); + +  unsigned CCMode = ARMCC::NE; +  if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { +    std::swap(TBB, FBB); +    CCMode = ARMCC::EQ; +  } + +  unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; +  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) +                  .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); +  finishCondBranch(BI->getParent(), TBB, FBB); +  return true; +} + +bool ARMFastISel::SelectIndirectBr(const Instruction *I) { +  unsigned AddrReg = getRegForValue(I->getOperand(0)); +  if (AddrReg == 0) return false; + +  unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX; +  assert(isThumb2 || Subtarget->hasV4TOps()); + +  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                          TII.get(Opc)).addReg(AddrReg)); + +  const IndirectBrInst *IB = cast<IndirectBrInst>(I); +  for (const BasicBlock *SuccBB : IB->successors()) +    FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]); + +  return true; +} + +bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, +                             bool isZExt) { +  Type *Ty = Src1Value->getType(); +  EVT SrcEVT = TLI.getValueType(DL, Ty, true); +  if (!SrcEVT.isSimple()) return false; +  MVT SrcVT = SrcEVT.getSimpleVT(); + +  if (Ty->isFloatTy() && !Subtarget->hasVFP2Base()) +    return false; + +  if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64())) +    return false; + +  // Check to see if the 2nd operand is a constant that we can encode directly +  // in the compare. +  int Imm = 0; +  bool UseImm = false; +  bool isNegativeImm = false; +  // FIXME: At -O0 we don't have anything that canonicalizes operand order. +  // Thus, Src1Value may be a ConstantInt, but we're missing it. +  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) { +    if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 || +        SrcVT == MVT::i1) { +      const APInt &CIVal = ConstInt->getValue(); +      Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue(); +      // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather +      // then a cmn, because there is no way to represent 2147483648 as a +      // signed 32-bit int. +      if (Imm < 0 && Imm != (int)0x80000000) { +        isNegativeImm = true; +        Imm = -Imm; +      } +      UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : +        (ARM_AM::getSOImmVal(Imm) != -1); +    } +  } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) { +    if (SrcVT == MVT::f32 || SrcVT == MVT::f64) +      if (ConstFP->isZero() && !ConstFP->isNegative()) +        UseImm = true; +  } + +  unsigned CmpOpc; +  bool isICmp = true; +  bool needsExt = false; +  switch (SrcVT.SimpleTy) { +    default: return false; +    // TODO: Verify compares. +    case MVT::f32: +      isICmp = false; +      CmpOpc = UseImm ? ARM::VCMPZS : ARM::VCMPS; +      break; +    case MVT::f64: +      isICmp = false; +      CmpOpc = UseImm ? ARM::VCMPZD : ARM::VCMPD; +      break; +    case MVT::i1: +    case MVT::i8: +    case MVT::i16: +      needsExt = true; +      LLVM_FALLTHROUGH; +    case MVT::i32: +      if (isThumb2) { +        if (!UseImm) +          CmpOpc = ARM::t2CMPrr; +        else +          CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri; +      } else { +        if (!UseImm) +          CmpOpc = ARM::CMPrr; +        else +          CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri; +      } +      break; +  } + +  unsigned SrcReg1 = getRegForValue(Src1Value); +  if (SrcReg1 == 0) return false; + +  unsigned SrcReg2 = 0; +  if (!UseImm) { +    SrcReg2 = getRegForValue(Src2Value); +    if (SrcReg2 == 0) return false; +  } + +  // We have i1, i8, or i16, we need to either zero extend or sign extend. +  if (needsExt) { +    SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt); +    if (SrcReg1 == 0) return false; +    if (!UseImm) { +      SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt); +      if (SrcReg2 == 0) return false; +    } +  } + +  const MCInstrDesc &II = TII.get(CmpOpc); +  SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0); +  if (!UseImm) { +    SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1); +    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) +                    .addReg(SrcReg1).addReg(SrcReg2)); +  } else { +    MachineInstrBuilder MIB; +    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) +      .addReg(SrcReg1); + +    // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0. +    if (isICmp) +      MIB.addImm(Imm); +    AddOptionalDefs(MIB); +  } + +  // For floating point we need to move the result to a comparison register +  // that we can then use for branches. +  if (Ty->isFloatTy() || Ty->isDoubleTy()) +    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                            TII.get(ARM::FMSTAT))); +  return true; +} + +bool ARMFastISel::SelectCmp(const Instruction *I) { +  const CmpInst *CI = cast<CmpInst>(I); + +  // Get the compare predicate. +  ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate()); + +  // We may not handle every CC for now. +  if (ARMPred == ARMCC::AL) return false; + +  // Emit the compare. +  if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) +    return false; + +  // Now set a register based on the comparison. Explicitly set the predicates +  // here. +  unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; +  const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass +                                           : &ARM::GPRRegClass; +  unsigned DestReg = createResultReg(RC); +  Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0); +  unsigned ZeroReg = fastMaterializeConstant(Zero); +  // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR. +  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg) +          .addReg(ZeroReg).addImm(1) +          .addImm(ARMPred).addReg(ARM::CPSR); + +  updateValueMap(I, DestReg); +  return true; +} + +bool ARMFastISel::SelectFPExt(const Instruction *I) { +  // Make sure we have VFP and that we're extending float to double. +  if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false; + +  Value *V = I->getOperand(0); +  if (!I->getType()->isDoubleTy() || +      !V->getType()->isFloatTy()) return false; + +  unsigned Op = getRegForValue(V); +  if (Op == 0) return false; + +  unsigned Result = createResultReg(&ARM::DPRRegClass); +  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                          TII.get(ARM::VCVTDS), Result) +                  .addReg(Op)); +  updateValueMap(I, Result); +  return true; +} + +bool ARMFastISel::SelectFPTrunc(const Instruction *I) { +  // Make sure we have VFP and that we're truncating double to float. +  if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false; + +  Value *V = I->getOperand(0); +  if (!(I->getType()->isFloatTy() && +        V->getType()->isDoubleTy())) return false; + +  unsigned Op = getRegForValue(V); +  if (Op == 0) return false; + +  unsigned Result = createResultReg(&ARM::SPRRegClass); +  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                          TII.get(ARM::VCVTSD), Result) +                  .addReg(Op)); +  updateValueMap(I, Result); +  return true; +} + +bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) { +  // Make sure we have VFP. +  if (!Subtarget->hasVFP2Base()) return false; + +  MVT DstVT; +  Type *Ty = I->getType(); +  if (!isTypeLegal(Ty, DstVT)) +    return false; + +  Value *Src = I->getOperand(0); +  EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true); +  if (!SrcEVT.isSimple()) +    return false; +  MVT SrcVT = SrcEVT.getSimpleVT(); +  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) +    return false; + +  unsigned SrcReg = getRegForValue(Src); +  if (SrcReg == 0) return false; + +  // Handle sign-extension. +  if (SrcVT == MVT::i16 || SrcVT == MVT::i8) { +    SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32, +                                       /*isZExt*/!isSigned); +    if (SrcReg == 0) return false; +  } + +  // The conversion routine works on fp-reg to fp-reg and the operand above +  // was an integer, move it to the fp registers if possible. +  unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg); +  if (FP == 0) return false; + +  unsigned Opc; +  if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS; +  else if (Ty->isDoubleTy() && Subtarget->hasFP64()) +    Opc = isSigned ? ARM::VSITOD : ARM::VUITOD; +  else return false; + +  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT)); +  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                          TII.get(Opc), ResultReg).addReg(FP)); +  updateValueMap(I, ResultReg); +  return true; +} + +bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) { +  // Make sure we have VFP. +  if (!Subtarget->hasVFP2Base()) return false; + +  MVT DstVT; +  Type *RetTy = I->getType(); +  if (!isTypeLegal(RetTy, DstVT)) +    return false; + +  unsigned Op = getRegForValue(I->getOperand(0)); +  if (Op == 0) return false; + +  unsigned Opc; +  Type *OpTy = I->getOperand(0)->getType(); +  if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS; +  else if (OpTy->isDoubleTy() && Subtarget->hasFP64()) +    Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD; +  else return false; + +  // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg. +  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); +  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                          TII.get(Opc), ResultReg).addReg(Op)); + +  // This result needs to be in an integer register, but the conversion only +  // takes place in fp-regs. +  unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg); +  if (IntReg == 0) return false; + +  updateValueMap(I, IntReg); +  return true; +} + +bool ARMFastISel::SelectSelect(const Instruction *I) { +  MVT VT; +  if (!isTypeLegal(I->getType(), VT)) +    return false; + +  // Things need to be register sized for register moves. +  if (VT != MVT::i32) return false; + +  unsigned CondReg = getRegForValue(I->getOperand(0)); +  if (CondReg == 0) return false; +  unsigned Op1Reg = getRegForValue(I->getOperand(1)); +  if (Op1Reg == 0) return false; + +  // Check to see if we can use an immediate in the conditional move. +  int Imm = 0; +  bool UseImm = false; +  bool isNegativeImm = false; +  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) { +    assert(VT == MVT::i32 && "Expecting an i32."); +    Imm = (int)ConstInt->getValue().getZExtValue(); +    if (Imm < 0) { +      isNegativeImm = true; +      Imm = ~Imm; +    } +    UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : +      (ARM_AM::getSOImmVal(Imm) != -1); +  } + +  unsigned Op2Reg = 0; +  if (!UseImm) { +    Op2Reg = getRegForValue(I->getOperand(2)); +    if (Op2Reg == 0) return false; +  } + +  unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; +  CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0); +  AddOptionalDefs( +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc)) +          .addReg(CondReg) +          .addImm(1)); + +  unsigned MovCCOpc; +  const TargetRegisterClass *RC; +  if (!UseImm) { +    RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass; +    MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr; +  } else { +    RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass; +    if (!isNegativeImm) +      MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; +    else +      MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi; +  } +  unsigned ResultReg = createResultReg(RC); +  if (!UseImm) { +    Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1); +    Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), +            ResultReg) +        .addReg(Op2Reg) +        .addReg(Op1Reg) +        .addImm(ARMCC::NE) +        .addReg(ARM::CPSR); +  } else { +    Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), +            ResultReg) +        .addReg(Op1Reg) +        .addImm(Imm) +        .addImm(ARMCC::EQ) +        .addReg(ARM::CPSR); +  } +  updateValueMap(I, ResultReg); +  return true; +} + +bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) { +  MVT VT; +  Type *Ty = I->getType(); +  if (!isTypeLegal(Ty, VT)) +    return false; + +  // If we have integer div support we should have selected this automagically. +  // In case we have a real miss go ahead and return false and we'll pick +  // it up later. +  if (Subtarget->hasDivideInThumbMode()) +    return false; + +  // Otherwise emit a libcall. +  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; +  if (VT == MVT::i8) +    LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8; +  else if (VT == MVT::i16) +    LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16; +  else if (VT == MVT::i32) +    LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32; +  else if (VT == MVT::i64) +    LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64; +  else if (VT == MVT::i128) +    LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128; +  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!"); + +  return ARMEmitLibcall(I, LC); +} + +bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) { +  MVT VT; +  Type *Ty = I->getType(); +  if (!isTypeLegal(Ty, VT)) +    return false; + +  // Many ABIs do not provide a libcall for standalone remainder, so we need to +  // use divrem (see the RTABI 4.3.1). Since FastISel can't handle non-double +  // multi-reg returns, we'll have to bail out. +  if (!TLI.hasStandaloneRem(VT)) { +    return false; +  } + +  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; +  if (VT == MVT::i8) +    LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8; +  else if (VT == MVT::i16) +    LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16; +  else if (VT == MVT::i32) +    LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32; +  else if (VT == MVT::i64) +    LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64; +  else if (VT == MVT::i128) +    LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128; +  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!"); + +  return ARMEmitLibcall(I, LC); +} + +bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { +  EVT DestVT = TLI.getValueType(DL, I->getType(), true); + +  // We can get here in the case when we have a binary operation on a non-legal +  // type and the target independent selector doesn't know how to handle it. +  if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) +    return false; + +  unsigned Opc; +  switch (ISDOpcode) { +    default: return false; +    case ISD::ADD: +      Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr; +      break; +    case ISD::OR: +      Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr; +      break; +    case ISD::SUB: +      Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr; +      break; +  } + +  unsigned SrcReg1 = getRegForValue(I->getOperand(0)); +  if (SrcReg1 == 0) return false; + +  // TODO: Often the 2nd operand is an immediate, which can be encoded directly +  // in the instruction, rather then materializing the value in a register. +  unsigned SrcReg2 = getRegForValue(I->getOperand(1)); +  if (SrcReg2 == 0) return false; + +  unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); +  SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1); +  SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2); +  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                          TII.get(Opc), ResultReg) +                  .addReg(SrcReg1).addReg(SrcReg2)); +  updateValueMap(I, ResultReg); +  return true; +} + +bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) { +  EVT FPVT = TLI.getValueType(DL, I->getType(), true); +  if (!FPVT.isSimple()) return false; +  MVT VT = FPVT.getSimpleVT(); + +  // FIXME: Support vector types where possible. +  if (VT.isVector()) +    return false; + +  // We can get here in the case when we want to use NEON for our fp +  // operations, but can't figure out how to. Just use the vfp instructions +  // if we have them. +  // FIXME: It'd be nice to use NEON instructions. +  Type *Ty = I->getType(); +  if (Ty->isFloatTy() && !Subtarget->hasVFP2Base()) +    return false; +  if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64())) +    return false; + +  unsigned Opc; +  bool is64bit = VT == MVT::f64 || VT == MVT::i64; +  switch (ISDOpcode) { +    default: return false; +    case ISD::FADD: +      Opc = is64bit ? ARM::VADDD : ARM::VADDS; +      break; +    case ISD::FSUB: +      Opc = is64bit ? ARM::VSUBD : ARM::VSUBS; +      break; +    case ISD::FMUL: +      Opc = is64bit ? ARM::VMULD : ARM::VMULS; +      break; +  } +  unsigned Op1 = getRegForValue(I->getOperand(0)); +  if (Op1 == 0) return false; + +  unsigned Op2 = getRegForValue(I->getOperand(1)); +  if (Op2 == 0) return false; + +  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); +  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                          TII.get(Opc), ResultReg) +                  .addReg(Op1).addReg(Op2)); +  updateValueMap(I, ResultReg); +  return true; +} + +// Call Handling Code + +// This is largely taken directly from CCAssignFnForNode +// TODO: We may not support all of this. +CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, +                                           bool Return, +                                           bool isVarArg) { +  switch (CC) { +  default: +    report_fatal_error("Unsupported calling convention"); +  case CallingConv::Fast: +    if (Subtarget->hasVFP2Base() && !isVarArg) { +      if (!Subtarget->isAAPCS_ABI()) +        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); +      // For AAPCS ABI targets, just use VFP variant of the calling convention. +      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); +    } +    LLVM_FALLTHROUGH; +  case CallingConv::C: +  case CallingConv::CXX_FAST_TLS: +    // Use target triple & subtarget features to do actual dispatch. +    if (Subtarget->isAAPCS_ABI()) { +      if (Subtarget->hasVFP2Base() && +          TM.Options.FloatABIType == FloatABI::Hard && !isVarArg) +        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); +      else +        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); +    } else { +      return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); +    } +  case CallingConv::ARM_AAPCS_VFP: +  case CallingConv::Swift: +    if (!isVarArg) +      return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); +    // Fall through to soft float variant, variadic functions don't +    // use hard floating point ABI. +    LLVM_FALLTHROUGH; +  case CallingConv::ARM_AAPCS: +    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); +  case CallingConv::ARM_APCS: +    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); +  case CallingConv::GHC: +    if (Return) +      report_fatal_error("Can't return in GHC call convention"); +    else +      return CC_ARM_APCS_GHC; +  } +} + +bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args, +                                  SmallVectorImpl<Register> &ArgRegs, +                                  SmallVectorImpl<MVT> &ArgVTs, +                                  SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, +                                  SmallVectorImpl<Register> &RegArgs, +                                  CallingConv::ID CC, +                                  unsigned &NumBytes, +                                  bool isVarArg) { +  SmallVector<CCValAssign, 16> ArgLocs; +  CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context); +  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, +                             CCAssignFnForCall(CC, false, isVarArg)); + +  // Check that we can handle all of the arguments. If we can't, then bail out +  // now before we add code to the MBB. +  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { +    CCValAssign &VA = ArgLocs[i]; +    MVT ArgVT = ArgVTs[VA.getValNo()]; + +    // We don't handle NEON/vector parameters yet. +    if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64) +      return false; + +    // Now copy/store arg to correct locations. +    if (VA.isRegLoc() && !VA.needsCustom()) { +      continue; +    } else if (VA.needsCustom()) { +      // TODO: We need custom lowering for vector (v2f64) args. +      if (VA.getLocVT() != MVT::f64 || +          // TODO: Only handle register args for now. +          !VA.isRegLoc() || !ArgLocs[++i].isRegLoc()) +        return false; +    } else { +      switch (ArgVT.SimpleTy) { +      default: +        return false; +      case MVT::i1: +      case MVT::i8: +      case MVT::i16: +      case MVT::i32: +        break; +      case MVT::f32: +        if (!Subtarget->hasVFP2Base()) +          return false; +        break; +      case MVT::f64: +        if (!Subtarget->hasVFP2Base()) +          return false; +        break; +      } +    } +  } + +  // At the point, we are able to handle the call's arguments in fast isel. + +  // Get a count of how many bytes are to be pushed on the stack. +  NumBytes = CCInfo.getNextStackOffset(); + +  // Issue CALLSEQ_START +  unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); +  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                          TII.get(AdjStackDown)) +                  .addImm(NumBytes).addImm(0)); + +  // Process the args. +  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { +    CCValAssign &VA = ArgLocs[i]; +    const Value *ArgVal = Args[VA.getValNo()]; +    Register Arg = ArgRegs[VA.getValNo()]; +    MVT ArgVT = ArgVTs[VA.getValNo()]; + +    assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) && +           "We don't handle NEON/vector parameters yet."); + +    // Handle arg promotion, etc. +    switch (VA.getLocInfo()) { +      case CCValAssign::Full: break; +      case CCValAssign::SExt: { +        MVT DestVT = VA.getLocVT(); +        Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false); +        assert(Arg != 0 && "Failed to emit a sext"); +        ArgVT = DestVT; +        break; +      } +      case CCValAssign::AExt: +      // Intentional fall-through.  Handle AExt and ZExt. +      case CCValAssign::ZExt: { +        MVT DestVT = VA.getLocVT(); +        Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true); +        assert(Arg != 0 && "Failed to emit a zext"); +        ArgVT = DestVT; +        break; +      } +      case CCValAssign::BCvt: { +        unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg, +                                 /*TODO: Kill=*/false); +        assert(BC != 0 && "Failed to emit a bitcast!"); +        Arg = BC; +        ArgVT = VA.getLocVT(); +        break; +      } +      default: llvm_unreachable("Unknown arg promotion!"); +    } + +    // Now copy/store arg to correct locations. +    if (VA.isRegLoc() && !VA.needsCustom()) { +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +              TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg); +      RegArgs.push_back(VA.getLocReg()); +    } else if (VA.needsCustom()) { +      // TODO: We need custom lowering for vector (v2f64) args. +      assert(VA.getLocVT() == MVT::f64 && +             "Custom lowering for v2f64 args not available"); + +      // FIXME: ArgLocs[++i] may extend beyond ArgLocs.size() +      CCValAssign &NextVA = ArgLocs[++i]; + +      assert(VA.isRegLoc() && NextVA.isRegLoc() && +             "We only handle register args!"); + +      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                              TII.get(ARM::VMOVRRD), VA.getLocReg()) +                      .addReg(NextVA.getLocReg(), RegState::Define) +                      .addReg(Arg)); +      RegArgs.push_back(VA.getLocReg()); +      RegArgs.push_back(NextVA.getLocReg()); +    } else { +      assert(VA.isMemLoc()); +      // Need to store on the stack. + +      // Don't emit stores for undef values. +      if (isa<UndefValue>(ArgVal)) +        continue; + +      Address Addr; +      Addr.BaseType = Address::RegBase; +      Addr.Base.Reg = ARM::SP; +      Addr.Offset = VA.getLocMemOffset(); + +      bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet; +      assert(EmitRet && "Could not emit a store for argument!"); +    } +  } + +  return true; +} + +bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs, +                             const Instruction *I, CallingConv::ID CC, +                             unsigned &NumBytes, bool isVarArg) { +  // Issue CALLSEQ_END +  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); +  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                          TII.get(AdjStackUp)) +                  .addImm(NumBytes).addImm(0)); + +  // Now the return value. +  if (RetVT != MVT::isVoid) { +    SmallVector<CCValAssign, 16> RVLocs; +    CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); +    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); + +    // Copy all of the result registers out of their specified physreg. +    if (RVLocs.size() == 2 && RetVT == MVT::f64) { +      // For this move we copy into two registers and then move into the +      // double fp reg we want. +      MVT DestVT = RVLocs[0].getValVT(); +      const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT); +      Register ResultReg = createResultReg(DstRC); +      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                              TII.get(ARM::VMOVDRR), ResultReg) +                      .addReg(RVLocs[0].getLocReg()) +                      .addReg(RVLocs[1].getLocReg())); + +      UsedRegs.push_back(RVLocs[0].getLocReg()); +      UsedRegs.push_back(RVLocs[1].getLocReg()); + +      // Finally update the result. +      updateValueMap(I, ResultReg); +    } else { +      assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!"); +      MVT CopyVT = RVLocs[0].getValVT(); + +      // Special handling for extended integers. +      if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16) +        CopyVT = MVT::i32; + +      const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT); + +      Register ResultReg = createResultReg(DstRC); +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +              TII.get(TargetOpcode::COPY), +              ResultReg).addReg(RVLocs[0].getLocReg()); +      UsedRegs.push_back(RVLocs[0].getLocReg()); + +      // Finally update the result. +      updateValueMap(I, ResultReg); +    } +  } + +  return true; +} + +bool ARMFastISel::SelectRet(const Instruction *I) { +  const ReturnInst *Ret = cast<ReturnInst>(I); +  const Function &F = *I->getParent()->getParent(); + +  if (!FuncInfo.CanLowerReturn) +    return false; + +  if (TLI.supportSwiftError() && +      F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) +    return false; + +  if (TLI.supportSplitCSR(FuncInfo.MF)) +    return false; + +  // Build a list of return value registers. +  SmallVector<unsigned, 4> RetRegs; + +  CallingConv::ID CC = F.getCallingConv(); +  if (Ret->getNumOperands() > 0) { +    SmallVector<ISD::OutputArg, 4> Outs; +    GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); + +    // Analyze operands of the call, assigning locations to each operand. +    SmallVector<CCValAssign, 16> ValLocs; +    CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); +    CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */, +                                                 F.isVarArg())); + +    const Value *RV = Ret->getOperand(0); +    unsigned Reg = getRegForValue(RV); +    if (Reg == 0) +      return false; + +    // Only handle a single return value for now. +    if (ValLocs.size() != 1) +      return false; + +    CCValAssign &VA = ValLocs[0]; + +    // Don't bother handling odd stuff for now. +    if (VA.getLocInfo() != CCValAssign::Full) +      return false; +    // Only handle register returns for now. +    if (!VA.isRegLoc()) +      return false; + +    unsigned SrcReg = Reg + VA.getValNo(); +    EVT RVEVT = TLI.getValueType(DL, RV->getType()); +    if (!RVEVT.isSimple()) return false; +    MVT RVVT = RVEVT.getSimpleVT(); +    MVT DestVT = VA.getValVT(); +    // Special handling for extended integers. +    if (RVVT != DestVT) { +      if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) +        return false; + +      assert(DestVT == MVT::i32 && "ARM should always ext to i32"); + +      // Perform extension if flagged as either zext or sext.  Otherwise, do +      // nothing. +      if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) { +        SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt()); +        if (SrcReg == 0) return false; +      } +    } + +    // Make the copy. +    Register DstReg = VA.getLocReg(); +    const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg); +    // Avoid a cross-class copy. This is very unlikely. +    if (!SrcRC->contains(DstReg)) +      return false; +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +            TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); + +    // Add register to return instruction. +    RetRegs.push_back(VA.getLocReg()); +  } + +  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                                    TII.get(Subtarget->getReturnOpcode())); +  AddOptionalDefs(MIB); +  for (unsigned R : RetRegs) +    MIB.addReg(R, RegState::Implicit); +  return true; +} + +unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) { +  if (UseReg) +    return isThumb2 ? ARM::tBLXr : ARM::BLX; +  else +    return isThumb2 ? ARM::tBL : ARM::BL; +} + +unsigned ARMFastISel::getLibcallReg(const Twine &Name) { +  // Manually compute the global's type to avoid building it when unnecessary. +  Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0); +  EVT LCREVT = TLI.getValueType(DL, GVTy); +  if (!LCREVT.isSimple()) return 0; + +  GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false, +                                       GlobalValue::ExternalLinkage, nullptr, +                                       Name); +  assert(GV->getType() == GVTy && "We miscomputed the type for the global!"); +  return ARMMaterializeGV(GV, LCREVT.getSimpleVT()); +} + +// A quick function that will emit a call for a named libcall in F with the +// vector of passed arguments for the Instruction in I. We can assume that we +// can emit a call for any libcall we can produce. This is an abridged version +// of the full call infrastructure since we won't need to worry about things +// like computed function pointers or strange arguments at call sites. +// TODO: Try to unify this and the normal call bits for ARM, then try to unify +// with X86. +bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) { +  CallingConv::ID CC = TLI.getLibcallCallingConv(Call); + +  // Handle *simple* calls for now. +  Type *RetTy = I->getType(); +  MVT RetVT; +  if (RetTy->isVoidTy()) +    RetVT = MVT::isVoid; +  else if (!isTypeLegal(RetTy, RetVT)) +    return false; + +  // Can't handle non-double multi-reg retvals. +  if (RetVT != MVT::isVoid && RetVT != MVT::i32) { +    SmallVector<CCValAssign, 16> RVLocs; +    CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); +    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false)); +    if (RVLocs.size() >= 2 && RetVT != MVT::f64) +      return false; +  } + +  // Set up the argument vectors. +  SmallVector<Value*, 8> Args; +  SmallVector<Register, 8> ArgRegs; +  SmallVector<MVT, 8> ArgVTs; +  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; +  Args.reserve(I->getNumOperands()); +  ArgRegs.reserve(I->getNumOperands()); +  ArgVTs.reserve(I->getNumOperands()); +  ArgFlags.reserve(I->getNumOperands()); +  for (Value *Op :  I->operands()) { +    unsigned Arg = getRegForValue(Op); +    if (Arg == 0) return false; + +    Type *ArgTy = Op->getType(); +    MVT ArgVT; +    if (!isTypeLegal(ArgTy, ArgVT)) return false; + +    ISD::ArgFlagsTy Flags; +    Flags.setOrigAlign(Align(DL.getABITypeAlignment(ArgTy))); + +    Args.push_back(Op); +    ArgRegs.push_back(Arg); +    ArgVTs.push_back(ArgVT); +    ArgFlags.push_back(Flags); +  } + +  // Handle the arguments now that we've gotten them. +  SmallVector<Register, 4> RegArgs; +  unsigned NumBytes; +  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, +                       RegArgs, CC, NumBytes, false)) +    return false; + +  Register CalleeReg; +  if (Subtarget->genLongCalls()) { +    CalleeReg = getLibcallReg(TLI.getLibcallName(Call)); +    if (CalleeReg == 0) return false; +  } + +  // Issue the call. +  unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls()); +  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, +                                    DbgLoc, TII.get(CallOpc)); +  // BL / BLX don't take a predicate, but tBL / tBLX do. +  if (isThumb2) +    MIB.add(predOps(ARMCC::AL)); +  if (Subtarget->genLongCalls()) +    MIB.addReg(CalleeReg); +  else +    MIB.addExternalSymbol(TLI.getLibcallName(Call)); + +  // Add implicit physical register uses to the call. +  for (Register R : RegArgs) +    MIB.addReg(R, RegState::Implicit); + +  // Add a register mask with the call-preserved registers. +  // Proper defs for return values will be added by setPhysRegsDeadExcept(). +  MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); + +  // Finish off the call including any return values. +  SmallVector<Register, 4> UsedRegs; +  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false; + +  // Set all unused physreg defs as dead. +  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); + +  return true; +} + +bool ARMFastISel::SelectCall(const Instruction *I, +                             const char *IntrMemName = nullptr) { +  const CallInst *CI = cast<CallInst>(I); +  const Value *Callee = CI->getCalledValue(); + +  // Can't handle inline asm. +  if (isa<InlineAsm>(Callee)) return false; + +  // Allow SelectionDAG isel to handle tail calls. +  if (CI->isTailCall()) return false; + +  // Check the calling convention. +  ImmutableCallSite CS(CI); +  CallingConv::ID CC = CS.getCallingConv(); + +  // TODO: Avoid some calling conventions? + +  FunctionType *FTy = CS.getFunctionType(); +  bool isVarArg = FTy->isVarArg(); + +  // Handle *simple* calls for now. +  Type *RetTy = I->getType(); +  MVT RetVT; +  if (RetTy->isVoidTy()) +    RetVT = MVT::isVoid; +  else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && +           RetVT != MVT::i8  && RetVT != MVT::i1) +    return false; + +  // Can't handle non-double multi-reg retvals. +  if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 && +      RetVT != MVT::i16 && RetVT != MVT::i32) { +    SmallVector<CCValAssign, 16> RVLocs; +    CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); +    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); +    if (RVLocs.size() >= 2 && RetVT != MVT::f64) +      return false; +  } + +  // Set up the argument vectors. +  SmallVector<Value*, 8> Args; +  SmallVector<Register, 8> ArgRegs; +  SmallVector<MVT, 8> ArgVTs; +  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; +  unsigned arg_size = CS.arg_size(); +  Args.reserve(arg_size); +  ArgRegs.reserve(arg_size); +  ArgVTs.reserve(arg_size); +  ArgFlags.reserve(arg_size); +  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); +       i != e; ++i) { +    // If we're lowering a memory intrinsic instead of a regular call, skip the +    // last argument, which shouldn't be passed to the underlying function. +    if (IntrMemName && e - i <= 1) +      break; + +    ISD::ArgFlagsTy Flags; +    unsigned ArgIdx = i - CS.arg_begin(); +    if (CS.paramHasAttr(ArgIdx, Attribute::SExt)) +      Flags.setSExt(); +    if (CS.paramHasAttr(ArgIdx, Attribute::ZExt)) +      Flags.setZExt(); + +    // FIXME: Only handle *easy* calls for now. +    if (CS.paramHasAttr(ArgIdx, Attribute::InReg) || +        CS.paramHasAttr(ArgIdx, Attribute::StructRet) || +        CS.paramHasAttr(ArgIdx, Attribute::SwiftSelf) || +        CS.paramHasAttr(ArgIdx, Attribute::SwiftError) || +        CS.paramHasAttr(ArgIdx, Attribute::Nest) || +        CS.paramHasAttr(ArgIdx, Attribute::ByVal)) +      return false; + +    Type *ArgTy = (*i)->getType(); +    MVT ArgVT; +    if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 && +        ArgVT != MVT::i1) +      return false; + +    Register Arg = getRegForValue(*i); +    if (!Arg.isValid()) +      return false; + +    Flags.setOrigAlign(Align(DL.getABITypeAlignment(ArgTy))); + +    Args.push_back(*i); +    ArgRegs.push_back(Arg); +    ArgVTs.push_back(ArgVT); +    ArgFlags.push_back(Flags); +  } + +  // Handle the arguments now that we've gotten them. +  SmallVector<Register, 4> RegArgs; +  unsigned NumBytes; +  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, +                       RegArgs, CC, NumBytes, isVarArg)) +    return false; + +  bool UseReg = false; +  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); +  if (!GV || Subtarget->genLongCalls()) UseReg = true; + +  Register CalleeReg; +  if (UseReg) { +    if (IntrMemName) +      CalleeReg = getLibcallReg(IntrMemName); +    else +      CalleeReg = getRegForValue(Callee); + +    if (CalleeReg == 0) return false; +  } + +  // Issue the call. +  unsigned CallOpc = ARMSelectCallOp(UseReg); +  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, +                                    DbgLoc, TII.get(CallOpc)); + +  // ARM calls don't take a predicate, but tBL / tBLX do. +  if(isThumb2) +    MIB.add(predOps(ARMCC::AL)); +  if (UseReg) +    MIB.addReg(CalleeReg); +  else if (!IntrMemName) +    MIB.addGlobalAddress(GV, 0, 0); +  else +    MIB.addExternalSymbol(IntrMemName, 0); + +  // Add implicit physical register uses to the call. +  for (Register R : RegArgs) +    MIB.addReg(R, RegState::Implicit); + +  // Add a register mask with the call-preserved registers. +  // Proper defs for return values will be added by setPhysRegsDeadExcept(). +  MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); + +  // Finish off the call including any return values. +  SmallVector<Register, 4> UsedRegs; +  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg)) +    return false; + +  // Set all unused physreg defs as dead. +  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); + +  return true; +} + +bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) { +  return Len <= 16; +} + +bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, +                                        uint64_t Len, unsigned Alignment) { +  // Make sure we don't bloat code by inlining very large memcpy's. +  if (!ARMIsMemCpySmall(Len)) +    return false; + +  while (Len) { +    MVT VT; +    if (!Alignment || Alignment >= 4) { +      if (Len >= 4) +        VT = MVT::i32; +      else if (Len >= 2) +        VT = MVT::i16; +      else { +        assert(Len == 1 && "Expected a length of 1!"); +        VT = MVT::i8; +      } +    } else { +      // Bound based on alignment. +      if (Len >= 2 && Alignment == 2) +        VT = MVT::i16; +      else { +        VT = MVT::i8; +      } +    } + +    bool RV; +    Register ResultReg; +    RV = ARMEmitLoad(VT, ResultReg, Src); +    assert(RV && "Should be able to handle this load."); +    RV = ARMEmitStore(VT, ResultReg, Dest); +    assert(RV && "Should be able to handle this store."); +    (void)RV; + +    unsigned Size = VT.getSizeInBits()/8; +    Len -= Size; +    Dest.Offset += Size; +    Src.Offset += Size; +  } + +  return true; +} + +bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) { +  // FIXME: Handle more intrinsics. +  switch (I.getIntrinsicID()) { +  default: return false; +  case Intrinsic::frameaddress: { +    MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); +    MFI.setFrameAddressIsTaken(true); + +    unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; +    const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass +                                             : &ARM::GPRRegClass; + +    const ARMBaseRegisterInfo *RegInfo = +        static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo()); +    Register FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF)); +    unsigned SrcReg = FramePtr; + +    // Recursively load frame address +    // ldr r0 [fp] +    // ldr r0 [r0] +    // ldr r0 [r0] +    // ... +    unsigned DestReg; +    unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue(); +    while (Depth--) { +      DestReg = createResultReg(RC); +      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                              TII.get(LdrOpc), DestReg) +                      .addReg(SrcReg).addImm(0)); +      SrcReg = DestReg; +    } +    updateValueMap(&I, SrcReg); +    return true; +  } +  case Intrinsic::memcpy: +  case Intrinsic::memmove: { +    const MemTransferInst &MTI = cast<MemTransferInst>(I); +    // Don't handle volatile. +    if (MTI.isVolatile()) +      return false; + +    // Disable inlining for memmove before calls to ComputeAddress.  Otherwise, +    // we would emit dead code because we don't currently handle memmoves. +    bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy); +    if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) { +      // Small memcpy's are common enough that we want to do them without a call +      // if possible. +      uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue(); +      if (ARMIsMemCpySmall(Len)) { +        Address Dest, Src; +        if (!ARMComputeAddress(MTI.getRawDest(), Dest) || +            !ARMComputeAddress(MTI.getRawSource(), Src)) +          return false; +        unsigned Alignment = MinAlign(MTI.getDestAlignment(), +                                      MTI.getSourceAlignment()); +        if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment)) +          return true; +      } +    } + +    if (!MTI.getLength()->getType()->isIntegerTy(32)) +      return false; + +    if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255) +      return false; + +    const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove"; +    return SelectCall(&I, IntrMemName); +  } +  case Intrinsic::memset: { +    const MemSetInst &MSI = cast<MemSetInst>(I); +    // Don't handle volatile. +    if (MSI.isVolatile()) +      return false; + +    if (!MSI.getLength()->getType()->isIntegerTy(32)) +      return false; + +    if (MSI.getDestAddressSpace() > 255) +      return false; + +    return SelectCall(&I, "memset"); +  } +  case Intrinsic::trap: { +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get( +      Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP)); +    return true; +  } +  } +} + +bool ARMFastISel::SelectTrunc(const Instruction *I) { +  // The high bits for a type smaller than the register size are assumed to be +  // undefined. +  Value *Op = I->getOperand(0); + +  EVT SrcVT, DestVT; +  SrcVT = TLI.getValueType(DL, Op->getType(), true); +  DestVT = TLI.getValueType(DL, I->getType(), true); + +  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) +    return false; +  if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) +    return false; + +  unsigned SrcReg = getRegForValue(Op); +  if (!SrcReg) return false; + +  // Because the high bits are undefined, a truncate doesn't generate +  // any code. +  updateValueMap(I, SrcReg); +  return true; +} + +unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, +                                    bool isZExt) { +  if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) +    return 0; +  if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1) +    return 0; + +  // Table of which combinations can be emitted as a single instruction, +  // and which will require two. +  static const uint8_t isSingleInstrTbl[3][2][2][2] = { +    //            ARM                     Thumb +    //           !hasV6Ops  hasV6Ops     !hasV6Ops  hasV6Ops +    //    ext:     s  z      s  z          s  z      s  z +    /*  1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } }, +    /*  8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }, +    /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } } +  }; + +  // Target registers for: +  //  - For ARM can never be PC. +  //  - For 16-bit Thumb are restricted to lower 8 registers. +  //  - For 32-bit Thumb are restricted to non-SP and non-PC. +  static const TargetRegisterClass *RCTbl[2][2] = { +    // Instructions: Two                     Single +    /* ARM      */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass }, +    /* Thumb    */ { &ARM::tGPRRegClass,    &ARM::rGPRRegClass    } +  }; + +  // Table governing the instruction(s) to be emitted. +  static const struct InstructionTable { +    uint32_t Opc   : 16; +    uint32_t hasS  :  1; // Some instructions have an S bit, always set it to 0. +    uint32_t Shift :  7; // For shift operand addressing mode, used by MOVsi. +    uint32_t Imm   :  8; // All instructions have either a shift or a mask. +  } IT[2][2][3][2] = { +    { // Two instructions (first is left shift, second is in this table). +      { // ARM                Opc           S  Shift             Imm +        /*  1 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  31 }, +        /*  1 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  31 } }, +        /*  8 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  24 }, +        /*  8 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  24 } }, +        /* 16 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  16 }, +        /* 16 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  16 } } +      }, +      { // Thumb              Opc           S  Shift             Imm +        /*  1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  31 }, +        /*  1 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  31 } }, +        /*  8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  24 }, +        /*  8 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  24 } }, +        /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  16 }, +        /* 16 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  16 } } +      } +    }, +    { // Single instruction. +      { // ARM                Opc           S  Shift             Imm +        /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 }, +        /*  1 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift,   1 } }, +        /*  8 bit sext */ { { ARM::SXTB   , 0, ARM_AM::no_shift,   0 }, +        /*  8 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift, 255 } }, +        /* 16 bit sext */ { { ARM::SXTH   , 0, ARM_AM::no_shift,   0 }, +        /* 16 bit zext */   { ARM::UXTH   , 0, ARM_AM::no_shift,   0 } } +      }, +      { // Thumb              Opc           S  Shift             Imm +        /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 }, +        /*  1 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift,   1 } }, +        /*  8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift,   0 }, +        /*  8 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } }, +        /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift,   0 }, +        /* 16 bit zext */   { ARM::t2UXTH , 0, ARM_AM::no_shift,   0 } } +      } +    } +  }; + +  unsigned SrcBits = SrcVT.getSizeInBits(); +  unsigned DestBits = DestVT.getSizeInBits(); +  (void) DestBits; +  assert((SrcBits < DestBits) && "can only extend to larger types"); +  assert((DestBits == 32 || DestBits == 16 || DestBits == 8) && +         "other sizes unimplemented"); +  assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) && +         "other sizes unimplemented"); + +  bool hasV6Ops = Subtarget->hasV6Ops(); +  unsigned Bitness = SrcBits / 8;  // {1,8,16}=>{0,1,2} +  assert((Bitness < 3) && "sanity-check table bounds"); + +  bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt]; +  const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr]; +  const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt]; +  unsigned Opc = ITP->Opc; +  assert(ARM::KILL != Opc && "Invalid table entry"); +  unsigned hasS = ITP->hasS; +  ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift; +  assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) && +         "only MOVsi has shift operand addressing mode"); +  unsigned Imm = ITP->Imm; + +  // 16-bit Thumb instructions always set CPSR (unless they're in an IT block). +  bool setsCPSR = &ARM::tGPRRegClass == RC; +  unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi; +  unsigned ResultReg; +  // MOVsi encodes shift and immediate in shift operand addressing mode. +  // The following condition has the same value when emitting two +  // instruction sequences: both are shifts. +  bool ImmIsSO = (Shift != ARM_AM::no_shift); + +  // Either one or two instructions are emitted. +  // They're always of the form: +  //   dst = in OP imm +  // CPSR is set only by 16-bit Thumb instructions. +  // Predicate, if any, is AL. +  // S bit, if available, is always 0. +  // When two are emitted the first's result will feed as the second's input, +  // that value is then dead. +  unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2; +  for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) { +    ResultReg = createResultReg(RC); +    bool isLsl = (0 == Instr) && !isSingleInstr; +    unsigned Opcode = isLsl ? LSLOpc : Opc; +    ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift; +    unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm; +    bool isKill = 1 == Instr; +    MachineInstrBuilder MIB = BuildMI( +        *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg); +    if (setsCPSR) +      MIB.addReg(ARM::CPSR, RegState::Define); +    SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR); +    MIB.addReg(SrcReg, isKill * RegState::Kill) +        .addImm(ImmEnc) +        .add(predOps(ARMCC::AL)); +    if (hasS) +      MIB.add(condCodeOp()); +    // Second instruction consumes the first's result. +    SrcReg = ResultReg; +  } + +  return ResultReg; +} + +bool ARMFastISel::SelectIntExt(const Instruction *I) { +  // On ARM, in general, integer casts don't involve legal types; this code +  // handles promotable integers. +  Type *DestTy = I->getType(); +  Value *Src = I->getOperand(0); +  Type *SrcTy = Src->getType(); + +  bool isZExt = isa<ZExtInst>(I); +  unsigned SrcReg = getRegForValue(Src); +  if (!SrcReg) return false; + +  EVT SrcEVT, DestEVT; +  SrcEVT = TLI.getValueType(DL, SrcTy, true); +  DestEVT = TLI.getValueType(DL, DestTy, true); +  if (!SrcEVT.isSimple()) return false; +  if (!DestEVT.isSimple()) return false; + +  MVT SrcVT = SrcEVT.getSimpleVT(); +  MVT DestVT = DestEVT.getSimpleVT(); +  unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt); +  if (ResultReg == 0) return false; +  updateValueMap(I, ResultReg); +  return true; +} + +bool ARMFastISel::SelectShift(const Instruction *I, +                              ARM_AM::ShiftOpc ShiftTy) { +  // We handle thumb2 mode by target independent selector +  // or SelectionDAG ISel. +  if (isThumb2) +    return false; + +  // Only handle i32 now. +  EVT DestVT = TLI.getValueType(DL, I->getType(), true); +  if (DestVT != MVT::i32) +    return false; + +  unsigned Opc = ARM::MOVsr; +  unsigned ShiftImm; +  Value *Src2Value = I->getOperand(1); +  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) { +    ShiftImm = CI->getZExtValue(); + +    // Fall back to selection DAG isel if the shift amount +    // is zero or greater than the width of the value type. +    if (ShiftImm == 0 || ShiftImm >=32) +      return false; + +    Opc = ARM::MOVsi; +  } + +  Value *Src1Value = I->getOperand(0); +  unsigned Reg1 = getRegForValue(Src1Value); +  if (Reg1 == 0) return false; + +  unsigned Reg2 = 0; +  if (Opc == ARM::MOVsr) { +    Reg2 = getRegForValue(Src2Value); +    if (Reg2 == 0) return false; +  } + +  unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); +  if(ResultReg == 0) return false; + +  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                                    TII.get(Opc), ResultReg) +                            .addReg(Reg1); + +  if (Opc == ARM::MOVsi) +    MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm)); +  else if (Opc == ARM::MOVsr) { +    MIB.addReg(Reg2); +    MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0)); +  } + +  AddOptionalDefs(MIB); +  updateValueMap(I, ResultReg); +  return true; +} + +// TODO: SoftFP support. +bool ARMFastISel::fastSelectInstruction(const Instruction *I) { +  switch (I->getOpcode()) { +    case Instruction::Load: +      return SelectLoad(I); +    case Instruction::Store: +      return SelectStore(I); +    case Instruction::Br: +      return SelectBranch(I); +    case Instruction::IndirectBr: +      return SelectIndirectBr(I); +    case Instruction::ICmp: +    case Instruction::FCmp: +      return SelectCmp(I); +    case Instruction::FPExt: +      return SelectFPExt(I); +    case Instruction::FPTrunc: +      return SelectFPTrunc(I); +    case Instruction::SIToFP: +      return SelectIToFP(I, /*isSigned*/ true); +    case Instruction::UIToFP: +      return SelectIToFP(I, /*isSigned*/ false); +    case Instruction::FPToSI: +      return SelectFPToI(I, /*isSigned*/ true); +    case Instruction::FPToUI: +      return SelectFPToI(I, /*isSigned*/ false); +    case Instruction::Add: +      return SelectBinaryIntOp(I, ISD::ADD); +    case Instruction::Or: +      return SelectBinaryIntOp(I, ISD::OR); +    case Instruction::Sub: +      return SelectBinaryIntOp(I, ISD::SUB); +    case Instruction::FAdd: +      return SelectBinaryFPOp(I, ISD::FADD); +    case Instruction::FSub: +      return SelectBinaryFPOp(I, ISD::FSUB); +    case Instruction::FMul: +      return SelectBinaryFPOp(I, ISD::FMUL); +    case Instruction::SDiv: +      return SelectDiv(I, /*isSigned*/ true); +    case Instruction::UDiv: +      return SelectDiv(I, /*isSigned*/ false); +    case Instruction::SRem: +      return SelectRem(I, /*isSigned*/ true); +    case Instruction::URem: +      return SelectRem(I, /*isSigned*/ false); +    case Instruction::Call: +      if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) +        return SelectIntrinsicCall(*II); +      return SelectCall(I); +    case Instruction::Select: +      return SelectSelect(I); +    case Instruction::Ret: +      return SelectRet(I); +    case Instruction::Trunc: +      return SelectTrunc(I); +    case Instruction::ZExt: +    case Instruction::SExt: +      return SelectIntExt(I); +    case Instruction::Shl: +      return SelectShift(I, ARM_AM::lsl); +    case Instruction::LShr: +      return SelectShift(I, ARM_AM::lsr); +    case Instruction::AShr: +      return SelectShift(I, ARM_AM::asr); +    default: break; +  } +  return false; +} + +// This table describes sign- and zero-extend instructions which can be +// folded into a preceding load. All of these extends have an immediate +// (sometimes a mask and sometimes a shift) that's applied after +// extension. +static const struct FoldableLoadExtendsStruct { +  uint16_t Opc[2];  // ARM, Thumb. +  uint8_t ExpectedImm; +  uint8_t isZExt     : 1; +  uint8_t ExpectedVT : 7; +} FoldableLoadExtends[] = { +  { { ARM::SXTH,  ARM::t2SXTH  },   0, 0, MVT::i16 }, +  { { ARM::UXTH,  ARM::t2UXTH  },   0, 1, MVT::i16 }, +  { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8  }, +  { { ARM::SXTB,  ARM::t2SXTB  },   0, 0, MVT::i8  }, +  { { ARM::UXTB,  ARM::t2UXTB  },   0, 1, MVT::i8  } +}; + +/// The specified machine instr operand is a vreg, and that +/// vreg is being provided by the specified load instruction.  If possible, +/// try to fold the load as an operand to the instruction, returning true if +/// successful. +bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, +                                      const LoadInst *LI) { +  // Verify we have a legal type before going any further. +  MVT VT; +  if (!isLoadTypeLegal(LI->getType(), VT)) +    return false; + +  // Combine load followed by zero- or sign-extend. +  // ldrb r1, [r0]       ldrb r1, [r0] +  // uxtb r2, r1     => +  // mov  r3, r2         mov  r3, r1 +  if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm()) +    return false; +  const uint64_t Imm = MI->getOperand(2).getImm(); + +  bool Found = false; +  bool isZExt; +  for (const FoldableLoadExtendsStruct &FLE : FoldableLoadExtends) { +    if (FLE.Opc[isThumb2] == MI->getOpcode() && +        (uint64_t)FLE.ExpectedImm == Imm && +        MVT((MVT::SimpleValueType)FLE.ExpectedVT) == VT) { +      Found = true; +      isZExt = FLE.isZExt; +    } +  } +  if (!Found) return false; + +  // See if we can handle this address. +  Address Addr; +  if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false; + +  Register ResultReg = MI->getOperand(0).getReg(); +  if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false)) +    return false; +  MachineBasicBlock::iterator I(MI); +  removeDeadCode(I, std::next(I)); +  return true; +} + +unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV, +                                     unsigned Align, MVT VT) { +  bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV); + +  LLVMContext *Context = &MF->getFunction().getContext(); +  unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); +  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; +  ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create( +      GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj, +      UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier, +      /*AddCurrentAddress=*/UseGOT_PREL); + +  unsigned ConstAlign = +      MF->getDataLayout().getPrefTypeAlignment(Type::getInt32PtrTy(*Context)); +  unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign); +  MachineMemOperand *CPMMO = +      MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF), +                               MachineMemOperand::MOLoad, 4, 4); + +  Register TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass); +  unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp; +  MachineInstrBuilder MIB = +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), TempReg) +          .addConstantPoolIndex(Idx) +          .addMemOperand(CPMMO); +  if (Opc == ARM::LDRcp) +    MIB.addImm(0); +  MIB.add(predOps(ARMCC::AL)); + +  // Fix the address by adding pc. +  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); +  Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR +                                                          : ARM::PICADD; +  DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0); +  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) +            .addReg(TempReg) +            .addImm(ARMPCLabelIndex); + +  if (!Subtarget->isThumb()) +    MIB.add(predOps(ARMCC::AL)); + +  if (UseGOT_PREL && Subtarget->isThumb()) { +    unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); +    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                  TII.get(ARM::t2LDRi12), NewDestReg) +              .addReg(DestReg) +              .addImm(0); +    DestReg = NewDestReg; +    AddOptionalDefs(MIB); +  } +  return DestReg; +} + +bool ARMFastISel::fastLowerArguments() { +  if (!FuncInfo.CanLowerReturn) +    return false; + +  const Function *F = FuncInfo.Fn; +  if (F->isVarArg()) +    return false; + +  CallingConv::ID CC = F->getCallingConv(); +  switch (CC) { +  default: +    return false; +  case CallingConv::Fast: +  case CallingConv::C: +  case CallingConv::ARM_AAPCS_VFP: +  case CallingConv::ARM_AAPCS: +  case CallingConv::ARM_APCS: +  case CallingConv::Swift: +    break; +  } + +  // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments +  // which are passed in r0 - r3. +  for (const Argument &Arg : F->args()) { +    if (Arg.getArgNo() >= 4) +      return false; + +    if (Arg.hasAttribute(Attribute::InReg) || +        Arg.hasAttribute(Attribute::StructRet) || +        Arg.hasAttribute(Attribute::SwiftSelf) || +        Arg.hasAttribute(Attribute::SwiftError) || +        Arg.hasAttribute(Attribute::ByVal)) +      return false; + +    Type *ArgTy = Arg.getType(); +    if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) +      return false; + +    EVT ArgVT = TLI.getValueType(DL, ArgTy); +    if (!ArgVT.isSimple()) return false; +    switch (ArgVT.getSimpleVT().SimpleTy) { +    case MVT::i8: +    case MVT::i16: +    case MVT::i32: +      break; +    default: +      return false; +    } +  } + +  static const MCPhysReg GPRArgRegs[] = { +    ARM::R0, ARM::R1, ARM::R2, ARM::R3 +  }; + +  const TargetRegisterClass *RC = &ARM::rGPRRegClass; +  for (const Argument &Arg : F->args()) { +    unsigned ArgNo = Arg.getArgNo(); +    unsigned SrcReg = GPRArgRegs[ArgNo]; +    unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); +    // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. +    // Without this, EmitLiveInCopies may eliminate the livein if its only +    // use is a bitcast (which isn't turned into an instruction). +    unsigned ResultReg = createResultReg(RC); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +            TII.get(TargetOpcode::COPY), +            ResultReg).addReg(DstReg, getKillRegState(true)); +    updateValueMap(&Arg, ResultReg); +  } + +  return true; +} + +namespace llvm { + +  FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo, +                                const TargetLibraryInfo *libInfo) { +    if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel()) +      return new ARMFastISel(funcInfo, libInfo); + +    return nullptr; +  } + +} // end namespace llvm | 
