diff options
Diffstat (limited to 'llvm/lib/Target/ARM/ARMTargetTransformInfo.cpp')
| -rw-r--r-- | llvm/lib/Target/ARM/ARMTargetTransformInfo.cpp | 1096 |
1 files changed, 1096 insertions, 0 deletions
diff --git a/llvm/lib/Target/ARM/ARMTargetTransformInfo.cpp b/llvm/lib/Target/ARM/ARMTargetTransformInfo.cpp new file mode 100644 index 000000000000..86c8684d14dc --- /dev/null +++ b/llvm/lib/Target/ARM/ARMTargetTransformInfo.cpp @@ -0,0 +1,1096 @@ +//===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#include "ARMTargetTransformInfo.h" +#include "ARMSubtarget.h" +#include "MCTargetDesc/ARMAddressingModes.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/CodeGen/CostTable.h" +#include "llvm/CodeGen/ISDOpcodes.h" +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Type.h" +#include "llvm/MC/SubtargetFeature.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/MachineValueType.h" +#include "llvm/Target/TargetMachine.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <utility> + +using namespace llvm; + +#define DEBUG_TYPE "armtti" + +static cl::opt<bool> EnableMaskedLoadStores( + "enable-arm-maskedldst", cl::Hidden, cl::init(false), + cl::desc("Enable the generation of masked loads and stores")); + +static cl::opt<bool> DisableLowOverheadLoops( + "disable-arm-loloops", cl::Hidden, cl::init(false), + cl::desc("Disable the generation of low-overhead loops")); + +bool ARMTTIImpl::areInlineCompatible(const Function *Caller, + const Function *Callee) const { + const TargetMachine &TM = getTLI()->getTargetMachine(); + const FeatureBitset &CallerBits = + TM.getSubtargetImpl(*Caller)->getFeatureBits(); + const FeatureBitset &CalleeBits = + TM.getSubtargetImpl(*Callee)->getFeatureBits(); + + // To inline a callee, all features not in the whitelist must match exactly. + bool MatchExact = (CallerBits & ~InlineFeatureWhitelist) == + (CalleeBits & ~InlineFeatureWhitelist); + // For features in the whitelist, the callee's features must be a subset of + // the callers'. + bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeatureWhitelist) == + (CalleeBits & InlineFeatureWhitelist); + return MatchExact && MatchSubset; +} + +int ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { + assert(Ty->isIntegerTy()); + + unsigned Bits = Ty->getPrimitiveSizeInBits(); + if (Bits == 0 || Imm.getActiveBits() >= 64) + return 4; + + int64_t SImmVal = Imm.getSExtValue(); + uint64_t ZImmVal = Imm.getZExtValue(); + if (!ST->isThumb()) { + if ((SImmVal >= 0 && SImmVal < 65536) || + (ARM_AM::getSOImmVal(ZImmVal) != -1) || + (ARM_AM::getSOImmVal(~ZImmVal) != -1)) + return 1; + return ST->hasV6T2Ops() ? 2 : 3; + } + if (ST->isThumb2()) { + if ((SImmVal >= 0 && SImmVal < 65536) || + (ARM_AM::getT2SOImmVal(ZImmVal) != -1) || + (ARM_AM::getT2SOImmVal(~ZImmVal) != -1)) + return 1; + return ST->hasV6T2Ops() ? 2 : 3; + } + // Thumb1, any i8 imm cost 1. + if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256)) + return 1; + if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal)) + return 2; + // Load from constantpool. + return 3; +} + +// Constants smaller than 256 fit in the immediate field of +// Thumb1 instructions so we return a zero cost and 1 otherwise. +int ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, + const APInt &Imm, Type *Ty) { + if (Imm.isNonNegative() && Imm.getLimitedValue() < 256) + return 0; + + return 1; +} + +int ARMTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, + Type *Ty) { + // Division by a constant can be turned into multiplication, but only if we + // know it's constant. So it's not so much that the immediate is cheap (it's + // not), but that the alternative is worse. + // FIXME: this is probably unneeded with GlobalISel. + if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv || + Opcode == Instruction::SRem || Opcode == Instruction::URem) && + Idx == 1) + return 0; + + if (Opcode == Instruction::And) { + // UXTB/UXTH + if (Imm == 255 || Imm == 65535) + return 0; + // Conversion to BIC is free, and means we can use ~Imm instead. + return std::min(getIntImmCost(Imm, Ty), getIntImmCost(~Imm, Ty)); + } + + if (Opcode == Instruction::Add) + // Conversion to SUB is free, and means we can use -Imm instead. + return std::min(getIntImmCost(Imm, Ty), getIntImmCost(-Imm, Ty)); + + if (Opcode == Instruction::ICmp && Imm.isNegative() && + Ty->getIntegerBitWidth() == 32) { + int64_t NegImm = -Imm.getSExtValue(); + if (ST->isThumb2() && NegImm < 1<<12) + // icmp X, #-C -> cmn X, #C + return 0; + if (ST->isThumb() && NegImm < 1<<8) + // icmp X, #-C -> adds X, #C + return 0; + } + + // xor a, -1 can always be folded to MVN + if (Opcode == Instruction::Xor && Imm.isAllOnesValue()) + return 0; + + return getIntImmCost(Imm, Ty); +} + +int ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, + const Instruction *I) { + int ISD = TLI->InstructionOpcodeToISD(Opcode); + assert(ISD && "Invalid opcode"); + + // Single to/from double precision conversions. + static const CostTblEntry NEONFltDblTbl[] = { + // Vector fptrunc/fpext conversions. + { ISD::FP_ROUND, MVT::v2f64, 2 }, + { ISD::FP_EXTEND, MVT::v2f32, 2 }, + { ISD::FP_EXTEND, MVT::v4f32, 4 } + }; + + if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND || + ISD == ISD::FP_EXTEND)) { + std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); + if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second)) + return LT.first * Entry->Cost; + } + + EVT SrcTy = TLI->getValueType(DL, Src); + EVT DstTy = TLI->getValueType(DL, Dst); + + if (!SrcTy.isSimple() || !DstTy.isSimple()) + return BaseT::getCastInstrCost(Opcode, Dst, Src); + + // The extend of a load is free + if (I && isa<LoadInst>(I->getOperand(0))) { + static const TypeConversionCostTblEntry LoadConversionTbl[] = { + {ISD::SIGN_EXTEND, MVT::i32, MVT::i16, 0}, + {ISD::ZERO_EXTEND, MVT::i32, MVT::i16, 0}, + {ISD::SIGN_EXTEND, MVT::i32, MVT::i8, 0}, + {ISD::ZERO_EXTEND, MVT::i32, MVT::i8, 0}, + {ISD::SIGN_EXTEND, MVT::i16, MVT::i8, 0}, + {ISD::ZERO_EXTEND, MVT::i16, MVT::i8, 0}, + {ISD::SIGN_EXTEND, MVT::i64, MVT::i32, 1}, + {ISD::ZERO_EXTEND, MVT::i64, MVT::i32, 1}, + {ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 1}, + {ISD::ZERO_EXTEND, MVT::i64, MVT::i16, 1}, + {ISD::SIGN_EXTEND, MVT::i64, MVT::i8, 1}, + {ISD::ZERO_EXTEND, MVT::i64, MVT::i8, 1}, + }; + if (const auto *Entry = ConvertCostTableLookup( + LoadConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT())) + return Entry->Cost; + + static const TypeConversionCostTblEntry MVELoadConversionTbl[] = { + {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0}, + {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0}, + {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 0}, + {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 0}, + {ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 0}, + {ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 0}, + }; + if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { + if (const auto *Entry = + ConvertCostTableLookup(MVELoadConversionTbl, ISD, + DstTy.getSimpleVT(), SrcTy.getSimpleVT())) + return Entry->Cost; + } + } + + // Some arithmetic, load and store operations have specific instructions + // to cast up/down their types automatically at no extra cost. + // TODO: Get these tables to know at least what the related operations are. + static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = { + { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 }, + { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 }, + { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, + { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, + { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 }, + { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, + + // The number of vmovl instructions for the extension. + { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, + { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, + { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, + { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, + { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, + { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, + { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, + { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, + { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, + { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, + + // Operations that we legalize using splitting. + { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 }, + { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, + + // Vector float <-> i32 conversions. + { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, + { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, + + { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, + { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, + { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, + { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, + { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, + { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, + { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, + { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, + { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, + { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, + { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, + { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, + { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, + { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, + { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, + { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, + { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, + { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, + { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, + { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, + + { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, + { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, + { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 }, + { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 }, + { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, + { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, + + // Vector double <-> i32 conversions. + { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, + { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, + + { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, + { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, + { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, + { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, + { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, + { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, + + { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 }, + { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 }, + { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 }, + { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 }, + { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 }, + { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 } + }; + + if (SrcTy.isVector() && ST->hasNEON()) { + if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD, + DstTy.getSimpleVT(), + SrcTy.getSimpleVT())) + return Entry->Cost; + } + + // Scalar float to integer conversions. + static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = { + { ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 }, + { ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 }, + { ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 }, + { ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 }, + { ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 }, + { ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 }, + { ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 }, + { ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 }, + { ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 }, + { ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 }, + { ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 }, + { ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 }, + { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 }, + { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 }, + { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 }, + { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 }, + { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 }, + { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 }, + { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 }, + { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 } + }; + if (SrcTy.isFloatingPoint() && ST->hasNEON()) { + if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD, + DstTy.getSimpleVT(), + SrcTy.getSimpleVT())) + return Entry->Cost; + } + + // Scalar integer to float conversions. + static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = { + { ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 }, + { ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 }, + { ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 }, + { ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 }, + { ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 }, + { ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 }, + { ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 }, + { ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 }, + { ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 }, + { ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 }, + { ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 }, + { ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 }, + { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 }, + { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 }, + { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 }, + { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 }, + { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 }, + { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 }, + { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 }, + { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 } + }; + + if (SrcTy.isInteger() && ST->hasNEON()) { + if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl, + ISD, DstTy.getSimpleVT(), + SrcTy.getSimpleVT())) + return Entry->Cost; + } + + // MVE extend costs, taken from codegen tests. i8->i16 or i16->i32 is one + // instruction, i8->i32 is two. i64 zexts are an VAND with a constant, sext + // are linearised so take more. + static const TypeConversionCostTblEntry MVEVectorConversionTbl[] = { + { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, + { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, + { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, + { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, + { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 10 }, + { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 2 }, + { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, + { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, + { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 10 }, + { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 }, + { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 8 }, + { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 2 }, + }; + + if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { + if (const auto *Entry = ConvertCostTableLookup(MVEVectorConversionTbl, + ISD, DstTy.getSimpleVT(), + SrcTy.getSimpleVT())) + return Entry->Cost * ST->getMVEVectorCostFactor(); + } + + // Scalar integer conversion costs. + static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = { + // i16 -> i64 requires two dependent operations. + { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 }, + + // Truncates on i64 are assumed to be free. + { ISD::TRUNCATE, MVT::i32, MVT::i64, 0 }, + { ISD::TRUNCATE, MVT::i16, MVT::i64, 0 }, + { ISD::TRUNCATE, MVT::i8, MVT::i64, 0 }, + { ISD::TRUNCATE, MVT::i1, MVT::i64, 0 } + }; + + if (SrcTy.isInteger()) { + if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD, + DstTy.getSimpleVT(), + SrcTy.getSimpleVT())) + return Entry->Cost; + } + + int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy() + ? ST->getMVEVectorCostFactor() + : 1; + return BaseCost * BaseT::getCastInstrCost(Opcode, Dst, Src); +} + +int ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, + unsigned Index) { + // Penalize inserting into an D-subregister. We end up with a three times + // lower estimated throughput on swift. + if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement && + ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32) + return 3; + + if (ST->hasNEON() && (Opcode == Instruction::InsertElement || + Opcode == Instruction::ExtractElement)) { + // Cross-class copies are expensive on many microarchitectures, + // so assume they are expensive by default. + if (ValTy->getVectorElementType()->isIntegerTy()) + return 3; + + // Even if it's not a cross class copy, this likely leads to mixing + // of NEON and VFP code and should be therefore penalized. + if (ValTy->isVectorTy() && + ValTy->getScalarSizeInBits() <= 32) + return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U); + } + + if (ST->hasMVEIntegerOps() && (Opcode == Instruction::InsertElement || + Opcode == Instruction::ExtractElement)) { + // We say MVE moves costs at least the MVEVectorCostFactor, even though + // they are scalar instructions. This helps prevent mixing scalar and + // vector, to prevent vectorising where we end up just scalarising the + // result anyway. + return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), + ST->getMVEVectorCostFactor()) * + ValTy->getVectorNumElements() / 2; + } + + return BaseT::getVectorInstrCost(Opcode, ValTy, Index); +} + +int ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, + const Instruction *I) { + int ISD = TLI->InstructionOpcodeToISD(Opcode); + // On NEON a vector select gets lowered to vbsl. + if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) { + // Lowering of some vector selects is currently far from perfect. + static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = { + { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 }, + { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 }, + { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 } + }; + + EVT SelCondTy = TLI->getValueType(DL, CondTy); + EVT SelValTy = TLI->getValueType(DL, ValTy); + if (SelCondTy.isSimple() && SelValTy.isSimple()) { + if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD, + SelCondTy.getSimpleVT(), + SelValTy.getSimpleVT())) + return Entry->Cost; + } + + std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); + return LT.first; + } + + int BaseCost = ST->hasMVEIntegerOps() && ValTy->isVectorTy() + ? ST->getMVEVectorCostFactor() + : 1; + return BaseCost * BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I); +} + +int ARMTTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE, + const SCEV *Ptr) { + // Address computations in vectorized code with non-consecutive addresses will + // likely result in more instructions compared to scalar code where the + // computation can more often be merged into the index mode. The resulting + // extra micro-ops can significantly decrease throughput. + unsigned NumVectorInstToHideOverhead = 10; + int MaxMergeDistance = 64; + + if (ST->hasNEON()) { + if (Ty->isVectorTy() && SE && + !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1)) + return NumVectorInstToHideOverhead; + + // In many cases the address computation is not merged into the instruction + // addressing mode. + return 1; + } + return BaseT::getAddressComputationCost(Ty, SE, Ptr); +} + +bool ARMTTIImpl::isLegalMaskedLoad(Type *DataTy, MaybeAlign Alignment) { + if (!EnableMaskedLoadStores || !ST->hasMVEIntegerOps()) + return false; + + if (auto *VecTy = dyn_cast<VectorType>(DataTy)) { + // Don't support v2i1 yet. + if (VecTy->getNumElements() == 2) + return false; + + // We don't support extending fp types. + unsigned VecWidth = DataTy->getPrimitiveSizeInBits(); + if (VecWidth != 128 && VecTy->getElementType()->isFloatingPointTy()) + return false; + } + + unsigned EltWidth = DataTy->getScalarSizeInBits(); + return (EltWidth == 32 && (!Alignment || Alignment >= 4)) || + (EltWidth == 16 && (!Alignment || Alignment >= 2)) || + (EltWidth == 8); +} + +int ARMTTIImpl::getMemcpyCost(const Instruction *I) { + const MemCpyInst *MI = dyn_cast<MemCpyInst>(I); + assert(MI && "MemcpyInst expected"); + ConstantInt *C = dyn_cast<ConstantInt>(MI->getLength()); + + // To model the cost of a library call, we assume 1 for the call, and + // 3 for the argument setup. + const unsigned LibCallCost = 4; + + // If 'size' is not a constant, a library call will be generated. + if (!C) + return LibCallCost; + + const unsigned Size = C->getValue().getZExtValue(); + const unsigned DstAlign = MI->getDestAlignment(); + const unsigned SrcAlign = MI->getSourceAlignment(); + const Function *F = I->getParent()->getParent(); + const unsigned Limit = TLI->getMaxStoresPerMemmove(F->hasMinSize()); + std::vector<EVT> MemOps; + + // MemOps will be poplulated with a list of data types that needs to be + // loaded and stored. That's why we multiply the number of elements by 2 to + // get the cost for this memcpy. + if (getTLI()->findOptimalMemOpLowering( + MemOps, Limit, Size, DstAlign, SrcAlign, false /*IsMemset*/, + false /*ZeroMemset*/, false /*MemcpyStrSrc*/, false /*AllowOverlap*/, + MI->getDestAddressSpace(), MI->getSourceAddressSpace(), + F->getAttributes())) + return MemOps.size() * 2; + + // If we can't find an optimal memop lowering, return the default cost + return LibCallCost; +} + +int ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, + Type *SubTp) { + if (ST->hasNEON()) { + if (Kind == TTI::SK_Broadcast) { + static const CostTblEntry NEONDupTbl[] = { + // VDUP handles these cases. + {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, + {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, + {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, + {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, + {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1}, + {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1}, + + {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1}, + {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, + {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, + {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}}; + + std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); + + if (const auto *Entry = + CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE, LT.second)) + return LT.first * Entry->Cost; + } + if (Kind == TTI::SK_Reverse) { + static const CostTblEntry NEONShuffleTbl[] = { + // Reverse shuffle cost one instruction if we are shuffling within a + // double word (vrev) or two if we shuffle a quad word (vrev, vext). + {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, + {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, + {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, + {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, + {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1}, + {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1}, + + {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, + {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, + {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2}, + {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}}; + + std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); + + if (const auto *Entry = + CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second)) + return LT.first * Entry->Cost; + } + if (Kind == TTI::SK_Select) { + static const CostTblEntry NEONSelShuffleTbl[] = { + // Select shuffle cost table for ARM. Cost is the number of + // instructions + // required to create the shuffled vector. + + {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, + {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, + {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, + {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, + + {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, + {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, + {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2}, + + {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16}, + + {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}}; + + std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); + if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl, + ISD::VECTOR_SHUFFLE, LT.second)) + return LT.first * Entry->Cost; + } + } + if (ST->hasMVEIntegerOps()) { + if (Kind == TTI::SK_Broadcast) { + static const CostTblEntry MVEDupTbl[] = { + // VDUP handles these cases. + {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1}, + {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, + {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}, + {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, + {ISD::VECTOR_SHUFFLE, MVT::v8f16, 1}}; + + std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); + + if (const auto *Entry = CostTableLookup(MVEDupTbl, ISD::VECTOR_SHUFFLE, + LT.second)) + return LT.first * Entry->Cost * ST->getMVEVectorCostFactor(); + } + } + int BaseCost = ST->hasMVEIntegerOps() && Tp->isVectorTy() + ? ST->getMVEVectorCostFactor() + : 1; + return BaseCost * BaseT::getShuffleCost(Kind, Tp, Index, SubTp); +} + +int ARMTTIImpl::getArithmeticInstrCost( + unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info, + TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo, + TTI::OperandValueProperties Opd2PropInfo, + ArrayRef<const Value *> Args) { + int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode); + std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); + + const unsigned FunctionCallDivCost = 20; + const unsigned ReciprocalDivCost = 10; + static const CostTblEntry CostTbl[] = { + // Division. + // These costs are somewhat random. Choose a cost of 20 to indicate that + // vectorizing devision (added function call) is going to be very expensive. + // Double registers types. + { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost}, + { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost}, + { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost}, + { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost}, + { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost}, + { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost}, + { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost}, + { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost}, + { ISD::SDIV, MVT::v4i16, ReciprocalDivCost}, + { ISD::UDIV, MVT::v4i16, ReciprocalDivCost}, + { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost}, + { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost}, + { ISD::SDIV, MVT::v8i8, ReciprocalDivCost}, + { ISD::UDIV, MVT::v8i8, ReciprocalDivCost}, + { ISD::SREM, MVT::v8i8, 8 * FunctionCallDivCost}, + { ISD::UREM, MVT::v8i8, 8 * FunctionCallDivCost}, + // Quad register types. + { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost}, + { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost}, + { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost}, + { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost}, + { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost}, + { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost}, + { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost}, + { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost}, + { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost}, + { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost}, + { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost}, + { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost}, + { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost}, + { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost}, + { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost}, + { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost}, + // Multiplication. + }; + + if (ST->hasNEON()) { + if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second)) + return LT.first * Entry->Cost; + + int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, + Opd1PropInfo, Opd2PropInfo); + + // This is somewhat of a hack. The problem that we are facing is that SROA + // creates a sequence of shift, and, or instructions to construct values. + // These sequences are recognized by the ISel and have zero-cost. Not so for + // the vectorized code. Because we have support for v2i64 but not i64 those + // sequences look particularly beneficial to vectorize. + // To work around this we increase the cost of v2i64 operations to make them + // seem less beneficial. + if (LT.second == MVT::v2i64 && + Op2Info == TargetTransformInfo::OK_UniformConstantValue) + Cost += 4; + + return Cost; + } + + int BaseCost = ST->hasMVEIntegerOps() && Ty->isVectorTy() + ? ST->getMVEVectorCostFactor() + : 1; + + // The rest of this mostly follows what is done in BaseT::getArithmeticInstrCost, + // without treating floats as more expensive that scalars or increasing the + // costs for custom operations. The results is also multiplied by the + // MVEVectorCostFactor where appropriate. + if (TLI->isOperationLegalOrCustomOrPromote(ISDOpcode, LT.second)) + return LT.first * BaseCost; + + // Else this is expand, assume that we need to scalarize this op. + if (Ty->isVectorTy()) { + unsigned Num = Ty->getVectorNumElements(); + unsigned Cost = getArithmeticInstrCost(Opcode, Ty->getScalarType()); + // Return the cost of multiple scalar invocation plus the cost of + // inserting and extracting the values. + return BaseT::getScalarizationOverhead(Ty, Args) + Num * Cost; + } + + return BaseCost; +} + +int ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, + unsigned AddressSpace, const Instruction *I) { + std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); + + if (ST->hasNEON() && Src->isVectorTy() && Alignment != 16 && + Src->getVectorElementType()->isDoubleTy()) { + // Unaligned loads/stores are extremely inefficient. + // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr. + return LT.first * 4; + } + int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy() + ? ST->getMVEVectorCostFactor() + : 1; + return BaseCost * LT.first; +} + +int ARMTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, + unsigned Factor, + ArrayRef<unsigned> Indices, + unsigned Alignment, + unsigned AddressSpace, + bool UseMaskForCond, + bool UseMaskForGaps) { + assert(Factor >= 2 && "Invalid interleave factor"); + assert(isa<VectorType>(VecTy) && "Expect a vector type"); + + // vldN/vstN doesn't support vector types of i64/f64 element. + bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64; + + if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits && + !UseMaskForCond && !UseMaskForGaps) { + unsigned NumElts = VecTy->getVectorNumElements(); + auto *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor); + + // vldN/vstN only support legal vector types of size 64 or 128 in bits. + // Accesses having vector types that are a multiple of 128 bits can be + // matched to more than one vldN/vstN instruction. + if (NumElts % Factor == 0 && + TLI->isLegalInterleavedAccessType(SubVecTy, DL)) + return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL); + } + + return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, + Alignment, AddressSpace, + UseMaskForCond, UseMaskForGaps); +} + +bool ARMTTIImpl::isLoweredToCall(const Function *F) { + if (!F->isIntrinsic()) + BaseT::isLoweredToCall(F); + + // Assume all Arm-specific intrinsics map to an instruction. + if (F->getName().startswith("llvm.arm")) + return false; + + switch (F->getIntrinsicID()) { + default: break; + case Intrinsic::powi: + case Intrinsic::sin: + case Intrinsic::cos: + case Intrinsic::pow: + case Intrinsic::log: + case Intrinsic::log10: + case Intrinsic::log2: + case Intrinsic::exp: + case Intrinsic::exp2: + return true; + case Intrinsic::sqrt: + case Intrinsic::fabs: + case Intrinsic::copysign: + case Intrinsic::floor: + case Intrinsic::ceil: + case Intrinsic::trunc: + case Intrinsic::rint: + case Intrinsic::nearbyint: + case Intrinsic::round: + case Intrinsic::canonicalize: + case Intrinsic::lround: + case Intrinsic::llround: + case Intrinsic::lrint: + case Intrinsic::llrint: + if (F->getReturnType()->isDoubleTy() && !ST->hasFP64()) + return true; + if (F->getReturnType()->isHalfTy() && !ST->hasFullFP16()) + return true; + // Some operations can be handled by vector instructions and assume + // unsupported vectors will be expanded into supported scalar ones. + // TODO Handle scalar operations properly. + return !ST->hasFPARMv8Base() && !ST->hasVFP2Base(); + case Intrinsic::masked_store: + case Intrinsic::masked_load: + case Intrinsic::masked_gather: + case Intrinsic::masked_scatter: + return !ST->hasMVEIntegerOps(); + case Intrinsic::sadd_with_overflow: + case Intrinsic::uadd_with_overflow: + case Intrinsic::ssub_with_overflow: + case Intrinsic::usub_with_overflow: + case Intrinsic::sadd_sat: + case Intrinsic::uadd_sat: + case Intrinsic::ssub_sat: + case Intrinsic::usub_sat: + return false; + } + + return BaseT::isLoweredToCall(F); +} + +bool ARMTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, + AssumptionCache &AC, + TargetLibraryInfo *LibInfo, + HardwareLoopInfo &HWLoopInfo) { + // Low-overhead branches are only supported in the 'low-overhead branch' + // extension of v8.1-m. + if (!ST->hasLOB() || DisableLowOverheadLoops) + return false; + + if (!SE.hasLoopInvariantBackedgeTakenCount(L)) + return false; + + const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); + if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) + return false; + + const SCEV *TripCountSCEV = + SE.getAddExpr(BackedgeTakenCount, + SE.getOne(BackedgeTakenCount->getType())); + + // We need to store the trip count in LR, a 32-bit register. + if (SE.getUnsignedRangeMax(TripCountSCEV).getBitWidth() > 32) + return false; + + // Making a call will trash LR and clear LO_BRANCH_INFO, so there's little + // point in generating a hardware loop if that's going to happen. + auto MaybeCall = [this](Instruction &I) { + const ARMTargetLowering *TLI = getTLI(); + unsigned ISD = TLI->InstructionOpcodeToISD(I.getOpcode()); + EVT VT = TLI->getValueType(DL, I.getType(), true); + if (TLI->getOperationAction(ISD, VT) == TargetLowering::LibCall) + return true; + + // Check if an intrinsic will be lowered to a call and assume that any + // other CallInst will generate a bl. + if (auto *Call = dyn_cast<CallInst>(&I)) { + if (isa<IntrinsicInst>(Call)) { + if (const Function *F = Call->getCalledFunction()) + return isLoweredToCall(F); + } + return true; + } + + // FPv5 provides conversions between integer, double-precision, + // single-precision, and half-precision formats. + switch (I.getOpcode()) { + default: + break; + case Instruction::FPToSI: + case Instruction::FPToUI: + case Instruction::SIToFP: + case Instruction::UIToFP: + case Instruction::FPTrunc: + case Instruction::FPExt: + return !ST->hasFPARMv8Base(); + } + + // FIXME: Unfortunately the approach of checking the Operation Action does + // not catch all cases of Legalization that use library calls. Our + // Legalization step categorizes some transformations into library calls as + // Custom, Expand or even Legal when doing type legalization. So for now + // we have to special case for instance the SDIV of 64bit integers and the + // use of floating point emulation. + if (VT.isInteger() && VT.getSizeInBits() >= 64) { + switch (ISD) { + default: + break; + case ISD::SDIV: + case ISD::UDIV: + case ISD::SREM: + case ISD::UREM: + case ISD::SDIVREM: + case ISD::UDIVREM: + return true; + } + } + + // Assume all other non-float operations are supported. + if (!VT.isFloatingPoint()) + return false; + + // We'll need a library call to handle most floats when using soft. + if (TLI->useSoftFloat()) { + switch (I.getOpcode()) { + default: + return true; + case Instruction::Alloca: + case Instruction::Load: + case Instruction::Store: + case Instruction::Select: + case Instruction::PHI: + return false; + } + } + + // We'll need a libcall to perform double precision operations on a single + // precision only FPU. + if (I.getType()->isDoubleTy() && !ST->hasFP64()) + return true; + + // Likewise for half precision arithmetic. + if (I.getType()->isHalfTy() && !ST->hasFullFP16()) + return true; + + return false; + }; + + auto IsHardwareLoopIntrinsic = [](Instruction &I) { + if (auto *Call = dyn_cast<IntrinsicInst>(&I)) { + switch (Call->getIntrinsicID()) { + default: + break; + case Intrinsic::set_loop_iterations: + case Intrinsic::test_set_loop_iterations: + case Intrinsic::loop_decrement: + case Intrinsic::loop_decrement_reg: + return true; + } + } + return false; + }; + + // Scan the instructions to see if there's any that we know will turn into a + // call or if this loop is already a low-overhead loop. + auto ScanLoop = [&](Loop *L) { + for (auto *BB : L->getBlocks()) { + for (auto &I : *BB) { + if (MaybeCall(I) || IsHardwareLoopIntrinsic(I)) + return false; + } + } + return true; + }; + + // Visit inner loops. + for (auto Inner : *L) + if (!ScanLoop(Inner)) + return false; + + if (!ScanLoop(L)) + return false; + + // TODO: Check whether the trip count calculation is expensive. If L is the + // inner loop but we know it has a low trip count, calculating that trip + // count (in the parent loop) may be detrimental. + + LLVMContext &C = L->getHeader()->getContext(); + HWLoopInfo.CounterInReg = true; + HWLoopInfo.IsNestingLegal = false; + HWLoopInfo.PerformEntryTest = true; + HWLoopInfo.CountType = Type::getInt32Ty(C); + HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1); + return true; +} + +void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, + TTI::UnrollingPreferences &UP) { + // Only currently enable these preferences for M-Class cores. + if (!ST->isMClass()) + return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP); + + // Disable loop unrolling for Oz and Os. + UP.OptSizeThreshold = 0; + UP.PartialOptSizeThreshold = 0; + if (L->getHeader()->getParent()->hasOptSize()) + return; + + // Only enable on Thumb-2 targets. + if (!ST->isThumb2()) + return; + + SmallVector<BasicBlock*, 4> ExitingBlocks; + L->getExitingBlocks(ExitingBlocks); + LLVM_DEBUG(dbgs() << "Loop has:\n" + << "Blocks: " << L->getNumBlocks() << "\n" + << "Exit blocks: " << ExitingBlocks.size() << "\n"); + + // Only allow another exit other than the latch. This acts as an early exit + // as it mirrors the profitability calculation of the runtime unroller. + if (ExitingBlocks.size() > 2) + return; + + // Limit the CFG of the loop body for targets with a branch predictor. + // Allowing 4 blocks permits if-then-else diamonds in the body. + if (ST->hasBranchPredictor() && L->getNumBlocks() > 4) + return; + + // Scan the loop: don't unroll loops with calls as this could prevent + // inlining. + unsigned Cost = 0; + for (auto *BB : L->getBlocks()) { + for (auto &I : *BB) { + if (isa<CallInst>(I) || isa<InvokeInst>(I)) { + ImmutableCallSite CS(&I); + if (const Function *F = CS.getCalledFunction()) { + if (!isLoweredToCall(F)) + continue; + } + return; + } + // Don't unroll vectorised loop. MVE does not benefit from it as much as + // scalar code. + if (I.getType()->isVectorTy()) + return; + + SmallVector<const Value*, 4> Operands(I.value_op_begin(), + I.value_op_end()); + Cost += getUserCost(&I, Operands); + } + } + + LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n"); + + UP.Partial = true; + UP.Runtime = true; + UP.UpperBound = true; + UP.UnrollRemainder = true; + UP.DefaultUnrollRuntimeCount = 4; + UP.UnrollAndJam = true; + UP.UnrollAndJamInnerLoopThreshold = 60; + + // Force unrolling small loops can be very useful because of the branch + // taken cost of the backedge. + if (Cost < 12) + UP.Force = true; +} + +bool ARMTTIImpl::useReductionIntrinsic(unsigned Opcode, Type *Ty, + TTI::ReductionFlags Flags) const { + assert(isa<VectorType>(Ty) && "Expected Ty to be a vector type"); + unsigned ScalarBits = Ty->getScalarSizeInBits(); + if (!ST->hasMVEIntegerOps()) + return false; + + switch (Opcode) { + case Instruction::FAdd: + case Instruction::FMul: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + case Instruction::Mul: + case Instruction::FCmp: + return false; + case Instruction::ICmp: + case Instruction::Add: + return ScalarBits < 64 && ScalarBits * Ty->getVectorNumElements() == 128; + default: + llvm_unreachable("Unhandled reduction opcode"); + } + return false; +} |
