diff options
Diffstat (limited to 'llvm/lib/Target/ARM/MVETailPredication.cpp')
| -rw-r--r-- | llvm/lib/Target/ARM/MVETailPredication.cpp | 519 | 
1 files changed, 519 insertions, 0 deletions
| diff --git a/llvm/lib/Target/ARM/MVETailPredication.cpp b/llvm/lib/Target/ARM/MVETailPredication.cpp new file mode 100644 index 000000000000..4db8ab17c49b --- /dev/null +++ b/llvm/lib/Target/ARM/MVETailPredication.cpp @@ -0,0 +1,519 @@ +//===- MVETailPredication.cpp - MVE Tail Predication ----------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +/// \file +/// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead +/// branches to help accelerate DSP applications. These two extensions can be +/// combined to provide implicit vector predication within a low-overhead loop. +/// The HardwareLoops pass inserts intrinsics identifying loops that the +/// backend will attempt to convert into a low-overhead loop. The vectorizer is +/// responsible for generating a vectorized loop in which the lanes are +/// predicated upon the iteration counter. This pass looks at these predicated +/// vector loops, that are targets for low-overhead loops, and prepares it for +/// code generation. Once the vectorizer has produced a masked loop, there's a +/// couple of final forms: +/// - A tail-predicated loop, with implicit predication. +/// - A loop containing multiple VCPT instructions, predicating multiple VPT +///   blocks of instructions operating on different vector types. + +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/LoopPass.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionExpander.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/CodeGen/TargetPassConfig.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/Support/Debug.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "ARM.h" +#include "ARMSubtarget.h" + +using namespace llvm; + +#define DEBUG_TYPE "mve-tail-predication" +#define DESC "Transform predicated vector loops to use MVE tail predication" + +static cl::opt<bool> +DisableTailPredication("disable-mve-tail-predication", cl::Hidden, +                       cl::init(true), +                       cl::desc("Disable MVE Tail Predication")); +namespace { + +class MVETailPredication : public LoopPass { +  SmallVector<IntrinsicInst*, 4> MaskedInsts; +  Loop *L = nullptr; +  ScalarEvolution *SE = nullptr; +  TargetTransformInfo *TTI = nullptr; + +public: +  static char ID; + +  MVETailPredication() : LoopPass(ID) { } + +  void getAnalysisUsage(AnalysisUsage &AU) const override { +    AU.addRequired<ScalarEvolutionWrapperPass>(); +    AU.addRequired<LoopInfoWrapperPass>(); +    AU.addRequired<TargetPassConfig>(); +    AU.addRequired<TargetTransformInfoWrapperPass>(); +    AU.addPreserved<LoopInfoWrapperPass>(); +    AU.setPreservesCFG(); +  } + +  bool runOnLoop(Loop *L, LPPassManager&) override; + +private: + +  /// Perform the relevant checks on the loop and convert if possible. +  bool TryConvert(Value *TripCount); + +  /// Return whether this is a vectorized loop, that contains masked +  /// load/stores. +  bool IsPredicatedVectorLoop(); + +  /// Compute a value for the total number of elements that the predicated +  /// loop will process. +  Value *ComputeElements(Value *TripCount, VectorType *VecTy); + +  /// Is the icmp that generates an i1 vector, based upon a loop counter +  /// and a limit that is defined outside the loop. +  bool isTailPredicate(Instruction *Predicate, Value *NumElements); +}; + +} // end namespace + +static bool IsDecrement(Instruction &I) { +  auto *Call = dyn_cast<IntrinsicInst>(&I); +  if (!Call) +    return false; + +  Intrinsic::ID ID = Call->getIntrinsicID(); +  return ID == Intrinsic::loop_decrement_reg; +} + +static bool IsMasked(Instruction *I) { +  auto *Call = dyn_cast<IntrinsicInst>(I); +  if (!Call) +    return false; + +  Intrinsic::ID ID = Call->getIntrinsicID(); +  // TODO: Support gather/scatter expand/compress operations. +  return ID == Intrinsic::masked_store || ID == Intrinsic::masked_load; +} + +bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) { +  if (skipLoop(L) || DisableTailPredication) +    return false; + +  Function &F = *L->getHeader()->getParent(); +  auto &TPC = getAnalysis<TargetPassConfig>(); +  auto &TM = TPC.getTM<TargetMachine>(); +  auto *ST = &TM.getSubtarget<ARMSubtarget>(F); +  TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); +  SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); +  this->L = L; + +  // The MVE and LOB extensions are combined to enable tail-predication, but +  // there's nothing preventing us from generating VCTP instructions for v8.1m. +  if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) { +    LLVM_DEBUG(dbgs() << "TP: Not a v8.1m.main+mve target.\n"); +    return false; +  } + +  BasicBlock *Preheader = L->getLoopPreheader(); +  if (!Preheader) +    return false; + +  auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* { +    for (auto &I : *BB) { +      auto *Call = dyn_cast<IntrinsicInst>(&I); +      if (!Call) +        continue; + +      Intrinsic::ID ID = Call->getIntrinsicID(); +      if (ID == Intrinsic::set_loop_iterations || +          ID == Intrinsic::test_set_loop_iterations) +        return cast<IntrinsicInst>(&I); +    } +    return nullptr; +  }; + +  // Look for the hardware loop intrinsic that sets the iteration count. +  IntrinsicInst *Setup = FindLoopIterations(Preheader); + +  // The test.set iteration could live in the pre- preheader. +  if (!Setup) { +    if (!Preheader->getSinglePredecessor()) +      return false; +    Setup = FindLoopIterations(Preheader->getSinglePredecessor()); +    if (!Setup) +      return false; +  } + +  // Search for the hardware loop intrinic that decrements the loop counter. +  IntrinsicInst *Decrement = nullptr; +  for (auto *BB : L->getBlocks()) { +    for (auto &I : *BB) { +      if (IsDecrement(I)) { +        Decrement = cast<IntrinsicInst>(&I); +        break; +      } +    } +  } + +  if (!Decrement) +    return false; + +  LLVM_DEBUG(dbgs() << "TP: Running on Loop: " << *L +             << *Setup << "\n" +             << *Decrement << "\n"); +  bool Changed = TryConvert(Setup->getArgOperand(0)); +  return Changed; +} + +bool MVETailPredication::isTailPredicate(Instruction *I, Value *NumElements) { +  // Look for the following: + +  // %trip.count.minus.1 = add i32 %N, -1 +  // %broadcast.splatinsert10 = insertelement <4 x i32> undef, +  //                                          i32 %trip.count.minus.1, i32 0 +  // %broadcast.splat11 = shufflevector <4 x i32> %broadcast.splatinsert10, +  //                                    <4 x i32> undef, +  //                                    <4 x i32> zeroinitializer +  // ... +  // ... +  // %index = phi i32 +  // %broadcast.splatinsert = insertelement <4 x i32> undef, i32 %index, i32 0 +  // %broadcast.splat = shufflevector <4 x i32> %broadcast.splatinsert, +  //                                  <4 x i32> undef, +  //                                  <4 x i32> zeroinitializer +  // %induction = add <4 x i32> %broadcast.splat, <i32 0, i32 1, i32 2, i32 3> +  // %pred = icmp ule <4 x i32> %induction, %broadcast.splat11 + +  // And return whether V == %pred. + +  using namespace PatternMatch; + +  CmpInst::Predicate Pred; +  Instruction *Shuffle = nullptr; +  Instruction *Induction = nullptr; + +  // The vector icmp +  if (!match(I, m_ICmp(Pred, m_Instruction(Induction), +                       m_Instruction(Shuffle))) || +      Pred != ICmpInst::ICMP_ULE || !L->isLoopInvariant(Shuffle)) +    return false; + +  // First find the stuff outside the loop which is setting up the limit +  // vector.... +  // The invariant shuffle that broadcast the limit into a vector. +  Instruction *Insert = nullptr; +  if (!match(Shuffle, m_ShuffleVector(m_Instruction(Insert), m_Undef(), +                                      m_Zero()))) +    return false; + +  // Insert the limit into a vector. +  Instruction *BECount = nullptr; +  if (!match(Insert, m_InsertElement(m_Undef(), m_Instruction(BECount), +                                     m_Zero()))) +    return false; + +  // The limit calculation, backedge count. +  Value *TripCount = nullptr; +  if (!match(BECount, m_Add(m_Value(TripCount), m_AllOnes()))) +    return false; + +  if (TripCount != NumElements) +    return false; + +  // Now back to searching inside the loop body... +  // Find the add with takes the index iv and adds a constant vector to it.  +  Instruction *BroadcastSplat = nullptr; +  Constant *Const = nullptr; +  if (!match(Induction, m_Add(m_Instruction(BroadcastSplat), +                              m_Constant(Const)))) +   return false; + +  // Check that we're adding <0, 1, 2, 3... +  if (auto *CDS = dyn_cast<ConstantDataSequential>(Const)) { +    for (unsigned i = 0; i < CDS->getNumElements(); ++i) { +      if (CDS->getElementAsInteger(i) != i) +        return false; +    } +  } else +    return false; + +  // The shuffle which broadcasts the index iv into a vector. +  if (!match(BroadcastSplat, m_ShuffleVector(m_Instruction(Insert), m_Undef(), +                                             m_Zero()))) +    return false; + +  // The insert element which initialises a vector with the index iv. +  Instruction *IV = nullptr; +  if (!match(Insert, m_InsertElement(m_Undef(), m_Instruction(IV), m_Zero()))) +    return false; + +  // The index iv. +  auto *Phi = dyn_cast<PHINode>(IV); +  if (!Phi) +    return false; + +  // TODO: Don't think we need to check the entry value. +  Value *OnEntry = Phi->getIncomingValueForBlock(L->getLoopPreheader()); +  if (!match(OnEntry, m_Zero())) +    return false; +   +  Value *InLoop = Phi->getIncomingValueForBlock(L->getLoopLatch()); +  unsigned Lanes = cast<VectorType>(Insert->getType())->getNumElements(); + +  Instruction *LHS = nullptr; +  if (!match(InLoop, m_Add(m_Instruction(LHS), m_SpecificInt(Lanes)))) +    return false; +   +  return LHS == Phi; +} + +static VectorType* getVectorType(IntrinsicInst *I) { +  unsigned TypeOp = I->getIntrinsicID() == Intrinsic::masked_load ? 0 : 1; +  auto *PtrTy = cast<PointerType>(I->getOperand(TypeOp)->getType()); +  return cast<VectorType>(PtrTy->getElementType()); +} + +bool MVETailPredication::IsPredicatedVectorLoop() { +  // Check that the loop contains at least one masked load/store intrinsic. +  // We only support 'normal' vector instructions - other than masked +  // load/stores. +  for (auto *BB : L->getBlocks()) { +    for (auto &I : *BB) { +      if (IsMasked(&I)) { +        VectorType *VecTy = getVectorType(cast<IntrinsicInst>(&I)); +        unsigned Lanes = VecTy->getNumElements(); +        unsigned ElementWidth = VecTy->getScalarSizeInBits(); +        // MVE vectors are 128-bit, but don't support 128 x i1. +        // TODO: Can we support vectors larger than 128-bits? +        unsigned MaxWidth = TTI->getRegisterBitWidth(true);  +        if (Lanes * ElementWidth != MaxWidth || Lanes == MaxWidth) +          return false; +        MaskedInsts.push_back(cast<IntrinsicInst>(&I)); +      } else if (auto *Int = dyn_cast<IntrinsicInst>(&I)) { +        for (auto &U : Int->args()) { +          if (isa<VectorType>(U->getType())) +            return false; +        } +      } +    } +  } + +  return !MaskedInsts.empty(); +} + +Value* MVETailPredication::ComputeElements(Value *TripCount, +                                           VectorType *VecTy) { +  const SCEV *TripCountSE = SE->getSCEV(TripCount); +  ConstantInt *VF = ConstantInt::get(cast<IntegerType>(TripCount->getType()), +                                     VecTy->getNumElements()); + +  if (VF->equalsInt(1)) +    return nullptr; + +  // TODO: Support constant trip counts. +  auto VisitAdd = [&](const SCEVAddExpr *S) -> const SCEVMulExpr* { +    if (auto *Const = dyn_cast<SCEVConstant>(S->getOperand(0))) { +      if (Const->getAPInt() != -VF->getValue()) +        return nullptr; +    } else +      return nullptr; +    return dyn_cast<SCEVMulExpr>(S->getOperand(1)); +  }; + +  auto VisitMul = [&](const SCEVMulExpr *S) -> const SCEVUDivExpr* { +    if (auto *Const = dyn_cast<SCEVConstant>(S->getOperand(0))) { +      if (Const->getValue() != VF) +        return nullptr; +    } else +      return nullptr; +    return dyn_cast<SCEVUDivExpr>(S->getOperand(1)); +  }; + +  auto VisitDiv = [&](const SCEVUDivExpr *S) -> const SCEV* { +    if (auto *Const = dyn_cast<SCEVConstant>(S->getRHS())) { +      if (Const->getValue() != VF) +        return nullptr; +    } else +      return nullptr; + +    if (auto *RoundUp = dyn_cast<SCEVAddExpr>(S->getLHS())) { +      if (auto *Const = dyn_cast<SCEVConstant>(RoundUp->getOperand(0))) { +        if (Const->getAPInt() != (VF->getValue() - 1)) +          return nullptr; +      } else +        return nullptr; + +      return RoundUp->getOperand(1); +    } +    return nullptr; +  }; + +  // TODO: Can we use SCEV helpers, such as findArrayDimensions, and friends to +  // determine the numbers of elements instead? Looks like this is what is used +  // for delinearization, but I'm not sure if it can be applied to the +  // vectorized form - at least not without a bit more work than I feel +  // comfortable with. + +  // Search for Elems in the following SCEV: +  // (1 + ((-VF + (VF * (((VF - 1) + %Elems) /u VF))<nuw>) /u VF))<nuw><nsw> +  const SCEV *Elems = nullptr; +  if (auto *TC = dyn_cast<SCEVAddExpr>(TripCountSE)) +    if (auto *Div = dyn_cast<SCEVUDivExpr>(TC->getOperand(1))) +      if (auto *Add = dyn_cast<SCEVAddExpr>(Div->getLHS())) +        if (auto *Mul = VisitAdd(Add)) +          if (auto *Div = VisitMul(Mul)) +            if (auto *Res = VisitDiv(Div)) +              Elems = Res; + +  if (!Elems) +    return nullptr; + +  Instruction *InsertPt = L->getLoopPreheader()->getTerminator(); +  if (!isSafeToExpandAt(Elems, InsertPt, *SE)) +    return nullptr; + +  auto DL = L->getHeader()->getModule()->getDataLayout(); +  SCEVExpander Expander(*SE, DL, "elements"); +  return Expander.expandCodeFor(Elems, Elems->getType(), InsertPt); +} + +// Look through the exit block to see whether there's a duplicate predicate +// instruction. This can happen when we need to perform a select on values +// from the last and previous iteration. Instead of doing a straight +// replacement of that predicate with the vctp, clone the vctp and place it +// in the block. This means that the VPR doesn't have to be live into the +// exit block which should make it easier to convert this loop into a proper +// tail predicated loop. +static void Cleanup(DenseMap<Instruction*, Instruction*> &NewPredicates, +                    SetVector<Instruction*> &MaybeDead, Loop *L) { +  if (BasicBlock *Exit = L->getUniqueExitBlock()) { +    for (auto &Pair : NewPredicates) { +      Instruction *OldPred = Pair.first; +      Instruction *NewPred = Pair.second; + +      for (auto &I : *Exit) { +        if (I.isSameOperationAs(OldPred)) { +          Instruction *PredClone = NewPred->clone(); +          PredClone->insertBefore(&I); +          I.replaceAllUsesWith(PredClone); +          MaybeDead.insert(&I); +          break; +        } +      } +    } +  } + +  // Drop references and add operands to check for dead. +  SmallPtrSet<Instruction*, 4> Dead; +  while (!MaybeDead.empty()) { +    auto *I = MaybeDead.front(); +    MaybeDead.remove(I); +    if (I->hasNUsesOrMore(1)) +      continue; + +    for (auto &U : I->operands()) { +      if (auto *OpI = dyn_cast<Instruction>(U)) +        MaybeDead.insert(OpI); +    } +    I->dropAllReferences(); +    Dead.insert(I); +  } + +  for (auto *I : Dead) +    I->eraseFromParent(); + +  for (auto I : L->blocks()) +    DeleteDeadPHIs(I); +} + +bool MVETailPredication::TryConvert(Value *TripCount) { +  if (!IsPredicatedVectorLoop()) +    return false; + +  LLVM_DEBUG(dbgs() << "TP: Found predicated vector loop.\n"); + +  // Walk through the masked intrinsics and try to find whether the predicate +  // operand is generated from an induction variable. +  Module *M = L->getHeader()->getModule(); +  Type *Ty = IntegerType::get(M->getContext(), 32); +  SetVector<Instruction*> Predicates; +  DenseMap<Instruction*, Instruction*> NewPredicates; + +  for (auto *I : MaskedInsts) { +    Intrinsic::ID ID = I->getIntrinsicID(); +    unsigned PredOp = ID == Intrinsic::masked_load ? 2 : 3; +    auto *Predicate = dyn_cast<Instruction>(I->getArgOperand(PredOp)); +    if (!Predicate || Predicates.count(Predicate)) +      continue; + +    VectorType *VecTy = getVectorType(I); +    Value *NumElements = ComputeElements(TripCount, VecTy); +    if (!NumElements) +      continue; + +    if (!isTailPredicate(Predicate, NumElements)) { +      LLVM_DEBUG(dbgs() << "TP: Not tail predicate: " << *Predicate <<  "\n"); +      continue; +    } + +    LLVM_DEBUG(dbgs() << "TP: Found tail predicate: " << *Predicate << "\n"); +    Predicates.insert(Predicate); + +    // Insert a phi to count the number of elements processed by the loop. +    IRBuilder<> Builder(L->getHeader()->getFirstNonPHI()); +    PHINode *Processed = Builder.CreatePHI(Ty, 2); +    Processed->addIncoming(NumElements, L->getLoopPreheader()); + +    // Insert the intrinsic to represent the effect of tail predication. +    Builder.SetInsertPoint(cast<Instruction>(Predicate)); +    ConstantInt *Factor = +      ConstantInt::get(cast<IntegerType>(Ty), VecTy->getNumElements()); +    Intrinsic::ID VCTPID; +    switch (VecTy->getNumElements()) { +    default: +      llvm_unreachable("unexpected number of lanes"); +    case 2:  VCTPID = Intrinsic::arm_vctp64; break; +    case 4:  VCTPID = Intrinsic::arm_vctp32; break; +    case 8:  VCTPID = Intrinsic::arm_vctp16; break; +    case 16: VCTPID = Intrinsic::arm_vctp8; break; +    } +    Function *VCTP = Intrinsic::getDeclaration(M, VCTPID); +    Value *TailPredicate = Builder.CreateCall(VCTP, Processed); +    Predicate->replaceAllUsesWith(TailPredicate); +    NewPredicates[Predicate] = cast<Instruction>(TailPredicate); + +    // Add the incoming value to the new phi. +    // TODO: This add likely already exists in the loop. +    Value *Remaining = Builder.CreateSub(Processed, Factor); +    Processed->addIncoming(Remaining, L->getLoopLatch()); +    LLVM_DEBUG(dbgs() << "TP: Insert processed elements phi: " +               << *Processed << "\n" +               << "TP: Inserted VCTP: " << *TailPredicate << "\n"); +  } + +  // Now clean up. +  Cleanup(NewPredicates, Predicates, L); +  return true; +} + +Pass *llvm::createMVETailPredicationPass() { +  return new MVETailPredication(); +} + +char MVETailPredication::ID = 0; + +INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false) +INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false) | 
