summaryrefslogtreecommitdiff
path: root/llvm/lib/Target/PowerPC/PPCFrameLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Target/PowerPC/PPCFrameLowering.cpp')
-rw-r--r--llvm/lib/Target/PowerPC/PPCFrameLowering.cpp2469
1 files changed, 2469 insertions, 0 deletions
diff --git a/llvm/lib/Target/PowerPC/PPCFrameLowering.cpp b/llvm/lib/Target/PowerPC/PPCFrameLowering.cpp
new file mode 100644
index 000000000000..06a4d183e781
--- /dev/null
+++ b/llvm/lib/Target/PowerPC/PPCFrameLowering.cpp
@@ -0,0 +1,2469 @@
+//===-- PPCFrameLowering.cpp - PPC Frame Information ----------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the PPC implementation of TargetFrameLowering class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPCFrameLowering.h"
+#include "PPCInstrBuilder.h"
+#include "PPCInstrInfo.h"
+#include "PPCMachineFunctionInfo.h"
+#include "PPCSubtarget.h"
+#include "PPCTargetMachine.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Target/TargetOptions.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "framelowering"
+STATISTIC(NumPESpillVSR, "Number of spills to vector in prologue");
+STATISTIC(NumPEReloadVSR, "Number of reloads from vector in epilogue");
+
+static cl::opt<bool>
+EnablePEVectorSpills("ppc-enable-pe-vector-spills",
+ cl::desc("Enable spills in prologue to vector registers."),
+ cl::init(false), cl::Hidden);
+
+/// VRRegNo - Map from a numbered VR register to its enum value.
+///
+static const MCPhysReg VRRegNo[] = {
+ PPC::V0 , PPC::V1 , PPC::V2 , PPC::V3 , PPC::V4 , PPC::V5 , PPC::V6 , PPC::V7 ,
+ PPC::V8 , PPC::V9 , PPC::V10, PPC::V11, PPC::V12, PPC::V13, PPC::V14, PPC::V15,
+ PPC::V16, PPC::V17, PPC::V18, PPC::V19, PPC::V20, PPC::V21, PPC::V22, PPC::V23,
+ PPC::V24, PPC::V25, PPC::V26, PPC::V27, PPC::V28, PPC::V29, PPC::V30, PPC::V31
+};
+
+static unsigned computeReturnSaveOffset(const PPCSubtarget &STI) {
+ if (STI.isDarwinABI() || STI.isAIXABI())
+ return STI.isPPC64() ? 16 : 8;
+ // SVR4 ABI:
+ return STI.isPPC64() ? 16 : 4;
+}
+
+static unsigned computeTOCSaveOffset(const PPCSubtarget &STI) {
+ if (STI.isAIXABI())
+ return STI.isPPC64() ? 40 : 20;
+ return STI.isELFv2ABI() ? 24 : 40;
+}
+
+static unsigned computeFramePointerSaveOffset(const PPCSubtarget &STI) {
+ // For the Darwin ABI:
+ // We cannot use the TOC save slot (offset +20) in the PowerPC linkage area
+ // for saving the frame pointer (if needed.) While the published ABI has
+ // not used this slot since at least MacOSX 10.2, there is older code
+ // around that does use it, and that needs to continue to work.
+ if (STI.isDarwinABI())
+ return STI.isPPC64() ? -8U : -4U;
+
+ // SVR4 ABI: First slot in the general register save area.
+ return STI.isPPC64() ? -8U : -4U;
+}
+
+static unsigned computeLinkageSize(const PPCSubtarget &STI) {
+ if ((STI.isDarwinABI() || STI.isAIXABI()) || STI.isPPC64())
+ return (STI.isELFv2ABI() ? 4 : 6) * (STI.isPPC64() ? 8 : 4);
+
+ // 32-bit SVR4 ABI:
+ return 8;
+}
+
+static unsigned computeBasePointerSaveOffset(const PPCSubtarget &STI) {
+ if (STI.isDarwinABI())
+ return STI.isPPC64() ? -16U : -8U;
+
+ // SVR4 ABI: First slot in the general register save area.
+ return STI.isPPC64()
+ ? -16U
+ : STI.getTargetMachine().isPositionIndependent() ? -12U : -8U;
+}
+
+static unsigned computeCRSaveOffset() {
+ // The condition register save offset needs to be updated for AIX PPC32.
+ return 8;
+}
+
+PPCFrameLowering::PPCFrameLowering(const PPCSubtarget &STI)
+ : TargetFrameLowering(TargetFrameLowering::StackGrowsDown,
+ STI.getPlatformStackAlignment(), 0),
+ Subtarget(STI), ReturnSaveOffset(computeReturnSaveOffset(Subtarget)),
+ TOCSaveOffset(computeTOCSaveOffset(Subtarget)),
+ FramePointerSaveOffset(computeFramePointerSaveOffset(Subtarget)),
+ LinkageSize(computeLinkageSize(Subtarget)),
+ BasePointerSaveOffset(computeBasePointerSaveOffset(Subtarget)),
+ CRSaveOffset(computeCRSaveOffset()) {}
+
+// With the SVR4 ABI, callee-saved registers have fixed offsets on the stack.
+const PPCFrameLowering::SpillSlot *PPCFrameLowering::getCalleeSavedSpillSlots(
+ unsigned &NumEntries) const {
+ if (Subtarget.isDarwinABI()) {
+ NumEntries = 1;
+ if (Subtarget.isPPC64()) {
+ static const SpillSlot darwin64Offsets = {PPC::X31, -8};
+ return &darwin64Offsets;
+ } else {
+ static const SpillSlot darwinOffsets = {PPC::R31, -4};
+ return &darwinOffsets;
+ }
+ }
+
+ // Early exit if not using the SVR4 ABI.
+ if (!Subtarget.isSVR4ABI()) {
+ NumEntries = 0;
+ return nullptr;
+ }
+
+ // Note that the offsets here overlap, but this is fixed up in
+ // processFunctionBeforeFrameFinalized.
+
+ static const SpillSlot Offsets[] = {
+ // Floating-point register save area offsets.
+ {PPC::F31, -8},
+ {PPC::F30, -16},
+ {PPC::F29, -24},
+ {PPC::F28, -32},
+ {PPC::F27, -40},
+ {PPC::F26, -48},
+ {PPC::F25, -56},
+ {PPC::F24, -64},
+ {PPC::F23, -72},
+ {PPC::F22, -80},
+ {PPC::F21, -88},
+ {PPC::F20, -96},
+ {PPC::F19, -104},
+ {PPC::F18, -112},
+ {PPC::F17, -120},
+ {PPC::F16, -128},
+ {PPC::F15, -136},
+ {PPC::F14, -144},
+
+ // General register save area offsets.
+ {PPC::R31, -4},
+ {PPC::R30, -8},
+ {PPC::R29, -12},
+ {PPC::R28, -16},
+ {PPC::R27, -20},
+ {PPC::R26, -24},
+ {PPC::R25, -28},
+ {PPC::R24, -32},
+ {PPC::R23, -36},
+ {PPC::R22, -40},
+ {PPC::R21, -44},
+ {PPC::R20, -48},
+ {PPC::R19, -52},
+ {PPC::R18, -56},
+ {PPC::R17, -60},
+ {PPC::R16, -64},
+ {PPC::R15, -68},
+ {PPC::R14, -72},
+
+ // CR save area offset. We map each of the nonvolatile CR fields
+ // to the slot for CR2, which is the first of the nonvolatile CR
+ // fields to be assigned, so that we only allocate one save slot.
+ // See PPCRegisterInfo::hasReservedSpillSlot() for more information.
+ {PPC::CR2, -4},
+
+ // VRSAVE save area offset.
+ {PPC::VRSAVE, -4},
+
+ // Vector register save area
+ {PPC::V31, -16},
+ {PPC::V30, -32},
+ {PPC::V29, -48},
+ {PPC::V28, -64},
+ {PPC::V27, -80},
+ {PPC::V26, -96},
+ {PPC::V25, -112},
+ {PPC::V24, -128},
+ {PPC::V23, -144},
+ {PPC::V22, -160},
+ {PPC::V21, -176},
+ {PPC::V20, -192},
+
+ // SPE register save area (overlaps Vector save area).
+ {PPC::S31, -8},
+ {PPC::S30, -16},
+ {PPC::S29, -24},
+ {PPC::S28, -32},
+ {PPC::S27, -40},
+ {PPC::S26, -48},
+ {PPC::S25, -56},
+ {PPC::S24, -64},
+ {PPC::S23, -72},
+ {PPC::S22, -80},
+ {PPC::S21, -88},
+ {PPC::S20, -96},
+ {PPC::S19, -104},
+ {PPC::S18, -112},
+ {PPC::S17, -120},
+ {PPC::S16, -128},
+ {PPC::S15, -136},
+ {PPC::S14, -144}};
+
+ static const SpillSlot Offsets64[] = {
+ // Floating-point register save area offsets.
+ {PPC::F31, -8},
+ {PPC::F30, -16},
+ {PPC::F29, -24},
+ {PPC::F28, -32},
+ {PPC::F27, -40},
+ {PPC::F26, -48},
+ {PPC::F25, -56},
+ {PPC::F24, -64},
+ {PPC::F23, -72},
+ {PPC::F22, -80},
+ {PPC::F21, -88},
+ {PPC::F20, -96},
+ {PPC::F19, -104},
+ {PPC::F18, -112},
+ {PPC::F17, -120},
+ {PPC::F16, -128},
+ {PPC::F15, -136},
+ {PPC::F14, -144},
+
+ // General register save area offsets.
+ {PPC::X31, -8},
+ {PPC::X30, -16},
+ {PPC::X29, -24},
+ {PPC::X28, -32},
+ {PPC::X27, -40},
+ {PPC::X26, -48},
+ {PPC::X25, -56},
+ {PPC::X24, -64},
+ {PPC::X23, -72},
+ {PPC::X22, -80},
+ {PPC::X21, -88},
+ {PPC::X20, -96},
+ {PPC::X19, -104},
+ {PPC::X18, -112},
+ {PPC::X17, -120},
+ {PPC::X16, -128},
+ {PPC::X15, -136},
+ {PPC::X14, -144},
+
+ // VRSAVE save area offset.
+ {PPC::VRSAVE, -4},
+
+ // Vector register save area
+ {PPC::V31, -16},
+ {PPC::V30, -32},
+ {PPC::V29, -48},
+ {PPC::V28, -64},
+ {PPC::V27, -80},
+ {PPC::V26, -96},
+ {PPC::V25, -112},
+ {PPC::V24, -128},
+ {PPC::V23, -144},
+ {PPC::V22, -160},
+ {PPC::V21, -176},
+ {PPC::V20, -192}};
+
+ if (Subtarget.isPPC64()) {
+ NumEntries = array_lengthof(Offsets64);
+
+ return Offsets64;
+ } else {
+ NumEntries = array_lengthof(Offsets);
+
+ return Offsets;
+ }
+}
+
+/// RemoveVRSaveCode - We have found that this function does not need any code
+/// to manipulate the VRSAVE register, even though it uses vector registers.
+/// This can happen when the only registers used are known to be live in or out
+/// of the function. Remove all of the VRSAVE related code from the function.
+/// FIXME: The removal of the code results in a compile failure at -O0 when the
+/// function contains a function call, as the GPR containing original VRSAVE
+/// contents is spilled and reloaded around the call. Without the prolog code,
+/// the spill instruction refers to an undefined register. This code needs
+/// to account for all uses of that GPR.
+static void RemoveVRSaveCode(MachineInstr &MI) {
+ MachineBasicBlock *Entry = MI.getParent();
+ MachineFunction *MF = Entry->getParent();
+
+ // We know that the MTVRSAVE instruction immediately follows MI. Remove it.
+ MachineBasicBlock::iterator MBBI = MI;
+ ++MBBI;
+ assert(MBBI != Entry->end() && MBBI->getOpcode() == PPC::MTVRSAVE);
+ MBBI->eraseFromParent();
+
+ bool RemovedAllMTVRSAVEs = true;
+ // See if we can find and remove the MTVRSAVE instruction from all of the
+ // epilog blocks.
+ for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) {
+ // If last instruction is a return instruction, add an epilogue
+ if (I->isReturnBlock()) {
+ bool FoundIt = false;
+ for (MBBI = I->end(); MBBI != I->begin(); ) {
+ --MBBI;
+ if (MBBI->getOpcode() == PPC::MTVRSAVE) {
+ MBBI->eraseFromParent(); // remove it.
+ FoundIt = true;
+ break;
+ }
+ }
+ RemovedAllMTVRSAVEs &= FoundIt;
+ }
+ }
+
+ // If we found and removed all MTVRSAVE instructions, remove the read of
+ // VRSAVE as well.
+ if (RemovedAllMTVRSAVEs) {
+ MBBI = MI;
+ assert(MBBI != Entry->begin() && "UPDATE_VRSAVE is first instr in block?");
+ --MBBI;
+ assert(MBBI->getOpcode() == PPC::MFVRSAVE && "VRSAVE instrs wandered?");
+ MBBI->eraseFromParent();
+ }
+
+ // Finally, nuke the UPDATE_VRSAVE.
+ MI.eraseFromParent();
+}
+
+// HandleVRSaveUpdate - MI is the UPDATE_VRSAVE instruction introduced by the
+// instruction selector. Based on the vector registers that have been used,
+// transform this into the appropriate ORI instruction.
+static void HandleVRSaveUpdate(MachineInstr &MI, const TargetInstrInfo &TII) {
+ MachineFunction *MF = MI.getParent()->getParent();
+ const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
+ DebugLoc dl = MI.getDebugLoc();
+
+ const MachineRegisterInfo &MRI = MF->getRegInfo();
+ unsigned UsedRegMask = 0;
+ for (unsigned i = 0; i != 32; ++i)
+ if (MRI.isPhysRegModified(VRRegNo[i]))
+ UsedRegMask |= 1 << (31-i);
+
+ // Live in and live out values already must be in the mask, so don't bother
+ // marking them.
+ for (std::pair<unsigned, unsigned> LI : MF->getRegInfo().liveins()) {
+ unsigned RegNo = TRI->getEncodingValue(LI.first);
+ if (VRRegNo[RegNo] == LI.first) // If this really is a vector reg.
+ UsedRegMask &= ~(1 << (31-RegNo)); // Doesn't need to be marked.
+ }
+
+ // Live out registers appear as use operands on return instructions.
+ for (MachineFunction::const_iterator BI = MF->begin(), BE = MF->end();
+ UsedRegMask != 0 && BI != BE; ++BI) {
+ const MachineBasicBlock &MBB = *BI;
+ if (!MBB.isReturnBlock())
+ continue;
+ const MachineInstr &Ret = MBB.back();
+ for (unsigned I = 0, E = Ret.getNumOperands(); I != E; ++I) {
+ const MachineOperand &MO = Ret.getOperand(I);
+ if (!MO.isReg() || !PPC::VRRCRegClass.contains(MO.getReg()))
+ continue;
+ unsigned RegNo = TRI->getEncodingValue(MO.getReg());
+ UsedRegMask &= ~(1 << (31-RegNo));
+ }
+ }
+
+ // If no registers are used, turn this into a copy.
+ if (UsedRegMask == 0) {
+ // Remove all VRSAVE code.
+ RemoveVRSaveCode(MI);
+ return;
+ }
+
+ Register SrcReg = MI.getOperand(1).getReg();
+ Register DstReg = MI.getOperand(0).getReg();
+
+ if ((UsedRegMask & 0xFFFF) == UsedRegMask) {
+ if (DstReg != SrcReg)
+ BuildMI(*MI.getParent(), MI, dl, TII.get(PPC::ORI), DstReg)
+ .addReg(SrcReg)
+ .addImm(UsedRegMask);
+ else
+ BuildMI(*MI.getParent(), MI, dl, TII.get(PPC::ORI), DstReg)
+ .addReg(SrcReg, RegState::Kill)
+ .addImm(UsedRegMask);
+ } else if ((UsedRegMask & 0xFFFF0000) == UsedRegMask) {
+ if (DstReg != SrcReg)
+ BuildMI(*MI.getParent(), MI, dl, TII.get(PPC::ORIS), DstReg)
+ .addReg(SrcReg)
+ .addImm(UsedRegMask >> 16);
+ else
+ BuildMI(*MI.getParent(), MI, dl, TII.get(PPC::ORIS), DstReg)
+ .addReg(SrcReg, RegState::Kill)
+ .addImm(UsedRegMask >> 16);
+ } else {
+ if (DstReg != SrcReg)
+ BuildMI(*MI.getParent(), MI, dl, TII.get(PPC::ORIS), DstReg)
+ .addReg(SrcReg)
+ .addImm(UsedRegMask >> 16);
+ else
+ BuildMI(*MI.getParent(), MI, dl, TII.get(PPC::ORIS), DstReg)
+ .addReg(SrcReg, RegState::Kill)
+ .addImm(UsedRegMask >> 16);
+
+ BuildMI(*MI.getParent(), MI, dl, TII.get(PPC::ORI), DstReg)
+ .addReg(DstReg, RegState::Kill)
+ .addImm(UsedRegMask & 0xFFFF);
+ }
+
+ // Remove the old UPDATE_VRSAVE instruction.
+ MI.eraseFromParent();
+}
+
+static bool spillsCR(const MachineFunction &MF) {
+ const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
+ return FuncInfo->isCRSpilled();
+}
+
+static bool spillsVRSAVE(const MachineFunction &MF) {
+ const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
+ return FuncInfo->isVRSAVESpilled();
+}
+
+static bool hasSpills(const MachineFunction &MF) {
+ const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
+ return FuncInfo->hasSpills();
+}
+
+static bool hasNonRISpills(const MachineFunction &MF) {
+ const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
+ return FuncInfo->hasNonRISpills();
+}
+
+/// MustSaveLR - Return true if this function requires that we save the LR
+/// register onto the stack in the prolog and restore it in the epilog of the
+/// function.
+static bool MustSaveLR(const MachineFunction &MF, unsigned LR) {
+ const PPCFunctionInfo *MFI = MF.getInfo<PPCFunctionInfo>();
+
+ // We need a save/restore of LR if there is any def of LR (which is
+ // defined by calls, including the PIC setup sequence), or if there is
+ // some use of the LR stack slot (e.g. for builtin_return_address).
+ // (LR comes in 32 and 64 bit versions.)
+ MachineRegisterInfo::def_iterator RI = MF.getRegInfo().def_begin(LR);
+ return RI !=MF.getRegInfo().def_end() || MFI->isLRStoreRequired();
+}
+
+/// determineFrameLayoutAndUpdate - Determine the size of the frame and maximum
+/// call frame size. Update the MachineFunction object with the stack size.
+unsigned
+PPCFrameLowering::determineFrameLayoutAndUpdate(MachineFunction &MF,
+ bool UseEstimate) const {
+ unsigned NewMaxCallFrameSize = 0;
+ unsigned FrameSize = determineFrameLayout(MF, UseEstimate,
+ &NewMaxCallFrameSize);
+ MF.getFrameInfo().setStackSize(FrameSize);
+ MF.getFrameInfo().setMaxCallFrameSize(NewMaxCallFrameSize);
+ return FrameSize;
+}
+
+/// determineFrameLayout - Determine the size of the frame and maximum call
+/// frame size.
+unsigned
+PPCFrameLowering::determineFrameLayout(const MachineFunction &MF,
+ bool UseEstimate,
+ unsigned *NewMaxCallFrameSize) const {
+ const MachineFrameInfo &MFI = MF.getFrameInfo();
+ const PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
+
+ // Get the number of bytes to allocate from the FrameInfo
+ unsigned FrameSize =
+ UseEstimate ? MFI.estimateStackSize(MF) : MFI.getStackSize();
+
+ // Get stack alignments. The frame must be aligned to the greatest of these:
+ unsigned TargetAlign = getStackAlignment(); // alignment required per the ABI
+ unsigned MaxAlign = MFI.getMaxAlignment(); // algmt required by data in frame
+ unsigned AlignMask = std::max(MaxAlign, TargetAlign) - 1;
+
+ const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
+
+ unsigned LR = RegInfo->getRARegister();
+ bool DisableRedZone = MF.getFunction().hasFnAttribute(Attribute::NoRedZone);
+ bool CanUseRedZone = !MFI.hasVarSizedObjects() && // No dynamic alloca.
+ !MFI.adjustsStack() && // No calls.
+ !MustSaveLR(MF, LR) && // No need to save LR.
+ !FI->mustSaveTOC() && // No need to save TOC.
+ !RegInfo->hasBasePointer(MF); // No special alignment.
+
+ // Note: for PPC32 SVR4ABI (Non-DarwinABI), we can still generate stackless
+ // code if all local vars are reg-allocated.
+ bool FitsInRedZone = FrameSize <= Subtarget.getRedZoneSize();
+
+ // Check whether we can skip adjusting the stack pointer (by using red zone)
+ if (!DisableRedZone && CanUseRedZone && FitsInRedZone) {
+ // No need for frame
+ return 0;
+ }
+
+ // Get the maximum call frame size of all the calls.
+ unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
+
+ // Maximum call frame needs to be at least big enough for linkage area.
+ unsigned minCallFrameSize = getLinkageSize();
+ maxCallFrameSize = std::max(maxCallFrameSize, minCallFrameSize);
+
+ // If we have dynamic alloca then maxCallFrameSize needs to be aligned so
+ // that allocations will be aligned.
+ if (MFI.hasVarSizedObjects())
+ maxCallFrameSize = (maxCallFrameSize + AlignMask) & ~AlignMask;
+
+ // Update the new max call frame size if the caller passes in a valid pointer.
+ if (NewMaxCallFrameSize)
+ *NewMaxCallFrameSize = maxCallFrameSize;
+
+ // Include call frame size in total.
+ FrameSize += maxCallFrameSize;
+
+ // Make sure the frame is aligned.
+ FrameSize = (FrameSize + AlignMask) & ~AlignMask;
+
+ return FrameSize;
+}
+
+// hasFP - Return true if the specified function actually has a dedicated frame
+// pointer register.
+bool PPCFrameLowering::hasFP(const MachineFunction &MF) const {
+ const MachineFrameInfo &MFI = MF.getFrameInfo();
+ // FIXME: This is pretty much broken by design: hasFP() might be called really
+ // early, before the stack layout was calculated and thus hasFP() might return
+ // true or false here depending on the time of call.
+ return (MFI.getStackSize()) && needsFP(MF);
+}
+
+// needsFP - Return true if the specified function should have a dedicated frame
+// pointer register. This is true if the function has variable sized allocas or
+// if frame pointer elimination is disabled.
+bool PPCFrameLowering::needsFP(const MachineFunction &MF) const {
+ const MachineFrameInfo &MFI = MF.getFrameInfo();
+
+ // Naked functions have no stack frame pushed, so we don't have a frame
+ // pointer.
+ if (MF.getFunction().hasFnAttribute(Attribute::Naked))
+ return false;
+
+ return MF.getTarget().Options.DisableFramePointerElim(MF) ||
+ MFI.hasVarSizedObjects() || MFI.hasStackMap() || MFI.hasPatchPoint() ||
+ (MF.getTarget().Options.GuaranteedTailCallOpt &&
+ MF.getInfo<PPCFunctionInfo>()->hasFastCall());
+}
+
+void PPCFrameLowering::replaceFPWithRealFP(MachineFunction &MF) const {
+ bool is31 = needsFP(MF);
+ unsigned FPReg = is31 ? PPC::R31 : PPC::R1;
+ unsigned FP8Reg = is31 ? PPC::X31 : PPC::X1;
+
+ const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
+ bool HasBP = RegInfo->hasBasePointer(MF);
+ unsigned BPReg = HasBP ? (unsigned) RegInfo->getBaseRegister(MF) : FPReg;
+ unsigned BP8Reg = HasBP ? (unsigned) PPC::X30 : FP8Reg;
+
+ for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
+ BI != BE; ++BI)
+ for (MachineBasicBlock::iterator MBBI = BI->end(); MBBI != BI->begin(); ) {
+ --MBBI;
+ for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
+ MachineOperand &MO = MBBI->getOperand(I);
+ if (!MO.isReg())
+ continue;
+
+ switch (MO.getReg()) {
+ case PPC::FP:
+ MO.setReg(FPReg);
+ break;
+ case PPC::FP8:
+ MO.setReg(FP8Reg);
+ break;
+ case PPC::BP:
+ MO.setReg(BPReg);
+ break;
+ case PPC::BP8:
+ MO.setReg(BP8Reg);
+ break;
+
+ }
+ }
+ }
+}
+
+/* This function will do the following:
+ - If MBB is an entry or exit block, set SR1 and SR2 to R0 and R12
+ respectively (defaults recommended by the ABI) and return true
+ - If MBB is not an entry block, initialize the register scavenger and look
+ for available registers.
+ - If the defaults (R0/R12) are available, return true
+ - If TwoUniqueRegsRequired is set to true, it looks for two unique
+ registers. Otherwise, look for a single available register.
+ - If the required registers are found, set SR1 and SR2 and return true.
+ - If the required registers are not found, set SR2 or both SR1 and SR2 to
+ PPC::NoRegister and return false.
+
+ Note that if both SR1 and SR2 are valid parameters and TwoUniqueRegsRequired
+ is not set, this function will attempt to find two different registers, but
+ still return true if only one register is available (and set SR1 == SR2).
+*/
+bool
+PPCFrameLowering::findScratchRegister(MachineBasicBlock *MBB,
+ bool UseAtEnd,
+ bool TwoUniqueRegsRequired,
+ unsigned *SR1,
+ unsigned *SR2) const {
+ RegScavenger RS;
+ unsigned R0 = Subtarget.isPPC64() ? PPC::X0 : PPC::R0;
+ unsigned R12 = Subtarget.isPPC64() ? PPC::X12 : PPC::R12;
+
+ // Set the defaults for the two scratch registers.
+ if (SR1)
+ *SR1 = R0;
+
+ if (SR2) {
+ assert (SR1 && "Asking for the second scratch register but not the first?");
+ *SR2 = R12;
+ }
+
+ // If MBB is an entry or exit block, use R0 and R12 as the scratch registers.
+ if ((UseAtEnd && MBB->isReturnBlock()) ||
+ (!UseAtEnd && (&MBB->getParent()->front() == MBB)))
+ return true;
+
+ RS.enterBasicBlock(*MBB);
+
+ if (UseAtEnd && !MBB->empty()) {
+ // The scratch register will be used at the end of the block, so must
+ // consider all registers used within the block
+
+ MachineBasicBlock::iterator MBBI = MBB->getFirstTerminator();
+ // If no terminator, back iterator up to previous instruction.
+ if (MBBI == MBB->end())
+ MBBI = std::prev(MBBI);
+
+ if (MBBI != MBB->begin())
+ RS.forward(MBBI);
+ }
+
+ // If the two registers are available, we're all good.
+ // Note that we only return here if both R0 and R12 are available because
+ // although the function may not require two unique registers, it may benefit
+ // from having two so we should try to provide them.
+ if (!RS.isRegUsed(R0) && !RS.isRegUsed(R12))
+ return true;
+
+ // Get the list of callee-saved registers for the target.
+ const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
+ const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(MBB->getParent());
+
+ // Get all the available registers in the block.
+ BitVector BV = RS.getRegsAvailable(Subtarget.isPPC64() ? &PPC::G8RCRegClass :
+ &PPC::GPRCRegClass);
+
+ // We shouldn't use callee-saved registers as scratch registers as they may be
+ // available when looking for a candidate block for shrink wrapping but not
+ // available when the actual prologue/epilogue is being emitted because they
+ // were added as live-in to the prologue block by PrologueEpilogueInserter.
+ for (int i = 0; CSRegs[i]; ++i)
+ BV.reset(CSRegs[i]);
+
+ // Set the first scratch register to the first available one.
+ if (SR1) {
+ int FirstScratchReg = BV.find_first();
+ *SR1 = FirstScratchReg == -1 ? (unsigned)PPC::NoRegister : FirstScratchReg;
+ }
+
+ // If there is another one available, set the second scratch register to that.
+ // Otherwise, set it to either PPC::NoRegister if this function requires two
+ // or to whatever SR1 is set to if this function doesn't require two.
+ if (SR2) {
+ int SecondScratchReg = BV.find_next(*SR1);
+ if (SecondScratchReg != -1)
+ *SR2 = SecondScratchReg;
+ else
+ *SR2 = TwoUniqueRegsRequired ? (unsigned)PPC::NoRegister : *SR1;
+ }
+
+ // Now that we've done our best to provide both registers, double check
+ // whether we were unable to provide enough.
+ if (BV.count() < (TwoUniqueRegsRequired ? 2U : 1U))
+ return false;
+
+ return true;
+}
+
+// We need a scratch register for spilling LR and for spilling CR. By default,
+// we use two scratch registers to hide latency. However, if only one scratch
+// register is available, we can adjust for that by not overlapping the spill
+// code. However, if we need to realign the stack (i.e. have a base pointer)
+// and the stack frame is large, we need two scratch registers.
+bool
+PPCFrameLowering::twoUniqueScratchRegsRequired(MachineBasicBlock *MBB) const {
+ const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
+ MachineFunction &MF = *(MBB->getParent());
+ bool HasBP = RegInfo->hasBasePointer(MF);
+ unsigned FrameSize = determineFrameLayout(MF);
+ int NegFrameSize = -FrameSize;
+ bool IsLargeFrame = !isInt<16>(NegFrameSize);
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ unsigned MaxAlign = MFI.getMaxAlignment();
+ bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI();
+
+ return (IsLargeFrame || !HasRedZone) && HasBP && MaxAlign > 1;
+}
+
+bool PPCFrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
+ MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
+
+ return findScratchRegister(TmpMBB, false,
+ twoUniqueScratchRegsRequired(TmpMBB));
+}
+
+bool PPCFrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
+ MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
+
+ return findScratchRegister(TmpMBB, true);
+}
+
+bool PPCFrameLowering::stackUpdateCanBeMoved(MachineFunction &MF) const {
+ const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
+ PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
+
+ // Abort if there is no register info or function info.
+ if (!RegInfo || !FI)
+ return false;
+
+ // Only move the stack update on ELFv2 ABI and PPC64.
+ if (!Subtarget.isELFv2ABI() || !Subtarget.isPPC64())
+ return false;
+
+ // Check the frame size first and return false if it does not fit the
+ // requirements.
+ // We need a non-zero frame size as well as a frame that will fit in the red
+ // zone. This is because by moving the stack pointer update we are now storing
+ // to the red zone until the stack pointer is updated. If we get an interrupt
+ // inside the prologue but before the stack update we now have a number of
+ // stores to the red zone and those stores must all fit.
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ unsigned FrameSize = MFI.getStackSize();
+ if (!FrameSize || FrameSize > Subtarget.getRedZoneSize())
+ return false;
+
+ // Frame pointers and base pointers complicate matters so don't do anything
+ // if we have them. For example having a frame pointer will sometimes require
+ // a copy of r1 into r31 and that makes keeping track of updates to r1 more
+ // difficult.
+ if (hasFP(MF) || RegInfo->hasBasePointer(MF))
+ return false;
+
+ // Calls to fast_cc functions use different rules for passing parameters on
+ // the stack from the ABI and using PIC base in the function imposes
+ // similar restrictions to using the base pointer. It is not generally safe
+ // to move the stack pointer update in these situations.
+ if (FI->hasFastCall() || FI->usesPICBase())
+ return false;
+
+ // Finally we can move the stack update if we do not require register
+ // scavenging. Register scavenging can introduce more spills and so
+ // may make the frame size larger than we have computed.
+ return !RegInfo->requiresFrameIndexScavenging(MF);
+}
+
+void PPCFrameLowering::emitPrologue(MachineFunction &MF,
+ MachineBasicBlock &MBB) const {
+ MachineBasicBlock::iterator MBBI = MBB.begin();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
+ const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
+
+ MachineModuleInfo &MMI = MF.getMMI();
+ const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
+ DebugLoc dl;
+ bool needsCFI = MMI.hasDebugInfo() ||
+ MF.getFunction().needsUnwindTableEntry();
+
+ // Get processor type.
+ bool isPPC64 = Subtarget.isPPC64();
+ // Get the ABI.
+ bool isSVR4ABI = Subtarget.isSVR4ABI();
+ bool isAIXABI = Subtarget.isAIXABI();
+ bool isELFv2ABI = Subtarget.isELFv2ABI();
+ assert((Subtarget.isDarwinABI() || isSVR4ABI || isAIXABI) &&
+ "Unsupported PPC ABI.");
+
+ // Scan the prolog, looking for an UPDATE_VRSAVE instruction. If we find it,
+ // process it.
+ if (!isSVR4ABI)
+ for (unsigned i = 0; MBBI != MBB.end(); ++i, ++MBBI) {
+ if (MBBI->getOpcode() == PPC::UPDATE_VRSAVE) {
+ if (isAIXABI)
+ report_fatal_error("UPDATE_VRSAVE is unexpected on AIX.");
+ HandleVRSaveUpdate(*MBBI, TII);
+ break;
+ }
+ }
+
+ // Move MBBI back to the beginning of the prologue block.
+ MBBI = MBB.begin();
+
+ // Work out frame sizes.
+ unsigned FrameSize = determineFrameLayoutAndUpdate(MF);
+ int NegFrameSize = -FrameSize;
+ if (!isInt<32>(NegFrameSize))
+ llvm_unreachable("Unhandled stack size!");
+
+ if (MFI.isFrameAddressTaken())
+ replaceFPWithRealFP(MF);
+
+ // Check if the link register (LR) must be saved.
+ PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
+ bool MustSaveLR = FI->mustSaveLR();
+ bool MustSaveTOC = FI->mustSaveTOC();
+ const SmallVectorImpl<unsigned> &MustSaveCRs = FI->getMustSaveCRs();
+ bool MustSaveCR = !MustSaveCRs.empty();
+ // Do we have a frame pointer and/or base pointer for this function?
+ bool HasFP = hasFP(MF);
+ bool HasBP = RegInfo->hasBasePointer(MF);
+ bool HasRedZone = isPPC64 || !isSVR4ABI;
+
+ unsigned SPReg = isPPC64 ? PPC::X1 : PPC::R1;
+ Register BPReg = RegInfo->getBaseRegister(MF);
+ unsigned FPReg = isPPC64 ? PPC::X31 : PPC::R31;
+ unsigned LRReg = isPPC64 ? PPC::LR8 : PPC::LR;
+ unsigned TOCReg = isPPC64 ? PPC::X2 : PPC::R2;
+ unsigned ScratchReg = 0;
+ unsigned TempReg = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg
+ // ...(R12/X12 is volatile in both Darwin & SVR4, & can't be a function arg.)
+ const MCInstrDesc& MFLRInst = TII.get(isPPC64 ? PPC::MFLR8
+ : PPC::MFLR );
+ const MCInstrDesc& StoreInst = TII.get(isPPC64 ? PPC::STD
+ : PPC::STW );
+ const MCInstrDesc& StoreUpdtInst = TII.get(isPPC64 ? PPC::STDU
+ : PPC::STWU );
+ const MCInstrDesc& StoreUpdtIdxInst = TII.get(isPPC64 ? PPC::STDUX
+ : PPC::STWUX);
+ const MCInstrDesc& LoadImmShiftedInst = TII.get(isPPC64 ? PPC::LIS8
+ : PPC::LIS );
+ const MCInstrDesc& OrImmInst = TII.get(isPPC64 ? PPC::ORI8
+ : PPC::ORI );
+ const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8
+ : PPC::OR );
+ const MCInstrDesc& SubtractCarryingInst = TII.get(isPPC64 ? PPC::SUBFC8
+ : PPC::SUBFC);
+ const MCInstrDesc& SubtractImmCarryingInst = TII.get(isPPC64 ? PPC::SUBFIC8
+ : PPC::SUBFIC);
+
+ // Regarding this assert: Even though LR is saved in the caller's frame (i.e.,
+ // LROffset is positive), that slot is callee-owned. Because PPC32 SVR4 has no
+ // Red Zone, an asynchronous event (a form of "callee") could claim a frame &
+ // overwrite it, so PPC32 SVR4 must claim at least a minimal frame to save LR.
+ assert((isPPC64 || !isSVR4ABI || !(!FrameSize && (MustSaveLR || HasFP))) &&
+ "FrameSize must be >0 to save/restore the FP or LR for 32-bit SVR4.");
+
+ // Using the same bool variable as below to suppress compiler warnings.
+ bool SingleScratchReg =
+ findScratchRegister(&MBB, false, twoUniqueScratchRegsRequired(&MBB),
+ &ScratchReg, &TempReg);
+ assert(SingleScratchReg &&
+ "Required number of registers not available in this block");
+
+ SingleScratchReg = ScratchReg == TempReg;
+
+ int LROffset = getReturnSaveOffset();
+
+ int FPOffset = 0;
+ if (HasFP) {
+ if (isSVR4ABI) {
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ int FPIndex = FI->getFramePointerSaveIndex();
+ assert(FPIndex && "No Frame Pointer Save Slot!");
+ FPOffset = MFI.getObjectOffset(FPIndex);
+ } else {
+ FPOffset = getFramePointerSaveOffset();
+ }
+ }
+
+ int BPOffset = 0;
+ if (HasBP) {
+ if (isSVR4ABI) {
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ int BPIndex = FI->getBasePointerSaveIndex();
+ assert(BPIndex && "No Base Pointer Save Slot!");
+ BPOffset = MFI.getObjectOffset(BPIndex);
+ } else {
+ BPOffset = getBasePointerSaveOffset();
+ }
+ }
+
+ int PBPOffset = 0;
+ if (FI->usesPICBase()) {
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ int PBPIndex = FI->getPICBasePointerSaveIndex();
+ assert(PBPIndex && "No PIC Base Pointer Save Slot!");
+ PBPOffset = MFI.getObjectOffset(PBPIndex);
+ }
+
+ // Get stack alignments.
+ unsigned MaxAlign = MFI.getMaxAlignment();
+ if (HasBP && MaxAlign > 1)
+ assert(isPowerOf2_32(MaxAlign) && isInt<16>(MaxAlign) &&
+ "Invalid alignment!");
+
+ // Frames of 32KB & larger require special handling because they cannot be
+ // indexed into with a simple STDU/STWU/STD/STW immediate offset operand.
+ bool isLargeFrame = !isInt<16>(NegFrameSize);
+
+ assert((isPPC64 || !MustSaveCR) &&
+ "Prologue CR saving supported only in 64-bit mode");
+
+ if (MustSaveCR && isAIXABI)
+ report_fatal_error("Prologue CR saving is unimplemented on AIX.");
+
+ // Check if we can move the stack update instruction (stdu) down the prologue
+ // past the callee saves. Hopefully this will avoid the situation where the
+ // saves are waiting for the update on the store with update to complete.
+ MachineBasicBlock::iterator StackUpdateLoc = MBBI;
+ bool MovingStackUpdateDown = false;
+
+ // Check if we can move the stack update.
+ if (stackUpdateCanBeMoved(MF)) {
+ const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo();
+ for (CalleeSavedInfo CSI : Info) {
+ int FrIdx = CSI.getFrameIdx();
+ // If the frame index is not negative the callee saved info belongs to a
+ // stack object that is not a fixed stack object. We ignore non-fixed
+ // stack objects because we won't move the stack update pointer past them.
+ if (FrIdx >= 0)
+ continue;
+
+ if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0) {
+ StackUpdateLoc++;
+ MovingStackUpdateDown = true;
+ } else {
+ // We need all of the Frame Indices to meet these conditions.
+ // If they do not, abort the whole operation.
+ StackUpdateLoc = MBBI;
+ MovingStackUpdateDown = false;
+ break;
+ }
+ }
+
+ // If the operation was not aborted then update the object offset.
+ if (MovingStackUpdateDown) {
+ for (CalleeSavedInfo CSI : Info) {
+ int FrIdx = CSI.getFrameIdx();
+ if (FrIdx < 0)
+ MFI.setObjectOffset(FrIdx, MFI.getObjectOffset(FrIdx) + NegFrameSize);
+ }
+ }
+ }
+
+ // If we need to spill the CR and the LR but we don't have two separate
+ // registers available, we must spill them one at a time
+ if (MustSaveCR && SingleScratchReg && MustSaveLR) {
+ // In the ELFv2 ABI, we are not required to save all CR fields.
+ // If only one or two CR fields are clobbered, it is more efficient to use
+ // mfocrf to selectively save just those fields, because mfocrf has short
+ // latency compares to mfcr.
+ unsigned MfcrOpcode = PPC::MFCR8;
+ unsigned CrState = RegState::ImplicitKill;
+ if (isELFv2ABI && MustSaveCRs.size() == 1) {
+ MfcrOpcode = PPC::MFOCRF8;
+ CrState = RegState::Kill;
+ }
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, MBBI, dl, TII.get(MfcrOpcode), TempReg);
+ for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i)
+ MIB.addReg(MustSaveCRs[i], CrState);
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::STW8))
+ .addReg(TempReg, getKillRegState(true))
+ .addImm(getCRSaveOffset())
+ .addReg(SPReg);
+ }
+
+ if (MustSaveLR)
+ BuildMI(MBB, MBBI, dl, MFLRInst, ScratchReg);
+
+ if (MustSaveCR &&
+ !(SingleScratchReg && MustSaveLR)) { // will only occur for PPC64
+ // In the ELFv2 ABI, we are not required to save all CR fields.
+ // If only one or two CR fields are clobbered, it is more efficient to use
+ // mfocrf to selectively save just those fields, because mfocrf has short
+ // latency compares to mfcr.
+ unsigned MfcrOpcode = PPC::MFCR8;
+ unsigned CrState = RegState::ImplicitKill;
+ if (isELFv2ABI && MustSaveCRs.size() == 1) {
+ MfcrOpcode = PPC::MFOCRF8;
+ CrState = RegState::Kill;
+ }
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, MBBI, dl, TII.get(MfcrOpcode), TempReg);
+ for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i)
+ MIB.addReg(MustSaveCRs[i], CrState);
+ }
+
+ if (HasRedZone) {
+ if (HasFP)
+ BuildMI(MBB, MBBI, dl, StoreInst)
+ .addReg(FPReg)
+ .addImm(FPOffset)
+ .addReg(SPReg);
+ if (FI->usesPICBase())
+ BuildMI(MBB, MBBI, dl, StoreInst)
+ .addReg(PPC::R30)
+ .addImm(PBPOffset)
+ .addReg(SPReg);
+ if (HasBP)
+ BuildMI(MBB, MBBI, dl, StoreInst)
+ .addReg(BPReg)
+ .addImm(BPOffset)
+ .addReg(SPReg);
+ }
+
+ if (MustSaveLR)
+ BuildMI(MBB, StackUpdateLoc, dl, StoreInst)
+ .addReg(ScratchReg, getKillRegState(true))
+ .addImm(LROffset)
+ .addReg(SPReg);
+
+ if (MustSaveCR &&
+ !(SingleScratchReg && MustSaveLR)) { // will only occur for PPC64
+ assert(HasRedZone && "A red zone is always available on PPC64");
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::STW8))
+ .addReg(TempReg, getKillRegState(true))
+ .addImm(getCRSaveOffset())
+ .addReg(SPReg);
+ }
+
+ // Skip the rest if this is a leaf function & all spills fit in the Red Zone.
+ if (!FrameSize)
+ return;
+
+ // Adjust stack pointer: r1 += NegFrameSize.
+ // If there is a preferred stack alignment, align R1 now
+
+ if (HasBP && HasRedZone) {
+ // Save a copy of r1 as the base pointer.
+ BuildMI(MBB, MBBI, dl, OrInst, BPReg)
+ .addReg(SPReg)
+ .addReg(SPReg);
+ }
+
+ // Have we generated a STUX instruction to claim stack frame? If so,
+ // the negated frame size will be placed in ScratchReg.
+ bool HasSTUX = false;
+
+ // This condition must be kept in sync with canUseAsPrologue.
+ if (HasBP && MaxAlign > 1) {
+ if (isPPC64)
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::RLDICL), ScratchReg)
+ .addReg(SPReg)
+ .addImm(0)
+ .addImm(64 - Log2_32(MaxAlign));
+ else // PPC32...
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::RLWINM), ScratchReg)
+ .addReg(SPReg)
+ .addImm(0)
+ .addImm(32 - Log2_32(MaxAlign))
+ .addImm(31);
+ if (!isLargeFrame) {
+ BuildMI(MBB, MBBI, dl, SubtractImmCarryingInst, ScratchReg)
+ .addReg(ScratchReg, RegState::Kill)
+ .addImm(NegFrameSize);
+ } else {
+ assert(!SingleScratchReg && "Only a single scratch reg available");
+ BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, TempReg)
+ .addImm(NegFrameSize >> 16);
+ BuildMI(MBB, MBBI, dl, OrImmInst, TempReg)
+ .addReg(TempReg, RegState::Kill)
+ .addImm(NegFrameSize & 0xFFFF);
+ BuildMI(MBB, MBBI, dl, SubtractCarryingInst, ScratchReg)
+ .addReg(ScratchReg, RegState::Kill)
+ .addReg(TempReg, RegState::Kill);
+ }
+
+ BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg)
+ .addReg(SPReg, RegState::Kill)
+ .addReg(SPReg)
+ .addReg(ScratchReg);
+ HasSTUX = true;
+
+ } else if (!isLargeFrame) {
+ BuildMI(MBB, StackUpdateLoc, dl, StoreUpdtInst, SPReg)
+ .addReg(SPReg)
+ .addImm(NegFrameSize)
+ .addReg(SPReg);
+
+ } else {
+ BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg)
+ .addImm(NegFrameSize >> 16);
+ BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg)
+ .addReg(ScratchReg, RegState::Kill)
+ .addImm(NegFrameSize & 0xFFFF);
+ BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg)
+ .addReg(SPReg, RegState::Kill)
+ .addReg(SPReg)
+ .addReg(ScratchReg);
+ HasSTUX = true;
+ }
+
+ // Save the TOC register after the stack pointer update if a prologue TOC
+ // save is required for the function.
+ if (MustSaveTOC) {
+ assert(isELFv2ABI && "TOC saves in the prologue only supported on ELFv2");
+ BuildMI(MBB, StackUpdateLoc, dl, TII.get(PPC::STD))
+ .addReg(TOCReg, getKillRegState(true))
+ .addImm(TOCSaveOffset)
+ .addReg(SPReg);
+ }
+
+ if (!HasRedZone) {
+ assert(!isPPC64 && "A red zone is always available on PPC64");
+ if (HasSTUX) {
+ // The negated frame size is in ScratchReg, and the SPReg has been
+ // decremented by the frame size: SPReg = old SPReg + ScratchReg.
+ // Since FPOffset, PBPOffset, etc. are relative to the beginning of
+ // the stack frame (i.e. the old SP), ideally, we would put the old
+ // SP into a register and use it as the base for the stores. The
+ // problem is that the only available register may be ScratchReg,
+ // which could be R0, and R0 cannot be used as a base address.
+
+ // First, set ScratchReg to the old SP. This may need to be modified
+ // later.
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg)
+ .addReg(ScratchReg, RegState::Kill)
+ .addReg(SPReg);
+
+ if (ScratchReg == PPC::R0) {
+ // R0 cannot be used as a base register, but it can be used as an
+ // index in a store-indexed.
+ int LastOffset = 0;
+ if (HasFP) {
+ // R0 += (FPOffset-LastOffset).
+ // Need addic, since addi treats R0 as 0.
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
+ .addReg(ScratchReg)
+ .addImm(FPOffset-LastOffset);
+ LastOffset = FPOffset;
+ // Store FP into *R0.
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
+ .addReg(FPReg, RegState::Kill) // Save FP.
+ .addReg(PPC::ZERO)
+ .addReg(ScratchReg); // This will be the index (R0 is ok here).
+ }
+ if (FI->usesPICBase()) {
+ // R0 += (PBPOffset-LastOffset).
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
+ .addReg(ScratchReg)
+ .addImm(PBPOffset-LastOffset);
+ LastOffset = PBPOffset;
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
+ .addReg(PPC::R30, RegState::Kill) // Save PIC base pointer.
+ .addReg(PPC::ZERO)
+ .addReg(ScratchReg); // This will be the index (R0 is ok here).
+ }
+ if (HasBP) {
+ // R0 += (BPOffset-LastOffset).
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
+ .addReg(ScratchReg)
+ .addImm(BPOffset-LastOffset);
+ LastOffset = BPOffset;
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
+ .addReg(BPReg, RegState::Kill) // Save BP.
+ .addReg(PPC::ZERO)
+ .addReg(ScratchReg); // This will be the index (R0 is ok here).
+ // BP = R0-LastOffset
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), BPReg)
+ .addReg(ScratchReg, RegState::Kill)
+ .addImm(-LastOffset);
+ }
+ } else {
+ // ScratchReg is not R0, so use it as the base register. It is
+ // already set to the old SP, so we can use the offsets directly.
+
+ // Now that the stack frame has been allocated, save all the necessary
+ // registers using ScratchReg as the base address.
+ if (HasFP)
+ BuildMI(MBB, MBBI, dl, StoreInst)
+ .addReg(FPReg)
+ .addImm(FPOffset)
+ .addReg(ScratchReg);
+ if (FI->usesPICBase())
+ BuildMI(MBB, MBBI, dl, StoreInst)
+ .addReg(PPC::R30)
+ .addImm(PBPOffset)
+ .addReg(ScratchReg);
+ if (HasBP) {
+ BuildMI(MBB, MBBI, dl, StoreInst)
+ .addReg(BPReg)
+ .addImm(BPOffset)
+ .addReg(ScratchReg);
+ BuildMI(MBB, MBBI, dl, OrInst, BPReg)
+ .addReg(ScratchReg, RegState::Kill)
+ .addReg(ScratchReg);
+ }
+ }
+ } else {
+ // The frame size is a known 16-bit constant (fitting in the immediate
+ // field of STWU). To be here we have to be compiling for PPC32.
+ // Since the SPReg has been decreased by FrameSize, add it back to each
+ // offset.
+ if (HasFP)
+ BuildMI(MBB, MBBI, dl, StoreInst)
+ .addReg(FPReg)
+ .addImm(FrameSize + FPOffset)
+ .addReg(SPReg);
+ if (FI->usesPICBase())
+ BuildMI(MBB, MBBI, dl, StoreInst)
+ .addReg(PPC::R30)
+ .addImm(FrameSize + PBPOffset)
+ .addReg(SPReg);
+ if (HasBP) {
+ BuildMI(MBB, MBBI, dl, StoreInst)
+ .addReg(BPReg)
+ .addImm(FrameSize + BPOffset)
+ .addReg(SPReg);
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDI), BPReg)
+ .addReg(SPReg)
+ .addImm(FrameSize);
+ }
+ }
+ }
+
+ // Add Call Frame Information for the instructions we generated above.
+ if (needsCFI) {
+ unsigned CFIIndex;
+
+ if (HasBP) {
+ // Define CFA in terms of BP. Do this in preference to using FP/SP,
+ // because if the stack needed aligning then CFA won't be at a fixed
+ // offset from FP/SP.
+ unsigned Reg = MRI->getDwarfRegNum(BPReg, true);
+ CFIIndex = MF.addFrameInst(
+ MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
+ } else {
+ // Adjust the definition of CFA to account for the change in SP.
+ assert(NegFrameSize);
+ CFIIndex = MF.addFrameInst(
+ MCCFIInstruction::createDefCfaOffset(nullptr, NegFrameSize));
+ }
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+
+ if (HasFP) {
+ // Describe where FP was saved, at a fixed offset from CFA.
+ unsigned Reg = MRI->getDwarfRegNum(FPReg, true);
+ CFIIndex = MF.addFrameInst(
+ MCCFIInstruction::createOffset(nullptr, Reg, FPOffset));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+
+ if (FI->usesPICBase()) {
+ // Describe where FP was saved, at a fixed offset from CFA.
+ unsigned Reg = MRI->getDwarfRegNum(PPC::R30, true);
+ CFIIndex = MF.addFrameInst(
+ MCCFIInstruction::createOffset(nullptr, Reg, PBPOffset));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+
+ if (HasBP) {
+ // Describe where BP was saved, at a fixed offset from CFA.
+ unsigned Reg = MRI->getDwarfRegNum(BPReg, true);
+ CFIIndex = MF.addFrameInst(
+ MCCFIInstruction::createOffset(nullptr, Reg, BPOffset));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+
+ if (MustSaveLR) {
+ // Describe where LR was saved, at a fixed offset from CFA.
+ unsigned Reg = MRI->getDwarfRegNum(LRReg, true);
+ CFIIndex = MF.addFrameInst(
+ MCCFIInstruction::createOffset(nullptr, Reg, LROffset));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+ }
+
+ // If there is a frame pointer, copy R1 into R31
+ if (HasFP) {
+ BuildMI(MBB, MBBI, dl, OrInst, FPReg)
+ .addReg(SPReg)
+ .addReg(SPReg);
+
+ if (!HasBP && needsCFI) {
+ // Change the definition of CFA from SP+offset to FP+offset, because SP
+ // will change at every alloca.
+ unsigned Reg = MRI->getDwarfRegNum(FPReg, true);
+ unsigned CFIIndex = MF.addFrameInst(
+ MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
+
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+ }
+
+ if (needsCFI) {
+ // Describe where callee saved registers were saved, at fixed offsets from
+ // CFA.
+ const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
+ for (unsigned I = 0, E = CSI.size(); I != E; ++I) {
+ unsigned Reg = CSI[I].getReg();
+ if (Reg == PPC::LR || Reg == PPC::LR8 || Reg == PPC::RM) continue;
+
+ // This is a bit of a hack: CR2LT, CR2GT, CR2EQ and CR2UN are just
+ // subregisters of CR2. We just need to emit a move of CR2.
+ if (PPC::CRBITRCRegClass.contains(Reg))
+ continue;
+
+ if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
+ continue;
+
+ // For SVR4, don't emit a move for the CR spill slot if we haven't
+ // spilled CRs.
+ if (isSVR4ABI && (PPC::CR2 <= Reg && Reg <= PPC::CR4)
+ && !MustSaveCR)
+ continue;
+
+ // For 64-bit SVR4 when we have spilled CRs, the spill location
+ // is SP+8, not a frame-relative slot.
+ if (isSVR4ABI && isPPC64 && (PPC::CR2 <= Reg && Reg <= PPC::CR4)) {
+ // In the ELFv1 ABI, only CR2 is noted in CFI and stands in for
+ // the whole CR word. In the ELFv2 ABI, every CR that was
+ // actually saved gets its own CFI record.
+ unsigned CRReg = isELFv2ABI? Reg : (unsigned) PPC::CR2;
+ unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
+ nullptr, MRI->getDwarfRegNum(CRReg, true), getCRSaveOffset()));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ continue;
+ }
+
+ if (CSI[I].isSpilledToReg()) {
+ unsigned SpilledReg = CSI[I].getDstReg();
+ unsigned CFIRegister = MF.addFrameInst(MCCFIInstruction::createRegister(
+ nullptr, MRI->getDwarfRegNum(Reg, true),
+ MRI->getDwarfRegNum(SpilledReg, true)));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIRegister);
+ } else {
+ int Offset = MFI.getObjectOffset(CSI[I].getFrameIdx());
+ // We have changed the object offset above but we do not want to change
+ // the actual offsets in the CFI instruction so we have to undo the
+ // offset change here.
+ if (MovingStackUpdateDown)
+ Offset -= NegFrameSize;
+
+ unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
+ nullptr, MRI->getDwarfRegNum(Reg, true), Offset));
+ BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+ }
+ }
+ }
+}
+
+void PPCFrameLowering::emitEpilogue(MachineFunction &MF,
+ MachineBasicBlock &MBB) const {
+ MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
+ DebugLoc dl;
+
+ if (MBBI != MBB.end())
+ dl = MBBI->getDebugLoc();
+
+ const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
+ const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
+
+ // Get alignment info so we know how to restore the SP.
+ const MachineFrameInfo &MFI = MF.getFrameInfo();
+
+ // Get the number of bytes allocated from the FrameInfo.
+ int FrameSize = MFI.getStackSize();
+
+ // Get processor type.
+ bool isPPC64 = Subtarget.isPPC64();
+ // Get the ABI.
+ bool isSVR4ABI = Subtarget.isSVR4ABI();
+
+ // Check if the link register (LR) has been saved.
+ PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
+ bool MustSaveLR = FI->mustSaveLR();
+ const SmallVectorImpl<unsigned> &MustSaveCRs = FI->getMustSaveCRs();
+ bool MustSaveCR = !MustSaveCRs.empty();
+ // Do we have a frame pointer and/or base pointer for this function?
+ bool HasFP = hasFP(MF);
+ bool HasBP = RegInfo->hasBasePointer(MF);
+ bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI();
+
+ unsigned SPReg = isPPC64 ? PPC::X1 : PPC::R1;
+ Register BPReg = RegInfo->getBaseRegister(MF);
+ unsigned FPReg = isPPC64 ? PPC::X31 : PPC::R31;
+ unsigned ScratchReg = 0;
+ unsigned TempReg = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg
+ const MCInstrDesc& MTLRInst = TII.get( isPPC64 ? PPC::MTLR8
+ : PPC::MTLR );
+ const MCInstrDesc& LoadInst = TII.get( isPPC64 ? PPC::LD
+ : PPC::LWZ );
+ const MCInstrDesc& LoadImmShiftedInst = TII.get( isPPC64 ? PPC::LIS8
+ : PPC::LIS );
+ const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8
+ : PPC::OR );
+ const MCInstrDesc& OrImmInst = TII.get( isPPC64 ? PPC::ORI8
+ : PPC::ORI );
+ const MCInstrDesc& AddImmInst = TII.get( isPPC64 ? PPC::ADDI8
+ : PPC::ADDI );
+ const MCInstrDesc& AddInst = TII.get( isPPC64 ? PPC::ADD8
+ : PPC::ADD4 );
+
+ int LROffset = getReturnSaveOffset();
+
+ int FPOffset = 0;
+
+ // Using the same bool variable as below to suppress compiler warnings.
+ bool SingleScratchReg = findScratchRegister(&MBB, true, false, &ScratchReg,
+ &TempReg);
+ assert(SingleScratchReg &&
+ "Could not find an available scratch register");
+
+ SingleScratchReg = ScratchReg == TempReg;
+
+ if (HasFP) {
+ if (isSVR4ABI) {
+ int FPIndex = FI->getFramePointerSaveIndex();
+ assert(FPIndex && "No Frame Pointer Save Slot!");
+ FPOffset = MFI.getObjectOffset(FPIndex);
+ } else {
+ FPOffset = getFramePointerSaveOffset();
+ }
+ }
+
+ int BPOffset = 0;
+ if (HasBP) {
+ if (isSVR4ABI) {
+ int BPIndex = FI->getBasePointerSaveIndex();
+ assert(BPIndex && "No Base Pointer Save Slot!");
+ BPOffset = MFI.getObjectOffset(BPIndex);
+ } else {
+ BPOffset = getBasePointerSaveOffset();
+ }
+ }
+
+ int PBPOffset = 0;
+ if (FI->usesPICBase()) {
+ int PBPIndex = FI->getPICBasePointerSaveIndex();
+ assert(PBPIndex && "No PIC Base Pointer Save Slot!");
+ PBPOffset = MFI.getObjectOffset(PBPIndex);
+ }
+
+ bool IsReturnBlock = (MBBI != MBB.end() && MBBI->isReturn());
+
+ if (IsReturnBlock) {
+ unsigned RetOpcode = MBBI->getOpcode();
+ bool UsesTCRet = RetOpcode == PPC::TCRETURNri ||
+ RetOpcode == PPC::TCRETURNdi ||
+ RetOpcode == PPC::TCRETURNai ||
+ RetOpcode == PPC::TCRETURNri8 ||
+ RetOpcode == PPC::TCRETURNdi8 ||
+ RetOpcode == PPC::TCRETURNai8;
+
+ if (UsesTCRet) {
+ int MaxTCRetDelta = FI->getTailCallSPDelta();
+ MachineOperand &StackAdjust = MBBI->getOperand(1);
+ assert(StackAdjust.isImm() && "Expecting immediate value.");
+ // Adjust stack pointer.
+ int StackAdj = StackAdjust.getImm();
+ int Delta = StackAdj - MaxTCRetDelta;
+ assert((Delta >= 0) && "Delta must be positive");
+ if (MaxTCRetDelta>0)
+ FrameSize += (StackAdj +Delta);
+ else
+ FrameSize += StackAdj;
+ }
+ }
+
+ // Frames of 32KB & larger require special handling because they cannot be
+ // indexed into with a simple LD/LWZ immediate offset operand.
+ bool isLargeFrame = !isInt<16>(FrameSize);
+
+ // On targets without red zone, the SP needs to be restored last, so that
+ // all live contents of the stack frame are upwards of the SP. This means
+ // that we cannot restore SP just now, since there may be more registers
+ // to restore from the stack frame (e.g. R31). If the frame size is not
+ // a simple immediate value, we will need a spare register to hold the
+ // restored SP. If the frame size is known and small, we can simply adjust
+ // the offsets of the registers to be restored, and still use SP to restore
+ // them. In such case, the final update of SP will be to add the frame
+ // size to it.
+ // To simplify the code, set RBReg to the base register used to restore
+ // values from the stack, and set SPAdd to the value that needs to be added
+ // to the SP at the end. The default values are as if red zone was present.
+ unsigned RBReg = SPReg;
+ unsigned SPAdd = 0;
+
+ // Check if we can move the stack update instruction up the epilogue
+ // past the callee saves. This will allow the move to LR instruction
+ // to be executed before the restores of the callee saves which means
+ // that the callee saves can hide the latency from the MTLR instrcution.
+ MachineBasicBlock::iterator StackUpdateLoc = MBBI;
+ if (stackUpdateCanBeMoved(MF)) {
+ const std::vector<CalleeSavedInfo> & Info = MFI.getCalleeSavedInfo();
+ for (CalleeSavedInfo CSI : Info) {
+ int FrIdx = CSI.getFrameIdx();
+ // If the frame index is not negative the callee saved info belongs to a
+ // stack object that is not a fixed stack object. We ignore non-fixed
+ // stack objects because we won't move the update of the stack pointer
+ // past them.
+ if (FrIdx >= 0)
+ continue;
+
+ if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0)
+ StackUpdateLoc--;
+ else {
+ // Abort the operation as we can't update all CSR restores.
+ StackUpdateLoc = MBBI;
+ break;
+ }
+ }
+ }
+
+ if (FrameSize) {
+ // In the prologue, the loaded (or persistent) stack pointer value is
+ // offset by the STDU/STDUX/STWU/STWUX instruction. For targets with red
+ // zone add this offset back now.
+
+ // If this function contained a fastcc call and GuaranteedTailCallOpt is
+ // enabled (=> hasFastCall()==true) the fastcc call might contain a tail
+ // call which invalidates the stack pointer value in SP(0). So we use the
+ // value of R31 in this case.
+ if (FI->hasFastCall()) {
+ assert(HasFP && "Expecting a valid frame pointer.");
+ if (!HasRedZone)
+ RBReg = FPReg;
+ if (!isLargeFrame) {
+ BuildMI(MBB, MBBI, dl, AddImmInst, RBReg)
+ .addReg(FPReg).addImm(FrameSize);
+ } else {
+ BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg)
+ .addImm(FrameSize >> 16);
+ BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg)
+ .addReg(ScratchReg, RegState::Kill)
+ .addImm(FrameSize & 0xFFFF);
+ BuildMI(MBB, MBBI, dl, AddInst)
+ .addReg(RBReg)
+ .addReg(FPReg)
+ .addReg(ScratchReg);
+ }
+ } else if (!isLargeFrame && !HasBP && !MFI.hasVarSizedObjects()) {
+ if (HasRedZone) {
+ BuildMI(MBB, StackUpdateLoc, dl, AddImmInst, SPReg)
+ .addReg(SPReg)
+ .addImm(FrameSize);
+ } else {
+ // Make sure that adding FrameSize will not overflow the max offset
+ // size.
+ assert(FPOffset <= 0 && BPOffset <= 0 && PBPOffset <= 0 &&
+ "Local offsets should be negative");
+ SPAdd = FrameSize;
+ FPOffset += FrameSize;
+ BPOffset += FrameSize;
+ PBPOffset += FrameSize;
+ }
+ } else {
+ // We don't want to use ScratchReg as a base register, because it
+ // could happen to be R0. Use FP instead, but make sure to preserve it.
+ if (!HasRedZone) {
+ // If FP is not saved, copy it to ScratchReg.
+ if (!HasFP)
+ BuildMI(MBB, MBBI, dl, OrInst, ScratchReg)
+ .addReg(FPReg)
+ .addReg(FPReg);
+ RBReg = FPReg;
+ }
+ BuildMI(MBB, StackUpdateLoc, dl, LoadInst, RBReg)
+ .addImm(0)
+ .addReg(SPReg);
+ }
+ }
+ assert(RBReg != ScratchReg && "Should have avoided ScratchReg");
+ // If there is no red zone, ScratchReg may be needed for holding a useful
+ // value (although not the base register). Make sure it is not overwritten
+ // too early.
+
+ assert((isPPC64 || !MustSaveCR) &&
+ "Epilogue CR restoring supported only in 64-bit mode");
+
+ // If we need to restore both the LR and the CR and we only have one
+ // available scratch register, we must do them one at a time.
+ if (MustSaveCR && SingleScratchReg && MustSaveLR) {
+ // Here TempReg == ScratchReg, and in the absence of red zone ScratchReg
+ // is live here.
+ assert(HasRedZone && "Expecting red zone");
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::LWZ8), TempReg)
+ .addImm(getCRSaveOffset())
+ .addReg(SPReg);
+ for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i)
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::MTOCRF8), MustSaveCRs[i])
+ .addReg(TempReg, getKillRegState(i == e-1));
+ }
+
+ // Delay restoring of the LR if ScratchReg is needed. This is ok, since
+ // LR is stored in the caller's stack frame. ScratchReg will be needed
+ // if RBReg is anything other than SP. We shouldn't use ScratchReg as
+ // a base register anyway, because it may happen to be R0.
+ bool LoadedLR = false;
+ if (MustSaveLR && RBReg == SPReg && isInt<16>(LROffset+SPAdd)) {
+ BuildMI(MBB, StackUpdateLoc, dl, LoadInst, ScratchReg)
+ .addImm(LROffset+SPAdd)
+ .addReg(RBReg);
+ LoadedLR = true;
+ }
+
+ if (MustSaveCR && !(SingleScratchReg && MustSaveLR)) {
+ // This will only occur for PPC64.
+ assert(isPPC64 && "Expecting 64-bit mode");
+ assert(RBReg == SPReg && "Should be using SP as a base register");
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::LWZ8), TempReg)
+ .addImm(getCRSaveOffset())
+ .addReg(RBReg);
+ }
+
+ if (HasFP) {
+ // If there is red zone, restore FP directly, since SP has already been
+ // restored. Otherwise, restore the value of FP into ScratchReg.
+ if (HasRedZone || RBReg == SPReg)
+ BuildMI(MBB, MBBI, dl, LoadInst, FPReg)
+ .addImm(FPOffset)
+ .addReg(SPReg);
+ else
+ BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg)
+ .addImm(FPOffset)
+ .addReg(RBReg);
+ }
+
+ if (FI->usesPICBase())
+ BuildMI(MBB, MBBI, dl, LoadInst, PPC::R30)
+ .addImm(PBPOffset)
+ .addReg(RBReg);
+
+ if (HasBP)
+ BuildMI(MBB, MBBI, dl, LoadInst, BPReg)
+ .addImm(BPOffset)
+ .addReg(RBReg);
+
+ // There is nothing more to be loaded from the stack, so now we can
+ // restore SP: SP = RBReg + SPAdd.
+ if (RBReg != SPReg || SPAdd != 0) {
+ assert(!HasRedZone && "This should not happen with red zone");
+ // If SPAdd is 0, generate a copy.
+ if (SPAdd == 0)
+ BuildMI(MBB, MBBI, dl, OrInst, SPReg)
+ .addReg(RBReg)
+ .addReg(RBReg);
+ else
+ BuildMI(MBB, MBBI, dl, AddImmInst, SPReg)
+ .addReg(RBReg)
+ .addImm(SPAdd);
+
+ assert(RBReg != ScratchReg && "Should be using FP or SP as base register");
+ if (RBReg == FPReg)
+ BuildMI(MBB, MBBI, dl, OrInst, FPReg)
+ .addReg(ScratchReg)
+ .addReg(ScratchReg);
+
+ // Now load the LR from the caller's stack frame.
+ if (MustSaveLR && !LoadedLR)
+ BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg)
+ .addImm(LROffset)
+ .addReg(SPReg);
+ }
+
+ if (MustSaveCR &&
+ !(SingleScratchReg && MustSaveLR)) // will only occur for PPC64
+ for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i)
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::MTOCRF8), MustSaveCRs[i])
+ .addReg(TempReg, getKillRegState(i == e-1));
+
+ if (MustSaveLR)
+ BuildMI(MBB, StackUpdateLoc, dl, MTLRInst).addReg(ScratchReg);
+
+ // Callee pop calling convention. Pop parameter/linkage area. Used for tail
+ // call optimization
+ if (IsReturnBlock) {
+ unsigned RetOpcode = MBBI->getOpcode();
+ if (MF.getTarget().Options.GuaranteedTailCallOpt &&
+ (RetOpcode == PPC::BLR || RetOpcode == PPC::BLR8) &&
+ MF.getFunction().getCallingConv() == CallingConv::Fast) {
+ PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
+ unsigned CallerAllocatedAmt = FI->getMinReservedArea();
+
+ if (CallerAllocatedAmt && isInt<16>(CallerAllocatedAmt)) {
+ BuildMI(MBB, MBBI, dl, AddImmInst, SPReg)
+ .addReg(SPReg).addImm(CallerAllocatedAmt);
+ } else {
+ BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg)
+ .addImm(CallerAllocatedAmt >> 16);
+ BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg)
+ .addReg(ScratchReg, RegState::Kill)
+ .addImm(CallerAllocatedAmt & 0xFFFF);
+ BuildMI(MBB, MBBI, dl, AddInst)
+ .addReg(SPReg)
+ .addReg(FPReg)
+ .addReg(ScratchReg);
+ }
+ } else {
+ createTailCallBranchInstr(MBB);
+ }
+ }
+}
+
+void PPCFrameLowering::createTailCallBranchInstr(MachineBasicBlock &MBB) const {
+ MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
+
+ // If we got this far a first terminator should exist.
+ assert(MBBI != MBB.end() && "Failed to find the first terminator.");
+
+ DebugLoc dl = MBBI->getDebugLoc();
+ const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
+
+ // Create branch instruction for pseudo tail call return instruction
+ unsigned RetOpcode = MBBI->getOpcode();
+ if (RetOpcode == PPC::TCRETURNdi) {
+ MBBI = MBB.getLastNonDebugInstr();
+ MachineOperand &JumpTarget = MBBI->getOperand(0);
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)).
+ addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
+ } else if (RetOpcode == PPC::TCRETURNri) {
+ MBBI = MBB.getLastNonDebugInstr();
+ assert(MBBI->getOperand(0).isReg() && "Expecting register operand.");
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR));
+ } else if (RetOpcode == PPC::TCRETURNai) {
+ MBBI = MBB.getLastNonDebugInstr();
+ MachineOperand &JumpTarget = MBBI->getOperand(0);
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA)).addImm(JumpTarget.getImm());
+ } else if (RetOpcode == PPC::TCRETURNdi8) {
+ MBBI = MBB.getLastNonDebugInstr();
+ MachineOperand &JumpTarget = MBBI->getOperand(0);
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)).
+ addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
+ } else if (RetOpcode == PPC::TCRETURNri8) {
+ MBBI = MBB.getLastNonDebugInstr();
+ assert(MBBI->getOperand(0).isReg() && "Expecting register operand.");
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR8));
+ } else if (RetOpcode == PPC::TCRETURNai8) {
+ MBBI = MBB.getLastNonDebugInstr();
+ MachineOperand &JumpTarget = MBBI->getOperand(0);
+ BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA8)).addImm(JumpTarget.getImm());
+ }
+}
+
+void PPCFrameLowering::determineCalleeSaves(MachineFunction &MF,
+ BitVector &SavedRegs,
+ RegScavenger *RS) const {
+ TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
+
+ const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
+
+ // Save and clear the LR state.
+ PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
+ unsigned LR = RegInfo->getRARegister();
+ FI->setMustSaveLR(MustSaveLR(MF, LR));
+ SavedRegs.reset(LR);
+
+ // Save R31 if necessary
+ int FPSI = FI->getFramePointerSaveIndex();
+ const bool isPPC64 = Subtarget.isPPC64();
+ const bool IsDarwinABI = Subtarget.isDarwinABI();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+
+ // If the frame pointer save index hasn't been defined yet.
+ if (!FPSI && needsFP(MF)) {
+ // Find out what the fix offset of the frame pointer save area.
+ int FPOffset = getFramePointerSaveOffset();
+ // Allocate the frame index for frame pointer save area.
+ FPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
+ // Save the result.
+ FI->setFramePointerSaveIndex(FPSI);
+ }
+
+ int BPSI = FI->getBasePointerSaveIndex();
+ if (!BPSI && RegInfo->hasBasePointer(MF)) {
+ int BPOffset = getBasePointerSaveOffset();
+ // Allocate the frame index for the base pointer save area.
+ BPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, BPOffset, true);
+ // Save the result.
+ FI->setBasePointerSaveIndex(BPSI);
+ }
+
+ // Reserve stack space for the PIC Base register (R30).
+ // Only used in SVR4 32-bit.
+ if (FI->usesPICBase()) {
+ int PBPSI = MFI.CreateFixedObject(4, -8, true);
+ FI->setPICBasePointerSaveIndex(PBPSI);
+ }
+
+ // Make sure we don't explicitly spill r31, because, for example, we have
+ // some inline asm which explicitly clobbers it, when we otherwise have a
+ // frame pointer and are using r31's spill slot for the prologue/epilogue
+ // code. Same goes for the base pointer and the PIC base register.
+ if (needsFP(MF))
+ SavedRegs.reset(isPPC64 ? PPC::X31 : PPC::R31);
+ if (RegInfo->hasBasePointer(MF))
+ SavedRegs.reset(RegInfo->getBaseRegister(MF));
+ if (FI->usesPICBase())
+ SavedRegs.reset(PPC::R30);
+
+ // Reserve stack space to move the linkage area to in case of a tail call.
+ int TCSPDelta = 0;
+ if (MF.getTarget().Options.GuaranteedTailCallOpt &&
+ (TCSPDelta = FI->getTailCallSPDelta()) < 0) {
+ MFI.CreateFixedObject(-1 * TCSPDelta, TCSPDelta, true);
+ }
+
+ // For 32-bit SVR4, allocate the nonvolatile CR spill slot iff the
+ // function uses CR 2, 3, or 4.
+ if (!isPPC64 && !IsDarwinABI &&
+ (SavedRegs.test(PPC::CR2) ||
+ SavedRegs.test(PPC::CR3) ||
+ SavedRegs.test(PPC::CR4))) {
+ int FrameIdx = MFI.CreateFixedObject((uint64_t)4, (int64_t)-4, true);
+ FI->setCRSpillFrameIndex(FrameIdx);
+ }
+}
+
+void PPCFrameLowering::processFunctionBeforeFrameFinalized(MachineFunction &MF,
+ RegScavenger *RS) const {
+ // Early exit if not using the SVR4 ABI.
+ if (!Subtarget.isSVR4ABI()) {
+ addScavengingSpillSlot(MF, RS);
+ return;
+ }
+
+ // Get callee saved register information.
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
+
+ // If the function is shrink-wrapped, and if the function has a tail call, the
+ // tail call might not be in the new RestoreBlock, so real branch instruction
+ // won't be generated by emitEpilogue(), because shrink-wrap has chosen new
+ // RestoreBlock. So we handle this case here.
+ if (MFI.getSavePoint() && MFI.hasTailCall()) {
+ MachineBasicBlock *RestoreBlock = MFI.getRestorePoint();
+ for (MachineBasicBlock &MBB : MF) {
+ if (MBB.isReturnBlock() && (&MBB) != RestoreBlock)
+ createTailCallBranchInstr(MBB);
+ }
+ }
+
+ // Early exit if no callee saved registers are modified!
+ if (CSI.empty() && !needsFP(MF)) {
+ addScavengingSpillSlot(MF, RS);
+ return;
+ }
+
+ unsigned MinGPR = PPC::R31;
+ unsigned MinG8R = PPC::X31;
+ unsigned MinFPR = PPC::F31;
+ unsigned MinVR = Subtarget.hasSPE() ? PPC::S31 : PPC::V31;
+
+ bool HasGPSaveArea = false;
+ bool HasG8SaveArea = false;
+ bool HasFPSaveArea = false;
+ bool HasVRSAVESaveArea = false;
+ bool HasVRSaveArea = false;
+
+ SmallVector<CalleeSavedInfo, 18> GPRegs;
+ SmallVector<CalleeSavedInfo, 18> G8Regs;
+ SmallVector<CalleeSavedInfo, 18> FPRegs;
+ SmallVector<CalleeSavedInfo, 18> VRegs;
+
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
+ unsigned Reg = CSI[i].getReg();
+ assert((!MF.getInfo<PPCFunctionInfo>()->mustSaveTOC() ||
+ (Reg != PPC::X2 && Reg != PPC::R2)) &&
+ "Not expecting to try to spill R2 in a function that must save TOC");
+ if (PPC::GPRCRegClass.contains(Reg)) {
+ HasGPSaveArea = true;
+
+ GPRegs.push_back(CSI[i]);
+
+ if (Reg < MinGPR) {
+ MinGPR = Reg;
+ }
+ } else if (PPC::G8RCRegClass.contains(Reg)) {
+ HasG8SaveArea = true;
+
+ G8Regs.push_back(CSI[i]);
+
+ if (Reg < MinG8R) {
+ MinG8R = Reg;
+ }
+ } else if (PPC::F8RCRegClass.contains(Reg)) {
+ HasFPSaveArea = true;
+
+ FPRegs.push_back(CSI[i]);
+
+ if (Reg < MinFPR) {
+ MinFPR = Reg;
+ }
+ } else if (PPC::CRBITRCRegClass.contains(Reg) ||
+ PPC::CRRCRegClass.contains(Reg)) {
+ ; // do nothing, as we already know whether CRs are spilled
+ } else if (PPC::VRSAVERCRegClass.contains(Reg)) {
+ HasVRSAVESaveArea = true;
+ } else if (PPC::VRRCRegClass.contains(Reg) ||
+ PPC::SPERCRegClass.contains(Reg)) {
+ // Altivec and SPE are mutually exclusive, but have the same stack
+ // alignment requirements, so overload the save area for both cases.
+ HasVRSaveArea = true;
+
+ VRegs.push_back(CSI[i]);
+
+ if (Reg < MinVR) {
+ MinVR = Reg;
+ }
+ } else {
+ llvm_unreachable("Unknown RegisterClass!");
+ }
+ }
+
+ PPCFunctionInfo *PFI = MF.getInfo<PPCFunctionInfo>();
+ const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
+
+ int64_t LowerBound = 0;
+
+ // Take into account stack space reserved for tail calls.
+ int TCSPDelta = 0;
+ if (MF.getTarget().Options.GuaranteedTailCallOpt &&
+ (TCSPDelta = PFI->getTailCallSPDelta()) < 0) {
+ LowerBound = TCSPDelta;
+ }
+
+ // The Floating-point register save area is right below the back chain word
+ // of the previous stack frame.
+ if (HasFPSaveArea) {
+ for (unsigned i = 0, e = FPRegs.size(); i != e; ++i) {
+ int FI = FPRegs[i].getFrameIdx();
+
+ MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
+ }
+
+ LowerBound -= (31 - TRI->getEncodingValue(MinFPR) + 1) * 8;
+ }
+
+ // Check whether the frame pointer register is allocated. If so, make sure it
+ // is spilled to the correct offset.
+ if (needsFP(MF)) {
+ int FI = PFI->getFramePointerSaveIndex();
+ assert(FI && "No Frame Pointer Save Slot!");
+ MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
+ // FP is R31/X31, so no need to update MinGPR/MinG8R.
+ HasGPSaveArea = true;
+ }
+
+ if (PFI->usesPICBase()) {
+ int FI = PFI->getPICBasePointerSaveIndex();
+ assert(FI && "No PIC Base Pointer Save Slot!");
+ MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
+
+ MinGPR = std::min<unsigned>(MinGPR, PPC::R30);
+ HasGPSaveArea = true;
+ }
+
+ const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
+ if (RegInfo->hasBasePointer(MF)) {
+ int FI = PFI->getBasePointerSaveIndex();
+ assert(FI && "No Base Pointer Save Slot!");
+ MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
+
+ Register BP = RegInfo->getBaseRegister(MF);
+ if (PPC::G8RCRegClass.contains(BP)) {
+ MinG8R = std::min<unsigned>(MinG8R, BP);
+ HasG8SaveArea = true;
+ } else if (PPC::GPRCRegClass.contains(BP)) {
+ MinGPR = std::min<unsigned>(MinGPR, BP);
+ HasGPSaveArea = true;
+ }
+ }
+
+ // General register save area starts right below the Floating-point
+ // register save area.
+ if (HasGPSaveArea || HasG8SaveArea) {
+ // Move general register save area spill slots down, taking into account
+ // the size of the Floating-point register save area.
+ for (unsigned i = 0, e = GPRegs.size(); i != e; ++i) {
+ if (!GPRegs[i].isSpilledToReg()) {
+ int FI = GPRegs[i].getFrameIdx();
+ MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
+ }
+ }
+
+ // Move general register save area spill slots down, taking into account
+ // the size of the Floating-point register save area.
+ for (unsigned i = 0, e = G8Regs.size(); i != e; ++i) {
+ if (!G8Regs[i].isSpilledToReg()) {
+ int FI = G8Regs[i].getFrameIdx();
+ MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
+ }
+ }
+
+ unsigned MinReg =
+ std::min<unsigned>(TRI->getEncodingValue(MinGPR),
+ TRI->getEncodingValue(MinG8R));
+
+ if (Subtarget.isPPC64()) {
+ LowerBound -= (31 - MinReg + 1) * 8;
+ } else {
+ LowerBound -= (31 - MinReg + 1) * 4;
+ }
+ }
+
+ // For 32-bit only, the CR save area is below the general register
+ // save area. For 64-bit SVR4, the CR save area is addressed relative
+ // to the stack pointer and hence does not need an adjustment here.
+ // Only CR2 (the first nonvolatile spilled) has an associated frame
+ // index so that we have a single uniform save area.
+ if (spillsCR(MF) && !(Subtarget.isPPC64() && Subtarget.isSVR4ABI())) {
+ // Adjust the frame index of the CR spill slot.
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
+ unsigned Reg = CSI[i].getReg();
+
+ if ((Subtarget.isSVR4ABI() && Reg == PPC::CR2)
+ // Leave Darwin logic as-is.
+ || (!Subtarget.isSVR4ABI() &&
+ (PPC::CRBITRCRegClass.contains(Reg) ||
+ PPC::CRRCRegClass.contains(Reg)))) {
+ int FI = CSI[i].getFrameIdx();
+
+ MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
+ }
+ }
+
+ LowerBound -= 4; // The CR save area is always 4 bytes long.
+ }
+
+ if (HasVRSAVESaveArea) {
+ // FIXME SVR4: Is it actually possible to have multiple elements in CSI
+ // which have the VRSAVE register class?
+ // Adjust the frame index of the VRSAVE spill slot.
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
+ unsigned Reg = CSI[i].getReg();
+
+ if (PPC::VRSAVERCRegClass.contains(Reg)) {
+ int FI = CSI[i].getFrameIdx();
+
+ MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
+ }
+ }
+
+ LowerBound -= 4; // The VRSAVE save area is always 4 bytes long.
+ }
+
+ // Both Altivec and SPE have the same alignment and padding requirements
+ // within the stack frame.
+ if (HasVRSaveArea) {
+ // Insert alignment padding, we need 16-byte alignment. Note: for positive
+ // number the alignment formula is : y = (x + (n-1)) & (~(n-1)). But since
+ // we are using negative number here (the stack grows downward). We should
+ // use formula : y = x & (~(n-1)). Where x is the size before aligning, n
+ // is the alignment size ( n = 16 here) and y is the size after aligning.
+ assert(LowerBound <= 0 && "Expect LowerBound have a non-positive value!");
+ LowerBound &= ~(15);
+
+ for (unsigned i = 0, e = VRegs.size(); i != e; ++i) {
+ int FI = VRegs[i].getFrameIdx();
+
+ MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
+ }
+ }
+
+ addScavengingSpillSlot(MF, RS);
+}
+
+void
+PPCFrameLowering::addScavengingSpillSlot(MachineFunction &MF,
+ RegScavenger *RS) const {
+ // Reserve a slot closest to SP or frame pointer if we have a dynalloc or
+ // a large stack, which will require scavenging a register to materialize a
+ // large offset.
+
+ // We need to have a scavenger spill slot for spills if the frame size is
+ // large. In case there is no free register for large-offset addressing,
+ // this slot is used for the necessary emergency spill. Also, we need the
+ // slot for dynamic stack allocations.
+
+ // The scavenger might be invoked if the frame offset does not fit into
+ // the 16-bit immediate. We don't know the complete frame size here
+ // because we've not yet computed callee-saved register spills or the
+ // needed alignment padding.
+ unsigned StackSize = determineFrameLayout(MF, true);
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ if (MFI.hasVarSizedObjects() || spillsCR(MF) || spillsVRSAVE(MF) ||
+ hasNonRISpills(MF) || (hasSpills(MF) && !isInt<16>(StackSize))) {
+ const TargetRegisterClass &GPRC = PPC::GPRCRegClass;
+ const TargetRegisterClass &G8RC = PPC::G8RCRegClass;
+ const TargetRegisterClass &RC = Subtarget.isPPC64() ? G8RC : GPRC;
+ const TargetRegisterInfo &TRI = *Subtarget.getRegisterInfo();
+ unsigned Size = TRI.getSpillSize(RC);
+ unsigned Align = TRI.getSpillAlignment(RC);
+ RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Align, false));
+
+ // Might we have over-aligned allocas?
+ bool HasAlVars = MFI.hasVarSizedObjects() &&
+ MFI.getMaxAlignment() > getStackAlignment();
+
+ // These kinds of spills might need two registers.
+ if (spillsCR(MF) || spillsVRSAVE(MF) || HasAlVars)
+ RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Align, false));
+
+ }
+}
+
+// This function checks if a callee saved gpr can be spilled to a volatile
+// vector register. This occurs for leaf functions when the option
+// ppc-enable-pe-vector-spills is enabled. If there are any remaining registers
+// which were not spilled to vectors, return false so the target independent
+// code can handle them by assigning a FrameIdx to a stack slot.
+bool PPCFrameLowering::assignCalleeSavedSpillSlots(
+ MachineFunction &MF, const TargetRegisterInfo *TRI,
+ std::vector<CalleeSavedInfo> &CSI) const {
+
+ if (CSI.empty())
+ return true; // Early exit if no callee saved registers are modified!
+
+ // Early exit if cannot spill gprs to volatile vector registers.
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ if (!EnablePEVectorSpills || MFI.hasCalls() || !Subtarget.hasP9Vector())
+ return false;
+
+ // Build a BitVector of VSRs that can be used for spilling GPRs.
+ BitVector BVAllocatable = TRI->getAllocatableSet(MF);
+ BitVector BVCalleeSaved(TRI->getNumRegs());
+ const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
+ const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
+ for (unsigned i = 0; CSRegs[i]; ++i)
+ BVCalleeSaved.set(CSRegs[i]);
+
+ for (unsigned Reg : BVAllocatable.set_bits()) {
+ // Set to 0 if the register is not a volatile VF/F8 register, or if it is
+ // used in the function.
+ if (BVCalleeSaved[Reg] ||
+ (!PPC::F8RCRegClass.contains(Reg) &&
+ !PPC::VFRCRegClass.contains(Reg)) ||
+ (MF.getRegInfo().isPhysRegUsed(Reg)))
+ BVAllocatable.reset(Reg);
+ }
+
+ bool AllSpilledToReg = true;
+ for (auto &CS : CSI) {
+ if (BVAllocatable.none())
+ return false;
+
+ unsigned Reg = CS.getReg();
+ if (!PPC::G8RCRegClass.contains(Reg) && !PPC::GPRCRegClass.contains(Reg)) {
+ AllSpilledToReg = false;
+ continue;
+ }
+
+ unsigned VolatileVFReg = BVAllocatable.find_first();
+ if (VolatileVFReg < BVAllocatable.size()) {
+ CS.setDstReg(VolatileVFReg);
+ BVAllocatable.reset(VolatileVFReg);
+ } else {
+ AllSpilledToReg = false;
+ }
+ }
+ return AllSpilledToReg;
+}
+
+
+bool
+PPCFrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const {
+
+ // Currently, this function only handles SVR4 32- and 64-bit ABIs.
+ // Return false otherwise to maintain pre-existing behavior.
+ if (!Subtarget.isSVR4ABI())
+ return false;
+
+ MachineFunction *MF = MBB.getParent();
+ const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
+ PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
+ bool MustSaveTOC = FI->mustSaveTOC();
+ DebugLoc DL;
+ bool CRSpilled = false;
+ MachineInstrBuilder CRMIB;
+
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
+ unsigned Reg = CSI[i].getReg();
+ // Only Darwin actually uses the VRSAVE register, but it can still appear
+ // here if, for example, @llvm.eh.unwind.init() is used. If we're not on
+ // Darwin, ignore it.
+ if (Reg == PPC::VRSAVE && !Subtarget.isDarwinABI())
+ continue;
+
+ // CR2 through CR4 are the nonvolatile CR fields.
+ bool IsCRField = PPC::CR2 <= Reg && Reg <= PPC::CR4;
+
+ // Add the callee-saved register as live-in; it's killed at the spill.
+ // Do not do this for callee-saved registers that are live-in to the
+ // function because they will already be marked live-in and this will be
+ // adding it for a second time. It is an error to add the same register
+ // to the set more than once.
+ const MachineRegisterInfo &MRI = MF->getRegInfo();
+ bool IsLiveIn = MRI.isLiveIn(Reg);
+ if (!IsLiveIn)
+ MBB.addLiveIn(Reg);
+
+ if (CRSpilled && IsCRField) {
+ CRMIB.addReg(Reg, RegState::ImplicitKill);
+ continue;
+ }
+
+ // The actual spill will happen in the prologue.
+ if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
+ continue;
+
+ // Insert the spill to the stack frame.
+ if (IsCRField) {
+ PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
+ if (Subtarget.isPPC64()) {
+ // The actual spill will happen at the start of the prologue.
+ FuncInfo->addMustSaveCR(Reg);
+ } else {
+ CRSpilled = true;
+ FuncInfo->setSpillsCR();
+
+ // 32-bit: FP-relative. Note that we made sure CR2-CR4 all have
+ // the same frame index in PPCRegisterInfo::hasReservedSpillSlot.
+ CRMIB = BuildMI(*MF, DL, TII.get(PPC::MFCR), PPC::R12)
+ .addReg(Reg, RegState::ImplicitKill);
+
+ MBB.insert(MI, CRMIB);
+ MBB.insert(MI, addFrameReference(BuildMI(*MF, DL, TII.get(PPC::STW))
+ .addReg(PPC::R12,
+ getKillRegState(true)),
+ CSI[i].getFrameIdx()));
+ }
+ } else {
+ if (CSI[i].isSpilledToReg()) {
+ NumPESpillVSR++;
+ BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRD), CSI[i].getDstReg())
+ .addReg(Reg, getKillRegState(true));
+ } else {
+ const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
+ // Use !IsLiveIn for the kill flag.
+ // We do not want to kill registers that are live in this function
+ // before their use because they will become undefined registers.
+ TII.storeRegToStackSlot(MBB, MI, Reg, !IsLiveIn,
+ CSI[i].getFrameIdx(), RC, TRI);
+ }
+ }
+ }
+ return true;
+}
+
+static void
+restoreCRs(bool isPPC64, bool is31,
+ bool CR2Spilled, bool CR3Spilled, bool CR4Spilled,
+ MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI, unsigned CSIIndex) {
+
+ MachineFunction *MF = MBB.getParent();
+ const PPCInstrInfo &TII = *MF->getSubtarget<PPCSubtarget>().getInstrInfo();
+ DebugLoc DL;
+ unsigned RestoreOp, MoveReg;
+
+ if (isPPC64)
+ // This is handled during epilogue generation.
+ return;
+ else {
+ // 32-bit: FP-relative
+ MBB.insert(MI, addFrameReference(BuildMI(*MF, DL, TII.get(PPC::LWZ),
+ PPC::R12),
+ CSI[CSIIndex].getFrameIdx()));
+ RestoreOp = PPC::MTOCRF;
+ MoveReg = PPC::R12;
+ }
+
+ if (CR2Spilled)
+ MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR2)
+ .addReg(MoveReg, getKillRegState(!CR3Spilled && !CR4Spilled)));
+
+ if (CR3Spilled)
+ MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR3)
+ .addReg(MoveReg, getKillRegState(!CR4Spilled)));
+
+ if (CR4Spilled)
+ MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR4)
+ .addReg(MoveReg, getKillRegState(true)));
+}
+
+MachineBasicBlock::iterator PPCFrameLowering::
+eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const {
+ const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
+ if (MF.getTarget().Options.GuaranteedTailCallOpt &&
+ I->getOpcode() == PPC::ADJCALLSTACKUP) {
+ // Add (actually subtract) back the amount the callee popped on return.
+ if (int CalleeAmt = I->getOperand(1).getImm()) {
+ bool is64Bit = Subtarget.isPPC64();
+ CalleeAmt *= -1;
+ unsigned StackReg = is64Bit ? PPC::X1 : PPC::R1;
+ unsigned TmpReg = is64Bit ? PPC::X0 : PPC::R0;
+ unsigned ADDIInstr = is64Bit ? PPC::ADDI8 : PPC::ADDI;
+ unsigned ADDInstr = is64Bit ? PPC::ADD8 : PPC::ADD4;
+ unsigned LISInstr = is64Bit ? PPC::LIS8 : PPC::LIS;
+ unsigned ORIInstr = is64Bit ? PPC::ORI8 : PPC::ORI;
+ const DebugLoc &dl = I->getDebugLoc();
+
+ if (isInt<16>(CalleeAmt)) {
+ BuildMI(MBB, I, dl, TII.get(ADDIInstr), StackReg)
+ .addReg(StackReg, RegState::Kill)
+ .addImm(CalleeAmt);
+ } else {
+ MachineBasicBlock::iterator MBBI = I;
+ BuildMI(MBB, MBBI, dl, TII.get(LISInstr), TmpReg)
+ .addImm(CalleeAmt >> 16);
+ BuildMI(MBB, MBBI, dl, TII.get(ORIInstr), TmpReg)
+ .addReg(TmpReg, RegState::Kill)
+ .addImm(CalleeAmt & 0xFFFF);
+ BuildMI(MBB, MBBI, dl, TII.get(ADDInstr), StackReg)
+ .addReg(StackReg, RegState::Kill)
+ .addReg(TmpReg);
+ }
+ }
+ }
+ // Simply discard ADJCALLSTACKDOWN, ADJCALLSTACKUP instructions.
+ return MBB.erase(I);
+}
+
+bool
+PPCFrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const {
+
+ // Currently, this function only handles SVR4 32- and 64-bit ABIs.
+ // Return false otherwise to maintain pre-existing behavior.
+ if (!Subtarget.isSVR4ABI())
+ return false;
+
+ MachineFunction *MF = MBB.getParent();
+ const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
+ PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
+ bool MustSaveTOC = FI->mustSaveTOC();
+ bool CR2Spilled = false;
+ bool CR3Spilled = false;
+ bool CR4Spilled = false;
+ unsigned CSIIndex = 0;
+
+ // Initialize insertion-point logic; we will be restoring in reverse
+ // order of spill.
+ MachineBasicBlock::iterator I = MI, BeforeI = I;
+ bool AtStart = I == MBB.begin();
+
+ if (!AtStart)
+ --BeforeI;
+
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
+ unsigned Reg = CSI[i].getReg();
+
+ // Only Darwin actually uses the VRSAVE register, but it can still appear
+ // here if, for example, @llvm.eh.unwind.init() is used. If we're not on
+ // Darwin, ignore it.
+ if (Reg == PPC::VRSAVE && !Subtarget.isDarwinABI())
+ continue;
+
+ if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
+ continue;
+
+ if (Reg == PPC::CR2) {
+ CR2Spilled = true;
+ // The spill slot is associated only with CR2, which is the
+ // first nonvolatile spilled. Save it here.
+ CSIIndex = i;
+ continue;
+ } else if (Reg == PPC::CR3) {
+ CR3Spilled = true;
+ continue;
+ } else if (Reg == PPC::CR4) {
+ CR4Spilled = true;
+ continue;
+ } else {
+ // When we first encounter a non-CR register after seeing at
+ // least one CR register, restore all spilled CRs together.
+ if ((CR2Spilled || CR3Spilled || CR4Spilled)
+ && !(PPC::CR2 <= Reg && Reg <= PPC::CR4)) {
+ bool is31 = needsFP(*MF);
+ restoreCRs(Subtarget.isPPC64(), is31,
+ CR2Spilled, CR3Spilled, CR4Spilled,
+ MBB, I, CSI, CSIIndex);
+ CR2Spilled = CR3Spilled = CR4Spilled = false;
+ }
+
+ if (CSI[i].isSpilledToReg()) {
+ DebugLoc DL;
+ NumPEReloadVSR++;
+ BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD), Reg)
+ .addReg(CSI[i].getDstReg(), getKillRegState(true));
+ } else {
+ // Default behavior for non-CR saves.
+ const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
+ TII.loadRegFromStackSlot(MBB, I, Reg, CSI[i].getFrameIdx(), RC, TRI);
+ assert(I != MBB.begin() &&
+ "loadRegFromStackSlot didn't insert any code!");
+ }
+ }
+
+ // Insert in reverse order.
+ if (AtStart)
+ I = MBB.begin();
+ else {
+ I = BeforeI;
+ ++I;
+ }
+ }
+
+ // If we haven't yet spilled the CRs, do so now.
+ if (CR2Spilled || CR3Spilled || CR4Spilled) {
+ bool is31 = needsFP(*MF);
+ restoreCRs(Subtarget.isPPC64(), is31, CR2Spilled, CR3Spilled, CR4Spilled,
+ MBB, I, CSI, CSIIndex);
+ }
+
+ return true;
+}
+
+unsigned PPCFrameLowering::getTOCSaveOffset() const {
+ if (Subtarget.isAIXABI())
+ // TOC save/restore is normally handled by the linker.
+ // Indirect calls should hit this limitation.
+ report_fatal_error("TOC save is not implemented on AIX yet.");
+ return TOCSaveOffset;
+}
+
+unsigned PPCFrameLowering::getFramePointerSaveOffset() const {
+ if (Subtarget.isAIXABI())
+ report_fatal_error("FramePointer is not implemented on AIX yet.");
+ return FramePointerSaveOffset;
+}
+
+unsigned PPCFrameLowering::getBasePointerSaveOffset() const {
+ if (Subtarget.isAIXABI())
+ report_fatal_error("BasePointer is not implemented on AIX yet.");
+ return BasePointerSaveOffset;
+}
+
+bool PPCFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
+ if (MF.getInfo<PPCFunctionInfo>()->shrinkWrapDisabled())
+ return false;
+ return (MF.getSubtarget<PPCSubtarget>().isSVR4ABI() &&
+ MF.getSubtarget<PPCSubtarget>().isPPC64());
+}