diff options
Diffstat (limited to 'llvm/lib/Target/WebAssembly/WebAssemblyISelLowering.cpp')
-rw-r--r-- | llvm/lib/Target/WebAssembly/WebAssemblyISelLowering.cpp | 1553 |
1 files changed, 1553 insertions, 0 deletions
diff --git a/llvm/lib/Target/WebAssembly/WebAssemblyISelLowering.cpp b/llvm/lib/Target/WebAssembly/WebAssemblyISelLowering.cpp new file mode 100644 index 000000000000..f06afdbcea9e --- /dev/null +++ b/llvm/lib/Target/WebAssembly/WebAssemblyISelLowering.cpp @@ -0,0 +1,1553 @@ +//=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +/// +/// \file +/// This file implements the WebAssemblyTargetLowering class. +/// +//===----------------------------------------------------------------------===// + +#include "WebAssemblyISelLowering.h" +#include "MCTargetDesc/WebAssemblyMCTargetDesc.h" +#include "WebAssemblyMachineFunctionInfo.h" +#include "WebAssemblySubtarget.h" +#include "WebAssemblyTargetMachine.h" +#include "llvm/CodeGen/Analysis.h" +#include "llvm/CodeGen/CallingConvLower.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/CodeGen/WasmEHFuncInfo.h" +#include "llvm/IR/DiagnosticInfo.h" +#include "llvm/IR/DiagnosticPrinter.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetOptions.h" +using namespace llvm; + +#define DEBUG_TYPE "wasm-lower" + +WebAssemblyTargetLowering::WebAssemblyTargetLowering( + const TargetMachine &TM, const WebAssemblySubtarget &STI) + : TargetLowering(TM), Subtarget(&STI) { + auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; + + // Booleans always contain 0 or 1. + setBooleanContents(ZeroOrOneBooleanContent); + // Except in SIMD vectors + setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); + // We don't know the microarchitecture here, so just reduce register pressure. + setSchedulingPreference(Sched::RegPressure); + // Tell ISel that we have a stack pointer. + setStackPointerRegisterToSaveRestore( + Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); + // Set up the register classes. + addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); + addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); + addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); + addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); + if (Subtarget->hasSIMD128()) { + addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); + addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); + addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); + addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); + } + if (Subtarget->hasUnimplementedSIMD128()) { + addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); + addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); + } + // Compute derived properties from the register classes. + computeRegisterProperties(Subtarget->getRegisterInfo()); + + setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); + setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); + setOperationAction(ISD::JumpTable, MVTPtr, Custom); + setOperationAction(ISD::BlockAddress, MVTPtr, Custom); + setOperationAction(ISD::BRIND, MVT::Other, Custom); + + // Take the default expansion for va_arg, va_copy, and va_end. There is no + // default action for va_start, so we do that custom. + setOperationAction(ISD::VASTART, MVT::Other, Custom); + setOperationAction(ISD::VAARG, MVT::Other, Expand); + setOperationAction(ISD::VACOPY, MVT::Other, Expand); + setOperationAction(ISD::VAEND, MVT::Other, Expand); + + for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { + // Don't expand the floating-point types to constant pools. + setOperationAction(ISD::ConstantFP, T, Legal); + // Expand floating-point comparisons. + for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, + ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) + setCondCodeAction(CC, T, Expand); + // Expand floating-point library function operators. + for (auto Op : + {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) + setOperationAction(Op, T, Expand); + // Note supported floating-point library function operators that otherwise + // default to expand. + for (auto Op : + {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) + setOperationAction(Op, T, Legal); + // Support minimum and maximum, which otherwise default to expand. + setOperationAction(ISD::FMINIMUM, T, Legal); + setOperationAction(ISD::FMAXIMUM, T, Legal); + // WebAssembly currently has no builtin f16 support. + setOperationAction(ISD::FP16_TO_FP, T, Expand); + setOperationAction(ISD::FP_TO_FP16, T, Expand); + setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); + setTruncStoreAction(T, MVT::f16, Expand); + } + + // Expand unavailable integer operations. + for (auto Op : + {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, + ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, + ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { + for (auto T : {MVT::i32, MVT::i64}) + setOperationAction(Op, T, Expand); + if (Subtarget->hasSIMD128()) + for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) + setOperationAction(Op, T, Expand); + if (Subtarget->hasUnimplementedSIMD128()) + setOperationAction(Op, MVT::v2i64, Expand); + } + + // SIMD-specific configuration + if (Subtarget->hasSIMD128()) { + // Support saturating add for i8x16 and i16x8 + for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) + for (auto T : {MVT::v16i8, MVT::v8i16}) + setOperationAction(Op, T, Legal); + + // Custom lower BUILD_VECTORs to minimize number of replace_lanes + for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) + setOperationAction(ISD::BUILD_VECTOR, T, Custom); + if (Subtarget->hasUnimplementedSIMD128()) + for (auto T : {MVT::v2i64, MVT::v2f64}) + setOperationAction(ISD::BUILD_VECTOR, T, Custom); + + // We have custom shuffle lowering to expose the shuffle mask + for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) + setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); + if (Subtarget->hasUnimplementedSIMD128()) + for (auto T: {MVT::v2i64, MVT::v2f64}) + setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); + + // Custom lowering since wasm shifts must have a scalar shift amount + for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) { + for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) + setOperationAction(Op, T, Custom); + if (Subtarget->hasUnimplementedSIMD128()) + setOperationAction(Op, MVT::v2i64, Custom); + } + + // Custom lower lane accesses to expand out variable indices + for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) { + for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) + setOperationAction(Op, T, Custom); + if (Subtarget->hasUnimplementedSIMD128()) + for (auto T : {MVT::v2i64, MVT::v2f64}) + setOperationAction(Op, T, Custom); + } + + // There is no i64x2.mul instruction + setOperationAction(ISD::MUL, MVT::v2i64, Expand); + + // There are no vector select instructions + for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) { + for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) + setOperationAction(Op, T, Expand); + if (Subtarget->hasUnimplementedSIMD128()) + for (auto T : {MVT::v2i64, MVT::v2f64}) + setOperationAction(Op, T, Expand); + } + + // Expand integer operations supported for scalars but not SIMD + for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, + ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) { + for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) + setOperationAction(Op, T, Expand); + if (Subtarget->hasUnimplementedSIMD128()) + setOperationAction(Op, MVT::v2i64, Expand); + } + + // Expand float operations supported for scalars but not SIMD + for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, + ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, + ISD::FEXP, ISD::FEXP2, ISD::FRINT}) { + setOperationAction(Op, MVT::v4f32, Expand); + if (Subtarget->hasUnimplementedSIMD128()) + setOperationAction(Op, MVT::v2f64, Expand); + } + + // Expand additional SIMD ops that V8 hasn't implemented yet + if (!Subtarget->hasUnimplementedSIMD128()) { + setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); + setOperationAction(ISD::FDIV, MVT::v4f32, Expand); + } + } + + // As a special case, these operators use the type to mean the type to + // sign-extend from. + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); + if (!Subtarget->hasSignExt()) { + // Sign extends are legal only when extending a vector extract + auto Action = Subtarget->hasSIMD128() ? Custom : Expand; + for (auto T : {MVT::i8, MVT::i16, MVT::i32}) + setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); + } + for (auto T : MVT::integer_fixedlen_vector_valuetypes()) + setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); + + // Dynamic stack allocation: use the default expansion. + setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); + setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); + setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); + + setOperationAction(ISD::FrameIndex, MVT::i32, Custom); + setOperationAction(ISD::CopyToReg, MVT::Other, Custom); + + // Expand these forms; we pattern-match the forms that we can handle in isel. + for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) + for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) + setOperationAction(Op, T, Expand); + + // We have custom switch handling. + setOperationAction(ISD::BR_JT, MVT::Other, Custom); + + // WebAssembly doesn't have: + // - Floating-point extending loads. + // - Floating-point truncating stores. + // - i1 extending loads. + // - truncating SIMD stores and most extending loads + setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); + setTruncStoreAction(MVT::f64, MVT::f32, Expand); + for (auto T : MVT::integer_valuetypes()) + for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) + setLoadExtAction(Ext, T, MVT::i1, Promote); + if (Subtarget->hasSIMD128()) { + for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, + MVT::v2f64}) { + for (auto MemT : MVT::fixedlen_vector_valuetypes()) { + if (MVT(T) != MemT) { + setTruncStoreAction(T, MemT, Expand); + for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) + setLoadExtAction(Ext, T, MemT, Expand); + } + } + } + // But some vector extending loads are legal + if (Subtarget->hasUnimplementedSIMD128()) { + for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { + setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); + setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); + setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); + } + } + } + + // Don't do anything clever with build_pairs + setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); + + // Trap lowers to wasm unreachable + setOperationAction(ISD::TRAP, MVT::Other, Legal); + + // Exception handling intrinsics + setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); + setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); + + setMaxAtomicSizeInBitsSupported(64); + + // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is + // consistent with the f64 and f128 names. + setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); + setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); + + // Define the emscripten name for return address helper. + // TODO: when implementing other WASM backends, make this generic or only do + // this on emscripten depending on what they end up doing. + setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); + + // Always convert switches to br_tables unless there is only one case, which + // is equivalent to a simple branch. This reduces code size for wasm, and we + // defer possible jump table optimizations to the VM. + setMinimumJumpTableEntries(2); +} + +TargetLowering::AtomicExpansionKind +WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { + // We have wasm instructions for these + switch (AI->getOperation()) { + case AtomicRMWInst::Add: + case AtomicRMWInst::Sub: + case AtomicRMWInst::And: + case AtomicRMWInst::Or: + case AtomicRMWInst::Xor: + case AtomicRMWInst::Xchg: + return AtomicExpansionKind::None; + default: + break; + } + return AtomicExpansionKind::CmpXChg; +} + +FastISel *WebAssemblyTargetLowering::createFastISel( + FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { + return WebAssembly::createFastISel(FuncInfo, LibInfo); +} + +MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, + EVT VT) const { + unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); + if (BitWidth > 1 && BitWidth < 8) + BitWidth = 8; + + if (BitWidth > 64) { + // The shift will be lowered to a libcall, and compiler-rt libcalls expect + // the count to be an i32. + BitWidth = 32; + assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && + "32-bit shift counts ought to be enough for anyone"); + } + + MVT Result = MVT::getIntegerVT(BitWidth); + assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && + "Unable to represent scalar shift amount type"); + return Result; +} + +// Lower an fp-to-int conversion operator from the LLVM opcode, which has an +// undefined result on invalid/overflow, to the WebAssembly opcode, which +// traps on invalid/overflow. +static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, + MachineBasicBlock *BB, + const TargetInstrInfo &TII, + bool IsUnsigned, bool Int64, + bool Float64, unsigned LoweredOpcode) { + MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); + + Register OutReg = MI.getOperand(0).getReg(); + Register InReg = MI.getOperand(1).getReg(); + + unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; + unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; + unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; + unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; + unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; + unsigned Eqz = WebAssembly::EQZ_I32; + unsigned And = WebAssembly::AND_I32; + int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; + int64_t Substitute = IsUnsigned ? 0 : Limit; + double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; + auto &Context = BB->getParent()->getFunction().getContext(); + Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); + + const BasicBlock *LLVMBB = BB->getBasicBlock(); + MachineFunction *F = BB->getParent(); + MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); + MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); + MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); + + MachineFunction::iterator It = ++BB->getIterator(); + F->insert(It, FalseMBB); + F->insert(It, TrueMBB); + F->insert(It, DoneMBB); + + // Transfer the remainder of BB and its successor edges to DoneMBB. + DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); + DoneMBB->transferSuccessorsAndUpdatePHIs(BB); + + BB->addSuccessor(TrueMBB); + BB->addSuccessor(FalseMBB); + TrueMBB->addSuccessor(DoneMBB); + FalseMBB->addSuccessor(DoneMBB); + + unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; + Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); + Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); + CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); + EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); + FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); + TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); + + MI.eraseFromParent(); + // For signed numbers, we can do a single comparison to determine whether + // fabs(x) is within range. + if (IsUnsigned) { + Tmp0 = InReg; + } else { + BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); + } + BuildMI(BB, DL, TII.get(FConst), Tmp1) + .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); + BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); + + // For unsigned numbers, we have to do a separate comparison with zero. + if (IsUnsigned) { + Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); + Register SecondCmpReg = + MRI.createVirtualRegister(&WebAssembly::I32RegClass); + Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); + BuildMI(BB, DL, TII.get(FConst), Tmp1) + .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); + BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); + BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); + CmpReg = AndReg; + } + + BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); + + // Create the CFG diamond to select between doing the conversion or using + // the substitute value. + BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); + BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); + BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); + BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); + BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) + .addReg(FalseReg) + .addMBB(FalseMBB) + .addReg(TrueReg) + .addMBB(TrueMBB); + + return DoneMBB; +} + +MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( + MachineInstr &MI, MachineBasicBlock *BB) const { + const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); + DebugLoc DL = MI.getDebugLoc(); + + switch (MI.getOpcode()) { + default: + llvm_unreachable("Unexpected instr type to insert"); + case WebAssembly::FP_TO_SINT_I32_F32: + return LowerFPToInt(MI, DL, BB, TII, false, false, false, + WebAssembly::I32_TRUNC_S_F32); + case WebAssembly::FP_TO_UINT_I32_F32: + return LowerFPToInt(MI, DL, BB, TII, true, false, false, + WebAssembly::I32_TRUNC_U_F32); + case WebAssembly::FP_TO_SINT_I64_F32: + return LowerFPToInt(MI, DL, BB, TII, false, true, false, + WebAssembly::I64_TRUNC_S_F32); + case WebAssembly::FP_TO_UINT_I64_F32: + return LowerFPToInt(MI, DL, BB, TII, true, true, false, + WebAssembly::I64_TRUNC_U_F32); + case WebAssembly::FP_TO_SINT_I32_F64: + return LowerFPToInt(MI, DL, BB, TII, false, false, true, + WebAssembly::I32_TRUNC_S_F64); + case WebAssembly::FP_TO_UINT_I32_F64: + return LowerFPToInt(MI, DL, BB, TII, true, false, true, + WebAssembly::I32_TRUNC_U_F64); + case WebAssembly::FP_TO_SINT_I64_F64: + return LowerFPToInt(MI, DL, BB, TII, false, true, true, + WebAssembly::I64_TRUNC_S_F64); + case WebAssembly::FP_TO_UINT_I64_F64: + return LowerFPToInt(MI, DL, BB, TII, true, true, true, + WebAssembly::I64_TRUNC_U_F64); + llvm_unreachable("Unexpected instruction to emit with custom inserter"); + } +} + +const char * +WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { + switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { + case WebAssemblyISD::FIRST_NUMBER: + break; +#define HANDLE_NODETYPE(NODE) \ + case WebAssemblyISD::NODE: \ + return "WebAssemblyISD::" #NODE; +#include "WebAssemblyISD.def" +#undef HANDLE_NODETYPE + } + return nullptr; +} + +std::pair<unsigned, const TargetRegisterClass *> +WebAssemblyTargetLowering::getRegForInlineAsmConstraint( + const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { + // First, see if this is a constraint that directly corresponds to a + // WebAssembly register class. + if (Constraint.size() == 1) { + switch (Constraint[0]) { + case 'r': + assert(VT != MVT::iPTR && "Pointer MVT not expected here"); + if (Subtarget->hasSIMD128() && VT.isVector()) { + if (VT.getSizeInBits() == 128) + return std::make_pair(0U, &WebAssembly::V128RegClass); + } + if (VT.isInteger() && !VT.isVector()) { + if (VT.getSizeInBits() <= 32) + return std::make_pair(0U, &WebAssembly::I32RegClass); + if (VT.getSizeInBits() <= 64) + return std::make_pair(0U, &WebAssembly::I64RegClass); + } + break; + default: + break; + } + } + + return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); +} + +bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { + // Assume ctz is a relatively cheap operation. + return true; +} + +bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { + // Assume clz is a relatively cheap operation. + return true; +} + +bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, + const AddrMode &AM, + Type *Ty, unsigned AS, + Instruction *I) const { + // WebAssembly offsets are added as unsigned without wrapping. The + // isLegalAddressingMode gives us no way to determine if wrapping could be + // happening, so we approximate this by accepting only non-negative offsets. + if (AM.BaseOffs < 0) + return false; + + // WebAssembly has no scale register operands. + if (AM.Scale != 0) + return false; + + // Everything else is legal. + return true; +} + +bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( + EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, + MachineMemOperand::Flags /*Flags*/, bool *Fast) const { + // WebAssembly supports unaligned accesses, though it should be declared + // with the p2align attribute on loads and stores which do so, and there + // may be a performance impact. We tell LLVM they're "fast" because + // for the kinds of things that LLVM uses this for (merging adjacent stores + // of constants, etc.), WebAssembly implementations will either want the + // unaligned access or they'll split anyway. + if (Fast) + *Fast = true; + return true; +} + +bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, + AttributeList Attr) const { + // The current thinking is that wasm engines will perform this optimization, + // so we can save on code size. + return true; +} + +bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { + if (!Subtarget->hasUnimplementedSIMD128()) + return false; + MVT ExtT = ExtVal.getSimpleValueType(); + MVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getSimpleValueType(0); + return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || + (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || + (ExtT == MVT::v2i64 && MemT == MVT::v2i32); +} + +EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, + LLVMContext &C, + EVT VT) const { + if (VT.isVector()) + return VT.changeVectorElementTypeToInteger(); + + return TargetLowering::getSetCCResultType(DL, C, VT); +} + +bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, + const CallInst &I, + MachineFunction &MF, + unsigned Intrinsic) const { + switch (Intrinsic) { + case Intrinsic::wasm_atomic_notify: + Info.opc = ISD::INTRINSIC_W_CHAIN; + Info.memVT = MVT::i32; + Info.ptrVal = I.getArgOperand(0); + Info.offset = 0; + Info.align = Align(4); + // atomic.notify instruction does not really load the memory specified with + // this argument, but MachineMemOperand should either be load or store, so + // we set this to a load. + // FIXME Volatile isn't really correct, but currently all LLVM atomic + // instructions are treated as volatiles in the backend, so we should be + // consistent. The same applies for wasm_atomic_wait intrinsics too. + Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; + return true; + case Intrinsic::wasm_atomic_wait_i32: + Info.opc = ISD::INTRINSIC_W_CHAIN; + Info.memVT = MVT::i32; + Info.ptrVal = I.getArgOperand(0); + Info.offset = 0; + Info.align = Align(4); + Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; + return true; + case Intrinsic::wasm_atomic_wait_i64: + Info.opc = ISD::INTRINSIC_W_CHAIN; + Info.memVT = MVT::i64; + Info.ptrVal = I.getArgOperand(0); + Info.offset = 0; + Info.align = Align(8); + Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; + return true; + default: + return false; + } +} + +//===----------------------------------------------------------------------===// +// WebAssembly Lowering private implementation. +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// Lowering Code +//===----------------------------------------------------------------------===// + +static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { + MachineFunction &MF = DAG.getMachineFunction(); + DAG.getContext()->diagnose( + DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); +} + +// Test whether the given calling convention is supported. +static bool callingConvSupported(CallingConv::ID CallConv) { + // We currently support the language-independent target-independent + // conventions. We don't yet have a way to annotate calls with properties like + // "cold", and we don't have any call-clobbered registers, so these are mostly + // all handled the same. + return CallConv == CallingConv::C || CallConv == CallingConv::Fast || + CallConv == CallingConv::Cold || + CallConv == CallingConv::PreserveMost || + CallConv == CallingConv::PreserveAll || + CallConv == CallingConv::CXX_FAST_TLS || + CallConv == CallingConv::WASM_EmscriptenInvoke; +} + +SDValue +WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, + SmallVectorImpl<SDValue> &InVals) const { + SelectionDAG &DAG = CLI.DAG; + SDLoc DL = CLI.DL; + SDValue Chain = CLI.Chain; + SDValue Callee = CLI.Callee; + MachineFunction &MF = DAG.getMachineFunction(); + auto Layout = MF.getDataLayout(); + + CallingConv::ID CallConv = CLI.CallConv; + if (!callingConvSupported(CallConv)) + fail(DL, DAG, + "WebAssembly doesn't support language-specific or target-specific " + "calling conventions yet"); + if (CLI.IsPatchPoint) + fail(DL, DAG, "WebAssembly doesn't support patch point yet"); + + if (CLI.IsTailCall) { + bool MustTail = CLI.CS && CLI.CS.isMustTailCall(); + if (Subtarget->hasTailCall() && !CLI.IsVarArg) { + // Do not tail call unless caller and callee return types match + const Function &F = MF.getFunction(); + const TargetMachine &TM = getTargetMachine(); + Type *RetTy = F.getReturnType(); + SmallVector<MVT, 4> CallerRetTys; + SmallVector<MVT, 4> CalleeRetTys; + computeLegalValueVTs(F, TM, RetTy, CallerRetTys); + computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); + bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && + std::equal(CallerRetTys.begin(), CallerRetTys.end(), + CalleeRetTys.begin()); + if (!TypesMatch) { + // musttail in this case would be an LLVM IR validation failure + assert(!MustTail); + CLI.IsTailCall = false; + } + } else { + CLI.IsTailCall = false; + if (MustTail) { + if (CLI.IsVarArg) { + // The return would pop the argument buffer + fail(DL, DAG, "WebAssembly does not support varargs tail calls"); + } else { + fail(DL, DAG, "WebAssembly 'tail-call' feature not enabled"); + } + } + } + } + + SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; + if (Ins.size() > 1) + fail(DL, DAG, "WebAssembly doesn't support more than 1 returned value yet"); + + SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; + SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; + + // The generic code may have added an sret argument. If we're lowering an + // invoke function, the ABI requires that the function pointer be the first + // argument, so we may have to swap the arguments. + if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && + Outs[0].Flags.isSRet()) { + std::swap(Outs[0], Outs[1]); + std::swap(OutVals[0], OutVals[1]); + } + + unsigned NumFixedArgs = 0; + for (unsigned I = 0; I < Outs.size(); ++I) { + const ISD::OutputArg &Out = Outs[I]; + SDValue &OutVal = OutVals[I]; + if (Out.Flags.isNest()) + fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); + if (Out.Flags.isInAlloca()) + fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); + if (Out.Flags.isInConsecutiveRegs()) + fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); + if (Out.Flags.isInConsecutiveRegsLast()) + fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); + if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { + auto &MFI = MF.getFrameInfo(); + int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), + Out.Flags.getByValAlign(), + /*isSS=*/false); + SDValue SizeNode = + DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); + SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); + Chain = DAG.getMemcpy( + Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getByValAlign(), + /*isVolatile*/ false, /*AlwaysInline=*/false, + /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); + OutVal = FINode; + } + // Count the number of fixed args *after* legalization. + NumFixedArgs += Out.IsFixed; + } + + bool IsVarArg = CLI.IsVarArg; + auto PtrVT = getPointerTy(Layout); + + // Analyze operands of the call, assigning locations to each operand. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); + + if (IsVarArg) { + // Outgoing non-fixed arguments are placed in a buffer. First + // compute their offsets and the total amount of buffer space needed. + for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { + const ISD::OutputArg &Out = Outs[I]; + SDValue &Arg = OutVals[I]; + EVT VT = Arg.getValueType(); + assert(VT != MVT::iPTR && "Legalized args should be concrete"); + Type *Ty = VT.getTypeForEVT(*DAG.getContext()); + unsigned Align = std::max(Out.Flags.getOrigAlign(), + Layout.getABITypeAlignment(Ty)); + unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), + Align); + CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), + Offset, VT.getSimpleVT(), + CCValAssign::Full)); + } + } + + unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); + + SDValue FINode; + if (IsVarArg && NumBytes) { + // For non-fixed arguments, next emit stores to store the argument values + // to the stack buffer at the offsets computed above. + int FI = MF.getFrameInfo().CreateStackObject(NumBytes, + Layout.getStackAlignment(), + /*isSS=*/false); + unsigned ValNo = 0; + SmallVector<SDValue, 8> Chains; + for (SDValue Arg : + make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { + assert(ArgLocs[ValNo].getValNo() == ValNo && + "ArgLocs should remain in order and only hold varargs args"); + unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); + FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); + SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, + DAG.getConstant(Offset, DL, PtrVT)); + Chains.push_back( + DAG.getStore(Chain, DL, Arg, Add, + MachinePointerInfo::getFixedStack(MF, FI, Offset), 0)); + } + if (!Chains.empty()) + Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); + } else if (IsVarArg) { + FINode = DAG.getIntPtrConstant(0, DL); + } + + if (Callee->getOpcode() == ISD::GlobalAddress) { + // If the callee is a GlobalAddress node (quite common, every direct call + // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress + // doesn't at MO_GOT which is not needed for direct calls. + GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); + Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, + getPointerTy(DAG.getDataLayout()), + GA->getOffset()); + Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, + getPointerTy(DAG.getDataLayout()), Callee); + } + + // Compute the operands for the CALLn node. + SmallVector<SDValue, 16> Ops; + Ops.push_back(Chain); + Ops.push_back(Callee); + + // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs + // isn't reliable. + Ops.append(OutVals.begin(), + IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); + // Add a pointer to the vararg buffer. + if (IsVarArg) + Ops.push_back(FINode); + + SmallVector<EVT, 8> InTys; + for (const auto &In : Ins) { + assert(!In.Flags.isByVal() && "byval is not valid for return values"); + assert(!In.Flags.isNest() && "nest is not valid for return values"); + if (In.Flags.isInAlloca()) + fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); + if (In.Flags.isInConsecutiveRegs()) + fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); + if (In.Flags.isInConsecutiveRegsLast()) + fail(DL, DAG, + "WebAssembly hasn't implemented cons regs last return values"); + // Ignore In.getOrigAlign() because all our arguments are passed in + // registers. + InTys.push_back(In.VT); + } + + if (CLI.IsTailCall) { + // ret_calls do not return values to the current frame + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); + } + + InTys.push_back(MVT::Other); + SDVTList InTyList = DAG.getVTList(InTys); + SDValue Res = + DAG.getNode(Ins.empty() ? WebAssemblyISD::CALL0 : WebAssemblyISD::CALL1, + DL, InTyList, Ops); + if (Ins.empty()) { + Chain = Res; + } else { + InVals.push_back(Res); + Chain = Res.getValue(1); + } + + return Chain; +} + +bool WebAssemblyTargetLowering::CanLowerReturn( + CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, + const SmallVectorImpl<ISD::OutputArg> &Outs, + LLVMContext & /*Context*/) const { + // WebAssembly can only handle returning tuples with multivalue enabled + return Subtarget->hasMultivalue() || Outs.size() <= 1; +} + +SDValue WebAssemblyTargetLowering::LowerReturn( + SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, + SelectionDAG &DAG) const { + assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && + "MVP WebAssembly can only return up to one value"); + if (!callingConvSupported(CallConv)) + fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); + + SmallVector<SDValue, 4> RetOps(1, Chain); + RetOps.append(OutVals.begin(), OutVals.end()); + Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); + + // Record the number and types of the return values. + for (const ISD::OutputArg &Out : Outs) { + assert(!Out.Flags.isByVal() && "byval is not valid for return values"); + assert(!Out.Flags.isNest() && "nest is not valid for return values"); + assert(Out.IsFixed && "non-fixed return value is not valid"); + if (Out.Flags.isInAlloca()) + fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); + if (Out.Flags.isInConsecutiveRegs()) + fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); + if (Out.Flags.isInConsecutiveRegsLast()) + fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); + } + + return Chain; +} + +SDValue WebAssemblyTargetLowering::LowerFormalArguments( + SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, + SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { + if (!callingConvSupported(CallConv)) + fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); + + MachineFunction &MF = DAG.getMachineFunction(); + auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); + + // Set up the incoming ARGUMENTS value, which serves to represent the liveness + // of the incoming values before they're represented by virtual registers. + MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); + + for (const ISD::InputArg &In : Ins) { + if (In.Flags.isInAlloca()) + fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); + if (In.Flags.isNest()) + fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); + if (In.Flags.isInConsecutiveRegs()) + fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); + if (In.Flags.isInConsecutiveRegsLast()) + fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); + // Ignore In.getOrigAlign() because all our arguments are passed in + // registers. + InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, + DAG.getTargetConstant(InVals.size(), + DL, MVT::i32)) + : DAG.getUNDEF(In.VT)); + + // Record the number and types of arguments. + MFI->addParam(In.VT); + } + + // Varargs are copied into a buffer allocated by the caller, and a pointer to + // the buffer is passed as an argument. + if (IsVarArg) { + MVT PtrVT = getPointerTy(MF.getDataLayout()); + Register VarargVreg = + MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); + MFI->setVarargBufferVreg(VarargVreg); + Chain = DAG.getCopyToReg( + Chain, DL, VarargVreg, + DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, + DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); + MFI->addParam(PtrVT); + } + + // Record the number and types of arguments and results. + SmallVector<MVT, 4> Params; + SmallVector<MVT, 4> Results; + computeSignatureVTs(MF.getFunction().getFunctionType(), MF.getFunction(), + DAG.getTarget(), Params, Results); + for (MVT VT : Results) + MFI->addResult(VT); + // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify + // the param logic here with ComputeSignatureVTs + assert(MFI->getParams().size() == Params.size() && + std::equal(MFI->getParams().begin(), MFI->getParams().end(), + Params.begin())); + + return Chain; +} + +void WebAssemblyTargetLowering::ReplaceNodeResults( + SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { + switch (N->getOpcode()) { + case ISD::SIGN_EXTEND_INREG: + // Do not add any results, signifying that N should not be custom lowered + // after all. This happens because simd128 turns on custom lowering for + // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an + // illegal type. + break; + default: + llvm_unreachable( + "ReplaceNodeResults not implemented for this op for WebAssembly!"); + } +} + +//===----------------------------------------------------------------------===// +// Custom lowering hooks. +//===----------------------------------------------------------------------===// + +SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + switch (Op.getOpcode()) { + default: + llvm_unreachable("unimplemented operation lowering"); + return SDValue(); + case ISD::FrameIndex: + return LowerFrameIndex(Op, DAG); + case ISD::GlobalAddress: + return LowerGlobalAddress(Op, DAG); + case ISD::ExternalSymbol: + return LowerExternalSymbol(Op, DAG); + case ISD::JumpTable: + return LowerJumpTable(Op, DAG); + case ISD::BR_JT: + return LowerBR_JT(Op, DAG); + case ISD::VASTART: + return LowerVASTART(Op, DAG); + case ISD::BlockAddress: + case ISD::BRIND: + fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); + return SDValue(); + case ISD::RETURNADDR: + return LowerRETURNADDR(Op, DAG); + case ISD::FRAMEADDR: + return LowerFRAMEADDR(Op, DAG); + case ISD::CopyToReg: + return LowerCopyToReg(Op, DAG); + case ISD::EXTRACT_VECTOR_ELT: + case ISD::INSERT_VECTOR_ELT: + return LowerAccessVectorElement(Op, DAG); + case ISD::INTRINSIC_VOID: + case ISD::INTRINSIC_WO_CHAIN: + case ISD::INTRINSIC_W_CHAIN: + return LowerIntrinsic(Op, DAG); + case ISD::SIGN_EXTEND_INREG: + return LowerSIGN_EXTEND_INREG(Op, DAG); + case ISD::BUILD_VECTOR: + return LowerBUILD_VECTOR(Op, DAG); + case ISD::VECTOR_SHUFFLE: + return LowerVECTOR_SHUFFLE(Op, DAG); + case ISD::SHL: + case ISD::SRA: + case ISD::SRL: + return LowerShift(Op, DAG); + } +} + +SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, + SelectionDAG &DAG) const { + SDValue Src = Op.getOperand(2); + if (isa<FrameIndexSDNode>(Src.getNode())) { + // CopyToReg nodes don't support FrameIndex operands. Other targets select + // the FI to some LEA-like instruction, but since we don't have that, we + // need to insert some kind of instruction that can take an FI operand and + // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy + // local.copy between Op and its FI operand. + SDValue Chain = Op.getOperand(0); + SDLoc DL(Op); + unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); + EVT VT = Src.getValueType(); + SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 + : WebAssembly::COPY_I64, + DL, VT, Src), + 0); + return Op.getNode()->getNumValues() == 1 + ? DAG.getCopyToReg(Chain, DL, Reg, Copy) + : DAG.getCopyToReg(Chain, DL, Reg, Copy, + Op.getNumOperands() == 4 ? Op.getOperand(3) + : SDValue()); + } + return SDValue(); +} + +SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, + SelectionDAG &DAG) const { + int FI = cast<FrameIndexSDNode>(Op)->getIndex(); + return DAG.getTargetFrameIndex(FI, Op.getValueType()); +} + +SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + + if (!Subtarget->getTargetTriple().isOSEmscripten()) { + fail(DL, DAG, + "Non-Emscripten WebAssembly hasn't implemented " + "__builtin_return_address"); + return SDValue(); + } + + if (verifyReturnAddressArgumentIsConstant(Op, DAG)) + return SDValue(); + + unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + MakeLibCallOptions CallOptions; + return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), + {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) + .first; +} + +SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, + SelectionDAG &DAG) const { + // Non-zero depths are not supported by WebAssembly currently. Use the + // legalizer's default expansion, which is to return 0 (what this function is + // documented to do). + if (Op.getConstantOperandVal(0) > 0) + return SDValue(); + + DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); + EVT VT = Op.getValueType(); + Register FP = + Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); + return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); +} + +SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + const auto *GA = cast<GlobalAddressSDNode>(Op); + EVT VT = Op.getValueType(); + assert(GA->getTargetFlags() == 0 && + "Unexpected target flags on generic GlobalAddressSDNode"); + if (GA->getAddressSpace() != 0) + fail(DL, DAG, "WebAssembly only expects the 0 address space"); + + unsigned OperandFlags = 0; + if (isPositionIndependent()) { + const GlobalValue *GV = GA->getGlobal(); + if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { + MachineFunction &MF = DAG.getMachineFunction(); + MVT PtrVT = getPointerTy(MF.getDataLayout()); + const char *BaseName; + if (GV->getValueType()->isFunctionTy()) { + BaseName = MF.createExternalSymbolName("__table_base"); + OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; + } + else { + BaseName = MF.createExternalSymbolName("__memory_base"); + OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; + } + SDValue BaseAddr = + DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, + DAG.getTargetExternalSymbol(BaseName, PtrVT)); + + SDValue SymAddr = DAG.getNode( + WebAssemblyISD::WrapperPIC, DL, VT, + DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), + OperandFlags)); + + return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); + } else { + OperandFlags = WebAssemblyII::MO_GOT; + } + } + + return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, + DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, + GA->getOffset(), OperandFlags)); +} + +SDValue +WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + const auto *ES = cast<ExternalSymbolSDNode>(Op); + EVT VT = Op.getValueType(); + assert(ES->getTargetFlags() == 0 && + "Unexpected target flags on generic ExternalSymbolSDNode"); + return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, + DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); +} + +SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, + SelectionDAG &DAG) const { + // There's no need for a Wrapper node because we always incorporate a jump + // table operand into a BR_TABLE instruction, rather than ever + // materializing it in a register. + const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); + return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), + JT->getTargetFlags()); +} + +SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + SDValue Chain = Op.getOperand(0); + const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); + SDValue Index = Op.getOperand(2); + assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); + + SmallVector<SDValue, 8> Ops; + Ops.push_back(Chain); + Ops.push_back(Index); + + MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); + const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; + + // Add an operand for each case. + for (auto MBB : MBBs) + Ops.push_back(DAG.getBasicBlock(MBB)); + + // TODO: For now, we just pick something arbitrary for a default case for now. + // We really want to sniff out the guard and put in the real default case (and + // delete the guard). + Ops.push_back(DAG.getBasicBlock(MBBs[0])); + + return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); +} + +SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); + + auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); + const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); + + SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, + MFI->getVarargBufferVreg(), PtrVT); + return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), + MachinePointerInfo(SV), 0); +} + +SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, + SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + unsigned IntNo; + switch (Op.getOpcode()) { + case ISD::INTRINSIC_VOID: + case ISD::INTRINSIC_W_CHAIN: + IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); + break; + case ISD::INTRINSIC_WO_CHAIN: + IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + break; + default: + llvm_unreachable("Invalid intrinsic"); + } + SDLoc DL(Op); + + switch (IntNo) { + default: + return SDValue(); // Don't custom lower most intrinsics. + + case Intrinsic::wasm_lsda: { + EVT VT = Op.getValueType(); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); + auto &Context = MF.getMMI().getContext(); + MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + + Twine(MF.getFunctionNumber())); + return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, + DAG.getMCSymbol(S, PtrVT)); + } + + case Intrinsic::wasm_throw: { + // We only support C++ exceptions for now + int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); + if (Tag != CPP_EXCEPTION) + llvm_unreachable("Invalid tag!"); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); + const char *SymName = MF.createExternalSymbolName("__cpp_exception"); + SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, + DAG.getTargetExternalSymbol(SymName, PtrVT)); + return DAG.getNode(WebAssemblyISD::THROW, DL, + MVT::Other, // outchain type + { + Op.getOperand(0), // inchain + SymNode, // exception symbol + Op.getOperand(3) // thrown value + }); + } + } +} + +SDValue +WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + // If sign extension operations are disabled, allow sext_inreg only if operand + // is a vector extract. SIMD does not depend on sign extension operations, but + // allowing sext_inreg in this context lets us have simple patterns to select + // extract_lane_s instructions. Expanding sext_inreg everywhere would be + // simpler in this file, but would necessitate large and brittle patterns to + // undo the expansion and select extract_lane_s instructions. + assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); + if (Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT) { + const SDValue &Extract = Op.getOperand(0); + MVT VecT = Extract.getOperand(0).getSimpleValueType(); + MVT ExtractedLaneT = static_cast<VTSDNode *>(Op.getOperand(1).getNode()) + ->getVT() + .getSimpleVT(); + MVT ExtractedVecT = + MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); + if (ExtractedVecT == VecT) + return Op; + // Bitcast vector to appropriate type to ensure ISel pattern coverage + const SDValue &Index = Extract.getOperand(1); + unsigned IndexVal = + static_cast<ConstantSDNode *>(Index.getNode())->getZExtValue(); + unsigned Scale = + ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); + assert(Scale > 1); + SDValue NewIndex = + DAG.getConstant(IndexVal * Scale, DL, Index.getValueType()); + SDValue NewExtract = DAG.getNode( + ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), + DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); + return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), + NewExtract, Op.getOperand(1)); + } + // Otherwise expand + return SDValue(); +} + +SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + const EVT VecT = Op.getValueType(); + const EVT LaneT = Op.getOperand(0).getValueType(); + const size_t Lanes = Op.getNumOperands(); + bool CanSwizzle = Subtarget->hasUnimplementedSIMD128() && VecT == MVT::v16i8; + + // BUILD_VECTORs are lowered to the instruction that initializes the highest + // possible number of lanes at once followed by a sequence of replace_lane + // instructions to individually initialize any remaining lanes. + + // TODO: Tune this. For example, lanewise swizzling is very expensive, so + // swizzled lanes should be given greater weight. + + // TODO: Investigate building vectors by shuffling together vectors built by + // separately specialized means. + + auto IsConstant = [](const SDValue &V) { + return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; + }; + + // Returns the source vector and index vector pair if they exist. Checks for: + // (extract_vector_elt + // $src, + // (sign_extend_inreg (extract_vector_elt $indices, $i)) + // ) + auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { + auto Bail = std::make_pair(SDValue(), SDValue()); + if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) + return Bail; + const SDValue &SwizzleSrc = Lane->getOperand(0); + const SDValue &IndexExt = Lane->getOperand(1); + if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) + return Bail; + const SDValue &Index = IndexExt->getOperand(0); + if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) + return Bail; + const SDValue &SwizzleIndices = Index->getOperand(0); + if (SwizzleSrc.getValueType() != MVT::v16i8 || + SwizzleIndices.getValueType() != MVT::v16i8 || + Index->getOperand(1)->getOpcode() != ISD::Constant || + Index->getConstantOperandVal(1) != I) + return Bail; + return std::make_pair(SwizzleSrc, SwizzleIndices); + }; + + using ValueEntry = std::pair<SDValue, size_t>; + SmallVector<ValueEntry, 16> SplatValueCounts; + + using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; + SmallVector<SwizzleEntry, 16> SwizzleCounts; + + auto AddCount = [](auto &Counts, const auto &Val) { + auto CountIt = std::find_if(Counts.begin(), Counts.end(), + [&Val](auto E) { return E.first == Val; }); + if (CountIt == Counts.end()) { + Counts.emplace_back(Val, 1); + } else { + CountIt->second++; + } + }; + + auto GetMostCommon = [](auto &Counts) { + auto CommonIt = + std::max_element(Counts.begin(), Counts.end(), + [](auto A, auto B) { return A.second < B.second; }); + assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); + return *CommonIt; + }; + + size_t NumConstantLanes = 0; + + // Count eligible lanes for each type of vector creation op + for (size_t I = 0; I < Lanes; ++I) { + const SDValue &Lane = Op->getOperand(I); + if (Lane.isUndef()) + continue; + + AddCount(SplatValueCounts, Lane); + + if (IsConstant(Lane)) { + NumConstantLanes++; + } else if (CanSwizzle) { + auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); + if (SwizzleSrcs.first) + AddCount(SwizzleCounts, SwizzleSrcs); + } + } + + SDValue SplatValue; + size_t NumSplatLanes; + std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); + + SDValue SwizzleSrc; + SDValue SwizzleIndices; + size_t NumSwizzleLanes = 0; + if (SwizzleCounts.size()) + std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), + NumSwizzleLanes) = GetMostCommon(SwizzleCounts); + + // Predicate returning true if the lane is properly initialized by the + // original instruction + std::function<bool(size_t, const SDValue &)> IsLaneConstructed; + SDValue Result; + if (Subtarget->hasUnimplementedSIMD128()) { + // Prefer swizzles over vector consts over splats + if (NumSwizzleLanes >= NumSplatLanes && + NumSwizzleLanes >= NumConstantLanes) { + Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, + SwizzleIndices); + auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); + IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { + return Swizzled == GetSwizzleSrcs(I, Lane); + }; + } else if (NumConstantLanes >= NumSplatLanes) { + SmallVector<SDValue, 16> ConstLanes; + for (const SDValue &Lane : Op->op_values()) { + if (IsConstant(Lane)) { + ConstLanes.push_back(Lane); + } else if (LaneT.isFloatingPoint()) { + ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); + } else { + ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); + } + } + Result = DAG.getBuildVector(VecT, DL, ConstLanes); + IsLaneConstructed = [&](size_t _, const SDValue &Lane) { + return IsConstant(Lane); + }; + } + } + if (!Result) { + // Use a splat, but possibly a load_splat + LoadSDNode *SplattedLoad; + if (Subtarget->hasUnimplementedSIMD128() && + (SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && + SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { + Result = DAG.getNode(WebAssemblyISD::LOAD_SPLAT, DL, VecT, SplatValue); + } else { + Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); + } + IsLaneConstructed = [&](size_t _, const SDValue &Lane) { + return Lane == SplatValue; + }; + } + + // Add replace_lane instructions for any unhandled values + for (size_t I = 0; I < Lanes; ++I) { + const SDValue &Lane = Op->getOperand(I); + if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) + Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, + DAG.getConstant(I, DL, MVT::i32)); + } + + return Result; +} + +SDValue +WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); + MVT VecType = Op.getOperand(0).getSimpleValueType(); + assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); + size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; + + // Space for two vector args and sixteen mask indices + SDValue Ops[18]; + size_t OpIdx = 0; + Ops[OpIdx++] = Op.getOperand(0); + Ops[OpIdx++] = Op.getOperand(1); + + // Expand mask indices to byte indices and materialize them as operands + for (int M : Mask) { + for (size_t J = 0; J < LaneBytes; ++J) { + // Lower undefs (represented by -1 in mask) to zero + uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; + Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); + } + } + + return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); +} + +SDValue +WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, + SelectionDAG &DAG) const { + // Allow constant lane indices, expand variable lane indices + SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); + if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) + return Op; + else + // Perform default expansion + return SDValue(); +} + +static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { + EVT LaneT = Op.getSimpleValueType().getVectorElementType(); + // 32-bit and 64-bit unrolled shifts will have proper semantics + if (LaneT.bitsGE(MVT::i32)) + return DAG.UnrollVectorOp(Op.getNode()); + // Otherwise mask the shift value to get proper semantics from 32-bit shift + SDLoc DL(Op); + SDValue ShiftVal = Op.getOperand(1); + uint64_t MaskVal = LaneT.getSizeInBits() - 1; + SDValue MaskedShiftVal = DAG.getNode( + ISD::AND, // mask opcode + DL, ShiftVal.getValueType(), // masked value type + ShiftVal, // original shift value operand + DAG.getConstant(MaskVal, DL, ShiftVal.getValueType()) // mask operand + ); + + return DAG.UnrollVectorOp( + DAG.getNode(Op.getOpcode(), // original shift opcode + DL, Op.getValueType(), // original return type + Op.getOperand(0), // original vector operand, + MaskedShiftVal // new masked shift value operand + ) + .getNode()); +} + +SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + + // Only manually lower vector shifts + assert(Op.getSimpleValueType().isVector()); + + // Unroll non-splat vector shifts + BuildVectorSDNode *ShiftVec; + SDValue SplatVal; + if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) || + !(SplatVal = ShiftVec->getSplatValue())) + return unrollVectorShift(Op, DAG); + + // All splats except i64x2 const splats are handled by patterns + auto *SplatConst = dyn_cast<ConstantSDNode>(SplatVal); + if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64) + return Op; + + // i64x2 const splats are custom lowered to avoid unnecessary wraps + unsigned Opcode; + switch (Op.getOpcode()) { + case ISD::SHL: + Opcode = WebAssemblyISD::VEC_SHL; + break; + case ISD::SRA: + Opcode = WebAssemblyISD::VEC_SHR_S; + break; + case ISD::SRL: + Opcode = WebAssemblyISD::VEC_SHR_U; + break; + default: + llvm_unreachable("unexpected opcode"); + } + APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32); + return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), + DAG.getConstant(Shift, DL, MVT::i32)); +} + +//===----------------------------------------------------------------------===// +// WebAssembly Optimization Hooks +//===----------------------------------------------------------------------===// |