diff options
Diffstat (limited to 'llvm/lib/Target/X86/X86CallFrameOptimization.cpp')
| -rw-r--r-- | llvm/lib/Target/X86/X86CallFrameOptimization.cpp | 638 |
1 files changed, 638 insertions, 0 deletions
diff --git a/llvm/lib/Target/X86/X86CallFrameOptimization.cpp b/llvm/lib/Target/X86/X86CallFrameOptimization.cpp new file mode 100644 index 000000000000..ad7e32b4efc8 --- /dev/null +++ b/llvm/lib/Target/X86/X86CallFrameOptimization.cpp @@ -0,0 +1,638 @@ +//===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines a pass that optimizes call sequences on x86. +// Currently, it converts movs of function parameters onto the stack into +// pushes. This is beneficial for two main reasons: +// 1) The push instruction encoding is much smaller than a stack-ptr-based mov. +// 2) It is possible to push memory arguments directly. So, if the +// the transformation is performed pre-reg-alloc, it can help relieve +// register pressure. +// +//===----------------------------------------------------------------------===// + +#include "MCTargetDesc/X86BaseInfo.h" +#include "X86FrameLowering.h" +#include "X86InstrInfo.h" +#include "X86MachineFunctionInfo.h" +#include "X86RegisterInfo.h" +#include "X86Subtarget.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/Function.h" +#include "llvm/MC/MCDwarf.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <iterator> + +using namespace llvm; + +#define DEBUG_TYPE "x86-cf-opt" + +static cl::opt<bool> + NoX86CFOpt("no-x86-call-frame-opt", + cl::desc("Avoid optimizing x86 call frames for size"), + cl::init(false), cl::Hidden); + +namespace { + +class X86CallFrameOptimization : public MachineFunctionPass { +public: + X86CallFrameOptimization() : MachineFunctionPass(ID) { } + + bool runOnMachineFunction(MachineFunction &MF) override; + + static char ID; + +private: + // Information we know about a particular call site + struct CallContext { + CallContext() : FrameSetup(nullptr), ArgStoreVector(4, nullptr) {} + + // Iterator referring to the frame setup instruction + MachineBasicBlock::iterator FrameSetup; + + // Actual call instruction + MachineInstr *Call = nullptr; + + // A copy of the stack pointer + MachineInstr *SPCopy = nullptr; + + // The total displacement of all passed parameters + int64_t ExpectedDist = 0; + + // The sequence of storing instructions used to pass the parameters + SmallVector<MachineInstr *, 4> ArgStoreVector; + + // True if this call site has no stack parameters + bool NoStackParams = false; + + // True if this call site can use push instructions + bool UsePush = false; + }; + + typedef SmallVector<CallContext, 8> ContextVector; + + bool isLegal(MachineFunction &MF); + + bool isProfitable(MachineFunction &MF, ContextVector &CallSeqMap); + + void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB, + MachineBasicBlock::iterator I, CallContext &Context); + + void adjustCallSequence(MachineFunction &MF, const CallContext &Context); + + MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup, + unsigned Reg); + + enum InstClassification { Convert, Skip, Exit }; + + InstClassification classifyInstruction(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + const X86RegisterInfo &RegInfo, + DenseSet<unsigned int> &UsedRegs); + + StringRef getPassName() const override { return "X86 Optimize Call Frame"; } + + const X86InstrInfo *TII; + const X86FrameLowering *TFL; + const X86Subtarget *STI; + MachineRegisterInfo *MRI; + unsigned SlotSize; + unsigned Log2SlotSize; +}; + +} // end anonymous namespace +char X86CallFrameOptimization::ID = 0; +INITIALIZE_PASS(X86CallFrameOptimization, DEBUG_TYPE, + "X86 Call Frame Optimization", false, false) + +// This checks whether the transformation is legal. +// Also returns false in cases where it's potentially legal, but +// we don't even want to try. +bool X86CallFrameOptimization::isLegal(MachineFunction &MF) { + if (NoX86CFOpt.getValue()) + return false; + + // We can't encode multiple DW_CFA_GNU_args_size or DW_CFA_def_cfa_offset + // in the compact unwind encoding that Darwin uses. So, bail if there + // is a danger of that being generated. + if (STI->isTargetDarwin() && + (!MF.getLandingPads().empty() || + (MF.getFunction().needsUnwindTableEntry() && !TFL->hasFP(MF)))) + return false; + + // It is not valid to change the stack pointer outside the prolog/epilog + // on 64-bit Windows. + if (STI->isTargetWin64()) + return false; + + // You would expect straight-line code between call-frame setup and + // call-frame destroy. You would be wrong. There are circumstances (e.g. + // CMOV_GR8 expansion of a select that feeds a function call!) where we can + // end up with the setup and the destroy in different basic blocks. + // This is bad, and breaks SP adjustment. + // So, check that all of the frames in the function are closed inside + // the same block, and, for good measure, that there are no nested frames. + // + // If any call allocates more argument stack memory than the stack + // probe size, don't do this optimization. Otherwise, this pass + // would need to synthesize additional stack probe calls to allocate + // memory for arguments. + unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); + unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); + bool UseStackProbe = + !STI->getTargetLowering()->getStackProbeSymbolName(MF).empty(); + unsigned StackProbeSize = STI->getTargetLowering()->getStackProbeSize(MF); + for (MachineBasicBlock &BB : MF) { + bool InsideFrameSequence = false; + for (MachineInstr &MI : BB) { + if (MI.getOpcode() == FrameSetupOpcode) { + if (TII->getFrameSize(MI) >= StackProbeSize && UseStackProbe) + return false; + if (InsideFrameSequence) + return false; + InsideFrameSequence = true; + } else if (MI.getOpcode() == FrameDestroyOpcode) { + if (!InsideFrameSequence) + return false; + InsideFrameSequence = false; + } + } + + if (InsideFrameSequence) + return false; + } + + return true; +} + +// Check whether this transformation is profitable for a particular +// function - in terms of code size. +bool X86CallFrameOptimization::isProfitable(MachineFunction &MF, + ContextVector &CallSeqVector) { + // This transformation is always a win when we do not expect to have + // a reserved call frame. Under other circumstances, it may be either + // a win or a loss, and requires a heuristic. + bool CannotReserveFrame = MF.getFrameInfo().hasVarSizedObjects(); + if (CannotReserveFrame) + return true; + + unsigned StackAlign = TFL->getStackAlignment(); + + int64_t Advantage = 0; + for (auto CC : CallSeqVector) { + // Call sites where no parameters are passed on the stack + // do not affect the cost, since there needs to be no + // stack adjustment. + if (CC.NoStackParams) + continue; + + if (!CC.UsePush) { + // If we don't use pushes for a particular call site, + // we pay for not having a reserved call frame with an + // additional sub/add esp pair. The cost is ~3 bytes per instruction, + // depending on the size of the constant. + // TODO: Callee-pop functions should have a smaller penalty, because + // an add is needed even with a reserved call frame. + Advantage -= 6; + } else { + // We can use pushes. First, account for the fixed costs. + // We'll need a add after the call. + Advantage -= 3; + // If we have to realign the stack, we'll also need a sub before + if (CC.ExpectedDist % StackAlign) + Advantage -= 3; + // Now, for each push, we save ~3 bytes. For small constants, we actually, + // save more (up to 5 bytes), but 3 should be a good approximation. + Advantage += (CC.ExpectedDist >> Log2SlotSize) * 3; + } + } + + return Advantage >= 0; +} + +bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) { + STI = &MF.getSubtarget<X86Subtarget>(); + TII = STI->getInstrInfo(); + TFL = STI->getFrameLowering(); + MRI = &MF.getRegInfo(); + + const X86RegisterInfo &RegInfo = + *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo()); + SlotSize = RegInfo.getSlotSize(); + assert(isPowerOf2_32(SlotSize) && "Expect power of 2 stack slot size"); + Log2SlotSize = Log2_32(SlotSize); + + if (skipFunction(MF.getFunction()) || !isLegal(MF)) + return false; + + unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); + + bool Changed = false; + + ContextVector CallSeqVector; + + for (auto &MBB : MF) + for (auto &MI : MBB) + if (MI.getOpcode() == FrameSetupOpcode) { + CallContext Context; + collectCallInfo(MF, MBB, MI, Context); + CallSeqVector.push_back(Context); + } + + if (!isProfitable(MF, CallSeqVector)) + return false; + + for (auto CC : CallSeqVector) { + if (CC.UsePush) { + adjustCallSequence(MF, CC); + Changed = true; + } + } + + return Changed; +} + +X86CallFrameOptimization::InstClassification +X86CallFrameOptimization::classifyInstruction( + MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, + const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs) { + if (MI == MBB.end()) + return Exit; + + // The instructions we actually care about are movs onto the stack or special + // cases of constant-stores to stack + switch (MI->getOpcode()) { + case X86::AND16mi8: + case X86::AND32mi8: + case X86::AND64mi8: { + MachineOperand ImmOp = MI->getOperand(X86::AddrNumOperands); + return ImmOp.getImm() == 0 ? Convert : Exit; + } + case X86::OR16mi8: + case X86::OR32mi8: + case X86::OR64mi8: { + MachineOperand ImmOp = MI->getOperand(X86::AddrNumOperands); + return ImmOp.getImm() == -1 ? Convert : Exit; + } + case X86::MOV32mi: + case X86::MOV32mr: + case X86::MOV64mi32: + case X86::MOV64mr: + return Convert; + } + + // Not all calling conventions have only stack MOVs between the stack + // adjust and the call. + + // We want to tolerate other instructions, to cover more cases. + // In particular: + // a) PCrel calls, where we expect an additional COPY of the basereg. + // b) Passing frame-index addresses. + // c) Calling conventions that have inreg parameters. These generate + // both copies and movs into registers. + // To avoid creating lots of special cases, allow any instruction + // that does not write into memory, does not def or use the stack + // pointer, and does not def any register that was used by a preceding + // push. + // (Reading from memory is allowed, even if referenced through a + // frame index, since these will get adjusted properly in PEI) + + // The reason for the last condition is that the pushes can't replace + // the movs in place, because the order must be reversed. + // So if we have a MOV32mr that uses EDX, then an instruction that defs + // EDX, and then the call, after the transformation the push will use + // the modified version of EDX, and not the original one. + // Since we are still in SSA form at this point, we only need to + // make sure we don't clobber any *physical* registers that were + // used by an earlier mov that will become a push. + + if (MI->isCall() || MI->mayStore()) + return Exit; + + for (const MachineOperand &MO : MI->operands()) { + if (!MO.isReg()) + continue; + Register Reg = MO.getReg(); + if (!Register::isPhysicalRegister(Reg)) + continue; + if (RegInfo.regsOverlap(Reg, RegInfo.getStackRegister())) + return Exit; + if (MO.isDef()) { + for (unsigned int U : UsedRegs) + if (RegInfo.regsOverlap(Reg, U)) + return Exit; + } + } + + return Skip; +} + +void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF, + MachineBasicBlock &MBB, + MachineBasicBlock::iterator I, + CallContext &Context) { + // Check that this particular call sequence is amenable to the + // transformation. + const X86RegisterInfo &RegInfo = + *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo()); + + // We expect to enter this at the beginning of a call sequence + assert(I->getOpcode() == TII->getCallFrameSetupOpcode()); + MachineBasicBlock::iterator FrameSetup = I++; + Context.FrameSetup = FrameSetup; + + // How much do we adjust the stack? This puts an upper bound on + // the number of parameters actually passed on it. + unsigned int MaxAdjust = TII->getFrameSize(*FrameSetup) >> Log2SlotSize; + + // A zero adjustment means no stack parameters + if (!MaxAdjust) { + Context.NoStackParams = true; + return; + } + + // Skip over DEBUG_VALUE. + // For globals in PIC mode, we can have some LEAs here. Skip them as well. + // TODO: Extend this to something that covers more cases. + while (I->getOpcode() == X86::LEA32r || I->isDebugInstr()) + ++I; + + Register StackPtr = RegInfo.getStackRegister(); + auto StackPtrCopyInst = MBB.end(); + // SelectionDAG (but not FastISel) inserts a copy of ESP into a virtual + // register. If it's there, use that virtual register as stack pointer + // instead. Also, we need to locate this instruction so that we can later + // safely ignore it while doing the conservative processing of the call chain. + // The COPY can be located anywhere between the call-frame setup + // instruction and its first use. We use the call instruction as a boundary + // because it is usually cheaper to check if an instruction is a call than + // checking if an instruction uses a register. + for (auto J = I; !J->isCall(); ++J) + if (J->isCopy() && J->getOperand(0).isReg() && J->getOperand(1).isReg() && + J->getOperand(1).getReg() == StackPtr) { + StackPtrCopyInst = J; + Context.SPCopy = &*J++; + StackPtr = Context.SPCopy->getOperand(0).getReg(); + break; + } + + // Scan the call setup sequence for the pattern we're looking for. + // We only handle a simple case - a sequence of store instructions that + // push a sequence of stack-slot-aligned values onto the stack, with + // no gaps between them. + if (MaxAdjust > 4) + Context.ArgStoreVector.resize(MaxAdjust, nullptr); + + DenseSet<unsigned int> UsedRegs; + + for (InstClassification Classification = Skip; Classification != Exit; ++I) { + // If this is the COPY of the stack pointer, it's ok to ignore. + if (I == StackPtrCopyInst) + continue; + Classification = classifyInstruction(MBB, I, RegInfo, UsedRegs); + if (Classification != Convert) + continue; + // We know the instruction has a supported store opcode. + // We only want movs of the form: + // mov imm/reg, k(%StackPtr) + // If we run into something else, bail. + // Note that AddrBaseReg may, counter to its name, not be a register, + // but rather a frame index. + // TODO: Support the fi case. This should probably work now that we + // have the infrastructure to track the stack pointer within a call + // sequence. + if (!I->getOperand(X86::AddrBaseReg).isReg() || + (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) || + !I->getOperand(X86::AddrScaleAmt).isImm() || + (I->getOperand(X86::AddrScaleAmt).getImm() != 1) || + (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) || + (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) || + !I->getOperand(X86::AddrDisp).isImm()) + return; + + int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm(); + assert(StackDisp >= 0 && + "Negative stack displacement when passing parameters"); + + // We really don't want to consider the unaligned case. + if (StackDisp & (SlotSize - 1)) + return; + StackDisp >>= Log2SlotSize; + + assert((size_t)StackDisp < Context.ArgStoreVector.size() && + "Function call has more parameters than the stack is adjusted for."); + + // If the same stack slot is being filled twice, something's fishy. + if (Context.ArgStoreVector[StackDisp] != nullptr) + return; + Context.ArgStoreVector[StackDisp] = &*I; + + for (const MachineOperand &MO : I->uses()) { + if (!MO.isReg()) + continue; + Register Reg = MO.getReg(); + if (Register::isPhysicalRegister(Reg)) + UsedRegs.insert(Reg); + } + } + + --I; + + // We now expect the end of the sequence. If we stopped early, + // or reached the end of the block without finding a call, bail. + if (I == MBB.end() || !I->isCall()) + return; + + Context.Call = &*I; + if ((++I)->getOpcode() != TII->getCallFrameDestroyOpcode()) + return; + + // Now, go through the vector, and see that we don't have any gaps, + // but only a series of storing instructions. + auto MMI = Context.ArgStoreVector.begin(), MME = Context.ArgStoreVector.end(); + for (; MMI != MME; ++MMI, Context.ExpectedDist += SlotSize) + if (*MMI == nullptr) + break; + + // If the call had no parameters, do nothing + if (MMI == Context.ArgStoreVector.begin()) + return; + + // We are either at the last parameter, or a gap. + // Make sure it's not a gap + for (; MMI != MME; ++MMI) + if (*MMI != nullptr) + return; + + Context.UsePush = true; +} + +void X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF, + const CallContext &Context) { + // Ok, we can in fact do the transformation for this call. + // Do not remove the FrameSetup instruction, but adjust the parameters. + // PEI will end up finalizing the handling of this. + MachineBasicBlock::iterator FrameSetup = Context.FrameSetup; + MachineBasicBlock &MBB = *(FrameSetup->getParent()); + TII->setFrameAdjustment(*FrameSetup, Context.ExpectedDist); + + DebugLoc DL = FrameSetup->getDebugLoc(); + bool Is64Bit = STI->is64Bit(); + // Now, iterate through the vector in reverse order, and replace the store to + // stack with pushes. MOVmi/MOVmr doesn't have any defs, so no need to + // replace uses. + for (int Idx = (Context.ExpectedDist >> Log2SlotSize) - 1; Idx >= 0; --Idx) { + MachineBasicBlock::iterator Store = *Context.ArgStoreVector[Idx]; + MachineOperand PushOp = Store->getOperand(X86::AddrNumOperands); + MachineBasicBlock::iterator Push = nullptr; + unsigned PushOpcode; + switch (Store->getOpcode()) { + default: + llvm_unreachable("Unexpected Opcode!"); + case X86::AND16mi8: + case X86::AND32mi8: + case X86::AND64mi8: + case X86::OR16mi8: + case X86::OR32mi8: + case X86::OR64mi8: + case X86::MOV32mi: + case X86::MOV64mi32: + PushOpcode = Is64Bit ? X86::PUSH64i32 : X86::PUSHi32; + // If the operand is a small (8-bit) immediate, we can use a + // PUSH instruction with a shorter encoding. + // Note that isImm() may fail even though this is a MOVmi, because + // the operand can also be a symbol. + if (PushOp.isImm()) { + int64_t Val = PushOp.getImm(); + if (isInt<8>(Val)) + PushOpcode = Is64Bit ? X86::PUSH64i8 : X86::PUSH32i8; + } + Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)).add(PushOp); + break; + case X86::MOV32mr: + case X86::MOV64mr: { + Register Reg = PushOp.getReg(); + + // If storing a 32-bit vreg on 64-bit targets, extend to a 64-bit vreg + // in preparation for the PUSH64. The upper 32 bits can be undef. + if (Is64Bit && Store->getOpcode() == X86::MOV32mr) { + Register UndefReg = MRI->createVirtualRegister(&X86::GR64RegClass); + Reg = MRI->createVirtualRegister(&X86::GR64RegClass); + BuildMI(MBB, Context.Call, DL, TII->get(X86::IMPLICIT_DEF), UndefReg); + BuildMI(MBB, Context.Call, DL, TII->get(X86::INSERT_SUBREG), Reg) + .addReg(UndefReg) + .add(PushOp) + .addImm(X86::sub_32bit); + } + + // If PUSHrmm is not slow on this target, try to fold the source of the + // push into the instruction. + bool SlowPUSHrmm = STI->isAtom() || STI->isSLM(); + + // Check that this is legal to fold. Right now, we're extremely + // conservative about that. + MachineInstr *DefMov = nullptr; + if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) { + PushOpcode = Is64Bit ? X86::PUSH64rmm : X86::PUSH32rmm; + Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)); + + unsigned NumOps = DefMov->getDesc().getNumOperands(); + for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i) + Push->addOperand(DefMov->getOperand(i)); + + DefMov->eraseFromParent(); + } else { + PushOpcode = Is64Bit ? X86::PUSH64r : X86::PUSH32r; + Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)) + .addReg(Reg) + .getInstr(); + } + break; + } + } + + // For debugging, when using SP-based CFA, we need to adjust the CFA + // offset after each push. + // TODO: This is needed only if we require precise CFA. + if (!TFL->hasFP(MF)) + TFL->BuildCFI( + MBB, std::next(Push), DL, + MCCFIInstruction::createAdjustCfaOffset(nullptr, SlotSize)); + + MBB.erase(Store); + } + + // The stack-pointer copy is no longer used in the call sequences. + // There should not be any other users, but we can't commit to that, so: + if (Context.SPCopy && MRI->use_empty(Context.SPCopy->getOperand(0).getReg())) + Context.SPCopy->eraseFromParent(); + + // Once we've done this, we need to make sure PEI doesn't assume a reserved + // frame. + X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); + FuncInfo->setHasPushSequences(true); +} + +MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush( + MachineBasicBlock::iterator FrameSetup, unsigned Reg) { + // Do an extremely restricted form of load folding. + // ISel will often create patterns like: + // movl 4(%edi), %eax + // movl 8(%edi), %ecx + // movl 12(%edi), %edx + // movl %edx, 8(%esp) + // movl %ecx, 4(%esp) + // movl %eax, (%esp) + // call + // Get rid of those with prejudice. + if (!Register::isVirtualRegister(Reg)) + return nullptr; + + // Make sure this is the only use of Reg. + if (!MRI->hasOneNonDBGUse(Reg)) + return nullptr; + + MachineInstr &DefMI = *MRI->getVRegDef(Reg); + + // Make sure the def is a MOV from memory. + // If the def is in another block, give up. + if ((DefMI.getOpcode() != X86::MOV32rm && + DefMI.getOpcode() != X86::MOV64rm) || + DefMI.getParent() != FrameSetup->getParent()) + return nullptr; + + // Make sure we don't have any instructions between DefMI and the + // push that make folding the load illegal. + for (MachineBasicBlock::iterator I = DefMI; I != FrameSetup; ++I) + if (I->isLoadFoldBarrier()) + return nullptr; + + return &DefMI; +} + +FunctionPass *llvm::createX86CallFrameOptimization() { + return new X86CallFrameOptimization(); +} |
