diff options
Diffstat (limited to 'llvm/lib/Target/X86/X86CmovConversion.cpp')
| -rw-r--r-- | llvm/lib/Target/X86/X86CmovConversion.cpp | 859 | 
1 files changed, 859 insertions, 0 deletions
| diff --git a/llvm/lib/Target/X86/X86CmovConversion.cpp b/llvm/lib/Target/X86/X86CmovConversion.cpp new file mode 100644 index 000000000000..5123853f5455 --- /dev/null +++ b/llvm/lib/Target/X86/X86CmovConversion.cpp @@ -0,0 +1,859 @@ +//====- X86CmovConversion.cpp - Convert Cmov to Branch --------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +/// \file +/// This file implements a pass that converts X86 cmov instructions into +/// branches when profitable. This pass is conservative. It transforms if and +/// only if it can guarantee a gain with high confidence. +/// +/// Thus, the optimization applies under the following conditions: +///   1. Consider as candidates only CMOVs in innermost loops (assume that +///      most hotspots are represented by these loops). +///   2. Given a group of CMOV instructions that are using the same EFLAGS def +///      instruction: +///      a. Consider them as candidates only if all have the same code condition +///         or the opposite one to prevent generating more than one conditional +///         jump per EFLAGS def instruction. +///      b. Consider them as candidates only if all are profitable to be +///         converted (assume that one bad conversion may cause a degradation). +///   3. Apply conversion only for loops that are found profitable and only for +///      CMOV candidates that were found profitable. +///      a. A loop is considered profitable only if conversion will reduce its +///         depth cost by some threshold. +///      b. CMOV is considered profitable if the cost of its condition is higher +///         than the average cost of its true-value and false-value by 25% of +///         branch-misprediction-penalty. This assures no degradation even with +///         25% branch misprediction. +/// +/// Note: This pass is assumed to run on SSA machine code. +// +//===----------------------------------------------------------------------===// +// +//  External interfaces: +//      FunctionPass *llvm::createX86CmovConverterPass(); +//      bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF); +// +//===----------------------------------------------------------------------===// + +#include "X86.h" +#include "X86InstrInfo.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSchedule.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/MC/MCSchedule.h" +#include "llvm/Pass.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cassert> +#include <iterator> +#include <utility> + +using namespace llvm; + +#define DEBUG_TYPE "x86-cmov-conversion" + +STATISTIC(NumOfSkippedCmovGroups, "Number of unsupported CMOV-groups"); +STATISTIC(NumOfCmovGroupCandidate, "Number of CMOV-group candidates"); +STATISTIC(NumOfLoopCandidate, "Number of CMOV-conversion profitable loops"); +STATISTIC(NumOfOptimizedCmovGroups, "Number of optimized CMOV-groups"); + +// This internal switch can be used to turn off the cmov/branch optimization. +static cl::opt<bool> +    EnableCmovConverter("x86-cmov-converter", +                        cl::desc("Enable the X86 cmov-to-branch optimization."), +                        cl::init(true), cl::Hidden); + +static cl::opt<unsigned> +    GainCycleThreshold("x86-cmov-converter-threshold", +                       cl::desc("Minimum gain per loop (in cycles) threshold."), +                       cl::init(4), cl::Hidden); + +static cl::opt<bool> ForceMemOperand( +    "x86-cmov-converter-force-mem-operand", +    cl::desc("Convert cmovs to branches whenever they have memory operands."), +    cl::init(true), cl::Hidden); + +namespace { + +/// Converts X86 cmov instructions into branches when profitable. +class X86CmovConverterPass : public MachineFunctionPass { +public: +  X86CmovConverterPass() : MachineFunctionPass(ID) { } + +  StringRef getPassName() const override { return "X86 cmov Conversion"; } +  bool runOnMachineFunction(MachineFunction &MF) override; +  void getAnalysisUsage(AnalysisUsage &AU) const override; + +  /// Pass identification, replacement for typeid. +  static char ID; + +private: +  MachineRegisterInfo *MRI; +  const TargetInstrInfo *TII; +  const TargetRegisterInfo *TRI; +  TargetSchedModel TSchedModel; + +  /// List of consecutive CMOV instructions. +  using CmovGroup = SmallVector<MachineInstr *, 2>; +  using CmovGroups = SmallVector<CmovGroup, 2>; + +  /// Collect all CMOV-group-candidates in \p CurrLoop and update \p +  /// CmovInstGroups accordingly. +  /// +  /// \param Blocks List of blocks to process. +  /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop. +  /// \returns true iff it found any CMOV-group-candidate. +  bool collectCmovCandidates(ArrayRef<MachineBasicBlock *> Blocks, +                             CmovGroups &CmovInstGroups, +                             bool IncludeLoads = false); + +  /// Check if it is profitable to transform each CMOV-group-candidates into +  /// branch. Remove all groups that are not profitable from \p CmovInstGroups. +  /// +  /// \param Blocks List of blocks to process. +  /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop. +  /// \returns true iff any CMOV-group-candidate remain. +  bool checkForProfitableCmovCandidates(ArrayRef<MachineBasicBlock *> Blocks, +                                        CmovGroups &CmovInstGroups); + +  /// Convert the given list of consecutive CMOV instructions into a branch. +  /// +  /// \param Group Consecutive CMOV instructions to be converted into branch. +  void convertCmovInstsToBranches(SmallVectorImpl<MachineInstr *> &Group) const; +}; + +} // end anonymous namespace + +char X86CmovConverterPass::ID = 0; + +void X86CmovConverterPass::getAnalysisUsage(AnalysisUsage &AU) const { +  MachineFunctionPass::getAnalysisUsage(AU); +  AU.addRequired<MachineLoopInfo>(); +} + +bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF) { +  if (skipFunction(MF.getFunction())) +    return false; +  if (!EnableCmovConverter) +    return false; + +  LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName() +                    << "**********\n"); + +  bool Changed = false; +  MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); +  const TargetSubtargetInfo &STI = MF.getSubtarget(); +  MRI = &MF.getRegInfo(); +  TII = STI.getInstrInfo(); +  TRI = STI.getRegisterInfo(); +  TSchedModel.init(&STI); + +  // Before we handle the more subtle cases of register-register CMOVs inside +  // of potentially hot loops, we want to quickly remove all CMOVs with +  // a memory operand. The CMOV will risk a stall waiting for the load to +  // complete that speculative execution behind a branch is better suited to +  // handle on modern x86 chips. +  if (ForceMemOperand) { +    CmovGroups AllCmovGroups; +    SmallVector<MachineBasicBlock *, 4> Blocks; +    for (auto &MBB : MF) +      Blocks.push_back(&MBB); +    if (collectCmovCandidates(Blocks, AllCmovGroups, /*IncludeLoads*/ true)) { +      for (auto &Group : AllCmovGroups) { +        // Skip any group that doesn't do at least one memory operand cmov. +        if (!llvm::any_of(Group, [&](MachineInstr *I) { return I->mayLoad(); })) +          continue; + +        // For CMOV groups which we can rewrite and which contain a memory load, +        // always rewrite them. On x86, a CMOV will dramatically amplify any +        // memory latency by blocking speculative execution. +        Changed = true; +        convertCmovInstsToBranches(Group); +      } +    } +  } + +  //===--------------------------------------------------------------------===// +  // Register-operand Conversion Algorithm +  // --------- +  //   For each inner most loop +  //     collectCmovCandidates() { +  //       Find all CMOV-group-candidates. +  //     } +  // +  //     checkForProfitableCmovCandidates() { +  //       * Calculate both loop-depth and optimized-loop-depth. +  //       * Use these depth to check for loop transformation profitability. +  //       * Check for CMOV-group-candidate transformation profitability. +  //     } +  // +  //     For each profitable CMOV-group-candidate +  //       convertCmovInstsToBranches() { +  //           * Create FalseBB, SinkBB, Conditional branch to SinkBB. +  //           * Replace each CMOV instruction with a PHI instruction in SinkBB. +  //       } +  // +  // Note: For more details, see each function description. +  //===--------------------------------------------------------------------===// + +  // Build up the loops in pre-order. +  SmallVector<MachineLoop *, 4> Loops(MLI.begin(), MLI.end()); +  // Note that we need to check size on each iteration as we accumulate child +  // loops. +  for (int i = 0; i < (int)Loops.size(); ++i) +    for (MachineLoop *Child : Loops[i]->getSubLoops()) +      Loops.push_back(Child); + +  for (MachineLoop *CurrLoop : Loops) { +    // Optimize only inner most loops. +    if (!CurrLoop->getSubLoops().empty()) +      continue; + +    // List of consecutive CMOV instructions to be processed. +    CmovGroups CmovInstGroups; + +    if (!collectCmovCandidates(CurrLoop->getBlocks(), CmovInstGroups)) +      continue; + +    if (!checkForProfitableCmovCandidates(CurrLoop->getBlocks(), +                                          CmovInstGroups)) +      continue; + +    Changed = true; +    for (auto &Group : CmovInstGroups) +      convertCmovInstsToBranches(Group); +  } + +  return Changed; +} + +bool X86CmovConverterPass::collectCmovCandidates( +    ArrayRef<MachineBasicBlock *> Blocks, CmovGroups &CmovInstGroups, +    bool IncludeLoads) { +  //===--------------------------------------------------------------------===// +  // Collect all CMOV-group-candidates and add them into CmovInstGroups. +  // +  // CMOV-group: +  //   CMOV instructions, in same MBB, that uses same EFLAGS def instruction. +  // +  // CMOV-group-candidate: +  //   CMOV-group where all the CMOV instructions are +  //     1. consecutive. +  //     2. have same condition code or opposite one. +  //     3. have only operand registers (X86::CMOVrr). +  //===--------------------------------------------------------------------===// +  // List of possible improvement (TODO's): +  // -------------------------------------- +  //   TODO: Add support for X86::CMOVrm instructions. +  //   TODO: Add support for X86::SETcc instructions. +  //   TODO: Add support for CMOV-groups with non consecutive CMOV instructions. +  //===--------------------------------------------------------------------===// + +  // Current processed CMOV-Group. +  CmovGroup Group; +  for (auto *MBB : Blocks) { +    Group.clear(); +    // Condition code of first CMOV instruction current processed range and its +    // opposite condition code. +    X86::CondCode FirstCC = X86::COND_INVALID, FirstOppCC = X86::COND_INVALID, +                  MemOpCC = X86::COND_INVALID; +    // Indicator of a non CMOVrr instruction in the current processed range. +    bool FoundNonCMOVInst = false; +    // Indicator for current processed CMOV-group if it should be skipped. +    bool SkipGroup = false; + +    for (auto &I : *MBB) { +      // Skip debug instructions. +      if (I.isDebugInstr()) +        continue; +      X86::CondCode CC = X86::getCondFromCMov(I); +      // Check if we found a X86::CMOVrr instruction. +      if (CC != X86::COND_INVALID && (IncludeLoads || !I.mayLoad())) { +        if (Group.empty()) { +          // We found first CMOV in the range, reset flags. +          FirstCC = CC; +          FirstOppCC = X86::GetOppositeBranchCondition(CC); +          // Clear out the prior group's memory operand CC. +          MemOpCC = X86::COND_INVALID; +          FoundNonCMOVInst = false; +          SkipGroup = false; +        } +        Group.push_back(&I); +        // Check if it is a non-consecutive CMOV instruction or it has different +        // condition code than FirstCC or FirstOppCC. +        if (FoundNonCMOVInst || (CC != FirstCC && CC != FirstOppCC)) +          // Mark the SKipGroup indicator to skip current processed CMOV-Group. +          SkipGroup = true; +        if (I.mayLoad()) { +          if (MemOpCC == X86::COND_INVALID) +            // The first memory operand CMOV. +            MemOpCC = CC; +          else if (CC != MemOpCC) +            // Can't handle mixed conditions with memory operands. +            SkipGroup = true; +        } +        // Check if we were relying on zero-extending behavior of the CMOV. +        if (!SkipGroup && +            llvm::any_of( +                MRI->use_nodbg_instructions(I.defs().begin()->getReg()), +                [&](MachineInstr &UseI) { +                  return UseI.getOpcode() == X86::SUBREG_TO_REG; +                })) +          // FIXME: We should model the cost of using an explicit MOV to handle +          // the zero-extension rather than just refusing to handle this. +          SkipGroup = true; +        continue; +      } +      // If Group is empty, keep looking for first CMOV in the range. +      if (Group.empty()) +        continue; + +      // We found a non X86::CMOVrr instruction. +      FoundNonCMOVInst = true; +      // Check if this instruction define EFLAGS, to determine end of processed +      // range, as there would be no more instructions using current EFLAGS def. +      if (I.definesRegister(X86::EFLAGS)) { +        // Check if current processed CMOV-group should not be skipped and add +        // it as a CMOV-group-candidate. +        if (!SkipGroup) +          CmovInstGroups.push_back(Group); +        else +          ++NumOfSkippedCmovGroups; +        Group.clear(); +      } +    } +    // End of basic block is considered end of range, check if current processed +    // CMOV-group should not be skipped and add it as a CMOV-group-candidate. +    if (Group.empty()) +      continue; +    if (!SkipGroup) +      CmovInstGroups.push_back(Group); +    else +      ++NumOfSkippedCmovGroups; +  } + +  NumOfCmovGroupCandidate += CmovInstGroups.size(); +  return !CmovInstGroups.empty(); +} + +/// \returns Depth of CMOV instruction as if it was converted into branch. +/// \param TrueOpDepth depth cost of CMOV true value operand. +/// \param FalseOpDepth depth cost of CMOV false value operand. +static unsigned getDepthOfOptCmov(unsigned TrueOpDepth, unsigned FalseOpDepth) { +  //===--------------------------------------------------------------------===// +  // With no info about branch weight, we assume 50% for each value operand. +  // Thus, depth of optimized CMOV instruction is the rounded up average of +  // its True-Operand-Value-Depth and False-Operand-Value-Depth. +  //===--------------------------------------------------------------------===// +  return (TrueOpDepth + FalseOpDepth + 1) / 2; +} + +bool X86CmovConverterPass::checkForProfitableCmovCandidates( +    ArrayRef<MachineBasicBlock *> Blocks, CmovGroups &CmovInstGroups) { +  struct DepthInfo { +    /// Depth of original loop. +    unsigned Depth; +    /// Depth of optimized loop. +    unsigned OptDepth; +  }; +  /// Number of loop iterations to calculate depth for ?! +  static const unsigned LoopIterations = 2; +  DenseMap<MachineInstr *, DepthInfo> DepthMap; +  DepthInfo LoopDepth[LoopIterations] = {{0, 0}, {0, 0}}; +  enum { PhyRegType = 0, VirRegType = 1, RegTypeNum = 2 }; +  /// For each register type maps the register to its last def instruction. +  DenseMap<unsigned, MachineInstr *> RegDefMaps[RegTypeNum]; +  /// Maps register operand to its def instruction, which can be nullptr if it +  /// is unknown (e.g., operand is defined outside the loop). +  DenseMap<MachineOperand *, MachineInstr *> OperandToDefMap; + +  // Set depth of unknown instruction (i.e., nullptr) to zero. +  DepthMap[nullptr] = {0, 0}; + +  SmallPtrSet<MachineInstr *, 4> CmovInstructions; +  for (auto &Group : CmovInstGroups) +    CmovInstructions.insert(Group.begin(), Group.end()); + +  //===--------------------------------------------------------------------===// +  // Step 1: Calculate instruction depth and loop depth. +  // Optimized-Loop: +  //   loop with CMOV-group-candidates converted into branches. +  // +  // Instruction-Depth: +  //   instruction latency + max operand depth. +  //     * For CMOV instruction in optimized loop the depth is calculated as: +  //       CMOV latency + getDepthOfOptCmov(True-Op-Depth, False-Op-depth) +  // TODO: Find a better way to estimate the latency of the branch instruction +  //       rather than using the CMOV latency. +  // +  // Loop-Depth: +  //   max instruction depth of all instructions in the loop. +  // Note: instruction with max depth represents the critical-path in the loop. +  // +  // Loop-Depth[i]: +  //   Loop-Depth calculated for first `i` iterations. +  //   Note: it is enough to calculate depth for up to two iterations. +  // +  // Depth-Diff[i]: +  //   Number of cycles saved in first 'i` iterations by optimizing the loop. +  //===--------------------------------------------------------------------===// +  for (unsigned I = 0; I < LoopIterations; ++I) { +    DepthInfo &MaxDepth = LoopDepth[I]; +    for (auto *MBB : Blocks) { +      // Clear physical registers Def map. +      RegDefMaps[PhyRegType].clear(); +      for (MachineInstr &MI : *MBB) { +        // Skip debug instructions. +        if (MI.isDebugInstr()) +          continue; +        unsigned MIDepth = 0; +        unsigned MIDepthOpt = 0; +        bool IsCMOV = CmovInstructions.count(&MI); +        for (auto &MO : MI.uses()) { +          // Checks for "isUse()" as "uses()" returns also implicit definitions. +          if (!MO.isReg() || !MO.isUse()) +            continue; +          Register Reg = MO.getReg(); +          auto &RDM = RegDefMaps[Register::isVirtualRegister(Reg)]; +          if (MachineInstr *DefMI = RDM.lookup(Reg)) { +            OperandToDefMap[&MO] = DefMI; +            DepthInfo Info = DepthMap.lookup(DefMI); +            MIDepth = std::max(MIDepth, Info.Depth); +            if (!IsCMOV) +              MIDepthOpt = std::max(MIDepthOpt, Info.OptDepth); +          } +        } + +        if (IsCMOV) +          MIDepthOpt = getDepthOfOptCmov( +              DepthMap[OperandToDefMap.lookup(&MI.getOperand(1))].OptDepth, +              DepthMap[OperandToDefMap.lookup(&MI.getOperand(2))].OptDepth); + +        // Iterates over all operands to handle implicit definitions as well. +        for (auto &MO : MI.operands()) { +          if (!MO.isReg() || !MO.isDef()) +            continue; +          Register Reg = MO.getReg(); +          RegDefMaps[Register::isVirtualRegister(Reg)][Reg] = &MI; +        } + +        unsigned Latency = TSchedModel.computeInstrLatency(&MI); +        DepthMap[&MI] = {MIDepth += Latency, MIDepthOpt += Latency}; +        MaxDepth.Depth = std::max(MaxDepth.Depth, MIDepth); +        MaxDepth.OptDepth = std::max(MaxDepth.OptDepth, MIDepthOpt); +      } +    } +  } + +  unsigned Diff[LoopIterations] = {LoopDepth[0].Depth - LoopDepth[0].OptDepth, +                                   LoopDepth[1].Depth - LoopDepth[1].OptDepth}; + +  //===--------------------------------------------------------------------===// +  // Step 2: Check if Loop worth to be optimized. +  // Worth-Optimize-Loop: +  //   case 1: Diff[1] == Diff[0] +  //           Critical-path is iteration independent - there is no dependency +  //           of critical-path instructions on critical-path instructions of +  //           previous iteration. +  //           Thus, it is enough to check gain percent of 1st iteration - +  //           To be conservative, the optimized loop need to have a depth of +  //           12.5% cycles less than original loop, per iteration. +  // +  //   case 2: Diff[1] > Diff[0] +  //           Critical-path is iteration dependent - there is dependency of +  //           critical-path instructions on critical-path instructions of +  //           previous iteration. +  //           Thus, check the gain percent of the 2nd iteration (similar to the +  //           previous case), but it is also required to check the gradient of +  //           the gain - the change in Depth-Diff compared to the change in +  //           Loop-Depth between 1st and 2nd iterations. +  //           To be conservative, the gradient need to be at least 50%. +  // +  //   In addition, In order not to optimize loops with very small gain, the +  //   gain (in cycles) after 2nd iteration should not be less than a given +  //   threshold. Thus, the check (Diff[1] >= GainCycleThreshold) must apply. +  // +  // If loop is not worth optimizing, remove all CMOV-group-candidates. +  //===--------------------------------------------------------------------===// +  if (Diff[1] < GainCycleThreshold) +    return false; + +  bool WorthOptLoop = false; +  if (Diff[1] == Diff[0]) +    WorthOptLoop = Diff[0] * 8 >= LoopDepth[0].Depth; +  else if (Diff[1] > Diff[0]) +    WorthOptLoop = +        (Diff[1] - Diff[0]) * 2 >= (LoopDepth[1].Depth - LoopDepth[0].Depth) && +        (Diff[1] * 8 >= LoopDepth[1].Depth); + +  if (!WorthOptLoop) +    return false; + +  ++NumOfLoopCandidate; + +  //===--------------------------------------------------------------------===// +  // Step 3: Check for each CMOV-group-candidate if it worth to be optimized. +  // Worth-Optimize-Group: +  //   Iff it worths to optimize all CMOV instructions in the group. +  // +  // Worth-Optimize-CMOV: +  //   Predicted branch is faster than CMOV by the difference between depth of +  //   condition operand and depth of taken (predicted) value operand. +  //   To be conservative, the gain of such CMOV transformation should cover at +  //   at least 25% of branch-misprediction-penalty. +  //===--------------------------------------------------------------------===// +  unsigned MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty; +  CmovGroups TempGroups; +  std::swap(TempGroups, CmovInstGroups); +  for (auto &Group : TempGroups) { +    bool WorthOpGroup = true; +    for (auto *MI : Group) { +      // Avoid CMOV instruction which value is used as a pointer to load from. +      // This is another conservative check to avoid converting CMOV instruction +      // used with tree-search like algorithm, where the branch is unpredicted. +      auto UIs = MRI->use_instructions(MI->defs().begin()->getReg()); +      if (UIs.begin() != UIs.end() && ++UIs.begin() == UIs.end()) { +        unsigned Op = UIs.begin()->getOpcode(); +        if (Op == X86::MOV64rm || Op == X86::MOV32rm) { +          WorthOpGroup = false; +          break; +        } +      } + +      unsigned CondCost = +          DepthMap[OperandToDefMap.lookup(&MI->getOperand(4))].Depth; +      unsigned ValCost = getDepthOfOptCmov( +          DepthMap[OperandToDefMap.lookup(&MI->getOperand(1))].Depth, +          DepthMap[OperandToDefMap.lookup(&MI->getOperand(2))].Depth); +      if (ValCost > CondCost || (CondCost - ValCost) * 4 < MispredictPenalty) { +        WorthOpGroup = false; +        break; +      } +    } + +    if (WorthOpGroup) +      CmovInstGroups.push_back(Group); +  } + +  return !CmovInstGroups.empty(); +} + +static bool checkEFLAGSLive(MachineInstr *MI) { +  if (MI->killsRegister(X86::EFLAGS)) +    return false; + +  // The EFLAGS operand of MI might be missing a kill marker. +  // Figure out whether EFLAGS operand should LIVE after MI instruction. +  MachineBasicBlock *BB = MI->getParent(); +  MachineBasicBlock::iterator ItrMI = MI; + +  // Scan forward through BB for a use/def of EFLAGS. +  for (auto I = std::next(ItrMI), E = BB->end(); I != E; ++I) { +    if (I->readsRegister(X86::EFLAGS)) +      return true; +    if (I->definesRegister(X86::EFLAGS)) +      return false; +  } + +  // We hit the end of the block, check whether EFLAGS is live into a successor. +  for (auto I = BB->succ_begin(), E = BB->succ_end(); I != E; ++I) { +    if ((*I)->isLiveIn(X86::EFLAGS)) +      return true; +  } + +  return false; +} + +/// Given /p First CMOV instruction and /p Last CMOV instruction representing a +/// group of CMOV instructions, which may contain debug instructions in between, +/// move all debug instructions to after the last CMOV instruction, making the +/// CMOV group consecutive. +static void packCmovGroup(MachineInstr *First, MachineInstr *Last) { +  assert(X86::getCondFromCMov(*Last) != X86::COND_INVALID && +         "Last instruction in a CMOV group must be a CMOV instruction"); + +  SmallVector<MachineInstr *, 2> DBGInstructions; +  for (auto I = First->getIterator(), E = Last->getIterator(); I != E; I++) { +    if (I->isDebugInstr()) +      DBGInstructions.push_back(&*I); +  } + +  // Splice the debug instruction after the cmov group. +  MachineBasicBlock *MBB = First->getParent(); +  for (auto *MI : DBGInstructions) +    MBB->insertAfter(Last, MI->removeFromParent()); +} + +void X86CmovConverterPass::convertCmovInstsToBranches( +    SmallVectorImpl<MachineInstr *> &Group) const { +  assert(!Group.empty() && "No CMOV instructions to convert"); +  ++NumOfOptimizedCmovGroups; + +  // If the CMOV group is not packed, e.g., there are debug instructions between +  // first CMOV and last CMOV, then pack the group and make the CMOV instruction +  // consecutive by moving the debug instructions to after the last CMOV. +  packCmovGroup(Group.front(), Group.back()); + +  // To convert a CMOVcc instruction, we actually have to insert the diamond +  // control-flow pattern.  The incoming instruction knows the destination vreg +  // to set, the condition code register to branch on, the true/false values to +  // select between, and a branch opcode to use. + +  // Before +  // ----- +  // MBB: +  //   cond = cmp ... +  //   v1 = CMOVge t1, f1, cond +  //   v2 = CMOVlt t2, f2, cond +  //   v3 = CMOVge v1, f3, cond +  // +  // After +  // ----- +  // MBB: +  //   cond = cmp ... +  //   jge %SinkMBB +  // +  // FalseMBB: +  //   jmp %SinkMBB +  // +  // SinkMBB: +  //   %v1 = phi[%f1, %FalseMBB], [%t1, %MBB] +  //   %v2 = phi[%t2, %FalseMBB], [%f2, %MBB] ; For CMOV with OppCC switch +  //                                          ; true-value with false-value +  //   %v3 = phi[%f3, %FalseMBB], [%t1, %MBB] ; Phi instruction cannot use +  //                                          ; previous Phi instruction result + +  MachineInstr &MI = *Group.front(); +  MachineInstr *LastCMOV = Group.back(); +  DebugLoc DL = MI.getDebugLoc(); + +  X86::CondCode CC = X86::CondCode(X86::getCondFromCMov(MI)); +  X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC); +  // Potentially swap the condition codes so that any memory operand to a CMOV +  // is in the *false* position instead of the *true* position. We can invert +  // any non-memory operand CMOV instructions to cope with this and we ensure +  // memory operand CMOVs are only included with a single condition code. +  if (llvm::any_of(Group, [&](MachineInstr *I) { +        return I->mayLoad() && X86::getCondFromCMov(*I) == CC; +      })) +    std::swap(CC, OppCC); + +  MachineBasicBlock *MBB = MI.getParent(); +  MachineFunction::iterator It = ++MBB->getIterator(); +  MachineFunction *F = MBB->getParent(); +  const BasicBlock *BB = MBB->getBasicBlock(); + +  MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(BB); +  MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(BB); +  F->insert(It, FalseMBB); +  F->insert(It, SinkMBB); + +  // If the EFLAGS register isn't dead in the terminator, then claim that it's +  // live into the sink and copy blocks. +  if (checkEFLAGSLive(LastCMOV)) { +    FalseMBB->addLiveIn(X86::EFLAGS); +    SinkMBB->addLiveIn(X86::EFLAGS); +  } + +  // Transfer the remainder of BB and its successor edges to SinkMBB. +  SinkMBB->splice(SinkMBB->begin(), MBB, +                  std::next(MachineBasicBlock::iterator(LastCMOV)), MBB->end()); +  SinkMBB->transferSuccessorsAndUpdatePHIs(MBB); + +  // Add the false and sink blocks as its successors. +  MBB->addSuccessor(FalseMBB); +  MBB->addSuccessor(SinkMBB); + +  // Create the conditional branch instruction. +  BuildMI(MBB, DL, TII->get(X86::JCC_1)).addMBB(SinkMBB).addImm(CC); + +  // Add the sink block to the false block successors. +  FalseMBB->addSuccessor(SinkMBB); + +  MachineInstrBuilder MIB; +  MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI); +  MachineBasicBlock::iterator MIItEnd = +      std::next(MachineBasicBlock::iterator(LastCMOV)); +  MachineBasicBlock::iterator FalseInsertionPoint = FalseMBB->begin(); +  MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); + +  // First we need to insert an explicit load on the false path for any memory +  // operand. We also need to potentially do register rewriting here, but it is +  // simpler as the memory operands are always on the false path so we can +  // simply take that input, whatever it is. +  DenseMap<unsigned, unsigned> FalseBBRegRewriteTable; +  for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd;) { +    auto &MI = *MIIt++; +    // Skip any CMOVs in this group which don't load from memory. +    if (!MI.mayLoad()) { +      // Remember the false-side register input. +      Register FalseReg = +          MI.getOperand(X86::getCondFromCMov(MI) == CC ? 1 : 2).getReg(); +      // Walk back through any intermediate cmovs referenced. +      while (true) { +        auto FRIt = FalseBBRegRewriteTable.find(FalseReg); +        if (FRIt == FalseBBRegRewriteTable.end()) +          break; +        FalseReg = FRIt->second; +      } +      FalseBBRegRewriteTable[MI.getOperand(0).getReg()] = FalseReg; +      continue; +    } + +    // The condition must be the *opposite* of the one we've decided to branch +    // on as the branch will go *around* the load and the load should happen +    // when the CMOV condition is false. +    assert(X86::getCondFromCMov(MI) == OppCC && +           "Can only handle memory-operand cmov instructions with a condition " +           "opposite to the selected branch direction."); + +    // The goal is to rewrite the cmov from: +    // +    //   MBB: +    //     %A = CMOVcc %B (tied), (mem) +    // +    // to +    // +    //   MBB: +    //     %A = CMOVcc %B (tied), %C +    //   FalseMBB: +    //     %C = MOV (mem) +    // +    // Which will allow the next loop to rewrite the CMOV in terms of a PHI: +    // +    //   MBB: +    //     JMP!cc SinkMBB +    //   FalseMBB: +    //     %C = MOV (mem) +    //   SinkMBB: +    //     %A = PHI [ %C, FalseMBB ], [ %B, MBB] + +    // Get a fresh register to use as the destination of the MOV. +    const TargetRegisterClass *RC = MRI->getRegClass(MI.getOperand(0).getReg()); +    Register TmpReg = MRI->createVirtualRegister(RC); + +    SmallVector<MachineInstr *, 4> NewMIs; +    bool Unfolded = TII->unfoldMemoryOperand(*MBB->getParent(), MI, TmpReg, +                                             /*UnfoldLoad*/ true, +                                             /*UnfoldStore*/ false, NewMIs); +    (void)Unfolded; +    assert(Unfolded && "Should never fail to unfold a loading cmov!"); + +    // Move the new CMOV to just before the old one and reset any impacted +    // iterator. +    auto *NewCMOV = NewMIs.pop_back_val(); +    assert(X86::getCondFromCMov(*NewCMOV) == OppCC && +           "Last new instruction isn't the expected CMOV!"); +    LLVM_DEBUG(dbgs() << "\tRewritten cmov: "; NewCMOV->dump()); +    MBB->insert(MachineBasicBlock::iterator(MI), NewCMOV); +    if (&*MIItBegin == &MI) +      MIItBegin = MachineBasicBlock::iterator(NewCMOV); + +    // Sink whatever instructions were needed to produce the unfolded operand +    // into the false block. +    for (auto *NewMI : NewMIs) { +      LLVM_DEBUG(dbgs() << "\tRewritten load instr: "; NewMI->dump()); +      FalseMBB->insert(FalseInsertionPoint, NewMI); +      // Re-map any operands that are from other cmovs to the inputs for this block. +      for (auto &MOp : NewMI->uses()) { +        if (!MOp.isReg()) +          continue; +        auto It = FalseBBRegRewriteTable.find(MOp.getReg()); +        if (It == FalseBBRegRewriteTable.end()) +          continue; + +        MOp.setReg(It->second); +        // This might have been a kill when it referenced the cmov result, but +        // it won't necessarily be once rewritten. +        // FIXME: We could potentially improve this by tracking whether the +        // operand to the cmov was also a kill, and then skipping the PHI node +        // construction below. +        MOp.setIsKill(false); +      } +    } +    MBB->erase(MachineBasicBlock::iterator(MI), +               std::next(MachineBasicBlock::iterator(MI))); + +    // Add this PHI to the rewrite table. +    FalseBBRegRewriteTable[NewCMOV->getOperand(0).getReg()] = TmpReg; +  } + +  // As we are creating the PHIs, we have to be careful if there is more than +  // one.  Later CMOVs may reference the results of earlier CMOVs, but later +  // PHIs have to reference the individual true/false inputs from earlier PHIs. +  // That also means that PHI construction must work forward from earlier to +  // later, and that the code must maintain a mapping from earlier PHI's +  // destination registers, and the registers that went into the PHI. +  DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; + +  for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) { +    Register DestReg = MIIt->getOperand(0).getReg(); +    Register Op1Reg = MIIt->getOperand(1).getReg(); +    Register Op2Reg = MIIt->getOperand(2).getReg(); + +    // If this CMOV we are processing is the opposite condition from the jump we +    // generated, then we have to swap the operands for the PHI that is going to +    // be generated. +    if (X86::getCondFromCMov(*MIIt) == OppCC) +      std::swap(Op1Reg, Op2Reg); + +    auto Op1Itr = RegRewriteTable.find(Op1Reg); +    if (Op1Itr != RegRewriteTable.end()) +      Op1Reg = Op1Itr->second.first; + +    auto Op2Itr = RegRewriteTable.find(Op2Reg); +    if (Op2Itr != RegRewriteTable.end()) +      Op2Reg = Op2Itr->second.second; + +    //  SinkMBB: +    //   %Result = phi [ %FalseValue, FalseMBB ], [ %TrueValue, MBB ] +    //  ... +    MIB = BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(X86::PHI), DestReg) +              .addReg(Op1Reg) +              .addMBB(FalseMBB) +              .addReg(Op2Reg) +              .addMBB(MBB); +    (void)MIB; +    LLVM_DEBUG(dbgs() << "\tFrom: "; MIIt->dump()); +    LLVM_DEBUG(dbgs() << "\tTo: "; MIB->dump()); + +    // Add this PHI to the rewrite table. +    RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg); +  } + +  // Now remove the CMOV(s). +  MBB->erase(MIItBegin, MIItEnd); +} + +INITIALIZE_PASS_BEGIN(X86CmovConverterPass, DEBUG_TYPE, "X86 cmov Conversion", +                      false, false) +INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) +INITIALIZE_PASS_END(X86CmovConverterPass, DEBUG_TYPE, "X86 cmov Conversion", +                    false, false) + +FunctionPass *llvm::createX86CmovConverterPass() { +  return new X86CmovConverterPass(); +} | 
