diff options
Diffstat (limited to 'llvm/lib/Target/X86/X86FixupLEAs.cpp')
| -rw-r--r-- | llvm/lib/Target/X86/X86FixupLEAs.cpp | 675 | 
1 files changed, 675 insertions, 0 deletions
| diff --git a/llvm/lib/Target/X86/X86FixupLEAs.cpp b/llvm/lib/Target/X86/X86FixupLEAs.cpp new file mode 100644 index 000000000000..543dc8b00fa0 --- /dev/null +++ b/llvm/lib/Target/X86/X86FixupLEAs.cpp @@ -0,0 +1,675 @@ +//===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines the pass that finds instructions that can be +// re-written as LEA instructions in order to reduce pipeline delays. +// It replaces LEAs with ADD/INC/DEC when that is better for size/speed. +// +//===----------------------------------------------------------------------===// + +#include "X86.h" +#include "X86InstrInfo.h" +#include "X86Subtarget.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/CodeGen/TargetSchedule.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +using namespace llvm; + +#define FIXUPLEA_DESC "X86 LEA Fixup" +#define FIXUPLEA_NAME "x86-fixup-LEAs" + +#define DEBUG_TYPE FIXUPLEA_NAME + +STATISTIC(NumLEAs, "Number of LEA instructions created"); + +namespace { +class FixupLEAPass : public MachineFunctionPass { +  enum RegUsageState { RU_NotUsed, RU_Write, RU_Read }; + +  /// Given a machine register, look for the instruction +  /// which writes it in the current basic block. If found, +  /// try to replace it with an equivalent LEA instruction. +  /// If replacement succeeds, then also process the newly created +  /// instruction. +  void seekLEAFixup(MachineOperand &p, MachineBasicBlock::iterator &I, +                    MachineBasicBlock &MBB); + +  /// Given a memory access or LEA instruction +  /// whose address mode uses a base and/or index register, look for +  /// an opportunity to replace the instruction which sets the base or index +  /// register with an equivalent LEA instruction. +  void processInstruction(MachineBasicBlock::iterator &I, +                          MachineBasicBlock &MBB); + +  /// Given a LEA instruction which is unprofitable +  /// on SlowLEA targets try to replace it with an equivalent ADD instruction. +  void processInstructionForSlowLEA(MachineBasicBlock::iterator &I, +                                    MachineBasicBlock &MBB); + +  /// Given a LEA instruction which is unprofitable +  /// on SNB+ try to replace it with other instructions. +  /// According to Intel's Optimization Reference Manual: +  /// " For LEA instructions with three source operands and some specific +  ///   situations, instruction latency has increased to 3 cycles, and must +  ///   dispatch via port 1: +  /// - LEA that has all three source operands: base, index, and offset +  /// - LEA that uses base and index registers where the base is EBP, RBP, +  ///   or R13 +  /// - LEA that uses RIP relative addressing mode +  /// - LEA that uses 16-bit addressing mode " +  /// This function currently handles the first 2 cases only. +  void processInstrForSlow3OpLEA(MachineBasicBlock::iterator &I, +                                 MachineBasicBlock &MBB, bool OptIncDec); + +  /// Look for LEAs that are really two address LEAs that we might be able to +  /// turn into regular ADD instructions. +  bool optTwoAddrLEA(MachineBasicBlock::iterator &I, +                     MachineBasicBlock &MBB, bool OptIncDec, +                     bool UseLEAForSP) const; + +  /// Determine if an instruction references a machine register +  /// and, if so, whether it reads or writes the register. +  RegUsageState usesRegister(MachineOperand &p, MachineBasicBlock::iterator I); + +  /// Step backwards through a basic block, looking +  /// for an instruction which writes a register within +  /// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles. +  MachineBasicBlock::iterator searchBackwards(MachineOperand &p, +                                              MachineBasicBlock::iterator &I, +                                              MachineBasicBlock &MBB); + +  /// if an instruction can be converted to an +  /// equivalent LEA, insert the new instruction into the basic block +  /// and return a pointer to it. Otherwise, return zero. +  MachineInstr *postRAConvertToLEA(MachineBasicBlock &MBB, +                                   MachineBasicBlock::iterator &MBBI) const; + +public: +  static char ID; + +  StringRef getPassName() const override { return FIXUPLEA_DESC; } + +  FixupLEAPass() : MachineFunctionPass(ID) { } + +  /// Loop over all of the basic blocks, +  /// replacing instructions by equivalent LEA instructions +  /// if needed and when possible. +  bool runOnMachineFunction(MachineFunction &MF) override; + +  // This pass runs after regalloc and doesn't support VReg operands. +  MachineFunctionProperties getRequiredProperties() const override { +    return MachineFunctionProperties().set( +        MachineFunctionProperties::Property::NoVRegs); +  } + +private: +  TargetSchedModel TSM; +  const X86InstrInfo *TII; +  const X86RegisterInfo *TRI; +}; +} + +char FixupLEAPass::ID = 0; + +INITIALIZE_PASS(FixupLEAPass, FIXUPLEA_NAME, FIXUPLEA_DESC, false, false) + +MachineInstr * +FixupLEAPass::postRAConvertToLEA(MachineBasicBlock &MBB, +                                 MachineBasicBlock::iterator &MBBI) const { +  MachineInstr &MI = *MBBI; +  switch (MI.getOpcode()) { +  case X86::MOV32rr: +  case X86::MOV64rr: { +    const MachineOperand &Src = MI.getOperand(1); +    const MachineOperand &Dest = MI.getOperand(0); +    MachineInstr *NewMI = +        BuildMI(MBB, MBBI, MI.getDebugLoc(), +                TII->get(MI.getOpcode() == X86::MOV32rr ? X86::LEA32r +                                                        : X86::LEA64r)) +            .add(Dest) +            .add(Src) +            .addImm(1) +            .addReg(0) +            .addImm(0) +            .addReg(0); +    return NewMI; +  } +  } + +  if (!MI.isConvertibleTo3Addr()) +    return nullptr; + +  switch (MI.getOpcode()) { +  default: +    // Only convert instructions that we've verified are safe. +    return nullptr; +  case X86::ADD64ri32: +  case X86::ADD64ri8: +  case X86::ADD64ri32_DB: +  case X86::ADD64ri8_DB: +  case X86::ADD32ri: +  case X86::ADD32ri8: +  case X86::ADD32ri_DB: +  case X86::ADD32ri8_DB: +    if (!MI.getOperand(2).isImm()) { +      // convertToThreeAddress will call getImm() +      // which requires isImm() to be true +      return nullptr; +    } +    break; +  case X86::SHL64ri: +  case X86::SHL32ri: +  case X86::INC64r: +  case X86::INC32r: +  case X86::DEC64r: +  case X86::DEC32r: +  case X86::ADD64rr: +  case X86::ADD64rr_DB: +  case X86::ADD32rr: +  case X86::ADD32rr_DB: +    // These instructions are all fine to convert. +    break; +  } +  MachineFunction::iterator MFI = MBB.getIterator(); +  return TII->convertToThreeAddress(MFI, MI, nullptr); +} + +FunctionPass *llvm::createX86FixupLEAs() { return new FixupLEAPass(); } + +static bool isLEA(unsigned Opcode) { +  return Opcode == X86::LEA32r || Opcode == X86::LEA64r || +         Opcode == X86::LEA64_32r; +} + +bool FixupLEAPass::runOnMachineFunction(MachineFunction &MF) { +  if (skipFunction(MF.getFunction())) +    return false; + +  const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>(); +  bool IsSlowLEA = ST.slowLEA(); +  bool IsSlow3OpsLEA = ST.slow3OpsLEA(); +  bool LEAUsesAG = ST.LEAusesAG(); + +  bool OptIncDec = !ST.slowIncDec() || MF.getFunction().hasOptSize(); +  bool UseLEAForSP = ST.useLeaForSP(); + +  TSM.init(&ST); +  TII = ST.getInstrInfo(); +  TRI = ST.getRegisterInfo(); + +  LLVM_DEBUG(dbgs() << "Start X86FixupLEAs\n";); +  for (MachineBasicBlock &MBB : MF) { +    // First pass. Try to remove or optimize existing LEAs. +    for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) { +      if (!isLEA(I->getOpcode())) +        continue; + +      if (optTwoAddrLEA(I, MBB, OptIncDec, UseLEAForSP)) +        continue; + +      if (IsSlowLEA) +        processInstructionForSlowLEA(I, MBB); +      else if (IsSlow3OpsLEA) +        processInstrForSlow3OpLEA(I, MBB, OptIncDec); +    } + +    // Second pass for creating LEAs. This may reverse some of the +    // transformations above. +    if (LEAUsesAG) { +      for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) +        processInstruction(I, MBB); +    } +  } + +  LLVM_DEBUG(dbgs() << "End X86FixupLEAs\n";); + +  return true; +} + +FixupLEAPass::RegUsageState +FixupLEAPass::usesRegister(MachineOperand &p, MachineBasicBlock::iterator I) { +  RegUsageState RegUsage = RU_NotUsed; +  MachineInstr &MI = *I; + +  for (unsigned i = 0; i < MI.getNumOperands(); ++i) { +    MachineOperand &opnd = MI.getOperand(i); +    if (opnd.isReg() && opnd.getReg() == p.getReg()) { +      if (opnd.isDef()) +        return RU_Write; +      RegUsage = RU_Read; +    } +  } +  return RegUsage; +} + +/// getPreviousInstr - Given a reference to an instruction in a basic +/// block, return a reference to the previous instruction in the block, +/// wrapping around to the last instruction of the block if the block +/// branches to itself. +static inline bool getPreviousInstr(MachineBasicBlock::iterator &I, +                                    MachineBasicBlock &MBB) { +  if (I == MBB.begin()) { +    if (MBB.isPredecessor(&MBB)) { +      I = --MBB.end(); +      return true; +    } else +      return false; +  } +  --I; +  return true; +} + +MachineBasicBlock::iterator +FixupLEAPass::searchBackwards(MachineOperand &p, MachineBasicBlock::iterator &I, +                              MachineBasicBlock &MBB) { +  int InstrDistance = 1; +  MachineBasicBlock::iterator CurInst; +  static const int INSTR_DISTANCE_THRESHOLD = 5; + +  CurInst = I; +  bool Found; +  Found = getPreviousInstr(CurInst, MBB); +  while (Found && I != CurInst) { +    if (CurInst->isCall() || CurInst->isInlineAsm()) +      break; +    if (InstrDistance > INSTR_DISTANCE_THRESHOLD) +      break; // too far back to make a difference +    if (usesRegister(p, CurInst) == RU_Write) { +      return CurInst; +    } +    InstrDistance += TSM.computeInstrLatency(&*CurInst); +    Found = getPreviousInstr(CurInst, MBB); +  } +  return MachineBasicBlock::iterator(); +} + +static inline bool isInefficientLEAReg(unsigned Reg) { +  return Reg == X86::EBP || Reg == X86::RBP || +         Reg == X86::R13D || Reg == X86::R13; +} + +/// Returns true if this LEA uses base an index registers, and the base register +/// is known to be inefficient for the subtarget. +// TODO: use a variant scheduling class to model the latency profile +// of LEA instructions, and implement this logic as a scheduling predicate. +static inline bool hasInefficientLEABaseReg(const MachineOperand &Base, +                                            const MachineOperand &Index) { +  return Base.isReg() && isInefficientLEAReg(Base.getReg()) && Index.isReg() && +         Index.getReg() != X86::NoRegister; +} + +static inline bool hasLEAOffset(const MachineOperand &Offset) { +  return (Offset.isImm() && Offset.getImm() != 0) || Offset.isGlobal(); +} + +static inline unsigned getADDrrFromLEA(unsigned LEAOpcode) { +  switch (LEAOpcode) { +  default: +    llvm_unreachable("Unexpected LEA instruction"); +  case X86::LEA32r: +  case X86::LEA64_32r: +    return X86::ADD32rr; +  case X86::LEA64r: +    return X86::ADD64rr; +  } +} + +static inline unsigned getADDriFromLEA(unsigned LEAOpcode, +                                       const MachineOperand &Offset) { +  bool IsInt8 = Offset.isImm() && isInt<8>(Offset.getImm()); +  switch (LEAOpcode) { +  default: +    llvm_unreachable("Unexpected LEA instruction"); +  case X86::LEA32r: +  case X86::LEA64_32r: +    return IsInt8 ? X86::ADD32ri8 : X86::ADD32ri; +  case X86::LEA64r: +    return IsInt8 ? X86::ADD64ri8 : X86::ADD64ri32; +  } +} + +static inline unsigned getINCDECFromLEA(unsigned LEAOpcode, bool IsINC) { +  switch (LEAOpcode) { +  default: +    llvm_unreachable("Unexpected LEA instruction"); +  case X86::LEA32r: +  case X86::LEA64_32r: +    return IsINC ? X86::INC32r : X86::DEC32r; +  case X86::LEA64r: +    return IsINC ? X86::INC64r : X86::DEC64r; +  } +} + +bool FixupLEAPass::optTwoAddrLEA(MachineBasicBlock::iterator &I, +                                 MachineBasicBlock &MBB, bool OptIncDec, +                                 bool UseLEAForSP) const { +  MachineInstr &MI = *I; + +  const MachineOperand &Base =    MI.getOperand(1 + X86::AddrBaseReg); +  const MachineOperand &Scale =   MI.getOperand(1 + X86::AddrScaleAmt); +  const MachineOperand &Index =   MI.getOperand(1 + X86::AddrIndexReg); +  const MachineOperand &Disp =    MI.getOperand(1 + X86::AddrDisp); +  const MachineOperand &Segment = MI.getOperand(1 + X86::AddrSegmentReg); + +  if (Segment.getReg() != 0 || !Disp.isImm() || Scale.getImm() > 1 || +      !TII->isSafeToClobberEFLAGS(MBB, I)) +    return false; + +  Register DestReg = MI.getOperand(0).getReg(); +  Register BaseReg = Base.getReg(); +  Register IndexReg = Index.getReg(); + +  // Don't change stack adjustment LEAs. +  if (UseLEAForSP && (DestReg == X86::ESP || DestReg == X86::RSP)) +    return false; + +  // LEA64_32 has 64-bit operands but 32-bit result. +  if (MI.getOpcode() == X86::LEA64_32r) { +    if (BaseReg != 0) +      BaseReg = TRI->getSubReg(BaseReg, X86::sub_32bit); +    if (IndexReg != 0) +      IndexReg = TRI->getSubReg(IndexReg, X86::sub_32bit); +  } + +  MachineInstr *NewMI = nullptr; + +  // Look for lea(%reg1, %reg2), %reg1 or lea(%reg2, %reg1), %reg1 +  // which can be turned into add %reg2, %reg1 +  if (BaseReg != 0 && IndexReg != 0 && Disp.getImm() == 0 && +      (DestReg == BaseReg || DestReg == IndexReg)) { +    unsigned NewOpcode = getADDrrFromLEA(MI.getOpcode()); +    if (DestReg != BaseReg) +      std::swap(BaseReg, IndexReg); + +    if (MI.getOpcode() == X86::LEA64_32r) { +      // TODO: Do we need the super register implicit use? +      NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg) +        .addReg(BaseReg).addReg(IndexReg) +        .addReg(Base.getReg(), RegState::Implicit) +        .addReg(Index.getReg(), RegState::Implicit); +    } else { +      NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg) +        .addReg(BaseReg).addReg(IndexReg); +    } +  } else if (DestReg == BaseReg && IndexReg == 0) { +    // This is an LEA with only a base register and a displacement, +    // We can use ADDri or INC/DEC. + +    // Does this LEA have one these forms: +    // lea  %reg, 1(%reg) +    // lea  %reg, -1(%reg) +    if (OptIncDec && (Disp.getImm() == 1 || Disp.getImm() == -1)) { +      bool IsINC = Disp.getImm() == 1; +      unsigned NewOpcode = getINCDECFromLEA(MI.getOpcode(), IsINC); + +      if (MI.getOpcode() == X86::LEA64_32r) { +        // TODO: Do we need the super register implicit use? +        NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg) +          .addReg(BaseReg).addReg(Base.getReg(), RegState::Implicit); +      } else { +        NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg) +          .addReg(BaseReg); +      } +    } else { +      unsigned NewOpcode = getADDriFromLEA(MI.getOpcode(), Disp); +      if (MI.getOpcode() == X86::LEA64_32r) { +        // TODO: Do we need the super register implicit use? +        NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg) +          .addReg(BaseReg).addImm(Disp.getImm()) +          .addReg(Base.getReg(), RegState::Implicit); +      } else { +        NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg) +          .addReg(BaseReg).addImm(Disp.getImm()); +      } +    } +  } else +    return false; + +  MBB.erase(I); +  I = NewMI; +  return true; +} + +void FixupLEAPass::processInstruction(MachineBasicBlock::iterator &I, +                                      MachineBasicBlock &MBB) { +  // Process a load, store, or LEA instruction. +  MachineInstr &MI = *I; +  const MCInstrDesc &Desc = MI.getDesc(); +  int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags); +  if (AddrOffset >= 0) { +    AddrOffset += X86II::getOperandBias(Desc); +    MachineOperand &p = MI.getOperand(AddrOffset + X86::AddrBaseReg); +    if (p.isReg() && p.getReg() != X86::ESP) { +      seekLEAFixup(p, I, MBB); +    } +    MachineOperand &q = MI.getOperand(AddrOffset + X86::AddrIndexReg); +    if (q.isReg() && q.getReg() != X86::ESP) { +      seekLEAFixup(q, I, MBB); +    } +  } +} + +void FixupLEAPass::seekLEAFixup(MachineOperand &p, +                                MachineBasicBlock::iterator &I, +                                MachineBasicBlock &MBB) { +  MachineBasicBlock::iterator MBI = searchBackwards(p, I, MBB); +  if (MBI != MachineBasicBlock::iterator()) { +    MachineInstr *NewMI = postRAConvertToLEA(MBB, MBI); +    if (NewMI) { +      ++NumLEAs; +      LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MBI->dump();); +      // now to replace with an equivalent LEA... +      LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: "; NewMI->dump();); +      MBB.erase(MBI); +      MachineBasicBlock::iterator J = +          static_cast<MachineBasicBlock::iterator>(NewMI); +      processInstruction(J, MBB); +    } +  } +} + +void FixupLEAPass::processInstructionForSlowLEA(MachineBasicBlock::iterator &I, +                                                MachineBasicBlock &MBB) { +  MachineInstr &MI = *I; +  const unsigned Opcode = MI.getOpcode(); + +  const MachineOperand &Dst =     MI.getOperand(0); +  const MachineOperand &Base =    MI.getOperand(1 + X86::AddrBaseReg); +  const MachineOperand &Scale =   MI.getOperand(1 + X86::AddrScaleAmt); +  const MachineOperand &Index =   MI.getOperand(1 + X86::AddrIndexReg); +  const MachineOperand &Offset =  MI.getOperand(1 + X86::AddrDisp); +  const MachineOperand &Segment = MI.getOperand(1 + X86::AddrSegmentReg); + +  if (Segment.getReg() != 0 || !Offset.isImm() || +      !TII->isSafeToClobberEFLAGS(MBB, I)) +    return; +  const Register DstR = Dst.getReg(); +  const Register SrcR1 = Base.getReg(); +  const Register SrcR2 = Index.getReg(); +  if ((SrcR1 == 0 || SrcR1 != DstR) && (SrcR2 == 0 || SrcR2 != DstR)) +    return; +  if (Scale.getImm() > 1) +    return; +  LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; I->dump();); +  LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: ";); +  MachineInstr *NewMI = nullptr; +  // Make ADD instruction for two registers writing to LEA's destination +  if (SrcR1 != 0 && SrcR2 != 0) { +    const MCInstrDesc &ADDrr = TII->get(getADDrrFromLEA(Opcode)); +    const MachineOperand &Src = SrcR1 == DstR ? Index : Base; +    NewMI = +        BuildMI(MBB, I, MI.getDebugLoc(), ADDrr, DstR).addReg(DstR).add(Src); +    LLVM_DEBUG(NewMI->dump();); +  } +  // Make ADD instruction for immediate +  if (Offset.getImm() != 0) { +    const MCInstrDesc &ADDri = +        TII->get(getADDriFromLEA(Opcode, Offset)); +    const MachineOperand &SrcR = SrcR1 == DstR ? Base : Index; +    NewMI = BuildMI(MBB, I, MI.getDebugLoc(), ADDri, DstR) +                .add(SrcR) +                .addImm(Offset.getImm()); +    LLVM_DEBUG(NewMI->dump();); +  } +  if (NewMI) { +    MBB.erase(I); +    I = NewMI; +  } +} + +void FixupLEAPass::processInstrForSlow3OpLEA(MachineBasicBlock::iterator &I, +                                             MachineBasicBlock &MBB, +                                             bool OptIncDec) { +  MachineInstr &MI = *I; +  const unsigned LEAOpcode = MI.getOpcode(); + +  const MachineOperand &Dest =    MI.getOperand(0); +  const MachineOperand &Base =    MI.getOperand(1 + X86::AddrBaseReg); +  const MachineOperand &Scale =   MI.getOperand(1 + X86::AddrScaleAmt); +  const MachineOperand &Index =   MI.getOperand(1 + X86::AddrIndexReg); +  const MachineOperand &Offset =  MI.getOperand(1 + X86::AddrDisp); +  const MachineOperand &Segment = MI.getOperand(1 + X86::AddrSegmentReg); + +  if (!(TII->isThreeOperandsLEA(MI) || hasInefficientLEABaseReg(Base, Index)) || +      !TII->isSafeToClobberEFLAGS(MBB, MI) || +      Segment.getReg() != X86::NoRegister) +    return; + +  Register DestReg = Dest.getReg(); +  Register BaseReg = Base.getReg(); +  Register IndexReg = Index.getReg(); + +  if (MI.getOpcode() == X86::LEA64_32r) { +    if (BaseReg != 0) +      BaseReg = TRI->getSubReg(BaseReg, X86::sub_32bit); +    if (IndexReg != 0) +      IndexReg = TRI->getSubReg(IndexReg, X86::sub_32bit); +  } + +  bool IsScale1 = Scale.getImm() == 1; +  bool IsInefficientBase = isInefficientLEAReg(BaseReg); +  bool IsInefficientIndex = isInefficientLEAReg(IndexReg); + +  // Skip these cases since it takes more than 2 instructions +  // to replace the LEA instruction. +  if (IsInefficientBase && DestReg == BaseReg && !IsScale1) +    return; + +  LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MI.dump();); +  LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: ";); + +  MachineInstr *NewMI = nullptr; + +  // First try to replace LEA with one or two (for the 3-op LEA case) +  // add instructions: +  // 1.lea (%base,%index,1), %base => add %index,%base +  // 2.lea (%base,%index,1), %index => add %base,%index +  if (IsScale1 && (DestReg == BaseReg || DestReg == IndexReg)) { +    unsigned NewOpc = getADDrrFromLEA(MI.getOpcode()); +    if (DestReg != BaseReg) +      std::swap(BaseReg, IndexReg); + +    if (MI.getOpcode() == X86::LEA64_32r) { +      // TODO: Do we need the super register implicit use? +      NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpc), DestReg) +                  .addReg(BaseReg) +                  .addReg(IndexReg) +                  .addReg(Base.getReg(), RegState::Implicit) +                  .addReg(Index.getReg(), RegState::Implicit); +    } else { +      NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpc), DestReg) +                  .addReg(BaseReg) +                  .addReg(IndexReg); +    } +  } else if (!IsInefficientBase || (!IsInefficientIndex && IsScale1)) { +    // If the base is inefficient try switching the index and base operands, +    // otherwise just break the 3-Ops LEA inst into 2-Ops LEA + ADD instruction: +    // lea offset(%base,%index,scale),%dst => +    // lea (%base,%index,scale); add offset,%dst +    NewMI = BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(LEAOpcode)) +                .add(Dest) +                .add(IsInefficientBase ? Index : Base) +                .add(Scale) +                .add(IsInefficientBase ? Base : Index) +                .addImm(0) +                .add(Segment); +    LLVM_DEBUG(NewMI->dump();); +  } + +  // If either replacement succeeded above, add the offset if needed, then +  // replace the instruction. +  if (NewMI) { +    // Create ADD instruction for the Offset in case of 3-Ops LEA. +    if (hasLEAOffset(Offset)) { +      if (OptIncDec && Offset.isImm() && +          (Offset.getImm() == 1 || Offset.getImm() == -1)) { +        unsigned NewOpc = +            getINCDECFromLEA(MI.getOpcode(), Offset.getImm() == 1); +        NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpc), DestReg) +                    .addReg(DestReg); +        LLVM_DEBUG(NewMI->dump();); +      } else { +        unsigned NewOpc = getADDriFromLEA(MI.getOpcode(), Offset); +        NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpc), DestReg) +                    .addReg(DestReg) +                    .add(Offset); +        LLVM_DEBUG(NewMI->dump();); +      } +    } + +    MBB.erase(I); +    I = NewMI; +    return; +  } + +  // Handle the rest of the cases with inefficient base register: +  assert(DestReg != BaseReg && "DestReg == BaseReg should be handled already!"); +  assert(IsInefficientBase && "efficient base should be handled already!"); + +  // FIXME: Handle LEA64_32r. +  if (LEAOpcode == X86::LEA64_32r) +    return; + +  // lea (%base,%index,1), %dst => mov %base,%dst; add %index,%dst +  if (IsScale1 && !hasLEAOffset(Offset)) { +    bool BIK = Base.isKill() && BaseReg != IndexReg; +    TII->copyPhysReg(MBB, MI, MI.getDebugLoc(), DestReg, BaseReg, BIK); +    LLVM_DEBUG(MI.getPrevNode()->dump();); + +    unsigned NewOpc = getADDrrFromLEA(MI.getOpcode()); +    NewMI = BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(NewOpc), DestReg) +                .addReg(DestReg) +                .add(Index); +    LLVM_DEBUG(NewMI->dump();); +    return; +  } + +  // lea offset(%base,%index,scale), %dst => +  // lea offset( ,%index,scale), %dst; add %base,%dst +  NewMI = BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(LEAOpcode)) +              .add(Dest) +              .addReg(0) +              .add(Scale) +              .add(Index) +              .add(Offset) +              .add(Segment); +  LLVM_DEBUG(NewMI->dump();); + +  unsigned NewOpc = getADDrrFromLEA(MI.getOpcode()); +  NewMI = BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(NewOpc), DestReg) +              .addReg(DestReg) +              .add(Base); +  LLVM_DEBUG(NewMI->dump();); + +  MBB.erase(I); +  I = NewMI; +} | 
