diff options
Diffstat (limited to 'llvm/lib/Target/X86/X86FrameLowering.cpp')
| -rw-r--r-- | llvm/lib/Target/X86/X86FrameLowering.cpp | 3225 | 
1 files changed, 3225 insertions, 0 deletions
| diff --git a/llvm/lib/Target/X86/X86FrameLowering.cpp b/llvm/lib/Target/X86/X86FrameLowering.cpp new file mode 100644 index 000000000000..1b469a814adc --- /dev/null +++ b/llvm/lib/Target/X86/X86FrameLowering.cpp @@ -0,0 +1,3225 @@ +//===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file contains the X86 implementation of TargetFrameLowering class. +// +//===----------------------------------------------------------------------===// + +#include "X86FrameLowering.h" +#include "X86InstrBuilder.h" +#include "X86InstrInfo.h" +#include "X86MachineFunctionInfo.h" +#include "X86Subtarget.h" +#include "X86TargetMachine.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/Analysis/EHPersonalities.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/WinEHFuncInfo.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Function.h" +#include "llvm/MC/MCAsmInfo.h" +#include "llvm/MC/MCSymbol.h" +#include "llvm/Support/Debug.h" +#include "llvm/Target/TargetOptions.h" +#include <cstdlib> + +using namespace llvm; + +X86FrameLowering::X86FrameLowering(const X86Subtarget &STI, +                                   MaybeAlign StackAlignOverride) +    : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(), +                          STI.is64Bit() ? -8 : -4), +      STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) { +  // Cache a bunch of frame-related predicates for this subtarget. +  SlotSize = TRI->getSlotSize(); +  Is64Bit = STI.is64Bit(); +  IsLP64 = STI.isTarget64BitLP64(); +  // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. +  Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); +  StackPtr = TRI->getStackRegister(); +} + +bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { +  return !MF.getFrameInfo().hasVarSizedObjects() && +         !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); +} + +/// canSimplifyCallFramePseudos - If there is a reserved call frame, the +/// call frame pseudos can be simplified.  Having a FP, as in the default +/// implementation, is not sufficient here since we can't always use it. +/// Use a more nuanced condition. +bool +X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { +  return hasReservedCallFrame(MF) || +         (hasFP(MF) && !TRI->needsStackRealignment(MF)) || +         TRI->hasBasePointer(MF); +} + +// needsFrameIndexResolution - Do we need to perform FI resolution for +// this function. Normally, this is required only when the function +// has any stack objects. However, FI resolution actually has another job, +// not apparent from the title - it resolves callframesetup/destroy +// that were not simplified earlier. +// So, this is required for x86 functions that have push sequences even +// when there are no stack objects. +bool +X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const { +  return MF.getFrameInfo().hasStackObjects() || +         MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); +} + +/// hasFP - Return true if the specified function should have a dedicated frame +/// pointer register.  This is true if the function has variable sized allocas +/// or if frame pointer elimination is disabled. +bool X86FrameLowering::hasFP(const MachineFunction &MF) const { +  const MachineFrameInfo &MFI = MF.getFrameInfo(); +  return (MF.getTarget().Options.DisableFramePointerElim(MF) || +          TRI->needsStackRealignment(MF) || +          MFI.hasVarSizedObjects() || +          MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() || +          MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || +          MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() || +          MFI.hasStackMap() || MFI.hasPatchPoint() || +          MFI.hasCopyImplyingStackAdjustment()); +} + +static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) { +  if (IsLP64) { +    if (isInt<8>(Imm)) +      return X86::SUB64ri8; +    return X86::SUB64ri32; +  } else { +    if (isInt<8>(Imm)) +      return X86::SUB32ri8; +    return X86::SUB32ri; +  } +} + +static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) { +  if (IsLP64) { +    if (isInt<8>(Imm)) +      return X86::ADD64ri8; +    return X86::ADD64ri32; +  } else { +    if (isInt<8>(Imm)) +      return X86::ADD32ri8; +    return X86::ADD32ri; +  } +} + +static unsigned getSUBrrOpcode(unsigned isLP64) { +  return isLP64 ? X86::SUB64rr : X86::SUB32rr; +} + +static unsigned getADDrrOpcode(unsigned isLP64) { +  return isLP64 ? X86::ADD64rr : X86::ADD32rr; +} + +static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { +  if (IsLP64) { +    if (isInt<8>(Imm)) +      return X86::AND64ri8; +    return X86::AND64ri32; +  } +  if (isInt<8>(Imm)) +    return X86::AND32ri8; +  return X86::AND32ri; +} + +static unsigned getLEArOpcode(unsigned IsLP64) { +  return IsLP64 ? X86::LEA64r : X86::LEA32r; +} + +/// findDeadCallerSavedReg - Return a caller-saved register that isn't live +/// when it reaches the "return" instruction. We can then pop a stack object +/// to this register without worry about clobbering it. +static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB, +                                       MachineBasicBlock::iterator &MBBI, +                                       const X86RegisterInfo *TRI, +                                       bool Is64Bit) { +  const MachineFunction *MF = MBB.getParent(); +  if (MF->callsEHReturn()) +    return 0; + +  const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF); + +  if (MBBI == MBB.end()) +    return 0; + +  switch (MBBI->getOpcode()) { +  default: return 0; +  case TargetOpcode::PATCHABLE_RET: +  case X86::RET: +  case X86::RETL: +  case X86::RETQ: +  case X86::RETIL: +  case X86::RETIQ: +  case X86::TCRETURNdi: +  case X86::TCRETURNri: +  case X86::TCRETURNmi: +  case X86::TCRETURNdi64: +  case X86::TCRETURNri64: +  case X86::TCRETURNmi64: +  case X86::EH_RETURN: +  case X86::EH_RETURN64: { +    SmallSet<uint16_t, 8> Uses; +    for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) { +      MachineOperand &MO = MBBI->getOperand(i); +      if (!MO.isReg() || MO.isDef()) +        continue; +      Register Reg = MO.getReg(); +      if (!Reg) +        continue; +      for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) +        Uses.insert(*AI); +    } + +    for (auto CS : AvailableRegs) +      if (!Uses.count(CS) && CS != X86::RIP && CS != X86::RSP && +          CS != X86::ESP) +        return CS; +  } +  } + +  return 0; +} + +static bool isEAXLiveIn(MachineBasicBlock &MBB) { +  for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) { +    unsigned Reg = RegMask.PhysReg; + +    if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || +        Reg == X86::AH || Reg == X86::AL) +      return true; +  } + +  return false; +} + +/// Check if the flags need to be preserved before the terminators. +/// This would be the case, if the eflags is live-in of the region +/// composed by the terminators or live-out of that region, without +/// being defined by a terminator. +static bool +flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) { +  for (const MachineInstr &MI : MBB.terminators()) { +    bool BreakNext = false; +    for (const MachineOperand &MO : MI.operands()) { +      if (!MO.isReg()) +        continue; +      Register Reg = MO.getReg(); +      if (Reg != X86::EFLAGS) +        continue; + +      // This terminator needs an eflags that is not defined +      // by a previous another terminator: +      // EFLAGS is live-in of the region composed by the terminators. +      if (!MO.isDef()) +        return true; +      // This terminator defines the eflags, i.e., we don't need to preserve it. +      // However, we still need to check this specific terminator does not +      // read a live-in value. +      BreakNext = true; +    } +    // We found a definition of the eflags, no need to preserve them. +    if (BreakNext) +      return false; +  } + +  // None of the terminators use or define the eflags. +  // Check if they are live-out, that would imply we need to preserve them. +  for (const MachineBasicBlock *Succ : MBB.successors()) +    if (Succ->isLiveIn(X86::EFLAGS)) +      return true; + +  return false; +} + +/// emitSPUpdate - Emit a series of instructions to increment / decrement the +/// stack pointer by a constant value. +void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB, +                                    MachineBasicBlock::iterator &MBBI, +                                    const DebugLoc &DL, +                                    int64_t NumBytes, bool InEpilogue) const { +  bool isSub = NumBytes < 0; +  uint64_t Offset = isSub ? -NumBytes : NumBytes; +  MachineInstr::MIFlag Flag = +      isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy; + +  uint64_t Chunk = (1LL << 31) - 1; + +  if (Offset > Chunk) { +    // Rather than emit a long series of instructions for large offsets, +    // load the offset into a register and do one sub/add +    unsigned Reg = 0; +    unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX); + +    if (isSub && !isEAXLiveIn(MBB)) +      Reg = Rax; +    else +      Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit); + +    unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri; +    unsigned AddSubRROpc = +        isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit); +    if (Reg) { +      BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg) +          .addImm(Offset) +          .setMIFlag(Flag); +      MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr) +                             .addReg(StackPtr) +                             .addReg(Reg); +      MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. +      return; +    } else if (Offset > 8 * Chunk) { +      // If we would need more than 8 add or sub instructions (a >16GB stack +      // frame), it's worth spilling RAX to materialize this immediate. +      //   pushq %rax +      //   movabsq +-$Offset+-SlotSize, %rax +      //   addq %rsp, %rax +      //   xchg %rax, (%rsp) +      //   movq (%rsp), %rsp +      assert(Is64Bit && "can't have 32-bit 16GB stack frame"); +      BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) +          .addReg(Rax, RegState::Kill) +          .setMIFlag(Flag); +      // Subtract is not commutative, so negate the offset and always use add. +      // Subtract 8 less and add 8 more to account for the PUSH we just did. +      if (isSub) +        Offset = -(Offset - SlotSize); +      else +        Offset = Offset + SlotSize; +      BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax) +          .addImm(Offset) +          .setMIFlag(Flag); +      MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax) +                             .addReg(Rax) +                             .addReg(StackPtr); +      MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. +      // Exchange the new SP in RAX with the top of the stack. +      addRegOffset( +          BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax), +          StackPtr, false, 0); +      // Load new SP from the top of the stack into RSP. +      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr), +                   StackPtr, false, 0); +      return; +    } +  } + +  while (Offset) { +    uint64_t ThisVal = std::min(Offset, Chunk); +    if (ThisVal == SlotSize) { +      // Use push / pop for slot sized adjustments as a size optimization. We +      // need to find a dead register when using pop. +      unsigned Reg = isSub +        ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) +        : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit); +      if (Reg) { +        unsigned Opc = isSub +          ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) +          : (Is64Bit ? X86::POP64r  : X86::POP32r); +        BuildMI(MBB, MBBI, DL, TII.get(Opc)) +            .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)) +            .setMIFlag(Flag); +        Offset -= ThisVal; +        continue; +      } +    } + +    BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue) +        .setMIFlag(Flag); + +    Offset -= ThisVal; +  } +} + +MachineInstrBuilder X86FrameLowering::BuildStackAdjustment( +    MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, +    const DebugLoc &DL, int64_t Offset, bool InEpilogue) const { +  assert(Offset != 0 && "zero offset stack adjustment requested"); + +  // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue +  // is tricky. +  bool UseLEA; +  if (!InEpilogue) { +    // Check if inserting the prologue at the beginning +    // of MBB would require to use LEA operations. +    // We need to use LEA operations if EFLAGS is live in, because +    // it means an instruction will read it before it gets defined. +    UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS); +  } else { +    // If we can use LEA for SP but we shouldn't, check that none +    // of the terminators uses the eflags. Otherwise we will insert +    // a ADD that will redefine the eflags and break the condition. +    // Alternatively, we could move the ADD, but this may not be possible +    // and is an optimization anyway. +    UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent()); +    if (UseLEA && !STI.useLeaForSP()) +      UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB); +    // If that assert breaks, that means we do not do the right thing +    // in canUseAsEpilogue. +    assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) && +           "We shouldn't have allowed this insertion point"); +  } + +  MachineInstrBuilder MI; +  if (UseLEA) { +    MI = addRegOffset(BuildMI(MBB, MBBI, DL, +                              TII.get(getLEArOpcode(Uses64BitFramePtr)), +                              StackPtr), +                      StackPtr, false, Offset); +  } else { +    bool IsSub = Offset < 0; +    uint64_t AbsOffset = IsSub ? -Offset : Offset; +    unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset) +                         : getADDriOpcode(Uses64BitFramePtr, AbsOffset); +    MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) +             .addReg(StackPtr) +             .addImm(AbsOffset); +    MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. +  } +  return MI; +} + +int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB, +                                     MachineBasicBlock::iterator &MBBI, +                                     bool doMergeWithPrevious) const { +  if ((doMergeWithPrevious && MBBI == MBB.begin()) || +      (!doMergeWithPrevious && MBBI == MBB.end())) +    return 0; + +  MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; + +  PI = skipDebugInstructionsBackward(PI, MBB.begin()); +  // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI +  // instruction, and that there are no DBG_VALUE or other instructions between +  // ADD/SUB/LEA and its corresponding CFI instruction. +  /* TODO: Add support for the case where there are multiple CFI instructions +    below the ADD/SUB/LEA, e.g.: +    ... +    add +    cfi_def_cfa_offset +    cfi_offset +    ... +  */ +  if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction()) +    PI = std::prev(PI); + +  unsigned Opc = PI->getOpcode(); +  int Offset = 0; + +  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || +       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && +      PI->getOperand(0).getReg() == StackPtr){ +    assert(PI->getOperand(1).getReg() == StackPtr); +    Offset = PI->getOperand(2).getImm(); +  } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) && +             PI->getOperand(0).getReg() == StackPtr && +             PI->getOperand(1).getReg() == StackPtr && +             PI->getOperand(2).getImm() == 1 && +             PI->getOperand(3).getReg() == X86::NoRegister && +             PI->getOperand(5).getReg() == X86::NoRegister) { +    // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg. +    Offset = PI->getOperand(4).getImm(); +  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || +              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && +             PI->getOperand(0).getReg() == StackPtr) { +    assert(PI->getOperand(1).getReg() == StackPtr); +    Offset = -PI->getOperand(2).getImm(); +  } else +    return 0; + +  PI = MBB.erase(PI); +  if (PI != MBB.end() && PI->isCFIInstruction()) PI = MBB.erase(PI); +  if (!doMergeWithPrevious) +    MBBI = skipDebugInstructionsForward(PI, MBB.end()); + +  return Offset; +} + +void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB, +                                MachineBasicBlock::iterator MBBI, +                                const DebugLoc &DL, +                                const MCCFIInstruction &CFIInst) const { +  MachineFunction &MF = *MBB.getParent(); +  unsigned CFIIndex = MF.addFrameInst(CFIInst); +  BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) +      .addCFIIndex(CFIIndex); +} + +void X86FrameLowering::emitCalleeSavedFrameMoves( +    MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, +    const DebugLoc &DL) const { +  MachineFunction &MF = *MBB.getParent(); +  MachineFrameInfo &MFI = MF.getFrameInfo(); +  MachineModuleInfo &MMI = MF.getMMI(); +  const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); + +  // Add callee saved registers to move list. +  const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); +  if (CSI.empty()) return; + +  // Calculate offsets. +  for (std::vector<CalleeSavedInfo>::const_iterator +         I = CSI.begin(), E = CSI.end(); I != E; ++I) { +    int64_t Offset = MFI.getObjectOffset(I->getFrameIdx()); +    unsigned Reg = I->getReg(); + +    unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); +    BuildCFI(MBB, MBBI, DL, +             MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); +  } +} + +void X86FrameLowering::emitStackProbe(MachineFunction &MF, +                                      MachineBasicBlock &MBB, +                                      MachineBasicBlock::iterator MBBI, +                                      const DebugLoc &DL, bool InProlog) const { +  const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); +  if (STI.isTargetWindowsCoreCLR()) { +    if (InProlog) { +      emitStackProbeInlineStub(MF, MBB, MBBI, DL, true); +    } else { +      emitStackProbeInline(MF, MBB, MBBI, DL, false); +    } +  } else { +    emitStackProbeCall(MF, MBB, MBBI, DL, InProlog); +  } +} + +void X86FrameLowering::inlineStackProbe(MachineFunction &MF, +                                        MachineBasicBlock &PrologMBB) const { +  const StringRef ChkStkStubSymbol = "__chkstk_stub"; +  MachineInstr *ChkStkStub = nullptr; + +  for (MachineInstr &MI : PrologMBB) { +    if (MI.isCall() && MI.getOperand(0).isSymbol() && +        ChkStkStubSymbol == MI.getOperand(0).getSymbolName()) { +      ChkStkStub = &MI; +      break; +    } +  } + +  if (ChkStkStub != nullptr) { +    assert(!ChkStkStub->isBundled() && +           "Not expecting bundled instructions here"); +    MachineBasicBlock::iterator MBBI = std::next(ChkStkStub->getIterator()); +    assert(std::prev(MBBI) == ChkStkStub && +           "MBBI expected after __chkstk_stub."); +    DebugLoc DL = PrologMBB.findDebugLoc(MBBI); +    emitStackProbeInline(MF, PrologMBB, MBBI, DL, true); +    ChkStkStub->eraseFromParent(); +  } +} + +void X86FrameLowering::emitStackProbeInline(MachineFunction &MF, +                                            MachineBasicBlock &MBB, +                                            MachineBasicBlock::iterator MBBI, +                                            const DebugLoc &DL, +                                            bool InProlog) const { +  const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); +  assert(STI.is64Bit() && "different expansion needed for 32 bit"); +  assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR"); +  const TargetInstrInfo &TII = *STI.getInstrInfo(); +  const BasicBlock *LLVM_BB = MBB.getBasicBlock(); + +  // RAX contains the number of bytes of desired stack adjustment. +  // The handling here assumes this value has already been updated so as to +  // maintain stack alignment. +  // +  // We need to exit with RSP modified by this amount and execute suitable +  // page touches to notify the OS that we're growing the stack responsibly. +  // All stack probing must be done without modifying RSP. +  // +  // MBB: +  //    SizeReg = RAX; +  //    ZeroReg = 0 +  //    CopyReg = RSP +  //    Flags, TestReg = CopyReg - SizeReg +  //    FinalReg = !Flags.Ovf ? TestReg : ZeroReg +  //    LimitReg = gs magic thread env access +  //    if FinalReg >= LimitReg goto ContinueMBB +  // RoundBB: +  //    RoundReg = page address of FinalReg +  // LoopMBB: +  //    LoopReg = PHI(LimitReg,ProbeReg) +  //    ProbeReg = LoopReg - PageSize +  //    [ProbeReg] = 0 +  //    if (ProbeReg > RoundReg) goto LoopMBB +  // ContinueMBB: +  //    RSP = RSP - RAX +  //    [rest of original MBB] + +  // Set up the new basic blocks +  MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB); +  MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); +  MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB); + +  MachineFunction::iterator MBBIter = std::next(MBB.getIterator()); +  MF.insert(MBBIter, RoundMBB); +  MF.insert(MBBIter, LoopMBB); +  MF.insert(MBBIter, ContinueMBB); + +  // Split MBB and move the tail portion down to ContinueMBB. +  MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI); +  ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end()); +  ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB); + +  // Some useful constants +  const int64_t ThreadEnvironmentStackLimit = 0x10; +  const int64_t PageSize = 0x1000; +  const int64_t PageMask = ~(PageSize - 1); + +  // Registers we need. For the normal case we use virtual +  // registers. For the prolog expansion we use RAX, RCX and RDX. +  MachineRegisterInfo &MRI = MF.getRegInfo(); +  const TargetRegisterClass *RegClass = &X86::GR64RegClass; +  const Register SizeReg = InProlog ? X86::RAX +                                    : MRI.createVirtualRegister(RegClass), +                 ZeroReg = InProlog ? X86::RCX +                                    : MRI.createVirtualRegister(RegClass), +                 CopyReg = InProlog ? X86::RDX +                                    : MRI.createVirtualRegister(RegClass), +                 TestReg = InProlog ? X86::RDX +                                    : MRI.createVirtualRegister(RegClass), +                 FinalReg = InProlog ? X86::RDX +                                     : MRI.createVirtualRegister(RegClass), +                 RoundedReg = InProlog ? X86::RDX +                                       : MRI.createVirtualRegister(RegClass), +                 LimitReg = InProlog ? X86::RCX +                                     : MRI.createVirtualRegister(RegClass), +                 JoinReg = InProlog ? X86::RCX +                                    : MRI.createVirtualRegister(RegClass), +                 ProbeReg = InProlog ? X86::RCX +                                     : MRI.createVirtualRegister(RegClass); + +  // SP-relative offsets where we can save RCX and RDX. +  int64_t RCXShadowSlot = 0; +  int64_t RDXShadowSlot = 0; + +  // If inlining in the prolog, save RCX and RDX. +  if (InProlog) { +    // Compute the offsets. We need to account for things already +    // pushed onto the stack at this point: return address, frame +    // pointer (if used), and callee saves. +    X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); +    const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize(); +    const bool HasFP = hasFP(MF); + +    // Check if we need to spill RCX and/or RDX. +    // Here we assume that no earlier prologue instruction changes RCX and/or +    // RDX, so checking the block live-ins is enough. +    const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX); +    const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX); +    int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0); +    // Assign the initial slot to both registers, then change RDX's slot if both +    // need to be spilled. +    if (IsRCXLiveIn) +      RCXShadowSlot = InitSlot; +    if (IsRDXLiveIn) +      RDXShadowSlot = InitSlot; +    if (IsRDXLiveIn && IsRCXLiveIn) +      RDXShadowSlot += 8; +    // Emit the saves if needed. +    if (IsRCXLiveIn) +      addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, +                   RCXShadowSlot) +          .addReg(X86::RCX); +    if (IsRDXLiveIn) +      addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, +                   RDXShadowSlot) +          .addReg(X86::RDX); +  } else { +    // Not in the prolog. Copy RAX to a virtual reg. +    BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX); +  } + +  // Add code to MBB to check for overflow and set the new target stack pointer +  // to zero if so. +  BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg) +      .addReg(ZeroReg, RegState::Undef) +      .addReg(ZeroReg, RegState::Undef); +  BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP); +  BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg) +      .addReg(CopyReg) +      .addReg(SizeReg); +  BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg) +      .addReg(TestReg) +      .addReg(ZeroReg) +      .addImm(X86::COND_B); + +  // FinalReg now holds final stack pointer value, or zero if +  // allocation would overflow. Compare against the current stack +  // limit from the thread environment block. Note this limit is the +  // lowest touched page on the stack, not the point at which the OS +  // will cause an overflow exception, so this is just an optimization +  // to avoid unnecessarily touching pages that are below the current +  // SP but already committed to the stack by the OS. +  BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg) +      .addReg(0) +      .addImm(1) +      .addReg(0) +      .addImm(ThreadEnvironmentStackLimit) +      .addReg(X86::GS); +  BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg); +  // Jump if the desired stack pointer is at or above the stack limit. +  BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE); + +  // Add code to roundMBB to round the final stack pointer to a page boundary. +  RoundMBB->addLiveIn(FinalReg); +  BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg) +      .addReg(FinalReg) +      .addImm(PageMask); +  BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB); + +  // LimitReg now holds the current stack limit, RoundedReg page-rounded +  // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page +  // and probe until we reach RoundedReg. +  if (!InProlog) { +    BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg) +        .addReg(LimitReg) +        .addMBB(RoundMBB) +        .addReg(ProbeReg) +        .addMBB(LoopMBB); +  } + +  LoopMBB->addLiveIn(JoinReg); +  addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg, +               false, -PageSize); + +  // Probe by storing a byte onto the stack. +  BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi)) +      .addReg(ProbeReg) +      .addImm(1) +      .addReg(0) +      .addImm(0) +      .addReg(0) +      .addImm(0); + +  LoopMBB->addLiveIn(RoundedReg); +  BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr)) +      .addReg(RoundedReg) +      .addReg(ProbeReg); +  BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE); + +  MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI(); + +  // If in prolog, restore RDX and RCX. +  if (InProlog) { +    if (RCXShadowSlot) // It means we spilled RCX in the prologue. +      addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, +                           TII.get(X86::MOV64rm), X86::RCX), +                   X86::RSP, false, RCXShadowSlot); +    if (RDXShadowSlot) // It means we spilled RDX in the prologue. +      addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, +                           TII.get(X86::MOV64rm), X86::RDX), +                   X86::RSP, false, RDXShadowSlot); +  } + +  // Now that the probing is done, add code to continueMBB to update +  // the stack pointer for real. +  ContinueMBB->addLiveIn(SizeReg); +  BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP) +      .addReg(X86::RSP) +      .addReg(SizeReg); + +  // Add the control flow edges we need. +  MBB.addSuccessor(ContinueMBB); +  MBB.addSuccessor(RoundMBB); +  RoundMBB->addSuccessor(LoopMBB); +  LoopMBB->addSuccessor(ContinueMBB); +  LoopMBB->addSuccessor(LoopMBB); + +  // Mark all the instructions added to the prolog as frame setup. +  if (InProlog) { +    for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) { +      BeforeMBBI->setFlag(MachineInstr::FrameSetup); +    } +    for (MachineInstr &MI : *RoundMBB) { +      MI.setFlag(MachineInstr::FrameSetup); +    } +    for (MachineInstr &MI : *LoopMBB) { +      MI.setFlag(MachineInstr::FrameSetup); +    } +    for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin(); +         CMBBI != ContinueMBBI; ++CMBBI) { +      CMBBI->setFlag(MachineInstr::FrameSetup); +    } +  } +} + +void X86FrameLowering::emitStackProbeCall(MachineFunction &MF, +                                          MachineBasicBlock &MBB, +                                          MachineBasicBlock::iterator MBBI, +                                          const DebugLoc &DL, +                                          bool InProlog) const { +  bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; + +  // FIXME: Add retpoline support and remove this. +  if (Is64Bit && IsLargeCodeModel && STI.useRetpolineIndirectCalls()) +    report_fatal_error("Emitting stack probe calls on 64-bit with the large " +                       "code model and retpoline not yet implemented."); + +  unsigned CallOp; +  if (Is64Bit) +    CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; +  else +    CallOp = X86::CALLpcrel32; + +  StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF); + +  MachineInstrBuilder CI; +  MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI); + +  // All current stack probes take AX and SP as input, clobber flags, and +  // preserve all registers. x86_64 probes leave RSP unmodified. +  if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { +    // For the large code model, we have to call through a register. Use R11, +    // as it is scratch in all supported calling conventions. +    BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) +        .addExternalSymbol(MF.createExternalSymbolName(Symbol)); +    CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); +  } else { +    CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)) +        .addExternalSymbol(MF.createExternalSymbolName(Symbol)); +  } + +  unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX; +  unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP; +  CI.addReg(AX, RegState::Implicit) +      .addReg(SP, RegState::Implicit) +      .addReg(AX, RegState::Define | RegState::Implicit) +      .addReg(SP, RegState::Define | RegState::Implicit) +      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); + +  if (STI.isTargetWin64() || !STI.isOSWindows()) { +    // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves. +    // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp +    // themselves. They also does not clobber %rax so we can reuse it when +    // adjusting %rsp. +    // All other platforms do not specify a particular ABI for the stack probe +    // function, so we arbitrarily define it to not adjust %esp/%rsp itself. +    BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP) +        .addReg(SP) +        .addReg(AX); +  } + +  if (InProlog) { +    // Apply the frame setup flag to all inserted instrs. +    for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI) +      ExpansionMBBI->setFlag(MachineInstr::FrameSetup); +  } +} + +void X86FrameLowering::emitStackProbeInlineStub( +    MachineFunction &MF, MachineBasicBlock &MBB, +    MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { + +  assert(InProlog && "ChkStkStub called outside prolog!"); + +  BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32)) +      .addExternalSymbol("__chkstk_stub"); +} + +static unsigned calculateSetFPREG(uint64_t SPAdjust) { +  // Win64 ABI has a less restrictive limitation of 240; 128 works equally well +  // and might require smaller successive adjustments. +  const uint64_t Win64MaxSEHOffset = 128; +  uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset); +  // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. +  return SEHFrameOffset & -16; +} + +// If we're forcing a stack realignment we can't rely on just the frame +// info, we need to know the ABI stack alignment as well in case we +// have a call out.  Otherwise just make sure we have some alignment - we'll +// go with the minimum SlotSize. +uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const { +  const MachineFrameInfo &MFI = MF.getFrameInfo(); +  uint64_t MaxAlign = MFI.getMaxAlignment(); // Desired stack alignment. +  unsigned StackAlign = getStackAlignment(); +  if (MF.getFunction().hasFnAttribute("stackrealign")) { +    if (MFI.hasCalls()) +      MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; +    else if (MaxAlign < SlotSize) +      MaxAlign = SlotSize; +  } +  return MaxAlign; +} + +void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB, +                                          MachineBasicBlock::iterator MBBI, +                                          const DebugLoc &DL, unsigned Reg, +                                          uint64_t MaxAlign) const { +  uint64_t Val = -MaxAlign; +  unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val); +  MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg) +                         .addReg(Reg) +                         .addImm(Val) +                         .setMIFlag(MachineInstr::FrameSetup); + +  // The EFLAGS implicit def is dead. +  MI->getOperand(3).setIsDead(); +} + +bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const { +  // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be +  // clobbered by any interrupt handler. +  assert(&STI == &MF.getSubtarget<X86Subtarget>() && +         "MF used frame lowering for wrong subtarget"); +  const Function &Fn = MF.getFunction(); +  const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv()); +  return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone); +} + + +/// emitPrologue - Push callee-saved registers onto the stack, which +/// automatically adjust the stack pointer. Adjust the stack pointer to allocate +/// space for local variables. Also emit labels used by the exception handler to +/// generate the exception handling frames. + +/* +  Here's a gist of what gets emitted: + +  ; Establish frame pointer, if needed +  [if needs FP] +      push  %rbp +      .cfi_def_cfa_offset 16 +      .cfi_offset %rbp, -16 +      .seh_pushreg %rpb +      mov  %rsp, %rbp +      .cfi_def_cfa_register %rbp + +  ; Spill general-purpose registers +  [for all callee-saved GPRs] +      pushq %<reg> +      [if not needs FP] +         .cfi_def_cfa_offset (offset from RETADDR) +      .seh_pushreg %<reg> + +  ; If the required stack alignment > default stack alignment +  ; rsp needs to be re-aligned.  This creates a "re-alignment gap" +  ; of unknown size in the stack frame. +  [if stack needs re-alignment] +      and  $MASK, %rsp + +  ; Allocate space for locals +  [if target is Windows and allocated space > 4096 bytes] +      ; Windows needs special care for allocations larger +      ; than one page. +      mov $NNN, %rax +      call ___chkstk_ms/___chkstk +      sub  %rax, %rsp +  [else] +      sub  $NNN, %rsp + +  [if needs FP] +      .seh_stackalloc (size of XMM spill slots) +      .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots +  [else] +      .seh_stackalloc NNN + +  ; Spill XMMs +  ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, +  ; they may get spilled on any platform, if the current function +  ; calls @llvm.eh.unwind.init +  [if needs FP] +      [for all callee-saved XMM registers] +          movaps  %<xmm reg>, -MMM(%rbp) +      [for all callee-saved XMM registers] +          .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) +              ; i.e. the offset relative to (%rbp - SEHFrameOffset) +  [else] +      [for all callee-saved XMM registers] +          movaps  %<xmm reg>, KKK(%rsp) +      [for all callee-saved XMM registers] +          .seh_savexmm %<xmm reg>, KKK + +  .seh_endprologue + +  [if needs base pointer] +      mov  %rsp, %rbx +      [if needs to restore base pointer] +          mov %rsp, -MMM(%rbp) + +  ; Emit CFI info +  [if needs FP] +      [for all callee-saved registers] +          .cfi_offset %<reg>, (offset from %rbp) +  [else] +       .cfi_def_cfa_offset (offset from RETADDR) +      [for all callee-saved registers] +          .cfi_offset %<reg>, (offset from %rsp) + +  Notes: +  - .seh directives are emitted only for Windows 64 ABI +  - .cv_fpo directives are emitted on win32 when emitting CodeView +  - .cfi directives are emitted for all other ABIs +  - for 32-bit code, substitute %e?? registers for %r?? +*/ + +void X86FrameLowering::emitPrologue(MachineFunction &MF, +                                    MachineBasicBlock &MBB) const { +  assert(&STI == &MF.getSubtarget<X86Subtarget>() && +         "MF used frame lowering for wrong subtarget"); +  MachineBasicBlock::iterator MBBI = MBB.begin(); +  MachineFrameInfo &MFI = MF.getFrameInfo(); +  const Function &Fn = MF.getFunction(); +  MachineModuleInfo &MMI = MF.getMMI(); +  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); +  uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. +  uint64_t StackSize = MFI.getStackSize();    // Number of bytes to allocate. +  bool IsFunclet = MBB.isEHFuncletEntry(); +  EHPersonality Personality = EHPersonality::Unknown; +  if (Fn.hasPersonalityFn()) +    Personality = classifyEHPersonality(Fn.getPersonalityFn()); +  bool FnHasClrFunclet = +      MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR; +  bool IsClrFunclet = IsFunclet && FnHasClrFunclet; +  bool HasFP = hasFP(MF); +  bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); +  bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry(); +  // FIXME: Emit FPO data for EH funclets. +  bool NeedsWinFPO = +      !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag(); +  bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO; +  bool NeedsDwarfCFI = +      !IsWin64Prologue && (MMI.hasDebugInfo() || Fn.needsUnwindTableEntry()); +  Register FramePtr = TRI->getFrameRegister(MF); +  const Register MachineFramePtr = +      STI.isTarget64BitILP32() +          ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; +  Register BasePtr = TRI->getBaseRegister(); +  bool HasWinCFI = false; + +  // Debug location must be unknown since the first debug location is used +  // to determine the end of the prologue. +  DebugLoc DL; + +  // Add RETADDR move area to callee saved frame size. +  int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); +  if (TailCallReturnAddrDelta && IsWin64Prologue) +    report_fatal_error("Can't handle guaranteed tail call under win64 yet"); + +  if (TailCallReturnAddrDelta < 0) +    X86FI->setCalleeSavedFrameSize( +      X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta); + +  bool UseStackProbe = !STI.getTargetLowering()->getStackProbeSymbolName(MF).empty(); +  unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF); + +  // Re-align the stack on 64-bit if the x86-interrupt calling convention is +  // used and an error code was pushed, since the x86-64 ABI requires a 16-byte +  // stack alignment. +  if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit && +      Fn.arg_size() == 2) { +    StackSize += 8; +    MFI.setStackSize(StackSize); +    emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false); +  } + +  // If this is x86-64 and the Red Zone is not disabled, if we are a leaf +  // function, and use up to 128 bytes of stack space, don't have a frame +  // pointer, calls, or dynamic alloca then we do not need to adjust the +  // stack pointer (we fit in the Red Zone). We also check that we don't +  // push and pop from the stack. +  if (has128ByteRedZone(MF) && +      !TRI->needsStackRealignment(MF) && +      !MFI.hasVarSizedObjects() &&             // No dynamic alloca. +      !MFI.adjustsStack() &&                   // No calls. +      !UseStackProbe &&                        // No stack probes. +      !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop. +      !MF.shouldSplitStack()) {                // Regular stack +    uint64_t MinSize = X86FI->getCalleeSavedFrameSize(); +    if (HasFP) MinSize += SlotSize; +    X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0); +    StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); +    MFI.setStackSize(StackSize); +  } + +  // Insert stack pointer adjustment for later moving of return addr.  Only +  // applies to tail call optimized functions where the callee argument stack +  // size is bigger than the callers. +  if (TailCallReturnAddrDelta < 0) { +    BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta, +                         /*InEpilogue=*/false) +        .setMIFlag(MachineInstr::FrameSetup); +  } + +  // Mapping for machine moves: +  // +  //   DST: VirtualFP AND +  //        SRC: VirtualFP              => DW_CFA_def_cfa_offset +  //        ELSE                        => DW_CFA_def_cfa +  // +  //   SRC: VirtualFP AND +  //        DST: Register               => DW_CFA_def_cfa_register +  // +  //   ELSE +  //        OFFSET < 0                  => DW_CFA_offset_extended_sf +  //        REG < 64                    => DW_CFA_offset + Reg +  //        ELSE                        => DW_CFA_offset_extended + +  uint64_t NumBytes = 0; +  int stackGrowth = -SlotSize; + +  // Find the funclet establisher parameter +  Register Establisher = X86::NoRegister; +  if (IsClrFunclet) +    Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX; +  else if (IsFunclet) +    Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX; + +  if (IsWin64Prologue && IsFunclet && !IsClrFunclet) { +    // Immediately spill establisher into the home slot. +    // The runtime cares about this. +    // MOV64mr %rdx, 16(%rsp) +    unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; +    addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16) +        .addReg(Establisher) +        .setMIFlag(MachineInstr::FrameSetup); +    MBB.addLiveIn(Establisher); +  } + +  if (HasFP) { +    assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved"); + +    // Calculate required stack adjustment. +    uint64_t FrameSize = StackSize - SlotSize; +    // If required, include space for extra hidden slot for stashing base pointer. +    if (X86FI->getRestoreBasePointer()) +      FrameSize += SlotSize; + +    NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize(); + +    // Callee-saved registers are pushed on stack before the stack is realigned. +    if (TRI->needsStackRealignment(MF) && !IsWin64Prologue) +      NumBytes = alignTo(NumBytes, MaxAlign); + +    // Save EBP/RBP into the appropriate stack slot. +    BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) +      .addReg(MachineFramePtr, RegState::Kill) +      .setMIFlag(MachineInstr::FrameSetup); + +    if (NeedsDwarfCFI) { +      // Mark the place where EBP/RBP was saved. +      // Define the current CFA rule to use the provided offset. +      assert(StackSize); +      BuildCFI(MBB, MBBI, DL, +               MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth)); + +      // Change the rule for the FramePtr to be an "offset" rule. +      unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); +      BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset( +                                  nullptr, DwarfFramePtr, 2 * stackGrowth)); +    } + +    if (NeedsWinCFI) { +      HasWinCFI = true; +      BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) +          .addImm(FramePtr) +          .setMIFlag(MachineInstr::FrameSetup); +    } + +    if (!IsWin64Prologue && !IsFunclet) { +      // Update EBP with the new base value. +      BuildMI(MBB, MBBI, DL, +              TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), +              FramePtr) +          .addReg(StackPtr) +          .setMIFlag(MachineInstr::FrameSetup); + +      if (NeedsDwarfCFI) { +        // Mark effective beginning of when frame pointer becomes valid. +        // Define the current CFA to use the EBP/RBP register. +        unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); +        BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister( +                                    nullptr, DwarfFramePtr)); +      } + +      if (NeedsWinFPO) { +        // .cv_fpo_setframe $FramePtr +        HasWinCFI = true; +        BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) +            .addImm(FramePtr) +            .addImm(0) +            .setMIFlag(MachineInstr::FrameSetup); +      } +    } +  } else { +    assert(!IsFunclet && "funclets without FPs not yet implemented"); +    NumBytes = StackSize - X86FI->getCalleeSavedFrameSize(); +  } + +  // Update the offset adjustment, which is mainly used by codeview to translate +  // from ESP to VFRAME relative local variable offsets. +  if (!IsFunclet) { +    if (HasFP && TRI->needsStackRealignment(MF)) +      MFI.setOffsetAdjustment(-NumBytes); +    else +      MFI.setOffsetAdjustment(-StackSize); +  } + +  // For EH funclets, only allocate enough space for outgoing calls. Save the +  // NumBytes value that we would've used for the parent frame. +  unsigned ParentFrameNumBytes = NumBytes; +  if (IsFunclet) +    NumBytes = getWinEHFuncletFrameSize(MF); + +  // Skip the callee-saved push instructions. +  bool PushedRegs = false; +  int StackOffset = 2 * stackGrowth; + +  while (MBBI != MBB.end() && +         MBBI->getFlag(MachineInstr::FrameSetup) && +         (MBBI->getOpcode() == X86::PUSH32r || +          MBBI->getOpcode() == X86::PUSH64r)) { +    PushedRegs = true; +    Register Reg = MBBI->getOperand(0).getReg(); +    ++MBBI; + +    if (!HasFP && NeedsDwarfCFI) { +      // Mark callee-saved push instruction. +      // Define the current CFA rule to use the provided offset. +      assert(StackSize); +      BuildCFI(MBB, MBBI, DL, +               MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset)); +      StackOffset += stackGrowth; +    } + +    if (NeedsWinCFI) { +      HasWinCFI = true; +      BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) +          .addImm(Reg) +          .setMIFlag(MachineInstr::FrameSetup); +    } +  } + +  // Realign stack after we pushed callee-saved registers (so that we'll be +  // able to calculate their offsets from the frame pointer). +  // Don't do this for Win64, it needs to realign the stack after the prologue. +  if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) { +    assert(HasFP && "There should be a frame pointer if stack is realigned."); +    BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); + +    if (NeedsWinCFI) { +      HasWinCFI = true; +      BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign)) +          .addImm(MaxAlign) +          .setMIFlag(MachineInstr::FrameSetup); +    } +  } + +  // If there is an SUB32ri of ESP immediately before this instruction, merge +  // the two. This can be the case when tail call elimination is enabled and +  // the callee has more arguments then the caller. +  NumBytes -= mergeSPUpdates(MBB, MBBI, true); + +  // Adjust stack pointer: ESP -= numbytes. + +  // Windows and cygwin/mingw require a prologue helper routine when allocating +  // more than 4K bytes on the stack.  Windows uses __chkstk and cygwin/mingw +  // uses __alloca.  __alloca and the 32-bit version of __chkstk will probe the +  // stack and adjust the stack pointer in one go.  The 64-bit version of +  // __chkstk is only responsible for probing the stack.  The 64-bit prologue is +  // responsible for adjusting the stack pointer.  Touching the stack at 4K +  // increments is necessary to ensure that the guard pages used by the OS +  // virtual memory manager are allocated in correct sequence. +  uint64_t AlignedNumBytes = NumBytes; +  if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) +    AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign); +  if (AlignedNumBytes >= StackProbeSize && UseStackProbe) { +    assert(!X86FI->getUsesRedZone() && +           "The Red Zone is not accounted for in stack probes"); + +    // Check whether EAX is livein for this block. +    bool isEAXAlive = isEAXLiveIn(MBB); + +    if (isEAXAlive) { +      if (Is64Bit) { +        // Save RAX +        BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) +          .addReg(X86::RAX, RegState::Kill) +          .setMIFlag(MachineInstr::FrameSetup); +      } else { +        // Save EAX +        BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) +          .addReg(X86::EAX, RegState::Kill) +          .setMIFlag(MachineInstr::FrameSetup); +      } +    } + +    if (Is64Bit) { +      // Handle the 64-bit Windows ABI case where we need to call __chkstk. +      // Function prologue is responsible for adjusting the stack pointer. +      int Alloc = isEAXAlive ? NumBytes - 8 : NumBytes; +      if (isUInt<32>(Alloc)) { +        BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) +            .addImm(Alloc) +            .setMIFlag(MachineInstr::FrameSetup); +      } else if (isInt<32>(Alloc)) { +        BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX) +            .addImm(Alloc) +            .setMIFlag(MachineInstr::FrameSetup); +      } else { +        BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX) +            .addImm(Alloc) +            .setMIFlag(MachineInstr::FrameSetup); +      } +    } else { +      // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. +      // We'll also use 4 already allocated bytes for EAX. +      BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) +          .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) +          .setMIFlag(MachineInstr::FrameSetup); +    } + +    // Call __chkstk, __chkstk_ms, or __alloca. +    emitStackProbe(MF, MBB, MBBI, DL, true); + +    if (isEAXAlive) { +      // Restore RAX/EAX +      MachineInstr *MI; +      if (Is64Bit) +        MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX), +                          StackPtr, false, NumBytes - 8); +      else +        MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), +                          StackPtr, false, NumBytes - 4); +      MI->setFlag(MachineInstr::FrameSetup); +      MBB.insert(MBBI, MI); +    } +  } else if (NumBytes) { +    emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false); +  } + +  if (NeedsWinCFI && NumBytes) { +    HasWinCFI = true; +    BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) +        .addImm(NumBytes) +        .setMIFlag(MachineInstr::FrameSetup); +  } + +  int SEHFrameOffset = 0; +  unsigned SPOrEstablisher; +  if (IsFunclet) { +    if (IsClrFunclet) { +      // The establisher parameter passed to a CLR funclet is actually a pointer +      // to the (mostly empty) frame of its nearest enclosing funclet; we have +      // to find the root function establisher frame by loading the PSPSym from +      // the intermediate frame. +      unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); +      MachinePointerInfo NoInfo; +      MBB.addLiveIn(Establisher); +      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher), +                   Establisher, false, PSPSlotOffset) +          .addMemOperand(MF.getMachineMemOperand( +              NoInfo, MachineMemOperand::MOLoad, SlotSize, SlotSize)); +      ; +      // Save the root establisher back into the current funclet's (mostly +      // empty) frame, in case a sub-funclet or the GC needs it. +      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, +                   false, PSPSlotOffset) +          .addReg(Establisher) +          .addMemOperand( +              MF.getMachineMemOperand(NoInfo, MachineMemOperand::MOStore | +                                                  MachineMemOperand::MOVolatile, +                                      SlotSize, SlotSize)); +    } +    SPOrEstablisher = Establisher; +  } else { +    SPOrEstablisher = StackPtr; +  } + +  if (IsWin64Prologue && HasFP) { +    // Set RBP to a small fixed offset from RSP. In the funclet case, we base +    // this calculation on the incoming establisher, which holds the value of +    // RSP from the parent frame at the end of the prologue. +    SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes); +    if (SEHFrameOffset) +      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr), +                   SPOrEstablisher, false, SEHFrameOffset); +    else +      BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr) +          .addReg(SPOrEstablisher); + +    // If this is not a funclet, emit the CFI describing our frame pointer. +    if (NeedsWinCFI && !IsFunclet) { +      assert(!NeedsWinFPO && "this setframe incompatible with FPO data"); +      HasWinCFI = true; +      BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) +          .addImm(FramePtr) +          .addImm(SEHFrameOffset) +          .setMIFlag(MachineInstr::FrameSetup); +      if (isAsynchronousEHPersonality(Personality)) +        MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset; +    } +  } else if (IsFunclet && STI.is32Bit()) { +    // Reset EBP / ESI to something good for funclets. +    MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL); +    // If we're a catch funclet, we can be returned to via catchret. Save ESP +    // into the registration node so that the runtime will restore it for us. +    if (!MBB.isCleanupFuncletEntry()) { +      assert(Personality == EHPersonality::MSVC_CXX); +      unsigned FrameReg; +      int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex; +      int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg); +      // ESP is the first field, so no extra displacement is needed. +      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg, +                   false, EHRegOffset) +          .addReg(X86::ESP); +    } +  } + +  while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) { +    const MachineInstr &FrameInstr = *MBBI; +    ++MBBI; + +    if (NeedsWinCFI) { +      int FI; +      if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) { +        if (X86::FR64RegClass.contains(Reg)) { +          int Offset; +          unsigned IgnoredFrameReg; +          if (IsWin64Prologue && IsFunclet) +            Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg); +          else +            Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg) + +                     SEHFrameOffset; + +          HasWinCFI = true; +          assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data"); +          BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) +              .addImm(Reg) +              .addImm(Offset) +              .setMIFlag(MachineInstr::FrameSetup); +        } +      } +    } +  } + +  if (NeedsWinCFI && HasWinCFI) +    BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) +        .setMIFlag(MachineInstr::FrameSetup); + +  if (FnHasClrFunclet && !IsFunclet) { +    // Save the so-called Initial-SP (i.e. the value of the stack pointer +    // immediately after the prolog)  into the PSPSlot so that funclets +    // and the GC can recover it. +    unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); +    auto PSPInfo = MachinePointerInfo::getFixedStack( +        MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx); +    addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false, +                 PSPSlotOffset) +        .addReg(StackPtr) +        .addMemOperand(MF.getMachineMemOperand( +            PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, +            SlotSize, SlotSize)); +  } + +  // Realign stack after we spilled callee-saved registers (so that we'll be +  // able to calculate their offsets from the frame pointer). +  // Win64 requires aligning the stack after the prologue. +  if (IsWin64Prologue && TRI->needsStackRealignment(MF)) { +    assert(HasFP && "There should be a frame pointer if stack is realigned."); +    BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign); +  } + +  // We already dealt with stack realignment and funclets above. +  if (IsFunclet && STI.is32Bit()) +    return; + +  // If we need a base pointer, set it up here. It's whatever the value +  // of the stack pointer is at this point. Any variable size objects +  // will be allocated after this, so we can still use the base pointer +  // to reference locals. +  if (TRI->hasBasePointer(MF)) { +    // Update the base pointer with the current stack pointer. +    unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; +    BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) +      .addReg(SPOrEstablisher) +      .setMIFlag(MachineInstr::FrameSetup); +    if (X86FI->getRestoreBasePointer()) { +      // Stash value of base pointer.  Saving RSP instead of EBP shortens +      // dependence chain. Used by SjLj EH. +      unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; +      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), +                   FramePtr, true, X86FI->getRestoreBasePointerOffset()) +        .addReg(SPOrEstablisher) +        .setMIFlag(MachineInstr::FrameSetup); +    } + +    if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) { +      // Stash the value of the frame pointer relative to the base pointer for +      // Win32 EH. This supports Win32 EH, which does the inverse of the above: +      // it recovers the frame pointer from the base pointer rather than the +      // other way around. +      unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; +      unsigned UsedReg; +      int Offset = +          getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg); +      assert(UsedReg == BasePtr); +      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset) +          .addReg(FramePtr) +          .setMIFlag(MachineInstr::FrameSetup); +    } +  } + +  if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { +    // Mark end of stack pointer adjustment. +    if (!HasFP && NumBytes) { +      // Define the current CFA rule to use the provided offset. +      assert(StackSize); +      BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset( +                                  nullptr, -StackSize + stackGrowth)); +    } + +    // Emit DWARF info specifying the offsets of the callee-saved registers. +    emitCalleeSavedFrameMoves(MBB, MBBI, DL); +  } + +  // X86 Interrupt handling function cannot assume anything about the direction +  // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction +  // in each prologue of interrupt handler function. +  // +  // FIXME: Create "cld" instruction only in these cases: +  // 1. The interrupt handling function uses any of the "rep" instructions. +  // 2. Interrupt handling function calls another function. +  // +  if (Fn.getCallingConv() == CallingConv::X86_INTR) +    BuildMI(MBB, MBBI, DL, TII.get(X86::CLD)) +        .setMIFlag(MachineInstr::FrameSetup); + +  // At this point we know if the function has WinCFI or not. +  MF.setHasWinCFI(HasWinCFI); +} + +bool X86FrameLowering::canUseLEAForSPInEpilogue( +    const MachineFunction &MF) const { +  // We can't use LEA instructions for adjusting the stack pointer if we don't +  // have a frame pointer in the Win64 ABI.  Only ADD instructions may be used +  // to deallocate the stack. +  // This means that we can use LEA for SP in two situations: +  // 1. We *aren't* using the Win64 ABI which means we are free to use LEA. +  // 2. We *have* a frame pointer which means we are permitted to use LEA. +  return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF); +} + +static bool isFuncletReturnInstr(MachineInstr &MI) { +  switch (MI.getOpcode()) { +  case X86::CATCHRET: +  case X86::CLEANUPRET: +    return true; +  default: +    return false; +  } +  llvm_unreachable("impossible"); +} + +// CLR funclets use a special "Previous Stack Pointer Symbol" slot on the +// stack. It holds a pointer to the bottom of the root function frame.  The +// establisher frame pointer passed to a nested funclet may point to the +// (mostly empty) frame of its parent funclet, but it will need to find +// the frame of the root function to access locals.  To facilitate this, +// every funclet copies the pointer to the bottom of the root function +// frame into a PSPSym slot in its own (mostly empty) stack frame. Using the +// same offset for the PSPSym in the root function frame that's used in the +// funclets' frames allows each funclet to dynamically accept any ancestor +// frame as its establisher argument (the runtime doesn't guarantee the +// immediate parent for some reason lost to history), and also allows the GC, +// which uses the PSPSym for some bookkeeping, to find it in any funclet's +// frame with only a single offset reported for the entire method. +unsigned +X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const { +  const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo(); +  unsigned SPReg; +  int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg, +                                              /*IgnoreSPUpdates*/ true); +  assert(Offset >= 0 && SPReg == TRI->getStackRegister()); +  return static_cast<unsigned>(Offset); +} + +unsigned +X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const { +  const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); +  // This is the size of the pushed CSRs. +  unsigned CSSize = X86FI->getCalleeSavedFrameSize(); +  // This is the size of callee saved XMMs. +  const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); +  unsigned XMMSize = WinEHXMMSlotInfo.size() * +                     TRI->getSpillSize(X86::VR128RegClass); +  // This is the amount of stack a funclet needs to allocate. +  unsigned UsedSize; +  EHPersonality Personality = +      classifyEHPersonality(MF.getFunction().getPersonalityFn()); +  if (Personality == EHPersonality::CoreCLR) { +    // CLR funclets need to hold enough space to include the PSPSym, at the +    // same offset from the stack pointer (immediately after the prolog) as it +    // resides at in the main function. +    UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize; +  } else { +    // Other funclets just need enough stack for outgoing call arguments. +    UsedSize = MF.getFrameInfo().getMaxCallFrameSize(); +  } +  // RBP is not included in the callee saved register block. After pushing RBP, +  // everything is 16 byte aligned. Everything we allocate before an outgoing +  // call must also be 16 byte aligned. +  unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlignment()); +  // Subtract out the size of the callee saved registers. This is how much stack +  // each funclet will allocate. +  return FrameSizeMinusRBP + XMMSize - CSSize; +} + +static bool isTailCallOpcode(unsigned Opc) { +    return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi || +        Opc == X86::TCRETURNmi || +        Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 || +        Opc == X86::TCRETURNmi64; +} + +void X86FrameLowering::emitEpilogue(MachineFunction &MF, +                                    MachineBasicBlock &MBB) const { +  const MachineFrameInfo &MFI = MF.getFrameInfo(); +  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); +  MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator(); +  MachineBasicBlock::iterator MBBI = Terminator; +  DebugLoc DL; +  if (MBBI != MBB.end()) +    DL = MBBI->getDebugLoc(); +  // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. +  const bool Is64BitILP32 = STI.isTarget64BitILP32(); +  Register FramePtr = TRI->getFrameRegister(MF); +  unsigned MachineFramePtr = +      Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; + +  bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); +  bool NeedsWin64CFI = +      IsWin64Prologue && MF.getFunction().needsUnwindTableEntry(); +  bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI); + +  // Get the number of bytes to allocate from the FrameInfo. +  uint64_t StackSize = MFI.getStackSize(); +  uint64_t MaxAlign = calculateMaxStackAlign(MF); +  unsigned CSSize = X86FI->getCalleeSavedFrameSize(); +  bool HasFP = hasFP(MF); +  uint64_t NumBytes = 0; + +  bool NeedsDwarfCFI = +      (!MF.getTarget().getTargetTriple().isOSDarwin() && +       !MF.getTarget().getTargetTriple().isOSWindows()) && +      (MF.getMMI().hasDebugInfo() || MF.getFunction().needsUnwindTableEntry()); + +  if (IsFunclet) { +    assert(HasFP && "EH funclets without FP not yet implemented"); +    NumBytes = getWinEHFuncletFrameSize(MF); +  } else if (HasFP) { +    // Calculate required stack adjustment. +    uint64_t FrameSize = StackSize - SlotSize; +    NumBytes = FrameSize - CSSize; + +    // Callee-saved registers were pushed on stack before the stack was +    // realigned. +    if (TRI->needsStackRealignment(MF) && !IsWin64Prologue) +      NumBytes = alignTo(FrameSize, MaxAlign); +  } else { +    NumBytes = StackSize - CSSize; +  } +  uint64_t SEHStackAllocAmt = NumBytes; + +  if (HasFP) { +    // Pop EBP. +    BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), +            MachineFramePtr) +        .setMIFlag(MachineInstr::FrameDestroy); +    if (NeedsDwarfCFI) { +      unsigned DwarfStackPtr = +          TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true); +      BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfa( +                                  nullptr, DwarfStackPtr, -SlotSize)); +      --MBBI; +    } +  } + +  MachineBasicBlock::iterator FirstCSPop = MBBI; +  // Skip the callee-saved pop instructions. +  while (MBBI != MBB.begin()) { +    MachineBasicBlock::iterator PI = std::prev(MBBI); +    unsigned Opc = PI->getOpcode(); + +    if (Opc != X86::DBG_VALUE && !PI->isTerminator()) { +      if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) && +          (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy))) +        break; +      FirstCSPop = PI; +    } + +    --MBBI; +  } +  MBBI = FirstCSPop; + +  if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET) +    emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator); + +  if (MBBI != MBB.end()) +    DL = MBBI->getDebugLoc(); + +  // If there is an ADD32ri or SUB32ri of ESP immediately before this +  // instruction, merge the two instructions. +  if (NumBytes || MFI.hasVarSizedObjects()) +    NumBytes += mergeSPUpdates(MBB, MBBI, true); + +  // If dynamic alloca is used, then reset esp to point to the last callee-saved +  // slot before popping them off! Same applies for the case, when stack was +  // realigned. Don't do this if this was a funclet epilogue, since the funclets +  // will not do realignment or dynamic stack allocation. +  if ((TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects()) && +      !IsFunclet) { +    if (TRI->needsStackRealignment(MF)) +      MBBI = FirstCSPop; +    unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt); +    uint64_t LEAAmount = +        IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; + +    // There are only two legal forms of epilogue: +    // - add SEHAllocationSize, %rsp +    // - lea SEHAllocationSize(%FramePtr), %rsp +    // +    // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. +    // However, we may use this sequence if we have a frame pointer because the +    // effects of the prologue can safely be undone. +    if (LEAAmount != 0) { +      unsigned Opc = getLEArOpcode(Uses64BitFramePtr); +      addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), +                   FramePtr, false, LEAAmount); +      --MBBI; +    } else { +      unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); +      BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) +        .addReg(FramePtr); +      --MBBI; +    } +  } else if (NumBytes) { +    // Adjust stack pointer back: ESP += numbytes. +    emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true); +    if (!hasFP(MF) && NeedsDwarfCFI) { +      // Define the current CFA rule to use the provided offset. +      BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset( +                                  nullptr, -CSSize - SlotSize)); +    } +    --MBBI; +  } + +  // Windows unwinder will not invoke function's exception handler if IP is +  // either in prologue or in epilogue.  This behavior causes a problem when a +  // call immediately precedes an epilogue, because the return address points +  // into the epilogue.  To cope with that, we insert an epilogue marker here, +  // then replace it with a 'nop' if it ends up immediately after a CALL in the +  // final emitted code. +  if (NeedsWin64CFI && MF.hasWinCFI()) +    BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); + +  if (!hasFP(MF) && NeedsDwarfCFI) { +    MBBI = FirstCSPop; +    int64_t Offset = -CSSize - SlotSize; +    // Mark callee-saved pop instruction. +    // Define the current CFA rule to use the provided offset. +    while (MBBI != MBB.end()) { +      MachineBasicBlock::iterator PI = MBBI; +      unsigned Opc = PI->getOpcode(); +      ++MBBI; +      if (Opc == X86::POP32r || Opc == X86::POP64r) { +        Offset += SlotSize; +        BuildCFI(MBB, MBBI, DL, +                 MCCFIInstruction::createDefCfaOffset(nullptr, Offset)); +      } +    } +  } + +  if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) { +    // Add the return addr area delta back since we are not tail calling. +    int Offset = -1 * X86FI->getTCReturnAddrDelta(); +    assert(Offset >= 0 && "TCDelta should never be positive"); +    if (Offset) { +      // Check for possible merge with preceding ADD instruction. +      Offset += mergeSPUpdates(MBB, Terminator, true); +      emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true); +    } +  } +} + +int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, +                                             unsigned &FrameReg) const { +  const MachineFrameInfo &MFI = MF.getFrameInfo(); + +  bool IsFixed = MFI.isFixedObjectIndex(FI); +  // We can't calculate offset from frame pointer if the stack is realigned, +  // so enforce usage of stack/base pointer.  The base pointer is used when we +  // have dynamic allocas in addition to dynamic realignment. +  if (TRI->hasBasePointer(MF)) +    FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister(); +  else if (TRI->needsStackRealignment(MF)) +    FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister(); +  else +    FrameReg = TRI->getFrameRegister(MF); + +  // Offset will hold the offset from the stack pointer at function entry to the +  // object. +  // We need to factor in additional offsets applied during the prologue to the +  // frame, base, and stack pointer depending on which is used. +  int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea(); +  const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); +  unsigned CSSize = X86FI->getCalleeSavedFrameSize(); +  uint64_t StackSize = MFI.getStackSize(); +  bool HasFP = hasFP(MF); +  bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); +  int64_t FPDelta = 0; + +  // In an x86 interrupt, remove the offset we added to account for the return +  // address from any stack object allocated in the caller's frame. Interrupts +  // do not have a standard return address. Fixed objects in the current frame, +  // such as SSE register spills, should not get this treatment. +  if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR && +      Offset >= 0) { +    Offset += getOffsetOfLocalArea(); +  } + +  if (IsWin64Prologue) { +    assert(!MFI.hasCalls() || (StackSize % 16) == 8); + +    // Calculate required stack adjustment. +    uint64_t FrameSize = StackSize - SlotSize; +    // If required, include space for extra hidden slot for stashing base pointer. +    if (X86FI->getRestoreBasePointer()) +      FrameSize += SlotSize; +    uint64_t NumBytes = FrameSize - CSSize; + +    uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes); +    if (FI && FI == X86FI->getFAIndex()) +      return -SEHFrameOffset; + +    // FPDelta is the offset from the "traditional" FP location of the old base +    // pointer followed by return address and the location required by the +    // restricted Win64 prologue. +    // Add FPDelta to all offsets below that go through the frame pointer. +    FPDelta = FrameSize - SEHFrameOffset; +    assert((!MFI.hasCalls() || (FPDelta % 16) == 0) && +           "FPDelta isn't aligned per the Win64 ABI!"); +  } + + +  if (TRI->hasBasePointer(MF)) { +    assert(HasFP && "VLAs and dynamic stack realign, but no FP?!"); +    if (FI < 0) { +      // Skip the saved EBP. +      return Offset + SlotSize + FPDelta; +    } else { +      assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0); +      return Offset + StackSize; +    } +  } else if (TRI->needsStackRealignment(MF)) { +    if (FI < 0) { +      // Skip the saved EBP. +      return Offset + SlotSize + FPDelta; +    } else { +      assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0); +      return Offset + StackSize; +    } +    // FIXME: Support tail calls +  } else { +    if (!HasFP) +      return Offset + StackSize; + +    // Skip the saved EBP. +    Offset += SlotSize; + +    // Skip the RETADDR move area +    int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); +    if (TailCallReturnAddrDelta < 0) +      Offset -= TailCallReturnAddrDelta; +  } + +  return Offset + FPDelta; +} + +int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, +                                              int FI, unsigned &FrameReg) const { +  const MachineFrameInfo &MFI = MF.getFrameInfo(); +  const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); +  const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); +  const auto it = WinEHXMMSlotInfo.find(FI); + +  if (it == WinEHXMMSlotInfo.end()) +    return getFrameIndexReference(MF, FI, FrameReg); + +  FrameReg = TRI->getStackRegister(); +  return alignTo(MFI.getMaxCallFrameSize(), getStackAlignment()) + it->second; +} + +int X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, +                                               int FI, unsigned &FrameReg, +                                               int Adjustment) const { +  const MachineFrameInfo &MFI = MF.getFrameInfo(); +  FrameReg = TRI->getStackRegister(); +  return MFI.getObjectOffset(FI) - getOffsetOfLocalArea() + Adjustment; +} + +int +X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF, +                                                 int FI, unsigned &FrameReg, +                                                 bool IgnoreSPUpdates) const { + +  const MachineFrameInfo &MFI = MF.getFrameInfo(); +  // Does not include any dynamic realign. +  const uint64_t StackSize = MFI.getStackSize(); +  // LLVM arranges the stack as follows: +  //   ... +  //   ARG2 +  //   ARG1 +  //   RETADDR +  //   PUSH RBP   <-- RBP points here +  //   PUSH CSRs +  //   ~~~~~~~    <-- possible stack realignment (non-win64) +  //   ... +  //   STACK OBJECTS +  //   ...        <-- RSP after prologue points here +  //   ~~~~~~~    <-- possible stack realignment (win64) +  // +  // if (hasVarSizedObjects()): +  //   ...        <-- "base pointer" (ESI/RBX) points here +  //   DYNAMIC ALLOCAS +  //   ...        <-- RSP points here +  // +  // Case 1: In the simple case of no stack realignment and no dynamic +  // allocas, both "fixed" stack objects (arguments and CSRs) are addressable +  // with fixed offsets from RSP. +  // +  // Case 2: In the case of stack realignment with no dynamic allocas, fixed +  // stack objects are addressed with RBP and regular stack objects with RSP. +  // +  // Case 3: In the case of dynamic allocas and stack realignment, RSP is used +  // to address stack arguments for outgoing calls and nothing else. The "base +  // pointer" points to local variables, and RBP points to fixed objects. +  // +  // In cases 2 and 3, we can only answer for non-fixed stack objects, and the +  // answer we give is relative to the SP after the prologue, and not the +  // SP in the middle of the function. + +  if (MFI.isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) && +      !STI.isTargetWin64()) +    return getFrameIndexReference(MF, FI, FrameReg); + +  // If !hasReservedCallFrame the function might have SP adjustement in the +  // body.  So, even though the offset is statically known, it depends on where +  // we are in the function. +  if (!IgnoreSPUpdates && !hasReservedCallFrame(MF)) +    return getFrameIndexReference(MF, FI, FrameReg); + +  // We don't handle tail calls, and shouldn't be seeing them either. +  assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 && +         "we don't handle this case!"); + +  // This is how the math works out: +  // +  //  %rsp grows (i.e. gets lower) left to right. Each box below is +  //  one word (eight bytes).  Obj0 is the stack slot we're trying to +  //  get to. +  // +  //    ---------------------------------- +  //    | BP | Obj0 | Obj1 | ... | ObjN | +  //    ---------------------------------- +  //    ^    ^      ^                   ^ +  //    A    B      C                   E +  // +  // A is the incoming stack pointer. +  // (B - A) is the local area offset (-8 for x86-64) [1] +  // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2] +  // +  // |(E - B)| is the StackSize (absolute value, positive).  For a +  // stack that grown down, this works out to be (B - E). [3] +  // +  // E is also the value of %rsp after stack has been set up, and we +  // want (C - E) -- the value we can add to %rsp to get to Obj0.  Now +  // (C - E) == (C - A) - (B - A) + (B - E) +  //            { Using [1], [2] and [3] above } +  //         == getObjectOffset - LocalAreaOffset + StackSize + +  return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize); +} + +bool X86FrameLowering::assignCalleeSavedSpillSlots( +    MachineFunction &MF, const TargetRegisterInfo *TRI, +    std::vector<CalleeSavedInfo> &CSI) const { +  MachineFrameInfo &MFI = MF.getFrameInfo(); +  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); + +  unsigned CalleeSavedFrameSize = 0; +  unsigned XMMCalleeSavedFrameSize = 0; +  auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); +  int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); + +  int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); + +  if (TailCallReturnAddrDelta < 0) { +    // create RETURNADDR area +    //   arg +    //   arg +    //   RETADDR +    //   { ... +    //     RETADDR area +    //     ... +    //   } +    //   [EBP] +    MFI.CreateFixedObject(-TailCallReturnAddrDelta, +                           TailCallReturnAddrDelta - SlotSize, true); +  } + +  // Spill the BasePtr if it's used. +  if (this->TRI->hasBasePointer(MF)) { +    // Allocate a spill slot for EBP if we have a base pointer and EH funclets. +    if (MF.hasEHFunclets()) { +      int FI = MFI.CreateSpillStackObject(SlotSize, SlotSize); +      X86FI->setHasSEHFramePtrSave(true); +      X86FI->setSEHFramePtrSaveIndex(FI); +    } +  } + +  if (hasFP(MF)) { +    // emitPrologue always spills frame register the first thing. +    SpillSlotOffset -= SlotSize; +    MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); + +    // Since emitPrologue and emitEpilogue will handle spilling and restoring of +    // the frame register, we can delete it from CSI list and not have to worry +    // about avoiding it later. +    Register FPReg = TRI->getFrameRegister(MF); +    for (unsigned i = 0; i < CSI.size(); ++i) { +      if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) { +        CSI.erase(CSI.begin() + i); +        break; +      } +    } +  } + +  // Assign slots for GPRs. It increases frame size. +  for (unsigned i = CSI.size(); i != 0; --i) { +    unsigned Reg = CSI[i - 1].getReg(); + +    if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) +      continue; + +    SpillSlotOffset -= SlotSize; +    CalleeSavedFrameSize += SlotSize; + +    int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); +    CSI[i - 1].setFrameIdx(SlotIndex); +  } + +  X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); +  MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize); + +  // Assign slots for XMMs. +  for (unsigned i = CSI.size(); i != 0; --i) { +    unsigned Reg = CSI[i - 1].getReg(); +    if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) +      continue; + +    // If this is k-register make sure we lookup via the largest legal type. +    MVT VT = MVT::Other; +    if (X86::VK16RegClass.contains(Reg)) +      VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; + +    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); +    unsigned Size = TRI->getSpillSize(*RC); +    unsigned Align = TRI->getSpillAlignment(*RC); +    // ensure alignment +    assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86"); +    SpillSlotOffset = -alignTo(-SpillSlotOffset, Align); + +    // spill into slot +    SpillSlotOffset -= Size; +    int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset); +    CSI[i - 1].setFrameIdx(SlotIndex); +    MFI.ensureMaxAlignment(Align); + +    // Save the start offset and size of XMM in stack frame for funclets. +    if (X86::VR128RegClass.contains(Reg)) { +      WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize; +      XMMCalleeSavedFrameSize += Size; +    } +  } + +  return true; +} + +bool X86FrameLowering::spillCalleeSavedRegisters( +    MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, +    const std::vector<CalleeSavedInfo> &CSI, +    const TargetRegisterInfo *TRI) const { +  DebugLoc DL = MBB.findDebugLoc(MI); + +  // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI +  // for us, and there are no XMM CSRs on Win32. +  if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows()) +    return true; + +  // Push GPRs. It increases frame size. +  const MachineFunction &MF = *MBB.getParent(); +  unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; +  for (unsigned i = CSI.size(); i != 0; --i) { +    unsigned Reg = CSI[i - 1].getReg(); + +    if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) +      continue; + +    const MachineRegisterInfo &MRI = MF.getRegInfo(); +    bool isLiveIn = MRI.isLiveIn(Reg); +    if (!isLiveIn) +      MBB.addLiveIn(Reg); + +    // Decide whether we can add a kill flag to the use. +    bool CanKill = !isLiveIn; +    // Check if any subregister is live-in +    if (CanKill) { +      for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) { +        if (MRI.isLiveIn(*AReg)) { +          CanKill = false; +          break; +        } +      } +    } + +    // Do not set a kill flag on values that are also marked as live-in. This +    // happens with the @llvm-returnaddress intrinsic and with arguments +    // passed in callee saved registers. +    // Omitting the kill flags is conservatively correct even if the live-in +    // is not used after all. +    BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill)) +      .setMIFlag(MachineInstr::FrameSetup); +  } + +  // Make XMM regs spilled. X86 does not have ability of push/pop XMM. +  // It can be done by spilling XMMs to stack frame. +  for (unsigned i = CSI.size(); i != 0; --i) { +    unsigned Reg = CSI[i-1].getReg(); +    if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) +      continue; + +    // If this is k-register make sure we lookup via the largest legal type. +    MVT VT = MVT::Other; +    if (X86::VK16RegClass.contains(Reg)) +      VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; + +    // Add the callee-saved register as live-in. It's killed at the spill. +    MBB.addLiveIn(Reg); +    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); + +    TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC, +                            TRI); +    --MI; +    MI->setFlag(MachineInstr::FrameSetup); +    ++MI; +  } + +  return true; +} + +void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB, +                                               MachineBasicBlock::iterator MBBI, +                                               MachineInstr *CatchRet) const { +  // SEH shouldn't use catchret. +  assert(!isAsynchronousEHPersonality(classifyEHPersonality( +             MBB.getParent()->getFunction().getPersonalityFn())) && +         "SEH should not use CATCHRET"); +  DebugLoc DL = CatchRet->getDebugLoc(); +  MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB(); + +  // Fill EAX/RAX with the address of the target block. +  if (STI.is64Bit()) { +    // LEA64r CatchRetTarget(%rip), %rax +    BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX) +        .addReg(X86::RIP) +        .addImm(0) +        .addReg(0) +        .addMBB(CatchRetTarget) +        .addReg(0); +  } else { +    // MOV32ri $CatchRetTarget, %eax +    BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) +        .addMBB(CatchRetTarget); +  } + +  // Record that we've taken the address of CatchRetTarget and no longer just +  // reference it in a terminator. +  CatchRetTarget->setHasAddressTaken(); +} + +bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB, +                                               MachineBasicBlock::iterator MI, +                                          std::vector<CalleeSavedInfo> &CSI, +                                          const TargetRegisterInfo *TRI) const { +  if (CSI.empty()) +    return false; + +  if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) { +    // Don't restore CSRs in 32-bit EH funclets. Matches +    // spillCalleeSavedRegisters. +    if (STI.is32Bit()) +      return true; +    // Don't restore CSRs before an SEH catchret. SEH except blocks do not form +    // funclets. emitEpilogue transforms these to normal jumps. +    if (MI->getOpcode() == X86::CATCHRET) { +      const Function &F = MBB.getParent()->getFunction(); +      bool IsSEH = isAsynchronousEHPersonality( +          classifyEHPersonality(F.getPersonalityFn())); +      if (IsSEH) +        return true; +    } +  } + +  DebugLoc DL = MBB.findDebugLoc(MI); + +  // Reload XMMs from stack frame. +  for (unsigned i = 0, e = CSI.size(); i != e; ++i) { +    unsigned Reg = CSI[i].getReg(); +    if (X86::GR64RegClass.contains(Reg) || +        X86::GR32RegClass.contains(Reg)) +      continue; + +    // If this is k-register make sure we lookup via the largest legal type. +    MVT VT = MVT::Other; +    if (X86::VK16RegClass.contains(Reg)) +      VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; + +    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); +    TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI); +  } + +  // POP GPRs. +  unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; +  for (unsigned i = 0, e = CSI.size(); i != e; ++i) { +    unsigned Reg = CSI[i].getReg(); +    if (!X86::GR64RegClass.contains(Reg) && +        !X86::GR32RegClass.contains(Reg)) +      continue; + +    BuildMI(MBB, MI, DL, TII.get(Opc), Reg) +        .setMIFlag(MachineInstr::FrameDestroy); +  } +  return true; +} + +void X86FrameLowering::determineCalleeSaves(MachineFunction &MF, +                                            BitVector &SavedRegs, +                                            RegScavenger *RS) const { +  TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); + +  // Spill the BasePtr if it's used. +  if (TRI->hasBasePointer(MF)){ +    Register BasePtr = TRI->getBaseRegister(); +    if (STI.isTarget64BitILP32()) +      BasePtr = getX86SubSuperRegister(BasePtr, 64); +    SavedRegs.set(BasePtr); +  } +} + +static bool +HasNestArgument(const MachineFunction *MF) { +  const Function &F = MF->getFunction(); +  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); +       I != E; I++) { +    if (I->hasNestAttr() && !I->use_empty()) +      return true; +  } +  return false; +} + +/// GetScratchRegister - Get a temp register for performing work in the +/// segmented stack and the Erlang/HiPE stack prologue. Depending on platform +/// and the properties of the function either one or two registers will be +/// needed. Set primary to true for the first register, false for the second. +static unsigned +GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) { +  CallingConv::ID CallingConvention = MF.getFunction().getCallingConv(); + +  // Erlang stuff. +  if (CallingConvention == CallingConv::HiPE) { +    if (Is64Bit) +      return Primary ? X86::R14 : X86::R13; +    else +      return Primary ? X86::EBX : X86::EDI; +  } + +  if (Is64Bit) { +    if (IsLP64) +      return Primary ? X86::R11 : X86::R12; +    else +      return Primary ? X86::R11D : X86::R12D; +  } + +  bool IsNested = HasNestArgument(&MF); + +  if (CallingConvention == CallingConv::X86_FastCall || +      CallingConvention == CallingConv::Fast || +      CallingConvention == CallingConv::Tail) { +    if (IsNested) +      report_fatal_error("Segmented stacks does not support fastcall with " +                         "nested function."); +    return Primary ? X86::EAX : X86::ECX; +  } +  if (IsNested) +    return Primary ? X86::EDX : X86::EAX; +  return Primary ? X86::ECX : X86::EAX; +} + +// The stack limit in the TCB is set to this many bytes above the actual stack +// limit. +static const uint64_t kSplitStackAvailable = 256; + +void X86FrameLowering::adjustForSegmentedStacks( +    MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { +  MachineFrameInfo &MFI = MF.getFrameInfo(); +  uint64_t StackSize; +  unsigned TlsReg, TlsOffset; +  DebugLoc DL; + +  // To support shrink-wrapping we would need to insert the new blocks +  // at the right place and update the branches to PrologueMBB. +  assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); + +  unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); +  assert(!MF.getRegInfo().isLiveIn(ScratchReg) && +         "Scratch register is live-in"); + +  if (MF.getFunction().isVarArg()) +    report_fatal_error("Segmented stacks do not support vararg functions."); +  if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && +      !STI.isTargetWin64() && !STI.isTargetFreeBSD() && +      !STI.isTargetDragonFly()) +    report_fatal_error("Segmented stacks not supported on this platform."); + +  // Eventually StackSize will be calculated by a link-time pass; which will +  // also decide whether checking code needs to be injected into this particular +  // prologue. +  StackSize = MFI.getStackSize(); + +  // Do not generate a prologue for leaf functions with a stack of size zero. +  // For non-leaf functions we have to allow for the possibility that the +  // callis to a non-split function, as in PR37807. This function could also +  // take the address of a non-split function. When the linker tries to adjust +  // its non-existent prologue, it would fail with an error. Mark the object +  // file so that such failures are not errors. See this Go language bug-report +  // https://go-review.googlesource.com/c/go/+/148819/ +  if (StackSize == 0 && !MFI.hasTailCall()) { +    MF.getMMI().setHasNosplitStack(true); +    return; +  } + +  MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); +  MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); +  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); +  bool IsNested = false; + +  // We need to know if the function has a nest argument only in 64 bit mode. +  if (Is64Bit) +    IsNested = HasNestArgument(&MF); + +  // The MOV R10, RAX needs to be in a different block, since the RET we emit in +  // allocMBB needs to be last (terminating) instruction. + +  for (const auto &LI : PrologueMBB.liveins()) { +    allocMBB->addLiveIn(LI); +    checkMBB->addLiveIn(LI); +  } + +  if (IsNested) +    allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); + +  MF.push_front(allocMBB); +  MF.push_front(checkMBB); + +  // When the frame size is less than 256 we just compare the stack +  // boundary directly to the value of the stack pointer, per gcc. +  bool CompareStackPointer = StackSize < kSplitStackAvailable; + +  // Read the limit off the current stacklet off the stack_guard location. +  if (Is64Bit) { +    if (STI.isTargetLinux()) { +      TlsReg = X86::FS; +      TlsOffset = IsLP64 ? 0x70 : 0x40; +    } else if (STI.isTargetDarwin()) { +      TlsReg = X86::GS; +      TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. +    } else if (STI.isTargetWin64()) { +      TlsReg = X86::GS; +      TlsOffset = 0x28; // pvArbitrary, reserved for application use +    } else if (STI.isTargetFreeBSD()) { +      TlsReg = X86::FS; +      TlsOffset = 0x18; +    } else if (STI.isTargetDragonFly()) { +      TlsReg = X86::FS; +      TlsOffset = 0x20; // use tls_tcb.tcb_segstack +    } else { +      report_fatal_error("Segmented stacks not supported on this platform."); +    } + +    if (CompareStackPointer) +      ScratchReg = IsLP64 ? X86::RSP : X86::ESP; +    else +      BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP) +        .addImm(1).addReg(0).addImm(-StackSize).addReg(0); + +    BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg) +      .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); +  } else { +    if (STI.isTargetLinux()) { +      TlsReg = X86::GS; +      TlsOffset = 0x30; +    } else if (STI.isTargetDarwin()) { +      TlsReg = X86::GS; +      TlsOffset = 0x48 + 90*4; +    } else if (STI.isTargetWin32()) { +      TlsReg = X86::FS; +      TlsOffset = 0x14; // pvArbitrary, reserved for application use +    } else if (STI.isTargetDragonFly()) { +      TlsReg = X86::FS; +      TlsOffset = 0x10; // use tls_tcb.tcb_segstack +    } else if (STI.isTargetFreeBSD()) { +      report_fatal_error("Segmented stacks not supported on FreeBSD i386."); +    } else { +      report_fatal_error("Segmented stacks not supported on this platform."); +    } + +    if (CompareStackPointer) +      ScratchReg = X86::ESP; +    else +      BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) +        .addImm(1).addReg(0).addImm(-StackSize).addReg(0); + +    if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || +        STI.isTargetDragonFly()) { +      BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) +        .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); +    } else if (STI.isTargetDarwin()) { + +      // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. +      unsigned ScratchReg2; +      bool SaveScratch2; +      if (CompareStackPointer) { +        // The primary scratch register is available for holding the TLS offset. +        ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); +        SaveScratch2 = false; +      } else { +        // Need to use a second register to hold the TLS offset +        ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); + +        // Unfortunately, with fastcc the second scratch register may hold an +        // argument. +        SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); +      } + +      // If Scratch2 is live-in then it needs to be saved. +      assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && +             "Scratch register is live-in and not saved"); + +      if (SaveScratch2) +        BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) +          .addReg(ScratchReg2, RegState::Kill); + +      BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) +        .addImm(TlsOffset); +      BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) +        .addReg(ScratchReg) +        .addReg(ScratchReg2).addImm(1).addReg(0) +        .addImm(0) +        .addReg(TlsReg); + +      if (SaveScratch2) +        BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); +    } +  } + +  // This jump is taken if SP >= (Stacklet Limit + Stack Space required). +  // It jumps to normal execution of the function body. +  BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A); + +  // On 32 bit we first push the arguments size and then the frame size. On 64 +  // bit, we pass the stack frame size in r10 and the argument size in r11. +  if (Is64Bit) { +    // Functions with nested arguments use R10, so it needs to be saved across +    // the call to _morestack + +    const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; +    const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; +    const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; +    const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; +    const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri; + +    if (IsNested) +      BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); + +    BuildMI(allocMBB, DL, TII.get(MOVri), Reg10) +      .addImm(StackSize); +    BuildMI(allocMBB, DL, TII.get(MOVri), Reg11) +      .addImm(X86FI->getArgumentStackSize()); +  } else { +    BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) +      .addImm(X86FI->getArgumentStackSize()); +    BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) +      .addImm(StackSize); +  } + +  // __morestack is in libgcc +  if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { +    // Under the large code model, we cannot assume that __morestack lives +    // within 2^31 bytes of the call site, so we cannot use pc-relative +    // addressing. We cannot perform the call via a temporary register, +    // as the rax register may be used to store the static chain, and all +    // other suitable registers may be either callee-save or used for +    // parameter passing. We cannot use the stack at this point either +    // because __morestack manipulates the stack directly. +    // +    // To avoid these issues, perform an indirect call via a read-only memory +    // location containing the address. +    // +    // This solution is not perfect, as it assumes that the .rodata section +    // is laid out within 2^31 bytes of each function body, but this seems +    // to be sufficient for JIT. +    // FIXME: Add retpoline support and remove the error here.. +    if (STI.useRetpolineIndirectCalls()) +      report_fatal_error("Emitting morestack calls on 64-bit with the large " +                         "code model and retpoline not yet implemented."); +    BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) +        .addReg(X86::RIP) +        .addImm(0) +        .addReg(0) +        .addExternalSymbol("__morestack_addr") +        .addReg(0); +    MF.getMMI().setUsesMorestackAddr(true); +  } else { +    if (Is64Bit) +      BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) +        .addExternalSymbol("__morestack"); +    else +      BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) +        .addExternalSymbol("__morestack"); +  } + +  if (IsNested) +    BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); +  else +    BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); + +  allocMBB->addSuccessor(&PrologueMBB); + +  checkMBB->addSuccessor(allocMBB, BranchProbability::getZero()); +  checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne()); + +#ifdef EXPENSIVE_CHECKS +  MF.verify(); +#endif +} + +/// Lookup an ERTS parameter in the !hipe.literals named metadata node. +/// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets +/// to fields it needs, through a named metadata node "hipe.literals" containing +/// name-value pairs. +static unsigned getHiPELiteral( +    NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) { +  for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) { +    MDNode *Node = HiPELiteralsMD->getOperand(i); +    if (Node->getNumOperands() != 2) continue; +    MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0)); +    ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1)); +    if (!NodeName || !NodeVal) continue; +    ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue()); +    if (ValConst && NodeName->getString() == LiteralName) { +      return ValConst->getZExtValue(); +    } +  } + +  report_fatal_error("HiPE literal " + LiteralName +                     + " required but not provided"); +} + +// Return true if there are no non-ehpad successors to MBB and there are no +// non-meta instructions between MBBI and MBB.end(). +static bool blockEndIsUnreachable(const MachineBasicBlock &MBB, +                                  MachineBasicBlock::const_iterator MBBI) { +  return std::all_of( +             MBB.succ_begin(), MBB.succ_end(), +             [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) && +         std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) { +           return MI.isMetaInstruction(); +         }); +} + +/// Erlang programs may need a special prologue to handle the stack size they +/// might need at runtime. That is because Erlang/OTP does not implement a C +/// stack but uses a custom implementation of hybrid stack/heap architecture. +/// (for more information see Eric Stenman's Ph.D. thesis: +/// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) +/// +/// CheckStack: +///       temp0 = sp - MaxStack +///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart +/// OldStart: +///       ... +/// IncStack: +///       call inc_stack   # doubles the stack space +///       temp0 = sp - MaxStack +///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart +void X86FrameLowering::adjustForHiPEPrologue( +    MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { +  MachineFrameInfo &MFI = MF.getFrameInfo(); +  DebugLoc DL; + +  // To support shrink-wrapping we would need to insert the new blocks +  // at the right place and update the branches to PrologueMBB. +  assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); + +  // HiPE-specific values +  NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule() +    ->getNamedMetadata("hipe.literals"); +  if (!HiPELiteralsMD) +    report_fatal_error( +        "Can't generate HiPE prologue without runtime parameters"); +  const unsigned HipeLeafWords +    = getHiPELiteral(HiPELiteralsMD, +                     Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS"); +  const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; +  const unsigned Guaranteed = HipeLeafWords * SlotSize; +  unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ? +                            MF.getFunction().arg_size() - CCRegisteredArgs : 0; +  unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize; + +  assert(STI.isTargetLinux() && +         "HiPE prologue is only supported on Linux operating systems."); + +  // Compute the largest caller's frame that is needed to fit the callees' +  // frames. This 'MaxStack' is computed from: +  // +  // a) the fixed frame size, which is the space needed for all spilled temps, +  // b) outgoing on-stack parameter areas, and +  // c) the minimum stack space this function needs to make available for the +  //    functions it calls (a tunable ABI property). +  if (MFI.hasCalls()) { +    unsigned MoreStackForCalls = 0; + +    for (auto &MBB : MF) { +      for (auto &MI : MBB) { +        if (!MI.isCall()) +          continue; + +        // Get callee operand. +        const MachineOperand &MO = MI.getOperand(0); + +        // Only take account of global function calls (no closures etc.). +        if (!MO.isGlobal()) +          continue; + +        const Function *F = dyn_cast<Function>(MO.getGlobal()); +        if (!F) +          continue; + +        // Do not update 'MaxStack' for primitive and built-in functions +        // (encoded with names either starting with "erlang."/"bif_" or not +        // having a ".", such as a simple <Module>.<Function>.<Arity>, or an +        // "_", such as the BIF "suspend_0") as they are executed on another +        // stack. +        if (F->getName().find("erlang.") != StringRef::npos || +            F->getName().find("bif_") != StringRef::npos || +            F->getName().find_first_of("._") == StringRef::npos) +          continue; + +        unsigned CalleeStkArity = +          F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; +        if (HipeLeafWords - 1 > CalleeStkArity) +          MoreStackForCalls = std::max(MoreStackForCalls, +                               (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); +      } +    } +    MaxStack += MoreStackForCalls; +  } + +  // If the stack frame needed is larger than the guaranteed then runtime checks +  // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. +  if (MaxStack > Guaranteed) { +    MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); +    MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); + +    for (const auto &LI : PrologueMBB.liveins()) { +      stackCheckMBB->addLiveIn(LI); +      incStackMBB->addLiveIn(LI); +    } + +    MF.push_front(incStackMBB); +    MF.push_front(stackCheckMBB); + +    unsigned ScratchReg, SPReg, PReg, SPLimitOffset; +    unsigned LEAop, CMPop, CALLop; +    SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT"); +    if (Is64Bit) { +      SPReg = X86::RSP; +      PReg  = X86::RBP; +      LEAop = X86::LEA64r; +      CMPop = X86::CMP64rm; +      CALLop = X86::CALL64pcrel32; +    } else { +      SPReg = X86::ESP; +      PReg  = X86::EBP; +      LEAop = X86::LEA32r; +      CMPop = X86::CMP32rm; +      CALLop = X86::CALLpcrel32; +    } + +    ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); +    assert(!MF.getRegInfo().isLiveIn(ScratchReg) && +           "HiPE prologue scratch register is live-in"); + +    // Create new MBB for StackCheck: +    addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), +                 SPReg, false, -MaxStack); +    // SPLimitOffset is in a fixed heap location (pointed by BP). +    addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) +                 .addReg(ScratchReg), PReg, false, SPLimitOffset); +    BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE); + +    // Create new MBB for IncStack: +    BuildMI(incStackMBB, DL, TII.get(CALLop)). +      addExternalSymbol("inc_stack_0"); +    addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), +                 SPReg, false, -MaxStack); +    addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) +                 .addReg(ScratchReg), PReg, false, SPLimitOffset); +    BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE); + +    stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100}); +    stackCheckMBB->addSuccessor(incStackMBB, {1, 100}); +    incStackMBB->addSuccessor(&PrologueMBB, {99, 100}); +    incStackMBB->addSuccessor(incStackMBB, {1, 100}); +  } +#ifdef EXPENSIVE_CHECKS +  MF.verify(); +#endif +} + +bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB, +                                           MachineBasicBlock::iterator MBBI, +                                           const DebugLoc &DL, +                                           int Offset) const { + +  if (Offset <= 0) +    return false; + +  if (Offset % SlotSize) +    return false; + +  int NumPops = Offset / SlotSize; +  // This is only worth it if we have at most 2 pops. +  if (NumPops != 1 && NumPops != 2) +    return false; + +  // Handle only the trivial case where the adjustment directly follows +  // a call. This is the most common one, anyway. +  if (MBBI == MBB.begin()) +    return false; +  MachineBasicBlock::iterator Prev = std::prev(MBBI); +  if (!Prev->isCall() || !Prev->getOperand(1).isRegMask()) +    return false; + +  unsigned Regs[2]; +  unsigned FoundRegs = 0; + +  auto &MRI = MBB.getParent()->getRegInfo(); +  auto RegMask = Prev->getOperand(1); + +  auto &RegClass = +      Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass; +  // Try to find up to NumPops free registers. +  for (auto Candidate : RegClass) { + +    // Poor man's liveness: +    // Since we're immediately after a call, any register that is clobbered +    // by the call and not defined by it can be considered dead. +    if (!RegMask.clobbersPhysReg(Candidate)) +      continue; + +    // Don't clobber reserved registers +    if (MRI.isReserved(Candidate)) +      continue; + +    bool IsDef = false; +    for (const MachineOperand &MO : Prev->implicit_operands()) { +      if (MO.isReg() && MO.isDef() && +          TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) { +        IsDef = true; +        break; +      } +    } + +    if (IsDef) +      continue; + +    Regs[FoundRegs++] = Candidate; +    if (FoundRegs == (unsigned)NumPops) +      break; +  } + +  if (FoundRegs == 0) +    return false; + +  // If we found only one free register, but need two, reuse the same one twice. +  while (FoundRegs < (unsigned)NumPops) +    Regs[FoundRegs++] = Regs[0]; + +  for (int i = 0; i < NumPops; ++i) +    BuildMI(MBB, MBBI, DL, +            TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]); + +  return true; +} + +MachineBasicBlock::iterator X86FrameLowering:: +eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, +                              MachineBasicBlock::iterator I) const { +  bool reserveCallFrame = hasReservedCallFrame(MF); +  unsigned Opcode = I->getOpcode(); +  bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); +  DebugLoc DL = I->getDebugLoc(); +  uint64_t Amount = TII.getFrameSize(*I); +  uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0; +  I = MBB.erase(I); +  auto InsertPos = skipDebugInstructionsForward(I, MBB.end()); + +  if (!reserveCallFrame) { +    // If the stack pointer can be changed after prologue, turn the +    // adjcallstackup instruction into a 'sub ESP, <amt>' and the +    // adjcallstackdown instruction into 'add ESP, <amt>' + +    // We need to keep the stack aligned properly.  To do this, we round the +    // amount of space needed for the outgoing arguments up to the next +    // alignment boundary. +    unsigned StackAlign = getStackAlignment(); +    Amount = alignTo(Amount, StackAlign); + +    MachineModuleInfo &MMI = MF.getMMI(); +    const Function &F = MF.getFunction(); +    bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); +    bool DwarfCFI = !WindowsCFI && +                    (MMI.hasDebugInfo() || F.needsUnwindTableEntry()); + +    // If we have any exception handlers in this function, and we adjust +    // the SP before calls, we may need to indicate this to the unwinder +    // using GNU_ARGS_SIZE. Note that this may be necessary even when +    // Amount == 0, because the preceding function may have set a non-0 +    // GNU_ARGS_SIZE. +    // TODO: We don't need to reset this between subsequent functions, +    // if it didn't change. +    bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty(); + +    if (HasDwarfEHHandlers && !isDestroy && +        MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences()) +      BuildCFI(MBB, InsertPos, DL, +               MCCFIInstruction::createGnuArgsSize(nullptr, Amount)); + +    if (Amount == 0) +      return I; + +    // Factor out the amount that gets handled inside the sequence +    // (Pushes of argument for frame setup, callee pops for frame destroy) +    Amount -= InternalAmt; + +    // TODO: This is needed only if we require precise CFA. +    // If this is a callee-pop calling convention, emit a CFA adjust for +    // the amount the callee popped. +    if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF)) +      BuildCFI(MBB, InsertPos, DL, +               MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt)); + +    // Add Amount to SP to destroy a frame, or subtract to setup. +    int64_t StackAdjustment = isDestroy ? Amount : -Amount; + +    if (StackAdjustment) { +      // Merge with any previous or following adjustment instruction. Note: the +      // instructions merged with here do not have CFI, so their stack +      // adjustments do not feed into CfaAdjustment. +      StackAdjustment += mergeSPUpdates(MBB, InsertPos, true); +      StackAdjustment += mergeSPUpdates(MBB, InsertPos, false); + +      if (StackAdjustment) { +        if (!(F.hasMinSize() && +              adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment))) +          BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment, +                               /*InEpilogue=*/false); +      } +    } + +    if (DwarfCFI && !hasFP(MF)) { +      // If we don't have FP, but need to generate unwind information, +      // we need to set the correct CFA offset after the stack adjustment. +      // How much we adjust the CFA offset depends on whether we're emitting +      // CFI only for EH purposes or for debugging. EH only requires the CFA +      // offset to be correct at each call site, while for debugging we want +      // it to be more precise. + +      int64_t CfaAdjustment = -StackAdjustment; +      // TODO: When not using precise CFA, we also need to adjust for the +      // InternalAmt here. +      if (CfaAdjustment) { +        BuildCFI(MBB, InsertPos, DL, +                 MCCFIInstruction::createAdjustCfaOffset(nullptr, +                                                         CfaAdjustment)); +      } +    } + +    return I; +  } + +  if (isDestroy && InternalAmt && !blockEndIsUnreachable(MBB, I)) { +    // If we are performing frame pointer elimination and if the callee pops +    // something off the stack pointer, add it back.  We do this until we have +    // more advanced stack pointer tracking ability. +    // We are not tracking the stack pointer adjustment by the callee, so make +    // sure we restore the stack pointer immediately after the call, there may +    // be spill code inserted between the CALL and ADJCALLSTACKUP instructions. +    MachineBasicBlock::iterator CI = I; +    MachineBasicBlock::iterator B = MBB.begin(); +    while (CI != B && !std::prev(CI)->isCall()) +      --CI; +    BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false); +  } + +  return I; +} + +bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { +  assert(MBB.getParent() && "Block is not attached to a function!"); +  const MachineFunction &MF = *MBB.getParent(); +  return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS); +} + +bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { +  assert(MBB.getParent() && "Block is not attached to a function!"); + +  // Win64 has strict requirements in terms of epilogue and we are +  // not taking a chance at messing with them. +  // I.e., unless this block is already an exit block, we can't use +  // it as an epilogue. +  if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock()) +    return false; + +  if (canUseLEAForSPInEpilogue(*MBB.getParent())) +    return true; + +  // If we cannot use LEA to adjust SP, we may need to use ADD, which +  // clobbers the EFLAGS. Check that we do not need to preserve it, +  // otherwise, conservatively assume this is not +  // safe to insert the epilogue here. +  return !flagsNeedToBePreservedBeforeTheTerminators(MBB); +} + +bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { +  // If we may need to emit frameless compact unwind information, give +  // up as this is currently broken: PR25614. +  return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) && +         // The lowering of segmented stack and HiPE only support entry blocks +         // as prologue blocks: PR26107. +         // This limitation may be lifted if we fix: +         // - adjustForSegmentedStacks +         // - adjustForHiPEPrologue +         MF.getFunction().getCallingConv() != CallingConv::HiPE && +         !MF.shouldSplitStack(); +} + +MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers( +    MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, +    const DebugLoc &DL, bool RestoreSP) const { +  assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env"); +  assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32"); +  assert(STI.is32Bit() && !Uses64BitFramePtr && +         "restoring EBP/ESI on non-32-bit target"); + +  MachineFunction &MF = *MBB.getParent(); +  Register FramePtr = TRI->getFrameRegister(MF); +  Register BasePtr = TRI->getBaseRegister(); +  WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo(); +  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); +  MachineFrameInfo &MFI = MF.getFrameInfo(); + +  // FIXME: Don't set FrameSetup flag in catchret case. + +  int FI = FuncInfo.EHRegNodeFrameIndex; +  int EHRegSize = MFI.getObjectSize(FI); + +  if (RestoreSP) { +    // MOV32rm -EHRegSize(%ebp), %esp +    addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP), +                 X86::EBP, true, -EHRegSize) +        .setMIFlag(MachineInstr::FrameSetup); +  } + +  unsigned UsedReg; +  int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg); +  int EndOffset = -EHRegOffset - EHRegSize; +  FuncInfo.EHRegNodeEndOffset = EndOffset; + +  if (UsedReg == FramePtr) { +    // ADD $offset, %ebp +    unsigned ADDri = getADDriOpcode(false, EndOffset); +    BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr) +        .addReg(FramePtr) +        .addImm(EndOffset) +        .setMIFlag(MachineInstr::FrameSetup) +        ->getOperand(3) +        .setIsDead(); +    assert(EndOffset >= 0 && +           "end of registration object above normal EBP position!"); +  } else if (UsedReg == BasePtr) { +    // LEA offset(%ebp), %esi +    addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr), +                 FramePtr, false, EndOffset) +        .setMIFlag(MachineInstr::FrameSetup); +    // MOV32rm SavedEBPOffset(%esi), %ebp +    assert(X86FI->getHasSEHFramePtrSave()); +    int Offset = +        getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg); +    assert(UsedReg == BasePtr); +    addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr), +                 UsedReg, true, Offset) +        .setMIFlag(MachineInstr::FrameSetup); +  } else { +    llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr"); +  } +  return MBBI; +} + +int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const { +  return TRI->getSlotSize(); +} + +unsigned X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) +    const { +  return TRI->getDwarfRegNum(StackPtr, true); +} + +namespace { +// Struct used by orderFrameObjects to help sort the stack objects. +struct X86FrameSortingObject { +  bool IsValid = false;         // true if we care about this Object. +  unsigned ObjectIndex = 0;     // Index of Object into MFI list. +  unsigned ObjectSize = 0;      // Size of Object in bytes. +  unsigned ObjectAlignment = 1; // Alignment of Object in bytes. +  unsigned ObjectNumUses = 0;   // Object static number of uses. +}; + +// The comparison function we use for std::sort to order our local +// stack symbols. The current algorithm is to use an estimated +// "density". This takes into consideration the size and number of +// uses each object has in order to roughly minimize code size. +// So, for example, an object of size 16B that is referenced 5 times +// will get higher priority than 4 4B objects referenced 1 time each. +// It's not perfect and we may be able to squeeze a few more bytes out of +// it (for example : 0(esp) requires fewer bytes, symbols allocated at the +// fringe end can have special consideration, given their size is less +// important, etc.), but the algorithmic complexity grows too much to be +// worth the extra gains we get. This gets us pretty close. +// The final order leaves us with objects with highest priority going +// at the end of our list. +struct X86FrameSortingComparator { +  inline bool operator()(const X86FrameSortingObject &A, +                         const X86FrameSortingObject &B) { +    uint64_t DensityAScaled, DensityBScaled; + +    // For consistency in our comparison, all invalid objects are placed +    // at the end. This also allows us to stop walking when we hit the +    // first invalid item after it's all sorted. +    if (!A.IsValid) +      return false; +    if (!B.IsValid) +      return true; + +    // The density is calculated by doing : +    //     (double)DensityA = A.ObjectNumUses / A.ObjectSize +    //     (double)DensityB = B.ObjectNumUses / B.ObjectSize +    // Since this approach may cause inconsistencies in +    // the floating point <, >, == comparisons, depending on the floating +    // point model with which the compiler was built, we're going +    // to scale both sides by multiplying with +    // A.ObjectSize * B.ObjectSize. This ends up factoring away +    // the division and, with it, the need for any floating point +    // arithmetic. +    DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) * +      static_cast<uint64_t>(B.ObjectSize); +    DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) * +      static_cast<uint64_t>(A.ObjectSize); + +    // If the two densities are equal, prioritize highest alignment +    // objects. This allows for similar alignment objects +    // to be packed together (given the same density). +    // There's room for improvement here, also, since we can pack +    // similar alignment (different density) objects next to each +    // other to save padding. This will also require further +    // complexity/iterations, and the overall gain isn't worth it, +    // in general. Something to keep in mind, though. +    if (DensityAScaled == DensityBScaled) +      return A.ObjectAlignment < B.ObjectAlignment; + +    return DensityAScaled < DensityBScaled; +  } +}; +} // namespace + +// Order the symbols in the local stack. +// We want to place the local stack objects in some sort of sensible order. +// The heuristic we use is to try and pack them according to static number +// of uses and size of object in order to minimize code size. +void X86FrameLowering::orderFrameObjects( +    const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { +  const MachineFrameInfo &MFI = MF.getFrameInfo(); + +  // Don't waste time if there's nothing to do. +  if (ObjectsToAllocate.empty()) +    return; + +  // Create an array of all MFI objects. We won't need all of these +  // objects, but we're going to create a full array of them to make +  // it easier to index into when we're counting "uses" down below. +  // We want to be able to easily/cheaply access an object by simply +  // indexing into it, instead of having to search for it every time. +  std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd()); + +  // Walk the objects we care about and mark them as such in our working +  // struct. +  for (auto &Obj : ObjectsToAllocate) { +    SortingObjects[Obj].IsValid = true; +    SortingObjects[Obj].ObjectIndex = Obj; +    SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlignment(Obj); +    // Set the size. +    int ObjectSize = MFI.getObjectSize(Obj); +    if (ObjectSize == 0) +      // Variable size. Just use 4. +      SortingObjects[Obj].ObjectSize = 4; +    else +      SortingObjects[Obj].ObjectSize = ObjectSize; +  } + +  // Count the number of uses for each object. +  for (auto &MBB : MF) { +    for (auto &MI : MBB) { +      if (MI.isDebugInstr()) +        continue; +      for (const MachineOperand &MO : MI.operands()) { +        // Check to see if it's a local stack symbol. +        if (!MO.isFI()) +          continue; +        int Index = MO.getIndex(); +        // Check to see if it falls within our range, and is tagged +        // to require ordering. +        if (Index >= 0 && Index < MFI.getObjectIndexEnd() && +            SortingObjects[Index].IsValid) +          SortingObjects[Index].ObjectNumUses++; +      } +    } +  } + +  // Sort the objects using X86FrameSortingAlgorithm (see its comment for +  // info). +  llvm::stable_sort(SortingObjects, X86FrameSortingComparator()); + +  // Now modify the original list to represent the final order that +  // we want. The order will depend on whether we're going to access them +  // from the stack pointer or the frame pointer. For SP, the list should +  // end up with the END containing objects that we want with smaller offsets. +  // For FP, it should be flipped. +  int i = 0; +  for (auto &Obj : SortingObjects) { +    // All invalid items are sorted at the end, so it's safe to stop. +    if (!Obj.IsValid) +      break; +    ObjectsToAllocate[i++] = Obj.ObjectIndex; +  } + +  // Flip it if we're accessing off of the FP. +  if (!TRI->needsStackRealignment(MF) && hasFP(MF)) +    std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end()); +} + + +unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const { +  // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue. +  unsigned Offset = 16; +  // RBP is immediately pushed. +  Offset += SlotSize; +  // All callee-saved registers are then pushed. +  Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); +  // Every funclet allocates enough stack space for the largest outgoing call. +  Offset += getWinEHFuncletFrameSize(MF); +  return Offset; +} + +void X86FrameLowering::processFunctionBeforeFrameFinalized( +    MachineFunction &MF, RegScavenger *RS) const { +  // Mark the function as not having WinCFI. We will set it back to true in +  // emitPrologue if it gets called and emits CFI. +  MF.setHasWinCFI(false); + +  // If this function isn't doing Win64-style C++ EH, we don't need to do +  // anything. +  const Function &F = MF.getFunction(); +  if (!STI.is64Bit() || !MF.hasEHFunclets() || +      classifyEHPersonality(F.getPersonalityFn()) != EHPersonality::MSVC_CXX) +    return; + +  // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset +  // relative to RSP after the prologue.  Find the offset of the last fixed +  // object, so that we can allocate a slot immediately following it. If there +  // were no fixed objects, use offset -SlotSize, which is immediately after the +  // return address. Fixed objects have negative frame indices. +  MachineFrameInfo &MFI = MF.getFrameInfo(); +  WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); +  int64_t MinFixedObjOffset = -SlotSize; +  for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) +    MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I)); + +  for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { +    for (WinEHHandlerType &H : TBME.HandlerArray) { +      int FrameIndex = H.CatchObj.FrameIndex; +      if (FrameIndex != INT_MAX) { +        // Ensure alignment. +        unsigned Align = MFI.getObjectAlignment(FrameIndex); +        MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align; +        MinFixedObjOffset -= MFI.getObjectSize(FrameIndex); +        MFI.setObjectOffset(FrameIndex, MinFixedObjOffset); +      } +    } +  } + +  // Ensure alignment. +  MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8; +  int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize; +  int UnwindHelpFI = +      MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false); +  EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; + +  // Store -2 into UnwindHelp on function entry. We have to scan forwards past +  // other frame setup instructions. +  MachineBasicBlock &MBB = MF.front(); +  auto MBBI = MBB.begin(); +  while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) +    ++MBBI; + +  DebugLoc DL = MBB.findDebugLoc(MBBI); +  addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)), +                    UnwindHelpFI) +      .addImm(-2); +} | 
