summaryrefslogtreecommitdiff
path: root/llvm/lib/Target/X86/X86FrameLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Target/X86/X86FrameLowering.cpp')
-rw-r--r--llvm/lib/Target/X86/X86FrameLowering.cpp3225
1 files changed, 3225 insertions, 0 deletions
diff --git a/llvm/lib/Target/X86/X86FrameLowering.cpp b/llvm/lib/Target/X86/X86FrameLowering.cpp
new file mode 100644
index 000000000000..1b469a814adc
--- /dev/null
+++ b/llvm/lib/Target/X86/X86FrameLowering.cpp
@@ -0,0 +1,3225 @@
+//===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the X86 implementation of TargetFrameLowering class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86FrameLowering.h"
+#include "X86InstrBuilder.h"
+#include "X86InstrInfo.h"
+#include "X86MachineFunctionInfo.h"
+#include "X86Subtarget.h"
+#include "X86TargetMachine.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/Analysis/EHPersonalities.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/WinEHFuncInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Target/TargetOptions.h"
+#include <cstdlib>
+
+using namespace llvm;
+
+X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
+ MaybeAlign StackAlignOverride)
+ : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(),
+ STI.is64Bit() ? -8 : -4),
+ STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
+ // Cache a bunch of frame-related predicates for this subtarget.
+ SlotSize = TRI->getSlotSize();
+ Is64Bit = STI.is64Bit();
+ IsLP64 = STI.isTarget64BitLP64();
+ // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
+ Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
+ StackPtr = TRI->getStackRegister();
+}
+
+bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
+ return !MF.getFrameInfo().hasVarSizedObjects() &&
+ !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
+}
+
+/// canSimplifyCallFramePseudos - If there is a reserved call frame, the
+/// call frame pseudos can be simplified. Having a FP, as in the default
+/// implementation, is not sufficient here since we can't always use it.
+/// Use a more nuanced condition.
+bool
+X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
+ return hasReservedCallFrame(MF) ||
+ (hasFP(MF) && !TRI->needsStackRealignment(MF)) ||
+ TRI->hasBasePointer(MF);
+}
+
+// needsFrameIndexResolution - Do we need to perform FI resolution for
+// this function. Normally, this is required only when the function
+// has any stack objects. However, FI resolution actually has another job,
+// not apparent from the title - it resolves callframesetup/destroy
+// that were not simplified earlier.
+// So, this is required for x86 functions that have push sequences even
+// when there are no stack objects.
+bool
+X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
+ return MF.getFrameInfo().hasStackObjects() ||
+ MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
+}
+
+/// hasFP - Return true if the specified function should have a dedicated frame
+/// pointer register. This is true if the function has variable sized allocas
+/// or if frame pointer elimination is disabled.
+bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
+ const MachineFrameInfo &MFI = MF.getFrameInfo();
+ return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
+ TRI->needsStackRealignment(MF) ||
+ MFI.hasVarSizedObjects() ||
+ MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() ||
+ MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
+ MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() ||
+ MFI.hasStackMap() || MFI.hasPatchPoint() ||
+ MFI.hasCopyImplyingStackAdjustment());
+}
+
+static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) {
+ if (IsLP64) {
+ if (isInt<8>(Imm))
+ return X86::SUB64ri8;
+ return X86::SUB64ri32;
+ } else {
+ if (isInt<8>(Imm))
+ return X86::SUB32ri8;
+ return X86::SUB32ri;
+ }
+}
+
+static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) {
+ if (IsLP64) {
+ if (isInt<8>(Imm))
+ return X86::ADD64ri8;
+ return X86::ADD64ri32;
+ } else {
+ if (isInt<8>(Imm))
+ return X86::ADD32ri8;
+ return X86::ADD32ri;
+ }
+}
+
+static unsigned getSUBrrOpcode(unsigned isLP64) {
+ return isLP64 ? X86::SUB64rr : X86::SUB32rr;
+}
+
+static unsigned getADDrrOpcode(unsigned isLP64) {
+ return isLP64 ? X86::ADD64rr : X86::ADD32rr;
+}
+
+static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
+ if (IsLP64) {
+ if (isInt<8>(Imm))
+ return X86::AND64ri8;
+ return X86::AND64ri32;
+ }
+ if (isInt<8>(Imm))
+ return X86::AND32ri8;
+ return X86::AND32ri;
+}
+
+static unsigned getLEArOpcode(unsigned IsLP64) {
+ return IsLP64 ? X86::LEA64r : X86::LEA32r;
+}
+
+/// findDeadCallerSavedReg - Return a caller-saved register that isn't live
+/// when it reaches the "return" instruction. We can then pop a stack object
+/// to this register without worry about clobbering it.
+static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI,
+ const X86RegisterInfo *TRI,
+ bool Is64Bit) {
+ const MachineFunction *MF = MBB.getParent();
+ if (MF->callsEHReturn())
+ return 0;
+
+ const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF);
+
+ if (MBBI == MBB.end())
+ return 0;
+
+ switch (MBBI->getOpcode()) {
+ default: return 0;
+ case TargetOpcode::PATCHABLE_RET:
+ case X86::RET:
+ case X86::RETL:
+ case X86::RETQ:
+ case X86::RETIL:
+ case X86::RETIQ:
+ case X86::TCRETURNdi:
+ case X86::TCRETURNri:
+ case X86::TCRETURNmi:
+ case X86::TCRETURNdi64:
+ case X86::TCRETURNri64:
+ case X86::TCRETURNmi64:
+ case X86::EH_RETURN:
+ case X86::EH_RETURN64: {
+ SmallSet<uint16_t, 8> Uses;
+ for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MBBI->getOperand(i);
+ if (!MO.isReg() || MO.isDef())
+ continue;
+ Register Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
+ Uses.insert(*AI);
+ }
+
+ for (auto CS : AvailableRegs)
+ if (!Uses.count(CS) && CS != X86::RIP && CS != X86::RSP &&
+ CS != X86::ESP)
+ return CS;
+ }
+ }
+
+ return 0;
+}
+
+static bool isEAXLiveIn(MachineBasicBlock &MBB) {
+ for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) {
+ unsigned Reg = RegMask.PhysReg;
+
+ if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
+ Reg == X86::AH || Reg == X86::AL)
+ return true;
+ }
+
+ return false;
+}
+
+/// Check if the flags need to be preserved before the terminators.
+/// This would be the case, if the eflags is live-in of the region
+/// composed by the terminators or live-out of that region, without
+/// being defined by a terminator.
+static bool
+flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
+ for (const MachineInstr &MI : MBB.terminators()) {
+ bool BreakNext = false;
+ for (const MachineOperand &MO : MI.operands()) {
+ if (!MO.isReg())
+ continue;
+ Register Reg = MO.getReg();
+ if (Reg != X86::EFLAGS)
+ continue;
+
+ // This terminator needs an eflags that is not defined
+ // by a previous another terminator:
+ // EFLAGS is live-in of the region composed by the terminators.
+ if (!MO.isDef())
+ return true;
+ // This terminator defines the eflags, i.e., we don't need to preserve it.
+ // However, we still need to check this specific terminator does not
+ // read a live-in value.
+ BreakNext = true;
+ }
+ // We found a definition of the eflags, no need to preserve them.
+ if (BreakNext)
+ return false;
+ }
+
+ // None of the terminators use or define the eflags.
+ // Check if they are live-out, that would imply we need to preserve them.
+ for (const MachineBasicBlock *Succ : MBB.successors())
+ if (Succ->isLiveIn(X86::EFLAGS))
+ return true;
+
+ return false;
+}
+
+/// emitSPUpdate - Emit a series of instructions to increment / decrement the
+/// stack pointer by a constant value.
+void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI,
+ const DebugLoc &DL,
+ int64_t NumBytes, bool InEpilogue) const {
+ bool isSub = NumBytes < 0;
+ uint64_t Offset = isSub ? -NumBytes : NumBytes;
+ MachineInstr::MIFlag Flag =
+ isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy;
+
+ uint64_t Chunk = (1LL << 31) - 1;
+
+ if (Offset > Chunk) {
+ // Rather than emit a long series of instructions for large offsets,
+ // load the offset into a register and do one sub/add
+ unsigned Reg = 0;
+ unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
+
+ if (isSub && !isEAXLiveIn(MBB))
+ Reg = Rax;
+ else
+ Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
+
+ unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri;
+ unsigned AddSubRROpc =
+ isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit);
+ if (Reg) {
+ BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg)
+ .addImm(Offset)
+ .setMIFlag(Flag);
+ MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr)
+ .addReg(StackPtr)
+ .addReg(Reg);
+ MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
+ return;
+ } else if (Offset > 8 * Chunk) {
+ // If we would need more than 8 add or sub instructions (a >16GB stack
+ // frame), it's worth spilling RAX to materialize this immediate.
+ // pushq %rax
+ // movabsq +-$Offset+-SlotSize, %rax
+ // addq %rsp, %rax
+ // xchg %rax, (%rsp)
+ // movq (%rsp), %rsp
+ assert(Is64Bit && "can't have 32-bit 16GB stack frame");
+ BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
+ .addReg(Rax, RegState::Kill)
+ .setMIFlag(Flag);
+ // Subtract is not commutative, so negate the offset and always use add.
+ // Subtract 8 less and add 8 more to account for the PUSH we just did.
+ if (isSub)
+ Offset = -(Offset - SlotSize);
+ else
+ Offset = Offset + SlotSize;
+ BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax)
+ .addImm(Offset)
+ .setMIFlag(Flag);
+ MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax)
+ .addReg(Rax)
+ .addReg(StackPtr);
+ MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
+ // Exchange the new SP in RAX with the top of the stack.
+ addRegOffset(
+ BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax),
+ StackPtr, false, 0);
+ // Load new SP from the top of the stack into RSP.
+ addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr),
+ StackPtr, false, 0);
+ return;
+ }
+ }
+
+ while (Offset) {
+ uint64_t ThisVal = std::min(Offset, Chunk);
+ if (ThisVal == SlotSize) {
+ // Use push / pop for slot sized adjustments as a size optimization. We
+ // need to find a dead register when using pop.
+ unsigned Reg = isSub
+ ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
+ : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
+ if (Reg) {
+ unsigned Opc = isSub
+ ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
+ : (Is64Bit ? X86::POP64r : X86::POP32r);
+ BuildMI(MBB, MBBI, DL, TII.get(Opc))
+ .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub))
+ .setMIFlag(Flag);
+ Offset -= ThisVal;
+ continue;
+ }
+ }
+
+ BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue)
+ .setMIFlag(Flag);
+
+ Offset -= ThisVal;
+ }
+}
+
+MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
+ MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
+ const DebugLoc &DL, int64_t Offset, bool InEpilogue) const {
+ assert(Offset != 0 && "zero offset stack adjustment requested");
+
+ // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
+ // is tricky.
+ bool UseLEA;
+ if (!InEpilogue) {
+ // Check if inserting the prologue at the beginning
+ // of MBB would require to use LEA operations.
+ // We need to use LEA operations if EFLAGS is live in, because
+ // it means an instruction will read it before it gets defined.
+ UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
+ } else {
+ // If we can use LEA for SP but we shouldn't, check that none
+ // of the terminators uses the eflags. Otherwise we will insert
+ // a ADD that will redefine the eflags and break the condition.
+ // Alternatively, we could move the ADD, but this may not be possible
+ // and is an optimization anyway.
+ UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
+ if (UseLEA && !STI.useLeaForSP())
+ UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
+ // If that assert breaks, that means we do not do the right thing
+ // in canUseAsEpilogue.
+ assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
+ "We shouldn't have allowed this insertion point");
+ }
+
+ MachineInstrBuilder MI;
+ if (UseLEA) {
+ MI = addRegOffset(BuildMI(MBB, MBBI, DL,
+ TII.get(getLEArOpcode(Uses64BitFramePtr)),
+ StackPtr),
+ StackPtr, false, Offset);
+ } else {
+ bool IsSub = Offset < 0;
+ uint64_t AbsOffset = IsSub ? -Offset : Offset;
+ unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset)
+ : getADDriOpcode(Uses64BitFramePtr, AbsOffset);
+ MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
+ .addReg(StackPtr)
+ .addImm(AbsOffset);
+ MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
+ }
+ return MI;
+}
+
+int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI,
+ bool doMergeWithPrevious) const {
+ if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
+ (!doMergeWithPrevious && MBBI == MBB.end()))
+ return 0;
+
+ MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
+
+ PI = skipDebugInstructionsBackward(PI, MBB.begin());
+ // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI
+ // instruction, and that there are no DBG_VALUE or other instructions between
+ // ADD/SUB/LEA and its corresponding CFI instruction.
+ /* TODO: Add support for the case where there are multiple CFI instructions
+ below the ADD/SUB/LEA, e.g.:
+ ...
+ add
+ cfi_def_cfa_offset
+ cfi_offset
+ ...
+ */
+ if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction())
+ PI = std::prev(PI);
+
+ unsigned Opc = PI->getOpcode();
+ int Offset = 0;
+
+ if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
+ Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
+ PI->getOperand(0).getReg() == StackPtr){
+ assert(PI->getOperand(1).getReg() == StackPtr);
+ Offset = PI->getOperand(2).getImm();
+ } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
+ PI->getOperand(0).getReg() == StackPtr &&
+ PI->getOperand(1).getReg() == StackPtr &&
+ PI->getOperand(2).getImm() == 1 &&
+ PI->getOperand(3).getReg() == X86::NoRegister &&
+ PI->getOperand(5).getReg() == X86::NoRegister) {
+ // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg.
+ Offset = PI->getOperand(4).getImm();
+ } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
+ Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
+ PI->getOperand(0).getReg() == StackPtr) {
+ assert(PI->getOperand(1).getReg() == StackPtr);
+ Offset = -PI->getOperand(2).getImm();
+ } else
+ return 0;
+
+ PI = MBB.erase(PI);
+ if (PI != MBB.end() && PI->isCFIInstruction()) PI = MBB.erase(PI);
+ if (!doMergeWithPrevious)
+ MBBI = skipDebugInstructionsForward(PI, MBB.end());
+
+ return Offset;
+}
+
+void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ const DebugLoc &DL,
+ const MCCFIInstruction &CFIInst) const {
+ MachineFunction &MF = *MBB.getParent();
+ unsigned CFIIndex = MF.addFrameInst(CFIInst);
+ BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
+ .addCFIIndex(CFIIndex);
+}
+
+void X86FrameLowering::emitCalleeSavedFrameMoves(
+ MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
+ const DebugLoc &DL) const {
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ MachineModuleInfo &MMI = MF.getMMI();
+ const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
+
+ // Add callee saved registers to move list.
+ const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
+ if (CSI.empty()) return;
+
+ // Calculate offsets.
+ for (std::vector<CalleeSavedInfo>::const_iterator
+ I = CSI.begin(), E = CSI.end(); I != E; ++I) {
+ int64_t Offset = MFI.getObjectOffset(I->getFrameIdx());
+ unsigned Reg = I->getReg();
+
+ unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
+ BuildCFI(MBB, MBBI, DL,
+ MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
+ }
+}
+
+void X86FrameLowering::emitStackProbe(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ const DebugLoc &DL, bool InProlog) const {
+ const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
+ if (STI.isTargetWindowsCoreCLR()) {
+ if (InProlog) {
+ emitStackProbeInlineStub(MF, MBB, MBBI, DL, true);
+ } else {
+ emitStackProbeInline(MF, MBB, MBBI, DL, false);
+ }
+ } else {
+ emitStackProbeCall(MF, MBB, MBBI, DL, InProlog);
+ }
+}
+
+void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
+ MachineBasicBlock &PrologMBB) const {
+ const StringRef ChkStkStubSymbol = "__chkstk_stub";
+ MachineInstr *ChkStkStub = nullptr;
+
+ for (MachineInstr &MI : PrologMBB) {
+ if (MI.isCall() && MI.getOperand(0).isSymbol() &&
+ ChkStkStubSymbol == MI.getOperand(0).getSymbolName()) {
+ ChkStkStub = &MI;
+ break;
+ }
+ }
+
+ if (ChkStkStub != nullptr) {
+ assert(!ChkStkStub->isBundled() &&
+ "Not expecting bundled instructions here");
+ MachineBasicBlock::iterator MBBI = std::next(ChkStkStub->getIterator());
+ assert(std::prev(MBBI) == ChkStkStub &&
+ "MBBI expected after __chkstk_stub.");
+ DebugLoc DL = PrologMBB.findDebugLoc(MBBI);
+ emitStackProbeInline(MF, PrologMBB, MBBI, DL, true);
+ ChkStkStub->eraseFromParent();
+ }
+}
+
+void X86FrameLowering::emitStackProbeInline(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ const DebugLoc &DL,
+ bool InProlog) const {
+ const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
+ assert(STI.is64Bit() && "different expansion needed for 32 bit");
+ assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
+ const TargetInstrInfo &TII = *STI.getInstrInfo();
+ const BasicBlock *LLVM_BB = MBB.getBasicBlock();
+
+ // RAX contains the number of bytes of desired stack adjustment.
+ // The handling here assumes this value has already been updated so as to
+ // maintain stack alignment.
+ //
+ // We need to exit with RSP modified by this amount and execute suitable
+ // page touches to notify the OS that we're growing the stack responsibly.
+ // All stack probing must be done without modifying RSP.
+ //
+ // MBB:
+ // SizeReg = RAX;
+ // ZeroReg = 0
+ // CopyReg = RSP
+ // Flags, TestReg = CopyReg - SizeReg
+ // FinalReg = !Flags.Ovf ? TestReg : ZeroReg
+ // LimitReg = gs magic thread env access
+ // if FinalReg >= LimitReg goto ContinueMBB
+ // RoundBB:
+ // RoundReg = page address of FinalReg
+ // LoopMBB:
+ // LoopReg = PHI(LimitReg,ProbeReg)
+ // ProbeReg = LoopReg - PageSize
+ // [ProbeReg] = 0
+ // if (ProbeReg > RoundReg) goto LoopMBB
+ // ContinueMBB:
+ // RSP = RSP - RAX
+ // [rest of original MBB]
+
+ // Set up the new basic blocks
+ MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);
+
+ MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
+ MF.insert(MBBIter, RoundMBB);
+ MF.insert(MBBIter, LoopMBB);
+ MF.insert(MBBIter, ContinueMBB);
+
+ // Split MBB and move the tail portion down to ContinueMBB.
+ MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
+ ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
+ ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);
+
+ // Some useful constants
+ const int64_t ThreadEnvironmentStackLimit = 0x10;
+ const int64_t PageSize = 0x1000;
+ const int64_t PageMask = ~(PageSize - 1);
+
+ // Registers we need. For the normal case we use virtual
+ // registers. For the prolog expansion we use RAX, RCX and RDX.
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ const TargetRegisterClass *RegClass = &X86::GR64RegClass;
+ const Register SizeReg = InProlog ? X86::RAX
+ : MRI.createVirtualRegister(RegClass),
+ ZeroReg = InProlog ? X86::RCX
+ : MRI.createVirtualRegister(RegClass),
+ CopyReg = InProlog ? X86::RDX
+ : MRI.createVirtualRegister(RegClass),
+ TestReg = InProlog ? X86::RDX
+ : MRI.createVirtualRegister(RegClass),
+ FinalReg = InProlog ? X86::RDX
+ : MRI.createVirtualRegister(RegClass),
+ RoundedReg = InProlog ? X86::RDX
+ : MRI.createVirtualRegister(RegClass),
+ LimitReg = InProlog ? X86::RCX
+ : MRI.createVirtualRegister(RegClass),
+ JoinReg = InProlog ? X86::RCX
+ : MRI.createVirtualRegister(RegClass),
+ ProbeReg = InProlog ? X86::RCX
+ : MRI.createVirtualRegister(RegClass);
+
+ // SP-relative offsets where we can save RCX and RDX.
+ int64_t RCXShadowSlot = 0;
+ int64_t RDXShadowSlot = 0;
+
+ // If inlining in the prolog, save RCX and RDX.
+ if (InProlog) {
+ // Compute the offsets. We need to account for things already
+ // pushed onto the stack at this point: return address, frame
+ // pointer (if used), and callee saves.
+ X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
+ const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
+ const bool HasFP = hasFP(MF);
+
+ // Check if we need to spill RCX and/or RDX.
+ // Here we assume that no earlier prologue instruction changes RCX and/or
+ // RDX, so checking the block live-ins is enough.
+ const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX);
+ const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX);
+ int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
+ // Assign the initial slot to both registers, then change RDX's slot if both
+ // need to be spilled.
+ if (IsRCXLiveIn)
+ RCXShadowSlot = InitSlot;
+ if (IsRDXLiveIn)
+ RDXShadowSlot = InitSlot;
+ if (IsRDXLiveIn && IsRCXLiveIn)
+ RDXShadowSlot += 8;
+ // Emit the saves if needed.
+ if (IsRCXLiveIn)
+ addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
+ RCXShadowSlot)
+ .addReg(X86::RCX);
+ if (IsRDXLiveIn)
+ addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
+ RDXShadowSlot)
+ .addReg(X86::RDX);
+ } else {
+ // Not in the prolog. Copy RAX to a virtual reg.
+ BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
+ }
+
+ // Add code to MBB to check for overflow and set the new target stack pointer
+ // to zero if so.
+ BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
+ .addReg(ZeroReg, RegState::Undef)
+ .addReg(ZeroReg, RegState::Undef);
+ BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
+ BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
+ .addReg(CopyReg)
+ .addReg(SizeReg);
+ BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg)
+ .addReg(TestReg)
+ .addReg(ZeroReg)
+ .addImm(X86::COND_B);
+
+ // FinalReg now holds final stack pointer value, or zero if
+ // allocation would overflow. Compare against the current stack
+ // limit from the thread environment block. Note this limit is the
+ // lowest touched page on the stack, not the point at which the OS
+ // will cause an overflow exception, so this is just an optimization
+ // to avoid unnecessarily touching pages that are below the current
+ // SP but already committed to the stack by the OS.
+ BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
+ .addReg(0)
+ .addImm(1)
+ .addReg(0)
+ .addImm(ThreadEnvironmentStackLimit)
+ .addReg(X86::GS);
+ BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
+ // Jump if the desired stack pointer is at or above the stack limit.
+ BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE);
+
+ // Add code to roundMBB to round the final stack pointer to a page boundary.
+ RoundMBB->addLiveIn(FinalReg);
+ BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
+ .addReg(FinalReg)
+ .addImm(PageMask);
+ BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
+
+ // LimitReg now holds the current stack limit, RoundedReg page-rounded
+ // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
+ // and probe until we reach RoundedReg.
+ if (!InProlog) {
+ BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
+ .addReg(LimitReg)
+ .addMBB(RoundMBB)
+ .addReg(ProbeReg)
+ .addMBB(LoopMBB);
+ }
+
+ LoopMBB->addLiveIn(JoinReg);
+ addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
+ false, -PageSize);
+
+ // Probe by storing a byte onto the stack.
+ BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
+ .addReg(ProbeReg)
+ .addImm(1)
+ .addReg(0)
+ .addImm(0)
+ .addReg(0)
+ .addImm(0);
+
+ LoopMBB->addLiveIn(RoundedReg);
+ BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
+ .addReg(RoundedReg)
+ .addReg(ProbeReg);
+ BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE);
+
+ MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
+
+ // If in prolog, restore RDX and RCX.
+ if (InProlog) {
+ if (RCXShadowSlot) // It means we spilled RCX in the prologue.
+ addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
+ TII.get(X86::MOV64rm), X86::RCX),
+ X86::RSP, false, RCXShadowSlot);
+ if (RDXShadowSlot) // It means we spilled RDX in the prologue.
+ addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
+ TII.get(X86::MOV64rm), X86::RDX),
+ X86::RSP, false, RDXShadowSlot);
+ }
+
+ // Now that the probing is done, add code to continueMBB to update
+ // the stack pointer for real.
+ ContinueMBB->addLiveIn(SizeReg);
+ BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
+ .addReg(X86::RSP)
+ .addReg(SizeReg);
+
+ // Add the control flow edges we need.
+ MBB.addSuccessor(ContinueMBB);
+ MBB.addSuccessor(RoundMBB);
+ RoundMBB->addSuccessor(LoopMBB);
+ LoopMBB->addSuccessor(ContinueMBB);
+ LoopMBB->addSuccessor(LoopMBB);
+
+ // Mark all the instructions added to the prolog as frame setup.
+ if (InProlog) {
+ for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
+ BeforeMBBI->setFlag(MachineInstr::FrameSetup);
+ }
+ for (MachineInstr &MI : *RoundMBB) {
+ MI.setFlag(MachineInstr::FrameSetup);
+ }
+ for (MachineInstr &MI : *LoopMBB) {
+ MI.setFlag(MachineInstr::FrameSetup);
+ }
+ for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin();
+ CMBBI != ContinueMBBI; ++CMBBI) {
+ CMBBI->setFlag(MachineInstr::FrameSetup);
+ }
+ }
+}
+
+void X86FrameLowering::emitStackProbeCall(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ const DebugLoc &DL,
+ bool InProlog) const {
+ bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
+
+ // FIXME: Add retpoline support and remove this.
+ if (Is64Bit && IsLargeCodeModel && STI.useRetpolineIndirectCalls())
+ report_fatal_error("Emitting stack probe calls on 64-bit with the large "
+ "code model and retpoline not yet implemented.");
+
+ unsigned CallOp;
+ if (Is64Bit)
+ CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
+ else
+ CallOp = X86::CALLpcrel32;
+
+ StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF);
+
+ MachineInstrBuilder CI;
+ MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);
+
+ // All current stack probes take AX and SP as input, clobber flags, and
+ // preserve all registers. x86_64 probes leave RSP unmodified.
+ if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
+ // For the large code model, we have to call through a register. Use R11,
+ // as it is scratch in all supported calling conventions.
+ BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
+ .addExternalSymbol(MF.createExternalSymbolName(Symbol));
+ CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
+ } else {
+ CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp))
+ .addExternalSymbol(MF.createExternalSymbolName(Symbol));
+ }
+
+ unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX;
+ unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP;
+ CI.addReg(AX, RegState::Implicit)
+ .addReg(SP, RegState::Implicit)
+ .addReg(AX, RegState::Define | RegState::Implicit)
+ .addReg(SP, RegState::Define | RegState::Implicit)
+ .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
+
+ if (STI.isTargetWin64() || !STI.isOSWindows()) {
+ // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves.
+ // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
+ // themselves. They also does not clobber %rax so we can reuse it when
+ // adjusting %rsp.
+ // All other platforms do not specify a particular ABI for the stack probe
+ // function, so we arbitrarily define it to not adjust %esp/%rsp itself.
+ BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP)
+ .addReg(SP)
+ .addReg(AX);
+ }
+
+ if (InProlog) {
+ // Apply the frame setup flag to all inserted instrs.
+ for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
+ ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
+ }
+}
+
+void X86FrameLowering::emitStackProbeInlineStub(
+ MachineFunction &MF, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
+
+ assert(InProlog && "ChkStkStub called outside prolog!");
+
+ BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
+ .addExternalSymbol("__chkstk_stub");
+}
+
+static unsigned calculateSetFPREG(uint64_t SPAdjust) {
+ // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
+ // and might require smaller successive adjustments.
+ const uint64_t Win64MaxSEHOffset = 128;
+ uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
+ // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
+ return SEHFrameOffset & -16;
+}
+
+// If we're forcing a stack realignment we can't rely on just the frame
+// info, we need to know the ABI stack alignment as well in case we
+// have a call out. Otherwise just make sure we have some alignment - we'll
+// go with the minimum SlotSize.
+uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
+ const MachineFrameInfo &MFI = MF.getFrameInfo();
+ uint64_t MaxAlign = MFI.getMaxAlignment(); // Desired stack alignment.
+ unsigned StackAlign = getStackAlignment();
+ if (MF.getFunction().hasFnAttribute("stackrealign")) {
+ if (MFI.hasCalls())
+ MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
+ else if (MaxAlign < SlotSize)
+ MaxAlign = SlotSize;
+ }
+ return MaxAlign;
+}
+
+void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ const DebugLoc &DL, unsigned Reg,
+ uint64_t MaxAlign) const {
+ uint64_t Val = -MaxAlign;
+ unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
+ MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
+ .addReg(Reg)
+ .addImm(Val)
+ .setMIFlag(MachineInstr::FrameSetup);
+
+ // The EFLAGS implicit def is dead.
+ MI->getOperand(3).setIsDead();
+}
+
+bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const {
+ // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be
+ // clobbered by any interrupt handler.
+ assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
+ "MF used frame lowering for wrong subtarget");
+ const Function &Fn = MF.getFunction();
+ const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv());
+ return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone);
+}
+
+
+/// emitPrologue - Push callee-saved registers onto the stack, which
+/// automatically adjust the stack pointer. Adjust the stack pointer to allocate
+/// space for local variables. Also emit labels used by the exception handler to
+/// generate the exception handling frames.
+
+/*
+ Here's a gist of what gets emitted:
+
+ ; Establish frame pointer, if needed
+ [if needs FP]
+ push %rbp
+ .cfi_def_cfa_offset 16
+ .cfi_offset %rbp, -16
+ .seh_pushreg %rpb
+ mov %rsp, %rbp
+ .cfi_def_cfa_register %rbp
+
+ ; Spill general-purpose registers
+ [for all callee-saved GPRs]
+ pushq %<reg>
+ [if not needs FP]
+ .cfi_def_cfa_offset (offset from RETADDR)
+ .seh_pushreg %<reg>
+
+ ; If the required stack alignment > default stack alignment
+ ; rsp needs to be re-aligned. This creates a "re-alignment gap"
+ ; of unknown size in the stack frame.
+ [if stack needs re-alignment]
+ and $MASK, %rsp
+
+ ; Allocate space for locals
+ [if target is Windows and allocated space > 4096 bytes]
+ ; Windows needs special care for allocations larger
+ ; than one page.
+ mov $NNN, %rax
+ call ___chkstk_ms/___chkstk
+ sub %rax, %rsp
+ [else]
+ sub $NNN, %rsp
+
+ [if needs FP]
+ .seh_stackalloc (size of XMM spill slots)
+ .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
+ [else]
+ .seh_stackalloc NNN
+
+ ; Spill XMMs
+ ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
+ ; they may get spilled on any platform, if the current function
+ ; calls @llvm.eh.unwind.init
+ [if needs FP]
+ [for all callee-saved XMM registers]
+ movaps %<xmm reg>, -MMM(%rbp)
+ [for all callee-saved XMM registers]
+ .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
+ ; i.e. the offset relative to (%rbp - SEHFrameOffset)
+ [else]
+ [for all callee-saved XMM registers]
+ movaps %<xmm reg>, KKK(%rsp)
+ [for all callee-saved XMM registers]
+ .seh_savexmm %<xmm reg>, KKK
+
+ .seh_endprologue
+
+ [if needs base pointer]
+ mov %rsp, %rbx
+ [if needs to restore base pointer]
+ mov %rsp, -MMM(%rbp)
+
+ ; Emit CFI info
+ [if needs FP]
+ [for all callee-saved registers]
+ .cfi_offset %<reg>, (offset from %rbp)
+ [else]
+ .cfi_def_cfa_offset (offset from RETADDR)
+ [for all callee-saved registers]
+ .cfi_offset %<reg>, (offset from %rsp)
+
+ Notes:
+ - .seh directives are emitted only for Windows 64 ABI
+ - .cv_fpo directives are emitted on win32 when emitting CodeView
+ - .cfi directives are emitted for all other ABIs
+ - for 32-bit code, substitute %e?? registers for %r??
+*/
+
+void X86FrameLowering::emitPrologue(MachineFunction &MF,
+ MachineBasicBlock &MBB) const {
+ assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
+ "MF used frame lowering for wrong subtarget");
+ MachineBasicBlock::iterator MBBI = MBB.begin();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ const Function &Fn = MF.getFunction();
+ MachineModuleInfo &MMI = MF.getMMI();
+ X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
+ uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
+ uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate.
+ bool IsFunclet = MBB.isEHFuncletEntry();
+ EHPersonality Personality = EHPersonality::Unknown;
+ if (Fn.hasPersonalityFn())
+ Personality = classifyEHPersonality(Fn.getPersonalityFn());
+ bool FnHasClrFunclet =
+ MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
+ bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
+ bool HasFP = hasFP(MF);
+ bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
+ bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry();
+ // FIXME: Emit FPO data for EH funclets.
+ bool NeedsWinFPO =
+ !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag();
+ bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO;
+ bool NeedsDwarfCFI =
+ !IsWin64Prologue && (MMI.hasDebugInfo() || Fn.needsUnwindTableEntry());
+ Register FramePtr = TRI->getFrameRegister(MF);
+ const Register MachineFramePtr =
+ STI.isTarget64BitILP32()
+ ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;
+ Register BasePtr = TRI->getBaseRegister();
+ bool HasWinCFI = false;
+
+ // Debug location must be unknown since the first debug location is used
+ // to determine the end of the prologue.
+ DebugLoc DL;
+
+ // Add RETADDR move area to callee saved frame size.
+ int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
+ if (TailCallReturnAddrDelta && IsWin64Prologue)
+ report_fatal_error("Can't handle guaranteed tail call under win64 yet");
+
+ if (TailCallReturnAddrDelta < 0)
+ X86FI->setCalleeSavedFrameSize(
+ X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
+
+ bool UseStackProbe = !STI.getTargetLowering()->getStackProbeSymbolName(MF).empty();
+ unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF);
+
+ // Re-align the stack on 64-bit if the x86-interrupt calling convention is
+ // used and an error code was pushed, since the x86-64 ABI requires a 16-byte
+ // stack alignment.
+ if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit &&
+ Fn.arg_size() == 2) {
+ StackSize += 8;
+ MFI.setStackSize(StackSize);
+ emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false);
+ }
+
+ // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
+ // function, and use up to 128 bytes of stack space, don't have a frame
+ // pointer, calls, or dynamic alloca then we do not need to adjust the
+ // stack pointer (we fit in the Red Zone). We also check that we don't
+ // push and pop from the stack.
+ if (has128ByteRedZone(MF) &&
+ !TRI->needsStackRealignment(MF) &&
+ !MFI.hasVarSizedObjects() && // No dynamic alloca.
+ !MFI.adjustsStack() && // No calls.
+ !UseStackProbe && // No stack probes.
+ !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop.
+ !MF.shouldSplitStack()) { // Regular stack
+ uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
+ if (HasFP) MinSize += SlotSize;
+ X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0);
+ StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
+ MFI.setStackSize(StackSize);
+ }
+
+ // Insert stack pointer adjustment for later moving of return addr. Only
+ // applies to tail call optimized functions where the callee argument stack
+ // size is bigger than the callers.
+ if (TailCallReturnAddrDelta < 0) {
+ BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta,
+ /*InEpilogue=*/false)
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+
+ // Mapping for machine moves:
+ //
+ // DST: VirtualFP AND
+ // SRC: VirtualFP => DW_CFA_def_cfa_offset
+ // ELSE => DW_CFA_def_cfa
+ //
+ // SRC: VirtualFP AND
+ // DST: Register => DW_CFA_def_cfa_register
+ //
+ // ELSE
+ // OFFSET < 0 => DW_CFA_offset_extended_sf
+ // REG < 64 => DW_CFA_offset + Reg
+ // ELSE => DW_CFA_offset_extended
+
+ uint64_t NumBytes = 0;
+ int stackGrowth = -SlotSize;
+
+ // Find the funclet establisher parameter
+ Register Establisher = X86::NoRegister;
+ if (IsClrFunclet)
+ Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
+ else if (IsFunclet)
+ Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
+
+ if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
+ // Immediately spill establisher into the home slot.
+ // The runtime cares about this.
+ // MOV64mr %rdx, 16(%rsp)
+ unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
+ addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
+ .addReg(Establisher)
+ .setMIFlag(MachineInstr::FrameSetup);
+ MBB.addLiveIn(Establisher);
+ }
+
+ if (HasFP) {
+ assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved");
+
+ // Calculate required stack adjustment.
+ uint64_t FrameSize = StackSize - SlotSize;
+ // If required, include space for extra hidden slot for stashing base pointer.
+ if (X86FI->getRestoreBasePointer())
+ FrameSize += SlotSize;
+
+ NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
+
+ // Callee-saved registers are pushed on stack before the stack is realigned.
+ if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
+ NumBytes = alignTo(NumBytes, MaxAlign);
+
+ // Save EBP/RBP into the appropriate stack slot.
+ BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
+ .addReg(MachineFramePtr, RegState::Kill)
+ .setMIFlag(MachineInstr::FrameSetup);
+
+ if (NeedsDwarfCFI) {
+ // Mark the place where EBP/RBP was saved.
+ // Define the current CFA rule to use the provided offset.
+ assert(StackSize);
+ BuildCFI(MBB, MBBI, DL,
+ MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth));
+
+ // Change the rule for the FramePtr to be an "offset" rule.
+ unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
+ BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset(
+ nullptr, DwarfFramePtr, 2 * stackGrowth));
+ }
+
+ if (NeedsWinCFI) {
+ HasWinCFI = true;
+ BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
+ .addImm(FramePtr)
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+
+ if (!IsWin64Prologue && !IsFunclet) {
+ // Update EBP with the new base value.
+ BuildMI(MBB, MBBI, DL,
+ TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
+ FramePtr)
+ .addReg(StackPtr)
+ .setMIFlag(MachineInstr::FrameSetup);
+
+ if (NeedsDwarfCFI) {
+ // Mark effective beginning of when frame pointer becomes valid.
+ // Define the current CFA to use the EBP/RBP register.
+ unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
+ BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister(
+ nullptr, DwarfFramePtr));
+ }
+
+ if (NeedsWinFPO) {
+ // .cv_fpo_setframe $FramePtr
+ HasWinCFI = true;
+ BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
+ .addImm(FramePtr)
+ .addImm(0)
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+ }
+ } else {
+ assert(!IsFunclet && "funclets without FPs not yet implemented");
+ NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
+ }
+
+ // Update the offset adjustment, which is mainly used by codeview to translate
+ // from ESP to VFRAME relative local variable offsets.
+ if (!IsFunclet) {
+ if (HasFP && TRI->needsStackRealignment(MF))
+ MFI.setOffsetAdjustment(-NumBytes);
+ else
+ MFI.setOffsetAdjustment(-StackSize);
+ }
+
+ // For EH funclets, only allocate enough space for outgoing calls. Save the
+ // NumBytes value that we would've used for the parent frame.
+ unsigned ParentFrameNumBytes = NumBytes;
+ if (IsFunclet)
+ NumBytes = getWinEHFuncletFrameSize(MF);
+
+ // Skip the callee-saved push instructions.
+ bool PushedRegs = false;
+ int StackOffset = 2 * stackGrowth;
+
+ while (MBBI != MBB.end() &&
+ MBBI->getFlag(MachineInstr::FrameSetup) &&
+ (MBBI->getOpcode() == X86::PUSH32r ||
+ MBBI->getOpcode() == X86::PUSH64r)) {
+ PushedRegs = true;
+ Register Reg = MBBI->getOperand(0).getReg();
+ ++MBBI;
+
+ if (!HasFP && NeedsDwarfCFI) {
+ // Mark callee-saved push instruction.
+ // Define the current CFA rule to use the provided offset.
+ assert(StackSize);
+ BuildCFI(MBB, MBBI, DL,
+ MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset));
+ StackOffset += stackGrowth;
+ }
+
+ if (NeedsWinCFI) {
+ HasWinCFI = true;
+ BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
+ .addImm(Reg)
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+ }
+
+ // Realign stack after we pushed callee-saved registers (so that we'll be
+ // able to calculate their offsets from the frame pointer).
+ // Don't do this for Win64, it needs to realign the stack after the prologue.
+ if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) {
+ assert(HasFP && "There should be a frame pointer if stack is realigned.");
+ BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
+
+ if (NeedsWinCFI) {
+ HasWinCFI = true;
+ BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign))
+ .addImm(MaxAlign)
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+ }
+
+ // If there is an SUB32ri of ESP immediately before this instruction, merge
+ // the two. This can be the case when tail call elimination is enabled and
+ // the callee has more arguments then the caller.
+ NumBytes -= mergeSPUpdates(MBB, MBBI, true);
+
+ // Adjust stack pointer: ESP -= numbytes.
+
+ // Windows and cygwin/mingw require a prologue helper routine when allocating
+ // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw
+ // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the
+ // stack and adjust the stack pointer in one go. The 64-bit version of
+ // __chkstk is only responsible for probing the stack. The 64-bit prologue is
+ // responsible for adjusting the stack pointer. Touching the stack at 4K
+ // increments is necessary to ensure that the guard pages used by the OS
+ // virtual memory manager are allocated in correct sequence.
+ uint64_t AlignedNumBytes = NumBytes;
+ if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF))
+ AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign);
+ if (AlignedNumBytes >= StackProbeSize && UseStackProbe) {
+ assert(!X86FI->getUsesRedZone() &&
+ "The Red Zone is not accounted for in stack probes");
+
+ // Check whether EAX is livein for this block.
+ bool isEAXAlive = isEAXLiveIn(MBB);
+
+ if (isEAXAlive) {
+ if (Is64Bit) {
+ // Save RAX
+ BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
+ .addReg(X86::RAX, RegState::Kill)
+ .setMIFlag(MachineInstr::FrameSetup);
+ } else {
+ // Save EAX
+ BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
+ .addReg(X86::EAX, RegState::Kill)
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+ }
+
+ if (Is64Bit) {
+ // Handle the 64-bit Windows ABI case where we need to call __chkstk.
+ // Function prologue is responsible for adjusting the stack pointer.
+ int Alloc = isEAXAlive ? NumBytes - 8 : NumBytes;
+ if (isUInt<32>(Alloc)) {
+ BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
+ .addImm(Alloc)
+ .setMIFlag(MachineInstr::FrameSetup);
+ } else if (isInt<32>(Alloc)) {
+ BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX)
+ .addImm(Alloc)
+ .setMIFlag(MachineInstr::FrameSetup);
+ } else {
+ BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
+ .addImm(Alloc)
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+ } else {
+ // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
+ // We'll also use 4 already allocated bytes for EAX.
+ BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
+ .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+
+ // Call __chkstk, __chkstk_ms, or __alloca.
+ emitStackProbe(MF, MBB, MBBI, DL, true);
+
+ if (isEAXAlive) {
+ // Restore RAX/EAX
+ MachineInstr *MI;
+ if (Is64Bit)
+ MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX),
+ StackPtr, false, NumBytes - 8);
+ else
+ MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
+ StackPtr, false, NumBytes - 4);
+ MI->setFlag(MachineInstr::FrameSetup);
+ MBB.insert(MBBI, MI);
+ }
+ } else if (NumBytes) {
+ emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false);
+ }
+
+ if (NeedsWinCFI && NumBytes) {
+ HasWinCFI = true;
+ BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
+ .addImm(NumBytes)
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+
+ int SEHFrameOffset = 0;
+ unsigned SPOrEstablisher;
+ if (IsFunclet) {
+ if (IsClrFunclet) {
+ // The establisher parameter passed to a CLR funclet is actually a pointer
+ // to the (mostly empty) frame of its nearest enclosing funclet; we have
+ // to find the root function establisher frame by loading the PSPSym from
+ // the intermediate frame.
+ unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
+ MachinePointerInfo NoInfo;
+ MBB.addLiveIn(Establisher);
+ addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
+ Establisher, false, PSPSlotOffset)
+ .addMemOperand(MF.getMachineMemOperand(
+ NoInfo, MachineMemOperand::MOLoad, SlotSize, SlotSize));
+ ;
+ // Save the root establisher back into the current funclet's (mostly
+ // empty) frame, in case a sub-funclet or the GC needs it.
+ addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
+ false, PSPSlotOffset)
+ .addReg(Establisher)
+ .addMemOperand(
+ MF.getMachineMemOperand(NoInfo, MachineMemOperand::MOStore |
+ MachineMemOperand::MOVolatile,
+ SlotSize, SlotSize));
+ }
+ SPOrEstablisher = Establisher;
+ } else {
+ SPOrEstablisher = StackPtr;
+ }
+
+ if (IsWin64Prologue && HasFP) {
+ // Set RBP to a small fixed offset from RSP. In the funclet case, we base
+ // this calculation on the incoming establisher, which holds the value of
+ // RSP from the parent frame at the end of the prologue.
+ SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
+ if (SEHFrameOffset)
+ addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
+ SPOrEstablisher, false, SEHFrameOffset);
+ else
+ BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
+ .addReg(SPOrEstablisher);
+
+ // If this is not a funclet, emit the CFI describing our frame pointer.
+ if (NeedsWinCFI && !IsFunclet) {
+ assert(!NeedsWinFPO && "this setframe incompatible with FPO data");
+ HasWinCFI = true;
+ BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
+ .addImm(FramePtr)
+ .addImm(SEHFrameOffset)
+ .setMIFlag(MachineInstr::FrameSetup);
+ if (isAsynchronousEHPersonality(Personality))
+ MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
+ }
+ } else if (IsFunclet && STI.is32Bit()) {
+ // Reset EBP / ESI to something good for funclets.
+ MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
+ // If we're a catch funclet, we can be returned to via catchret. Save ESP
+ // into the registration node so that the runtime will restore it for us.
+ if (!MBB.isCleanupFuncletEntry()) {
+ assert(Personality == EHPersonality::MSVC_CXX);
+ unsigned FrameReg;
+ int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
+ int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg);
+ // ESP is the first field, so no extra displacement is needed.
+ addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
+ false, EHRegOffset)
+ .addReg(X86::ESP);
+ }
+ }
+
+ while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
+ const MachineInstr &FrameInstr = *MBBI;
+ ++MBBI;
+
+ if (NeedsWinCFI) {
+ int FI;
+ if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
+ if (X86::FR64RegClass.contains(Reg)) {
+ int Offset;
+ unsigned IgnoredFrameReg;
+ if (IsWin64Prologue && IsFunclet)
+ Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg);
+ else
+ Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg) +
+ SEHFrameOffset;
+
+ HasWinCFI = true;
+ assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data");
+ BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
+ .addImm(Reg)
+ .addImm(Offset)
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+ }
+ }
+ }
+
+ if (NeedsWinCFI && HasWinCFI)
+ BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
+ .setMIFlag(MachineInstr::FrameSetup);
+
+ if (FnHasClrFunclet && !IsFunclet) {
+ // Save the so-called Initial-SP (i.e. the value of the stack pointer
+ // immediately after the prolog) into the PSPSlot so that funclets
+ // and the GC can recover it.
+ unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
+ auto PSPInfo = MachinePointerInfo::getFixedStack(
+ MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
+ addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
+ PSPSlotOffset)
+ .addReg(StackPtr)
+ .addMemOperand(MF.getMachineMemOperand(
+ PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
+ SlotSize, SlotSize));
+ }
+
+ // Realign stack after we spilled callee-saved registers (so that we'll be
+ // able to calculate their offsets from the frame pointer).
+ // Win64 requires aligning the stack after the prologue.
+ if (IsWin64Prologue && TRI->needsStackRealignment(MF)) {
+ assert(HasFP && "There should be a frame pointer if stack is realigned.");
+ BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
+ }
+
+ // We already dealt with stack realignment and funclets above.
+ if (IsFunclet && STI.is32Bit())
+ return;
+
+ // If we need a base pointer, set it up here. It's whatever the value
+ // of the stack pointer is at this point. Any variable size objects
+ // will be allocated after this, so we can still use the base pointer
+ // to reference locals.
+ if (TRI->hasBasePointer(MF)) {
+ // Update the base pointer with the current stack pointer.
+ unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
+ BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
+ .addReg(SPOrEstablisher)
+ .setMIFlag(MachineInstr::FrameSetup);
+ if (X86FI->getRestoreBasePointer()) {
+ // Stash value of base pointer. Saving RSP instead of EBP shortens
+ // dependence chain. Used by SjLj EH.
+ unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
+ addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
+ FramePtr, true, X86FI->getRestoreBasePointerOffset())
+ .addReg(SPOrEstablisher)
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+
+ if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
+ // Stash the value of the frame pointer relative to the base pointer for
+ // Win32 EH. This supports Win32 EH, which does the inverse of the above:
+ // it recovers the frame pointer from the base pointer rather than the
+ // other way around.
+ unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
+ unsigned UsedReg;
+ int Offset =
+ getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
+ assert(UsedReg == BasePtr);
+ addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
+ .addReg(FramePtr)
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+ }
+
+ if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
+ // Mark end of stack pointer adjustment.
+ if (!HasFP && NumBytes) {
+ // Define the current CFA rule to use the provided offset.
+ assert(StackSize);
+ BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
+ nullptr, -StackSize + stackGrowth));
+ }
+
+ // Emit DWARF info specifying the offsets of the callee-saved registers.
+ emitCalleeSavedFrameMoves(MBB, MBBI, DL);
+ }
+
+ // X86 Interrupt handling function cannot assume anything about the direction
+ // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction
+ // in each prologue of interrupt handler function.
+ //
+ // FIXME: Create "cld" instruction only in these cases:
+ // 1. The interrupt handling function uses any of the "rep" instructions.
+ // 2. Interrupt handling function calls another function.
+ //
+ if (Fn.getCallingConv() == CallingConv::X86_INTR)
+ BuildMI(MBB, MBBI, DL, TII.get(X86::CLD))
+ .setMIFlag(MachineInstr::FrameSetup);
+
+ // At this point we know if the function has WinCFI or not.
+ MF.setHasWinCFI(HasWinCFI);
+}
+
+bool X86FrameLowering::canUseLEAForSPInEpilogue(
+ const MachineFunction &MF) const {
+ // We can't use LEA instructions for adjusting the stack pointer if we don't
+ // have a frame pointer in the Win64 ABI. Only ADD instructions may be used
+ // to deallocate the stack.
+ // This means that we can use LEA for SP in two situations:
+ // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
+ // 2. We *have* a frame pointer which means we are permitted to use LEA.
+ return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
+}
+
+static bool isFuncletReturnInstr(MachineInstr &MI) {
+ switch (MI.getOpcode()) {
+ case X86::CATCHRET:
+ case X86::CLEANUPRET:
+ return true;
+ default:
+ return false;
+ }
+ llvm_unreachable("impossible");
+}
+
+// CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
+// stack. It holds a pointer to the bottom of the root function frame. The
+// establisher frame pointer passed to a nested funclet may point to the
+// (mostly empty) frame of its parent funclet, but it will need to find
+// the frame of the root function to access locals. To facilitate this,
+// every funclet copies the pointer to the bottom of the root function
+// frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
+// same offset for the PSPSym in the root function frame that's used in the
+// funclets' frames allows each funclet to dynamically accept any ancestor
+// frame as its establisher argument (the runtime doesn't guarantee the
+// immediate parent for some reason lost to history), and also allows the GC,
+// which uses the PSPSym for some bookkeeping, to find it in any funclet's
+// frame with only a single offset reported for the entire method.
+unsigned
+X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
+ const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
+ unsigned SPReg;
+ int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg,
+ /*IgnoreSPUpdates*/ true);
+ assert(Offset >= 0 && SPReg == TRI->getStackRegister());
+ return static_cast<unsigned>(Offset);
+}
+
+unsigned
+X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
+ const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
+ // This is the size of the pushed CSRs.
+ unsigned CSSize = X86FI->getCalleeSavedFrameSize();
+ // This is the size of callee saved XMMs.
+ const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
+ unsigned XMMSize = WinEHXMMSlotInfo.size() *
+ TRI->getSpillSize(X86::VR128RegClass);
+ // This is the amount of stack a funclet needs to allocate.
+ unsigned UsedSize;
+ EHPersonality Personality =
+ classifyEHPersonality(MF.getFunction().getPersonalityFn());
+ if (Personality == EHPersonality::CoreCLR) {
+ // CLR funclets need to hold enough space to include the PSPSym, at the
+ // same offset from the stack pointer (immediately after the prolog) as it
+ // resides at in the main function.
+ UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
+ } else {
+ // Other funclets just need enough stack for outgoing call arguments.
+ UsedSize = MF.getFrameInfo().getMaxCallFrameSize();
+ }
+ // RBP is not included in the callee saved register block. After pushing RBP,
+ // everything is 16 byte aligned. Everything we allocate before an outgoing
+ // call must also be 16 byte aligned.
+ unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlignment());
+ // Subtract out the size of the callee saved registers. This is how much stack
+ // each funclet will allocate.
+ return FrameSizeMinusRBP + XMMSize - CSSize;
+}
+
+static bool isTailCallOpcode(unsigned Opc) {
+ return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi ||
+ Opc == X86::TCRETURNmi ||
+ Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 ||
+ Opc == X86::TCRETURNmi64;
+}
+
+void X86FrameLowering::emitEpilogue(MachineFunction &MF,
+ MachineBasicBlock &MBB) const {
+ const MachineFrameInfo &MFI = MF.getFrameInfo();
+ X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
+ MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator();
+ MachineBasicBlock::iterator MBBI = Terminator;
+ DebugLoc DL;
+ if (MBBI != MBB.end())
+ DL = MBBI->getDebugLoc();
+ // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
+ const bool Is64BitILP32 = STI.isTarget64BitILP32();
+ Register FramePtr = TRI->getFrameRegister(MF);
+ unsigned MachineFramePtr =
+ Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;
+
+ bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
+ bool NeedsWin64CFI =
+ IsWin64Prologue && MF.getFunction().needsUnwindTableEntry();
+ bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI);
+
+ // Get the number of bytes to allocate from the FrameInfo.
+ uint64_t StackSize = MFI.getStackSize();
+ uint64_t MaxAlign = calculateMaxStackAlign(MF);
+ unsigned CSSize = X86FI->getCalleeSavedFrameSize();
+ bool HasFP = hasFP(MF);
+ uint64_t NumBytes = 0;
+
+ bool NeedsDwarfCFI =
+ (!MF.getTarget().getTargetTriple().isOSDarwin() &&
+ !MF.getTarget().getTargetTriple().isOSWindows()) &&
+ (MF.getMMI().hasDebugInfo() || MF.getFunction().needsUnwindTableEntry());
+
+ if (IsFunclet) {
+ assert(HasFP && "EH funclets without FP not yet implemented");
+ NumBytes = getWinEHFuncletFrameSize(MF);
+ } else if (HasFP) {
+ // Calculate required stack adjustment.
+ uint64_t FrameSize = StackSize - SlotSize;
+ NumBytes = FrameSize - CSSize;
+
+ // Callee-saved registers were pushed on stack before the stack was
+ // realigned.
+ if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
+ NumBytes = alignTo(FrameSize, MaxAlign);
+ } else {
+ NumBytes = StackSize - CSSize;
+ }
+ uint64_t SEHStackAllocAmt = NumBytes;
+
+ if (HasFP) {
+ // Pop EBP.
+ BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
+ MachineFramePtr)
+ .setMIFlag(MachineInstr::FrameDestroy);
+ if (NeedsDwarfCFI) {
+ unsigned DwarfStackPtr =
+ TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true);
+ BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfa(
+ nullptr, DwarfStackPtr, -SlotSize));
+ --MBBI;
+ }
+ }
+
+ MachineBasicBlock::iterator FirstCSPop = MBBI;
+ // Skip the callee-saved pop instructions.
+ while (MBBI != MBB.begin()) {
+ MachineBasicBlock::iterator PI = std::prev(MBBI);
+ unsigned Opc = PI->getOpcode();
+
+ if (Opc != X86::DBG_VALUE && !PI->isTerminator()) {
+ if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
+ (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)))
+ break;
+ FirstCSPop = PI;
+ }
+
+ --MBBI;
+ }
+ MBBI = FirstCSPop;
+
+ if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET)
+ emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator);
+
+ if (MBBI != MBB.end())
+ DL = MBBI->getDebugLoc();
+
+ // If there is an ADD32ri or SUB32ri of ESP immediately before this
+ // instruction, merge the two instructions.
+ if (NumBytes || MFI.hasVarSizedObjects())
+ NumBytes += mergeSPUpdates(MBB, MBBI, true);
+
+ // If dynamic alloca is used, then reset esp to point to the last callee-saved
+ // slot before popping them off! Same applies for the case, when stack was
+ // realigned. Don't do this if this was a funclet epilogue, since the funclets
+ // will not do realignment or dynamic stack allocation.
+ if ((TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects()) &&
+ !IsFunclet) {
+ if (TRI->needsStackRealignment(MF))
+ MBBI = FirstCSPop;
+ unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
+ uint64_t LEAAmount =
+ IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
+
+ // There are only two legal forms of epilogue:
+ // - add SEHAllocationSize, %rsp
+ // - lea SEHAllocationSize(%FramePtr), %rsp
+ //
+ // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
+ // However, we may use this sequence if we have a frame pointer because the
+ // effects of the prologue can safely be undone.
+ if (LEAAmount != 0) {
+ unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
+ addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
+ FramePtr, false, LEAAmount);
+ --MBBI;
+ } else {
+ unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
+ BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
+ .addReg(FramePtr);
+ --MBBI;
+ }
+ } else if (NumBytes) {
+ // Adjust stack pointer back: ESP += numbytes.
+ emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true);
+ if (!hasFP(MF) && NeedsDwarfCFI) {
+ // Define the current CFA rule to use the provided offset.
+ BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
+ nullptr, -CSSize - SlotSize));
+ }
+ --MBBI;
+ }
+
+ // Windows unwinder will not invoke function's exception handler if IP is
+ // either in prologue or in epilogue. This behavior causes a problem when a
+ // call immediately precedes an epilogue, because the return address points
+ // into the epilogue. To cope with that, we insert an epilogue marker here,
+ // then replace it with a 'nop' if it ends up immediately after a CALL in the
+ // final emitted code.
+ if (NeedsWin64CFI && MF.hasWinCFI())
+ BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
+
+ if (!hasFP(MF) && NeedsDwarfCFI) {
+ MBBI = FirstCSPop;
+ int64_t Offset = -CSSize - SlotSize;
+ // Mark callee-saved pop instruction.
+ // Define the current CFA rule to use the provided offset.
+ while (MBBI != MBB.end()) {
+ MachineBasicBlock::iterator PI = MBBI;
+ unsigned Opc = PI->getOpcode();
+ ++MBBI;
+ if (Opc == X86::POP32r || Opc == X86::POP64r) {
+ Offset += SlotSize;
+ BuildCFI(MBB, MBBI, DL,
+ MCCFIInstruction::createDefCfaOffset(nullptr, Offset));
+ }
+ }
+ }
+
+ if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) {
+ // Add the return addr area delta back since we are not tail calling.
+ int Offset = -1 * X86FI->getTCReturnAddrDelta();
+ assert(Offset >= 0 && "TCDelta should never be positive");
+ if (Offset) {
+ // Check for possible merge with preceding ADD instruction.
+ Offset += mergeSPUpdates(MBB, Terminator, true);
+ emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true);
+ }
+ }
+}
+
+int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
+ unsigned &FrameReg) const {
+ const MachineFrameInfo &MFI = MF.getFrameInfo();
+
+ bool IsFixed = MFI.isFixedObjectIndex(FI);
+ // We can't calculate offset from frame pointer if the stack is realigned,
+ // so enforce usage of stack/base pointer. The base pointer is used when we
+ // have dynamic allocas in addition to dynamic realignment.
+ if (TRI->hasBasePointer(MF))
+ FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister();
+ else if (TRI->needsStackRealignment(MF))
+ FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister();
+ else
+ FrameReg = TRI->getFrameRegister(MF);
+
+ // Offset will hold the offset from the stack pointer at function entry to the
+ // object.
+ // We need to factor in additional offsets applied during the prologue to the
+ // frame, base, and stack pointer depending on which is used.
+ int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea();
+ const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
+ unsigned CSSize = X86FI->getCalleeSavedFrameSize();
+ uint64_t StackSize = MFI.getStackSize();
+ bool HasFP = hasFP(MF);
+ bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
+ int64_t FPDelta = 0;
+
+ // In an x86 interrupt, remove the offset we added to account for the return
+ // address from any stack object allocated in the caller's frame. Interrupts
+ // do not have a standard return address. Fixed objects in the current frame,
+ // such as SSE register spills, should not get this treatment.
+ if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR &&
+ Offset >= 0) {
+ Offset += getOffsetOfLocalArea();
+ }
+
+ if (IsWin64Prologue) {
+ assert(!MFI.hasCalls() || (StackSize % 16) == 8);
+
+ // Calculate required stack adjustment.
+ uint64_t FrameSize = StackSize - SlotSize;
+ // If required, include space for extra hidden slot for stashing base pointer.
+ if (X86FI->getRestoreBasePointer())
+ FrameSize += SlotSize;
+ uint64_t NumBytes = FrameSize - CSSize;
+
+ uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
+ if (FI && FI == X86FI->getFAIndex())
+ return -SEHFrameOffset;
+
+ // FPDelta is the offset from the "traditional" FP location of the old base
+ // pointer followed by return address and the location required by the
+ // restricted Win64 prologue.
+ // Add FPDelta to all offsets below that go through the frame pointer.
+ FPDelta = FrameSize - SEHFrameOffset;
+ assert((!MFI.hasCalls() || (FPDelta % 16) == 0) &&
+ "FPDelta isn't aligned per the Win64 ABI!");
+ }
+
+
+ if (TRI->hasBasePointer(MF)) {
+ assert(HasFP && "VLAs and dynamic stack realign, but no FP?!");
+ if (FI < 0) {
+ // Skip the saved EBP.
+ return Offset + SlotSize + FPDelta;
+ } else {
+ assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0);
+ return Offset + StackSize;
+ }
+ } else if (TRI->needsStackRealignment(MF)) {
+ if (FI < 0) {
+ // Skip the saved EBP.
+ return Offset + SlotSize + FPDelta;
+ } else {
+ assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0);
+ return Offset + StackSize;
+ }
+ // FIXME: Support tail calls
+ } else {
+ if (!HasFP)
+ return Offset + StackSize;
+
+ // Skip the saved EBP.
+ Offset += SlotSize;
+
+ // Skip the RETADDR move area
+ int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
+ if (TailCallReturnAddrDelta < 0)
+ Offset -= TailCallReturnAddrDelta;
+ }
+
+ return Offset + FPDelta;
+}
+
+int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF,
+ int FI, unsigned &FrameReg) const {
+ const MachineFrameInfo &MFI = MF.getFrameInfo();
+ const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
+ const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
+ const auto it = WinEHXMMSlotInfo.find(FI);
+
+ if (it == WinEHXMMSlotInfo.end())
+ return getFrameIndexReference(MF, FI, FrameReg);
+
+ FrameReg = TRI->getStackRegister();
+ return alignTo(MFI.getMaxCallFrameSize(), getStackAlignment()) + it->second;
+}
+
+int X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF,
+ int FI, unsigned &FrameReg,
+ int Adjustment) const {
+ const MachineFrameInfo &MFI = MF.getFrameInfo();
+ FrameReg = TRI->getStackRegister();
+ return MFI.getObjectOffset(FI) - getOffsetOfLocalArea() + Adjustment;
+}
+
+int
+X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF,
+ int FI, unsigned &FrameReg,
+ bool IgnoreSPUpdates) const {
+
+ const MachineFrameInfo &MFI = MF.getFrameInfo();
+ // Does not include any dynamic realign.
+ const uint64_t StackSize = MFI.getStackSize();
+ // LLVM arranges the stack as follows:
+ // ...
+ // ARG2
+ // ARG1
+ // RETADDR
+ // PUSH RBP <-- RBP points here
+ // PUSH CSRs
+ // ~~~~~~~ <-- possible stack realignment (non-win64)
+ // ...
+ // STACK OBJECTS
+ // ... <-- RSP after prologue points here
+ // ~~~~~~~ <-- possible stack realignment (win64)
+ //
+ // if (hasVarSizedObjects()):
+ // ... <-- "base pointer" (ESI/RBX) points here
+ // DYNAMIC ALLOCAS
+ // ... <-- RSP points here
+ //
+ // Case 1: In the simple case of no stack realignment and no dynamic
+ // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
+ // with fixed offsets from RSP.
+ //
+ // Case 2: In the case of stack realignment with no dynamic allocas, fixed
+ // stack objects are addressed with RBP and regular stack objects with RSP.
+ //
+ // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
+ // to address stack arguments for outgoing calls and nothing else. The "base
+ // pointer" points to local variables, and RBP points to fixed objects.
+ //
+ // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
+ // answer we give is relative to the SP after the prologue, and not the
+ // SP in the middle of the function.
+
+ if (MFI.isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) &&
+ !STI.isTargetWin64())
+ return getFrameIndexReference(MF, FI, FrameReg);
+
+ // If !hasReservedCallFrame the function might have SP adjustement in the
+ // body. So, even though the offset is statically known, it depends on where
+ // we are in the function.
+ if (!IgnoreSPUpdates && !hasReservedCallFrame(MF))
+ return getFrameIndexReference(MF, FI, FrameReg);
+
+ // We don't handle tail calls, and shouldn't be seeing them either.
+ assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 &&
+ "we don't handle this case!");
+
+ // This is how the math works out:
+ //
+ // %rsp grows (i.e. gets lower) left to right. Each box below is
+ // one word (eight bytes). Obj0 is the stack slot we're trying to
+ // get to.
+ //
+ // ----------------------------------
+ // | BP | Obj0 | Obj1 | ... | ObjN |
+ // ----------------------------------
+ // ^ ^ ^ ^
+ // A B C E
+ //
+ // A is the incoming stack pointer.
+ // (B - A) is the local area offset (-8 for x86-64) [1]
+ // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2]
+ //
+ // |(E - B)| is the StackSize (absolute value, positive). For a
+ // stack that grown down, this works out to be (B - E). [3]
+ //
+ // E is also the value of %rsp after stack has been set up, and we
+ // want (C - E) -- the value we can add to %rsp to get to Obj0. Now
+ // (C - E) == (C - A) - (B - A) + (B - E)
+ // { Using [1], [2] and [3] above }
+ // == getObjectOffset - LocalAreaOffset + StackSize
+
+ return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize);
+}
+
+bool X86FrameLowering::assignCalleeSavedSpillSlots(
+ MachineFunction &MF, const TargetRegisterInfo *TRI,
+ std::vector<CalleeSavedInfo> &CSI) const {
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
+
+ unsigned CalleeSavedFrameSize = 0;
+ unsigned XMMCalleeSavedFrameSize = 0;
+ auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
+ int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
+
+ int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
+
+ if (TailCallReturnAddrDelta < 0) {
+ // create RETURNADDR area
+ // arg
+ // arg
+ // RETADDR
+ // { ...
+ // RETADDR area
+ // ...
+ // }
+ // [EBP]
+ MFI.CreateFixedObject(-TailCallReturnAddrDelta,
+ TailCallReturnAddrDelta - SlotSize, true);
+ }
+
+ // Spill the BasePtr if it's used.
+ if (this->TRI->hasBasePointer(MF)) {
+ // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
+ if (MF.hasEHFunclets()) {
+ int FI = MFI.CreateSpillStackObject(SlotSize, SlotSize);
+ X86FI->setHasSEHFramePtrSave(true);
+ X86FI->setSEHFramePtrSaveIndex(FI);
+ }
+ }
+
+ if (hasFP(MF)) {
+ // emitPrologue always spills frame register the first thing.
+ SpillSlotOffset -= SlotSize;
+ MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
+
+ // Since emitPrologue and emitEpilogue will handle spilling and restoring of
+ // the frame register, we can delete it from CSI list and not have to worry
+ // about avoiding it later.
+ Register FPReg = TRI->getFrameRegister(MF);
+ for (unsigned i = 0; i < CSI.size(); ++i) {
+ if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
+ CSI.erase(CSI.begin() + i);
+ break;
+ }
+ }
+ }
+
+ // Assign slots for GPRs. It increases frame size.
+ for (unsigned i = CSI.size(); i != 0; --i) {
+ unsigned Reg = CSI[i - 1].getReg();
+
+ if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
+ continue;
+
+ SpillSlotOffset -= SlotSize;
+ CalleeSavedFrameSize += SlotSize;
+
+ int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
+ CSI[i - 1].setFrameIdx(SlotIndex);
+ }
+
+ X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
+ MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize);
+
+ // Assign slots for XMMs.
+ for (unsigned i = CSI.size(); i != 0; --i) {
+ unsigned Reg = CSI[i - 1].getReg();
+ if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
+ continue;
+
+ // If this is k-register make sure we lookup via the largest legal type.
+ MVT VT = MVT::Other;
+ if (X86::VK16RegClass.contains(Reg))
+ VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
+
+ const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
+ unsigned Size = TRI->getSpillSize(*RC);
+ unsigned Align = TRI->getSpillAlignment(*RC);
+ // ensure alignment
+ assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86");
+ SpillSlotOffset = -alignTo(-SpillSlotOffset, Align);
+
+ // spill into slot
+ SpillSlotOffset -= Size;
+ int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset);
+ CSI[i - 1].setFrameIdx(SlotIndex);
+ MFI.ensureMaxAlignment(Align);
+
+ // Save the start offset and size of XMM in stack frame for funclets.
+ if (X86::VR128RegClass.contains(Reg)) {
+ WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize;
+ XMMCalleeSavedFrameSize += Size;
+ }
+ }
+
+ return true;
+}
+
+bool X86FrameLowering::spillCalleeSavedRegisters(
+ MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const {
+ DebugLoc DL = MBB.findDebugLoc(MI);
+
+ // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
+ // for us, and there are no XMM CSRs on Win32.
+ if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
+ return true;
+
+ // Push GPRs. It increases frame size.
+ const MachineFunction &MF = *MBB.getParent();
+ unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
+ for (unsigned i = CSI.size(); i != 0; --i) {
+ unsigned Reg = CSI[i - 1].getReg();
+
+ if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
+ continue;
+
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+ bool isLiveIn = MRI.isLiveIn(Reg);
+ if (!isLiveIn)
+ MBB.addLiveIn(Reg);
+
+ // Decide whether we can add a kill flag to the use.
+ bool CanKill = !isLiveIn;
+ // Check if any subregister is live-in
+ if (CanKill) {
+ for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) {
+ if (MRI.isLiveIn(*AReg)) {
+ CanKill = false;
+ break;
+ }
+ }
+ }
+
+ // Do not set a kill flag on values that are also marked as live-in. This
+ // happens with the @llvm-returnaddress intrinsic and with arguments
+ // passed in callee saved registers.
+ // Omitting the kill flags is conservatively correct even if the live-in
+ // is not used after all.
+ BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill))
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+
+ // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
+ // It can be done by spilling XMMs to stack frame.
+ for (unsigned i = CSI.size(); i != 0; --i) {
+ unsigned Reg = CSI[i-1].getReg();
+ if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
+ continue;
+
+ // If this is k-register make sure we lookup via the largest legal type.
+ MVT VT = MVT::Other;
+ if (X86::VK16RegClass.contains(Reg))
+ VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
+
+ // Add the callee-saved register as live-in. It's killed at the spill.
+ MBB.addLiveIn(Reg);
+ const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
+
+ TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC,
+ TRI);
+ --MI;
+ MI->setFlag(MachineInstr::FrameSetup);
+ ++MI;
+ }
+
+ return true;
+}
+
+void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ MachineInstr *CatchRet) const {
+ // SEH shouldn't use catchret.
+ assert(!isAsynchronousEHPersonality(classifyEHPersonality(
+ MBB.getParent()->getFunction().getPersonalityFn())) &&
+ "SEH should not use CATCHRET");
+ DebugLoc DL = CatchRet->getDebugLoc();
+ MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB();
+
+ // Fill EAX/RAX with the address of the target block.
+ if (STI.is64Bit()) {
+ // LEA64r CatchRetTarget(%rip), %rax
+ BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX)
+ .addReg(X86::RIP)
+ .addImm(0)
+ .addReg(0)
+ .addMBB(CatchRetTarget)
+ .addReg(0);
+ } else {
+ // MOV32ri $CatchRetTarget, %eax
+ BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
+ .addMBB(CatchRetTarget);
+ }
+
+ // Record that we've taken the address of CatchRetTarget and no longer just
+ // reference it in a terminator.
+ CatchRetTarget->setHasAddressTaken();
+}
+
+bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const {
+ if (CSI.empty())
+ return false;
+
+ if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) {
+ // Don't restore CSRs in 32-bit EH funclets. Matches
+ // spillCalleeSavedRegisters.
+ if (STI.is32Bit())
+ return true;
+ // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
+ // funclets. emitEpilogue transforms these to normal jumps.
+ if (MI->getOpcode() == X86::CATCHRET) {
+ const Function &F = MBB.getParent()->getFunction();
+ bool IsSEH = isAsynchronousEHPersonality(
+ classifyEHPersonality(F.getPersonalityFn()));
+ if (IsSEH)
+ return true;
+ }
+ }
+
+ DebugLoc DL = MBB.findDebugLoc(MI);
+
+ // Reload XMMs from stack frame.
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
+ unsigned Reg = CSI[i].getReg();
+ if (X86::GR64RegClass.contains(Reg) ||
+ X86::GR32RegClass.contains(Reg))
+ continue;
+
+ // If this is k-register make sure we lookup via the largest legal type.
+ MVT VT = MVT::Other;
+ if (X86::VK16RegClass.contains(Reg))
+ VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
+
+ const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
+ TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
+ }
+
+ // POP GPRs.
+ unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
+ unsigned Reg = CSI[i].getReg();
+ if (!X86::GR64RegClass.contains(Reg) &&
+ !X86::GR32RegClass.contains(Reg))
+ continue;
+
+ BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
+ .setMIFlag(MachineInstr::FrameDestroy);
+ }
+ return true;
+}
+
+void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
+ BitVector &SavedRegs,
+ RegScavenger *RS) const {
+ TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
+
+ // Spill the BasePtr if it's used.
+ if (TRI->hasBasePointer(MF)){
+ Register BasePtr = TRI->getBaseRegister();
+ if (STI.isTarget64BitILP32())
+ BasePtr = getX86SubSuperRegister(BasePtr, 64);
+ SavedRegs.set(BasePtr);
+ }
+}
+
+static bool
+HasNestArgument(const MachineFunction *MF) {
+ const Function &F = MF->getFunction();
+ for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
+ I != E; I++) {
+ if (I->hasNestAttr() && !I->use_empty())
+ return true;
+ }
+ return false;
+}
+
+/// GetScratchRegister - Get a temp register for performing work in the
+/// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
+/// and the properties of the function either one or two registers will be
+/// needed. Set primary to true for the first register, false for the second.
+static unsigned
+GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
+ CallingConv::ID CallingConvention = MF.getFunction().getCallingConv();
+
+ // Erlang stuff.
+ if (CallingConvention == CallingConv::HiPE) {
+ if (Is64Bit)
+ return Primary ? X86::R14 : X86::R13;
+ else
+ return Primary ? X86::EBX : X86::EDI;
+ }
+
+ if (Is64Bit) {
+ if (IsLP64)
+ return Primary ? X86::R11 : X86::R12;
+ else
+ return Primary ? X86::R11D : X86::R12D;
+ }
+
+ bool IsNested = HasNestArgument(&MF);
+
+ if (CallingConvention == CallingConv::X86_FastCall ||
+ CallingConvention == CallingConv::Fast ||
+ CallingConvention == CallingConv::Tail) {
+ if (IsNested)
+ report_fatal_error("Segmented stacks does not support fastcall with "
+ "nested function.");
+ return Primary ? X86::EAX : X86::ECX;
+ }
+ if (IsNested)
+ return Primary ? X86::EDX : X86::EAX;
+ return Primary ? X86::ECX : X86::EAX;
+}
+
+// The stack limit in the TCB is set to this many bytes above the actual stack
+// limit.
+static const uint64_t kSplitStackAvailable = 256;
+
+void X86FrameLowering::adjustForSegmentedStacks(
+ MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ uint64_t StackSize;
+ unsigned TlsReg, TlsOffset;
+ DebugLoc DL;
+
+ // To support shrink-wrapping we would need to insert the new blocks
+ // at the right place and update the branches to PrologueMBB.
+ assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
+
+ unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
+ assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
+ "Scratch register is live-in");
+
+ if (MF.getFunction().isVarArg())
+ report_fatal_error("Segmented stacks do not support vararg functions.");
+ if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
+ !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
+ !STI.isTargetDragonFly())
+ report_fatal_error("Segmented stacks not supported on this platform.");
+
+ // Eventually StackSize will be calculated by a link-time pass; which will
+ // also decide whether checking code needs to be injected into this particular
+ // prologue.
+ StackSize = MFI.getStackSize();
+
+ // Do not generate a prologue for leaf functions with a stack of size zero.
+ // For non-leaf functions we have to allow for the possibility that the
+ // callis to a non-split function, as in PR37807. This function could also
+ // take the address of a non-split function. When the linker tries to adjust
+ // its non-existent prologue, it would fail with an error. Mark the object
+ // file so that such failures are not errors. See this Go language bug-report
+ // https://go-review.googlesource.com/c/go/+/148819/
+ if (StackSize == 0 && !MFI.hasTailCall()) {
+ MF.getMMI().setHasNosplitStack(true);
+ return;
+ }
+
+ MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
+ MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
+ X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
+ bool IsNested = false;
+
+ // We need to know if the function has a nest argument only in 64 bit mode.
+ if (Is64Bit)
+ IsNested = HasNestArgument(&MF);
+
+ // The MOV R10, RAX needs to be in a different block, since the RET we emit in
+ // allocMBB needs to be last (terminating) instruction.
+
+ for (const auto &LI : PrologueMBB.liveins()) {
+ allocMBB->addLiveIn(LI);
+ checkMBB->addLiveIn(LI);
+ }
+
+ if (IsNested)
+ allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
+
+ MF.push_front(allocMBB);
+ MF.push_front(checkMBB);
+
+ // When the frame size is less than 256 we just compare the stack
+ // boundary directly to the value of the stack pointer, per gcc.
+ bool CompareStackPointer = StackSize < kSplitStackAvailable;
+
+ // Read the limit off the current stacklet off the stack_guard location.
+ if (Is64Bit) {
+ if (STI.isTargetLinux()) {
+ TlsReg = X86::FS;
+ TlsOffset = IsLP64 ? 0x70 : 0x40;
+ } else if (STI.isTargetDarwin()) {
+ TlsReg = X86::GS;
+ TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
+ } else if (STI.isTargetWin64()) {
+ TlsReg = X86::GS;
+ TlsOffset = 0x28; // pvArbitrary, reserved for application use
+ } else if (STI.isTargetFreeBSD()) {
+ TlsReg = X86::FS;
+ TlsOffset = 0x18;
+ } else if (STI.isTargetDragonFly()) {
+ TlsReg = X86::FS;
+ TlsOffset = 0x20; // use tls_tcb.tcb_segstack
+ } else {
+ report_fatal_error("Segmented stacks not supported on this platform.");
+ }
+
+ if (CompareStackPointer)
+ ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
+ else
+ BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
+ .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
+
+ BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
+ .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
+ } else {
+ if (STI.isTargetLinux()) {
+ TlsReg = X86::GS;
+ TlsOffset = 0x30;
+ } else if (STI.isTargetDarwin()) {
+ TlsReg = X86::GS;
+ TlsOffset = 0x48 + 90*4;
+ } else if (STI.isTargetWin32()) {
+ TlsReg = X86::FS;
+ TlsOffset = 0x14; // pvArbitrary, reserved for application use
+ } else if (STI.isTargetDragonFly()) {
+ TlsReg = X86::FS;
+ TlsOffset = 0x10; // use tls_tcb.tcb_segstack
+ } else if (STI.isTargetFreeBSD()) {
+ report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
+ } else {
+ report_fatal_error("Segmented stacks not supported on this platform.");
+ }
+
+ if (CompareStackPointer)
+ ScratchReg = X86::ESP;
+ else
+ BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
+ .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
+
+ if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
+ STI.isTargetDragonFly()) {
+ BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
+ .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
+ } else if (STI.isTargetDarwin()) {
+
+ // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
+ unsigned ScratchReg2;
+ bool SaveScratch2;
+ if (CompareStackPointer) {
+ // The primary scratch register is available for holding the TLS offset.
+ ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
+ SaveScratch2 = false;
+ } else {
+ // Need to use a second register to hold the TLS offset
+ ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
+
+ // Unfortunately, with fastcc the second scratch register may hold an
+ // argument.
+ SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
+ }
+
+ // If Scratch2 is live-in then it needs to be saved.
+ assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
+ "Scratch register is live-in and not saved");
+
+ if (SaveScratch2)
+ BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
+ .addReg(ScratchReg2, RegState::Kill);
+
+ BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
+ .addImm(TlsOffset);
+ BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
+ .addReg(ScratchReg)
+ .addReg(ScratchReg2).addImm(1).addReg(0)
+ .addImm(0)
+ .addReg(TlsReg);
+
+ if (SaveScratch2)
+ BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
+ }
+ }
+
+ // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
+ // It jumps to normal execution of the function body.
+ BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A);
+
+ // On 32 bit we first push the arguments size and then the frame size. On 64
+ // bit, we pass the stack frame size in r10 and the argument size in r11.
+ if (Is64Bit) {
+ // Functions with nested arguments use R10, so it needs to be saved across
+ // the call to _morestack
+
+ const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
+ const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
+ const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
+ const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
+ const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri;
+
+ if (IsNested)
+ BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
+
+ BuildMI(allocMBB, DL, TII.get(MOVri), Reg10)
+ .addImm(StackSize);
+ BuildMI(allocMBB, DL, TII.get(MOVri), Reg11)
+ .addImm(X86FI->getArgumentStackSize());
+ } else {
+ BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
+ .addImm(X86FI->getArgumentStackSize());
+ BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
+ .addImm(StackSize);
+ }
+
+ // __morestack is in libgcc
+ if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
+ // Under the large code model, we cannot assume that __morestack lives
+ // within 2^31 bytes of the call site, so we cannot use pc-relative
+ // addressing. We cannot perform the call via a temporary register,
+ // as the rax register may be used to store the static chain, and all
+ // other suitable registers may be either callee-save or used for
+ // parameter passing. We cannot use the stack at this point either
+ // because __morestack manipulates the stack directly.
+ //
+ // To avoid these issues, perform an indirect call via a read-only memory
+ // location containing the address.
+ //
+ // This solution is not perfect, as it assumes that the .rodata section
+ // is laid out within 2^31 bytes of each function body, but this seems
+ // to be sufficient for JIT.
+ // FIXME: Add retpoline support and remove the error here..
+ if (STI.useRetpolineIndirectCalls())
+ report_fatal_error("Emitting morestack calls on 64-bit with the large "
+ "code model and retpoline not yet implemented.");
+ BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
+ .addReg(X86::RIP)
+ .addImm(0)
+ .addReg(0)
+ .addExternalSymbol("__morestack_addr")
+ .addReg(0);
+ MF.getMMI().setUsesMorestackAddr(true);
+ } else {
+ if (Is64Bit)
+ BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
+ .addExternalSymbol("__morestack");
+ else
+ BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
+ .addExternalSymbol("__morestack");
+ }
+
+ if (IsNested)
+ BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
+ else
+ BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
+
+ allocMBB->addSuccessor(&PrologueMBB);
+
+ checkMBB->addSuccessor(allocMBB, BranchProbability::getZero());
+ checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne());
+
+#ifdef EXPENSIVE_CHECKS
+ MF.verify();
+#endif
+}
+
+/// Lookup an ERTS parameter in the !hipe.literals named metadata node.
+/// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets
+/// to fields it needs, through a named metadata node "hipe.literals" containing
+/// name-value pairs.
+static unsigned getHiPELiteral(
+ NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) {
+ for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) {
+ MDNode *Node = HiPELiteralsMD->getOperand(i);
+ if (Node->getNumOperands() != 2) continue;
+ MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0));
+ ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1));
+ if (!NodeName || !NodeVal) continue;
+ ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue());
+ if (ValConst && NodeName->getString() == LiteralName) {
+ return ValConst->getZExtValue();
+ }
+ }
+
+ report_fatal_error("HiPE literal " + LiteralName
+ + " required but not provided");
+}
+
+// Return true if there are no non-ehpad successors to MBB and there are no
+// non-meta instructions between MBBI and MBB.end().
+static bool blockEndIsUnreachable(const MachineBasicBlock &MBB,
+ MachineBasicBlock::const_iterator MBBI) {
+ return std::all_of(
+ MBB.succ_begin(), MBB.succ_end(),
+ [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) &&
+ std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) {
+ return MI.isMetaInstruction();
+ });
+}
+
+/// Erlang programs may need a special prologue to handle the stack size they
+/// might need at runtime. That is because Erlang/OTP does not implement a C
+/// stack but uses a custom implementation of hybrid stack/heap architecture.
+/// (for more information see Eric Stenman's Ph.D. thesis:
+/// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
+///
+/// CheckStack:
+/// temp0 = sp - MaxStack
+/// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
+/// OldStart:
+/// ...
+/// IncStack:
+/// call inc_stack # doubles the stack space
+/// temp0 = sp - MaxStack
+/// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
+void X86FrameLowering::adjustForHiPEPrologue(
+ MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ DebugLoc DL;
+
+ // To support shrink-wrapping we would need to insert the new blocks
+ // at the right place and update the branches to PrologueMBB.
+ assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
+
+ // HiPE-specific values
+ NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule()
+ ->getNamedMetadata("hipe.literals");
+ if (!HiPELiteralsMD)
+ report_fatal_error(
+ "Can't generate HiPE prologue without runtime parameters");
+ const unsigned HipeLeafWords
+ = getHiPELiteral(HiPELiteralsMD,
+ Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS");
+ const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
+ const unsigned Guaranteed = HipeLeafWords * SlotSize;
+ unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ?
+ MF.getFunction().arg_size() - CCRegisteredArgs : 0;
+ unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize;
+
+ assert(STI.isTargetLinux() &&
+ "HiPE prologue is only supported on Linux operating systems.");
+
+ // Compute the largest caller's frame that is needed to fit the callees'
+ // frames. This 'MaxStack' is computed from:
+ //
+ // a) the fixed frame size, which is the space needed for all spilled temps,
+ // b) outgoing on-stack parameter areas, and
+ // c) the minimum stack space this function needs to make available for the
+ // functions it calls (a tunable ABI property).
+ if (MFI.hasCalls()) {
+ unsigned MoreStackForCalls = 0;
+
+ for (auto &MBB : MF) {
+ for (auto &MI : MBB) {
+ if (!MI.isCall())
+ continue;
+
+ // Get callee operand.
+ const MachineOperand &MO = MI.getOperand(0);
+
+ // Only take account of global function calls (no closures etc.).
+ if (!MO.isGlobal())
+ continue;
+
+ const Function *F = dyn_cast<Function>(MO.getGlobal());
+ if (!F)
+ continue;
+
+ // Do not update 'MaxStack' for primitive and built-in functions
+ // (encoded with names either starting with "erlang."/"bif_" or not
+ // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
+ // "_", such as the BIF "suspend_0") as they are executed on another
+ // stack.
+ if (F->getName().find("erlang.") != StringRef::npos ||
+ F->getName().find("bif_") != StringRef::npos ||
+ F->getName().find_first_of("._") == StringRef::npos)
+ continue;
+
+ unsigned CalleeStkArity =
+ F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
+ if (HipeLeafWords - 1 > CalleeStkArity)
+ MoreStackForCalls = std::max(MoreStackForCalls,
+ (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
+ }
+ }
+ MaxStack += MoreStackForCalls;
+ }
+
+ // If the stack frame needed is larger than the guaranteed then runtime checks
+ // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
+ if (MaxStack > Guaranteed) {
+ MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
+ MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
+
+ for (const auto &LI : PrologueMBB.liveins()) {
+ stackCheckMBB->addLiveIn(LI);
+ incStackMBB->addLiveIn(LI);
+ }
+
+ MF.push_front(incStackMBB);
+ MF.push_front(stackCheckMBB);
+
+ unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
+ unsigned LEAop, CMPop, CALLop;
+ SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT");
+ if (Is64Bit) {
+ SPReg = X86::RSP;
+ PReg = X86::RBP;
+ LEAop = X86::LEA64r;
+ CMPop = X86::CMP64rm;
+ CALLop = X86::CALL64pcrel32;
+ } else {
+ SPReg = X86::ESP;
+ PReg = X86::EBP;
+ LEAop = X86::LEA32r;
+ CMPop = X86::CMP32rm;
+ CALLop = X86::CALLpcrel32;
+ }
+
+ ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
+ assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
+ "HiPE prologue scratch register is live-in");
+
+ // Create new MBB for StackCheck:
+ addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
+ SPReg, false, -MaxStack);
+ // SPLimitOffset is in a fixed heap location (pointed by BP).
+ addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
+ .addReg(ScratchReg), PReg, false, SPLimitOffset);
+ BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE);
+
+ // Create new MBB for IncStack:
+ BuildMI(incStackMBB, DL, TII.get(CALLop)).
+ addExternalSymbol("inc_stack_0");
+ addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
+ SPReg, false, -MaxStack);
+ addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
+ .addReg(ScratchReg), PReg, false, SPLimitOffset);
+ BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE);
+
+ stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
+ stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
+ incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
+ incStackMBB->addSuccessor(incStackMBB, {1, 100});
+ }
+#ifdef EXPENSIVE_CHECKS
+ MF.verify();
+#endif
+}
+
+bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ const DebugLoc &DL,
+ int Offset) const {
+
+ if (Offset <= 0)
+ return false;
+
+ if (Offset % SlotSize)
+ return false;
+
+ int NumPops = Offset / SlotSize;
+ // This is only worth it if we have at most 2 pops.
+ if (NumPops != 1 && NumPops != 2)
+ return false;
+
+ // Handle only the trivial case where the adjustment directly follows
+ // a call. This is the most common one, anyway.
+ if (MBBI == MBB.begin())
+ return false;
+ MachineBasicBlock::iterator Prev = std::prev(MBBI);
+ if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
+ return false;
+
+ unsigned Regs[2];
+ unsigned FoundRegs = 0;
+
+ auto &MRI = MBB.getParent()->getRegInfo();
+ auto RegMask = Prev->getOperand(1);
+
+ auto &RegClass =
+ Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
+ // Try to find up to NumPops free registers.
+ for (auto Candidate : RegClass) {
+
+ // Poor man's liveness:
+ // Since we're immediately after a call, any register that is clobbered
+ // by the call and not defined by it can be considered dead.
+ if (!RegMask.clobbersPhysReg(Candidate))
+ continue;
+
+ // Don't clobber reserved registers
+ if (MRI.isReserved(Candidate))
+ continue;
+
+ bool IsDef = false;
+ for (const MachineOperand &MO : Prev->implicit_operands()) {
+ if (MO.isReg() && MO.isDef() &&
+ TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) {
+ IsDef = true;
+ break;
+ }
+ }
+
+ if (IsDef)
+ continue;
+
+ Regs[FoundRegs++] = Candidate;
+ if (FoundRegs == (unsigned)NumPops)
+ break;
+ }
+
+ if (FoundRegs == 0)
+ return false;
+
+ // If we found only one free register, but need two, reuse the same one twice.
+ while (FoundRegs < (unsigned)NumPops)
+ Regs[FoundRegs++] = Regs[0];
+
+ for (int i = 0; i < NumPops; ++i)
+ BuildMI(MBB, MBBI, DL,
+ TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);
+
+ return true;
+}
+
+MachineBasicBlock::iterator X86FrameLowering::
+eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const {
+ bool reserveCallFrame = hasReservedCallFrame(MF);
+ unsigned Opcode = I->getOpcode();
+ bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
+ DebugLoc DL = I->getDebugLoc();
+ uint64_t Amount = TII.getFrameSize(*I);
+ uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0;
+ I = MBB.erase(I);
+ auto InsertPos = skipDebugInstructionsForward(I, MBB.end());
+
+ if (!reserveCallFrame) {
+ // If the stack pointer can be changed after prologue, turn the
+ // adjcallstackup instruction into a 'sub ESP, <amt>' and the
+ // adjcallstackdown instruction into 'add ESP, <amt>'
+
+ // We need to keep the stack aligned properly. To do this, we round the
+ // amount of space needed for the outgoing arguments up to the next
+ // alignment boundary.
+ unsigned StackAlign = getStackAlignment();
+ Amount = alignTo(Amount, StackAlign);
+
+ MachineModuleInfo &MMI = MF.getMMI();
+ const Function &F = MF.getFunction();
+ bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
+ bool DwarfCFI = !WindowsCFI &&
+ (MMI.hasDebugInfo() || F.needsUnwindTableEntry());
+
+ // If we have any exception handlers in this function, and we adjust
+ // the SP before calls, we may need to indicate this to the unwinder
+ // using GNU_ARGS_SIZE. Note that this may be necessary even when
+ // Amount == 0, because the preceding function may have set a non-0
+ // GNU_ARGS_SIZE.
+ // TODO: We don't need to reset this between subsequent functions,
+ // if it didn't change.
+ bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty();
+
+ if (HasDwarfEHHandlers && !isDestroy &&
+ MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
+ BuildCFI(MBB, InsertPos, DL,
+ MCCFIInstruction::createGnuArgsSize(nullptr, Amount));
+
+ if (Amount == 0)
+ return I;
+
+ // Factor out the amount that gets handled inside the sequence
+ // (Pushes of argument for frame setup, callee pops for frame destroy)
+ Amount -= InternalAmt;
+
+ // TODO: This is needed only if we require precise CFA.
+ // If this is a callee-pop calling convention, emit a CFA adjust for
+ // the amount the callee popped.
+ if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
+ BuildCFI(MBB, InsertPos, DL,
+ MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));
+
+ // Add Amount to SP to destroy a frame, or subtract to setup.
+ int64_t StackAdjustment = isDestroy ? Amount : -Amount;
+
+ if (StackAdjustment) {
+ // Merge with any previous or following adjustment instruction. Note: the
+ // instructions merged with here do not have CFI, so their stack
+ // adjustments do not feed into CfaAdjustment.
+ StackAdjustment += mergeSPUpdates(MBB, InsertPos, true);
+ StackAdjustment += mergeSPUpdates(MBB, InsertPos, false);
+
+ if (StackAdjustment) {
+ if (!(F.hasMinSize() &&
+ adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment)))
+ BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment,
+ /*InEpilogue=*/false);
+ }
+ }
+
+ if (DwarfCFI && !hasFP(MF)) {
+ // If we don't have FP, but need to generate unwind information,
+ // we need to set the correct CFA offset after the stack adjustment.
+ // How much we adjust the CFA offset depends on whether we're emitting
+ // CFI only for EH purposes or for debugging. EH only requires the CFA
+ // offset to be correct at each call site, while for debugging we want
+ // it to be more precise.
+
+ int64_t CfaAdjustment = -StackAdjustment;
+ // TODO: When not using precise CFA, we also need to adjust for the
+ // InternalAmt here.
+ if (CfaAdjustment) {
+ BuildCFI(MBB, InsertPos, DL,
+ MCCFIInstruction::createAdjustCfaOffset(nullptr,
+ CfaAdjustment));
+ }
+ }
+
+ return I;
+ }
+
+ if (isDestroy && InternalAmt && !blockEndIsUnreachable(MBB, I)) {
+ // If we are performing frame pointer elimination and if the callee pops
+ // something off the stack pointer, add it back. We do this until we have
+ // more advanced stack pointer tracking ability.
+ // We are not tracking the stack pointer adjustment by the callee, so make
+ // sure we restore the stack pointer immediately after the call, there may
+ // be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
+ MachineBasicBlock::iterator CI = I;
+ MachineBasicBlock::iterator B = MBB.begin();
+ while (CI != B && !std::prev(CI)->isCall())
+ --CI;
+ BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false);
+ }
+
+ return I;
+}
+
+bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
+ assert(MBB.getParent() && "Block is not attached to a function!");
+ const MachineFunction &MF = *MBB.getParent();
+ return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS);
+}
+
+bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
+ assert(MBB.getParent() && "Block is not attached to a function!");
+
+ // Win64 has strict requirements in terms of epilogue and we are
+ // not taking a chance at messing with them.
+ // I.e., unless this block is already an exit block, we can't use
+ // it as an epilogue.
+ if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
+ return false;
+
+ if (canUseLEAForSPInEpilogue(*MBB.getParent()))
+ return true;
+
+ // If we cannot use LEA to adjust SP, we may need to use ADD, which
+ // clobbers the EFLAGS. Check that we do not need to preserve it,
+ // otherwise, conservatively assume this is not
+ // safe to insert the epilogue here.
+ return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
+}
+
+bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
+ // If we may need to emit frameless compact unwind information, give
+ // up as this is currently broken: PR25614.
+ return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) &&
+ // The lowering of segmented stack and HiPE only support entry blocks
+ // as prologue blocks: PR26107.
+ // This limitation may be lifted if we fix:
+ // - adjustForSegmentedStacks
+ // - adjustForHiPEPrologue
+ MF.getFunction().getCallingConv() != CallingConv::HiPE &&
+ !MF.shouldSplitStack();
+}
+
+MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
+ MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
+ const DebugLoc &DL, bool RestoreSP) const {
+ assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
+ assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
+ assert(STI.is32Bit() && !Uses64BitFramePtr &&
+ "restoring EBP/ESI on non-32-bit target");
+
+ MachineFunction &MF = *MBB.getParent();
+ Register FramePtr = TRI->getFrameRegister(MF);
+ Register BasePtr = TRI->getBaseRegister();
+ WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
+ X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+
+ // FIXME: Don't set FrameSetup flag in catchret case.
+
+ int FI = FuncInfo.EHRegNodeFrameIndex;
+ int EHRegSize = MFI.getObjectSize(FI);
+
+ if (RestoreSP) {
+ // MOV32rm -EHRegSize(%ebp), %esp
+ addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
+ X86::EBP, true, -EHRegSize)
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+
+ unsigned UsedReg;
+ int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg);
+ int EndOffset = -EHRegOffset - EHRegSize;
+ FuncInfo.EHRegNodeEndOffset = EndOffset;
+
+ if (UsedReg == FramePtr) {
+ // ADD $offset, %ebp
+ unsigned ADDri = getADDriOpcode(false, EndOffset);
+ BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
+ .addReg(FramePtr)
+ .addImm(EndOffset)
+ .setMIFlag(MachineInstr::FrameSetup)
+ ->getOperand(3)
+ .setIsDead();
+ assert(EndOffset >= 0 &&
+ "end of registration object above normal EBP position!");
+ } else if (UsedReg == BasePtr) {
+ // LEA offset(%ebp), %esi
+ addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
+ FramePtr, false, EndOffset)
+ .setMIFlag(MachineInstr::FrameSetup);
+ // MOV32rm SavedEBPOffset(%esi), %ebp
+ assert(X86FI->getHasSEHFramePtrSave());
+ int Offset =
+ getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
+ assert(UsedReg == BasePtr);
+ addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
+ UsedReg, true, Offset)
+ .setMIFlag(MachineInstr::FrameSetup);
+ } else {
+ llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
+ }
+ return MBBI;
+}
+
+int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const {
+ return TRI->getSlotSize();
+}
+
+unsigned X86FrameLowering::getInitialCFARegister(const MachineFunction &MF)
+ const {
+ return TRI->getDwarfRegNum(StackPtr, true);
+}
+
+namespace {
+// Struct used by orderFrameObjects to help sort the stack objects.
+struct X86FrameSortingObject {
+ bool IsValid = false; // true if we care about this Object.
+ unsigned ObjectIndex = 0; // Index of Object into MFI list.
+ unsigned ObjectSize = 0; // Size of Object in bytes.
+ unsigned ObjectAlignment = 1; // Alignment of Object in bytes.
+ unsigned ObjectNumUses = 0; // Object static number of uses.
+};
+
+// The comparison function we use for std::sort to order our local
+// stack symbols. The current algorithm is to use an estimated
+// "density". This takes into consideration the size and number of
+// uses each object has in order to roughly minimize code size.
+// So, for example, an object of size 16B that is referenced 5 times
+// will get higher priority than 4 4B objects referenced 1 time each.
+// It's not perfect and we may be able to squeeze a few more bytes out of
+// it (for example : 0(esp) requires fewer bytes, symbols allocated at the
+// fringe end can have special consideration, given their size is less
+// important, etc.), but the algorithmic complexity grows too much to be
+// worth the extra gains we get. This gets us pretty close.
+// The final order leaves us with objects with highest priority going
+// at the end of our list.
+struct X86FrameSortingComparator {
+ inline bool operator()(const X86FrameSortingObject &A,
+ const X86FrameSortingObject &B) {
+ uint64_t DensityAScaled, DensityBScaled;
+
+ // For consistency in our comparison, all invalid objects are placed
+ // at the end. This also allows us to stop walking when we hit the
+ // first invalid item after it's all sorted.
+ if (!A.IsValid)
+ return false;
+ if (!B.IsValid)
+ return true;
+
+ // The density is calculated by doing :
+ // (double)DensityA = A.ObjectNumUses / A.ObjectSize
+ // (double)DensityB = B.ObjectNumUses / B.ObjectSize
+ // Since this approach may cause inconsistencies in
+ // the floating point <, >, == comparisons, depending on the floating
+ // point model with which the compiler was built, we're going
+ // to scale both sides by multiplying with
+ // A.ObjectSize * B.ObjectSize. This ends up factoring away
+ // the division and, with it, the need for any floating point
+ // arithmetic.
+ DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) *
+ static_cast<uint64_t>(B.ObjectSize);
+ DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) *
+ static_cast<uint64_t>(A.ObjectSize);
+
+ // If the two densities are equal, prioritize highest alignment
+ // objects. This allows for similar alignment objects
+ // to be packed together (given the same density).
+ // There's room for improvement here, also, since we can pack
+ // similar alignment (different density) objects next to each
+ // other to save padding. This will also require further
+ // complexity/iterations, and the overall gain isn't worth it,
+ // in general. Something to keep in mind, though.
+ if (DensityAScaled == DensityBScaled)
+ return A.ObjectAlignment < B.ObjectAlignment;
+
+ return DensityAScaled < DensityBScaled;
+ }
+};
+} // namespace
+
+// Order the symbols in the local stack.
+// We want to place the local stack objects in some sort of sensible order.
+// The heuristic we use is to try and pack them according to static number
+// of uses and size of object in order to minimize code size.
+void X86FrameLowering::orderFrameObjects(
+ const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
+ const MachineFrameInfo &MFI = MF.getFrameInfo();
+
+ // Don't waste time if there's nothing to do.
+ if (ObjectsToAllocate.empty())
+ return;
+
+ // Create an array of all MFI objects. We won't need all of these
+ // objects, but we're going to create a full array of them to make
+ // it easier to index into when we're counting "uses" down below.
+ // We want to be able to easily/cheaply access an object by simply
+ // indexing into it, instead of having to search for it every time.
+ std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd());
+
+ // Walk the objects we care about and mark them as such in our working
+ // struct.
+ for (auto &Obj : ObjectsToAllocate) {
+ SortingObjects[Obj].IsValid = true;
+ SortingObjects[Obj].ObjectIndex = Obj;
+ SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlignment(Obj);
+ // Set the size.
+ int ObjectSize = MFI.getObjectSize(Obj);
+ if (ObjectSize == 0)
+ // Variable size. Just use 4.
+ SortingObjects[Obj].ObjectSize = 4;
+ else
+ SortingObjects[Obj].ObjectSize = ObjectSize;
+ }
+
+ // Count the number of uses for each object.
+ for (auto &MBB : MF) {
+ for (auto &MI : MBB) {
+ if (MI.isDebugInstr())
+ continue;
+ for (const MachineOperand &MO : MI.operands()) {
+ // Check to see if it's a local stack symbol.
+ if (!MO.isFI())
+ continue;
+ int Index = MO.getIndex();
+ // Check to see if it falls within our range, and is tagged
+ // to require ordering.
+ if (Index >= 0 && Index < MFI.getObjectIndexEnd() &&
+ SortingObjects[Index].IsValid)
+ SortingObjects[Index].ObjectNumUses++;
+ }
+ }
+ }
+
+ // Sort the objects using X86FrameSortingAlgorithm (see its comment for
+ // info).
+ llvm::stable_sort(SortingObjects, X86FrameSortingComparator());
+
+ // Now modify the original list to represent the final order that
+ // we want. The order will depend on whether we're going to access them
+ // from the stack pointer or the frame pointer. For SP, the list should
+ // end up with the END containing objects that we want with smaller offsets.
+ // For FP, it should be flipped.
+ int i = 0;
+ for (auto &Obj : SortingObjects) {
+ // All invalid items are sorted at the end, so it's safe to stop.
+ if (!Obj.IsValid)
+ break;
+ ObjectsToAllocate[i++] = Obj.ObjectIndex;
+ }
+
+ // Flip it if we're accessing off of the FP.
+ if (!TRI->needsStackRealignment(MF) && hasFP(MF))
+ std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end());
+}
+
+
+unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
+ // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
+ unsigned Offset = 16;
+ // RBP is immediately pushed.
+ Offset += SlotSize;
+ // All callee-saved registers are then pushed.
+ Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
+ // Every funclet allocates enough stack space for the largest outgoing call.
+ Offset += getWinEHFuncletFrameSize(MF);
+ return Offset;
+}
+
+void X86FrameLowering::processFunctionBeforeFrameFinalized(
+ MachineFunction &MF, RegScavenger *RS) const {
+ // Mark the function as not having WinCFI. We will set it back to true in
+ // emitPrologue if it gets called and emits CFI.
+ MF.setHasWinCFI(false);
+
+ // If this function isn't doing Win64-style C++ EH, we don't need to do
+ // anything.
+ const Function &F = MF.getFunction();
+ if (!STI.is64Bit() || !MF.hasEHFunclets() ||
+ classifyEHPersonality(F.getPersonalityFn()) != EHPersonality::MSVC_CXX)
+ return;
+
+ // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
+ // relative to RSP after the prologue. Find the offset of the last fixed
+ // object, so that we can allocate a slot immediately following it. If there
+ // were no fixed objects, use offset -SlotSize, which is immediately after the
+ // return address. Fixed objects have negative frame indices.
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
+ int64_t MinFixedObjOffset = -SlotSize;
+ for (int I = MFI.getObjectIndexBegin(); I < 0; ++I)
+ MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I));
+
+ for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
+ for (WinEHHandlerType &H : TBME.HandlerArray) {
+ int FrameIndex = H.CatchObj.FrameIndex;
+ if (FrameIndex != INT_MAX) {
+ // Ensure alignment.
+ unsigned Align = MFI.getObjectAlignment(FrameIndex);
+ MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align;
+ MinFixedObjOffset -= MFI.getObjectSize(FrameIndex);
+ MFI.setObjectOffset(FrameIndex, MinFixedObjOffset);
+ }
+ }
+ }
+
+ // Ensure alignment.
+ MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8;
+ int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
+ int UnwindHelpFI =
+ MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false);
+ EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
+
+ // Store -2 into UnwindHelp on function entry. We have to scan forwards past
+ // other frame setup instructions.
+ MachineBasicBlock &MBB = MF.front();
+ auto MBBI = MBB.begin();
+ while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
+ ++MBBI;
+
+ DebugLoc DL = MBB.findDebugLoc(MBBI);
+ addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
+ UnwindHelpFI)
+ .addImm(-2);
+}