summaryrefslogtreecommitdiff
path: root/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Target/X86/X86SelectionDAGInfo.cpp')
-rw-r--r--llvm/lib/Target/X86/X86SelectionDAGInfo.cpp318
1 files changed, 318 insertions, 0 deletions
diff --git a/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp b/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp
new file mode 100644
index 000000000000..1ae8df977f83
--- /dev/null
+++ b/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp
@@ -0,0 +1,318 @@
+//===-- X86SelectionDAGInfo.cpp - X86 SelectionDAG Info -------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the X86SelectionDAGInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86SelectionDAGInfo.h"
+#include "X86ISelLowering.h"
+#include "X86InstrInfo.h"
+#include "X86RegisterInfo.h"
+#include "X86Subtarget.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/IR/DerivedTypes.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "x86-selectiondag-info"
+
+bool X86SelectionDAGInfo::isBaseRegConflictPossible(
+ SelectionDAG &DAG, ArrayRef<MCPhysReg> ClobberSet) const {
+ // We cannot use TRI->hasBasePointer() until *after* we select all basic
+ // blocks. Legalization may introduce new stack temporaries with large
+ // alignment requirements. Fall back to generic code if there are any
+ // dynamic stack adjustments (hopefully rare) and the base pointer would
+ // conflict if we had to use it.
+ MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
+ if (!MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment())
+ return false;
+
+ const X86RegisterInfo *TRI = static_cast<const X86RegisterInfo *>(
+ DAG.getSubtarget().getRegisterInfo());
+ Register BaseReg = TRI->getBaseRegister();
+ for (unsigned R : ClobberSet)
+ if (BaseReg == R)
+ return true;
+ return false;
+}
+
+SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset(
+ SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val,
+ SDValue Size, unsigned Align, bool isVolatile,
+ MachinePointerInfo DstPtrInfo) const {
+ ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
+ const X86Subtarget &Subtarget =
+ DAG.getMachineFunction().getSubtarget<X86Subtarget>();
+
+#ifndef NDEBUG
+ // If the base register might conflict with our physical registers, bail out.
+ const MCPhysReg ClobberSet[] = {X86::RCX, X86::RAX, X86::RDI,
+ X86::ECX, X86::EAX, X86::EDI};
+ assert(!isBaseRegConflictPossible(DAG, ClobberSet));
+#endif
+
+ // If to a segment-relative address space, use the default lowering.
+ if (DstPtrInfo.getAddrSpace() >= 256)
+ return SDValue();
+
+ // If not DWORD aligned or size is more than the threshold, call the library.
+ // The libc version is likely to be faster for these cases. It can use the
+ // address value and run time information about the CPU.
+ if ((Align & 3) != 0 || !ConstantSize ||
+ ConstantSize->getZExtValue() > Subtarget.getMaxInlineSizeThreshold()) {
+ // Check to see if there is a specialized entry-point for memory zeroing.
+ ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Val);
+
+ if (const char *bzeroName = (ValC && ValC->isNullValue())
+ ? DAG.getTargetLoweringInfo().getLibcallName(RTLIB::BZERO)
+ : nullptr) {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
+ Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+ Entry.Node = Dst;
+ Entry.Ty = IntPtrTy;
+ Args.push_back(Entry);
+ Entry.Node = Size;
+ Args.push_back(Entry);
+
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(dl)
+ .setChain(Chain)
+ .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
+ DAG.getExternalSymbol(bzeroName, IntPtr),
+ std::move(Args))
+ .setDiscardResult();
+
+ std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI);
+ return CallResult.second;
+ }
+
+ // Otherwise have the target-independent code call memset.
+ return SDValue();
+ }
+
+ uint64_t SizeVal = ConstantSize->getZExtValue();
+ SDValue InFlag;
+ EVT AVT;
+ SDValue Count;
+ ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Val);
+ unsigned BytesLeft = 0;
+ if (ValC) {
+ unsigned ValReg;
+ uint64_t Val = ValC->getZExtValue() & 255;
+
+ // If the value is a constant, then we can potentially use larger sets.
+ switch (Align & 3) {
+ case 2: // WORD aligned
+ AVT = MVT::i16;
+ ValReg = X86::AX;
+ Val = (Val << 8) | Val;
+ break;
+ case 0: // DWORD aligned
+ AVT = MVT::i32;
+ ValReg = X86::EAX;
+ Val = (Val << 8) | Val;
+ Val = (Val << 16) | Val;
+ if (Subtarget.is64Bit() && ((Align & 0x7) == 0)) { // QWORD aligned
+ AVT = MVT::i64;
+ ValReg = X86::RAX;
+ Val = (Val << 32) | Val;
+ }
+ break;
+ default: // Byte aligned
+ AVT = MVT::i8;
+ ValReg = X86::AL;
+ Count = DAG.getIntPtrConstant(SizeVal, dl);
+ break;
+ }
+
+ if (AVT.bitsGT(MVT::i8)) {
+ unsigned UBytes = AVT.getSizeInBits() / 8;
+ Count = DAG.getIntPtrConstant(SizeVal / UBytes, dl);
+ BytesLeft = SizeVal % UBytes;
+ }
+
+ Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, dl, AVT),
+ InFlag);
+ InFlag = Chain.getValue(1);
+ } else {
+ AVT = MVT::i8;
+ Count = DAG.getIntPtrConstant(SizeVal, dl);
+ Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Val, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ bool Use64BitRegs = Subtarget.isTarget64BitLP64();
+ Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RCX : X86::ECX,
+ Count, InFlag);
+ InFlag = Chain.getValue(1);
+ Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RDI : X86::EDI,
+ Dst, InFlag);
+ InFlag = Chain.getValue(1);
+
+ SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
+ Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops);
+
+ if (BytesLeft) {
+ // Handle the last 1 - 7 bytes.
+ unsigned Offset = SizeVal - BytesLeft;
+ EVT AddrVT = Dst.getValueType();
+ EVT SizeVT = Size.getValueType();
+
+ Chain = DAG.getMemset(Chain, dl,
+ DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
+ DAG.getConstant(Offset, dl, AddrVT)),
+ Val,
+ DAG.getConstant(BytesLeft, dl, SizeVT),
+ Align, isVolatile, false,
+ DstPtrInfo.getWithOffset(Offset));
+ }
+
+ // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
+ return Chain;
+}
+
+/// Emit a single REP MOVS{B,W,D,Q} instruction.
+static SDValue emitRepmovs(const X86Subtarget &Subtarget, SelectionDAG &DAG,
+ const SDLoc &dl, SDValue Chain, SDValue Dst,
+ SDValue Src, SDValue Size, MVT AVT) {
+ const bool Use64BitRegs = Subtarget.isTarget64BitLP64();
+ const unsigned CX = Use64BitRegs ? X86::RCX : X86::ECX;
+ const unsigned DI = Use64BitRegs ? X86::RDI : X86::EDI;
+ const unsigned SI = Use64BitRegs ? X86::RSI : X86::ESI;
+
+ SDValue InFlag;
+ Chain = DAG.getCopyToReg(Chain, dl, CX, Size, InFlag);
+ InFlag = Chain.getValue(1);
+ Chain = DAG.getCopyToReg(Chain, dl, DI, Dst, InFlag);
+ InFlag = Chain.getValue(1);
+ Chain = DAG.getCopyToReg(Chain, dl, SI, Src, InFlag);
+ InFlag = Chain.getValue(1);
+
+ SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue Ops[] = {Chain, DAG.getValueType(AVT), InFlag};
+ return DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops);
+}
+
+/// Emit a single REP MOVSB instruction for a particular constant size.
+static SDValue emitRepmovsB(const X86Subtarget &Subtarget, SelectionDAG &DAG,
+ const SDLoc &dl, SDValue Chain, SDValue Dst,
+ SDValue Src, uint64_t Size) {
+ return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src,
+ DAG.getIntPtrConstant(Size, dl), MVT::i8);
+}
+
+/// Returns the best type to use with repmovs depending on alignment.
+static MVT getOptimalRepmovsType(const X86Subtarget &Subtarget,
+ uint64_t Align) {
+ assert((Align != 0) && "Align is normalized");
+ assert(isPowerOf2_64(Align) && "Align is a power of 2");
+ switch (Align) {
+ case 1:
+ return MVT::i8;
+ case 2:
+ return MVT::i16;
+ case 4:
+ return MVT::i32;
+ default:
+ return Subtarget.is64Bit() ? MVT::i64 : MVT::i32;
+ }
+}
+
+/// Returns a REP MOVS instruction, possibly with a few load/stores to implement
+/// a constant size memory copy. In some cases where we know REP MOVS is
+/// inefficient we return an empty SDValue so the calling code can either
+/// generate a load/store sequence or call the runtime memcpy function.
+static SDValue emitConstantSizeRepmov(
+ SelectionDAG &DAG, const X86Subtarget &Subtarget, const SDLoc &dl,
+ SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, EVT SizeVT,
+ unsigned Align, bool isVolatile, bool AlwaysInline,
+ MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) {
+
+ /// TODO: Revisit next line: big copy with ERMSB on march >= haswell are very
+ /// efficient.
+ if (!AlwaysInline && Size > Subtarget.getMaxInlineSizeThreshold())
+ return SDValue();
+
+ /// If we have enhanced repmovs we use it.
+ if (Subtarget.hasERMSB())
+ return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size);
+
+ assert(!Subtarget.hasERMSB() && "No efficient RepMovs");
+ /// We assume runtime memcpy will do a better job for unaligned copies when
+ /// ERMS is not present.
+ if (!AlwaysInline && (Align & 3) != 0)
+ return SDValue();
+
+ const MVT BlockType = getOptimalRepmovsType(Subtarget, Align);
+ const uint64_t BlockBytes = BlockType.getSizeInBits() / 8;
+ const uint64_t BlockCount = Size / BlockBytes;
+ const uint64_t BytesLeft = Size % BlockBytes;
+ SDValue RepMovs =
+ emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src,
+ DAG.getIntPtrConstant(BlockCount, dl), BlockType);
+
+ /// RepMov can process the whole length.
+ if (BytesLeft == 0)
+ return RepMovs;
+
+ assert(BytesLeft && "We have leftover at this point");
+
+ /// In case we optimize for size we use repmovsb even if it's less efficient
+ /// so we can save the loads/stores of the leftover.
+ if (DAG.getMachineFunction().getFunction().hasMinSize())
+ return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size);
+
+ // Handle the last 1 - 7 bytes.
+ SmallVector<SDValue, 4> Results;
+ Results.push_back(RepMovs);
+ unsigned Offset = Size - BytesLeft;
+ EVT DstVT = Dst.getValueType();
+ EVT SrcVT = Src.getValueType();
+ Results.push_back(DAG.getMemcpy(
+ Chain, dl,
+ DAG.getNode(ISD::ADD, dl, DstVT, Dst, DAG.getConstant(Offset, dl, DstVT)),
+ DAG.getNode(ISD::ADD, dl, SrcVT, Src, DAG.getConstant(Offset, dl, SrcVT)),
+ DAG.getConstant(BytesLeft, dl, SizeVT), Align, isVolatile,
+ /*AlwaysInline*/ true, /*isTailCall*/ false,
+ DstPtrInfo.getWithOffset(Offset), SrcPtrInfo.getWithOffset(Offset)));
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results);
+}
+
+SDValue X86SelectionDAGInfo::EmitTargetCodeForMemcpy(
+ SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
+ SDValue Size, unsigned Align, bool isVolatile, bool AlwaysInline,
+ MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const {
+ // If to a segment-relative address space, use the default lowering.
+ if (DstPtrInfo.getAddrSpace() >= 256 || SrcPtrInfo.getAddrSpace() >= 256)
+ return SDValue();
+
+ // If the base registers conflict with our physical registers, use the default
+ // lowering.
+ const MCPhysReg ClobberSet[] = {X86::RCX, X86::RSI, X86::RDI,
+ X86::ECX, X86::ESI, X86::EDI};
+ if (isBaseRegConflictPossible(DAG, ClobberSet))
+ return SDValue();
+
+ const X86Subtarget &Subtarget =
+ DAG.getMachineFunction().getSubtarget<X86Subtarget>();
+
+ /// Handle constant sizes,
+ if (ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size))
+ return emitConstantSizeRepmov(DAG, Subtarget, dl, Chain, Dst, Src,
+ ConstantSize->getZExtValue(),
+ Size.getValueType(), Align, isVolatile,
+ AlwaysInline, DstPtrInfo, SrcPtrInfo);
+
+ return SDValue();
+}