diff options
Diffstat (limited to 'llvm/lib/Transforms/AggressiveInstCombine/AggressiveInstCombine.cpp')
| -rw-r--r-- | llvm/lib/Transforms/AggressiveInstCombine/AggressiveInstCombine.cpp | 417 | 
1 files changed, 417 insertions, 0 deletions
| diff --git a/llvm/lib/Transforms/AggressiveInstCombine/AggressiveInstCombine.cpp b/llvm/lib/Transforms/AggressiveInstCombine/AggressiveInstCombine.cpp new file mode 100644 index 000000000000..a24de3ca213f --- /dev/null +++ b/llvm/lib/Transforms/AggressiveInstCombine/AggressiveInstCombine.cpp @@ -0,0 +1,417 @@ +//===- AggressiveInstCombine.cpp ------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the aggressive expression pattern combiner classes. +// Currently, it handles expression patterns for: +//  * Truncate instruction +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h" +#include "AggressiveInstCombineInternal.h" +#include "llvm-c/Initialization.h" +#include "llvm-c/Transforms/AggressiveInstCombine.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/BasicAliasAnalysis.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/LegacyPassManager.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/Pass.h" +#include "llvm/Transforms/Utils/Local.h" +using namespace llvm; +using namespace PatternMatch; + +#define DEBUG_TYPE "aggressive-instcombine" + +namespace { +/// Contains expression pattern combiner logic. +/// This class provides both the logic to combine expression patterns and +/// combine them. It differs from InstCombiner class in that each pattern +/// combiner runs only once as opposed to InstCombine's multi-iteration, +/// which allows pattern combiner to have higher complexity than the O(1) +/// required by the instruction combiner. +class AggressiveInstCombinerLegacyPass : public FunctionPass { +public: +  static char ID; // Pass identification, replacement for typeid + +  AggressiveInstCombinerLegacyPass() : FunctionPass(ID) { +    initializeAggressiveInstCombinerLegacyPassPass( +        *PassRegistry::getPassRegistry()); +  } + +  void getAnalysisUsage(AnalysisUsage &AU) const override; + +  /// Run all expression pattern optimizations on the given /p F function. +  /// +  /// \param F function to optimize. +  /// \returns true if the IR is changed. +  bool runOnFunction(Function &F) override; +}; +} // namespace + +/// Match a pattern for a bitwise rotate operation that partially guards +/// against undefined behavior by branching around the rotation when the shift +/// amount is 0. +static bool foldGuardedRotateToFunnelShift(Instruction &I) { +  if (I.getOpcode() != Instruction::PHI || I.getNumOperands() != 2) +    return false; + +  // As with the one-use checks below, this is not strictly necessary, but we +  // are being cautious to avoid potential perf regressions on targets that +  // do not actually have a rotate instruction (where the funnel shift would be +  // expanded back into math/shift/logic ops). +  if (!isPowerOf2_32(I.getType()->getScalarSizeInBits())) +    return false; + +  // Match V to funnel shift left/right and capture the source operand and +  // shift amount in X and Y. +  auto matchRotate = [](Value *V, Value *&X, Value *&Y) { +    Value *L0, *L1, *R0, *R1; +    unsigned Width = V->getType()->getScalarSizeInBits(); +    auto Sub = m_Sub(m_SpecificInt(Width), m_Value(R1)); + +    // rotate_left(X, Y) == (X << Y) | (X >> (Width - Y)) +    auto RotL = m_OneUse( +        m_c_Or(m_Shl(m_Value(L0), m_Value(L1)), m_LShr(m_Value(R0), Sub))); +    if (RotL.match(V) && L0 == R0 && L1 == R1) { +      X = L0; +      Y = L1; +      return Intrinsic::fshl; +    } + +    // rotate_right(X, Y) == (X >> Y) | (X << (Width - Y)) +    auto RotR = m_OneUse( +        m_c_Or(m_LShr(m_Value(L0), m_Value(L1)), m_Shl(m_Value(R0), Sub))); +    if (RotR.match(V) && L0 == R0 && L1 == R1) { +      X = L0; +      Y = L1; +      return Intrinsic::fshr; +    } + +    return Intrinsic::not_intrinsic; +  }; + +  // One phi operand must be a rotate operation, and the other phi operand must +  // be the source value of that rotate operation: +  // phi [ rotate(RotSrc, RotAmt), RotBB ], [ RotSrc, GuardBB ] +  PHINode &Phi = cast<PHINode>(I); +  Value *P0 = Phi.getOperand(0), *P1 = Phi.getOperand(1); +  Value *RotSrc, *RotAmt; +  Intrinsic::ID IID = matchRotate(P0, RotSrc, RotAmt); +  if (IID == Intrinsic::not_intrinsic || RotSrc != P1) { +    IID = matchRotate(P1, RotSrc, RotAmt); +    if (IID == Intrinsic::not_intrinsic || RotSrc != P0) +      return false; +    assert((IID == Intrinsic::fshl || IID == Intrinsic::fshr) && +           "Pattern must match funnel shift left or right"); +  } + +  // The incoming block with our source operand must be the "guard" block. +  // That must contain a cmp+branch to avoid the rotate when the shift amount +  // is equal to 0. The other incoming block is the block with the rotate. +  BasicBlock *GuardBB = Phi.getIncomingBlock(RotSrc == P1); +  BasicBlock *RotBB = Phi.getIncomingBlock(RotSrc != P1); +  Instruction *TermI = GuardBB->getTerminator(); +  ICmpInst::Predicate Pred; +  BasicBlock *PhiBB = Phi.getParent(); +  if (!match(TermI, m_Br(m_ICmp(Pred, m_Specific(RotAmt), m_ZeroInt()), +                         m_SpecificBB(PhiBB), m_SpecificBB(RotBB)))) +    return false; + +  if (Pred != CmpInst::ICMP_EQ) +    return false; + +  // We matched a variation of this IR pattern: +  // GuardBB: +  //   %cmp = icmp eq i32 %RotAmt, 0 +  //   br i1 %cmp, label %PhiBB, label %RotBB +  // RotBB: +  //   %sub = sub i32 32, %RotAmt +  //   %shr = lshr i32 %X, %sub +  //   %shl = shl i32 %X, %RotAmt +  //   %rot = or i32 %shr, %shl +  //   br label %PhiBB +  // PhiBB: +  //   %cond = phi i32 [ %rot, %RotBB ], [ %X, %GuardBB ] +  // --> +  // llvm.fshl.i32(i32 %X, i32 %RotAmt) +  IRBuilder<> Builder(PhiBB, PhiBB->getFirstInsertionPt()); +  Function *F = Intrinsic::getDeclaration(Phi.getModule(), IID, Phi.getType()); +  Phi.replaceAllUsesWith(Builder.CreateCall(F, {RotSrc, RotSrc, RotAmt})); +  return true; +} + +/// This is used by foldAnyOrAllBitsSet() to capture a source value (Root) and +/// the bit indexes (Mask) needed by a masked compare. If we're matching a chain +/// of 'and' ops, then we also need to capture the fact that we saw an +/// "and X, 1", so that's an extra return value for that case. +struct MaskOps { +  Value *Root; +  APInt Mask; +  bool MatchAndChain; +  bool FoundAnd1; + +  MaskOps(unsigned BitWidth, bool MatchAnds) +      : Root(nullptr), Mask(APInt::getNullValue(BitWidth)), +        MatchAndChain(MatchAnds), FoundAnd1(false) {} +}; + +/// This is a recursive helper for foldAnyOrAllBitsSet() that walks through a +/// chain of 'and' or 'or' instructions looking for shift ops of a common source +/// value. Examples: +///   or (or (or X, (X >> 3)), (X >> 5)), (X >> 8) +/// returns { X, 0x129 } +///   and (and (X >> 1), 1), (X >> 4) +/// returns { X, 0x12 } +static bool matchAndOrChain(Value *V, MaskOps &MOps) { +  Value *Op0, *Op1; +  if (MOps.MatchAndChain) { +    // Recurse through a chain of 'and' operands. This requires an extra check +    // vs. the 'or' matcher: we must find an "and X, 1" instruction somewhere +    // in the chain to know that all of the high bits are cleared. +    if (match(V, m_And(m_Value(Op0), m_One()))) { +      MOps.FoundAnd1 = true; +      return matchAndOrChain(Op0, MOps); +    } +    if (match(V, m_And(m_Value(Op0), m_Value(Op1)))) +      return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps); +  } else { +    // Recurse through a chain of 'or' operands. +    if (match(V, m_Or(m_Value(Op0), m_Value(Op1)))) +      return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps); +  } + +  // We need a shift-right or a bare value representing a compare of bit 0 of +  // the original source operand. +  Value *Candidate; +  uint64_t BitIndex = 0; +  if (!match(V, m_LShr(m_Value(Candidate), m_ConstantInt(BitIndex)))) +    Candidate = V; + +  // Initialize result source operand. +  if (!MOps.Root) +    MOps.Root = Candidate; + +  // The shift constant is out-of-range? This code hasn't been simplified. +  if (BitIndex >= MOps.Mask.getBitWidth()) +    return false; + +  // Fill in the mask bit derived from the shift constant. +  MOps.Mask.setBit(BitIndex); +  return MOps.Root == Candidate; +} + +/// Match patterns that correspond to "any-bits-set" and "all-bits-set". +/// These will include a chain of 'or' or 'and'-shifted bits from a +/// common source value: +/// and (or  (lshr X, C), ...), 1 --> (X & CMask) != 0 +/// and (and (lshr X, C), ...), 1 --> (X & CMask) == CMask +/// Note: "any-bits-clear" and "all-bits-clear" are variations of these patterns +/// that differ only with a final 'not' of the result. We expect that final +/// 'not' to be folded with the compare that we create here (invert predicate). +static bool foldAnyOrAllBitsSet(Instruction &I) { +  // The 'any-bits-set' ('or' chain) pattern is simpler to match because the +  // final "and X, 1" instruction must be the final op in the sequence. +  bool MatchAllBitsSet; +  if (match(&I, m_c_And(m_OneUse(m_And(m_Value(), m_Value())), m_Value()))) +    MatchAllBitsSet = true; +  else if (match(&I, m_And(m_OneUse(m_Or(m_Value(), m_Value())), m_One()))) +    MatchAllBitsSet = false; +  else +    return false; + +  MaskOps MOps(I.getType()->getScalarSizeInBits(), MatchAllBitsSet); +  if (MatchAllBitsSet) { +    if (!matchAndOrChain(cast<BinaryOperator>(&I), MOps) || !MOps.FoundAnd1) +      return false; +  } else { +    if (!matchAndOrChain(cast<BinaryOperator>(&I)->getOperand(0), MOps)) +      return false; +  } + +  // The pattern was found. Create a masked compare that replaces all of the +  // shift and logic ops. +  IRBuilder<> Builder(&I); +  Constant *Mask = ConstantInt::get(I.getType(), MOps.Mask); +  Value *And = Builder.CreateAnd(MOps.Root, Mask); +  Value *Cmp = MatchAllBitsSet ? Builder.CreateICmpEQ(And, Mask) +                               : Builder.CreateIsNotNull(And); +  Value *Zext = Builder.CreateZExt(Cmp, I.getType()); +  I.replaceAllUsesWith(Zext); +  return true; +} + +// Try to recognize below function as popcount intrinsic. +// This is the "best" algorithm from +// http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel +// Also used in TargetLowering::expandCTPOP(). +// +// int popcount(unsigned int i) { +//   i = i - ((i >> 1) & 0x55555555); +//   i = (i & 0x33333333) + ((i >> 2) & 0x33333333); +//   i = ((i + (i >> 4)) & 0x0F0F0F0F); +//   return (i * 0x01010101) >> 24; +// } +static bool tryToRecognizePopCount(Instruction &I) { +  if (I.getOpcode() != Instruction::LShr) +    return false; + +  Type *Ty = I.getType(); +  if (!Ty->isIntOrIntVectorTy()) +    return false; + +  unsigned Len = Ty->getScalarSizeInBits(); +  // FIXME: fix Len == 8 and other irregular type lengths. +  if (!(Len <= 128 && Len > 8 && Len % 8 == 0)) +    return false; + +  APInt Mask55 = APInt::getSplat(Len, APInt(8, 0x55)); +  APInt Mask33 = APInt::getSplat(Len, APInt(8, 0x33)); +  APInt Mask0F = APInt::getSplat(Len, APInt(8, 0x0F)); +  APInt Mask01 = APInt::getSplat(Len, APInt(8, 0x01)); +  APInt MaskShift = APInt(Len, Len - 8); + +  Value *Op0 = I.getOperand(0); +  Value *Op1 = I.getOperand(1); +  Value *MulOp0; +  // Matching "(i * 0x01010101...) >> 24". +  if ((match(Op0, m_Mul(m_Value(MulOp0), m_SpecificInt(Mask01)))) && +       match(Op1, m_SpecificInt(MaskShift))) { +    Value *ShiftOp0; +    // Matching "((i + (i >> 4)) & 0x0F0F0F0F...)". +    if (match(MulOp0, m_And(m_c_Add(m_LShr(m_Value(ShiftOp0), m_SpecificInt(4)), +                                    m_Deferred(ShiftOp0)), +                            m_SpecificInt(Mask0F)))) { +      Value *AndOp0; +      // Matching "(i & 0x33333333...) + ((i >> 2) & 0x33333333...)". +      if (match(ShiftOp0, +                m_c_Add(m_And(m_Value(AndOp0), m_SpecificInt(Mask33)), +                        m_And(m_LShr(m_Deferred(AndOp0), m_SpecificInt(2)), +                              m_SpecificInt(Mask33))))) { +        Value *Root, *SubOp1; +        // Matching "i - ((i >> 1) & 0x55555555...)". +        if (match(AndOp0, m_Sub(m_Value(Root), m_Value(SubOp1))) && +            match(SubOp1, m_And(m_LShr(m_Specific(Root), m_SpecificInt(1)), +                                m_SpecificInt(Mask55)))) { +          LLVM_DEBUG(dbgs() << "Recognized popcount intrinsic\n"); +          IRBuilder<> Builder(&I); +          Function *Func = Intrinsic::getDeclaration( +              I.getModule(), Intrinsic::ctpop, I.getType()); +          I.replaceAllUsesWith(Builder.CreateCall(Func, {Root})); +          return true; +        } +      } +    } +  } + +  return false; +} + +/// This is the entry point for folds that could be implemented in regular +/// InstCombine, but they are separated because they are not expected to +/// occur frequently and/or have more than a constant-length pattern match. +static bool foldUnusualPatterns(Function &F, DominatorTree &DT) { +  bool MadeChange = false; +  for (BasicBlock &BB : F) { +    // Ignore unreachable basic blocks. +    if (!DT.isReachableFromEntry(&BB)) +      continue; +    // Do not delete instructions under here and invalidate the iterator. +    // Walk the block backwards for efficiency. We're matching a chain of +    // use->defs, so we're more likely to succeed by starting from the bottom. +    // Also, we want to avoid matching partial patterns. +    // TODO: It would be more efficient if we removed dead instructions +    // iteratively in this loop rather than waiting until the end. +    for (Instruction &I : make_range(BB.rbegin(), BB.rend())) { +      MadeChange |= foldAnyOrAllBitsSet(I); +      MadeChange |= foldGuardedRotateToFunnelShift(I); +      MadeChange |= tryToRecognizePopCount(I);  +    } +  } + +  // We're done with transforms, so remove dead instructions. +  if (MadeChange) +    for (BasicBlock &BB : F) +      SimplifyInstructionsInBlock(&BB); + +  return MadeChange; +} + +/// This is the entry point for all transforms. Pass manager differences are +/// handled in the callers of this function. +static bool runImpl(Function &F, TargetLibraryInfo &TLI, DominatorTree &DT) { +  bool MadeChange = false; +  const DataLayout &DL = F.getParent()->getDataLayout(); +  TruncInstCombine TIC(TLI, DL, DT); +  MadeChange |= TIC.run(F); +  MadeChange |= foldUnusualPatterns(F, DT); +  return MadeChange; +} + +void AggressiveInstCombinerLegacyPass::getAnalysisUsage( +    AnalysisUsage &AU) const { +  AU.setPreservesCFG(); +  AU.addRequired<DominatorTreeWrapperPass>(); +  AU.addRequired<TargetLibraryInfoWrapperPass>(); +  AU.addPreserved<AAResultsWrapperPass>(); +  AU.addPreserved<BasicAAWrapperPass>(); +  AU.addPreserved<DominatorTreeWrapperPass>(); +  AU.addPreserved<GlobalsAAWrapperPass>(); +} + +bool AggressiveInstCombinerLegacyPass::runOnFunction(Function &F) { +  auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); +  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); +  return runImpl(F, TLI, DT); +} + +PreservedAnalyses AggressiveInstCombinePass::run(Function &F, +                                                 FunctionAnalysisManager &AM) { +  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); +  auto &DT = AM.getResult<DominatorTreeAnalysis>(F); +  if (!runImpl(F, TLI, DT)) { +    // No changes, all analyses are preserved. +    return PreservedAnalyses::all(); +  } +  // Mark all the analyses that instcombine updates as preserved. +  PreservedAnalyses PA; +  PA.preserveSet<CFGAnalyses>(); +  PA.preserve<AAManager>(); +  PA.preserve<GlobalsAA>(); +  return PA; +} + +char AggressiveInstCombinerLegacyPass::ID = 0; +INITIALIZE_PASS_BEGIN(AggressiveInstCombinerLegacyPass, +                      "aggressive-instcombine", +                      "Combine pattern based expressions", false, false) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_END(AggressiveInstCombinerLegacyPass, "aggressive-instcombine", +                    "Combine pattern based expressions", false, false) + +// Initialization Routines +void llvm::initializeAggressiveInstCombine(PassRegistry &Registry) { +  initializeAggressiveInstCombinerLegacyPassPass(Registry); +} + +void LLVMInitializeAggressiveInstCombiner(LLVMPassRegistryRef R) { +  initializeAggressiveInstCombinerLegacyPassPass(*unwrap(R)); +} + +FunctionPass *llvm::createAggressiveInstCombinerPass() { +  return new AggressiveInstCombinerLegacyPass(); +} + +void LLVMAddAggressiveInstCombinerPass(LLVMPassManagerRef PM) { +  unwrap(PM)->add(createAggressiveInstCombinerPass()); +} | 
