diff options
Diffstat (limited to 'llvm/lib/Transforms/IPO/CalledValuePropagation.cpp')
| -rw-r--r-- | llvm/lib/Transforms/IPO/CalledValuePropagation.cpp | 437 | 
1 files changed, 437 insertions, 0 deletions
| diff --git a/llvm/lib/Transforms/IPO/CalledValuePropagation.cpp b/llvm/lib/Transforms/IPO/CalledValuePropagation.cpp new file mode 100644 index 000000000000..20cb3213628e --- /dev/null +++ b/llvm/lib/Transforms/IPO/CalledValuePropagation.cpp @@ -0,0 +1,437 @@ +//===- CalledValuePropagation.cpp - Propagate called values -----*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements a transformation that attaches !callees metadata to +// indirect call sites. For a given call site, the metadata, if present, +// indicates the set of functions the call site could possibly target at +// run-time. This metadata is added to indirect call sites when the set of +// possible targets can be determined by analysis and is known to be small. The +// analysis driving the transformation is similar to constant propagation and +// makes uses of the generic sparse propagation solver. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/IPO/CalledValuePropagation.h" +#include "llvm/Analysis/SparsePropagation.h" +#include "llvm/Analysis/ValueLatticeUtils.h" +#include "llvm/IR/InstVisitor.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/Transforms/IPO.h" +using namespace llvm; + +#define DEBUG_TYPE "called-value-propagation" + +/// The maximum number of functions to track per lattice value. Once the number +/// of functions a call site can possibly target exceeds this threshold, it's +/// lattice value becomes overdefined. The number of possible lattice values is +/// bounded by Ch(F, M), where F is the number of functions in the module and M +/// is MaxFunctionsPerValue. As such, this value should be kept very small. We +/// likely can't do anything useful for call sites with a large number of +/// possible targets, anyway. +static cl::opt<unsigned> MaxFunctionsPerValue( +    "cvp-max-functions-per-value", cl::Hidden, cl::init(4), +    cl::desc("The maximum number of functions to track per lattice value")); + +namespace { +/// To enable interprocedural analysis, we assign LLVM values to the following +/// groups. The register group represents SSA registers, the return group +/// represents the return values of functions, and the memory group represents +/// in-memory values. An LLVM Value can technically be in more than one group. +/// It's necessary to distinguish these groups so we can, for example, track a +/// global variable separately from the value stored at its location. +enum class IPOGrouping { Register, Return, Memory }; + +/// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings. +using CVPLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>; + +/// The lattice value type used by our custom lattice function. It holds the +/// lattice state, and a set of functions. +class CVPLatticeVal { +public: +  /// The states of the lattice values. Only the FunctionSet state is +  /// interesting. It indicates the set of functions to which an LLVM value may +  /// refer. +  enum CVPLatticeStateTy { Undefined, FunctionSet, Overdefined, Untracked }; + +  /// Comparator for sorting the functions set. We want to keep the order +  /// deterministic for testing, etc. +  struct Compare { +    bool operator()(const Function *LHS, const Function *RHS) const { +      return LHS->getName() < RHS->getName(); +    } +  }; + +  CVPLatticeVal() : LatticeState(Undefined) {} +  CVPLatticeVal(CVPLatticeStateTy LatticeState) : LatticeState(LatticeState) {} +  CVPLatticeVal(std::vector<Function *> &&Functions) +      : LatticeState(FunctionSet), Functions(std::move(Functions)) { +    assert(std::is_sorted(this->Functions.begin(), this->Functions.end(), +                          Compare())); +  } + +  /// Get a reference to the functions held by this lattice value. The number +  /// of functions will be zero for states other than FunctionSet. +  const std::vector<Function *> &getFunctions() const { +    return Functions; +  } + +  /// Returns true if the lattice value is in the FunctionSet state. +  bool isFunctionSet() const { return LatticeState == FunctionSet; } + +  bool operator==(const CVPLatticeVal &RHS) const { +    return LatticeState == RHS.LatticeState && Functions == RHS.Functions; +  } + +  bool operator!=(const CVPLatticeVal &RHS) const { +    return LatticeState != RHS.LatticeState || Functions != RHS.Functions; +  } + +private: +  /// Holds the state this lattice value is in. +  CVPLatticeStateTy LatticeState; + +  /// Holds functions indicating the possible targets of call sites. This set +  /// is empty for lattice values in the undefined, overdefined, and untracked +  /// states. The maximum size of the set is controlled by +  /// MaxFunctionsPerValue. Since most LLVM values are expected to be in +  /// uninteresting states (i.e., overdefined), CVPLatticeVal objects should be +  /// small and efficiently copyable. +  // FIXME: This could be a TinyPtrVector and/or merge with LatticeState. +  std::vector<Function *> Functions; +}; + +/// The custom lattice function used by the generic sparse propagation solver. +/// It handles merging lattice values and computing new lattice values for +/// constants, arguments, values returned from trackable functions, and values +/// located in trackable global variables. It also computes the lattice values +/// that change as a result of executing instructions. +class CVPLatticeFunc +    : public AbstractLatticeFunction<CVPLatticeKey, CVPLatticeVal> { +public: +  CVPLatticeFunc() +      : AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined), +                                CVPLatticeVal(CVPLatticeVal::Overdefined), +                                CVPLatticeVal(CVPLatticeVal::Untracked)) {} + +  /// Compute and return a CVPLatticeVal for the given CVPLatticeKey. +  CVPLatticeVal ComputeLatticeVal(CVPLatticeKey Key) override { +    switch (Key.getInt()) { +    case IPOGrouping::Register: +      if (isa<Instruction>(Key.getPointer())) { +        return getUndefVal(); +      } else if (auto *A = dyn_cast<Argument>(Key.getPointer())) { +        if (canTrackArgumentsInterprocedurally(A->getParent())) +          return getUndefVal(); +      } else if (auto *C = dyn_cast<Constant>(Key.getPointer())) { +        return computeConstant(C); +      } +      return getOverdefinedVal(); +    case IPOGrouping::Memory: +    case IPOGrouping::Return: +      if (auto *GV = dyn_cast<GlobalVariable>(Key.getPointer())) { +        if (canTrackGlobalVariableInterprocedurally(GV)) +          return computeConstant(GV->getInitializer()); +      } else if (auto *F = cast<Function>(Key.getPointer())) +        if (canTrackReturnsInterprocedurally(F)) +          return getUndefVal(); +    } +    return getOverdefinedVal(); +  } + +  /// Merge the two given lattice values. The interesting cases are merging two +  /// FunctionSet values and a FunctionSet value with an Undefined value. For +  /// these cases, we simply union the function sets. If the size of the union +  /// is greater than the maximum functions we track, the merged value is +  /// overdefined. +  CVPLatticeVal MergeValues(CVPLatticeVal X, CVPLatticeVal Y) override { +    if (X == getOverdefinedVal() || Y == getOverdefinedVal()) +      return getOverdefinedVal(); +    if (X == getUndefVal() && Y == getUndefVal()) +      return getUndefVal(); +    std::vector<Function *> Union; +    std::set_union(X.getFunctions().begin(), X.getFunctions().end(), +                   Y.getFunctions().begin(), Y.getFunctions().end(), +                   std::back_inserter(Union), CVPLatticeVal::Compare{}); +    if (Union.size() > MaxFunctionsPerValue) +      return getOverdefinedVal(); +    return CVPLatticeVal(std::move(Union)); +  } + +  /// Compute the lattice values that change as a result of executing the given +  /// instruction. The changed values are stored in \p ChangedValues. We handle +  /// just a few kinds of instructions since we're only propagating values that +  /// can be called. +  void ComputeInstructionState( +      Instruction &I, DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, +      SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) override { +    switch (I.getOpcode()) { +    case Instruction::Call: +      return visitCallSite(cast<CallInst>(&I), ChangedValues, SS); +    case Instruction::Invoke: +      return visitCallSite(cast<InvokeInst>(&I), ChangedValues, SS); +    case Instruction::Load: +      return visitLoad(*cast<LoadInst>(&I), ChangedValues, SS); +    case Instruction::Ret: +      return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS); +    case Instruction::Select: +      return visitSelect(*cast<SelectInst>(&I), ChangedValues, SS); +    case Instruction::Store: +      return visitStore(*cast<StoreInst>(&I), ChangedValues, SS); +    default: +      return visitInst(I, ChangedValues, SS); +    } +  } + +  /// Print the given CVPLatticeVal to the specified stream. +  void PrintLatticeVal(CVPLatticeVal LV, raw_ostream &OS) override { +    if (LV == getUndefVal()) +      OS << "Undefined  "; +    else if (LV == getOverdefinedVal()) +      OS << "Overdefined"; +    else if (LV == getUntrackedVal()) +      OS << "Untracked  "; +    else +      OS << "FunctionSet"; +  } + +  /// Print the given CVPLatticeKey to the specified stream. +  void PrintLatticeKey(CVPLatticeKey Key, raw_ostream &OS) override { +    if (Key.getInt() == IPOGrouping::Register) +      OS << "<reg> "; +    else if (Key.getInt() == IPOGrouping::Memory) +      OS << "<mem> "; +    else if (Key.getInt() == IPOGrouping::Return) +      OS << "<ret> "; +    if (isa<Function>(Key.getPointer())) +      OS << Key.getPointer()->getName(); +    else +      OS << *Key.getPointer(); +  } + +  /// We collect a set of indirect calls when visiting call sites. This method +  /// returns a reference to that set. +  SmallPtrSetImpl<Instruction *> &getIndirectCalls() { return IndirectCalls; } + +private: +  /// Holds the indirect calls we encounter during the analysis. We will attach +  /// metadata to these calls after the analysis indicating the functions the +  /// calls can possibly target. +  SmallPtrSet<Instruction *, 32> IndirectCalls; + +  /// Compute a new lattice value for the given constant. The constant, after +  /// stripping any pointer casts, should be a Function. We ignore null +  /// pointers as an optimization, since calling these values is undefined +  /// behavior. +  CVPLatticeVal computeConstant(Constant *C) { +    if (isa<ConstantPointerNull>(C)) +      return CVPLatticeVal(CVPLatticeVal::FunctionSet); +    if (auto *F = dyn_cast<Function>(C->stripPointerCasts())) +      return CVPLatticeVal({F}); +    return getOverdefinedVal(); +  } + +  /// Handle return instructions. The function's return state is the merge of +  /// the returned value state and the function's return state. +  void visitReturn(ReturnInst &I, +                   DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, +                   SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { +    Function *F = I.getParent()->getParent(); +    if (F->getReturnType()->isVoidTy()) +      return; +    auto RegI = CVPLatticeKey(I.getReturnValue(), IPOGrouping::Register); +    auto RetF = CVPLatticeKey(F, IPOGrouping::Return); +    ChangedValues[RetF] = +        MergeValues(SS.getValueState(RegI), SS.getValueState(RetF)); +  } + +  /// Handle call sites. The state of a called function's formal arguments is +  /// the merge of the argument state with the call sites corresponding actual +  /// argument state. The call site state is the merge of the call site state +  /// with the returned value state of the called function. +  void visitCallSite(CallSite CS, +                     DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, +                     SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { +    Function *F = CS.getCalledFunction(); +    Instruction *I = CS.getInstruction(); +    auto RegI = CVPLatticeKey(I, IPOGrouping::Register); + +    // If this is an indirect call, save it so we can quickly revisit it when +    // attaching metadata. +    if (!F) +      IndirectCalls.insert(I); + +    // If we can't track the function's return values, there's nothing to do. +    if (!F || !canTrackReturnsInterprocedurally(F)) { +      // Void return, No need to create and update CVPLattice state as no one +      // can use it. +      if (I->getType()->isVoidTy()) +        return; +      ChangedValues[RegI] = getOverdefinedVal(); +      return; +    } + +    // Inform the solver that the called function is executable, and perform +    // the merges for the arguments and return value. +    SS.MarkBlockExecutable(&F->front()); +    auto RetF = CVPLatticeKey(F, IPOGrouping::Return); +    for (Argument &A : F->args()) { +      auto RegFormal = CVPLatticeKey(&A, IPOGrouping::Register); +      auto RegActual = +          CVPLatticeKey(CS.getArgument(A.getArgNo()), IPOGrouping::Register); +      ChangedValues[RegFormal] = +          MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual)); +    } + +    // Void return, No need to create and update CVPLattice state as no one can +    // use it. +    if (I->getType()->isVoidTy()) +      return; + +    ChangedValues[RegI] = +        MergeValues(SS.getValueState(RegI), SS.getValueState(RetF)); +  } + +  /// Handle select instructions. The select instruction state is the merge the +  /// true and false value states. +  void visitSelect(SelectInst &I, +                   DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, +                   SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { +    auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); +    auto RegT = CVPLatticeKey(I.getTrueValue(), IPOGrouping::Register); +    auto RegF = CVPLatticeKey(I.getFalseValue(), IPOGrouping::Register); +    ChangedValues[RegI] = +        MergeValues(SS.getValueState(RegT), SS.getValueState(RegF)); +  } + +  /// Handle load instructions. If the pointer operand of the load is a global +  /// variable, we attempt to track the value. The loaded value state is the +  /// merge of the loaded value state with the global variable state. +  void visitLoad(LoadInst &I, +                 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, +                 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { +    auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); +    if (auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand())) { +      auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory); +      ChangedValues[RegI] = +          MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV)); +    } else { +      ChangedValues[RegI] = getOverdefinedVal(); +    } +  } + +  /// Handle store instructions. If the pointer operand of the store is a +  /// global variable, we attempt to track the value. The global variable state +  /// is the merge of the stored value state with the global variable state. +  void visitStore(StoreInst &I, +                  DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, +                  SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { +    auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand()); +    if (!GV) +      return; +    auto RegI = CVPLatticeKey(I.getValueOperand(), IPOGrouping::Register); +    auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory); +    ChangedValues[MemGV] = +        MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV)); +  } + +  /// Handle all other instructions. All other instructions are marked +  /// overdefined. +  void visitInst(Instruction &I, +                 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, +                 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { +    // Simply bail if this instruction has no user. +    if (I.use_empty()) +      return; +    auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); +    ChangedValues[RegI] = getOverdefinedVal(); +  } +}; +} // namespace + +namespace llvm { +/// A specialization of LatticeKeyInfo for CVPLatticeKeys. The generic solver +/// must translate between LatticeKeys and LLVM Values when adding Values to +/// its work list and inspecting the state of control-flow related values. +template <> struct LatticeKeyInfo<CVPLatticeKey> { +  static inline Value *getValueFromLatticeKey(CVPLatticeKey Key) { +    return Key.getPointer(); +  } +  static inline CVPLatticeKey getLatticeKeyFromValue(Value *V) { +    return CVPLatticeKey(V, IPOGrouping::Register); +  } +}; +} // namespace llvm + +static bool runCVP(Module &M) { +  // Our custom lattice function and generic sparse propagation solver. +  CVPLatticeFunc Lattice; +  SparseSolver<CVPLatticeKey, CVPLatticeVal> Solver(&Lattice); + +  // For each function in the module, if we can't track its arguments, let the +  // generic solver assume it is executable. +  for (Function &F : M) +    if (!F.isDeclaration() && !canTrackArgumentsInterprocedurally(&F)) +      Solver.MarkBlockExecutable(&F.front()); + +  // Solver our custom lattice. In doing so, we will also build a set of +  // indirect call sites. +  Solver.Solve(); + +  // Attach metadata to the indirect call sites that were collected indicating +  // the set of functions they can possibly target. +  bool Changed = false; +  MDBuilder MDB(M.getContext()); +  for (Instruction *C : Lattice.getIndirectCalls()) { +    CallSite CS(C); +    auto RegI = CVPLatticeKey(CS.getCalledValue(), IPOGrouping::Register); +    CVPLatticeVal LV = Solver.getExistingValueState(RegI); +    if (!LV.isFunctionSet() || LV.getFunctions().empty()) +      continue; +    MDNode *Callees = MDB.createCallees(LV.getFunctions()); +    C->setMetadata(LLVMContext::MD_callees, Callees); +    Changed = true; +  } + +  return Changed; +} + +PreservedAnalyses CalledValuePropagationPass::run(Module &M, +                                                  ModuleAnalysisManager &) { +  runCVP(M); +  return PreservedAnalyses::all(); +} + +namespace { +class CalledValuePropagationLegacyPass : public ModulePass { +public: +  static char ID; + +  void getAnalysisUsage(AnalysisUsage &AU) const override { +    AU.setPreservesAll(); +  } + +  CalledValuePropagationLegacyPass() : ModulePass(ID) { +    initializeCalledValuePropagationLegacyPassPass( +        *PassRegistry::getPassRegistry()); +  } + +  bool runOnModule(Module &M) override { +    if (skipModule(M)) +      return false; +    return runCVP(M); +  } +}; +} // namespace + +char CalledValuePropagationLegacyPass::ID = 0; +INITIALIZE_PASS(CalledValuePropagationLegacyPass, "called-value-propagation", +                "Called Value Propagation", false, false) + +ModulePass *llvm::createCalledValuePropagationPass() { +  return new CalledValuePropagationLegacyPass(); +} | 
