diff options
Diffstat (limited to 'llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp')
| -rw-r--r-- | llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp | 1124 | 
1 files changed, 1124 insertions, 0 deletions
| diff --git a/llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp b/llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp new file mode 100644 index 000000000000..968a13110b16 --- /dev/null +++ b/llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp @@ -0,0 +1,1124 @@ +//===- DeadArgumentElimination.cpp - Eliminate dead arguments -------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This pass deletes dead arguments from internal functions.  Dead argument +// elimination removes arguments which are directly dead, as well as arguments +// only passed into function calls as dead arguments of other functions.  This +// pass also deletes dead return values in a similar way. +// +// This pass is often useful as a cleanup pass to run after aggressive +// interprocedural passes, which add possibly-dead arguments or return values. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/IPO/DeadArgumentElimination.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/IR/Argument.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/PassManager.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Use.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/IPO.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include <cassert> +#include <cstdint> +#include <utility> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "deadargelim" + +STATISTIC(NumArgumentsEliminated, "Number of unread args removed"); +STATISTIC(NumRetValsEliminated  , "Number of unused return values removed"); +STATISTIC(NumArgumentsReplacedWithUndef, +          "Number of unread args replaced with undef"); + +namespace { + +  /// DAE - The dead argument elimination pass. +  class DAE : public ModulePass { +  protected: +    // DAH uses this to specify a different ID. +    explicit DAE(char &ID) : ModulePass(ID) {} + +  public: +    static char ID; // Pass identification, replacement for typeid + +    DAE() : ModulePass(ID) { +      initializeDAEPass(*PassRegistry::getPassRegistry()); +    } + +    bool runOnModule(Module &M) override { +      if (skipModule(M)) +        return false; +      DeadArgumentEliminationPass DAEP(ShouldHackArguments()); +      ModuleAnalysisManager DummyMAM; +      PreservedAnalyses PA = DAEP.run(M, DummyMAM); +      return !PA.areAllPreserved(); +    } + +    virtual bool ShouldHackArguments() const { return false; } +  }; + +} // end anonymous namespace + +char DAE::ID = 0; + +INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false) + +namespace { + +  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but +  /// deletes arguments to functions which are external.  This is only for use +  /// by bugpoint. +  struct DAH : public DAE { +    static char ID; + +    DAH() : DAE(ID) {} + +    bool ShouldHackArguments() const override { return true; } +  }; + +} // end anonymous namespace + +char DAH::ID = 0; + +INITIALIZE_PASS(DAH, "deadarghaX0r", +                "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)", +                false, false) + +/// createDeadArgEliminationPass - This pass removes arguments from functions +/// which are not used by the body of the function. +ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); } + +ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); } + +/// DeleteDeadVarargs - If this is an function that takes a ... list, and if +/// llvm.vastart is never called, the varargs list is dead for the function. +bool DeadArgumentEliminationPass::DeleteDeadVarargs(Function &Fn) { +  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!"); +  if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false; + +  // Ensure that the function is only directly called. +  if (Fn.hasAddressTaken()) +    return false; + +  // Don't touch naked functions. The assembly might be using an argument, or +  // otherwise rely on the frame layout in a way that this analysis will not +  // see. +  if (Fn.hasFnAttribute(Attribute::Naked)) { +    return false; +  } + +  // Okay, we know we can transform this function if safe.  Scan its body +  // looking for calls marked musttail or calls to llvm.vastart. +  for (BasicBlock &BB : Fn) { +    for (Instruction &I : BB) { +      CallInst *CI = dyn_cast<CallInst>(&I); +      if (!CI) +        continue; +      if (CI->isMustTailCall()) +        return false; +      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { +        if (II->getIntrinsicID() == Intrinsic::vastart) +          return false; +      } +    } +  } + +  // If we get here, there are no calls to llvm.vastart in the function body, +  // remove the "..." and adjust all the calls. + +  // Start by computing a new prototype for the function, which is the same as +  // the old function, but doesn't have isVarArg set. +  FunctionType *FTy = Fn.getFunctionType(); + +  std::vector<Type *> Params(FTy->param_begin(), FTy->param_end()); +  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), +                                                Params, false); +  unsigned NumArgs = Params.size(); + +  // Create the new function body and insert it into the module... +  Function *NF = Function::Create(NFTy, Fn.getLinkage(), Fn.getAddressSpace()); +  NF->copyAttributesFrom(&Fn); +  NF->setComdat(Fn.getComdat()); +  Fn.getParent()->getFunctionList().insert(Fn.getIterator(), NF); +  NF->takeName(&Fn); + +  // Loop over all of the callers of the function, transforming the call sites +  // to pass in a smaller number of arguments into the new function. +  // +  std::vector<Value *> Args; +  for (Value::user_iterator I = Fn.user_begin(), E = Fn.user_end(); I != E; ) { +    CallSite CS(*I++); +    if (!CS) +      continue; +    Instruction *Call = CS.getInstruction(); + +    // Pass all the same arguments. +    Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs); + +    // Drop any attributes that were on the vararg arguments. +    AttributeList PAL = CS.getAttributes(); +    if (!PAL.isEmpty()) { +      SmallVector<AttributeSet, 8> ArgAttrs; +      for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo) +        ArgAttrs.push_back(PAL.getParamAttributes(ArgNo)); +      PAL = AttributeList::get(Fn.getContext(), PAL.getFnAttributes(), +                               PAL.getRetAttributes(), ArgAttrs); +    } + +    SmallVector<OperandBundleDef, 1> OpBundles; +    CS.getOperandBundlesAsDefs(OpBundles); + +    CallSite NewCS; +    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { +      NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), +                                 Args, OpBundles, "", Call); +    } else { +      NewCS = CallInst::Create(NF, Args, OpBundles, "", Call); +      cast<CallInst>(NewCS.getInstruction()) +          ->setTailCallKind(cast<CallInst>(Call)->getTailCallKind()); +    } +    NewCS.setCallingConv(CS.getCallingConv()); +    NewCS.setAttributes(PAL); +    NewCS->setDebugLoc(Call->getDebugLoc()); +    uint64_t W; +    if (Call->extractProfTotalWeight(W)) +      NewCS->setProfWeight(W); + +    Args.clear(); + +    if (!Call->use_empty()) +      Call->replaceAllUsesWith(NewCS.getInstruction()); + +    NewCS->takeName(Call); + +    // Finally, remove the old call from the program, reducing the use-count of +    // F. +    Call->eraseFromParent(); +  } + +  // Since we have now created the new function, splice the body of the old +  // function right into the new function, leaving the old rotting hulk of the +  // function empty. +  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList()); + +  // Loop over the argument list, transferring uses of the old arguments over to +  // the new arguments, also transferring over the names as well.  While we're at +  // it, remove the dead arguments from the DeadArguments list. +  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(), +       I2 = NF->arg_begin(); I != E; ++I, ++I2) { +    // Move the name and users over to the new version. +    I->replaceAllUsesWith(&*I2); +    I2->takeName(&*I); +  } + +  // Clone metadatas from the old function, including debug info descriptor. +  SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; +  Fn.getAllMetadata(MDs); +  for (auto MD : MDs) +    NF->addMetadata(MD.first, *MD.second); + +  // Fix up any BlockAddresses that refer to the function. +  Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType())); +  // Delete the bitcast that we just created, so that NF does not +  // appear to be address-taken. +  NF->removeDeadConstantUsers(); +  // Finally, nuke the old function. +  Fn.eraseFromParent(); +  return true; +} + +/// RemoveDeadArgumentsFromCallers - Checks if the given function has any +/// arguments that are unused, and changes the caller parameters to be undefined +/// instead. +bool DeadArgumentEliminationPass::RemoveDeadArgumentsFromCallers(Function &Fn) { +  // We cannot change the arguments if this TU does not define the function or +  // if the linker may choose a function body from another TU, even if the +  // nominal linkage indicates that other copies of the function have the same +  // semantics. In the below example, the dead load from %p may not have been +  // eliminated from the linker-chosen copy of f, so replacing %p with undef +  // in callers may introduce undefined behavior. +  // +  // define linkonce_odr void @f(i32* %p) { +  //   %v = load i32 %p +  //   ret void +  // } +  if (!Fn.hasExactDefinition()) +    return false; + +  // Functions with local linkage should already have been handled, except the +  // fragile (variadic) ones which we can improve here. +  if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg()) +    return false; + +  // Don't touch naked functions. The assembly might be using an argument, or +  // otherwise rely on the frame layout in a way that this analysis will not +  // see. +  if (Fn.hasFnAttribute(Attribute::Naked)) +    return false; + +  if (Fn.use_empty()) +    return false; + +  SmallVector<unsigned, 8> UnusedArgs; +  bool Changed = false; + +  for (Argument &Arg : Fn.args()) { +    if (!Arg.hasSwiftErrorAttr() && Arg.use_empty() && !Arg.hasByValOrInAllocaAttr()) { +      if (Arg.isUsedByMetadata()) { +        Arg.replaceAllUsesWith(UndefValue::get(Arg.getType())); +        Changed = true; +      } +      UnusedArgs.push_back(Arg.getArgNo()); +    } +  } + +  if (UnusedArgs.empty()) +    return false; + +  for (Use &U : Fn.uses()) { +    CallSite CS(U.getUser()); +    if (!CS || !CS.isCallee(&U)) +      continue; + +    // Now go through all unused args and replace them with "undef". +    for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) { +      unsigned ArgNo = UnusedArgs[I]; + +      Value *Arg = CS.getArgument(ArgNo); +      CS.setArgument(ArgNo, UndefValue::get(Arg->getType())); +      ++NumArgumentsReplacedWithUndef; +      Changed = true; +    } +  } + +  return Changed; +} + +/// Convenience function that returns the number of return values. It returns 0 +/// for void functions and 1 for functions not returning a struct. It returns +/// the number of struct elements for functions returning a struct. +static unsigned NumRetVals(const Function *F) { +  Type *RetTy = F->getReturnType(); +  if (RetTy->isVoidTy()) +    return 0; +  else if (StructType *STy = dyn_cast<StructType>(RetTy)) +    return STy->getNumElements(); +  else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy)) +    return ATy->getNumElements(); +  else +    return 1; +} + +/// Returns the sub-type a function will return at a given Idx. Should +/// correspond to the result type of an ExtractValue instruction executed with +/// just that one Idx (i.e. only top-level structure is considered). +static Type *getRetComponentType(const Function *F, unsigned Idx) { +  Type *RetTy = F->getReturnType(); +  assert(!RetTy->isVoidTy() && "void type has no subtype"); + +  if (StructType *STy = dyn_cast<StructType>(RetTy)) +    return STy->getElementType(Idx); +  else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy)) +    return ATy->getElementType(); +  else +    return RetTy; +} + +/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not +/// live, it adds Use to the MaybeLiveUses argument. Returns the determined +/// liveness of Use. +DeadArgumentEliminationPass::Liveness +DeadArgumentEliminationPass::MarkIfNotLive(RetOrArg Use, +                                           UseVector &MaybeLiveUses) { +  // We're live if our use or its Function is already marked as live. +  if (LiveFunctions.count(Use.F) || LiveValues.count(Use)) +    return Live; + +  // We're maybe live otherwise, but remember that we must become live if +  // Use becomes live. +  MaybeLiveUses.push_back(Use); +  return MaybeLive; +} + +/// SurveyUse - This looks at a single use of an argument or return value +/// and determines if it should be alive or not. Adds this use to MaybeLiveUses +/// if it causes the used value to become MaybeLive. +/// +/// RetValNum is the return value number to use when this use is used in a +/// return instruction. This is used in the recursion, you should always leave +/// it at 0. +DeadArgumentEliminationPass::Liveness +DeadArgumentEliminationPass::SurveyUse(const Use *U, UseVector &MaybeLiveUses, +                                       unsigned RetValNum) { +    const User *V = U->getUser(); +    if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) { +      // The value is returned from a function. It's only live when the +      // function's return value is live. We use RetValNum here, for the case +      // that U is really a use of an insertvalue instruction that uses the +      // original Use. +      const Function *F = RI->getParent()->getParent(); +      if (RetValNum != -1U) { +        RetOrArg Use = CreateRet(F, RetValNum); +        // We might be live, depending on the liveness of Use. +        return MarkIfNotLive(Use, MaybeLiveUses); +      } else { +        DeadArgumentEliminationPass::Liveness Result = MaybeLive; +        for (unsigned i = 0; i < NumRetVals(F); ++i) { +          RetOrArg Use = CreateRet(F, i); +          // We might be live, depending on the liveness of Use. If any +          // sub-value is live, then the entire value is considered live. This +          // is a conservative choice, and better tracking is possible. +          DeadArgumentEliminationPass::Liveness SubResult = +              MarkIfNotLive(Use, MaybeLiveUses); +          if (Result != Live) +            Result = SubResult; +        } +        return Result; +      } +    } +    if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) { +      if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex() +          && IV->hasIndices()) +        // The use we are examining is inserted into an aggregate. Our liveness +        // depends on all uses of that aggregate, but if it is used as a return +        // value, only index at which we were inserted counts. +        RetValNum = *IV->idx_begin(); + +      // Note that if we are used as the aggregate operand to the insertvalue, +      // we don't change RetValNum, but do survey all our uses. + +      Liveness Result = MaybeLive; +      for (const Use &UU : IV->uses()) { +        Result = SurveyUse(&UU, MaybeLiveUses, RetValNum); +        if (Result == Live) +          break; +      } +      return Result; +    } + +    if (auto CS = ImmutableCallSite(V)) { +      const Function *F = CS.getCalledFunction(); +      if (F) { +        // Used in a direct call. + +        // The function argument is live if it is used as a bundle operand. +        if (CS.isBundleOperand(U)) +          return Live; + +        // Find the argument number. We know for sure that this use is an +        // argument, since if it was the function argument this would be an +        // indirect call and the we know can't be looking at a value of the +        // label type (for the invoke instruction). +        unsigned ArgNo = CS.getArgumentNo(U); + +        if (ArgNo >= F->getFunctionType()->getNumParams()) +          // The value is passed in through a vararg! Must be live. +          return Live; + +        assert(CS.getArgument(ArgNo) +               == CS->getOperand(U->getOperandNo()) +               && "Argument is not where we expected it"); + +        // Value passed to a normal call. It's only live when the corresponding +        // argument to the called function turns out live. +        RetOrArg Use = CreateArg(F, ArgNo); +        return MarkIfNotLive(Use, MaybeLiveUses); +      } +    } +    // Used in any other way? Value must be live. +    return Live; +} + +/// SurveyUses - This looks at all the uses of the given value +/// Returns the Liveness deduced from the uses of this value. +/// +/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If +/// the result is Live, MaybeLiveUses might be modified but its content should +/// be ignored (since it might not be complete). +DeadArgumentEliminationPass::Liveness +DeadArgumentEliminationPass::SurveyUses(const Value *V, +                                        UseVector &MaybeLiveUses) { +  // Assume it's dead (which will only hold if there are no uses at all..). +  Liveness Result = MaybeLive; +  // Check each use. +  for (const Use &U : V->uses()) { +    Result = SurveyUse(&U, MaybeLiveUses); +    if (Result == Live) +      break; +  } +  return Result; +} + +// SurveyFunction - This performs the initial survey of the specified function, +// checking out whether or not it uses any of its incoming arguments or whether +// any callers use the return value.  This fills in the LiveValues set and Uses +// map. +// +// We consider arguments of non-internal functions to be intrinsically alive as +// well as arguments to functions which have their "address taken". +void DeadArgumentEliminationPass::SurveyFunction(const Function &F) { +  // Functions with inalloca parameters are expecting args in a particular +  // register and memory layout. +  if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca)) { +    MarkLive(F); +    return; +  } + +  // Don't touch naked functions. The assembly might be using an argument, or +  // otherwise rely on the frame layout in a way that this analysis will not +  // see. +  if (F.hasFnAttribute(Attribute::Naked)) { +    MarkLive(F); +    return; +  } + +  unsigned RetCount = NumRetVals(&F); + +  // Assume all return values are dead +  using RetVals = SmallVector<Liveness, 5>; + +  RetVals RetValLiveness(RetCount, MaybeLive); + +  using RetUses = SmallVector<UseVector, 5>; + +  // These vectors map each return value to the uses that make it MaybeLive, so +  // we can add those to the Uses map if the return value really turns out to be +  // MaybeLive. Initialized to a list of RetCount empty lists. +  RetUses MaybeLiveRetUses(RetCount); + +  bool HasMustTailCalls = false; + +  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { +    if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { +      if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType() +          != F.getFunctionType()->getReturnType()) { +        // We don't support old style multiple return values. +        MarkLive(F); +        return; +      } +    } + +    // If we have any returns of `musttail` results - the signature can't +    // change +    if (BB->getTerminatingMustTailCall() != nullptr) +      HasMustTailCalls = true; +  } + +  if (HasMustTailCalls) { +    LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName() +                      << " has musttail calls\n"); +  } + +  if (!F.hasLocalLinkage() && (!ShouldHackArguments || F.isIntrinsic())) { +    MarkLive(F); +    return; +  } + +  LLVM_DEBUG( +      dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: " +             << F.getName() << "\n"); +  // Keep track of the number of live retvals, so we can skip checks once all +  // of them turn out to be live. +  unsigned NumLiveRetVals = 0; + +  bool HasMustTailCallers = false; + +  // Loop all uses of the function. +  for (const Use &U : F.uses()) { +    // If the function is PASSED IN as an argument, its address has been +    // taken. +    ImmutableCallSite CS(U.getUser()); +    if (!CS || !CS.isCallee(&U)) { +      MarkLive(F); +      return; +    } + +    // The number of arguments for `musttail` call must match the number of +    // arguments of the caller +    if (CS.isMustTailCall()) +      HasMustTailCallers = true; + +    // If this use is anything other than a call site, the function is alive. +    const Instruction *TheCall = CS.getInstruction(); +    if (!TheCall) {   // Not a direct call site? +      MarkLive(F); +      return; +    } + +    // If we end up here, we are looking at a direct call to our function. + +    // Now, check how our return value(s) is/are used in this caller. Don't +    // bother checking return values if all of them are live already. +    if (NumLiveRetVals == RetCount) +      continue; + +    // Check all uses of the return value. +    for (const Use &U : TheCall->uses()) { +      if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U.getUser())) { +        // This use uses a part of our return value, survey the uses of +        // that part and store the results for this index only. +        unsigned Idx = *Ext->idx_begin(); +        if (RetValLiveness[Idx] != Live) { +          RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]); +          if (RetValLiveness[Idx] == Live) +            NumLiveRetVals++; +        } +      } else { +        // Used by something else than extractvalue. Survey, but assume that the +        // result applies to all sub-values. +        UseVector MaybeLiveAggregateUses; +        if (SurveyUse(&U, MaybeLiveAggregateUses) == Live) { +          NumLiveRetVals = RetCount; +          RetValLiveness.assign(RetCount, Live); +          break; +        } else { +          for (unsigned i = 0; i != RetCount; ++i) { +            if (RetValLiveness[i] != Live) +              MaybeLiveRetUses[i].append(MaybeLiveAggregateUses.begin(), +                                         MaybeLiveAggregateUses.end()); +          } +        } +      } +    } +  } + +  if (HasMustTailCallers) { +    LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName() +                      << " has musttail callers\n"); +  } + +  // Now we've inspected all callers, record the liveness of our return values. +  for (unsigned i = 0; i != RetCount; ++i) +    MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]); + +  LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: " +                    << F.getName() << "\n"); + +  // Now, check all of our arguments. +  unsigned i = 0; +  UseVector MaybeLiveArgUses; +  for (Function::const_arg_iterator AI = F.arg_begin(), +       E = F.arg_end(); AI != E; ++AI, ++i) { +    Liveness Result; +    if (F.getFunctionType()->isVarArg() || HasMustTailCallers || +        HasMustTailCalls) { +      // Variadic functions will already have a va_arg function expanded inside +      // them, making them potentially very sensitive to ABI changes resulting +      // from removing arguments entirely, so don't. For example AArch64 handles +      // register and stack HFAs very differently, and this is reflected in the +      // IR which has already been generated. +      // +      // `musttail` calls to this function restrict argument removal attempts. +      // The signature of the caller must match the signature of the function. +      // +      // `musttail` calls in this function prevents us from changing its +      // signature +      Result = Live; +    } else { +      // See what the effect of this use is (recording any uses that cause +      // MaybeLive in MaybeLiveArgUses). +      Result = SurveyUses(&*AI, MaybeLiveArgUses); +    } + +    // Mark the result. +    MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses); +    // Clear the vector again for the next iteration. +    MaybeLiveArgUses.clear(); +  } +} + +/// MarkValue - This function marks the liveness of RA depending on L. If L is +/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses, +/// such that RA will be marked live if any use in MaybeLiveUses gets marked +/// live later on. +void DeadArgumentEliminationPass::MarkValue(const RetOrArg &RA, Liveness L, +                                            const UseVector &MaybeLiveUses) { +  switch (L) { +    case Live: +      MarkLive(RA); +      break; +    case MaybeLive: +      // Note any uses of this value, so this return value can be +      // marked live whenever one of the uses becomes live. +      for (const auto &MaybeLiveUse : MaybeLiveUses) +        Uses.insert(std::make_pair(MaybeLiveUse, RA)); +      break; +  } +} + +/// MarkLive - Mark the given Function as alive, meaning that it cannot be +/// changed in any way. Additionally, +/// mark any values that are used as this function's parameters or by its return +/// values (according to Uses) live as well. +void DeadArgumentEliminationPass::MarkLive(const Function &F) { +  LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Intrinsically live fn: " +                    << F.getName() << "\n"); +  // Mark the function as live. +  LiveFunctions.insert(&F); +  // Mark all arguments as live. +  for (unsigned i = 0, e = F.arg_size(); i != e; ++i) +    PropagateLiveness(CreateArg(&F, i)); +  // Mark all return values as live. +  for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i) +    PropagateLiveness(CreateRet(&F, i)); +} + +/// MarkLive - Mark the given return value or argument as live. Additionally, +/// mark any values that are used by this value (according to Uses) live as +/// well. +void DeadArgumentEliminationPass::MarkLive(const RetOrArg &RA) { +  if (LiveFunctions.count(RA.F)) +    return; // Function was already marked Live. + +  if (!LiveValues.insert(RA).second) +    return; // We were already marked Live. + +  LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking " +                    << RA.getDescription() << " live\n"); +  PropagateLiveness(RA); +} + +/// PropagateLiveness - Given that RA is a live value, propagate it's liveness +/// to any other values it uses (according to Uses). +void DeadArgumentEliminationPass::PropagateLiveness(const RetOrArg &RA) { +  // We don't use upper_bound (or equal_range) here, because our recursive call +  // to ourselves is likely to cause the upper_bound (which is the first value +  // not belonging to RA) to become erased and the iterator invalidated. +  UseMap::iterator Begin = Uses.lower_bound(RA); +  UseMap::iterator E = Uses.end(); +  UseMap::iterator I; +  for (I = Begin; I != E && I->first == RA; ++I) +    MarkLive(I->second); + +  // Erase RA from the Uses map (from the lower bound to wherever we ended up +  // after the loop). +  Uses.erase(Begin, I); +} + +// RemoveDeadStuffFromFunction - Remove any arguments and return values from F +// that are not in LiveValues. Transform the function and all of the callees of +// the function to not have these arguments and return values. +// +bool DeadArgumentEliminationPass::RemoveDeadStuffFromFunction(Function *F) { +  // Don't modify fully live functions +  if (LiveFunctions.count(F)) +    return false; + +  // Start by computing a new prototype for the function, which is the same as +  // the old function, but has fewer arguments and a different return type. +  FunctionType *FTy = F->getFunctionType(); +  std::vector<Type*> Params; + +  // Keep track of if we have a live 'returned' argument +  bool HasLiveReturnedArg = false; + +  // Set up to build a new list of parameter attributes. +  SmallVector<AttributeSet, 8> ArgAttrVec; +  const AttributeList &PAL = F->getAttributes(); + +  // Remember which arguments are still alive. +  SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false); +  // Construct the new parameter list from non-dead arguments. Also construct +  // a new set of parameter attributes to correspond. Skip the first parameter +  // attribute, since that belongs to the return value. +  unsigned i = 0; +  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); +       I != E; ++I, ++i) { +    RetOrArg Arg = CreateArg(F, i); +    if (LiveValues.erase(Arg)) { +      Params.push_back(I->getType()); +      ArgAlive[i] = true; +      ArgAttrVec.push_back(PAL.getParamAttributes(i)); +      HasLiveReturnedArg |= PAL.hasParamAttribute(i, Attribute::Returned); +    } else { +      ++NumArgumentsEliminated; +      LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument " +                        << i << " (" << I->getName() << ") from " +                        << F->getName() << "\n"); +    } +  } + +  // Find out the new return value. +  Type *RetTy = FTy->getReturnType(); +  Type *NRetTy = nullptr; +  unsigned RetCount = NumRetVals(F); + +  // -1 means unused, other numbers are the new index +  SmallVector<int, 5> NewRetIdxs(RetCount, -1); +  std::vector<Type*> RetTypes; + +  // If there is a function with a live 'returned' argument but a dead return +  // value, then there are two possible actions: +  // 1) Eliminate the return value and take off the 'returned' attribute on the +  //    argument. +  // 2) Retain the 'returned' attribute and treat the return value (but not the +  //    entire function) as live so that it is not eliminated. +  // +  // It's not clear in the general case which option is more profitable because, +  // even in the absence of explicit uses of the return value, code generation +  // is free to use the 'returned' attribute to do things like eliding +  // save/restores of registers across calls. Whether or not this happens is +  // target and ABI-specific as well as depending on the amount of register +  // pressure, so there's no good way for an IR-level pass to figure this out. +  // +  // Fortunately, the only places where 'returned' is currently generated by +  // the FE are places where 'returned' is basically free and almost always a +  // performance win, so the second option can just be used always for now. +  // +  // This should be revisited if 'returned' is ever applied more liberally. +  if (RetTy->isVoidTy() || HasLiveReturnedArg) { +    NRetTy = RetTy; +  } else { +    // Look at each of the original return values individually. +    for (unsigned i = 0; i != RetCount; ++i) { +      RetOrArg Ret = CreateRet(F, i); +      if (LiveValues.erase(Ret)) { +        RetTypes.push_back(getRetComponentType(F, i)); +        NewRetIdxs[i] = RetTypes.size() - 1; +      } else { +        ++NumRetValsEliminated; +        LLVM_DEBUG( +            dbgs() << "DeadArgumentEliminationPass - Removing return value " +                   << i << " from " << F->getName() << "\n"); +      } +    } +    if (RetTypes.size() > 1) { +      // More than one return type? Reduce it down to size. +      if (StructType *STy = dyn_cast<StructType>(RetTy)) { +        // Make the new struct packed if we used to return a packed struct +        // already. +        NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked()); +      } else { +        assert(isa<ArrayType>(RetTy) && "unexpected multi-value return"); +        NRetTy = ArrayType::get(RetTypes[0], RetTypes.size()); +      } +    } else if (RetTypes.size() == 1) +      // One return type? Just a simple value then, but only if we didn't use to +      // return a struct with that simple value before. +      NRetTy = RetTypes.front(); +    else if (RetTypes.empty()) +      // No return types? Make it void, but only if we didn't use to return {}. +      NRetTy = Type::getVoidTy(F->getContext()); +  } + +  assert(NRetTy && "No new return type found?"); + +  // The existing function return attributes. +  AttrBuilder RAttrs(PAL.getRetAttributes()); + +  // Remove any incompatible attributes, but only if we removed all return +  // values. Otherwise, ensure that we don't have any conflicting attributes +  // here. Currently, this should not be possible, but special handling might be +  // required when new return value attributes are added. +  if (NRetTy->isVoidTy()) +    RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy)); +  else +    assert(!RAttrs.overlaps(AttributeFuncs::typeIncompatible(NRetTy)) && +           "Return attributes no longer compatible?"); + +  AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs); + +  // Strip allocsize attributes. They might refer to the deleted arguments. +  AttributeSet FnAttrs = PAL.getFnAttributes().removeAttribute( +      F->getContext(), Attribute::AllocSize); + +  // Reconstruct the AttributesList based on the vector we constructed. +  assert(ArgAttrVec.size() == Params.size()); +  AttributeList NewPAL = +      AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec); + +  // Create the new function type based on the recomputed parameters. +  FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg()); + +  // No change? +  if (NFTy == FTy) +    return false; + +  // Create the new function body and insert it into the module... +  Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace()); +  NF->copyAttributesFrom(F); +  NF->setComdat(F->getComdat()); +  NF->setAttributes(NewPAL); +  // Insert the new function before the old function, so we won't be processing +  // it again. +  F->getParent()->getFunctionList().insert(F->getIterator(), NF); +  NF->takeName(F); + +  // Loop over all of the callers of the function, transforming the call sites +  // to pass in a smaller number of arguments into the new function. +  std::vector<Value*> Args; +  while (!F->use_empty()) { +    CallSite CS(F->user_back()); +    Instruction *Call = CS.getInstruction(); + +    ArgAttrVec.clear(); +    const AttributeList &CallPAL = CS.getAttributes(); + +    // Adjust the call return attributes in case the function was changed to +    // return void. +    AttrBuilder RAttrs(CallPAL.getRetAttributes()); +    RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy)); +    AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs); + +    // Declare these outside of the loops, so we can reuse them for the second +    // loop, which loops the varargs. +    CallSite::arg_iterator I = CS.arg_begin(); +    unsigned i = 0; +    // Loop over those operands, corresponding to the normal arguments to the +    // original function, and add those that are still alive. +    for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i) +      if (ArgAlive[i]) { +        Args.push_back(*I); +        // Get original parameter attributes, but skip return attributes. +        AttributeSet Attrs = CallPAL.getParamAttributes(i); +        if (NRetTy != RetTy && Attrs.hasAttribute(Attribute::Returned)) { +          // If the return type has changed, then get rid of 'returned' on the +          // call site. The alternative is to make all 'returned' attributes on +          // call sites keep the return value alive just like 'returned' +          // attributes on function declaration but it's less clearly a win and +          // this is not an expected case anyway +          ArgAttrVec.push_back(AttributeSet::get( +              F->getContext(), +              AttrBuilder(Attrs).removeAttribute(Attribute::Returned))); +        } else { +          // Otherwise, use the original attributes. +          ArgAttrVec.push_back(Attrs); +        } +      } + +    // Push any varargs arguments on the list. Don't forget their attributes. +    for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) { +      Args.push_back(*I); +      ArgAttrVec.push_back(CallPAL.getParamAttributes(i)); +    } + +    // Reconstruct the AttributesList based on the vector we constructed. +    assert(ArgAttrVec.size() == Args.size()); + +    // Again, be sure to remove any allocsize attributes, since their indices +    // may now be incorrect. +    AttributeSet FnAttrs = CallPAL.getFnAttributes().removeAttribute( +        F->getContext(), Attribute::AllocSize); + +    AttributeList NewCallPAL = AttributeList::get( +        F->getContext(), FnAttrs, RetAttrs, ArgAttrVec); + +    SmallVector<OperandBundleDef, 1> OpBundles; +    CS.getOperandBundlesAsDefs(OpBundles); + +    CallSite NewCS; +    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { +      NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), +                                 Args, OpBundles, "", Call->getParent()); +    } else { +      NewCS = CallInst::Create(NFTy, NF, Args, OpBundles, "", Call); +      cast<CallInst>(NewCS.getInstruction()) +          ->setTailCallKind(cast<CallInst>(Call)->getTailCallKind()); +    } +    NewCS.setCallingConv(CS.getCallingConv()); +    NewCS.setAttributes(NewCallPAL); +    NewCS->setDebugLoc(Call->getDebugLoc()); +    uint64_t W; +    if (Call->extractProfTotalWeight(W)) +      NewCS->setProfWeight(W); +    Args.clear(); +    ArgAttrVec.clear(); + +    Instruction *New = NewCS.getInstruction(); +    if (!Call->use_empty() || Call->isUsedByMetadata()) { +      if (New->getType() == Call->getType()) { +        // Return type not changed? Just replace users then. +        Call->replaceAllUsesWith(New); +        New->takeName(Call); +      } else if (New->getType()->isVoidTy()) { +        // If the return value is dead, replace any uses of it with undef +        // (any non-debug value uses will get removed later on). +        if (!Call->getType()->isX86_MMXTy()) +          Call->replaceAllUsesWith(UndefValue::get(Call->getType())); +      } else { +        assert((RetTy->isStructTy() || RetTy->isArrayTy()) && +               "Return type changed, but not into a void. The old return type" +               " must have been a struct or an array!"); +        Instruction *InsertPt = Call; +        if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { +          BasicBlock *NewEdge = SplitEdge(New->getParent(), II->getNormalDest()); +          InsertPt = &*NewEdge->getFirstInsertionPt(); +        } + +        // We used to return a struct or array. Instead of doing smart stuff +        // with all the uses, we will just rebuild it using extract/insertvalue +        // chaining and let instcombine clean that up. +        // +        // Start out building up our return value from undef +        Value *RetVal = UndefValue::get(RetTy); +        for (unsigned i = 0; i != RetCount; ++i) +          if (NewRetIdxs[i] != -1) { +            Value *V; +            if (RetTypes.size() > 1) +              // We are still returning a struct, so extract the value from our +              // return value +              V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret", +                                           InsertPt); +            else +              // We are now returning a single element, so just insert that +              V = New; +            // Insert the value at the old position +            RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt); +          } +        // Now, replace all uses of the old call instruction with the return +        // struct we built +        Call->replaceAllUsesWith(RetVal); +        New->takeName(Call); +      } +    } + +    // Finally, remove the old call from the program, reducing the use-count of +    // F. +    Call->eraseFromParent(); +  } + +  // Since we have now created the new function, splice the body of the old +  // function right into the new function, leaving the old rotting hulk of the +  // function empty. +  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); + +  // Loop over the argument list, transferring uses of the old arguments over to +  // the new arguments, also transferring over the names as well. +  i = 0; +  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), +       I2 = NF->arg_begin(); I != E; ++I, ++i) +    if (ArgAlive[i]) { +      // If this is a live argument, move the name and users over to the new +      // version. +      I->replaceAllUsesWith(&*I2); +      I2->takeName(&*I); +      ++I2; +    } else { +      // If this argument is dead, replace any uses of it with undef +      // (any non-debug value uses will get removed later on). +      if (!I->getType()->isX86_MMXTy()) +        I->replaceAllUsesWith(UndefValue::get(I->getType())); +    } + +  // If we change the return value of the function we must rewrite any return +  // instructions.  Check this now. +  if (F->getReturnType() != NF->getReturnType()) +    for (BasicBlock &BB : *NF) +      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) { +        Value *RetVal; + +        if (NFTy->getReturnType()->isVoidTy()) { +          RetVal = nullptr; +        } else { +          assert(RetTy->isStructTy() || RetTy->isArrayTy()); +          // The original return value was a struct or array, insert +          // extractvalue/insertvalue chains to extract only the values we need +          // to return and insert them into our new result. +          // This does generate messy code, but we'll let it to instcombine to +          // clean that up. +          Value *OldRet = RI->getOperand(0); +          // Start out building up our return value from undef +          RetVal = UndefValue::get(NRetTy); +          for (unsigned i = 0; i != RetCount; ++i) +            if (NewRetIdxs[i] != -1) { +              ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i, +                                                              "oldret", RI); +              if (RetTypes.size() > 1) { +                // We're still returning a struct, so reinsert the value into +                // our new return value at the new index + +                RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i], +                                                 "newret", RI); +              } else { +                // We are now only returning a simple value, so just return the +                // extracted value. +                RetVal = EV; +              } +            } +        } +        // Replace the return instruction with one returning the new return +        // value (possibly 0 if we became void). +        ReturnInst::Create(F->getContext(), RetVal, RI); +        BB.getInstList().erase(RI); +      } + +  // Clone metadatas from the old function, including debug info descriptor. +  SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; +  F->getAllMetadata(MDs); +  for (auto MD : MDs) +    NF->addMetadata(MD.first, *MD.second); + +  // Now that the old function is dead, delete it. +  F->eraseFromParent(); + +  return true; +} + +PreservedAnalyses DeadArgumentEliminationPass::run(Module &M, +                                                   ModuleAnalysisManager &) { +  bool Changed = false; + +  // First pass: Do a simple check to see if any functions can have their "..." +  // removed.  We can do this if they never call va_start.  This loop cannot be +  // fused with the next loop, because deleting a function invalidates +  // information computed while surveying other functions. +  LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n"); +  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) { +    Function &F = *I++; +    if (F.getFunctionType()->isVarArg()) +      Changed |= DeleteDeadVarargs(F); +  } + +  // Second phase:loop through the module, determining which arguments are live. +  // We assume all arguments are dead unless proven otherwise (allowing us to +  // determine that dead arguments passed into recursive functions are dead). +  // +  LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n"); +  for (auto &F : M) +    SurveyFunction(F); + +  // Now, remove all dead arguments and return values from each function in +  // turn. +  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) { +    // Increment now, because the function will probably get removed (ie. +    // replaced by a new one). +    Function *F = &*I++; +    Changed |= RemoveDeadStuffFromFunction(F); +  } + +  // Finally, look for any unused parameters in functions with non-local +  // linkage and replace the passed in parameters with undef. +  for (auto &F : M) +    Changed |= RemoveDeadArgumentsFromCallers(F); + +  if (!Changed) +    return PreservedAnalyses::all(); +  return PreservedAnalyses::none(); +} | 
