diff options
Diffstat (limited to 'llvm/lib/Transforms/IPO/GlobalDCE.cpp')
| -rw-r--r-- | llvm/lib/Transforms/IPO/GlobalDCE.cpp | 449 |
1 files changed, 449 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/IPO/GlobalDCE.cpp b/llvm/lib/Transforms/IPO/GlobalDCE.cpp new file mode 100644 index 000000000000..f010f7b703a6 --- /dev/null +++ b/llvm/lib/Transforms/IPO/GlobalDCE.cpp @@ -0,0 +1,449 @@ +//===-- GlobalDCE.cpp - DCE unreachable internal functions ----------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This transform is designed to eliminate unreachable internal globals from the +// program. It uses an aggressive algorithm, searching out globals that are +// known to be alive. After it finds all of the globals which are needed, it +// deletes whatever is left over. This allows it to delete recursive chunks of +// the program which are unreachable. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/IPO/GlobalDCE.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/TypeMetadataUtils.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/Pass.h" +#include "llvm/Transforms/IPO.h" +#include "llvm/Transforms/Utils/CtorUtils.h" +#include "llvm/Transforms/Utils/GlobalStatus.h" + +using namespace llvm; + +#define DEBUG_TYPE "globaldce" + +static cl::opt<bool> + ClEnableVFE("enable-vfe", cl::Hidden, cl::init(true), cl::ZeroOrMore, + cl::desc("Enable virtual function elimination")); + +STATISTIC(NumAliases , "Number of global aliases removed"); +STATISTIC(NumFunctions, "Number of functions removed"); +STATISTIC(NumIFuncs, "Number of indirect functions removed"); +STATISTIC(NumVariables, "Number of global variables removed"); +STATISTIC(NumVFuncs, "Number of virtual functions removed"); + +namespace { + class GlobalDCELegacyPass : public ModulePass { + public: + static char ID; // Pass identification, replacement for typeid + GlobalDCELegacyPass() : ModulePass(ID) { + initializeGlobalDCELegacyPassPass(*PassRegistry::getPassRegistry()); + } + + // run - Do the GlobalDCE pass on the specified module, optionally updating + // the specified callgraph to reflect the changes. + // + bool runOnModule(Module &M) override { + if (skipModule(M)) + return false; + + // We need a minimally functional dummy module analysis manager. It needs + // to at least know about the possibility of proxying a function analysis + // manager. + FunctionAnalysisManager DummyFAM; + ModuleAnalysisManager DummyMAM; + DummyMAM.registerPass( + [&] { return FunctionAnalysisManagerModuleProxy(DummyFAM); }); + + auto PA = Impl.run(M, DummyMAM); + return !PA.areAllPreserved(); + } + + private: + GlobalDCEPass Impl; + }; +} + +char GlobalDCELegacyPass::ID = 0; +INITIALIZE_PASS(GlobalDCELegacyPass, "globaldce", + "Dead Global Elimination", false, false) + +// Public interface to the GlobalDCEPass. +ModulePass *llvm::createGlobalDCEPass() { + return new GlobalDCELegacyPass(); +} + +/// Returns true if F is effectively empty. +static bool isEmptyFunction(Function *F) { + BasicBlock &Entry = F->getEntryBlock(); + for (auto &I : Entry) { + if (isa<DbgInfoIntrinsic>(I)) + continue; + if (auto *RI = dyn_cast<ReturnInst>(&I)) + return !RI->getReturnValue(); + break; + } + return false; +} + +/// Compute the set of GlobalValue that depends from V. +/// The recursion stops as soon as a GlobalValue is met. +void GlobalDCEPass::ComputeDependencies(Value *V, + SmallPtrSetImpl<GlobalValue *> &Deps) { + if (auto *I = dyn_cast<Instruction>(V)) { + Function *Parent = I->getParent()->getParent(); + Deps.insert(Parent); + } else if (auto *GV = dyn_cast<GlobalValue>(V)) { + Deps.insert(GV); + } else if (auto *CE = dyn_cast<Constant>(V)) { + // Avoid walking the whole tree of a big ConstantExprs multiple times. + auto Where = ConstantDependenciesCache.find(CE); + if (Where != ConstantDependenciesCache.end()) { + auto const &K = Where->second; + Deps.insert(K.begin(), K.end()); + } else { + SmallPtrSetImpl<GlobalValue *> &LocalDeps = ConstantDependenciesCache[CE]; + for (User *CEUser : CE->users()) + ComputeDependencies(CEUser, LocalDeps); + Deps.insert(LocalDeps.begin(), LocalDeps.end()); + } + } +} + +void GlobalDCEPass::UpdateGVDependencies(GlobalValue &GV) { + SmallPtrSet<GlobalValue *, 8> Deps; + for (User *User : GV.users()) + ComputeDependencies(User, Deps); + Deps.erase(&GV); // Remove self-reference. + for (GlobalValue *GVU : Deps) { + // If this is a dep from a vtable to a virtual function, and we have + // complete information about all virtual call sites which could call + // though this vtable, then skip it, because the call site information will + // be more precise. + if (VFESafeVTables.count(GVU) && isa<Function>(&GV)) { + LLVM_DEBUG(dbgs() << "Ignoring dep " << GVU->getName() << " -> " + << GV.getName() << "\n"); + continue; + } + GVDependencies[GVU].insert(&GV); + } +} + +/// Mark Global value as Live +void GlobalDCEPass::MarkLive(GlobalValue &GV, + SmallVectorImpl<GlobalValue *> *Updates) { + auto const Ret = AliveGlobals.insert(&GV); + if (!Ret.second) + return; + + if (Updates) + Updates->push_back(&GV); + if (Comdat *C = GV.getComdat()) { + for (auto &&CM : make_range(ComdatMembers.equal_range(C))) { + MarkLive(*CM.second, Updates); // Recursion depth is only two because only + // globals in the same comdat are visited. + } + } +} + +void GlobalDCEPass::ScanVTables(Module &M) { + SmallVector<MDNode *, 2> Types; + LLVM_DEBUG(dbgs() << "Building type info -> vtable map\n"); + + auto *LTOPostLinkMD = + cast_or_null<ConstantAsMetadata>(M.getModuleFlag("LTOPostLink")); + bool LTOPostLink = + LTOPostLinkMD && + (cast<ConstantInt>(LTOPostLinkMD->getValue())->getZExtValue() != 0); + + for (GlobalVariable &GV : M.globals()) { + Types.clear(); + GV.getMetadata(LLVMContext::MD_type, Types); + if (GV.isDeclaration() || Types.empty()) + continue; + + // Use the typeid metadata on the vtable to build a mapping from typeids to + // the list of (GV, offset) pairs which are the possible vtables for that + // typeid. + for (MDNode *Type : Types) { + Metadata *TypeID = Type->getOperand(1).get(); + + uint64_t Offset = + cast<ConstantInt>( + cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) + ->getZExtValue(); + + TypeIdMap[TypeID].insert(std::make_pair(&GV, Offset)); + } + + // If the type corresponding to the vtable is private to this translation + // unit, we know that we can see all virtual functions which might use it, + // so VFE is safe. + if (auto GO = dyn_cast<GlobalObject>(&GV)) { + GlobalObject::VCallVisibility TypeVis = GO->getVCallVisibility(); + if (TypeVis == GlobalObject::VCallVisibilityTranslationUnit || + (LTOPostLink && + TypeVis == GlobalObject::VCallVisibilityLinkageUnit)) { + LLVM_DEBUG(dbgs() << GV.getName() << " is safe for VFE\n"); + VFESafeVTables.insert(&GV); + } + } + } +} + +void GlobalDCEPass::ScanVTableLoad(Function *Caller, Metadata *TypeId, + uint64_t CallOffset) { + for (auto &VTableInfo : TypeIdMap[TypeId]) { + GlobalVariable *VTable = VTableInfo.first; + uint64_t VTableOffset = VTableInfo.second; + + Constant *Ptr = + getPointerAtOffset(VTable->getInitializer(), VTableOffset + CallOffset, + *Caller->getParent()); + if (!Ptr) { + LLVM_DEBUG(dbgs() << "can't find pointer in vtable!\n"); + VFESafeVTables.erase(VTable); + return; + } + + auto Callee = dyn_cast<Function>(Ptr->stripPointerCasts()); + if (!Callee) { + LLVM_DEBUG(dbgs() << "vtable entry is not function pointer!\n"); + VFESafeVTables.erase(VTable); + return; + } + + LLVM_DEBUG(dbgs() << "vfunc dep " << Caller->getName() << " -> " + << Callee->getName() << "\n"); + GVDependencies[Caller].insert(Callee); + } +} + +void GlobalDCEPass::ScanTypeCheckedLoadIntrinsics(Module &M) { + LLVM_DEBUG(dbgs() << "Scanning type.checked.load intrinsics\n"); + Function *TypeCheckedLoadFunc = + M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load)); + + if (!TypeCheckedLoadFunc) + return; + + for (auto U : TypeCheckedLoadFunc->users()) { + auto CI = dyn_cast<CallInst>(U); + if (!CI) + continue; + + auto *Offset = dyn_cast<ConstantInt>(CI->getArgOperand(1)); + Value *TypeIdValue = CI->getArgOperand(2); + auto *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata(); + + if (Offset) { + ScanVTableLoad(CI->getFunction(), TypeId, Offset->getZExtValue()); + } else { + // type.checked.load with a non-constant offset, so assume every entry in + // every matching vtable is used. + for (auto &VTableInfo : TypeIdMap[TypeId]) { + VFESafeVTables.erase(VTableInfo.first); + } + } + } +} + +void GlobalDCEPass::AddVirtualFunctionDependencies(Module &M) { + if (!ClEnableVFE) + return; + + ScanVTables(M); + + if (VFESafeVTables.empty()) + return; + + ScanTypeCheckedLoadIntrinsics(M); + + LLVM_DEBUG( + dbgs() << "VFE safe vtables:\n"; + for (auto *VTable : VFESafeVTables) + dbgs() << " " << VTable->getName() << "\n"; + ); +} + +PreservedAnalyses GlobalDCEPass::run(Module &M, ModuleAnalysisManager &MAM) { + bool Changed = false; + + // The algorithm first computes the set L of global variables that are + // trivially live. Then it walks the initialization of these variables to + // compute the globals used to initialize them, which effectively builds a + // directed graph where nodes are global variables, and an edge from A to B + // means B is used to initialize A. Finally, it propagates the liveness + // information through the graph starting from the nodes in L. Nodes note + // marked as alive are discarded. + + // Remove empty functions from the global ctors list. + Changed |= optimizeGlobalCtorsList(M, isEmptyFunction); + + // Collect the set of members for each comdat. + for (Function &F : M) + if (Comdat *C = F.getComdat()) + ComdatMembers.insert(std::make_pair(C, &F)); + for (GlobalVariable &GV : M.globals()) + if (Comdat *C = GV.getComdat()) + ComdatMembers.insert(std::make_pair(C, &GV)); + for (GlobalAlias &GA : M.aliases()) + if (Comdat *C = GA.getComdat()) + ComdatMembers.insert(std::make_pair(C, &GA)); + + // Add dependencies between virtual call sites and the virtual functions they + // might call, if we have that information. + AddVirtualFunctionDependencies(M); + + // Loop over the module, adding globals which are obviously necessary. + for (GlobalObject &GO : M.global_objects()) { + Changed |= RemoveUnusedGlobalValue(GO); + // Functions with external linkage are needed if they have a body. + // Externally visible & appending globals are needed, if they have an + // initializer. + if (!GO.isDeclaration()) + if (!GO.isDiscardableIfUnused()) + MarkLive(GO); + + UpdateGVDependencies(GO); + } + + // Compute direct dependencies of aliases. + for (GlobalAlias &GA : M.aliases()) { + Changed |= RemoveUnusedGlobalValue(GA); + // Externally visible aliases are needed. + if (!GA.isDiscardableIfUnused()) + MarkLive(GA); + + UpdateGVDependencies(GA); + } + + // Compute direct dependencies of ifuncs. + for (GlobalIFunc &GIF : M.ifuncs()) { + Changed |= RemoveUnusedGlobalValue(GIF); + // Externally visible ifuncs are needed. + if (!GIF.isDiscardableIfUnused()) + MarkLive(GIF); + + UpdateGVDependencies(GIF); + } + + // Propagate liveness from collected Global Values through the computed + // dependencies. + SmallVector<GlobalValue *, 8> NewLiveGVs{AliveGlobals.begin(), + AliveGlobals.end()}; + while (!NewLiveGVs.empty()) { + GlobalValue *LGV = NewLiveGVs.pop_back_val(); + for (auto *GVD : GVDependencies[LGV]) + MarkLive(*GVD, &NewLiveGVs); + } + + // Now that all globals which are needed are in the AliveGlobals set, we loop + // through the program, deleting those which are not alive. + // + + // The first pass is to drop initializers of global variables which are dead. + std::vector<GlobalVariable *> DeadGlobalVars; // Keep track of dead globals + for (GlobalVariable &GV : M.globals()) + if (!AliveGlobals.count(&GV)) { + DeadGlobalVars.push_back(&GV); // Keep track of dead globals + if (GV.hasInitializer()) { + Constant *Init = GV.getInitializer(); + GV.setInitializer(nullptr); + if (isSafeToDestroyConstant(Init)) + Init->destroyConstant(); + } + } + + // The second pass drops the bodies of functions which are dead... + std::vector<Function *> DeadFunctions; + for (Function &F : M) + if (!AliveGlobals.count(&F)) { + DeadFunctions.push_back(&F); // Keep track of dead globals + if (!F.isDeclaration()) + F.deleteBody(); + } + + // The third pass drops targets of aliases which are dead... + std::vector<GlobalAlias*> DeadAliases; + for (GlobalAlias &GA : M.aliases()) + if (!AliveGlobals.count(&GA)) { + DeadAliases.push_back(&GA); + GA.setAliasee(nullptr); + } + + // The fourth pass drops targets of ifuncs which are dead... + std::vector<GlobalIFunc*> DeadIFuncs; + for (GlobalIFunc &GIF : M.ifuncs()) + if (!AliveGlobals.count(&GIF)) { + DeadIFuncs.push_back(&GIF); + GIF.setResolver(nullptr); + } + + // Now that all interferences have been dropped, delete the actual objects + // themselves. + auto EraseUnusedGlobalValue = [&](GlobalValue *GV) { + RemoveUnusedGlobalValue(*GV); + GV->eraseFromParent(); + Changed = true; + }; + + NumFunctions += DeadFunctions.size(); + for (Function *F : DeadFunctions) { + if (!F->use_empty()) { + // Virtual functions might still be referenced by one or more vtables, + // but if we've proven them to be unused then it's safe to replace the + // virtual function pointers with null, allowing us to remove the + // function itself. + ++NumVFuncs; + F->replaceNonMetadataUsesWith(ConstantPointerNull::get(F->getType())); + } + EraseUnusedGlobalValue(F); + } + + NumVariables += DeadGlobalVars.size(); + for (GlobalVariable *GV : DeadGlobalVars) + EraseUnusedGlobalValue(GV); + + NumAliases += DeadAliases.size(); + for (GlobalAlias *GA : DeadAliases) + EraseUnusedGlobalValue(GA); + + NumIFuncs += DeadIFuncs.size(); + for (GlobalIFunc *GIF : DeadIFuncs) + EraseUnusedGlobalValue(GIF); + + // Make sure that all memory is released + AliveGlobals.clear(); + ConstantDependenciesCache.clear(); + GVDependencies.clear(); + ComdatMembers.clear(); + TypeIdMap.clear(); + VFESafeVTables.clear(); + + if (Changed) + return PreservedAnalyses::none(); + return PreservedAnalyses::all(); +} + +// RemoveUnusedGlobalValue - Loop over all of the uses of the specified +// GlobalValue, looking for the constant pointer ref that may be pointing to it. +// If found, check to see if the constant pointer ref is safe to destroy, and if +// so, nuke it. This will reduce the reference count on the global value, which +// might make it deader. +// +bool GlobalDCEPass::RemoveUnusedGlobalValue(GlobalValue &GV) { + if (GV.use_empty()) + return false; + GV.removeDeadConstantUsers(); + return GV.use_empty(); +} |
