diff options
Diffstat (limited to 'llvm/lib/Transforms/IPO/GlobalOpt.cpp')
| -rw-r--r-- | llvm/lib/Transforms/IPO/GlobalOpt.cpp | 3046 | 
1 files changed, 3046 insertions, 0 deletions
| diff --git a/llvm/lib/Transforms/IPO/GlobalOpt.cpp b/llvm/lib/Transforms/IPO/GlobalOpt.cpp new file mode 100644 index 000000000000..819715b9f8da --- /dev/null +++ b/llvm/lib/Transforms/IPO/GlobalOpt.cpp @@ -0,0 +1,3046 @@ +//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This pass transforms simple global variables that never have their address +// taken.  If obviously true, it marks read/write globals as constant, deletes +// variables only stored to, etc. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/IPO/GlobalOpt.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/Twine.h" +#include "llvm/ADT/iterator_range.h" +#include "llvm/Analysis/BlockFrequencyInfo.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Analysis/MemoryBuiltins.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/BinaryFormat/Dwarf.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Use.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/Pass.h" +#include "llvm/Support/AtomicOrdering.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/IPO.h" +#include "llvm/Transforms/Utils/CtorUtils.h" +#include "llvm/Transforms/Utils/Evaluator.h" +#include "llvm/Transforms/Utils/GlobalStatus.h" +#include <cassert> +#include <cstdint> +#include <utility> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "globalopt" + +STATISTIC(NumMarked    , "Number of globals marked constant"); +STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr"); +STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars"); +STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd"); +STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); +STATISTIC(NumDeleted   , "Number of globals deleted"); +STATISTIC(NumGlobUses  , "Number of global uses devirtualized"); +STATISTIC(NumLocalized , "Number of globals localized"); +STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans"); +STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc"); +STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); +STATISTIC(NumNestRemoved   , "Number of nest attributes removed"); +STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); +STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); +STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); +STATISTIC(NumInternalFunc, "Number of internal functions"); +STATISTIC(NumColdCC, "Number of functions marked coldcc"); + +static cl::opt<bool> +    EnableColdCCStressTest("enable-coldcc-stress-test", +                           cl::desc("Enable stress test of coldcc by adding " +                                    "calling conv to all internal functions."), +                           cl::init(false), cl::Hidden); + +static cl::opt<int> ColdCCRelFreq( +    "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, +    cl::desc( +        "Maximum block frequency, expressed as a percentage of caller's " +        "entry frequency, for a call site to be considered cold for enabling" +        "coldcc")); + +/// Is this global variable possibly used by a leak checker as a root?  If so, +/// we might not really want to eliminate the stores to it. +static bool isLeakCheckerRoot(GlobalVariable *GV) { +  // A global variable is a root if it is a pointer, or could plausibly contain +  // a pointer.  There are two challenges; one is that we could have a struct +  // the has an inner member which is a pointer.  We recurse through the type to +  // detect these (up to a point).  The other is that we may actually be a union +  // of a pointer and another type, and so our LLVM type is an integer which +  // gets converted into a pointer, or our type is an [i8 x #] with a pointer +  // potentially contained here. + +  if (GV->hasPrivateLinkage()) +    return false; + +  SmallVector<Type *, 4> Types; +  Types.push_back(GV->getValueType()); + +  unsigned Limit = 20; +  do { +    Type *Ty = Types.pop_back_val(); +    switch (Ty->getTypeID()) { +      default: break; +      case Type::PointerTyID: return true; +      case Type::ArrayTyID: +      case Type::VectorTyID: { +        SequentialType *STy = cast<SequentialType>(Ty); +        Types.push_back(STy->getElementType()); +        break; +      } +      case Type::StructTyID: { +        StructType *STy = cast<StructType>(Ty); +        if (STy->isOpaque()) return true; +        for (StructType::element_iterator I = STy->element_begin(), +                 E = STy->element_end(); I != E; ++I) { +          Type *InnerTy = *I; +          if (isa<PointerType>(InnerTy)) return true; +          if (isa<CompositeType>(InnerTy)) +            Types.push_back(InnerTy); +        } +        break; +      } +    } +    if (--Limit == 0) return true; +  } while (!Types.empty()); +  return false; +} + +/// Given a value that is stored to a global but never read, determine whether +/// it's safe to remove the store and the chain of computation that feeds the +/// store. +static bool IsSafeComputationToRemove( +    Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { +  do { +    if (isa<Constant>(V)) +      return true; +    if (!V->hasOneUse()) +      return false; +    if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || +        isa<GlobalValue>(V)) +      return false; +    if (isAllocationFn(V, GetTLI)) +      return true; + +    Instruction *I = cast<Instruction>(V); +    if (I->mayHaveSideEffects()) +      return false; +    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { +      if (!GEP->hasAllConstantIndices()) +        return false; +    } else if (I->getNumOperands() != 1) { +      return false; +    } + +    V = I->getOperand(0); +  } while (true); +} + +/// This GV is a pointer root.  Loop over all users of the global and clean up +/// any that obviously don't assign the global a value that isn't dynamically +/// allocated. +static bool +CleanupPointerRootUsers(GlobalVariable *GV, +                        function_ref<TargetLibraryInfo &(Function &)> GetTLI) { +  // A brief explanation of leak checkers.  The goal is to find bugs where +  // pointers are forgotten, causing an accumulating growth in memory +  // usage over time.  The common strategy for leak checkers is to whitelist the +  // memory pointed to by globals at exit.  This is popular because it also +  // solves another problem where the main thread of a C++ program may shut down +  // before other threads that are still expecting to use those globals.  To +  // handle that case, we expect the program may create a singleton and never +  // destroy it. + +  bool Changed = false; + +  // If Dead[n].first is the only use of a malloc result, we can delete its +  // chain of computation and the store to the global in Dead[n].second. +  SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; + +  // Constants can't be pointers to dynamically allocated memory. +  for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end(); +       UI != E;) { +    User *U = *UI++; +    if (StoreInst *SI = dyn_cast<StoreInst>(U)) { +      Value *V = SI->getValueOperand(); +      if (isa<Constant>(V)) { +        Changed = true; +        SI->eraseFromParent(); +      } else if (Instruction *I = dyn_cast<Instruction>(V)) { +        if (I->hasOneUse()) +          Dead.push_back(std::make_pair(I, SI)); +      } +    } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { +      if (isa<Constant>(MSI->getValue())) { +        Changed = true; +        MSI->eraseFromParent(); +      } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { +        if (I->hasOneUse()) +          Dead.push_back(std::make_pair(I, MSI)); +      } +    } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { +      GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); +      if (MemSrc && MemSrc->isConstant()) { +        Changed = true; +        MTI->eraseFromParent(); +      } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) { +        if (I->hasOneUse()) +          Dead.push_back(std::make_pair(I, MTI)); +      } +    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { +      if (CE->use_empty()) { +        CE->destroyConstant(); +        Changed = true; +      } +    } else if (Constant *C = dyn_cast<Constant>(U)) { +      if (isSafeToDestroyConstant(C)) { +        C->destroyConstant(); +        // This could have invalidated UI, start over from scratch. +        Dead.clear(); +        CleanupPointerRootUsers(GV, GetTLI); +        return true; +      } +    } +  } + +  for (int i = 0, e = Dead.size(); i != e; ++i) { +    if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) { +      Dead[i].second->eraseFromParent(); +      Instruction *I = Dead[i].first; +      do { +        if (isAllocationFn(I, GetTLI)) +          break; +        Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); +        if (!J) +          break; +        I->eraseFromParent(); +        I = J; +      } while (true); +      I->eraseFromParent(); +    } +  } + +  return Changed; +} + +/// We just marked GV constant.  Loop over all users of the global, cleaning up +/// the obvious ones.  This is largely just a quick scan over the use list to +/// clean up the easy and obvious cruft.  This returns true if it made a change. +static bool CleanupConstantGlobalUsers( +    Value *V, Constant *Init, const DataLayout &DL, +    function_ref<TargetLibraryInfo &(Function &)> GetTLI) { +  bool Changed = false; +  // Note that we need to use a weak value handle for the worklist items. When +  // we delete a constant array, we may also be holding pointer to one of its +  // elements (or an element of one of its elements if we're dealing with an +  // array of arrays) in the worklist. +  SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end()); +  while (!WorkList.empty()) { +    Value *UV = WorkList.pop_back_val(); +    if (!UV) +      continue; + +    User *U = cast<User>(UV); + +    if (LoadInst *LI = dyn_cast<LoadInst>(U)) { +      if (Init) { +        // Replace the load with the initializer. +        LI->replaceAllUsesWith(Init); +        LI->eraseFromParent(); +        Changed = true; +      } +    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { +      // Store must be unreachable or storing Init into the global. +      SI->eraseFromParent(); +      Changed = true; +    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { +      if (CE->getOpcode() == Instruction::GetElementPtr) { +        Constant *SubInit = nullptr; +        if (Init) +          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); +        Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, GetTLI); +      } else if ((CE->getOpcode() == Instruction::BitCast && +                  CE->getType()->isPointerTy()) || +                 CE->getOpcode() == Instruction::AddrSpaceCast) { +        // Pointer cast, delete any stores and memsets to the global. +        Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, GetTLI); +      } + +      if (CE->use_empty()) { +        CE->destroyConstant(); +        Changed = true; +      } +    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { +      // Do not transform "gepinst (gep constexpr (GV))" here, because forming +      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold +      // and will invalidate our notion of what Init is. +      Constant *SubInit = nullptr; +      if (!isa<ConstantExpr>(GEP->getOperand(0))) { +        ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>( +            ConstantFoldInstruction(GEP, DL, &GetTLI(*GEP->getFunction()))); +        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) +          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); + +        // If the initializer is an all-null value and we have an inbounds GEP, +        // we already know what the result of any load from that GEP is. +        // TODO: Handle splats. +        if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds()) +          SubInit = Constant::getNullValue(GEP->getResultElementType()); +      } +      Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, GetTLI); + +      if (GEP->use_empty()) { +        GEP->eraseFromParent(); +        Changed = true; +      } +    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv +      if (MI->getRawDest() == V) { +        MI->eraseFromParent(); +        Changed = true; +      } + +    } else if (Constant *C = dyn_cast<Constant>(U)) { +      // If we have a chain of dead constantexprs or other things dangling from +      // us, and if they are all dead, nuke them without remorse. +      if (isSafeToDestroyConstant(C)) { +        C->destroyConstant(); +        CleanupConstantGlobalUsers(V, Init, DL, GetTLI); +        return true; +      } +    } +  } +  return Changed; +} + +static bool isSafeSROAElementUse(Value *V); + +/// Return true if the specified GEP is a safe user of a derived +/// expression from a global that we want to SROA. +static bool isSafeSROAGEP(User *U) { +  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we +  // don't like < 3 operand CE's, and we don't like non-constant integer +  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some +  // value of C. +  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || +      !cast<Constant>(U->getOperand(1))->isNullValue()) +    return false; + +  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); +  ++GEPI; // Skip over the pointer index. + +  // For all other level we require that the indices are constant and inrange. +  // In particular, consider: A[0][i].  We cannot know that the user isn't doing +  // invalid things like allowing i to index an out-of-range subscript that +  // accesses A[1]. This can also happen between different members of a struct +  // in llvm IR. +  for (; GEPI != E; ++GEPI) { +    if (GEPI.isStruct()) +      continue; + +    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); +    if (!IdxVal || (GEPI.isBoundedSequential() && +                    IdxVal->getZExtValue() >= GEPI.getSequentialNumElements())) +      return false; +  } + +  return llvm::all_of(U->users(), +                      [](User *UU) { return isSafeSROAElementUse(UU); }); +} + +/// Return true if the specified instruction is a safe user of a derived +/// expression from a global that we want to SROA. +static bool isSafeSROAElementUse(Value *V) { +  // We might have a dead and dangling constant hanging off of here. +  if (Constant *C = dyn_cast<Constant>(V)) +    return isSafeToDestroyConstant(C); + +  Instruction *I = dyn_cast<Instruction>(V); +  if (!I) return false; + +  // Loads are ok. +  if (isa<LoadInst>(I)) return true; + +  // Stores *to* the pointer are ok. +  if (StoreInst *SI = dyn_cast<StoreInst>(I)) +    return SI->getOperand(0) != V; + +  // Otherwise, it must be a GEP. Check it and its users are safe to SRA. +  return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I); +} + +/// Look at all uses of the global and decide whether it is safe for us to +/// perform this transformation. +static bool GlobalUsersSafeToSRA(GlobalValue *GV) { +  for (User *U : GV->users()) { +    // The user of the global must be a GEP Inst or a ConstantExpr GEP. +    if (!isa<GetElementPtrInst>(U) && +        (!isa<ConstantExpr>(U) || +        cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) +      return false; + +    // Check the gep and it's users are safe to SRA +    if (!isSafeSROAGEP(U)) +      return false; +  } + +  return true; +} + +/// Copy over the debug info for a variable to its SRA replacements. +static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV, +                                 uint64_t FragmentOffsetInBits, +                                 uint64_t FragmentSizeInBits, +                                 unsigned NumElements) { +  SmallVector<DIGlobalVariableExpression *, 1> GVs; +  GV->getDebugInfo(GVs); +  for (auto *GVE : GVs) { +    DIVariable *Var = GVE->getVariable(); +    DIExpression *Expr = GVE->getExpression(); +    if (NumElements > 1) { +      if (auto E = DIExpression::createFragmentExpression( +              Expr, FragmentOffsetInBits, FragmentSizeInBits)) +        Expr = *E; +      else +        return; +    } +    auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr); +    NGV->addDebugInfo(NGVE); +  } +} + +/// Perform scalar replacement of aggregates on the specified global variable. +/// This opens the door for other optimizations by exposing the behavior of the +/// program in a more fine-grained way.  We have determined that this +/// transformation is safe already.  We return the first global variable we +/// insert so that the caller can reprocess it. +static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { +  // Make sure this global only has simple uses that we can SRA. +  if (!GlobalUsersSafeToSRA(GV)) +    return nullptr; + +  assert(GV->hasLocalLinkage()); +  Constant *Init = GV->getInitializer(); +  Type *Ty = Init->getType(); + +  std::vector<GlobalVariable *> NewGlobals; +  Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); + +  // Get the alignment of the global, either explicit or target-specific. +  unsigned StartAlignment = GV->getAlignment(); +  if (StartAlignment == 0) +    StartAlignment = DL.getABITypeAlignment(GV->getType()); + +  if (StructType *STy = dyn_cast<StructType>(Ty)) { +    unsigned NumElements = STy->getNumElements(); +    NewGlobals.reserve(NumElements); +    const StructLayout &Layout = *DL.getStructLayout(STy); +    for (unsigned i = 0, e = NumElements; i != e; ++i) { +      Constant *In = Init->getAggregateElement(i); +      assert(In && "Couldn't get element of initializer?"); +      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false, +                                               GlobalVariable::InternalLinkage, +                                               In, GV->getName()+"."+Twine(i), +                                               GV->getThreadLocalMode(), +                                              GV->getType()->getAddressSpace()); +      NGV->setExternallyInitialized(GV->isExternallyInitialized()); +      NGV->copyAttributesFrom(GV); +      Globals.push_back(NGV); +      NewGlobals.push_back(NGV); + +      // Calculate the known alignment of the field.  If the original aggregate +      // had 256 byte alignment for example, something might depend on that: +      // propagate info to each field. +      uint64_t FieldOffset = Layout.getElementOffset(i); +      Align NewAlign(MinAlign(StartAlignment, FieldOffset)); +      if (NewAlign > Align(DL.getABITypeAlignment(STy->getElementType(i)))) +        NGV->setAlignment(NewAlign); + +      // Copy over the debug info for the variable. +      uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType()); +      uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(i); +      transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, NumElements); +    } +  } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) { +    unsigned NumElements = STy->getNumElements(); +    if (NumElements > 16 && GV->hasNUsesOrMore(16)) +      return nullptr; // It's not worth it. +    NewGlobals.reserve(NumElements); +    auto ElTy = STy->getElementType(); +    uint64_t EltSize = DL.getTypeAllocSize(ElTy); +    Align EltAlign(DL.getABITypeAlignment(ElTy)); +    uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy); +    for (unsigned i = 0, e = NumElements; i != e; ++i) { +      Constant *In = Init->getAggregateElement(i); +      assert(In && "Couldn't get element of initializer?"); + +      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false, +                                               GlobalVariable::InternalLinkage, +                                               In, GV->getName()+"."+Twine(i), +                                               GV->getThreadLocalMode(), +                                              GV->getType()->getAddressSpace()); +      NGV->setExternallyInitialized(GV->isExternallyInitialized()); +      NGV->copyAttributesFrom(GV); +      Globals.push_back(NGV); +      NewGlobals.push_back(NGV); + +      // Calculate the known alignment of the field.  If the original aggregate +      // had 256 byte alignment for example, something might depend on that: +      // propagate info to each field. +      Align NewAlign(MinAlign(StartAlignment, EltSize * i)); +      if (NewAlign > EltAlign) +        NGV->setAlignment(NewAlign); +      transferSRADebugInfo(GV, NGV, FragmentSizeInBits * i, FragmentSizeInBits, +                           NumElements); +    } +  } + +  if (NewGlobals.empty()) +    return nullptr; + +  LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n"); + +  Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); + +  // Loop over all of the uses of the global, replacing the constantexpr geps, +  // with smaller constantexpr geps or direct references. +  while (!GV->use_empty()) { +    User *GEP = GV->user_back(); +    assert(((isa<ConstantExpr>(GEP) && +             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| +            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); + +    // Ignore the 1th operand, which has to be zero or else the program is quite +    // broken (undefined).  Get the 2nd operand, which is the structure or array +    // index. +    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); +    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access. + +    Value *NewPtr = NewGlobals[Val]; +    Type *NewTy = NewGlobals[Val]->getValueType(); + +    // Form a shorter GEP if needed. +    if (GEP->getNumOperands() > 3) { +      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { +        SmallVector<Constant*, 8> Idxs; +        Idxs.push_back(NullInt); +        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) +          Idxs.push_back(CE->getOperand(i)); +        NewPtr = +            ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs); +      } else { +        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); +        SmallVector<Value*, 8> Idxs; +        Idxs.push_back(NullInt); +        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) +          Idxs.push_back(GEPI->getOperand(i)); +        NewPtr = GetElementPtrInst::Create( +            NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI); +      } +    } +    GEP->replaceAllUsesWith(NewPtr); + +    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) +      GEPI->eraseFromParent(); +    else +      cast<ConstantExpr>(GEP)->destroyConstant(); +  } + +  // Delete the old global, now that it is dead. +  Globals.erase(GV); +  ++NumSRA; + +  // Loop over the new globals array deleting any globals that are obviously +  // dead.  This can arise due to scalarization of a structure or an array that +  // has elements that are dead. +  unsigned FirstGlobal = 0; +  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i) +    if (NewGlobals[i]->use_empty()) { +      Globals.erase(NewGlobals[i]); +      if (FirstGlobal == i) ++FirstGlobal; +    } + +  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr; +} + +/// Return true if all users of the specified value will trap if the value is +/// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid +/// reprocessing them. +static bool AllUsesOfValueWillTrapIfNull(const Value *V, +                                        SmallPtrSetImpl<const PHINode*> &PHIs) { +  for (const User *U : V->users()) { +    if (const Instruction *I = dyn_cast<Instruction>(U)) { +      // If null pointer is considered valid, then all uses are non-trapping. +      // Non address-space 0 globals have already been pruned by the caller. +      if (NullPointerIsDefined(I->getFunction())) +        return false; +    } +    if (isa<LoadInst>(U)) { +      // Will trap. +    } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { +      if (SI->getOperand(0) == V) { +        //cerr << "NONTRAPPING USE: " << *U; +        return false;  // Storing the value. +      } +    } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { +      if (CI->getCalledValue() != V) { +        //cerr << "NONTRAPPING USE: " << *U; +        return false;  // Not calling the ptr +      } +    } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { +      if (II->getCalledValue() != V) { +        //cerr << "NONTRAPPING USE: " << *U; +        return false;  // Not calling the ptr +      } +    } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { +      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; +    } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { +      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; +    } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { +      // If we've already seen this phi node, ignore it, it has already been +      // checked. +      if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) +        return false; +    } else if (isa<ICmpInst>(U) && +               isa<ConstantPointerNull>(U->getOperand(1))) { +      // Ignore icmp X, null +    } else { +      //cerr << "NONTRAPPING USE: " << *U; +      return false; +    } +  } +  return true; +} + +/// Return true if all uses of any loads from GV will trap if the loaded value +/// is null.  Note that this also permits comparisons of the loaded value +/// against null, as a special case. +static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { +  for (const User *U : GV->users()) +    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { +      SmallPtrSet<const PHINode*, 8> PHIs; +      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) +        return false; +    } else if (isa<StoreInst>(U)) { +      // Ignore stores to the global. +    } else { +      // We don't know or understand this user, bail out. +      //cerr << "UNKNOWN USER OF GLOBAL!: " << *U; +      return false; +    } +  return true; +} + +static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { +  bool Changed = false; +  for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { +    Instruction *I = cast<Instruction>(*UI++); +    // Uses are non-trapping if null pointer is considered valid. +    // Non address-space 0 globals are already pruned by the caller. +    if (NullPointerIsDefined(I->getFunction())) +      return false; +    if (LoadInst *LI = dyn_cast<LoadInst>(I)) { +      LI->setOperand(0, NewV); +      Changed = true; +    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { +      if (SI->getOperand(1) == V) { +        SI->setOperand(1, NewV); +        Changed = true; +      } +    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { +      CallSite CS(I); +      if (CS.getCalledValue() == V) { +        // Calling through the pointer!  Turn into a direct call, but be careful +        // that the pointer is not also being passed as an argument. +        CS.setCalledFunction(NewV); +        Changed = true; +        bool PassedAsArg = false; +        for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) +          if (CS.getArgument(i) == V) { +            PassedAsArg = true; +            CS.setArgument(i, NewV); +          } + +        if (PassedAsArg) { +          // Being passed as an argument also.  Be careful to not invalidate UI! +          UI = V->user_begin(); +        } +      } +    } else if (CastInst *CI = dyn_cast<CastInst>(I)) { +      Changed |= OptimizeAwayTrappingUsesOfValue(CI, +                                ConstantExpr::getCast(CI->getOpcode(), +                                                      NewV, CI->getType())); +      if (CI->use_empty()) { +        Changed = true; +        CI->eraseFromParent(); +      } +    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { +      // Should handle GEP here. +      SmallVector<Constant*, 8> Idxs; +      Idxs.reserve(GEPI->getNumOperands()-1); +      for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); +           i != e; ++i) +        if (Constant *C = dyn_cast<Constant>(*i)) +          Idxs.push_back(C); +        else +          break; +      if (Idxs.size() == GEPI->getNumOperands()-1) +        Changed |= OptimizeAwayTrappingUsesOfValue( +            GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(), +                                                 NewV, Idxs)); +      if (GEPI->use_empty()) { +        Changed = true; +        GEPI->eraseFromParent(); +      } +    } +  } + +  return Changed; +} + +/// The specified global has only one non-null value stored into it.  If there +/// are uses of the loaded value that would trap if the loaded value is +/// dynamically null, then we know that they cannot be reachable with a null +/// optimize away the load. +static bool OptimizeAwayTrappingUsesOfLoads( +    GlobalVariable *GV, Constant *LV, const DataLayout &DL, +    function_ref<TargetLibraryInfo &(Function &)> GetTLI) { +  bool Changed = false; + +  // Keep track of whether we are able to remove all the uses of the global +  // other than the store that defines it. +  bool AllNonStoreUsesGone = true; + +  // Replace all uses of loads with uses of uses of the stored value. +  for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){ +    User *GlobalUser = *GUI++; +    if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { +      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); +      // If we were able to delete all uses of the loads +      if (LI->use_empty()) { +        LI->eraseFromParent(); +        Changed = true; +      } else { +        AllNonStoreUsesGone = false; +      } +    } else if (isa<StoreInst>(GlobalUser)) { +      // Ignore the store that stores "LV" to the global. +      assert(GlobalUser->getOperand(1) == GV && +             "Must be storing *to* the global"); +    } else { +      AllNonStoreUsesGone = false; + +      // If we get here we could have other crazy uses that are transitively +      // loaded. +      assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || +              isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || +              isa<BitCastInst>(GlobalUser) || +              isa<GetElementPtrInst>(GlobalUser)) && +             "Only expect load and stores!"); +    } +  } + +  if (Changed) { +    LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV +                      << "\n"); +    ++NumGlobUses; +  } + +  // If we nuked all of the loads, then none of the stores are needed either, +  // nor is the global. +  if (AllNonStoreUsesGone) { +    if (isLeakCheckerRoot(GV)) { +      Changed |= CleanupPointerRootUsers(GV, GetTLI); +    } else { +      Changed = true; +      CleanupConstantGlobalUsers(GV, nullptr, DL, GetTLI); +    } +    if (GV->use_empty()) { +      LLVM_DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n"); +      Changed = true; +      GV->eraseFromParent(); +      ++NumDeleted; +    } +  } +  return Changed; +} + +/// Walk the use list of V, constant folding all of the instructions that are +/// foldable. +static void ConstantPropUsersOf(Value *V, const DataLayout &DL, +                                TargetLibraryInfo *TLI) { +  for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) +    if (Instruction *I = dyn_cast<Instruction>(*UI++)) +      if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { +        I->replaceAllUsesWith(NewC); + +        // Advance UI to the next non-I use to avoid invalidating it! +        // Instructions could multiply use V. +        while (UI != E && *UI == I) +          ++UI; +        if (isInstructionTriviallyDead(I, TLI)) +          I->eraseFromParent(); +      } +} + +/// This function takes the specified global variable, and transforms the +/// program as if it always contained the result of the specified malloc. +/// Because it is always the result of the specified malloc, there is no reason +/// to actually DO the malloc.  Instead, turn the malloc into a global, and any +/// loads of GV as uses of the new global. +static GlobalVariable * +OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy, +                              ConstantInt *NElements, const DataLayout &DL, +                              TargetLibraryInfo *TLI) { +  LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI +                    << '\n'); + +  Type *GlobalType; +  if (NElements->getZExtValue() == 1) +    GlobalType = AllocTy; +  else +    // If we have an array allocation, the global variable is of an array. +    GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); + +  // Create the new global variable.  The contents of the malloc'd memory is +  // undefined, so initialize with an undef value. +  GlobalVariable *NewGV = new GlobalVariable( +      *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage, +      UndefValue::get(GlobalType), GV->getName() + ".body", nullptr, +      GV->getThreadLocalMode()); + +  // If there are bitcast users of the malloc (which is typical, usually we have +  // a malloc + bitcast) then replace them with uses of the new global.  Update +  // other users to use the global as well. +  BitCastInst *TheBC = nullptr; +  while (!CI->use_empty()) { +    Instruction *User = cast<Instruction>(CI->user_back()); +    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { +      if (BCI->getType() == NewGV->getType()) { +        BCI->replaceAllUsesWith(NewGV); +        BCI->eraseFromParent(); +      } else { +        BCI->setOperand(0, NewGV); +      } +    } else { +      if (!TheBC) +        TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); +      User->replaceUsesOfWith(CI, TheBC); +    } +  } + +  Constant *RepValue = NewGV; +  if (NewGV->getType() != GV->getValueType()) +    RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType()); + +  // If there is a comparison against null, we will insert a global bool to +  // keep track of whether the global was initialized yet or not. +  GlobalVariable *InitBool = +    new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, +                       GlobalValue::InternalLinkage, +                       ConstantInt::getFalse(GV->getContext()), +                       GV->getName()+".init", GV->getThreadLocalMode()); +  bool InitBoolUsed = false; + +  // Loop over all uses of GV, processing them in turn. +  while (!GV->use_empty()) { +    if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) { +      // The global is initialized when the store to it occurs. +      new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, +                    None, SI->getOrdering(), SI->getSyncScopeID(), SI); +      SI->eraseFromParent(); +      continue; +    } + +    LoadInst *LI = cast<LoadInst>(GV->user_back()); +    while (!LI->use_empty()) { +      Use &LoadUse = *LI->use_begin(); +      ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser()); +      if (!ICI) { +        LoadUse = RepValue; +        continue; +      } + +      // Replace the cmp X, 0 with a use of the bool value. +      // Sink the load to where the compare was, if atomic rules allow us to. +      Value *LV = new LoadInst(InitBool->getValueType(), InitBool, +                               InitBool->getName() + ".val", false, None, +                               LI->getOrdering(), LI->getSyncScopeID(), +                               LI->isUnordered() ? (Instruction *)ICI : LI); +      InitBoolUsed = true; +      switch (ICI->getPredicate()) { +      default: llvm_unreachable("Unknown ICmp Predicate!"); +      case ICmpInst::ICMP_ULT: +      case ICmpInst::ICMP_SLT:   // X < null -> always false +        LV = ConstantInt::getFalse(GV->getContext()); +        break; +      case ICmpInst::ICMP_ULE: +      case ICmpInst::ICMP_SLE: +      case ICmpInst::ICMP_EQ: +        LV = BinaryOperator::CreateNot(LV, "notinit", ICI); +        break; +      case ICmpInst::ICMP_NE: +      case ICmpInst::ICMP_UGE: +      case ICmpInst::ICMP_SGE: +      case ICmpInst::ICMP_UGT: +      case ICmpInst::ICMP_SGT: +        break;  // no change. +      } +      ICI->replaceAllUsesWith(LV); +      ICI->eraseFromParent(); +    } +    LI->eraseFromParent(); +  } + +  // If the initialization boolean was used, insert it, otherwise delete it. +  if (!InitBoolUsed) { +    while (!InitBool->use_empty())  // Delete initializations +      cast<StoreInst>(InitBool->user_back())->eraseFromParent(); +    delete InitBool; +  } else +    GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool); + +  // Now the GV is dead, nuke it and the malloc.. +  GV->eraseFromParent(); +  CI->eraseFromParent(); + +  // To further other optimizations, loop over all users of NewGV and try to +  // constant prop them.  This will promote GEP instructions with constant +  // indices into GEP constant-exprs, which will allow global-opt to hack on it. +  ConstantPropUsersOf(NewGV, DL, TLI); +  if (RepValue != NewGV) +    ConstantPropUsersOf(RepValue, DL, TLI); + +  return NewGV; +} + +/// Scan the use-list of V checking to make sure that there are no complex uses +/// of V.  We permit simple things like dereferencing the pointer, but not +/// storing through the address, unless it is to the specified global. +static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V, +                                                      const GlobalVariable *GV, +                                        SmallPtrSetImpl<const PHINode*> &PHIs) { +  for (const User *U : V->users()) { +    const Instruction *Inst = cast<Instruction>(U); + +    if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) { +      continue; // Fine, ignore. +    } + +    if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { +      if (SI->getOperand(0) == V && SI->getOperand(1) != GV) +        return false;  // Storing the pointer itself... bad. +      continue; // Otherwise, storing through it, or storing into GV... fine. +    } + +    // Must index into the array and into the struct. +    if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) { +      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs)) +        return false; +      continue; +    } + +    if (const PHINode *PN = dyn_cast<PHINode>(Inst)) { +      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI +      // cycles. +      if (PHIs.insert(PN).second) +        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs)) +          return false; +      continue; +    } + +    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) { +      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs)) +        return false; +      continue; +    } + +    return false; +  } +  return true; +} + +/// The Alloc pointer is stored into GV somewhere.  Transform all uses of the +/// allocation into loads from the global and uses of the resultant pointer. +/// Further, delete the store into GV.  This assumes that these value pass the +/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate. +static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc, +                                          GlobalVariable *GV) { +  while (!Alloc->use_empty()) { +    Instruction *U = cast<Instruction>(*Alloc->user_begin()); +    Instruction *InsertPt = U; +    if (StoreInst *SI = dyn_cast<StoreInst>(U)) { +      // If this is the store of the allocation into the global, remove it. +      if (SI->getOperand(1) == GV) { +        SI->eraseFromParent(); +        continue; +      } +    } else if (PHINode *PN = dyn_cast<PHINode>(U)) { +      // Insert the load in the corresponding predecessor, not right before the +      // PHI. +      InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator(); +    } else if (isa<BitCastInst>(U)) { +      // Must be bitcast between the malloc and store to initialize the global. +      ReplaceUsesOfMallocWithGlobal(U, GV); +      U->eraseFromParent(); +      continue; +    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { +      // If this is a "GEP bitcast" and the user is a store to the global, then +      // just process it as a bitcast. +      if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse()) +        if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back())) +          if (SI->getOperand(1) == GV) { +            // Must be bitcast GEP between the malloc and store to initialize +            // the global. +            ReplaceUsesOfMallocWithGlobal(GEPI, GV); +            GEPI->eraseFromParent(); +            continue; +          } +    } + +    // Insert a load from the global, and use it instead of the malloc. +    Value *NL = +        new LoadInst(GV->getValueType(), GV, GV->getName() + ".val", InsertPt); +    U->replaceUsesOfWith(Alloc, NL); +  } +} + +/// Verify that all uses of V (a load, or a phi of a load) are simple enough to +/// perform heap SRA on.  This permits GEP's that index through the array and +/// struct field, icmps of null, and PHIs. +static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V, +                        SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs, +                        SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) { +  // We permit two users of the load: setcc comparing against the null +  // pointer, and a getelementptr of a specific form. +  for (const User *U : V->users()) { +    const Instruction *UI = cast<Instruction>(U); + +    // Comparison against null is ok. +    if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) { +      if (!isa<ConstantPointerNull>(ICI->getOperand(1))) +        return false; +      continue; +    } + +    // getelementptr is also ok, but only a simple form. +    if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) { +      // Must index into the array and into the struct. +      if (GEPI->getNumOperands() < 3) +        return false; + +      // Otherwise the GEP is ok. +      continue; +    } + +    if (const PHINode *PN = dyn_cast<PHINode>(UI)) { +      if (!LoadUsingPHIsPerLoad.insert(PN).second) +        // This means some phi nodes are dependent on each other. +        // Avoid infinite looping! +        return false; +      if (!LoadUsingPHIs.insert(PN).second) +        // If we have already analyzed this PHI, then it is safe. +        continue; + +      // Make sure all uses of the PHI are simple enough to transform. +      if (!LoadUsesSimpleEnoughForHeapSRA(PN, +                                          LoadUsingPHIs, LoadUsingPHIsPerLoad)) +        return false; + +      continue; +    } + +    // Otherwise we don't know what this is, not ok. +    return false; +  } + +  return true; +} + +/// If all users of values loaded from GV are simple enough to perform HeapSRA, +/// return true. +static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV, +                                                    Instruction *StoredVal) { +  SmallPtrSet<const PHINode*, 32> LoadUsingPHIs; +  SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad; +  for (const User *U : GV->users()) +    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { +      if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs, +                                          LoadUsingPHIsPerLoad)) +        return false; +      LoadUsingPHIsPerLoad.clear(); +    } + +  // If we reach here, we know that all uses of the loads and transitive uses +  // (through PHI nodes) are simple enough to transform.  However, we don't know +  // that all inputs the to the PHI nodes are in the same equivalence sets. +  // Check to verify that all operands of the PHIs are either PHIS that can be +  // transformed, loads from GV, or MI itself. +  for (const PHINode *PN : LoadUsingPHIs) { +    for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) { +      Value *InVal = PN->getIncomingValue(op); + +      // PHI of the stored value itself is ok. +      if (InVal == StoredVal) continue; + +      if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) { +        // One of the PHIs in our set is (optimistically) ok. +        if (LoadUsingPHIs.count(InPN)) +          continue; +        return false; +      } + +      // Load from GV is ok. +      if (const LoadInst *LI = dyn_cast<LoadInst>(InVal)) +        if (LI->getOperand(0) == GV) +          continue; + +      // UNDEF? NULL? + +      // Anything else is rejected. +      return false; +    } +  } + +  return true; +} + +static Value *GetHeapSROAValue(Value *V, unsigned FieldNo, +              DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues, +                   std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) { +  std::vector<Value *> &FieldVals = InsertedScalarizedValues[V]; + +  if (FieldNo >= FieldVals.size()) +    FieldVals.resize(FieldNo+1); + +  // If we already have this value, just reuse the previously scalarized +  // version. +  if (Value *FieldVal = FieldVals[FieldNo]) +    return FieldVal; + +  // Depending on what instruction this is, we have several cases. +  Value *Result; +  if (LoadInst *LI = dyn_cast<LoadInst>(V)) { +    // This is a scalarized version of the load from the global.  Just create +    // a new Load of the scalarized global. +    Value *V = GetHeapSROAValue(LI->getOperand(0), FieldNo, +                                InsertedScalarizedValues, PHIsToRewrite); +    Result = new LoadInst(V->getType()->getPointerElementType(), V, +                          LI->getName() + ".f" + Twine(FieldNo), LI); +  } else { +    PHINode *PN = cast<PHINode>(V); +    // PN's type is pointer to struct.  Make a new PHI of pointer to struct +    // field. + +    PointerType *PTy = cast<PointerType>(PN->getType()); +    StructType *ST = cast<StructType>(PTy->getElementType()); + +    unsigned AS = PTy->getAddressSpace(); +    PHINode *NewPN = +      PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS), +                     PN->getNumIncomingValues(), +                     PN->getName()+".f"+Twine(FieldNo), PN); +    Result = NewPN; +    PHIsToRewrite.push_back(std::make_pair(PN, FieldNo)); +  } + +  return FieldVals[FieldNo] = Result; +} + +/// Given a load instruction and a value derived from the load, rewrite the +/// derived value to use the HeapSRoA'd load. +static void RewriteHeapSROALoadUser(Instruction *LoadUser, +              DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues, +                   std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) { +  // If this is a comparison against null, handle it. +  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) { +    assert(isa<ConstantPointerNull>(SCI->getOperand(1))); +    // If we have a setcc of the loaded pointer, we can use a setcc of any +    // field. +    Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0, +                                   InsertedScalarizedValues, PHIsToRewrite); + +    Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr, +                              Constant::getNullValue(NPtr->getType()), +                              SCI->getName()); +    SCI->replaceAllUsesWith(New); +    SCI->eraseFromParent(); +    return; +  } + +  // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...' +  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) { +    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2)) +           && "Unexpected GEPI!"); + +    // Load the pointer for this field. +    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); +    Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo, +                                     InsertedScalarizedValues, PHIsToRewrite); + +    // Create the new GEP idx vector. +    SmallVector<Value*, 8> GEPIdx; +    GEPIdx.push_back(GEPI->getOperand(1)); +    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end()); + +    Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx, +                                             GEPI->getName(), GEPI); +    GEPI->replaceAllUsesWith(NGEPI); +    GEPI->eraseFromParent(); +    return; +  } + +  // Recursively transform the users of PHI nodes.  This will lazily create the +  // PHIs that are needed for individual elements.  Keep track of what PHIs we +  // see in InsertedScalarizedValues so that we don't get infinite loops (very +  // antisocial).  If the PHI is already in InsertedScalarizedValues, it has +  // already been seen first by another load, so its uses have already been +  // processed. +  PHINode *PN = cast<PHINode>(LoadUser); +  if (!InsertedScalarizedValues.insert(std::make_pair(PN, +                                              std::vector<Value *>())).second) +    return; + +  // If this is the first time we've seen this PHI, recursively process all +  // users. +  for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { +    Instruction *User = cast<Instruction>(*UI++); +    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); +  } +} + +/// We are performing Heap SRoA on a global.  Ptr is a value loaded from the +/// global.  Eliminate all uses of Ptr, making them use FieldGlobals instead. +/// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA. +static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, +              DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues, +                  std::vector<std::pair<PHINode *, unsigned> > &PHIsToRewrite) { +  for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) { +    Instruction *User = cast<Instruction>(*UI++); +    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); +  } + +  if (Load->use_empty()) { +    Load->eraseFromParent(); +    InsertedScalarizedValues.erase(Load); +  } +} + +/// CI is an allocation of an array of structures.  Break it up into multiple +/// allocations of arrays of the fields. +static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI, +                                            Value *NElems, const DataLayout &DL, +                                            const TargetLibraryInfo *TLI) { +  LLVM_DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI +                    << '\n'); +  Type *MAT = getMallocAllocatedType(CI, TLI); +  StructType *STy = cast<StructType>(MAT); + +  // There is guaranteed to be at least one use of the malloc (storing +  // it into GV).  If there are other uses, change them to be uses of +  // the global to simplify later code.  This also deletes the store +  // into GV. +  ReplaceUsesOfMallocWithGlobal(CI, GV); + +  // Okay, at this point, there are no users of the malloc.  Insert N +  // new mallocs at the same place as CI, and N globals. +  std::vector<Value *> FieldGlobals; +  std::vector<Value *> FieldMallocs; + +  SmallVector<OperandBundleDef, 1> OpBundles; +  CI->getOperandBundlesAsDefs(OpBundles); + +  unsigned AS = GV->getType()->getPointerAddressSpace(); +  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){ +    Type *FieldTy = STy->getElementType(FieldNo); +    PointerType *PFieldTy = PointerType::get(FieldTy, AS); + +    GlobalVariable *NGV = new GlobalVariable( +        *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage, +        Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo), +        nullptr, GV->getThreadLocalMode()); +    NGV->copyAttributesFrom(GV); +    FieldGlobals.push_back(NGV); + +    unsigned TypeSize = DL.getTypeAllocSize(FieldTy); +    if (StructType *ST = dyn_cast<StructType>(FieldTy)) +      TypeSize = DL.getStructLayout(ST)->getSizeInBytes(); +    Type *IntPtrTy = DL.getIntPtrType(CI->getType()); +    Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy, +                                        ConstantInt::get(IntPtrTy, TypeSize), +                                        NElems, OpBundles, nullptr, +                                        CI->getName() + ".f" + Twine(FieldNo)); +    FieldMallocs.push_back(NMI); +    new StoreInst(NMI, NGV, CI); +  } + +  // The tricky aspect of this transformation is handling the case when malloc +  // fails.  In the original code, malloc failing would set the result pointer +  // of malloc to null.  In this case, some mallocs could succeed and others +  // could fail.  As such, we emit code that looks like this: +  //    F0 = malloc(field0) +  //    F1 = malloc(field1) +  //    F2 = malloc(field2) +  //    if (F0 == 0 || F1 == 0 || F2 == 0) { +  //      if (F0) { free(F0); F0 = 0; } +  //      if (F1) { free(F1); F1 = 0; } +  //      if (F2) { free(F2); F2 = 0; } +  //    } +  // The malloc can also fail if its argument is too large. +  Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0); +  Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0), +                                  ConstantZero, "isneg"); +  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) { +    Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i], +                             Constant::getNullValue(FieldMallocs[i]->getType()), +                               "isnull"); +    RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI); +  } + +  // Split the basic block at the old malloc. +  BasicBlock *OrigBB = CI->getParent(); +  BasicBlock *ContBB = +      OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont"); + +  // Create the block to check the first condition.  Put all these blocks at the +  // end of the function as they are unlikely to be executed. +  BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(), +                                                "malloc_ret_null", +                                                OrigBB->getParent()); + +  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond +  // branch on RunningOr. +  OrigBB->getTerminator()->eraseFromParent(); +  BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB); + +  // Within the NullPtrBlock, we need to emit a comparison and branch for each +  // pointer, because some may be null while others are not. +  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { +    Value *GVVal = +        new LoadInst(cast<GlobalVariable>(FieldGlobals[i])->getValueType(), +                     FieldGlobals[i], "tmp", NullPtrBlock); +    Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal, +                              Constant::getNullValue(GVVal->getType())); +    BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it", +                                               OrigBB->getParent()); +    BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next", +                                               OrigBB->getParent()); +    Instruction *BI = BranchInst::Create(FreeBlock, NextBlock, +                                         Cmp, NullPtrBlock); + +    // Fill in FreeBlock. +    CallInst::CreateFree(GVVal, OpBundles, BI); +    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i], +                  FreeBlock); +    BranchInst::Create(NextBlock, FreeBlock); + +    NullPtrBlock = NextBlock; +  } + +  BranchInst::Create(ContBB, NullPtrBlock); + +  // CI is no longer needed, remove it. +  CI->eraseFromParent(); + +  /// As we process loads, if we can't immediately update all uses of the load, +  /// keep track of what scalarized loads are inserted for a given load. +  DenseMap<Value *, std::vector<Value *>> InsertedScalarizedValues; +  InsertedScalarizedValues[GV] = FieldGlobals; + +  std::vector<std::pair<PHINode *, unsigned>> PHIsToRewrite; + +  // Okay, the malloc site is completely handled.  All of the uses of GV are now +  // loads, and all uses of those loads are simple.  Rewrite them to use loads +  // of the per-field globals instead. +  for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) { +    Instruction *User = cast<Instruction>(*UI++); + +    if (LoadInst *LI = dyn_cast<LoadInst>(User)) { +      RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite); +      continue; +    } + +    // Must be a store of null. +    StoreInst *SI = cast<StoreInst>(User); +    assert(isa<ConstantPointerNull>(SI->getOperand(0)) && +           "Unexpected heap-sra user!"); + +    // Insert a store of null into each global. +    for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { +      Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType(); +      Constant *Null = Constant::getNullValue(ValTy); +      new StoreInst(Null, FieldGlobals[i], SI); +    } +    // Erase the original store. +    SI->eraseFromParent(); +  } + +  // While we have PHIs that are interesting to rewrite, do it. +  while (!PHIsToRewrite.empty()) { +    PHINode *PN = PHIsToRewrite.back().first; +    unsigned FieldNo = PHIsToRewrite.back().second; +    PHIsToRewrite.pop_back(); +    PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]); +    assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi"); + +    // Add all the incoming values.  This can materialize more phis. +    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { +      Value *InVal = PN->getIncomingValue(i); +      InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues, +                               PHIsToRewrite); +      FieldPN->addIncoming(InVal, PN->getIncomingBlock(i)); +    } +  } + +  // Drop all inter-phi links and any loads that made it this far. +  for (DenseMap<Value *, std::vector<Value *>>::iterator +       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); +       I != E; ++I) { +    if (PHINode *PN = dyn_cast<PHINode>(I->first)) +      PN->dropAllReferences(); +    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) +      LI->dropAllReferences(); +  } + +  // Delete all the phis and loads now that inter-references are dead. +  for (DenseMap<Value *, std::vector<Value *>>::iterator +       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); +       I != E; ++I) { +    if (PHINode *PN = dyn_cast<PHINode>(I->first)) +      PN->eraseFromParent(); +    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) +      LI->eraseFromParent(); +  } + +  // The old global is now dead, remove it. +  GV->eraseFromParent(); + +  ++NumHeapSRA; +  return cast<GlobalVariable>(FieldGlobals[0]); +} + +/// This function is called when we see a pointer global variable with a single +/// value stored it that is a malloc or cast of malloc. +static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI, +                                               Type *AllocTy, +                                               AtomicOrdering Ordering, +                                               const DataLayout &DL, +                                               TargetLibraryInfo *TLI) { +  // If this is a malloc of an abstract type, don't touch it. +  if (!AllocTy->isSized()) +    return false; + +  // We can't optimize this global unless all uses of it are *known* to be +  // of the malloc value, not of the null initializer value (consider a use +  // that compares the global's value against zero to see if the malloc has +  // been reached).  To do this, we check to see if all uses of the global +  // would trap if the global were null: this proves that they must all +  // happen after the malloc. +  if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) +    return false; + +  // We can't optimize this if the malloc itself is used in a complex way, +  // for example, being stored into multiple globals.  This allows the +  // malloc to be stored into the specified global, loaded icmp'd, and +  // GEP'd.  These are all things we could transform to using the global +  // for. +  SmallPtrSet<const PHINode*, 8> PHIs; +  if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs)) +    return false; + +  // If we have a global that is only initialized with a fixed size malloc, +  // transform the program to use global memory instead of malloc'd memory. +  // This eliminates dynamic allocation, avoids an indirection accessing the +  // data, and exposes the resultant global to further GlobalOpt. +  // We cannot optimize the malloc if we cannot determine malloc array size. +  Value *NElems = getMallocArraySize(CI, DL, TLI, true); +  if (!NElems) +    return false; + +  if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) +    // Restrict this transformation to only working on small allocations +    // (2048 bytes currently), as we don't want to introduce a 16M global or +    // something. +    if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) { +      OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI); +      return true; +    } + +  // If the allocation is an array of structures, consider transforming this +  // into multiple malloc'd arrays, one for each field.  This is basically +  // SRoA for malloc'd memory. + +  if (Ordering != AtomicOrdering::NotAtomic) +    return false; + +  // If this is an allocation of a fixed size array of structs, analyze as a +  // variable size array.  malloc [100 x struct],1 -> malloc struct, 100 +  if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1)) +    if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy)) +      AllocTy = AT->getElementType(); + +  StructType *AllocSTy = dyn_cast<StructType>(AllocTy); +  if (!AllocSTy) +    return false; + +  // This the structure has an unreasonable number of fields, leave it +  // alone. +  if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 && +      AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) { + +    // If this is a fixed size array, transform the Malloc to be an alloc of +    // structs.  malloc [100 x struct],1 -> malloc struct, 100 +    if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) { +      Type *IntPtrTy = DL.getIntPtrType(CI->getType()); +      unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes(); +      Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize); +      Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements()); +      SmallVector<OperandBundleDef, 1> OpBundles; +      CI->getOperandBundlesAsDefs(OpBundles); +      Instruction *Malloc = +          CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements, +                                 OpBundles, nullptr, CI->getName()); +      Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI); +      CI->replaceAllUsesWith(Cast); +      CI->eraseFromParent(); +      if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc)) +        CI = cast<CallInst>(BCI->getOperand(0)); +      else +        CI = cast<CallInst>(Malloc); +    } + +    PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL, +                         TLI); +    return true; +  } + +  return false; +} + +// Try to optimize globals based on the knowledge that only one value (besides +// its initializer) is ever stored to the global. +static bool +optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, +                         AtomicOrdering Ordering, const DataLayout &DL, +                         function_ref<TargetLibraryInfo &(Function &)> GetTLI) { +  // Ignore no-op GEPs and bitcasts. +  StoredOnceVal = StoredOnceVal->stripPointerCasts(); + +  // If we are dealing with a pointer global that is initialized to null and +  // only has one (non-null) value stored into it, then we can optimize any +  // users of the loaded value (often calls and loads) that would trap if the +  // value was null. +  if (GV->getInitializer()->getType()->isPointerTy() && +      GV->getInitializer()->isNullValue() && +      !NullPointerIsDefined( +          nullptr /* F */, +          GV->getInitializer()->getType()->getPointerAddressSpace())) { +    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { +      if (GV->getInitializer()->getType() != SOVC->getType()) +        SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); + +      // Optimize away any trapping uses of the loaded value. +      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI)) +        return true; +    } else if (CallInst *CI = extractMallocCall(StoredOnceVal, GetTLI)) { +      auto *TLI = &GetTLI(*CI->getFunction()); +      Type *MallocType = getMallocAllocatedType(CI, TLI); +      if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, +                                                           Ordering, DL, TLI)) +        return true; +    } +  } + +  return false; +} + +/// At this point, we have learned that the only two values ever stored into GV +/// are its initializer and OtherVal.  See if we can shrink the global into a +/// boolean and select between the two values whenever it is used.  This exposes +/// the values to other scalar optimizations. +static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { +  Type *GVElType = GV->getValueType(); + +  // If GVElType is already i1, it is already shrunk.  If the type of the GV is +  // an FP value, pointer or vector, don't do this optimization because a select +  // between them is very expensive and unlikely to lead to later +  // simplification.  In these cases, we typically end up with "cond ? v1 : v2" +  // where v1 and v2 both require constant pool loads, a big loss. +  if (GVElType == Type::getInt1Ty(GV->getContext()) || +      GVElType->isFloatingPointTy() || +      GVElType->isPointerTy() || GVElType->isVectorTy()) +    return false; + +  // Walk the use list of the global seeing if all the uses are load or store. +  // If there is anything else, bail out. +  for (User *U : GV->users()) +    if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) +      return false; + +  LLVM_DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n"); + +  // Create the new global, initializing it to false. +  GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), +                                             false, +                                             GlobalValue::InternalLinkage, +                                        ConstantInt::getFalse(GV->getContext()), +                                             GV->getName()+".b", +                                             GV->getThreadLocalMode(), +                                             GV->getType()->getAddressSpace()); +  NewGV->copyAttributesFrom(GV); +  GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV); + +  Constant *InitVal = GV->getInitializer(); +  assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && +         "No reason to shrink to bool!"); + +  SmallVector<DIGlobalVariableExpression *, 1> GVs; +  GV->getDebugInfo(GVs); + +  // If initialized to zero and storing one into the global, we can use a cast +  // instead of a select to synthesize the desired value. +  bool IsOneZero = false; +  bool EmitOneOrZero = true; +  auto *CI = dyn_cast<ConstantInt>(OtherVal); +  if (CI && CI->getValue().getActiveBits() <= 64) { +    IsOneZero = InitVal->isNullValue() && CI->isOne(); + +    auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer()); +    if (CIInit && CIInit->getValue().getActiveBits() <= 64) { +      uint64_t ValInit = CIInit->getZExtValue(); +      uint64_t ValOther = CI->getZExtValue(); +      uint64_t ValMinus = ValOther - ValInit; + +      for(auto *GVe : GVs){ +        DIGlobalVariable *DGV = GVe->getVariable(); +        DIExpression *E = GVe->getExpression(); +        const DataLayout &DL = GV->getParent()->getDataLayout(); +        unsigned SizeInOctets = +          DL.getTypeAllocSizeInBits(NewGV->getType()->getElementType()) / 8; + +        // It is expected that the address of global optimized variable is on +        // top of the stack. After optimization, value of that variable will +        // be ether 0 for initial value or 1 for other value. The following +        // expression should return constant integer value depending on the +        // value at global object address: +        // val * (ValOther - ValInit) + ValInit: +        // DW_OP_deref DW_OP_constu <ValMinus> +        // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value +        SmallVector<uint64_t, 12> Ops = { +            dwarf::DW_OP_deref_size, SizeInOctets, +            dwarf::DW_OP_constu, ValMinus, +            dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit, +            dwarf::DW_OP_plus}; +        bool WithStackValue = true; +        E = DIExpression::prependOpcodes(E, Ops, WithStackValue); +        DIGlobalVariableExpression *DGVE = +          DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E); +        NewGV->addDebugInfo(DGVE); +     } +     EmitOneOrZero = false; +    } +  } + +  if (EmitOneOrZero) { +     // FIXME: This will only emit address for debugger on which will +     // be written only 0 or 1. +     for(auto *GV : GVs) +       NewGV->addDebugInfo(GV); +   } + +  while (!GV->use_empty()) { +    Instruction *UI = cast<Instruction>(GV->user_back()); +    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { +      // Change the store into a boolean store. +      bool StoringOther = SI->getOperand(0) == OtherVal; +      // Only do this if we weren't storing a loaded value. +      Value *StoreVal; +      if (StoringOther || SI->getOperand(0) == InitVal) { +        StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), +                                    StoringOther); +      } else { +        // Otherwise, we are storing a previously loaded copy.  To do this, +        // change the copy from copying the original value to just copying the +        // bool. +        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); + +        // If we've already replaced the input, StoredVal will be a cast or +        // select instruction.  If not, it will be a load of the original +        // global. +        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { +          assert(LI->getOperand(0) == GV && "Not a copy!"); +          // Insert a new load, to preserve the saved value. +          StoreVal = new LoadInst(NewGV->getValueType(), NewGV, +                                  LI->getName() + ".b", false, None, +                                  LI->getOrdering(), LI->getSyncScopeID(), LI); +        } else { +          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && +                 "This is not a form that we understand!"); +          StoreVal = StoredVal->getOperand(0); +          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); +        } +      } +      StoreInst *NSI = +          new StoreInst(StoreVal, NewGV, false, None, SI->getOrdering(), +                        SI->getSyncScopeID(), SI); +      NSI->setDebugLoc(SI->getDebugLoc()); +    } else { +      // Change the load into a load of bool then a select. +      LoadInst *LI = cast<LoadInst>(UI); +      LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV, +                                   LI->getName() + ".b", false, None, +                                   LI->getOrdering(), LI->getSyncScopeID(), LI); +      Instruction *NSI; +      if (IsOneZero) +        NSI = new ZExtInst(NLI, LI->getType(), "", LI); +      else +        NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); +      NSI->takeName(LI); +      // Since LI is split into two instructions, NLI and NSI both inherit the +      // same DebugLoc +      NLI->setDebugLoc(LI->getDebugLoc()); +      NSI->setDebugLoc(LI->getDebugLoc()); +      LI->replaceAllUsesWith(NSI); +    } +    UI->eraseFromParent(); +  } + +  // Retain the name of the old global variable. People who are debugging their +  // programs may expect these variables to be named the same. +  NewGV->takeName(GV); +  GV->eraseFromParent(); +  return true; +} + +static bool deleteIfDead( +    GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { +  GV.removeDeadConstantUsers(); + +  if (!GV.isDiscardableIfUnused() && !GV.isDeclaration()) +    return false; + +  if (const Comdat *C = GV.getComdat()) +    if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C)) +      return false; + +  bool Dead; +  if (auto *F = dyn_cast<Function>(&GV)) +    Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead(); +  else +    Dead = GV.use_empty(); +  if (!Dead) +    return false; + +  LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n"); +  GV.eraseFromParent(); +  ++NumDeleted; +  return true; +} + +static bool isPointerValueDeadOnEntryToFunction( +    const Function *F, GlobalValue *GV, +    function_ref<DominatorTree &(Function &)> LookupDomTree) { +  // Find all uses of GV. We expect them all to be in F, and if we can't +  // identify any of the uses we bail out. +  // +  // On each of these uses, identify if the memory that GV points to is +  // used/required/live at the start of the function. If it is not, for example +  // if the first thing the function does is store to the GV, the GV can +  // possibly be demoted. +  // +  // We don't do an exhaustive search for memory operations - simply look +  // through bitcasts as they're quite common and benign. +  const DataLayout &DL = GV->getParent()->getDataLayout(); +  SmallVector<LoadInst *, 4> Loads; +  SmallVector<StoreInst *, 4> Stores; +  for (auto *U : GV->users()) { +    if (Operator::getOpcode(U) == Instruction::BitCast) { +      for (auto *UU : U->users()) { +        if (auto *LI = dyn_cast<LoadInst>(UU)) +          Loads.push_back(LI); +        else if (auto *SI = dyn_cast<StoreInst>(UU)) +          Stores.push_back(SI); +        else +          return false; +      } +      continue; +    } + +    Instruction *I = dyn_cast<Instruction>(U); +    if (!I) +      return false; +    assert(I->getParent()->getParent() == F); + +    if (auto *LI = dyn_cast<LoadInst>(I)) +      Loads.push_back(LI); +    else if (auto *SI = dyn_cast<StoreInst>(I)) +      Stores.push_back(SI); +    else +      return false; +  } + +  // We have identified all uses of GV into loads and stores. Now check if all +  // of them are known not to depend on the value of the global at the function +  // entry point. We do this by ensuring that every load is dominated by at +  // least one store. +  auto &DT = LookupDomTree(*const_cast<Function *>(F)); + +  // The below check is quadratic. Check we're not going to do too many tests. +  // FIXME: Even though this will always have worst-case quadratic time, we +  // could put effort into minimizing the average time by putting stores that +  // have been shown to dominate at least one load at the beginning of the +  // Stores array, making subsequent dominance checks more likely to succeed +  // early. +  // +  // The threshold here is fairly large because global->local demotion is a +  // very powerful optimization should it fire. +  const unsigned Threshold = 100; +  if (Loads.size() * Stores.size() > Threshold) +    return false; + +  for (auto *L : Loads) { +    auto *LTy = L->getType(); +    if (none_of(Stores, [&](const StoreInst *S) { +          auto *STy = S->getValueOperand()->getType(); +          // The load is only dominated by the store if DomTree says so +          // and the number of bits loaded in L is less than or equal to +          // the number of bits stored in S. +          return DT.dominates(S, L) && +                 DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy); +        })) +      return false; +  } +  // All loads have known dependences inside F, so the global can be localized. +  return true; +} + +/// C may have non-instruction users. Can all of those users be turned into +/// instructions? +static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) { +  // We don't do this exhaustively. The most common pattern that we really need +  // to care about is a constant GEP or constant bitcast - so just looking +  // through one single ConstantExpr. +  // +  // The set of constants that this function returns true for must be able to be +  // handled by makeAllConstantUsesInstructions. +  for (auto *U : C->users()) { +    if (isa<Instruction>(U)) +      continue; +    if (!isa<ConstantExpr>(U)) +      // Non instruction, non-constantexpr user; cannot convert this. +      return false; +    for (auto *UU : U->users()) +      if (!isa<Instruction>(UU)) +        // A constantexpr used by another constant. We don't try and recurse any +        // further but just bail out at this point. +        return false; +  } + +  return true; +} + +/// C may have non-instruction users, and +/// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the +/// non-instruction users to instructions. +static void makeAllConstantUsesInstructions(Constant *C) { +  SmallVector<ConstantExpr*,4> Users; +  for (auto *U : C->users()) { +    if (isa<ConstantExpr>(U)) +      Users.push_back(cast<ConstantExpr>(U)); +    else +      // We should never get here; allNonInstructionUsersCanBeMadeInstructions +      // should not have returned true for C. +      assert( +          isa<Instruction>(U) && +          "Can't transform non-constantexpr non-instruction to instruction!"); +  } + +  SmallVector<Value*,4> UUsers; +  for (auto *U : Users) { +    UUsers.clear(); +    for (auto *UU : U->users()) +      UUsers.push_back(UU); +    for (auto *UU : UUsers) { +      Instruction *UI = cast<Instruction>(UU); +      Instruction *NewU = U->getAsInstruction(); +      NewU->insertBefore(UI); +      UI->replaceUsesOfWith(U, NewU); +    } +    // We've replaced all the uses, so destroy the constant. (destroyConstant +    // will update value handles and metadata.) +    U->destroyConstant(); +  } +} + +/// Analyze the specified global variable and optimize +/// it if possible.  If we make a change, return true. +static bool +processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS, +                      function_ref<TargetLibraryInfo &(Function &)> GetTLI, +                      function_ref<DominatorTree &(Function &)> LookupDomTree) { +  auto &DL = GV->getParent()->getDataLayout(); +  // If this is a first class global and has only one accessing function and +  // this function is non-recursive, we replace the global with a local alloca +  // in this function. +  // +  // NOTE: It doesn't make sense to promote non-single-value types since we +  // are just replacing static memory to stack memory. +  // +  // If the global is in different address space, don't bring it to stack. +  if (!GS.HasMultipleAccessingFunctions && +      GS.AccessingFunction && +      GV->getValueType()->isSingleValueType() && +      GV->getType()->getAddressSpace() == 0 && +      !GV->isExternallyInitialized() && +      allNonInstructionUsersCanBeMadeInstructions(GV) && +      GS.AccessingFunction->doesNotRecurse() && +      isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV, +                                          LookupDomTree)) { +    const DataLayout &DL = GV->getParent()->getDataLayout(); + +    LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n"); +    Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction +                                                   ->getEntryBlock().begin()); +    Type *ElemTy = GV->getValueType(); +    // FIXME: Pass Global's alignment when globals have alignment +    AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr, +                                        GV->getName(), &FirstI); +    if (!isa<UndefValue>(GV->getInitializer())) +      new StoreInst(GV->getInitializer(), Alloca, &FirstI); + +    makeAllConstantUsesInstructions(GV); + +    GV->replaceAllUsesWith(Alloca); +    GV->eraseFromParent(); +    ++NumLocalized; +    return true; +  } + +  // If the global is never loaded (but may be stored to), it is dead. +  // Delete it now. +  if (!GS.IsLoaded) { +    LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n"); + +    bool Changed; +    if (isLeakCheckerRoot(GV)) { +      // Delete any constant stores to the global. +      Changed = CleanupPointerRootUsers(GV, GetTLI); +    } else { +      // Delete any stores we can find to the global.  We may not be able to +      // make it completely dead though. +      Changed = +          CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI); +    } + +    // If the global is dead now, delete it. +    if (GV->use_empty()) { +      GV->eraseFromParent(); +      ++NumDeleted; +      Changed = true; +    } +    return Changed; + +  } +  if (GS.StoredType <= GlobalStatus::InitializerStored) { +    LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); + +    // Don't actually mark a global constant if it's atomic because atomic loads +    // are implemented by a trivial cmpxchg in some edge-cases and that usually +    // requires write access to the variable even if it's not actually changed. +    if (GS.Ordering == AtomicOrdering::NotAtomic) +      GV->setConstant(true); + +    // Clean up any obviously simplifiable users now. +    CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI); + +    // If the global is dead now, just nuke it. +    if (GV->use_empty()) { +      LLVM_DEBUG(dbgs() << "   *** Marking constant allowed us to simplify " +                        << "all users and delete global!\n"); +      GV->eraseFromParent(); +      ++NumDeleted; +      return true; +    } + +    // Fall through to the next check; see if we can optimize further. +    ++NumMarked; +  } +  if (!GV->getInitializer()->getType()->isSingleValueType()) { +    const DataLayout &DL = GV->getParent()->getDataLayout(); +    if (SRAGlobal(GV, DL)) +      return true; +  } +  if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) { +    // If the initial value for the global was an undef value, and if only +    // one other value was stored into it, we can just change the +    // initializer to be the stored value, then delete all stores to the +    // global.  This allows us to mark it constant. +    if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) +      if (isa<UndefValue>(GV->getInitializer())) { +        // Change the initial value here. +        GV->setInitializer(SOVConstant); + +        // Clean up any obviously simplifiable users now. +        CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI); + +        if (GV->use_empty()) { +          LLVM_DEBUG(dbgs() << "   *** Substituting initializer allowed us to " +                            << "simplify all users and delete global!\n"); +          GV->eraseFromParent(); +          ++NumDeleted; +        } +        ++NumSubstitute; +        return true; +      } + +    // Try to optimize globals based on the knowledge that only one value +    // (besides its initializer) is ever stored to the global. +    if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, +                                 GetTLI)) +      return true; + +    // Otherwise, if the global was not a boolean, we can shrink it to be a +    // boolean. +    if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) { +      if (GS.Ordering == AtomicOrdering::NotAtomic) { +        if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { +          ++NumShrunkToBool; +          return true; +        } +      } +    } +  } + +  return false; +} + +/// Analyze the specified global variable and optimize it if possible.  If we +/// make a change, return true. +static bool +processGlobal(GlobalValue &GV, +              function_ref<TargetLibraryInfo &(Function &)> GetTLI, +              function_ref<DominatorTree &(Function &)> LookupDomTree) { +  if (GV.getName().startswith("llvm.")) +    return false; + +  GlobalStatus GS; + +  if (GlobalStatus::analyzeGlobal(&GV, GS)) +    return false; + +  bool Changed = false; +  if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) { +    auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global +                                               : GlobalValue::UnnamedAddr::Local; +    if (NewUnnamedAddr != GV.getUnnamedAddr()) { +      GV.setUnnamedAddr(NewUnnamedAddr); +      NumUnnamed++; +      Changed = true; +    } +  } + +  // Do more involved optimizations if the global is internal. +  if (!GV.hasLocalLinkage()) +    return Changed; + +  auto *GVar = dyn_cast<GlobalVariable>(&GV); +  if (!GVar) +    return Changed; + +  if (GVar->isConstant() || !GVar->hasInitializer()) +    return Changed; + +  return processInternalGlobal(GVar, GS, GetTLI, LookupDomTree) || Changed; +} + +/// Walk all of the direct calls of the specified function, changing them to +/// FastCC. +static void ChangeCalleesToFastCall(Function *F) { +  for (User *U : F->users()) { +    if (isa<BlockAddress>(U)) +      continue; +    CallSite CS(cast<Instruction>(U)); +    CS.setCallingConv(CallingConv::Fast); +  } +} + +static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs, +                               Attribute::AttrKind A) { +  unsigned AttrIndex; +  if (Attrs.hasAttrSomewhere(A, &AttrIndex)) +    return Attrs.removeAttribute(C, AttrIndex, A); +  return Attrs; +} + +static void RemoveAttribute(Function *F, Attribute::AttrKind A) { +  F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A)); +  for (User *U : F->users()) { +    if (isa<BlockAddress>(U)) +      continue; +    CallSite CS(cast<Instruction>(U)); +    CS.setAttributes(StripAttr(F->getContext(), CS.getAttributes(), A)); +  } +} + +/// Return true if this is a calling convention that we'd like to change.  The +/// idea here is that we don't want to mess with the convention if the user +/// explicitly requested something with performance implications like coldcc, +/// GHC, or anyregcc. +static bool hasChangeableCC(Function *F) { +  CallingConv::ID CC = F->getCallingConv(); + +  // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? +  if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall) +    return false; + +  // FIXME: Change CC for the whole chain of musttail calls when possible. +  // +  // Can't change CC of the function that either has musttail calls, or is a +  // musttail callee itself +  for (User *U : F->users()) { +    if (isa<BlockAddress>(U)) +      continue; +    CallInst* CI = dyn_cast<CallInst>(U); +    if (!CI) +      continue; + +    if (CI->isMustTailCall()) +      return false; +  } + +  for (BasicBlock &BB : *F) +    if (BB.getTerminatingMustTailCall()) +      return false; + +  return true; +} + +/// Return true if the block containing the call site has a BlockFrequency of +/// less than ColdCCRelFreq% of the entry block. +static bool isColdCallSite(CallSite CS, BlockFrequencyInfo &CallerBFI) { +  const BranchProbability ColdProb(ColdCCRelFreq, 100); +  auto CallSiteBB = CS.getInstruction()->getParent(); +  auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB); +  auto CallerEntryFreq = +      CallerBFI.getBlockFreq(&(CS.getCaller()->getEntryBlock())); +  return CallSiteFreq < CallerEntryFreq * ColdProb; +} + +// This function checks if the input function F is cold at all call sites. It +// also looks each call site's containing function, returning false if the +// caller function contains other non cold calls. The input vector AllCallsCold +// contains a list of functions that only have call sites in cold blocks. +static bool +isValidCandidateForColdCC(Function &F, +                          function_ref<BlockFrequencyInfo &(Function &)> GetBFI, +                          const std::vector<Function *> &AllCallsCold) { + +  if (F.user_empty()) +    return false; + +  for (User *U : F.users()) { +    if (isa<BlockAddress>(U)) +      continue; + +    CallSite CS(cast<Instruction>(U)); +    Function *CallerFunc = CS.getInstruction()->getParent()->getParent(); +    BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc); +    if (!isColdCallSite(CS, CallerBFI)) +      return false; +    auto It = std::find(AllCallsCold.begin(), AllCallsCold.end(), CallerFunc); +    if (It == AllCallsCold.end()) +      return false; +  } +  return true; +} + +static void changeCallSitesToColdCC(Function *F) { +  for (User *U : F->users()) { +    if (isa<BlockAddress>(U)) +      continue; +    CallSite CS(cast<Instruction>(U)); +    CS.setCallingConv(CallingConv::Cold); +  } +} + +// This function iterates over all the call instructions in the input Function +// and checks that all call sites are in cold blocks and are allowed to use the +// coldcc calling convention. +static bool +hasOnlyColdCalls(Function &F, +                 function_ref<BlockFrequencyInfo &(Function &)> GetBFI) { +  for (BasicBlock &BB : F) { +    for (Instruction &I : BB) { +      if (CallInst *CI = dyn_cast<CallInst>(&I)) { +        CallSite CS(cast<Instruction>(CI)); +        // Skip over isline asm instructions since they aren't function calls. +        if (CI->isInlineAsm()) +          continue; +        Function *CalledFn = CI->getCalledFunction(); +        if (!CalledFn) +          return false; +        if (!CalledFn->hasLocalLinkage()) +          return false; +        // Skip over instrinsics since they won't remain as function calls. +        if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic) +          continue; +        // Check if it's valid to use coldcc calling convention. +        if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() || +            CalledFn->hasAddressTaken()) +          return false; +        BlockFrequencyInfo &CallerBFI = GetBFI(F); +        if (!isColdCallSite(CS, CallerBFI)) +          return false; +      } +    } +  } +  return true; +} + +static bool +OptimizeFunctions(Module &M, +                  function_ref<TargetLibraryInfo &(Function &)> GetTLI, +                  function_ref<TargetTransformInfo &(Function &)> GetTTI, +                  function_ref<BlockFrequencyInfo &(Function &)> GetBFI, +                  function_ref<DominatorTree &(Function &)> LookupDomTree, +                  SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { + +  bool Changed = false; + +  std::vector<Function *> AllCallsCold; +  for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) { +    Function *F = &*FI++; +    if (hasOnlyColdCalls(*F, GetBFI)) +      AllCallsCold.push_back(F); +  } + +  // Optimize functions. +  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { +    Function *F = &*FI++; + +    // Don't perform global opt pass on naked functions; we don't want fast +    // calling conventions for naked functions. +    if (F->hasFnAttribute(Attribute::Naked)) +      continue; + +    // Functions without names cannot be referenced outside this module. +    if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage()) +      F->setLinkage(GlobalValue::InternalLinkage); + +    if (deleteIfDead(*F, NotDiscardableComdats)) { +      Changed = true; +      continue; +    } + +    // LLVM's definition of dominance allows instructions that are cyclic +    // in unreachable blocks, e.g.: +    // %pat = select i1 %condition, @global, i16* %pat +    // because any instruction dominates an instruction in a block that's +    // not reachable from entry. +    // So, remove unreachable blocks from the function, because a) there's +    // no point in analyzing them and b) GlobalOpt should otherwise grow +    // some more complicated logic to break these cycles. +    if (!F->isDeclaration()) { +      auto &DT = LookupDomTree(*F); +      DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); +      Changed |= removeUnreachableBlocks(*F, &DTU); +    } + +    Changed |= processGlobal(*F, GetTLI, LookupDomTree); + +    if (!F->hasLocalLinkage()) +      continue; + +    // If we have an inalloca parameter that we can safely remove the +    // inalloca attribute from, do so. This unlocks optimizations that +    // wouldn't be safe in the presence of inalloca. +    // FIXME: We should also hoist alloca affected by this to the entry +    // block if possible. +    if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca) && +        !F->hasAddressTaken()) { +      RemoveAttribute(F, Attribute::InAlloca); +      Changed = true; +    } + +    if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) { +      NumInternalFunc++; +      TargetTransformInfo &TTI = GetTTI(*F); +      // Change the calling convention to coldcc if either stress testing is +      // enabled or the target would like to use coldcc on functions which are +      // cold at all call sites and the callers contain no other non coldcc +      // calls. +      if (EnableColdCCStressTest || +          (TTI.useColdCCForColdCall(*F) && +           isValidCandidateForColdCC(*F, GetBFI, AllCallsCold))) { +        F->setCallingConv(CallingConv::Cold); +        changeCallSitesToColdCC(F); +        Changed = true; +        NumColdCC++; +      } +    } + +    if (hasChangeableCC(F) && !F->isVarArg() && +        !F->hasAddressTaken()) { +      // If this function has a calling convention worth changing, is not a +      // varargs function, and is only called directly, promote it to use the +      // Fast calling convention. +      F->setCallingConv(CallingConv::Fast); +      ChangeCalleesToFastCall(F); +      ++NumFastCallFns; +      Changed = true; +    } + +    if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) && +        !F->hasAddressTaken()) { +      // The function is not used by a trampoline intrinsic, so it is safe +      // to remove the 'nest' attribute. +      RemoveAttribute(F, Attribute::Nest); +      ++NumNestRemoved; +      Changed = true; +    } +  } +  return Changed; +} + +static bool +OptimizeGlobalVars(Module &M, +                   function_ref<TargetLibraryInfo &(Function &)> GetTLI, +                   function_ref<DominatorTree &(Function &)> LookupDomTree, +                   SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { +  bool Changed = false; + +  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); +       GVI != E; ) { +    GlobalVariable *GV = &*GVI++; +    // Global variables without names cannot be referenced outside this module. +    if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage()) +      GV->setLinkage(GlobalValue::InternalLinkage); +    // Simplify the initializer. +    if (GV->hasInitializer()) +      if (auto *C = dyn_cast<Constant>(GV->getInitializer())) { +        auto &DL = M.getDataLayout(); +        // TLI is not used in the case of a Constant, so use default nullptr +        // for that optional parameter, since we don't have a Function to +        // provide GetTLI anyway. +        Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr); +        if (New && New != C) +          GV->setInitializer(New); +      } + +    if (deleteIfDead(*GV, NotDiscardableComdats)) { +      Changed = true; +      continue; +    } + +    Changed |= processGlobal(*GV, GetTLI, LookupDomTree); +  } +  return Changed; +} + +/// Evaluate a piece of a constantexpr store into a global initializer.  This +/// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the +/// GEP operands of Addr [0, OpNo) have been stepped into. +static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, +                                   ConstantExpr *Addr, unsigned OpNo) { +  // Base case of the recursion. +  if (OpNo == Addr->getNumOperands()) { +    assert(Val->getType() == Init->getType() && "Type mismatch!"); +    return Val; +  } + +  SmallVector<Constant*, 32> Elts; +  if (StructType *STy = dyn_cast<StructType>(Init->getType())) { +    // Break up the constant into its elements. +    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) +      Elts.push_back(Init->getAggregateElement(i)); + +    // Replace the element that we are supposed to. +    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); +    unsigned Idx = CU->getZExtValue(); +    assert(Idx < STy->getNumElements() && "Struct index out of range!"); +    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); + +    // Return the modified struct. +    return ConstantStruct::get(STy, Elts); +  } + +  ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); +  SequentialType *InitTy = cast<SequentialType>(Init->getType()); +  uint64_t NumElts = InitTy->getNumElements(); + +  // Break up the array into elements. +  for (uint64_t i = 0, e = NumElts; i != e; ++i) +    Elts.push_back(Init->getAggregateElement(i)); + +  assert(CI->getZExtValue() < NumElts); +  Elts[CI->getZExtValue()] = +    EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); + +  if (Init->getType()->isArrayTy()) +    return ConstantArray::get(cast<ArrayType>(InitTy), Elts); +  return ConstantVector::get(Elts); +} + +/// We have decided that Addr (which satisfies the predicate +/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen. +static void CommitValueTo(Constant *Val, Constant *Addr) { +  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { +    assert(GV->hasInitializer()); +    GV->setInitializer(Val); +    return; +  } + +  ConstantExpr *CE = cast<ConstantExpr>(Addr); +  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); +  GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); +} + +/// Given a map of address -> value, where addresses are expected to be some form +/// of either a global or a constant GEP, set the initializer for the address to +/// be the value. This performs mostly the same function as CommitValueTo() +/// and EvaluateStoreInto() but is optimized to be more efficient for the common +/// case where the set of addresses are GEPs sharing the same underlying global, +/// processing the GEPs in batches rather than individually. +/// +/// To give an example, consider the following C++ code adapted from the clang +/// regression tests: +/// struct S { +///  int n = 10; +///  int m = 2 * n; +///  S(int a) : n(a) {} +/// }; +/// +/// template<typename T> +/// struct U { +///  T *r = &q; +///  T q = 42; +///  U *p = this; +/// }; +/// +/// U<S> e; +/// +/// The global static constructor for 'e' will need to initialize 'r' and 'p' of +/// the outer struct, while also initializing the inner 'q' structs 'n' and 'm' +/// members. This batch algorithm will simply use general CommitValueTo() method +/// to handle the complex nested S struct initialization of 'q', before +/// processing the outermost members in a single batch. Using CommitValueTo() to +/// handle member in the outer struct is inefficient when the struct/array is +/// very large as we end up creating and destroy constant arrays for each +/// initialization. +/// For the above case, we expect the following IR to be generated: +/// +/// %struct.U = type { %struct.S*, %struct.S, %struct.U* } +/// %struct.S = type { i32, i32 } +/// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e, +///                                                  i64 0, i32 1), +///                         %struct.S { i32 42, i32 84 }, %struct.U* @e } +/// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex +/// constant expression, while the other two elements of @e are "simple". +static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) { +  SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs; +  SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs; +  SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs; +  SimpleCEs.reserve(Mem.size()); + +  for (const auto &I : Mem) { +    if (auto *GV = dyn_cast<GlobalVariable>(I.first)) { +      GVs.push_back(std::make_pair(GV, I.second)); +    } else { +      ConstantExpr *GEP = cast<ConstantExpr>(I.first); +      // We don't handle the deeply recursive case using the batch method. +      if (GEP->getNumOperands() > 3) +        ComplexCEs.push_back(std::make_pair(GEP, I.second)); +      else +        SimpleCEs.push_back(std::make_pair(GEP, I.second)); +    } +  } + +  // The algorithm below doesn't handle cases like nested structs, so use the +  // slower fully general method if we have to. +  for (auto ComplexCE : ComplexCEs) +    CommitValueTo(ComplexCE.second, ComplexCE.first); + +  for (auto GVPair : GVs) { +    assert(GVPair.first->hasInitializer()); +    GVPair.first->setInitializer(GVPair.second); +  } + +  if (SimpleCEs.empty()) +    return; + +  // We cache a single global's initializer elements in the case where the +  // subsequent address/val pair uses the same one. This avoids throwing away and +  // rebuilding the constant struct/vector/array just because one element is +  // modified at a time. +  SmallVector<Constant *, 32> Elts; +  Elts.reserve(SimpleCEs.size()); +  GlobalVariable *CurrentGV = nullptr; + +  auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) { +    Constant *Init = GV->getInitializer(); +    Type *Ty = Init->getType(); +    if (Update) { +      if (CurrentGV) { +        assert(CurrentGV && "Expected a GV to commit to!"); +        Type *CurrentInitTy = CurrentGV->getInitializer()->getType(); +        // We have a valid cache that needs to be committed. +        if (StructType *STy = dyn_cast<StructType>(CurrentInitTy)) +          CurrentGV->setInitializer(ConstantStruct::get(STy, Elts)); +        else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy)) +          CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts)); +        else +          CurrentGV->setInitializer(ConstantVector::get(Elts)); +      } +      if (CurrentGV == GV) +        return; +      // Need to clear and set up cache for new initializer. +      CurrentGV = GV; +      Elts.clear(); +      unsigned NumElts; +      if (auto *STy = dyn_cast<StructType>(Ty)) +        NumElts = STy->getNumElements(); +      else +        NumElts = cast<SequentialType>(Ty)->getNumElements(); +      for (unsigned i = 0, e = NumElts; i != e; ++i) +        Elts.push_back(Init->getAggregateElement(i)); +    } +  }; + +  for (auto CEPair : SimpleCEs) { +    ConstantExpr *GEP = CEPair.first; +    Constant *Val = CEPair.second; + +    GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0)); +    commitAndSetupCache(GV, GV != CurrentGV); +    ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2)); +    Elts[CI->getZExtValue()] = Val; +  } +  // The last initializer in the list needs to be committed, others +  // will be committed on a new initializer being processed. +  commitAndSetupCache(CurrentGV, true); +} + +/// Evaluate static constructors in the function, if we can.  Return true if we +/// can, false otherwise. +static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL, +                                      TargetLibraryInfo *TLI) { +  // Call the function. +  Evaluator Eval(DL, TLI); +  Constant *RetValDummy; +  bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, +                                           SmallVector<Constant*, 0>()); + +  if (EvalSuccess) { +    ++NumCtorsEvaluated; + +    // We succeeded at evaluation: commit the result. +    LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" +                      << F->getName() << "' to " +                      << Eval.getMutatedMemory().size() << " stores.\n"); +    BatchCommitValueTo(Eval.getMutatedMemory()); +    for (GlobalVariable *GV : Eval.getInvariants()) +      GV->setConstant(true); +  } + +  return EvalSuccess; +} + +static int compareNames(Constant *const *A, Constant *const *B) { +  Value *AStripped = (*A)->stripPointerCasts(); +  Value *BStripped = (*B)->stripPointerCasts(); +  return AStripped->getName().compare(BStripped->getName()); +} + +static void setUsedInitializer(GlobalVariable &V, +                               const SmallPtrSetImpl<GlobalValue *> &Init) { +  if (Init.empty()) { +    V.eraseFromParent(); +    return; +  } + +  // Type of pointer to the array of pointers. +  PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0); + +  SmallVector<Constant *, 8> UsedArray; +  for (GlobalValue *GV : Init) { +    Constant *Cast +      = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy); +    UsedArray.push_back(Cast); +  } +  // Sort to get deterministic order. +  array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); +  ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); + +  Module *M = V.getParent(); +  V.removeFromParent(); +  GlobalVariable *NV = +      new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage, +                         ConstantArray::get(ATy, UsedArray), ""); +  NV->takeName(&V); +  NV->setSection("llvm.metadata"); +  delete &V; +} + +namespace { + +/// An easy to access representation of llvm.used and llvm.compiler.used. +class LLVMUsed { +  SmallPtrSet<GlobalValue *, 8> Used; +  SmallPtrSet<GlobalValue *, 8> CompilerUsed; +  GlobalVariable *UsedV; +  GlobalVariable *CompilerUsedV; + +public: +  LLVMUsed(Module &M) { +    UsedV = collectUsedGlobalVariables(M, Used, false); +    CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true); +  } + +  using iterator = SmallPtrSet<GlobalValue *, 8>::iterator; +  using used_iterator_range = iterator_range<iterator>; + +  iterator usedBegin() { return Used.begin(); } +  iterator usedEnd() { return Used.end(); } + +  used_iterator_range used() { +    return used_iterator_range(usedBegin(), usedEnd()); +  } + +  iterator compilerUsedBegin() { return CompilerUsed.begin(); } +  iterator compilerUsedEnd() { return CompilerUsed.end(); } + +  used_iterator_range compilerUsed() { +    return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); +  } + +  bool usedCount(GlobalValue *GV) const { return Used.count(GV); } + +  bool compilerUsedCount(GlobalValue *GV) const { +    return CompilerUsed.count(GV); +  } + +  bool usedErase(GlobalValue *GV) { return Used.erase(GV); } +  bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } +  bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; } + +  bool compilerUsedInsert(GlobalValue *GV) { +    return CompilerUsed.insert(GV).second; +  } + +  void syncVariablesAndSets() { +    if (UsedV) +      setUsedInitializer(*UsedV, Used); +    if (CompilerUsedV) +      setUsedInitializer(*CompilerUsedV, CompilerUsed); +  } +}; + +} // end anonymous namespace + +static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { +  if (GA.use_empty()) // No use at all. +    return false; + +  assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && +         "We should have removed the duplicated " +         "element from llvm.compiler.used"); +  if (!GA.hasOneUse()) +    // Strictly more than one use. So at least one is not in llvm.used and +    // llvm.compiler.used. +    return true; + +  // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. +  return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); +} + +static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, +                                               const LLVMUsed &U) { +  unsigned N = 2; +  assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && +         "We should have removed the duplicated " +         "element from llvm.compiler.used"); +  if (U.usedCount(&V) || U.compilerUsedCount(&V)) +    ++N; +  return V.hasNUsesOrMore(N); +} + +static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { +  if (!GA.hasLocalLinkage()) +    return true; + +  return U.usedCount(&GA) || U.compilerUsedCount(&GA); +} + +static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, +                             bool &RenameTarget) { +  RenameTarget = false; +  bool Ret = false; +  if (hasUseOtherThanLLVMUsed(GA, U)) +    Ret = true; + +  // If the alias is externally visible, we may still be able to simplify it. +  if (!mayHaveOtherReferences(GA, U)) +    return Ret; + +  // If the aliasee has internal linkage, give it the name and linkage +  // of the alias, and delete the alias.  This turns: +  //   define internal ... @f(...) +  //   @a = alias ... @f +  // into: +  //   define ... @a(...) +  Constant *Aliasee = GA.getAliasee(); +  GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); +  if (!Target->hasLocalLinkage()) +    return Ret; + +  // Do not perform the transform if multiple aliases potentially target the +  // aliasee. This check also ensures that it is safe to replace the section +  // and other attributes of the aliasee with those of the alias. +  if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) +    return Ret; + +  RenameTarget = true; +  return true; +} + +static bool +OptimizeGlobalAliases(Module &M, +                      SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { +  bool Changed = false; +  LLVMUsed Used(M); + +  for (GlobalValue *GV : Used.used()) +    Used.compilerUsedErase(GV); + +  for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); +       I != E;) { +    GlobalAlias *J = &*I++; + +    // Aliases without names cannot be referenced outside this module. +    if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage()) +      J->setLinkage(GlobalValue::InternalLinkage); + +    if (deleteIfDead(*J, NotDiscardableComdats)) { +      Changed = true; +      continue; +    } + +    // If the alias can change at link time, nothing can be done - bail out. +    if (J->isInterposable()) +      continue; + +    Constant *Aliasee = J->getAliasee(); +    GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts()); +    // We can't trivially replace the alias with the aliasee if the aliasee is +    // non-trivial in some way. +    // TODO: Try to handle non-zero GEPs of local aliasees. +    if (!Target) +      continue; +    Target->removeDeadConstantUsers(); + +    // Make all users of the alias use the aliasee instead. +    bool RenameTarget; +    if (!hasUsesToReplace(*J, Used, RenameTarget)) +      continue; + +    J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType())); +    ++NumAliasesResolved; +    Changed = true; + +    if (RenameTarget) { +      // Give the aliasee the name, linkage and other attributes of the alias. +      Target->takeName(&*J); +      Target->setLinkage(J->getLinkage()); +      Target->setDSOLocal(J->isDSOLocal()); +      Target->setVisibility(J->getVisibility()); +      Target->setDLLStorageClass(J->getDLLStorageClass()); + +      if (Used.usedErase(&*J)) +        Used.usedInsert(Target); + +      if (Used.compilerUsedErase(&*J)) +        Used.compilerUsedInsert(Target); +    } else if (mayHaveOtherReferences(*J, Used)) +      continue; + +    // Delete the alias. +    M.getAliasList().erase(J); +    ++NumAliasesRemoved; +    Changed = true; +  } + +  Used.syncVariablesAndSets(); + +  return Changed; +} + +static Function * +FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { +  // Hack to get a default TLI before we have actual Function. +  auto FuncIter = M.begin(); +  if (FuncIter == M.end()) +    return nullptr; +  auto *TLI = &GetTLI(*FuncIter); + +  LibFunc F = LibFunc_cxa_atexit; +  if (!TLI->has(F)) +    return nullptr; + +  Function *Fn = M.getFunction(TLI->getName(F)); +  if (!Fn) +    return nullptr; + +  // Now get the actual TLI for Fn. +  TLI = &GetTLI(*Fn); + +  // Make sure that the function has the correct prototype. +  if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit) +    return nullptr; + +  return Fn; +} + +/// Returns whether the given function is an empty C++ destructor and can +/// therefore be eliminated. +/// Note that we assume that other optimization passes have already simplified +/// the code so we simply check for 'ret'. +static bool cxxDtorIsEmpty(const Function &Fn) { +  // FIXME: We could eliminate C++ destructors if they're readonly/readnone and +  // nounwind, but that doesn't seem worth doing. +  if (Fn.isDeclaration()) +    return false; + +  for (auto &I : Fn.getEntryBlock()) { +    if (isa<DbgInfoIntrinsic>(I)) +      continue; +    if (isa<ReturnInst>(I)) +      return true; +    break; +  } +  return false; +} + +static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { +  /// Itanium C++ ABI p3.3.5: +  /// +  ///   After constructing a global (or local static) object, that will require +  ///   destruction on exit, a termination function is registered as follows: +  /// +  ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); +  /// +  ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the +  ///   call f(p) when DSO d is unloaded, before all such termination calls +  ///   registered before this one. It returns zero if registration is +  ///   successful, nonzero on failure. + +  // This pass will look for calls to __cxa_atexit where the function is trivial +  // and remove them. +  bool Changed = false; + +  for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end(); +       I != E;) { +    // We're only interested in calls. Theoretically, we could handle invoke +    // instructions as well, but neither llvm-gcc nor clang generate invokes +    // to __cxa_atexit. +    CallInst *CI = dyn_cast<CallInst>(*I++); +    if (!CI) +      continue; + +    Function *DtorFn = +      dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); +    if (!DtorFn || !cxxDtorIsEmpty(*DtorFn)) +      continue; + +    // Just remove the call. +    CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); +    CI->eraseFromParent(); + +    ++NumCXXDtorsRemoved; + +    Changed |= true; +  } + +  return Changed; +} + +static bool optimizeGlobalsInModule( +    Module &M, const DataLayout &DL, +    function_ref<TargetLibraryInfo &(Function &)> GetTLI, +    function_ref<TargetTransformInfo &(Function &)> GetTTI, +    function_ref<BlockFrequencyInfo &(Function &)> GetBFI, +    function_ref<DominatorTree &(Function &)> LookupDomTree) { +  SmallPtrSet<const Comdat *, 8> NotDiscardableComdats; +  bool Changed = false; +  bool LocalChange = true; +  while (LocalChange) { +    LocalChange = false; + +    NotDiscardableComdats.clear(); +    for (const GlobalVariable &GV : M.globals()) +      if (const Comdat *C = GV.getComdat()) +        if (!GV.isDiscardableIfUnused() || !GV.use_empty()) +          NotDiscardableComdats.insert(C); +    for (Function &F : M) +      if (const Comdat *C = F.getComdat()) +        if (!F.isDefTriviallyDead()) +          NotDiscardableComdats.insert(C); +    for (GlobalAlias &GA : M.aliases()) +      if (const Comdat *C = GA.getComdat()) +        if (!GA.isDiscardableIfUnused() || !GA.use_empty()) +          NotDiscardableComdats.insert(C); + +    // Delete functions that are trivially dead, ccc -> fastcc +    LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree, +                                     NotDiscardableComdats); + +    // Optimize global_ctors list. +    LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) { +      return EvaluateStaticConstructor(F, DL, &GetTLI(*F)); +    }); + +    // Optimize non-address-taken globals. +    LocalChange |= +        OptimizeGlobalVars(M, GetTLI, LookupDomTree, NotDiscardableComdats); + +    // Resolve aliases, when possible. +    LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats); + +    // Try to remove trivial global destructors if they are not removed +    // already. +    Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI); +    if (CXAAtExitFn) +      LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); + +    Changed |= LocalChange; +  } + +  // TODO: Move all global ctors functions to the end of the module for code +  // layout. + +  return Changed; +} + +PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) { +    auto &DL = M.getDataLayout(); +    auto &FAM = +        AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); +    auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{ +      return FAM.getResult<DominatorTreeAnalysis>(F); +    }; +    auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { +      return FAM.getResult<TargetLibraryAnalysis>(F); +    }; +    auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & { +      return FAM.getResult<TargetIRAnalysis>(F); +    }; + +    auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & { +      return FAM.getResult<BlockFrequencyAnalysis>(F); +    }; + +    if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree)) +      return PreservedAnalyses::all(); +    return PreservedAnalyses::none(); +} + +namespace { + +struct GlobalOptLegacyPass : public ModulePass { +  static char ID; // Pass identification, replacement for typeid + +  GlobalOptLegacyPass() : ModulePass(ID) { +    initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry()); +  } + +  bool runOnModule(Module &M) override { +    if (skipModule(M)) +      return false; + +    auto &DL = M.getDataLayout(); +    auto LookupDomTree = [this](Function &F) -> DominatorTree & { +      return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); +    }; +    auto GetTLI = [this](Function &F) -> TargetLibraryInfo & { +      return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); +    }; +    auto GetTTI = [this](Function &F) -> TargetTransformInfo & { +      return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); +    }; + +    auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & { +      return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); +    }; + +    return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, +                                   LookupDomTree); +  } + +  void getAnalysisUsage(AnalysisUsage &AU) const override { +    AU.addRequired<TargetLibraryInfoWrapperPass>(); +    AU.addRequired<TargetTransformInfoWrapperPass>(); +    AU.addRequired<DominatorTreeWrapperPass>(); +    AU.addRequired<BlockFrequencyInfoWrapperPass>(); +  } +}; + +} // end anonymous namespace + +char GlobalOptLegacyPass::ID = 0; + +INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt", +                      "Global Variable Optimizer", false, false) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt", +                    "Global Variable Optimizer", false, false) + +ModulePass *llvm::createGlobalOptimizerPass() { +  return new GlobalOptLegacyPass(); +} | 
