summaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/IPO/HotColdSplitting.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/IPO/HotColdSplitting.cpp')
-rw-r--r--llvm/lib/Transforms/IPO/HotColdSplitting.cpp734
1 files changed, 734 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/IPO/HotColdSplitting.cpp b/llvm/lib/Transforms/IPO/HotColdSplitting.cpp
new file mode 100644
index 000000000000..cfdcc8db7f50
--- /dev/null
+++ b/llvm/lib/Transforms/IPO/HotColdSplitting.cpp
@@ -0,0 +1,734 @@
+//===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// The goal of hot/cold splitting is to improve the memory locality of code.
+/// The splitting pass does this by identifying cold blocks and moving them into
+/// separate functions.
+///
+/// When the splitting pass finds a cold block (referred to as "the sink"), it
+/// grows a maximal cold region around that block. The maximal region contains
+/// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as
+/// cold as the sink. Once a region is found, it's split out of the original
+/// function provided it's profitable to do so.
+///
+/// [*] In practice, there is some added complexity because some blocks are not
+/// safe to extract.
+///
+/// TODO: Use the PM to get domtrees, and preserve BFI/BPI.
+/// TODO: Reorder outlined functions.
+///
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/BlockFrequencyInfo.h"
+#include "llvm/Analysis/BranchProbabilityInfo.h"
+#include "llvm/Analysis/CFG.h"
+#include "llvm/Analysis/OptimizationRemarkEmitter.h"
+#include "llvm/Analysis/PostDominators.h"
+#include "llvm/Analysis/ProfileSummaryInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Use.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/BlockFrequency.h"
+#include "llvm/Support/BranchProbability.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/IPO.h"
+#include "llvm/Transforms/IPO/HotColdSplitting.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Transforms/Utils/CodeExtractor.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/ValueMapper.h"
+#include <algorithm>
+#include <cassert>
+
+#define DEBUG_TYPE "hotcoldsplit"
+
+STATISTIC(NumColdRegionsFound, "Number of cold regions found.");
+STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined.");
+
+using namespace llvm;
+
+static cl::opt<bool> EnableStaticAnalyis("hot-cold-static-analysis",
+ cl::init(true), cl::Hidden);
+
+static cl::opt<int>
+ SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden,
+ cl::desc("Base penalty for splitting cold code (as a "
+ "multiple of TCC_Basic)"));
+
+namespace {
+// Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify
+// this function unless you modify the MBB version as well.
+//
+/// A no successor, non-return block probably ends in unreachable and is cold.
+/// Also consider a block that ends in an indirect branch to be a return block,
+/// since many targets use plain indirect branches to return.
+bool blockEndsInUnreachable(const BasicBlock &BB) {
+ if (!succ_empty(&BB))
+ return false;
+ if (BB.empty())
+ return true;
+ const Instruction *I = BB.getTerminator();
+ return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I));
+}
+
+bool unlikelyExecuted(BasicBlock &BB) {
+ // Exception handling blocks are unlikely executed.
+ if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator()))
+ return true;
+
+ // The block is cold if it calls/invokes a cold function. However, do not
+ // mark sanitizer traps as cold.
+ for (Instruction &I : BB)
+ if (auto CS = CallSite(&I))
+ if (CS.hasFnAttr(Attribute::Cold) && !CS->getMetadata("nosanitize"))
+ return true;
+
+ // The block is cold if it has an unreachable terminator, unless it's
+ // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp).
+ if (blockEndsInUnreachable(BB)) {
+ if (auto *CI =
+ dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode()))
+ if (CI->hasFnAttr(Attribute::NoReturn))
+ return false;
+ return true;
+ }
+
+ return false;
+}
+
+/// Check whether it's safe to outline \p BB.
+static bool mayExtractBlock(const BasicBlock &BB) {
+ // EH pads are unsafe to outline because doing so breaks EH type tables. It
+ // follows that invoke instructions cannot be extracted, because CodeExtractor
+ // requires unwind destinations to be within the extraction region.
+ //
+ // Resumes that are not reachable from a cleanup landing pad are considered to
+ // be unreachable. It’s not safe to split them out either.
+ auto Term = BB.getTerminator();
+ return !BB.hasAddressTaken() && !BB.isEHPad() && !isa<InvokeInst>(Term) &&
+ !isa<ResumeInst>(Term);
+}
+
+/// Mark \p F cold. Based on this assumption, also optimize it for minimum size.
+/// If \p UpdateEntryCount is true (set when this is a new split function and
+/// module has profile data), set entry count to 0 to ensure treated as cold.
+/// Return true if the function is changed.
+static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) {
+ assert(!F.hasOptNone() && "Can't mark this cold");
+ bool Changed = false;
+ if (!F.hasFnAttribute(Attribute::Cold)) {
+ F.addFnAttr(Attribute::Cold);
+ Changed = true;
+ }
+ if (!F.hasFnAttribute(Attribute::MinSize)) {
+ F.addFnAttr(Attribute::MinSize);
+ Changed = true;
+ }
+ if (UpdateEntryCount) {
+ // Set the entry count to 0 to ensure it is placed in the unlikely text
+ // section when function sections are enabled.
+ F.setEntryCount(0);
+ Changed = true;
+ }
+
+ return Changed;
+}
+
+class HotColdSplittingLegacyPass : public ModulePass {
+public:
+ static char ID;
+ HotColdSplittingLegacyPass() : ModulePass(ID) {
+ initializeHotColdSplittingLegacyPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<BlockFrequencyInfoWrapperPass>();
+ AU.addRequired<ProfileSummaryInfoWrapperPass>();
+ AU.addRequired<TargetTransformInfoWrapperPass>();
+ AU.addUsedIfAvailable<AssumptionCacheTracker>();
+ }
+
+ bool runOnModule(Module &M) override;
+};
+
+} // end anonymous namespace
+
+/// Check whether \p F is inherently cold.
+bool HotColdSplitting::isFunctionCold(const Function &F) const {
+ if (F.hasFnAttribute(Attribute::Cold))
+ return true;
+
+ if (F.getCallingConv() == CallingConv::Cold)
+ return true;
+
+ if (PSI->isFunctionEntryCold(&F))
+ return true;
+
+ return false;
+}
+
+// Returns false if the function should not be considered for hot-cold split
+// optimization.
+bool HotColdSplitting::shouldOutlineFrom(const Function &F) const {
+ if (F.hasFnAttribute(Attribute::AlwaysInline))
+ return false;
+
+ if (F.hasFnAttribute(Attribute::NoInline))
+ return false;
+
+ if (F.hasFnAttribute(Attribute::SanitizeAddress) ||
+ F.hasFnAttribute(Attribute::SanitizeHWAddress) ||
+ F.hasFnAttribute(Attribute::SanitizeThread) ||
+ F.hasFnAttribute(Attribute::SanitizeMemory))
+ return false;
+
+ return true;
+}
+
+/// Get the benefit score of outlining \p Region.
+static int getOutliningBenefit(ArrayRef<BasicBlock *> Region,
+ TargetTransformInfo &TTI) {
+ // Sum up the code size costs of non-terminator instructions. Tight coupling
+ // with \ref getOutliningPenalty is needed to model the costs of terminators.
+ int Benefit = 0;
+ for (BasicBlock *BB : Region)
+ for (Instruction &I : BB->instructionsWithoutDebug())
+ if (&I != BB->getTerminator())
+ Benefit +=
+ TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize);
+
+ return Benefit;
+}
+
+/// Get the penalty score for outlining \p Region.
+static int getOutliningPenalty(ArrayRef<BasicBlock *> Region,
+ unsigned NumInputs, unsigned NumOutputs) {
+ int Penalty = SplittingThreshold;
+ LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n");
+
+ // If the splitting threshold is set at or below zero, skip the usual
+ // profitability check.
+ if (SplittingThreshold <= 0)
+ return Penalty;
+
+ // The typical code size cost for materializing an argument for the outlined
+ // call.
+ LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumInputs << " inputs\n");
+ const int CostForArgMaterialization = TargetTransformInfo::TCC_Basic;
+ Penalty += CostForArgMaterialization * NumInputs;
+
+ // The typical code size cost for an output alloca, its associated store, and
+ // its associated reload.
+ LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputs << " outputs\n");
+ const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic;
+ Penalty += CostForRegionOutput * NumOutputs;
+
+ // Find the number of distinct exit blocks for the region. Use a conservative
+ // check to determine whether control returns from the region.
+ bool NoBlocksReturn = true;
+ SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion;
+ for (BasicBlock *BB : Region) {
+ // If a block has no successors, only assume it does not return if it's
+ // unreachable.
+ if (succ_empty(BB)) {
+ NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator());
+ continue;
+ }
+
+ for (BasicBlock *SuccBB : successors(BB)) {
+ if (find(Region, SuccBB) == Region.end()) {
+ NoBlocksReturn = false;
+ SuccsOutsideRegion.insert(SuccBB);
+ }
+ }
+ }
+
+ // Apply a `noreturn` bonus.
+ if (NoBlocksReturn) {
+ LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size()
+ << " non-returning terminators\n");
+ Penalty -= Region.size();
+ }
+
+ // Apply a penalty for having more than one successor outside of the region.
+ // This penalty accounts for the switch needed in the caller.
+ if (!SuccsOutsideRegion.empty()) {
+ LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size()
+ << " non-region successors\n");
+ Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic;
+ }
+
+ return Penalty;
+}
+
+Function *HotColdSplitting::extractColdRegion(
+ const BlockSequence &Region, const CodeExtractorAnalysisCache &CEAC,
+ DominatorTree &DT, BlockFrequencyInfo *BFI, TargetTransformInfo &TTI,
+ OptimizationRemarkEmitter &ORE, AssumptionCache *AC, unsigned Count) {
+ assert(!Region.empty());
+
+ // TODO: Pass BFI and BPI to update profile information.
+ CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr,
+ /* BPI */ nullptr, AC, /* AllowVarArgs */ false,
+ /* AllowAlloca */ false,
+ /* Suffix */ "cold." + std::to_string(Count));
+
+ // Perform a simple cost/benefit analysis to decide whether or not to permit
+ // splitting.
+ SetVector<Value *> Inputs, Outputs, Sinks;
+ CE.findInputsOutputs(Inputs, Outputs, Sinks);
+ int OutliningBenefit = getOutliningBenefit(Region, TTI);
+ int OutliningPenalty =
+ getOutliningPenalty(Region, Inputs.size(), Outputs.size());
+ LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit
+ << ", penalty = " << OutliningPenalty << "\n");
+ if (OutliningBenefit <= OutliningPenalty)
+ return nullptr;
+
+ Function *OrigF = Region[0]->getParent();
+ if (Function *OutF = CE.extractCodeRegion(CEAC)) {
+ User *U = *OutF->user_begin();
+ CallInst *CI = cast<CallInst>(U);
+ CallSite CS(CI);
+ NumColdRegionsOutlined++;
+ if (TTI.useColdCCForColdCall(*OutF)) {
+ OutF->setCallingConv(CallingConv::Cold);
+ CS.setCallingConv(CallingConv::Cold);
+ }
+ CI->setIsNoInline();
+
+ markFunctionCold(*OutF, BFI != nullptr);
+
+ LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF);
+ ORE.emit([&]() {
+ return OptimizationRemark(DEBUG_TYPE, "HotColdSplit",
+ &*Region[0]->begin())
+ << ore::NV("Original", OrigF) << " split cold code into "
+ << ore::NV("Split", OutF);
+ });
+ return OutF;
+ }
+
+ ORE.emit([&]() {
+ return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
+ &*Region[0]->begin())
+ << "Failed to extract region at block "
+ << ore::NV("Block", Region.front());
+ });
+ return nullptr;
+}
+
+/// A pair of (basic block, score).
+using BlockTy = std::pair<BasicBlock *, unsigned>;
+
+namespace {
+/// A maximal outlining region. This contains all blocks post-dominated by a
+/// sink block, the sink block itself, and all blocks dominated by the sink.
+/// If sink-predecessors and sink-successors cannot be extracted in one region,
+/// the static constructor returns a list of suitable extraction regions.
+class OutliningRegion {
+ /// A list of (block, score) pairs. A block's score is non-zero iff it's a
+ /// viable sub-region entry point. Blocks with higher scores are better entry
+ /// points (i.e. they are more distant ancestors of the sink block).
+ SmallVector<BlockTy, 0> Blocks = {};
+
+ /// The suggested entry point into the region. If the region has multiple
+ /// entry points, all blocks within the region may not be reachable from this
+ /// entry point.
+ BasicBlock *SuggestedEntryPoint = nullptr;
+
+ /// Whether the entire function is cold.
+ bool EntireFunctionCold = false;
+
+ /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise.
+ static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) {
+ return mayExtractBlock(BB) ? Score : 0;
+ }
+
+ /// These scores should be lower than the score for predecessor blocks,
+ /// because regions starting at predecessor blocks are typically larger.
+ static constexpr unsigned ScoreForSuccBlock = 1;
+ static constexpr unsigned ScoreForSinkBlock = 1;
+
+ OutliningRegion(const OutliningRegion &) = delete;
+ OutliningRegion &operator=(const OutliningRegion &) = delete;
+
+public:
+ OutliningRegion() = default;
+ OutliningRegion(OutliningRegion &&) = default;
+ OutliningRegion &operator=(OutliningRegion &&) = default;
+
+ static std::vector<OutliningRegion> create(BasicBlock &SinkBB,
+ const DominatorTree &DT,
+ const PostDominatorTree &PDT) {
+ std::vector<OutliningRegion> Regions;
+ SmallPtrSet<BasicBlock *, 4> RegionBlocks;
+
+ Regions.emplace_back();
+ OutliningRegion *ColdRegion = &Regions.back();
+
+ auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) {
+ RegionBlocks.insert(BB);
+ ColdRegion->Blocks.emplace_back(BB, Score);
+ };
+
+ // The ancestor farthest-away from SinkBB, and also post-dominated by it.
+ unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock);
+ ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr;
+ unsigned BestScore = SinkScore;
+
+ // Visit SinkBB's ancestors using inverse DFS.
+ auto PredIt = ++idf_begin(&SinkBB);
+ auto PredEnd = idf_end(&SinkBB);
+ while (PredIt != PredEnd) {
+ BasicBlock &PredBB = **PredIt;
+ bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB);
+
+ // If the predecessor is cold and has no predecessors, the entire
+ // function must be cold.
+ if (SinkPostDom && pred_empty(&PredBB)) {
+ ColdRegion->EntireFunctionCold = true;
+ return Regions;
+ }
+
+ // If SinkBB does not post-dominate a predecessor, do not mark the
+ // predecessor (or any of its predecessors) cold.
+ if (!SinkPostDom || !mayExtractBlock(PredBB)) {
+ PredIt.skipChildren();
+ continue;
+ }
+
+ // Keep track of the post-dominated ancestor farthest away from the sink.
+ // The path length is always >= 2, ensuring that predecessor blocks are
+ // considered as entry points before the sink block.
+ unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength());
+ if (PredScore > BestScore) {
+ ColdRegion->SuggestedEntryPoint = &PredBB;
+ BestScore = PredScore;
+ }
+
+ addBlockToRegion(&PredBB, PredScore);
+ ++PredIt;
+ }
+
+ // If the sink can be added to the cold region, do so. It's considered as
+ // an entry point before any sink-successor blocks.
+ //
+ // Otherwise, split cold sink-successor blocks using a separate region.
+ // This satisfies the requirement that all extraction blocks other than the
+ // first have predecessors within the extraction region.
+ if (mayExtractBlock(SinkBB)) {
+ addBlockToRegion(&SinkBB, SinkScore);
+ } else {
+ Regions.emplace_back();
+ ColdRegion = &Regions.back();
+ BestScore = 0;
+ }
+
+ // Find all successors of SinkBB dominated by SinkBB using DFS.
+ auto SuccIt = ++df_begin(&SinkBB);
+ auto SuccEnd = df_end(&SinkBB);
+ while (SuccIt != SuccEnd) {
+ BasicBlock &SuccBB = **SuccIt;
+ bool SinkDom = DT.dominates(&SinkBB, &SuccBB);
+
+ // Don't allow the backwards & forwards DFSes to mark the same block.
+ bool DuplicateBlock = RegionBlocks.count(&SuccBB);
+
+ // If SinkBB does not dominate a successor, do not mark the successor (or
+ // any of its successors) cold.
+ if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) {
+ SuccIt.skipChildren();
+ continue;
+ }
+
+ unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock);
+ if (SuccScore > BestScore) {
+ ColdRegion->SuggestedEntryPoint = &SuccBB;
+ BestScore = SuccScore;
+ }
+
+ addBlockToRegion(&SuccBB, SuccScore);
+ ++SuccIt;
+ }
+
+ return Regions;
+ }
+
+ /// Whether this region has nothing to extract.
+ bool empty() const { return !SuggestedEntryPoint; }
+
+ /// The blocks in this region.
+ ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; }
+
+ /// Whether the entire function containing this region is cold.
+ bool isEntireFunctionCold() const { return EntireFunctionCold; }
+
+ /// Remove a sub-region from this region and return it as a block sequence.
+ BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) {
+ assert(!empty() && !isEntireFunctionCold() && "Nothing to extract");
+
+ // Remove blocks dominated by the suggested entry point from this region.
+ // During the removal, identify the next best entry point into the region.
+ // Ensure that the first extracted block is the suggested entry point.
+ BlockSequence SubRegion = {SuggestedEntryPoint};
+ BasicBlock *NextEntryPoint = nullptr;
+ unsigned NextScore = 0;
+ auto RegionEndIt = Blocks.end();
+ auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) {
+ BasicBlock *BB = Block.first;
+ unsigned Score = Block.second;
+ bool InSubRegion =
+ BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB);
+ if (!InSubRegion && Score > NextScore) {
+ NextEntryPoint = BB;
+ NextScore = Score;
+ }
+ if (InSubRegion && BB != SuggestedEntryPoint)
+ SubRegion.push_back(BB);
+ return InSubRegion;
+ });
+ Blocks.erase(RegionStartIt, RegionEndIt);
+
+ // Update the suggested entry point.
+ SuggestedEntryPoint = NextEntryPoint;
+
+ return SubRegion;
+ }
+};
+} // namespace
+
+bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) {
+ bool Changed = false;
+
+ // The set of cold blocks.
+ SmallPtrSet<BasicBlock *, 4> ColdBlocks;
+
+ // The worklist of non-intersecting regions left to outline.
+ SmallVector<OutliningRegion, 2> OutliningWorklist;
+
+ // Set up an RPO traversal. Experimentally, this performs better (outlines
+ // more) than a PO traversal, because we prevent region overlap by keeping
+ // the first region to contain a block.
+ ReversePostOrderTraversal<Function *> RPOT(&F);
+
+ // Calculate domtrees lazily. This reduces compile-time significantly.
+ std::unique_ptr<DominatorTree> DT;
+ std::unique_ptr<PostDominatorTree> PDT;
+
+ // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This
+ // reduces compile-time significantly. TODO: When we *do* use BFI, we should
+ // be able to salvage its domtrees instead of recomputing them.
+ BlockFrequencyInfo *BFI = nullptr;
+ if (HasProfileSummary)
+ BFI = GetBFI(F);
+
+ TargetTransformInfo &TTI = GetTTI(F);
+ OptimizationRemarkEmitter &ORE = (*GetORE)(F);
+ AssumptionCache *AC = LookupAC(F);
+
+ // Find all cold regions.
+ for (BasicBlock *BB : RPOT) {
+ // This block is already part of some outlining region.
+ if (ColdBlocks.count(BB))
+ continue;
+
+ bool Cold = (BFI && PSI->isColdBlock(BB, BFI)) ||
+ (EnableStaticAnalyis && unlikelyExecuted(*BB));
+ if (!Cold)
+ continue;
+
+ LLVM_DEBUG({
+ dbgs() << "Found a cold block:\n";
+ BB->dump();
+ });
+
+ if (!DT)
+ DT = std::make_unique<DominatorTree>(F);
+ if (!PDT)
+ PDT = std::make_unique<PostDominatorTree>(F);
+
+ auto Regions = OutliningRegion::create(*BB, *DT, *PDT);
+ for (OutliningRegion &Region : Regions) {
+ if (Region.empty())
+ continue;
+
+ if (Region.isEntireFunctionCold()) {
+ LLVM_DEBUG(dbgs() << "Entire function is cold\n");
+ return markFunctionCold(F);
+ }
+
+ // If this outlining region intersects with another, drop the new region.
+ //
+ // TODO: It's theoretically possible to outline more by only keeping the
+ // largest region which contains a block, but the extra bookkeeping to do
+ // this is tricky/expensive.
+ bool RegionsOverlap = any_of(Region.blocks(), [&](const BlockTy &Block) {
+ return !ColdBlocks.insert(Block.first).second;
+ });
+ if (RegionsOverlap)
+ continue;
+
+ OutliningWorklist.emplace_back(std::move(Region));
+ ++NumColdRegionsFound;
+ }
+ }
+
+ if (OutliningWorklist.empty())
+ return Changed;
+
+ // Outline single-entry cold regions, splitting up larger regions as needed.
+ unsigned OutlinedFunctionID = 1;
+ // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time.
+ CodeExtractorAnalysisCache CEAC(F);
+ do {
+ OutliningRegion Region = OutliningWorklist.pop_back_val();
+ assert(!Region.empty() && "Empty outlining region in worklist");
+ do {
+ BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT);
+ LLVM_DEBUG({
+ dbgs() << "Hot/cold splitting attempting to outline these blocks:\n";
+ for (BasicBlock *BB : SubRegion)
+ BB->dump();
+ });
+
+ Function *Outlined = extractColdRegion(SubRegion, CEAC, *DT, BFI, TTI,
+ ORE, AC, OutlinedFunctionID);
+ if (Outlined) {
+ ++OutlinedFunctionID;
+ Changed = true;
+ }
+ } while (!Region.empty());
+ } while (!OutliningWorklist.empty());
+
+ return Changed;
+}
+
+bool HotColdSplitting::run(Module &M) {
+ bool Changed = false;
+ bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr);
+ for (auto It = M.begin(), End = M.end(); It != End; ++It) {
+ Function &F = *It;
+
+ // Do not touch declarations.
+ if (F.isDeclaration())
+ continue;
+
+ // Do not modify `optnone` functions.
+ if (F.hasOptNone())
+ continue;
+
+ // Detect inherently cold functions and mark them as such.
+ if (isFunctionCold(F)) {
+ Changed |= markFunctionCold(F);
+ continue;
+ }
+
+ if (!shouldOutlineFrom(F)) {
+ LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n");
+ continue;
+ }
+
+ LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n");
+ Changed |= outlineColdRegions(F, HasProfileSummary);
+ }
+ return Changed;
+}
+
+bool HotColdSplittingLegacyPass::runOnModule(Module &M) {
+ if (skipModule(M))
+ return false;
+ ProfileSummaryInfo *PSI =
+ &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
+ auto GTTI = [this](Function &F) -> TargetTransformInfo & {
+ return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
+ };
+ auto GBFI = [this](Function &F) {
+ return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
+ };
+ std::unique_ptr<OptimizationRemarkEmitter> ORE;
+ std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
+ [&ORE](Function &F) -> OptimizationRemarkEmitter & {
+ ORE.reset(new OptimizationRemarkEmitter(&F));
+ return *ORE.get();
+ };
+ auto LookupAC = [this](Function &F) -> AssumptionCache * {
+ if (auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>())
+ return ACT->lookupAssumptionCache(F);
+ return nullptr;
+ };
+
+ return HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M);
+}
+
+PreservedAnalyses
+HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) {
+ auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
+
+ auto LookupAC = [&FAM](Function &F) -> AssumptionCache * {
+ return FAM.getCachedResult<AssumptionAnalysis>(F);
+ };
+
+ auto GBFI = [&FAM](Function &F) {
+ return &FAM.getResult<BlockFrequencyAnalysis>(F);
+ };
+
+ std::function<TargetTransformInfo &(Function &)> GTTI =
+ [&FAM](Function &F) -> TargetTransformInfo & {
+ return FAM.getResult<TargetIRAnalysis>(F);
+ };
+
+ std::unique_ptr<OptimizationRemarkEmitter> ORE;
+ std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
+ [&ORE](Function &F) -> OptimizationRemarkEmitter & {
+ ORE.reset(new OptimizationRemarkEmitter(&F));
+ return *ORE.get();
+ };
+
+ ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
+
+ if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M))
+ return PreservedAnalyses::none();
+ return PreservedAnalyses::all();
+}
+
+char HotColdSplittingLegacyPass::ID = 0;
+INITIALIZE_PASS_BEGIN(HotColdSplittingLegacyPass, "hotcoldsplit",
+ "Hot Cold Splitting", false, false)
+INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
+INITIALIZE_PASS_END(HotColdSplittingLegacyPass, "hotcoldsplit",
+ "Hot Cold Splitting", false, false)
+
+ModulePass *llvm::createHotColdSplittingPass() {
+ return new HotColdSplittingLegacyPass();
+}