diff options
Diffstat (limited to 'llvm/lib/Transforms/IPO/Inliner.cpp')
| -rw-r--r-- | llvm/lib/Transforms/IPO/Inliner.cpp | 1239 | 
1 files changed, 1239 insertions, 0 deletions
| diff --git a/llvm/lib/Transforms/IPO/Inliner.cpp b/llvm/lib/Transforms/IPO/Inliner.cpp new file mode 100644 index 000000000000..4b72261131c1 --- /dev/null +++ b/llvm/lib/Transforms/IPO/Inliner.cpp @@ -0,0 +1,1239 @@ +//===- Inliner.cpp - Code common to all inliners --------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the mechanics required to implement inlining without +// missing any calls and updating the call graph.  The decisions of which calls +// are profitable to inline are implemented elsewhere. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/IPO/Inliner.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/BasicAliasAnalysis.h" +#include "llvm/Analysis/BlockFrequencyInfo.h" +#include "llvm/Analysis/CGSCCPassManager.h" +#include "llvm/Analysis/CallGraph.h" +#include "llvm/Analysis/InlineCost.h" +#include "llvm/Analysis/LazyCallGraph.h" +#include "llvm/Analysis/OptimizationRemarkEmitter.h" +#include "llvm/Analysis/ProfileSummaryInfo.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/DiagnosticInfo.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/InstIterator.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/PassManager.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Utils/Cloning.h" +#include "llvm/Transforms/Utils/ImportedFunctionsInliningStatistics.h" +#include "llvm/Transforms/Utils/ModuleUtils.h" +#include <algorithm> +#include <cassert> +#include <functional> +#include <sstream> +#include <tuple> +#include <utility> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "inline" + +STATISTIC(NumInlined, "Number of functions inlined"); +STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined"); +STATISTIC(NumDeleted, "Number of functions deleted because all callers found"); +STATISTIC(NumMergedAllocas, "Number of allocas merged together"); + +// This weirdly named statistic tracks the number of times that, when attempting +// to inline a function A into B, we analyze the callers of B in order to see +// if those would be more profitable and blocked inline steps. +STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed"); + +/// Flag to disable manual alloca merging. +/// +/// Merging of allocas was originally done as a stack-size saving technique +/// prior to LLVM's code generator having support for stack coloring based on +/// lifetime markers. It is now in the process of being removed. To experiment +/// with disabling it and relying fully on lifetime marker based stack +/// coloring, you can pass this flag to LLVM. +static cl::opt<bool> +    DisableInlinedAllocaMerging("disable-inlined-alloca-merging", +                                cl::init(false), cl::Hidden); + +namespace { + +enum class InlinerFunctionImportStatsOpts { +  No = 0, +  Basic = 1, +  Verbose = 2, +}; + +} // end anonymous namespace + +static cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats( +    "inliner-function-import-stats", +    cl::init(InlinerFunctionImportStatsOpts::No), +    cl::values(clEnumValN(InlinerFunctionImportStatsOpts::Basic, "basic", +                          "basic statistics"), +               clEnumValN(InlinerFunctionImportStatsOpts::Verbose, "verbose", +                          "printing of statistics for each inlined function")), +    cl::Hidden, cl::desc("Enable inliner stats for imported functions")); + +/// Flag to add inline messages as callsite attributes 'inline-remark'. +static cl::opt<bool> +    InlineRemarkAttribute("inline-remark-attribute", cl::init(false), +                          cl::Hidden, +                          cl::desc("Enable adding inline-remark attribute to" +                                   " callsites processed by inliner but decided" +                                   " to be not inlined")); + +LegacyInlinerBase::LegacyInlinerBase(char &ID) : CallGraphSCCPass(ID) {} + +LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime) +    : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {} + +/// For this class, we declare that we require and preserve the call graph. +/// If the derived class implements this method, it should +/// always explicitly call the implementation here. +void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const { +  AU.addRequired<AssumptionCacheTracker>(); +  AU.addRequired<ProfileSummaryInfoWrapperPass>(); +  AU.addRequired<TargetLibraryInfoWrapperPass>(); +  getAAResultsAnalysisUsage(AU); +  CallGraphSCCPass::getAnalysisUsage(AU); +} + +using InlinedArrayAllocasTy = DenseMap<ArrayType *, std::vector<AllocaInst *>>; + +/// Look at all of the allocas that we inlined through this call site.  If we +/// have already inlined other allocas through other calls into this function, +/// then we know that they have disjoint lifetimes and that we can merge them. +/// +/// There are many heuristics possible for merging these allocas, and the +/// different options have different tradeoffs.  One thing that we *really* +/// don't want to hurt is SRoA: once inlining happens, often allocas are no +/// longer address taken and so they can be promoted. +/// +/// Our "solution" for that is to only merge allocas whose outermost type is an +/// array type.  These are usually not promoted because someone is using a +/// variable index into them.  These are also often the most important ones to +/// merge. +/// +/// A better solution would be to have real memory lifetime markers in the IR +/// and not have the inliner do any merging of allocas at all.  This would +/// allow the backend to do proper stack slot coloring of all allocas that +/// *actually make it to the backend*, which is really what we want. +/// +/// Because we don't have this information, we do this simple and useful hack. +static void mergeInlinedArrayAllocas( +    Function *Caller, InlineFunctionInfo &IFI, +    InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory) { +  SmallPtrSet<AllocaInst *, 16> UsedAllocas; + +  // When processing our SCC, check to see if CS was inlined from some other +  // call site.  For example, if we're processing "A" in this code: +  //   A() { B() } +  //   B() { x = alloca ... C() } +  //   C() { y = alloca ... } +  // Assume that C was not inlined into B initially, and so we're processing A +  // and decide to inline B into A.  Doing this makes an alloca available for +  // reuse and makes a callsite (C) available for inlining.  When we process +  // the C call site we don't want to do any alloca merging between X and Y +  // because their scopes are not disjoint.  We could make this smarter by +  // keeping track of the inline history for each alloca in the +  // InlinedArrayAllocas but this isn't likely to be a significant win. +  if (InlineHistory != -1) // Only do merging for top-level call sites in SCC. +    return; + +  // Loop over all the allocas we have so far and see if they can be merged with +  // a previously inlined alloca.  If not, remember that we had it. +  for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size(); AllocaNo != e; +       ++AllocaNo) { +    AllocaInst *AI = IFI.StaticAllocas[AllocaNo]; + +    // Don't bother trying to merge array allocations (they will usually be +    // canonicalized to be an allocation *of* an array), or allocations whose +    // type is not itself an array (because we're afraid of pessimizing SRoA). +    ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType()); +    if (!ATy || AI->isArrayAllocation()) +      continue; + +    // Get the list of all available allocas for this array type. +    std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy]; + +    // Loop over the allocas in AllocasForType to see if we can reuse one.  Note +    // that we have to be careful not to reuse the same "available" alloca for +    // multiple different allocas that we just inlined, we use the 'UsedAllocas' +    // set to keep track of which "available" allocas are being used by this +    // function.  Also, AllocasForType can be empty of course! +    bool MergedAwayAlloca = false; +    for (AllocaInst *AvailableAlloca : AllocasForType) { +      unsigned Align1 = AI->getAlignment(), +               Align2 = AvailableAlloca->getAlignment(); + +      // The available alloca has to be in the right function, not in some other +      // function in this SCC. +      if (AvailableAlloca->getParent() != AI->getParent()) +        continue; + +      // If the inlined function already uses this alloca then we can't reuse +      // it. +      if (!UsedAllocas.insert(AvailableAlloca).second) +        continue; + +      // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare +      // success! +      LLVM_DEBUG(dbgs() << "    ***MERGED ALLOCA: " << *AI +                        << "\n\t\tINTO: " << *AvailableAlloca << '\n'); + +      // Move affected dbg.declare calls immediately after the new alloca to +      // avoid the situation when a dbg.declare precedes its alloca. +      if (auto *L = LocalAsMetadata::getIfExists(AI)) +        if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) +          for (User *U : MDV->users()) +            if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) +              DDI->moveBefore(AvailableAlloca->getNextNode()); + +      AI->replaceAllUsesWith(AvailableAlloca); + +      if (Align1 != Align2) { +        if (!Align1 || !Align2) { +          const DataLayout &DL = Caller->getParent()->getDataLayout(); +          unsigned TypeAlign = DL.getABITypeAlignment(AI->getAllocatedType()); + +          Align1 = Align1 ? Align1 : TypeAlign; +          Align2 = Align2 ? Align2 : TypeAlign; +        } + +        if (Align1 > Align2) +          AvailableAlloca->setAlignment(MaybeAlign(AI->getAlignment())); +      } + +      AI->eraseFromParent(); +      MergedAwayAlloca = true; +      ++NumMergedAllocas; +      IFI.StaticAllocas[AllocaNo] = nullptr; +      break; +    } + +    // If we already nuked the alloca, we're done with it. +    if (MergedAwayAlloca) +      continue; + +    // If we were unable to merge away the alloca either because there are no +    // allocas of the right type available or because we reused them all +    // already, remember that this alloca came from an inlined function and mark +    // it used so we don't reuse it for other allocas from this inline +    // operation. +    AllocasForType.push_back(AI); +    UsedAllocas.insert(AI); +  } +} + +/// If it is possible to inline the specified call site, +/// do so and update the CallGraph for this operation. +/// +/// This function also does some basic book-keeping to update the IR.  The +/// InlinedArrayAllocas map keeps track of any allocas that are already +/// available from other functions inlined into the caller.  If we are able to +/// inline this call site we attempt to reuse already available allocas or add +/// any new allocas to the set if not possible. +static InlineResult InlineCallIfPossible( +    CallSite CS, InlineFunctionInfo &IFI, +    InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory, +    bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter, +    ImportedFunctionsInliningStatistics &ImportedFunctionsStats) { +  Function *Callee = CS.getCalledFunction(); +  Function *Caller = CS.getCaller(); + +  AAResults &AAR = AARGetter(*Callee); + +  // Try to inline the function.  Get the list of static allocas that were +  // inlined. +  InlineResult IR = InlineFunction(CS, IFI, &AAR, InsertLifetime); +  if (!IR) +    return IR; + +  if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) +    ImportedFunctionsStats.recordInline(*Caller, *Callee); + +  AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee); + +  if (!DisableInlinedAllocaMerging) +    mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory); + +  return IR; // success +} + +/// Return true if inlining of CS can block the caller from being +/// inlined which is proved to be more beneficial. \p IC is the +/// estimated inline cost associated with callsite \p CS. +/// \p TotalSecondaryCost will be set to the estimated cost of inlining the +/// caller if \p CS is suppressed for inlining. +static bool +shouldBeDeferred(Function *Caller, CallSite CS, InlineCost IC, +                 int &TotalSecondaryCost, +                 function_ref<InlineCost(CallSite CS)> GetInlineCost) { +  // For now we only handle local or inline functions. +  if (!Caller->hasLocalLinkage() && !Caller->hasLinkOnceODRLinkage()) +    return false; +  // If the cost of inlining CS is non-positive, it is not going to prevent the +  // caller from being inlined into its callers and hence we don't need to +  // defer. +  if (IC.getCost() <= 0) +    return false; +  // Try to detect the case where the current inlining candidate caller (call +  // it B) is a static or linkonce-ODR function and is an inlining candidate +  // elsewhere, and the current candidate callee (call it C) is large enough +  // that inlining it into B would make B too big to inline later. In these +  // circumstances it may be best not to inline C into B, but to inline B into +  // its callers. +  // +  // This only applies to static and linkonce-ODR functions because those are +  // expected to be available for inlining in the translation units where they +  // are used. Thus we will always have the opportunity to make local inlining +  // decisions. Importantly the linkonce-ODR linkage covers inline functions +  // and templates in C++. +  // +  // FIXME: All of this logic should be sunk into getInlineCost. It relies on +  // the internal implementation of the inline cost metrics rather than +  // treating them as truly abstract units etc. +  TotalSecondaryCost = 0; +  // The candidate cost to be imposed upon the current function. +  int CandidateCost = IC.getCost() - 1; +  // If the caller has local linkage and can be inlined to all its callers, we +  // can apply a huge negative bonus to TotalSecondaryCost. +  bool ApplyLastCallBonus = Caller->hasLocalLinkage() && !Caller->hasOneUse(); +  // This bool tracks what happens if we DO inline C into B. +  bool inliningPreventsSomeOuterInline = false; +  for (User *U : Caller->users()) { +    // If the caller will not be removed (either because it does not have a +    // local linkage or because the LastCallToStaticBonus has been already +    // applied), then we can exit the loop early. +    if (!ApplyLastCallBonus && TotalSecondaryCost >= IC.getCost()) +      return false; +    CallSite CS2(U); + +    // If this isn't a call to Caller (it could be some other sort +    // of reference) skip it.  Such references will prevent the caller +    // from being removed. +    if (!CS2 || CS2.getCalledFunction() != Caller) { +      ApplyLastCallBonus = false; +      continue; +    } + +    InlineCost IC2 = GetInlineCost(CS2); +    ++NumCallerCallersAnalyzed; +    if (!IC2) { +      ApplyLastCallBonus = false; +      continue; +    } +    if (IC2.isAlways()) +      continue; + +    // See if inlining of the original callsite would erase the cost delta of +    // this callsite. We subtract off the penalty for the call instruction, +    // which we would be deleting. +    if (IC2.getCostDelta() <= CandidateCost) { +      inliningPreventsSomeOuterInline = true; +      TotalSecondaryCost += IC2.getCost(); +    } +  } +  // If all outer calls to Caller would get inlined, the cost for the last +  // one is set very low by getInlineCost, in anticipation that Caller will +  // be removed entirely.  We did not account for this above unless there +  // is only one caller of Caller. +  if (ApplyLastCallBonus) +    TotalSecondaryCost -= InlineConstants::LastCallToStaticBonus; + +  if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) +    return true; + +  return false; +} + +static std::basic_ostream<char> &operator<<(std::basic_ostream<char> &R, +                                            const ore::NV &Arg) { +  return R << Arg.Val; +} + +template <class RemarkT> +RemarkT &operator<<(RemarkT &&R, const InlineCost &IC) { +  using namespace ore; +  if (IC.isAlways()) { +    R << "(cost=always)"; +  } else if (IC.isNever()) { +    R << "(cost=never)"; +  } else { +    R << "(cost=" << ore::NV("Cost", IC.getCost()) +      << ", threshold=" << ore::NV("Threshold", IC.getThreshold()) << ")"; +  } +  if (const char *Reason = IC.getReason()) +    R << ": " << ore::NV("Reason", Reason); +  return R; +} + +static std::string inlineCostStr(const InlineCost &IC) { +  std::stringstream Remark; +  Remark << IC; +  return Remark.str(); +} + +/// Return the cost only if the inliner should attempt to inline at the given +/// CallSite. If we return the cost, we will emit an optimisation remark later +/// using that cost, so we won't do so from this function. +static Optional<InlineCost> +shouldInline(CallSite CS, function_ref<InlineCost(CallSite CS)> GetInlineCost, +             OptimizationRemarkEmitter &ORE) { +  using namespace ore; + +  InlineCost IC = GetInlineCost(CS); +  Instruction *Call = CS.getInstruction(); +  Function *Callee = CS.getCalledFunction(); +  Function *Caller = CS.getCaller(); + +  if (IC.isAlways()) { +    LLVM_DEBUG(dbgs() << "    Inlining " << inlineCostStr(IC) +                      << ", Call: " << *CS.getInstruction() << "\n"); +    return IC; +  } + +  if (IC.isNever()) { +    LLVM_DEBUG(dbgs() << "    NOT Inlining " << inlineCostStr(IC) +                      << ", Call: " << *CS.getInstruction() << "\n"); +    ORE.emit([&]() { +      return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", Call) +             << NV("Callee", Callee) << " not inlined into " +             << NV("Caller", Caller) << " because it should never be inlined " +             << IC; +    }); +    return IC; +  } + +  if (!IC) { +    LLVM_DEBUG(dbgs() << "    NOT Inlining " << inlineCostStr(IC) +                      << ", Call: " << *CS.getInstruction() << "\n"); +    ORE.emit([&]() { +      return OptimizationRemarkMissed(DEBUG_TYPE, "TooCostly", Call) +             << NV("Callee", Callee) << " not inlined into " +             << NV("Caller", Caller) << " because too costly to inline " << IC; +    }); +    return IC; +  } + +  int TotalSecondaryCost = 0; +  if (shouldBeDeferred(Caller, CS, IC, TotalSecondaryCost, GetInlineCost)) { +    LLVM_DEBUG(dbgs() << "    NOT Inlining: " << *CS.getInstruction() +                      << " Cost = " << IC.getCost() +                      << ", outer Cost = " << TotalSecondaryCost << '\n'); +    ORE.emit([&]() { +      return OptimizationRemarkMissed(DEBUG_TYPE, "IncreaseCostInOtherContexts", +                                      Call) +             << "Not inlining. Cost of inlining " << NV("Callee", Callee) +             << " increases the cost of inlining " << NV("Caller", Caller) +             << " in other contexts"; +    }); + +    // IC does not bool() to false, so get an InlineCost that will. +    // This will not be inspected to make an error message. +    return None; +  } + +  LLVM_DEBUG(dbgs() << "    Inlining " << inlineCostStr(IC) +                    << ", Call: " << *CS.getInstruction() << '\n'); +  return IC; +} + +/// Return true if the specified inline history ID +/// indicates an inline history that includes the specified function. +static bool InlineHistoryIncludes( +    Function *F, int InlineHistoryID, +    const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) { +  while (InlineHistoryID != -1) { +    assert(unsigned(InlineHistoryID) < InlineHistory.size() && +           "Invalid inline history ID"); +    if (InlineHistory[InlineHistoryID].first == F) +      return true; +    InlineHistoryID = InlineHistory[InlineHistoryID].second; +  } +  return false; +} + +bool LegacyInlinerBase::doInitialization(CallGraph &CG) { +  if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) +    ImportedFunctionsStats.setModuleInfo(CG.getModule()); +  return false; // No changes to CallGraph. +} + +bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) { +  if (skipSCC(SCC)) +    return false; +  return inlineCalls(SCC); +} + +static void emit_inlined_into(OptimizationRemarkEmitter &ORE, DebugLoc &DLoc, +                              const BasicBlock *Block, const Function &Callee, +                              const Function &Caller, const InlineCost &IC) { +  ORE.emit([&]() { +    bool AlwaysInline = IC.isAlways(); +    StringRef RemarkName = AlwaysInline ? "AlwaysInline" : "Inlined"; +    return OptimizationRemark(DEBUG_TYPE, RemarkName, DLoc, Block) +           << ore::NV("Callee", &Callee) << " inlined into " +           << ore::NV("Caller", &Caller) << " with " << IC; +  }); +} + +static void setInlineRemark(CallSite &CS, StringRef message) { +  if (!InlineRemarkAttribute) +    return; + +  Attribute attr = Attribute::get(CS->getContext(), "inline-remark", message); +  CS.addAttribute(AttributeList::FunctionIndex, attr); +} + +static bool +inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG, +                std::function<AssumptionCache &(Function &)> GetAssumptionCache, +                ProfileSummaryInfo *PSI, +                std::function<TargetLibraryInfo &(Function &)> GetTLI, +                bool InsertLifetime, +                function_ref<InlineCost(CallSite CS)> GetInlineCost, +                function_ref<AAResults &(Function &)> AARGetter, +                ImportedFunctionsInliningStatistics &ImportedFunctionsStats) { +  SmallPtrSet<Function *, 8> SCCFunctions; +  LLVM_DEBUG(dbgs() << "Inliner visiting SCC:"); +  for (CallGraphNode *Node : SCC) { +    Function *F = Node->getFunction(); +    if (F) +      SCCFunctions.insert(F); +    LLVM_DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE")); +  } + +  // Scan through and identify all call sites ahead of time so that we only +  // inline call sites in the original functions, not call sites that result +  // from inlining other functions. +  SmallVector<std::pair<CallSite, int>, 16> CallSites; + +  // When inlining a callee produces new call sites, we want to keep track of +  // the fact that they were inlined from the callee.  This allows us to avoid +  // infinite inlining in some obscure cases.  To represent this, we use an +  // index into the InlineHistory vector. +  SmallVector<std::pair<Function *, int>, 8> InlineHistory; + +  for (CallGraphNode *Node : SCC) { +    Function *F = Node->getFunction(); +    if (!F || F->isDeclaration()) +      continue; + +    OptimizationRemarkEmitter ORE(F); +    for (BasicBlock &BB : *F) +      for (Instruction &I : BB) { +        CallSite CS(cast<Value>(&I)); +        // If this isn't a call, or it is a call to an intrinsic, it can +        // never be inlined. +        if (!CS || isa<IntrinsicInst>(I)) +          continue; + +        // If this is a direct call to an external function, we can never inline +        // it.  If it is an indirect call, inlining may resolve it to be a +        // direct call, so we keep it. +        if (Function *Callee = CS.getCalledFunction()) +          if (Callee->isDeclaration()) { +            using namespace ore; + +            setInlineRemark(CS, "unavailable definition"); +            ORE.emit([&]() { +              return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I) +                     << NV("Callee", Callee) << " will not be inlined into " +                     << NV("Caller", CS.getCaller()) +                     << " because its definition is unavailable" +                     << setIsVerbose(); +            }); +            continue; +          } + +        CallSites.push_back(std::make_pair(CS, -1)); +      } +  } + +  LLVM_DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n"); + +  // If there are no calls in this function, exit early. +  if (CallSites.empty()) +    return false; + +  // Now that we have all of the call sites, move the ones to functions in the +  // current SCC to the end of the list. +  unsigned FirstCallInSCC = CallSites.size(); +  for (unsigned i = 0; i < FirstCallInSCC; ++i) +    if (Function *F = CallSites[i].first.getCalledFunction()) +      if (SCCFunctions.count(F)) +        std::swap(CallSites[i--], CallSites[--FirstCallInSCC]); + +  InlinedArrayAllocasTy InlinedArrayAllocas; +  InlineFunctionInfo InlineInfo(&CG, &GetAssumptionCache, PSI); + +  // Now that we have all of the call sites, loop over them and inline them if +  // it looks profitable to do so. +  bool Changed = false; +  bool LocalChange; +  do { +    LocalChange = false; +    // Iterate over the outer loop because inlining functions can cause indirect +    // calls to become direct calls. +    // CallSites may be modified inside so ranged for loop can not be used. +    for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) { +      CallSite CS = CallSites[CSi].first; + +      Function *Caller = CS.getCaller(); +      Function *Callee = CS.getCalledFunction(); + +      // We can only inline direct calls to non-declarations. +      if (!Callee || Callee->isDeclaration()) +        continue; + +      Instruction *Instr = CS.getInstruction(); + +      bool IsTriviallyDead = +          isInstructionTriviallyDead(Instr, &GetTLI(*Caller)); + +      int InlineHistoryID; +      if (!IsTriviallyDead) { +        // If this call site was obtained by inlining another function, verify +        // that the include path for the function did not include the callee +        // itself.  If so, we'd be recursively inlining the same function, +        // which would provide the same callsites, which would cause us to +        // infinitely inline. +        InlineHistoryID = CallSites[CSi].second; +        if (InlineHistoryID != -1 && +            InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) { +          setInlineRemark(CS, "recursive"); +          continue; +        } +      } + +      // FIXME for new PM: because of the old PM we currently generate ORE and +      // in turn BFI on demand.  With the new PM, the ORE dependency should +      // just become a regular analysis dependency. +      OptimizationRemarkEmitter ORE(Caller); + +      Optional<InlineCost> OIC = shouldInline(CS, GetInlineCost, ORE); +      // If the policy determines that we should inline this function, +      // delete the call instead. +      if (!OIC.hasValue()) { +        setInlineRemark(CS, "deferred"); +        continue; +      } + +      if (!OIC.getValue()) { +        // shouldInline() call returned a negative inline cost that explains +        // why this callsite should not be inlined. +        setInlineRemark(CS, inlineCostStr(*OIC)); +        continue; +      } + +      // If this call site is dead and it is to a readonly function, we should +      // just delete the call instead of trying to inline it, regardless of +      // size.  This happens because IPSCCP propagates the result out of the +      // call and then we're left with the dead call. +      if (IsTriviallyDead) { +        LLVM_DEBUG(dbgs() << "    -> Deleting dead call: " << *Instr << "\n"); +        // Update the call graph by deleting the edge from Callee to Caller. +        setInlineRemark(CS, "trivially dead"); +        CG[Caller]->removeCallEdgeFor(*cast<CallBase>(CS.getInstruction())); +        Instr->eraseFromParent(); +        ++NumCallsDeleted; +      } else { +        // Get DebugLoc to report. CS will be invalid after Inliner. +        DebugLoc DLoc = CS->getDebugLoc(); +        BasicBlock *Block = CS.getParent(); + +        // Attempt to inline the function. +        using namespace ore; + +        InlineResult IR = InlineCallIfPossible( +            CS, InlineInfo, InlinedArrayAllocas, InlineHistoryID, +            InsertLifetime, AARGetter, ImportedFunctionsStats); +        if (!IR) { +          setInlineRemark(CS, std::string(IR) + "; " + inlineCostStr(*OIC)); +          ORE.emit([&]() { +            return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, +                                            Block) +                   << NV("Callee", Callee) << " will not be inlined into " +                   << NV("Caller", Caller) << ": " << NV("Reason", IR.message); +          }); +          continue; +        } +        ++NumInlined; + +        emit_inlined_into(ORE, DLoc, Block, *Callee, *Caller, *OIC); + +        // If inlining this function gave us any new call sites, throw them +        // onto our worklist to process.  They are useful inline candidates. +        if (!InlineInfo.InlinedCalls.empty()) { +          // Create a new inline history entry for this, so that we remember +          // that these new callsites came about due to inlining Callee. +          int NewHistoryID = InlineHistory.size(); +          InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID)); + +          for (Value *Ptr : InlineInfo.InlinedCalls) +            CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID)); +        } +      } + +      // If we inlined or deleted the last possible call site to the function, +      // delete the function body now. +      if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() && +          // TODO: Can remove if in SCC now. +          !SCCFunctions.count(Callee) && +          // The function may be apparently dead, but if there are indirect +          // callgraph references to the node, we cannot delete it yet, this +          // could invalidate the CGSCC iterator. +          CG[Callee]->getNumReferences() == 0) { +        LLVM_DEBUG(dbgs() << "    -> Deleting dead function: " +                          << Callee->getName() << "\n"); +        CallGraphNode *CalleeNode = CG[Callee]; + +        // Remove any call graph edges from the callee to its callees. +        CalleeNode->removeAllCalledFunctions(); + +        // Removing the node for callee from the call graph and delete it. +        delete CG.removeFunctionFromModule(CalleeNode); +        ++NumDeleted; +      } + +      // Remove this call site from the list.  If possible, use +      // swap/pop_back for efficiency, but do not use it if doing so would +      // move a call site to a function in this SCC before the +      // 'FirstCallInSCC' barrier. +      if (SCC.isSingular()) { +        CallSites[CSi] = CallSites.back(); +        CallSites.pop_back(); +      } else { +        CallSites.erase(CallSites.begin() + CSi); +      } +      --CSi; + +      Changed = true; +      LocalChange = true; +    } +  } while (LocalChange); + +  return Changed; +} + +bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) { +  CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); +  ACT = &getAnalysis<AssumptionCacheTracker>(); +  PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); +  auto GetTLI = [&](Function &F) -> TargetLibraryInfo & { +    return getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); +  }; +  auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { +    return ACT->getAssumptionCache(F); +  }; +  return inlineCallsImpl( +      SCC, CG, GetAssumptionCache, PSI, GetTLI, InsertLifetime, +      [this](CallSite CS) { return getInlineCost(CS); }, LegacyAARGetter(*this), +      ImportedFunctionsStats); +} + +/// Remove now-dead linkonce functions at the end of +/// processing to avoid breaking the SCC traversal. +bool LegacyInlinerBase::doFinalization(CallGraph &CG) { +  if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) +    ImportedFunctionsStats.dump(InlinerFunctionImportStats == +                                InlinerFunctionImportStatsOpts::Verbose); +  return removeDeadFunctions(CG); +} + +/// Remove dead functions that are not included in DNR (Do Not Remove) list. +bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG, +                                            bool AlwaysInlineOnly) { +  SmallVector<CallGraphNode *, 16> FunctionsToRemove; +  SmallVector<Function *, 16> DeadFunctionsInComdats; + +  auto RemoveCGN = [&](CallGraphNode *CGN) { +    // Remove any call graph edges from the function to its callees. +    CGN->removeAllCalledFunctions(); + +    // Remove any edges from the external node to the function's call graph +    // node.  These edges might have been made irrelegant due to +    // optimization of the program. +    CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN); + +    // Removing the node for callee from the call graph and delete it. +    FunctionsToRemove.push_back(CGN); +  }; + +  // Scan for all of the functions, looking for ones that should now be removed +  // from the program.  Insert the dead ones in the FunctionsToRemove set. +  for (const auto &I : CG) { +    CallGraphNode *CGN = I.second.get(); +    Function *F = CGN->getFunction(); +    if (!F || F->isDeclaration()) +      continue; + +    // Handle the case when this function is called and we only want to care +    // about always-inline functions. This is a bit of a hack to share code +    // between here and the InlineAlways pass. +    if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline)) +      continue; + +    // If the only remaining users of the function are dead constants, remove +    // them. +    F->removeDeadConstantUsers(); + +    if (!F->isDefTriviallyDead()) +      continue; + +    // It is unsafe to drop a function with discardable linkage from a COMDAT +    // without also dropping the other members of the COMDAT. +    // The inliner doesn't visit non-function entities which are in COMDAT +    // groups so it is unsafe to do so *unless* the linkage is local. +    if (!F->hasLocalLinkage()) { +      if (F->hasComdat()) { +        DeadFunctionsInComdats.push_back(F); +        continue; +      } +    } + +    RemoveCGN(CGN); +  } +  if (!DeadFunctionsInComdats.empty()) { +    // Filter out the functions whose comdats remain alive. +    filterDeadComdatFunctions(CG.getModule(), DeadFunctionsInComdats); +    // Remove the rest. +    for (Function *F : DeadFunctionsInComdats) +      RemoveCGN(CG[F]); +  } + +  if (FunctionsToRemove.empty()) +    return false; + +  // Now that we know which functions to delete, do so.  We didn't want to do +  // this inline, because that would invalidate our CallGraph::iterator +  // objects. :( +  // +  // Note that it doesn't matter that we are iterating over a non-stable order +  // here to do this, it doesn't matter which order the functions are deleted +  // in. +  array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end()); +  FunctionsToRemove.erase( +      std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()), +      FunctionsToRemove.end()); +  for (CallGraphNode *CGN : FunctionsToRemove) { +    delete CG.removeFunctionFromModule(CGN); +    ++NumDeleted; +  } +  return true; +} + +InlinerPass::~InlinerPass() { +  if (ImportedFunctionsStats) { +    assert(InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No); +    ImportedFunctionsStats->dump(InlinerFunctionImportStats == +                                 InlinerFunctionImportStatsOpts::Verbose); +  } +} + +PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC, +                                   CGSCCAnalysisManager &AM, LazyCallGraph &CG, +                                   CGSCCUpdateResult &UR) { +  const ModuleAnalysisManager &MAM = +      AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG).getManager(); +  bool Changed = false; + +  assert(InitialC.size() > 0 && "Cannot handle an empty SCC!"); +  Module &M = *InitialC.begin()->getFunction().getParent(); +  ProfileSummaryInfo *PSI = MAM.getCachedResult<ProfileSummaryAnalysis>(M); + +  if (!ImportedFunctionsStats && +      InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) { +    ImportedFunctionsStats = +        std::make_unique<ImportedFunctionsInliningStatistics>(); +    ImportedFunctionsStats->setModuleInfo(M); +  } + +  // We use a single common worklist for calls across the entire SCC. We +  // process these in-order and append new calls introduced during inlining to +  // the end. +  // +  // Note that this particular order of processing is actually critical to +  // avoid very bad behaviors. Consider *highly connected* call graphs where +  // each function contains a small amonut of code and a couple of calls to +  // other functions. Because the LLVM inliner is fundamentally a bottom-up +  // inliner, it can handle gracefully the fact that these all appear to be +  // reasonable inlining candidates as it will flatten things until they become +  // too big to inline, and then move on and flatten another batch. +  // +  // However, when processing call edges *within* an SCC we cannot rely on this +  // bottom-up behavior. As a consequence, with heavily connected *SCCs* of +  // functions we can end up incrementally inlining N calls into each of +  // N functions because each incremental inlining decision looks good and we +  // don't have a topological ordering to prevent explosions. +  // +  // To compensate for this, we don't process transitive edges made immediate +  // by inlining until we've done one pass of inlining across the entire SCC. +  // Large, highly connected SCCs still lead to some amount of code bloat in +  // this model, but it is uniformly spread across all the functions in the SCC +  // and eventually they all become too large to inline, rather than +  // incrementally maknig a single function grow in a super linear fashion. +  SmallVector<std::pair<CallSite, int>, 16> Calls; + +  FunctionAnalysisManager &FAM = +      AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG) +          .getManager(); + +  // Populate the initial list of calls in this SCC. +  for (auto &N : InitialC) { +    auto &ORE = +        FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction()); +    // We want to generally process call sites top-down in order for +    // simplifications stemming from replacing the call with the returned value +    // after inlining to be visible to subsequent inlining decisions. +    // FIXME: Using instructions sequence is a really bad way to do this. +    // Instead we should do an actual RPO walk of the function body. +    for (Instruction &I : instructions(N.getFunction())) +      if (auto CS = CallSite(&I)) +        if (Function *Callee = CS.getCalledFunction()) { +          if (!Callee->isDeclaration()) +            Calls.push_back({CS, -1}); +          else if (!isa<IntrinsicInst>(I)) { +            using namespace ore; +            setInlineRemark(CS, "unavailable definition"); +            ORE.emit([&]() { +              return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I) +                     << NV("Callee", Callee) << " will not be inlined into " +                     << NV("Caller", CS.getCaller()) +                     << " because its definition is unavailable" +                     << setIsVerbose(); +            }); +          } +        } +  } +  if (Calls.empty()) +    return PreservedAnalyses::all(); + +  // Capture updatable variables for the current SCC and RefSCC. +  auto *C = &InitialC; +  auto *RC = &C->getOuterRefSCC(); + +  // When inlining a callee produces new call sites, we want to keep track of +  // the fact that they were inlined from the callee.  This allows us to avoid +  // infinite inlining in some obscure cases.  To represent this, we use an +  // index into the InlineHistory vector. +  SmallVector<std::pair<Function *, int>, 16> InlineHistory; + +  // Track a set vector of inlined callees so that we can augment the caller +  // with all of their edges in the call graph before pruning out the ones that +  // got simplified away. +  SmallSetVector<Function *, 4> InlinedCallees; + +  // Track the dead functions to delete once finished with inlining calls. We +  // defer deleting these to make it easier to handle the call graph updates. +  SmallVector<Function *, 4> DeadFunctions; + +  // Loop forward over all of the calls. Note that we cannot cache the size as +  // inlining can introduce new calls that need to be processed. +  for (int i = 0; i < (int)Calls.size(); ++i) { +    // We expect the calls to typically be batched with sequences of calls that +    // have the same caller, so we first set up some shared infrastructure for +    // this caller. We also do any pruning we can at this layer on the caller +    // alone. +    Function &F = *Calls[i].first.getCaller(); +    LazyCallGraph::Node &N = *CG.lookup(F); +    if (CG.lookupSCC(N) != C) +      continue; +    if (F.hasOptNone()) { +      setInlineRemark(Calls[i].first, "optnone attribute"); +      continue; +    } + +    LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n"); + +    // Get a FunctionAnalysisManager via a proxy for this particular node. We +    // do this each time we visit a node as the SCC may have changed and as +    // we're going to mutate this particular function we want to make sure the +    // proxy is in place to forward any invalidation events. We can use the +    // manager we get here for looking up results for functions other than this +    // node however because those functions aren't going to be mutated by this +    // pass. +    FunctionAnalysisManager &FAM = +        AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG) +            .getManager(); + +    // Get the remarks emission analysis for the caller. +    auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); + +    std::function<AssumptionCache &(Function &)> GetAssumptionCache = +        [&](Function &F) -> AssumptionCache & { +      return FAM.getResult<AssumptionAnalysis>(F); +    }; +    auto GetBFI = [&](Function &F) -> BlockFrequencyInfo & { +      return FAM.getResult<BlockFrequencyAnalysis>(F); +    }; + +    auto GetInlineCost = [&](CallSite CS) { +      Function &Callee = *CS.getCalledFunction(); +      auto &CalleeTTI = FAM.getResult<TargetIRAnalysis>(Callee); +      bool RemarksEnabled = +          Callee.getContext().getDiagHandlerPtr()->isMissedOptRemarkEnabled( +              DEBUG_TYPE); +      return getInlineCost(cast<CallBase>(*CS.getInstruction()), Params, +                           CalleeTTI, GetAssumptionCache, {GetBFI}, PSI, +                           RemarksEnabled ? &ORE : nullptr); +    }; + +    // Now process as many calls as we have within this caller in the sequnece. +    // We bail out as soon as the caller has to change so we can update the +    // call graph and prepare the context of that new caller. +    bool DidInline = false; +    for (; i < (int)Calls.size() && Calls[i].first.getCaller() == &F; ++i) { +      int InlineHistoryID; +      CallSite CS; +      std::tie(CS, InlineHistoryID) = Calls[i]; +      Function &Callee = *CS.getCalledFunction(); + +      if (InlineHistoryID != -1 && +          InlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) { +        setInlineRemark(CS, "recursive"); +        continue; +      } + +      // Check if this inlining may repeat breaking an SCC apart that has +      // already been split once before. In that case, inlining here may +      // trigger infinite inlining, much like is prevented within the inliner +      // itself by the InlineHistory above, but spread across CGSCC iterations +      // and thus hidden from the full inline history. +      if (CG.lookupSCC(*CG.lookup(Callee)) == C && +          UR.InlinedInternalEdges.count({&N, C})) { +        LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node " +                             "previously split out of this SCC by inlining: " +                          << F.getName() << " -> " << Callee.getName() << "\n"); +        setInlineRemark(CS, "recursive SCC split"); +        continue; +      } + +      Optional<InlineCost> OIC = shouldInline(CS, GetInlineCost, ORE); +      // Check whether we want to inline this callsite. +      if (!OIC.hasValue()) { +        setInlineRemark(CS, "deferred"); +        continue; +      } + +      if (!OIC.getValue()) { +        // shouldInline() call returned a negative inline cost that explains +        // why this callsite should not be inlined. +        setInlineRemark(CS, inlineCostStr(*OIC)); +        continue; +      } + +      // Setup the data structure used to plumb customization into the +      // `InlineFunction` routine. +      InlineFunctionInfo IFI( +          /*cg=*/nullptr, &GetAssumptionCache, PSI, +          &FAM.getResult<BlockFrequencyAnalysis>(*(CS.getCaller())), +          &FAM.getResult<BlockFrequencyAnalysis>(Callee)); + +      // Get DebugLoc to report. CS will be invalid after Inliner. +      DebugLoc DLoc = CS->getDebugLoc(); +      BasicBlock *Block = CS.getParent(); + +      using namespace ore; + +      InlineResult IR = InlineFunction(CS, IFI); +      if (!IR) { +        setInlineRemark(CS, std::string(IR) + "; " + inlineCostStr(*OIC)); +        ORE.emit([&]() { +          return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, Block) +                 << NV("Callee", &Callee) << " will not be inlined into " +                 << NV("Caller", &F) << ": " << NV("Reason", IR.message); +        }); +        continue; +      } +      DidInline = true; +      InlinedCallees.insert(&Callee); + +      ++NumInlined; + +      emit_inlined_into(ORE, DLoc, Block, Callee, F, *OIC); + +      // Add any new callsites to defined functions to the worklist. +      if (!IFI.InlinedCallSites.empty()) { +        int NewHistoryID = InlineHistory.size(); +        InlineHistory.push_back({&Callee, InlineHistoryID}); +        for (CallSite &CS : reverse(IFI.InlinedCallSites)) +          if (Function *NewCallee = CS.getCalledFunction()) +            if (!NewCallee->isDeclaration()) +              Calls.push_back({CS, NewHistoryID}); +      } + +      if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) +        ImportedFunctionsStats->recordInline(F, Callee); + +      // Merge the attributes based on the inlining. +      AttributeFuncs::mergeAttributesForInlining(F, Callee); + +      // For local functions, check whether this makes the callee trivially +      // dead. In that case, we can drop the body of the function eagerly +      // which may reduce the number of callers of other functions to one, +      // changing inline cost thresholds. +      if (Callee.hasLocalLinkage()) { +        // To check this we also need to nuke any dead constant uses (perhaps +        // made dead by this operation on other functions). +        Callee.removeDeadConstantUsers(); +        if (Callee.use_empty() && !CG.isLibFunction(Callee)) { +          Calls.erase( +              std::remove_if(Calls.begin() + i + 1, Calls.end(), +                             [&Callee](const std::pair<CallSite, int> &Call) { +                               return Call.first.getCaller() == &Callee; +                             }), +              Calls.end()); +          // Clear the body and queue the function itself for deletion when we +          // finish inlining and call graph updates. +          // Note that after this point, it is an error to do anything other +          // than use the callee's address or delete it. +          Callee.dropAllReferences(); +          assert(find(DeadFunctions, &Callee) == DeadFunctions.end() && +                 "Cannot put cause a function to become dead twice!"); +          DeadFunctions.push_back(&Callee); +        } +      } +    } + +    // Back the call index up by one to put us in a good position to go around +    // the outer loop. +    --i; + +    if (!DidInline) +      continue; +    Changed = true; + +    // Add all the inlined callees' edges as ref edges to the caller. These are +    // by definition trivial edges as we always have *some* transitive ref edge +    // chain. While in some cases these edges are direct calls inside the +    // callee, they have to be modeled in the inliner as reference edges as +    // there may be a reference edge anywhere along the chain from the current +    // caller to the callee that causes the whole thing to appear like +    // a (transitive) reference edge that will require promotion to a call edge +    // below. +    for (Function *InlinedCallee : InlinedCallees) { +      LazyCallGraph::Node &CalleeN = *CG.lookup(*InlinedCallee); +      for (LazyCallGraph::Edge &E : *CalleeN) +        RC->insertTrivialRefEdge(N, E.getNode()); +    } + +    // At this point, since we have made changes we have at least removed +    // a call instruction. However, in the process we do some incremental +    // simplification of the surrounding code. This simplification can +    // essentially do all of the same things as a function pass and we can +    // re-use the exact same logic for updating the call graph to reflect the +    // change. +    LazyCallGraph::SCC *OldC = C; +    C = &updateCGAndAnalysisManagerForFunctionPass(CG, *C, N, AM, UR); +    LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n"); +    RC = &C->getOuterRefSCC(); + +    // If this causes an SCC to split apart into multiple smaller SCCs, there +    // is a subtle risk we need to prepare for. Other transformations may +    // expose an "infinite inlining" opportunity later, and because of the SCC +    // mutation, we will revisit this function and potentially re-inline. If we +    // do, and that re-inlining also has the potentially to mutate the SCC +    // structure, the infinite inlining problem can manifest through infinite +    // SCC splits and merges. To avoid this, we capture the originating caller +    // node and the SCC containing the call edge. This is a slight over +    // approximation of the possible inlining decisions that must be avoided, +    // but is relatively efficient to store. We use C != OldC to know when +    // a new SCC is generated and the original SCC may be generated via merge +    // in later iterations. +    // +    // It is also possible that even if no new SCC is generated +    // (i.e., C == OldC), the original SCC could be split and then merged +    // into the same one as itself. and the original SCC will be added into +    // UR.CWorklist again, we want to catch such cases too. +    // +    // FIXME: This seems like a very heavyweight way of retaining the inline +    // history, we should look for a more efficient way of tracking it. +    if ((C != OldC || UR.CWorklist.count(OldC)) && +        llvm::any_of(InlinedCallees, [&](Function *Callee) { +          return CG.lookupSCC(*CG.lookup(*Callee)) == OldC; +        })) { +      LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, " +                           "retaining this to avoid infinite inlining.\n"); +      UR.InlinedInternalEdges.insert({&N, OldC}); +    } +    InlinedCallees.clear(); +  } + +  // Now that we've finished inlining all of the calls across this SCC, delete +  // all of the trivially dead functions, updating the call graph and the CGSCC +  // pass manager in the process. +  // +  // Note that this walks a pointer set which has non-deterministic order but +  // that is OK as all we do is delete things and add pointers to unordered +  // sets. +  for (Function *DeadF : DeadFunctions) { +    // Get the necessary information out of the call graph and nuke the +    // function there. Also, cclear out any cached analyses. +    auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF)); +    FunctionAnalysisManager &FAM = +        AM.getResult<FunctionAnalysisManagerCGSCCProxy>(DeadC, CG) +            .getManager(); +    FAM.clear(*DeadF, DeadF->getName()); +    AM.clear(DeadC, DeadC.getName()); +    auto &DeadRC = DeadC.getOuterRefSCC(); +    CG.removeDeadFunction(*DeadF); + +    // Mark the relevant parts of the call graph as invalid so we don't visit +    // them. +    UR.InvalidatedSCCs.insert(&DeadC); +    UR.InvalidatedRefSCCs.insert(&DeadRC); + +    // And delete the actual function from the module. +    M.getFunctionList().erase(DeadF); +    ++NumDeleted; +  } + +  if (!Changed) +    return PreservedAnalyses::all(); + +  // Even if we change the IR, we update the core CGSCC data structures and so +  // can preserve the proxy to the function analysis manager. +  PreservedAnalyses PA; +  PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); +  return PA; +} | 
