summaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/IPO/Inliner.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/IPO/Inliner.cpp')
-rw-r--r--llvm/lib/Transforms/IPO/Inliner.cpp1239
1 files changed, 1239 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/IPO/Inliner.cpp b/llvm/lib/Transforms/IPO/Inliner.cpp
new file mode 100644
index 000000000000..4b72261131c1
--- /dev/null
+++ b/llvm/lib/Transforms/IPO/Inliner.cpp
@@ -0,0 +1,1239 @@
+//===- Inliner.cpp - Code common to all inliners --------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the mechanics required to implement inlining without
+// missing any calls and updating the call graph. The decisions of which calls
+// are profitable to inline are implemented elsewhere.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/IPO/Inliner.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/BasicAliasAnalysis.h"
+#include "llvm/Analysis/BlockFrequencyInfo.h"
+#include "llvm/Analysis/CGSCCPassManager.h"
+#include "llvm/Analysis/CallGraph.h"
+#include "llvm/Analysis/InlineCost.h"
+#include "llvm/Analysis/LazyCallGraph.h"
+#include "llvm/Analysis/OptimizationRemarkEmitter.h"
+#include "llvm/Analysis/ProfileSummaryInfo.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Transforms/Utils/ImportedFunctionsInliningStatistics.h"
+#include "llvm/Transforms/Utils/ModuleUtils.h"
+#include <algorithm>
+#include <cassert>
+#include <functional>
+#include <sstream>
+#include <tuple>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "inline"
+
+STATISTIC(NumInlined, "Number of functions inlined");
+STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
+STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
+STATISTIC(NumMergedAllocas, "Number of allocas merged together");
+
+// This weirdly named statistic tracks the number of times that, when attempting
+// to inline a function A into B, we analyze the callers of B in order to see
+// if those would be more profitable and blocked inline steps.
+STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed");
+
+/// Flag to disable manual alloca merging.
+///
+/// Merging of allocas was originally done as a stack-size saving technique
+/// prior to LLVM's code generator having support for stack coloring based on
+/// lifetime markers. It is now in the process of being removed. To experiment
+/// with disabling it and relying fully on lifetime marker based stack
+/// coloring, you can pass this flag to LLVM.
+static cl::opt<bool>
+ DisableInlinedAllocaMerging("disable-inlined-alloca-merging",
+ cl::init(false), cl::Hidden);
+
+namespace {
+
+enum class InlinerFunctionImportStatsOpts {
+ No = 0,
+ Basic = 1,
+ Verbose = 2,
+};
+
+} // end anonymous namespace
+
+static cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats(
+ "inliner-function-import-stats",
+ cl::init(InlinerFunctionImportStatsOpts::No),
+ cl::values(clEnumValN(InlinerFunctionImportStatsOpts::Basic, "basic",
+ "basic statistics"),
+ clEnumValN(InlinerFunctionImportStatsOpts::Verbose, "verbose",
+ "printing of statistics for each inlined function")),
+ cl::Hidden, cl::desc("Enable inliner stats for imported functions"));
+
+/// Flag to add inline messages as callsite attributes 'inline-remark'.
+static cl::opt<bool>
+ InlineRemarkAttribute("inline-remark-attribute", cl::init(false),
+ cl::Hidden,
+ cl::desc("Enable adding inline-remark attribute to"
+ " callsites processed by inliner but decided"
+ " to be not inlined"));
+
+LegacyInlinerBase::LegacyInlinerBase(char &ID) : CallGraphSCCPass(ID) {}
+
+LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime)
+ : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {}
+
+/// For this class, we declare that we require and preserve the call graph.
+/// If the derived class implements this method, it should
+/// always explicitly call the implementation here.
+void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<AssumptionCacheTracker>();
+ AU.addRequired<ProfileSummaryInfoWrapperPass>();
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+ getAAResultsAnalysisUsage(AU);
+ CallGraphSCCPass::getAnalysisUsage(AU);
+}
+
+using InlinedArrayAllocasTy = DenseMap<ArrayType *, std::vector<AllocaInst *>>;
+
+/// Look at all of the allocas that we inlined through this call site. If we
+/// have already inlined other allocas through other calls into this function,
+/// then we know that they have disjoint lifetimes and that we can merge them.
+///
+/// There are many heuristics possible for merging these allocas, and the
+/// different options have different tradeoffs. One thing that we *really*
+/// don't want to hurt is SRoA: once inlining happens, often allocas are no
+/// longer address taken and so they can be promoted.
+///
+/// Our "solution" for that is to only merge allocas whose outermost type is an
+/// array type. These are usually not promoted because someone is using a
+/// variable index into them. These are also often the most important ones to
+/// merge.
+///
+/// A better solution would be to have real memory lifetime markers in the IR
+/// and not have the inliner do any merging of allocas at all. This would
+/// allow the backend to do proper stack slot coloring of all allocas that
+/// *actually make it to the backend*, which is really what we want.
+///
+/// Because we don't have this information, we do this simple and useful hack.
+static void mergeInlinedArrayAllocas(
+ Function *Caller, InlineFunctionInfo &IFI,
+ InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory) {
+ SmallPtrSet<AllocaInst *, 16> UsedAllocas;
+
+ // When processing our SCC, check to see if CS was inlined from some other
+ // call site. For example, if we're processing "A" in this code:
+ // A() { B() }
+ // B() { x = alloca ... C() }
+ // C() { y = alloca ... }
+ // Assume that C was not inlined into B initially, and so we're processing A
+ // and decide to inline B into A. Doing this makes an alloca available for
+ // reuse and makes a callsite (C) available for inlining. When we process
+ // the C call site we don't want to do any alloca merging between X and Y
+ // because their scopes are not disjoint. We could make this smarter by
+ // keeping track of the inline history for each alloca in the
+ // InlinedArrayAllocas but this isn't likely to be a significant win.
+ if (InlineHistory != -1) // Only do merging for top-level call sites in SCC.
+ return;
+
+ // Loop over all the allocas we have so far and see if they can be merged with
+ // a previously inlined alloca. If not, remember that we had it.
+ for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size(); AllocaNo != e;
+ ++AllocaNo) {
+ AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
+
+ // Don't bother trying to merge array allocations (they will usually be
+ // canonicalized to be an allocation *of* an array), or allocations whose
+ // type is not itself an array (because we're afraid of pessimizing SRoA).
+ ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
+ if (!ATy || AI->isArrayAllocation())
+ continue;
+
+ // Get the list of all available allocas for this array type.
+ std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy];
+
+ // Loop over the allocas in AllocasForType to see if we can reuse one. Note
+ // that we have to be careful not to reuse the same "available" alloca for
+ // multiple different allocas that we just inlined, we use the 'UsedAllocas'
+ // set to keep track of which "available" allocas are being used by this
+ // function. Also, AllocasForType can be empty of course!
+ bool MergedAwayAlloca = false;
+ for (AllocaInst *AvailableAlloca : AllocasForType) {
+ unsigned Align1 = AI->getAlignment(),
+ Align2 = AvailableAlloca->getAlignment();
+
+ // The available alloca has to be in the right function, not in some other
+ // function in this SCC.
+ if (AvailableAlloca->getParent() != AI->getParent())
+ continue;
+
+ // If the inlined function already uses this alloca then we can't reuse
+ // it.
+ if (!UsedAllocas.insert(AvailableAlloca).second)
+ continue;
+
+ // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
+ // success!
+ LLVM_DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI
+ << "\n\t\tINTO: " << *AvailableAlloca << '\n');
+
+ // Move affected dbg.declare calls immediately after the new alloca to
+ // avoid the situation when a dbg.declare precedes its alloca.
+ if (auto *L = LocalAsMetadata::getIfExists(AI))
+ if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
+ for (User *U : MDV->users())
+ if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
+ DDI->moveBefore(AvailableAlloca->getNextNode());
+
+ AI->replaceAllUsesWith(AvailableAlloca);
+
+ if (Align1 != Align2) {
+ if (!Align1 || !Align2) {
+ const DataLayout &DL = Caller->getParent()->getDataLayout();
+ unsigned TypeAlign = DL.getABITypeAlignment(AI->getAllocatedType());
+
+ Align1 = Align1 ? Align1 : TypeAlign;
+ Align2 = Align2 ? Align2 : TypeAlign;
+ }
+
+ if (Align1 > Align2)
+ AvailableAlloca->setAlignment(MaybeAlign(AI->getAlignment()));
+ }
+
+ AI->eraseFromParent();
+ MergedAwayAlloca = true;
+ ++NumMergedAllocas;
+ IFI.StaticAllocas[AllocaNo] = nullptr;
+ break;
+ }
+
+ // If we already nuked the alloca, we're done with it.
+ if (MergedAwayAlloca)
+ continue;
+
+ // If we were unable to merge away the alloca either because there are no
+ // allocas of the right type available or because we reused them all
+ // already, remember that this alloca came from an inlined function and mark
+ // it used so we don't reuse it for other allocas from this inline
+ // operation.
+ AllocasForType.push_back(AI);
+ UsedAllocas.insert(AI);
+ }
+}
+
+/// If it is possible to inline the specified call site,
+/// do so and update the CallGraph for this operation.
+///
+/// This function also does some basic book-keeping to update the IR. The
+/// InlinedArrayAllocas map keeps track of any allocas that are already
+/// available from other functions inlined into the caller. If we are able to
+/// inline this call site we attempt to reuse already available allocas or add
+/// any new allocas to the set if not possible.
+static InlineResult InlineCallIfPossible(
+ CallSite CS, InlineFunctionInfo &IFI,
+ InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory,
+ bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter,
+ ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
+ Function *Callee = CS.getCalledFunction();
+ Function *Caller = CS.getCaller();
+
+ AAResults &AAR = AARGetter(*Callee);
+
+ // Try to inline the function. Get the list of static allocas that were
+ // inlined.
+ InlineResult IR = InlineFunction(CS, IFI, &AAR, InsertLifetime);
+ if (!IR)
+ return IR;
+
+ if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
+ ImportedFunctionsStats.recordInline(*Caller, *Callee);
+
+ AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee);
+
+ if (!DisableInlinedAllocaMerging)
+ mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory);
+
+ return IR; // success
+}
+
+/// Return true if inlining of CS can block the caller from being
+/// inlined which is proved to be more beneficial. \p IC is the
+/// estimated inline cost associated with callsite \p CS.
+/// \p TotalSecondaryCost will be set to the estimated cost of inlining the
+/// caller if \p CS is suppressed for inlining.
+static bool
+shouldBeDeferred(Function *Caller, CallSite CS, InlineCost IC,
+ int &TotalSecondaryCost,
+ function_ref<InlineCost(CallSite CS)> GetInlineCost) {
+ // For now we only handle local or inline functions.
+ if (!Caller->hasLocalLinkage() && !Caller->hasLinkOnceODRLinkage())
+ return false;
+ // If the cost of inlining CS is non-positive, it is not going to prevent the
+ // caller from being inlined into its callers and hence we don't need to
+ // defer.
+ if (IC.getCost() <= 0)
+ return false;
+ // Try to detect the case where the current inlining candidate caller (call
+ // it B) is a static or linkonce-ODR function and is an inlining candidate
+ // elsewhere, and the current candidate callee (call it C) is large enough
+ // that inlining it into B would make B too big to inline later. In these
+ // circumstances it may be best not to inline C into B, but to inline B into
+ // its callers.
+ //
+ // This only applies to static and linkonce-ODR functions because those are
+ // expected to be available for inlining in the translation units where they
+ // are used. Thus we will always have the opportunity to make local inlining
+ // decisions. Importantly the linkonce-ODR linkage covers inline functions
+ // and templates in C++.
+ //
+ // FIXME: All of this logic should be sunk into getInlineCost. It relies on
+ // the internal implementation of the inline cost metrics rather than
+ // treating them as truly abstract units etc.
+ TotalSecondaryCost = 0;
+ // The candidate cost to be imposed upon the current function.
+ int CandidateCost = IC.getCost() - 1;
+ // If the caller has local linkage and can be inlined to all its callers, we
+ // can apply a huge negative bonus to TotalSecondaryCost.
+ bool ApplyLastCallBonus = Caller->hasLocalLinkage() && !Caller->hasOneUse();
+ // This bool tracks what happens if we DO inline C into B.
+ bool inliningPreventsSomeOuterInline = false;
+ for (User *U : Caller->users()) {
+ // If the caller will not be removed (either because it does not have a
+ // local linkage or because the LastCallToStaticBonus has been already
+ // applied), then we can exit the loop early.
+ if (!ApplyLastCallBonus && TotalSecondaryCost >= IC.getCost())
+ return false;
+ CallSite CS2(U);
+
+ // If this isn't a call to Caller (it could be some other sort
+ // of reference) skip it. Such references will prevent the caller
+ // from being removed.
+ if (!CS2 || CS2.getCalledFunction() != Caller) {
+ ApplyLastCallBonus = false;
+ continue;
+ }
+
+ InlineCost IC2 = GetInlineCost(CS2);
+ ++NumCallerCallersAnalyzed;
+ if (!IC2) {
+ ApplyLastCallBonus = false;
+ continue;
+ }
+ if (IC2.isAlways())
+ continue;
+
+ // See if inlining of the original callsite would erase the cost delta of
+ // this callsite. We subtract off the penalty for the call instruction,
+ // which we would be deleting.
+ if (IC2.getCostDelta() <= CandidateCost) {
+ inliningPreventsSomeOuterInline = true;
+ TotalSecondaryCost += IC2.getCost();
+ }
+ }
+ // If all outer calls to Caller would get inlined, the cost for the last
+ // one is set very low by getInlineCost, in anticipation that Caller will
+ // be removed entirely. We did not account for this above unless there
+ // is only one caller of Caller.
+ if (ApplyLastCallBonus)
+ TotalSecondaryCost -= InlineConstants::LastCallToStaticBonus;
+
+ if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost())
+ return true;
+
+ return false;
+}
+
+static std::basic_ostream<char> &operator<<(std::basic_ostream<char> &R,
+ const ore::NV &Arg) {
+ return R << Arg.Val;
+}
+
+template <class RemarkT>
+RemarkT &operator<<(RemarkT &&R, const InlineCost &IC) {
+ using namespace ore;
+ if (IC.isAlways()) {
+ R << "(cost=always)";
+ } else if (IC.isNever()) {
+ R << "(cost=never)";
+ } else {
+ R << "(cost=" << ore::NV("Cost", IC.getCost())
+ << ", threshold=" << ore::NV("Threshold", IC.getThreshold()) << ")";
+ }
+ if (const char *Reason = IC.getReason())
+ R << ": " << ore::NV("Reason", Reason);
+ return R;
+}
+
+static std::string inlineCostStr(const InlineCost &IC) {
+ std::stringstream Remark;
+ Remark << IC;
+ return Remark.str();
+}
+
+/// Return the cost only if the inliner should attempt to inline at the given
+/// CallSite. If we return the cost, we will emit an optimisation remark later
+/// using that cost, so we won't do so from this function.
+static Optional<InlineCost>
+shouldInline(CallSite CS, function_ref<InlineCost(CallSite CS)> GetInlineCost,
+ OptimizationRemarkEmitter &ORE) {
+ using namespace ore;
+
+ InlineCost IC = GetInlineCost(CS);
+ Instruction *Call = CS.getInstruction();
+ Function *Callee = CS.getCalledFunction();
+ Function *Caller = CS.getCaller();
+
+ if (IC.isAlways()) {
+ LLVM_DEBUG(dbgs() << " Inlining " << inlineCostStr(IC)
+ << ", Call: " << *CS.getInstruction() << "\n");
+ return IC;
+ }
+
+ if (IC.isNever()) {
+ LLVM_DEBUG(dbgs() << " NOT Inlining " << inlineCostStr(IC)
+ << ", Call: " << *CS.getInstruction() << "\n");
+ ORE.emit([&]() {
+ return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", Call)
+ << NV("Callee", Callee) << " not inlined into "
+ << NV("Caller", Caller) << " because it should never be inlined "
+ << IC;
+ });
+ return IC;
+ }
+
+ if (!IC) {
+ LLVM_DEBUG(dbgs() << " NOT Inlining " << inlineCostStr(IC)
+ << ", Call: " << *CS.getInstruction() << "\n");
+ ORE.emit([&]() {
+ return OptimizationRemarkMissed(DEBUG_TYPE, "TooCostly", Call)
+ << NV("Callee", Callee) << " not inlined into "
+ << NV("Caller", Caller) << " because too costly to inline " << IC;
+ });
+ return IC;
+ }
+
+ int TotalSecondaryCost = 0;
+ if (shouldBeDeferred(Caller, CS, IC, TotalSecondaryCost, GetInlineCost)) {
+ LLVM_DEBUG(dbgs() << " NOT Inlining: " << *CS.getInstruction()
+ << " Cost = " << IC.getCost()
+ << ", outer Cost = " << TotalSecondaryCost << '\n');
+ ORE.emit([&]() {
+ return OptimizationRemarkMissed(DEBUG_TYPE, "IncreaseCostInOtherContexts",
+ Call)
+ << "Not inlining. Cost of inlining " << NV("Callee", Callee)
+ << " increases the cost of inlining " << NV("Caller", Caller)
+ << " in other contexts";
+ });
+
+ // IC does not bool() to false, so get an InlineCost that will.
+ // This will not be inspected to make an error message.
+ return None;
+ }
+
+ LLVM_DEBUG(dbgs() << " Inlining " << inlineCostStr(IC)
+ << ", Call: " << *CS.getInstruction() << '\n');
+ return IC;
+}
+
+/// Return true if the specified inline history ID
+/// indicates an inline history that includes the specified function.
+static bool InlineHistoryIncludes(
+ Function *F, int InlineHistoryID,
+ const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) {
+ while (InlineHistoryID != -1) {
+ assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
+ "Invalid inline history ID");
+ if (InlineHistory[InlineHistoryID].first == F)
+ return true;
+ InlineHistoryID = InlineHistory[InlineHistoryID].second;
+ }
+ return false;
+}
+
+bool LegacyInlinerBase::doInitialization(CallGraph &CG) {
+ if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
+ ImportedFunctionsStats.setModuleInfo(CG.getModule());
+ return false; // No changes to CallGraph.
+}
+
+bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) {
+ if (skipSCC(SCC))
+ return false;
+ return inlineCalls(SCC);
+}
+
+static void emit_inlined_into(OptimizationRemarkEmitter &ORE, DebugLoc &DLoc,
+ const BasicBlock *Block, const Function &Callee,
+ const Function &Caller, const InlineCost &IC) {
+ ORE.emit([&]() {
+ bool AlwaysInline = IC.isAlways();
+ StringRef RemarkName = AlwaysInline ? "AlwaysInline" : "Inlined";
+ return OptimizationRemark(DEBUG_TYPE, RemarkName, DLoc, Block)
+ << ore::NV("Callee", &Callee) << " inlined into "
+ << ore::NV("Caller", &Caller) << " with " << IC;
+ });
+}
+
+static void setInlineRemark(CallSite &CS, StringRef message) {
+ if (!InlineRemarkAttribute)
+ return;
+
+ Attribute attr = Attribute::get(CS->getContext(), "inline-remark", message);
+ CS.addAttribute(AttributeList::FunctionIndex, attr);
+}
+
+static bool
+inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG,
+ std::function<AssumptionCache &(Function &)> GetAssumptionCache,
+ ProfileSummaryInfo *PSI,
+ std::function<TargetLibraryInfo &(Function &)> GetTLI,
+ bool InsertLifetime,
+ function_ref<InlineCost(CallSite CS)> GetInlineCost,
+ function_ref<AAResults &(Function &)> AARGetter,
+ ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
+ SmallPtrSet<Function *, 8> SCCFunctions;
+ LLVM_DEBUG(dbgs() << "Inliner visiting SCC:");
+ for (CallGraphNode *Node : SCC) {
+ Function *F = Node->getFunction();
+ if (F)
+ SCCFunctions.insert(F);
+ LLVM_DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
+ }
+
+ // Scan through and identify all call sites ahead of time so that we only
+ // inline call sites in the original functions, not call sites that result
+ // from inlining other functions.
+ SmallVector<std::pair<CallSite, int>, 16> CallSites;
+
+ // When inlining a callee produces new call sites, we want to keep track of
+ // the fact that they were inlined from the callee. This allows us to avoid
+ // infinite inlining in some obscure cases. To represent this, we use an
+ // index into the InlineHistory vector.
+ SmallVector<std::pair<Function *, int>, 8> InlineHistory;
+
+ for (CallGraphNode *Node : SCC) {
+ Function *F = Node->getFunction();
+ if (!F || F->isDeclaration())
+ continue;
+
+ OptimizationRemarkEmitter ORE(F);
+ for (BasicBlock &BB : *F)
+ for (Instruction &I : BB) {
+ CallSite CS(cast<Value>(&I));
+ // If this isn't a call, or it is a call to an intrinsic, it can
+ // never be inlined.
+ if (!CS || isa<IntrinsicInst>(I))
+ continue;
+
+ // If this is a direct call to an external function, we can never inline
+ // it. If it is an indirect call, inlining may resolve it to be a
+ // direct call, so we keep it.
+ if (Function *Callee = CS.getCalledFunction())
+ if (Callee->isDeclaration()) {
+ using namespace ore;
+
+ setInlineRemark(CS, "unavailable definition");
+ ORE.emit([&]() {
+ return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
+ << NV("Callee", Callee) << " will not be inlined into "
+ << NV("Caller", CS.getCaller())
+ << " because its definition is unavailable"
+ << setIsVerbose();
+ });
+ continue;
+ }
+
+ CallSites.push_back(std::make_pair(CS, -1));
+ }
+ }
+
+ LLVM_DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
+
+ // If there are no calls in this function, exit early.
+ if (CallSites.empty())
+ return false;
+
+ // Now that we have all of the call sites, move the ones to functions in the
+ // current SCC to the end of the list.
+ unsigned FirstCallInSCC = CallSites.size();
+ for (unsigned i = 0; i < FirstCallInSCC; ++i)
+ if (Function *F = CallSites[i].first.getCalledFunction())
+ if (SCCFunctions.count(F))
+ std::swap(CallSites[i--], CallSites[--FirstCallInSCC]);
+
+ InlinedArrayAllocasTy InlinedArrayAllocas;
+ InlineFunctionInfo InlineInfo(&CG, &GetAssumptionCache, PSI);
+
+ // Now that we have all of the call sites, loop over them and inline them if
+ // it looks profitable to do so.
+ bool Changed = false;
+ bool LocalChange;
+ do {
+ LocalChange = false;
+ // Iterate over the outer loop because inlining functions can cause indirect
+ // calls to become direct calls.
+ // CallSites may be modified inside so ranged for loop can not be used.
+ for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
+ CallSite CS = CallSites[CSi].first;
+
+ Function *Caller = CS.getCaller();
+ Function *Callee = CS.getCalledFunction();
+
+ // We can only inline direct calls to non-declarations.
+ if (!Callee || Callee->isDeclaration())
+ continue;
+
+ Instruction *Instr = CS.getInstruction();
+
+ bool IsTriviallyDead =
+ isInstructionTriviallyDead(Instr, &GetTLI(*Caller));
+
+ int InlineHistoryID;
+ if (!IsTriviallyDead) {
+ // If this call site was obtained by inlining another function, verify
+ // that the include path for the function did not include the callee
+ // itself. If so, we'd be recursively inlining the same function,
+ // which would provide the same callsites, which would cause us to
+ // infinitely inline.
+ InlineHistoryID = CallSites[CSi].second;
+ if (InlineHistoryID != -1 &&
+ InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) {
+ setInlineRemark(CS, "recursive");
+ continue;
+ }
+ }
+
+ // FIXME for new PM: because of the old PM we currently generate ORE and
+ // in turn BFI on demand. With the new PM, the ORE dependency should
+ // just become a regular analysis dependency.
+ OptimizationRemarkEmitter ORE(Caller);
+
+ Optional<InlineCost> OIC = shouldInline(CS, GetInlineCost, ORE);
+ // If the policy determines that we should inline this function,
+ // delete the call instead.
+ if (!OIC.hasValue()) {
+ setInlineRemark(CS, "deferred");
+ continue;
+ }
+
+ if (!OIC.getValue()) {
+ // shouldInline() call returned a negative inline cost that explains
+ // why this callsite should not be inlined.
+ setInlineRemark(CS, inlineCostStr(*OIC));
+ continue;
+ }
+
+ // If this call site is dead and it is to a readonly function, we should
+ // just delete the call instead of trying to inline it, regardless of
+ // size. This happens because IPSCCP propagates the result out of the
+ // call and then we're left with the dead call.
+ if (IsTriviallyDead) {
+ LLVM_DEBUG(dbgs() << " -> Deleting dead call: " << *Instr << "\n");
+ // Update the call graph by deleting the edge from Callee to Caller.
+ setInlineRemark(CS, "trivially dead");
+ CG[Caller]->removeCallEdgeFor(*cast<CallBase>(CS.getInstruction()));
+ Instr->eraseFromParent();
+ ++NumCallsDeleted;
+ } else {
+ // Get DebugLoc to report. CS will be invalid after Inliner.
+ DebugLoc DLoc = CS->getDebugLoc();
+ BasicBlock *Block = CS.getParent();
+
+ // Attempt to inline the function.
+ using namespace ore;
+
+ InlineResult IR = InlineCallIfPossible(
+ CS, InlineInfo, InlinedArrayAllocas, InlineHistoryID,
+ InsertLifetime, AARGetter, ImportedFunctionsStats);
+ if (!IR) {
+ setInlineRemark(CS, std::string(IR) + "; " + inlineCostStr(*OIC));
+ ORE.emit([&]() {
+ return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc,
+ Block)
+ << NV("Callee", Callee) << " will not be inlined into "
+ << NV("Caller", Caller) << ": " << NV("Reason", IR.message);
+ });
+ continue;
+ }
+ ++NumInlined;
+
+ emit_inlined_into(ORE, DLoc, Block, *Callee, *Caller, *OIC);
+
+ // If inlining this function gave us any new call sites, throw them
+ // onto our worklist to process. They are useful inline candidates.
+ if (!InlineInfo.InlinedCalls.empty()) {
+ // Create a new inline history entry for this, so that we remember
+ // that these new callsites came about due to inlining Callee.
+ int NewHistoryID = InlineHistory.size();
+ InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
+
+ for (Value *Ptr : InlineInfo.InlinedCalls)
+ CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID));
+ }
+ }
+
+ // If we inlined or deleted the last possible call site to the function,
+ // delete the function body now.
+ if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
+ // TODO: Can remove if in SCC now.
+ !SCCFunctions.count(Callee) &&
+ // The function may be apparently dead, but if there are indirect
+ // callgraph references to the node, we cannot delete it yet, this
+ // could invalidate the CGSCC iterator.
+ CG[Callee]->getNumReferences() == 0) {
+ LLVM_DEBUG(dbgs() << " -> Deleting dead function: "
+ << Callee->getName() << "\n");
+ CallGraphNode *CalleeNode = CG[Callee];
+
+ // Remove any call graph edges from the callee to its callees.
+ CalleeNode->removeAllCalledFunctions();
+
+ // Removing the node for callee from the call graph and delete it.
+ delete CG.removeFunctionFromModule(CalleeNode);
+ ++NumDeleted;
+ }
+
+ // Remove this call site from the list. If possible, use
+ // swap/pop_back for efficiency, but do not use it if doing so would
+ // move a call site to a function in this SCC before the
+ // 'FirstCallInSCC' barrier.
+ if (SCC.isSingular()) {
+ CallSites[CSi] = CallSites.back();
+ CallSites.pop_back();
+ } else {
+ CallSites.erase(CallSites.begin() + CSi);
+ }
+ --CSi;
+
+ Changed = true;
+ LocalChange = true;
+ }
+ } while (LocalChange);
+
+ return Changed;
+}
+
+bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) {
+ CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
+ ACT = &getAnalysis<AssumptionCacheTracker>();
+ PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
+ auto GetTLI = [&](Function &F) -> TargetLibraryInfo & {
+ return getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
+ };
+ auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
+ return ACT->getAssumptionCache(F);
+ };
+ return inlineCallsImpl(
+ SCC, CG, GetAssumptionCache, PSI, GetTLI, InsertLifetime,
+ [this](CallSite CS) { return getInlineCost(CS); }, LegacyAARGetter(*this),
+ ImportedFunctionsStats);
+}
+
+/// Remove now-dead linkonce functions at the end of
+/// processing to avoid breaking the SCC traversal.
+bool LegacyInlinerBase::doFinalization(CallGraph &CG) {
+ if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
+ ImportedFunctionsStats.dump(InlinerFunctionImportStats ==
+ InlinerFunctionImportStatsOpts::Verbose);
+ return removeDeadFunctions(CG);
+}
+
+/// Remove dead functions that are not included in DNR (Do Not Remove) list.
+bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG,
+ bool AlwaysInlineOnly) {
+ SmallVector<CallGraphNode *, 16> FunctionsToRemove;
+ SmallVector<Function *, 16> DeadFunctionsInComdats;
+
+ auto RemoveCGN = [&](CallGraphNode *CGN) {
+ // Remove any call graph edges from the function to its callees.
+ CGN->removeAllCalledFunctions();
+
+ // Remove any edges from the external node to the function's call graph
+ // node. These edges might have been made irrelegant due to
+ // optimization of the program.
+ CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
+
+ // Removing the node for callee from the call graph and delete it.
+ FunctionsToRemove.push_back(CGN);
+ };
+
+ // Scan for all of the functions, looking for ones that should now be removed
+ // from the program. Insert the dead ones in the FunctionsToRemove set.
+ for (const auto &I : CG) {
+ CallGraphNode *CGN = I.second.get();
+ Function *F = CGN->getFunction();
+ if (!F || F->isDeclaration())
+ continue;
+
+ // Handle the case when this function is called and we only want to care
+ // about always-inline functions. This is a bit of a hack to share code
+ // between here and the InlineAlways pass.
+ if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline))
+ continue;
+
+ // If the only remaining users of the function are dead constants, remove
+ // them.
+ F->removeDeadConstantUsers();
+
+ if (!F->isDefTriviallyDead())
+ continue;
+
+ // It is unsafe to drop a function with discardable linkage from a COMDAT
+ // without also dropping the other members of the COMDAT.
+ // The inliner doesn't visit non-function entities which are in COMDAT
+ // groups so it is unsafe to do so *unless* the linkage is local.
+ if (!F->hasLocalLinkage()) {
+ if (F->hasComdat()) {
+ DeadFunctionsInComdats.push_back(F);
+ continue;
+ }
+ }
+
+ RemoveCGN(CGN);
+ }
+ if (!DeadFunctionsInComdats.empty()) {
+ // Filter out the functions whose comdats remain alive.
+ filterDeadComdatFunctions(CG.getModule(), DeadFunctionsInComdats);
+ // Remove the rest.
+ for (Function *F : DeadFunctionsInComdats)
+ RemoveCGN(CG[F]);
+ }
+
+ if (FunctionsToRemove.empty())
+ return false;
+
+ // Now that we know which functions to delete, do so. We didn't want to do
+ // this inline, because that would invalidate our CallGraph::iterator
+ // objects. :(
+ //
+ // Note that it doesn't matter that we are iterating over a non-stable order
+ // here to do this, it doesn't matter which order the functions are deleted
+ // in.
+ array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
+ FunctionsToRemove.erase(
+ std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()),
+ FunctionsToRemove.end());
+ for (CallGraphNode *CGN : FunctionsToRemove) {
+ delete CG.removeFunctionFromModule(CGN);
+ ++NumDeleted;
+ }
+ return true;
+}
+
+InlinerPass::~InlinerPass() {
+ if (ImportedFunctionsStats) {
+ assert(InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No);
+ ImportedFunctionsStats->dump(InlinerFunctionImportStats ==
+ InlinerFunctionImportStatsOpts::Verbose);
+ }
+}
+
+PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC,
+ CGSCCAnalysisManager &AM, LazyCallGraph &CG,
+ CGSCCUpdateResult &UR) {
+ const ModuleAnalysisManager &MAM =
+ AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG).getManager();
+ bool Changed = false;
+
+ assert(InitialC.size() > 0 && "Cannot handle an empty SCC!");
+ Module &M = *InitialC.begin()->getFunction().getParent();
+ ProfileSummaryInfo *PSI = MAM.getCachedResult<ProfileSummaryAnalysis>(M);
+
+ if (!ImportedFunctionsStats &&
+ InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) {
+ ImportedFunctionsStats =
+ std::make_unique<ImportedFunctionsInliningStatistics>();
+ ImportedFunctionsStats->setModuleInfo(M);
+ }
+
+ // We use a single common worklist for calls across the entire SCC. We
+ // process these in-order and append new calls introduced during inlining to
+ // the end.
+ //
+ // Note that this particular order of processing is actually critical to
+ // avoid very bad behaviors. Consider *highly connected* call graphs where
+ // each function contains a small amonut of code and a couple of calls to
+ // other functions. Because the LLVM inliner is fundamentally a bottom-up
+ // inliner, it can handle gracefully the fact that these all appear to be
+ // reasonable inlining candidates as it will flatten things until they become
+ // too big to inline, and then move on and flatten another batch.
+ //
+ // However, when processing call edges *within* an SCC we cannot rely on this
+ // bottom-up behavior. As a consequence, with heavily connected *SCCs* of
+ // functions we can end up incrementally inlining N calls into each of
+ // N functions because each incremental inlining decision looks good and we
+ // don't have a topological ordering to prevent explosions.
+ //
+ // To compensate for this, we don't process transitive edges made immediate
+ // by inlining until we've done one pass of inlining across the entire SCC.
+ // Large, highly connected SCCs still lead to some amount of code bloat in
+ // this model, but it is uniformly spread across all the functions in the SCC
+ // and eventually they all become too large to inline, rather than
+ // incrementally maknig a single function grow in a super linear fashion.
+ SmallVector<std::pair<CallSite, int>, 16> Calls;
+
+ FunctionAnalysisManager &FAM =
+ AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG)
+ .getManager();
+
+ // Populate the initial list of calls in this SCC.
+ for (auto &N : InitialC) {
+ auto &ORE =
+ FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction());
+ // We want to generally process call sites top-down in order for
+ // simplifications stemming from replacing the call with the returned value
+ // after inlining to be visible to subsequent inlining decisions.
+ // FIXME: Using instructions sequence is a really bad way to do this.
+ // Instead we should do an actual RPO walk of the function body.
+ for (Instruction &I : instructions(N.getFunction()))
+ if (auto CS = CallSite(&I))
+ if (Function *Callee = CS.getCalledFunction()) {
+ if (!Callee->isDeclaration())
+ Calls.push_back({CS, -1});
+ else if (!isa<IntrinsicInst>(I)) {
+ using namespace ore;
+ setInlineRemark(CS, "unavailable definition");
+ ORE.emit([&]() {
+ return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
+ << NV("Callee", Callee) << " will not be inlined into "
+ << NV("Caller", CS.getCaller())
+ << " because its definition is unavailable"
+ << setIsVerbose();
+ });
+ }
+ }
+ }
+ if (Calls.empty())
+ return PreservedAnalyses::all();
+
+ // Capture updatable variables for the current SCC and RefSCC.
+ auto *C = &InitialC;
+ auto *RC = &C->getOuterRefSCC();
+
+ // When inlining a callee produces new call sites, we want to keep track of
+ // the fact that they were inlined from the callee. This allows us to avoid
+ // infinite inlining in some obscure cases. To represent this, we use an
+ // index into the InlineHistory vector.
+ SmallVector<std::pair<Function *, int>, 16> InlineHistory;
+
+ // Track a set vector of inlined callees so that we can augment the caller
+ // with all of their edges in the call graph before pruning out the ones that
+ // got simplified away.
+ SmallSetVector<Function *, 4> InlinedCallees;
+
+ // Track the dead functions to delete once finished with inlining calls. We
+ // defer deleting these to make it easier to handle the call graph updates.
+ SmallVector<Function *, 4> DeadFunctions;
+
+ // Loop forward over all of the calls. Note that we cannot cache the size as
+ // inlining can introduce new calls that need to be processed.
+ for (int i = 0; i < (int)Calls.size(); ++i) {
+ // We expect the calls to typically be batched with sequences of calls that
+ // have the same caller, so we first set up some shared infrastructure for
+ // this caller. We also do any pruning we can at this layer on the caller
+ // alone.
+ Function &F = *Calls[i].first.getCaller();
+ LazyCallGraph::Node &N = *CG.lookup(F);
+ if (CG.lookupSCC(N) != C)
+ continue;
+ if (F.hasOptNone()) {
+ setInlineRemark(Calls[i].first, "optnone attribute");
+ continue;
+ }
+
+ LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n");
+
+ // Get a FunctionAnalysisManager via a proxy for this particular node. We
+ // do this each time we visit a node as the SCC may have changed and as
+ // we're going to mutate this particular function we want to make sure the
+ // proxy is in place to forward any invalidation events. We can use the
+ // manager we get here for looking up results for functions other than this
+ // node however because those functions aren't going to be mutated by this
+ // pass.
+ FunctionAnalysisManager &FAM =
+ AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG)
+ .getManager();
+
+ // Get the remarks emission analysis for the caller.
+ auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
+
+ std::function<AssumptionCache &(Function &)> GetAssumptionCache =
+ [&](Function &F) -> AssumptionCache & {
+ return FAM.getResult<AssumptionAnalysis>(F);
+ };
+ auto GetBFI = [&](Function &F) -> BlockFrequencyInfo & {
+ return FAM.getResult<BlockFrequencyAnalysis>(F);
+ };
+
+ auto GetInlineCost = [&](CallSite CS) {
+ Function &Callee = *CS.getCalledFunction();
+ auto &CalleeTTI = FAM.getResult<TargetIRAnalysis>(Callee);
+ bool RemarksEnabled =
+ Callee.getContext().getDiagHandlerPtr()->isMissedOptRemarkEnabled(
+ DEBUG_TYPE);
+ return getInlineCost(cast<CallBase>(*CS.getInstruction()), Params,
+ CalleeTTI, GetAssumptionCache, {GetBFI}, PSI,
+ RemarksEnabled ? &ORE : nullptr);
+ };
+
+ // Now process as many calls as we have within this caller in the sequnece.
+ // We bail out as soon as the caller has to change so we can update the
+ // call graph and prepare the context of that new caller.
+ bool DidInline = false;
+ for (; i < (int)Calls.size() && Calls[i].first.getCaller() == &F; ++i) {
+ int InlineHistoryID;
+ CallSite CS;
+ std::tie(CS, InlineHistoryID) = Calls[i];
+ Function &Callee = *CS.getCalledFunction();
+
+ if (InlineHistoryID != -1 &&
+ InlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) {
+ setInlineRemark(CS, "recursive");
+ continue;
+ }
+
+ // Check if this inlining may repeat breaking an SCC apart that has
+ // already been split once before. In that case, inlining here may
+ // trigger infinite inlining, much like is prevented within the inliner
+ // itself by the InlineHistory above, but spread across CGSCC iterations
+ // and thus hidden from the full inline history.
+ if (CG.lookupSCC(*CG.lookup(Callee)) == C &&
+ UR.InlinedInternalEdges.count({&N, C})) {
+ LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node "
+ "previously split out of this SCC by inlining: "
+ << F.getName() << " -> " << Callee.getName() << "\n");
+ setInlineRemark(CS, "recursive SCC split");
+ continue;
+ }
+
+ Optional<InlineCost> OIC = shouldInline(CS, GetInlineCost, ORE);
+ // Check whether we want to inline this callsite.
+ if (!OIC.hasValue()) {
+ setInlineRemark(CS, "deferred");
+ continue;
+ }
+
+ if (!OIC.getValue()) {
+ // shouldInline() call returned a negative inline cost that explains
+ // why this callsite should not be inlined.
+ setInlineRemark(CS, inlineCostStr(*OIC));
+ continue;
+ }
+
+ // Setup the data structure used to plumb customization into the
+ // `InlineFunction` routine.
+ InlineFunctionInfo IFI(
+ /*cg=*/nullptr, &GetAssumptionCache, PSI,
+ &FAM.getResult<BlockFrequencyAnalysis>(*(CS.getCaller())),
+ &FAM.getResult<BlockFrequencyAnalysis>(Callee));
+
+ // Get DebugLoc to report. CS will be invalid after Inliner.
+ DebugLoc DLoc = CS->getDebugLoc();
+ BasicBlock *Block = CS.getParent();
+
+ using namespace ore;
+
+ InlineResult IR = InlineFunction(CS, IFI);
+ if (!IR) {
+ setInlineRemark(CS, std::string(IR) + "; " + inlineCostStr(*OIC));
+ ORE.emit([&]() {
+ return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, Block)
+ << NV("Callee", &Callee) << " will not be inlined into "
+ << NV("Caller", &F) << ": " << NV("Reason", IR.message);
+ });
+ continue;
+ }
+ DidInline = true;
+ InlinedCallees.insert(&Callee);
+
+ ++NumInlined;
+
+ emit_inlined_into(ORE, DLoc, Block, Callee, F, *OIC);
+
+ // Add any new callsites to defined functions to the worklist.
+ if (!IFI.InlinedCallSites.empty()) {
+ int NewHistoryID = InlineHistory.size();
+ InlineHistory.push_back({&Callee, InlineHistoryID});
+ for (CallSite &CS : reverse(IFI.InlinedCallSites))
+ if (Function *NewCallee = CS.getCalledFunction())
+ if (!NewCallee->isDeclaration())
+ Calls.push_back({CS, NewHistoryID});
+ }
+
+ if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
+ ImportedFunctionsStats->recordInline(F, Callee);
+
+ // Merge the attributes based on the inlining.
+ AttributeFuncs::mergeAttributesForInlining(F, Callee);
+
+ // For local functions, check whether this makes the callee trivially
+ // dead. In that case, we can drop the body of the function eagerly
+ // which may reduce the number of callers of other functions to one,
+ // changing inline cost thresholds.
+ if (Callee.hasLocalLinkage()) {
+ // To check this we also need to nuke any dead constant uses (perhaps
+ // made dead by this operation on other functions).
+ Callee.removeDeadConstantUsers();
+ if (Callee.use_empty() && !CG.isLibFunction(Callee)) {
+ Calls.erase(
+ std::remove_if(Calls.begin() + i + 1, Calls.end(),
+ [&Callee](const std::pair<CallSite, int> &Call) {
+ return Call.first.getCaller() == &Callee;
+ }),
+ Calls.end());
+ // Clear the body and queue the function itself for deletion when we
+ // finish inlining and call graph updates.
+ // Note that after this point, it is an error to do anything other
+ // than use the callee's address or delete it.
+ Callee.dropAllReferences();
+ assert(find(DeadFunctions, &Callee) == DeadFunctions.end() &&
+ "Cannot put cause a function to become dead twice!");
+ DeadFunctions.push_back(&Callee);
+ }
+ }
+ }
+
+ // Back the call index up by one to put us in a good position to go around
+ // the outer loop.
+ --i;
+
+ if (!DidInline)
+ continue;
+ Changed = true;
+
+ // Add all the inlined callees' edges as ref edges to the caller. These are
+ // by definition trivial edges as we always have *some* transitive ref edge
+ // chain. While in some cases these edges are direct calls inside the
+ // callee, they have to be modeled in the inliner as reference edges as
+ // there may be a reference edge anywhere along the chain from the current
+ // caller to the callee that causes the whole thing to appear like
+ // a (transitive) reference edge that will require promotion to a call edge
+ // below.
+ for (Function *InlinedCallee : InlinedCallees) {
+ LazyCallGraph::Node &CalleeN = *CG.lookup(*InlinedCallee);
+ for (LazyCallGraph::Edge &E : *CalleeN)
+ RC->insertTrivialRefEdge(N, E.getNode());
+ }
+
+ // At this point, since we have made changes we have at least removed
+ // a call instruction. However, in the process we do some incremental
+ // simplification of the surrounding code. This simplification can
+ // essentially do all of the same things as a function pass and we can
+ // re-use the exact same logic for updating the call graph to reflect the
+ // change.
+ LazyCallGraph::SCC *OldC = C;
+ C = &updateCGAndAnalysisManagerForFunctionPass(CG, *C, N, AM, UR);
+ LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n");
+ RC = &C->getOuterRefSCC();
+
+ // If this causes an SCC to split apart into multiple smaller SCCs, there
+ // is a subtle risk we need to prepare for. Other transformations may
+ // expose an "infinite inlining" opportunity later, and because of the SCC
+ // mutation, we will revisit this function and potentially re-inline. If we
+ // do, and that re-inlining also has the potentially to mutate the SCC
+ // structure, the infinite inlining problem can manifest through infinite
+ // SCC splits and merges. To avoid this, we capture the originating caller
+ // node and the SCC containing the call edge. This is a slight over
+ // approximation of the possible inlining decisions that must be avoided,
+ // but is relatively efficient to store. We use C != OldC to know when
+ // a new SCC is generated and the original SCC may be generated via merge
+ // in later iterations.
+ //
+ // It is also possible that even if no new SCC is generated
+ // (i.e., C == OldC), the original SCC could be split and then merged
+ // into the same one as itself. and the original SCC will be added into
+ // UR.CWorklist again, we want to catch such cases too.
+ //
+ // FIXME: This seems like a very heavyweight way of retaining the inline
+ // history, we should look for a more efficient way of tracking it.
+ if ((C != OldC || UR.CWorklist.count(OldC)) &&
+ llvm::any_of(InlinedCallees, [&](Function *Callee) {
+ return CG.lookupSCC(*CG.lookup(*Callee)) == OldC;
+ })) {
+ LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, "
+ "retaining this to avoid infinite inlining.\n");
+ UR.InlinedInternalEdges.insert({&N, OldC});
+ }
+ InlinedCallees.clear();
+ }
+
+ // Now that we've finished inlining all of the calls across this SCC, delete
+ // all of the trivially dead functions, updating the call graph and the CGSCC
+ // pass manager in the process.
+ //
+ // Note that this walks a pointer set which has non-deterministic order but
+ // that is OK as all we do is delete things and add pointers to unordered
+ // sets.
+ for (Function *DeadF : DeadFunctions) {
+ // Get the necessary information out of the call graph and nuke the
+ // function there. Also, cclear out any cached analyses.
+ auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF));
+ FunctionAnalysisManager &FAM =
+ AM.getResult<FunctionAnalysisManagerCGSCCProxy>(DeadC, CG)
+ .getManager();
+ FAM.clear(*DeadF, DeadF->getName());
+ AM.clear(DeadC, DeadC.getName());
+ auto &DeadRC = DeadC.getOuterRefSCC();
+ CG.removeDeadFunction(*DeadF);
+
+ // Mark the relevant parts of the call graph as invalid so we don't visit
+ // them.
+ UR.InvalidatedSCCs.insert(&DeadC);
+ UR.InvalidatedRefSCCs.insert(&DeadRC);
+
+ // And delete the actual function from the module.
+ M.getFunctionList().erase(DeadF);
+ ++NumDeleted;
+ }
+
+ if (!Changed)
+ return PreservedAnalyses::all();
+
+ // Even if we change the IR, we update the core CGSCC data structures and so
+ // can preserve the proxy to the function analysis manager.
+ PreservedAnalyses PA;
+ PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
+ return PA;
+}