summaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp')
-rw-r--r--llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp3288
1 files changed, 3288 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp b/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
new file mode 100644
index 000000000000..4a30b60ca931
--- /dev/null
+++ b/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
@@ -0,0 +1,3288 @@
+//===- InstCombineAndOrXor.cpp --------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visitAnd, visitOr, and visitXor functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombineInternal.h"
+#include "llvm/Analysis/CmpInstAnalysis.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/IR/ConstantRange.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/PatternMatch.h"
+using namespace llvm;
+using namespace PatternMatch;
+
+#define DEBUG_TYPE "instcombine"
+
+/// Similar to getICmpCode but for FCmpInst. This encodes a fcmp predicate into
+/// a four bit mask.
+static unsigned getFCmpCode(FCmpInst::Predicate CC) {
+ assert(FCmpInst::FCMP_FALSE <= CC && CC <= FCmpInst::FCMP_TRUE &&
+ "Unexpected FCmp predicate!");
+ // Take advantage of the bit pattern of FCmpInst::Predicate here.
+ // U L G E
+ static_assert(FCmpInst::FCMP_FALSE == 0, ""); // 0 0 0 0
+ static_assert(FCmpInst::FCMP_OEQ == 1, ""); // 0 0 0 1
+ static_assert(FCmpInst::FCMP_OGT == 2, ""); // 0 0 1 0
+ static_assert(FCmpInst::FCMP_OGE == 3, ""); // 0 0 1 1
+ static_assert(FCmpInst::FCMP_OLT == 4, ""); // 0 1 0 0
+ static_assert(FCmpInst::FCMP_OLE == 5, ""); // 0 1 0 1
+ static_assert(FCmpInst::FCMP_ONE == 6, ""); // 0 1 1 0
+ static_assert(FCmpInst::FCMP_ORD == 7, ""); // 0 1 1 1
+ static_assert(FCmpInst::FCMP_UNO == 8, ""); // 1 0 0 0
+ static_assert(FCmpInst::FCMP_UEQ == 9, ""); // 1 0 0 1
+ static_assert(FCmpInst::FCMP_UGT == 10, ""); // 1 0 1 0
+ static_assert(FCmpInst::FCMP_UGE == 11, ""); // 1 0 1 1
+ static_assert(FCmpInst::FCMP_ULT == 12, ""); // 1 1 0 0
+ static_assert(FCmpInst::FCMP_ULE == 13, ""); // 1 1 0 1
+ static_assert(FCmpInst::FCMP_UNE == 14, ""); // 1 1 1 0
+ static_assert(FCmpInst::FCMP_TRUE == 15, ""); // 1 1 1 1
+ return CC;
+}
+
+/// This is the complement of getICmpCode, which turns an opcode and two
+/// operands into either a constant true or false, or a brand new ICmp
+/// instruction. The sign is passed in to determine which kind of predicate to
+/// use in the new icmp instruction.
+static Value *getNewICmpValue(unsigned Code, bool Sign, Value *LHS, Value *RHS,
+ InstCombiner::BuilderTy &Builder) {
+ ICmpInst::Predicate NewPred;
+ if (Constant *TorF = getPredForICmpCode(Code, Sign, LHS->getType(), NewPred))
+ return TorF;
+ return Builder.CreateICmp(NewPred, LHS, RHS);
+}
+
+/// This is the complement of getFCmpCode, which turns an opcode and two
+/// operands into either a FCmp instruction, or a true/false constant.
+static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS,
+ InstCombiner::BuilderTy &Builder) {
+ const auto Pred = static_cast<FCmpInst::Predicate>(Code);
+ assert(FCmpInst::FCMP_FALSE <= Pred && Pred <= FCmpInst::FCMP_TRUE &&
+ "Unexpected FCmp predicate!");
+ if (Pred == FCmpInst::FCMP_FALSE)
+ return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
+ if (Pred == FCmpInst::FCMP_TRUE)
+ return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
+ return Builder.CreateFCmp(Pred, LHS, RHS);
+}
+
+/// Transform BITWISE_OP(BSWAP(A),BSWAP(B)) or
+/// BITWISE_OP(BSWAP(A), Constant) to BSWAP(BITWISE_OP(A, B))
+/// \param I Binary operator to transform.
+/// \return Pointer to node that must replace the original binary operator, or
+/// null pointer if no transformation was made.
+static Value *SimplifyBSwap(BinaryOperator &I,
+ InstCombiner::BuilderTy &Builder) {
+ assert(I.isBitwiseLogicOp() && "Unexpected opcode for bswap simplifying");
+
+ Value *OldLHS = I.getOperand(0);
+ Value *OldRHS = I.getOperand(1);
+
+ Value *NewLHS;
+ if (!match(OldLHS, m_BSwap(m_Value(NewLHS))))
+ return nullptr;
+
+ Value *NewRHS;
+ const APInt *C;
+
+ if (match(OldRHS, m_BSwap(m_Value(NewRHS)))) {
+ // OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
+ if (!OldLHS->hasOneUse() && !OldRHS->hasOneUse())
+ return nullptr;
+ // NewRHS initialized by the matcher.
+ } else if (match(OldRHS, m_APInt(C))) {
+ // OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )
+ if (!OldLHS->hasOneUse())
+ return nullptr;
+ NewRHS = ConstantInt::get(I.getType(), C->byteSwap());
+ } else
+ return nullptr;
+
+ Value *BinOp = Builder.CreateBinOp(I.getOpcode(), NewLHS, NewRHS);
+ Function *F = Intrinsic::getDeclaration(I.getModule(), Intrinsic::bswap,
+ I.getType());
+ return Builder.CreateCall(F, BinOp);
+}
+
+/// This handles expressions of the form ((val OP C1) & C2). Where
+/// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.
+Instruction *InstCombiner::OptAndOp(BinaryOperator *Op,
+ ConstantInt *OpRHS,
+ ConstantInt *AndRHS,
+ BinaryOperator &TheAnd) {
+ Value *X = Op->getOperand(0);
+
+ switch (Op->getOpcode()) {
+ default: break;
+ case Instruction::Add:
+ if (Op->hasOneUse()) {
+ // Adding a one to a single bit bit-field should be turned into an XOR
+ // of the bit. First thing to check is to see if this AND is with a
+ // single bit constant.
+ const APInt &AndRHSV = AndRHS->getValue();
+
+ // If there is only one bit set.
+ if (AndRHSV.isPowerOf2()) {
+ // Ok, at this point, we know that we are masking the result of the
+ // ADD down to exactly one bit. If the constant we are adding has
+ // no bits set below this bit, then we can eliminate the ADD.
+ const APInt& AddRHS = OpRHS->getValue();
+
+ // Check to see if any bits below the one bit set in AndRHSV are set.
+ if ((AddRHS & (AndRHSV - 1)).isNullValue()) {
+ // If not, the only thing that can effect the output of the AND is
+ // the bit specified by AndRHSV. If that bit is set, the effect of
+ // the XOR is to toggle the bit. If it is clear, then the ADD has
+ // no effect.
+ if ((AddRHS & AndRHSV).isNullValue()) { // Bit is not set, noop
+ TheAnd.setOperand(0, X);
+ return &TheAnd;
+ } else {
+ // Pull the XOR out of the AND.
+ Value *NewAnd = Builder.CreateAnd(X, AndRHS);
+ NewAnd->takeName(Op);
+ return BinaryOperator::CreateXor(NewAnd, AndRHS);
+ }
+ }
+ }
+ }
+ break;
+ }
+ return nullptr;
+}
+
+/// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
+/// (V < Lo || V >= Hi). This method expects that Lo < Hi. IsSigned indicates
+/// whether to treat V, Lo, and Hi as signed or not.
+Value *InstCombiner::insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
+ bool isSigned, bool Inside) {
+ assert((isSigned ? Lo.slt(Hi) : Lo.ult(Hi)) &&
+ "Lo is not < Hi in range emission code!");
+
+ Type *Ty = V->getType();
+
+ // V >= Min && V < Hi --> V < Hi
+ // V < Min || V >= Hi --> V >= Hi
+ ICmpInst::Predicate Pred = Inside ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
+ if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) {
+ Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred;
+ return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty, Hi));
+ }
+
+ // V >= Lo && V < Hi --> V - Lo u< Hi - Lo
+ // V < Lo || V >= Hi --> V - Lo u>= Hi - Lo
+ Value *VMinusLo =
+ Builder.CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off");
+ Constant *HiMinusLo = ConstantInt::get(Ty, Hi - Lo);
+ return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo);
+}
+
+/// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns
+/// that can be simplified.
+/// One of A and B is considered the mask. The other is the value. This is
+/// described as the "AMask" or "BMask" part of the enum. If the enum contains
+/// only "Mask", then both A and B can be considered masks. If A is the mask,
+/// then it was proven that (A & C) == C. This is trivial if C == A or C == 0.
+/// If both A and C are constants, this proof is also easy.
+/// For the following explanations, we assume that A is the mask.
+///
+/// "AllOnes" declares that the comparison is true only if (A & B) == A or all
+/// bits of A are set in B.
+/// Example: (icmp eq (A & 3), 3) -> AMask_AllOnes
+///
+/// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all
+/// bits of A are cleared in B.
+/// Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes
+///
+/// "Mixed" declares that (A & B) == C and C might or might not contain any
+/// number of one bits and zero bits.
+/// Example: (icmp eq (A & 3), 1) -> AMask_Mixed
+///
+/// "Not" means that in above descriptions "==" should be replaced by "!=".
+/// Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes
+///
+/// If the mask A contains a single bit, then the following is equivalent:
+/// (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
+/// (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
+enum MaskedICmpType {
+ AMask_AllOnes = 1,
+ AMask_NotAllOnes = 2,
+ BMask_AllOnes = 4,
+ BMask_NotAllOnes = 8,
+ Mask_AllZeros = 16,
+ Mask_NotAllZeros = 32,
+ AMask_Mixed = 64,
+ AMask_NotMixed = 128,
+ BMask_Mixed = 256,
+ BMask_NotMixed = 512
+};
+
+/// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C)
+/// satisfies.
+static unsigned getMaskedICmpType(Value *A, Value *B, Value *C,
+ ICmpInst::Predicate Pred) {
+ ConstantInt *ACst = dyn_cast<ConstantInt>(A);
+ ConstantInt *BCst = dyn_cast<ConstantInt>(B);
+ ConstantInt *CCst = dyn_cast<ConstantInt>(C);
+ bool IsEq = (Pred == ICmpInst::ICMP_EQ);
+ bool IsAPow2 = (ACst && !ACst->isZero() && ACst->getValue().isPowerOf2());
+ bool IsBPow2 = (BCst && !BCst->isZero() && BCst->getValue().isPowerOf2());
+ unsigned MaskVal = 0;
+ if (CCst && CCst->isZero()) {
+ // if C is zero, then both A and B qualify as mask
+ MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed)
+ : (Mask_NotAllZeros | AMask_NotMixed | BMask_NotMixed));
+ if (IsAPow2)
+ MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed)
+ : (AMask_AllOnes | AMask_Mixed));
+ if (IsBPow2)
+ MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed)
+ : (BMask_AllOnes | BMask_Mixed));
+ return MaskVal;
+ }
+
+ if (A == C) {
+ MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed)
+ : (AMask_NotAllOnes | AMask_NotMixed));
+ if (IsAPow2)
+ MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed)
+ : (Mask_AllZeros | AMask_Mixed));
+ } else if (ACst && CCst && ConstantExpr::getAnd(ACst, CCst) == CCst) {
+ MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed);
+ }
+
+ if (B == C) {
+ MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed)
+ : (BMask_NotAllOnes | BMask_NotMixed));
+ if (IsBPow2)
+ MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed)
+ : (Mask_AllZeros | BMask_Mixed));
+ } else if (BCst && CCst && ConstantExpr::getAnd(BCst, CCst) == CCst) {
+ MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed);
+ }
+
+ return MaskVal;
+}
+
+/// Convert an analysis of a masked ICmp into its equivalent if all boolean
+/// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
+/// is adjacent to the corresponding normal flag (recording ==), this just
+/// involves swapping those bits over.
+static unsigned conjugateICmpMask(unsigned Mask) {
+ unsigned NewMask;
+ NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros |
+ AMask_Mixed | BMask_Mixed))
+ << 1;
+
+ NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros |
+ AMask_NotMixed | BMask_NotMixed))
+ >> 1;
+
+ return NewMask;
+}
+
+// Adapts the external decomposeBitTestICmp for local use.
+static bool decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate &Pred,
+ Value *&X, Value *&Y, Value *&Z) {
+ APInt Mask;
+ if (!llvm::decomposeBitTestICmp(LHS, RHS, Pred, X, Mask))
+ return false;
+
+ Y = ConstantInt::get(X->getType(), Mask);
+ Z = ConstantInt::get(X->getType(), 0);
+ return true;
+}
+
+/// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E).
+/// Return the pattern classes (from MaskedICmpType) for the left hand side and
+/// the right hand side as a pair.
+/// LHS and RHS are the left hand side and the right hand side ICmps and PredL
+/// and PredR are their predicates, respectively.
+static
+Optional<std::pair<unsigned, unsigned>>
+getMaskedTypeForICmpPair(Value *&A, Value *&B, Value *&C,
+ Value *&D, Value *&E, ICmpInst *LHS,
+ ICmpInst *RHS,
+ ICmpInst::Predicate &PredL,
+ ICmpInst::Predicate &PredR) {
+ // vectors are not (yet?) supported. Don't support pointers either.
+ if (!LHS->getOperand(0)->getType()->isIntegerTy() ||
+ !RHS->getOperand(0)->getType()->isIntegerTy())
+ return None;
+
+ // Here comes the tricky part:
+ // LHS might be of the form L11 & L12 == X, X == L21 & L22,
+ // and L11 & L12 == L21 & L22. The same goes for RHS.
+ // Now we must find those components L** and R**, that are equal, so
+ // that we can extract the parameters A, B, C, D, and E for the canonical
+ // above.
+ Value *L1 = LHS->getOperand(0);
+ Value *L2 = LHS->getOperand(1);
+ Value *L11, *L12, *L21, *L22;
+ // Check whether the icmp can be decomposed into a bit test.
+ if (decomposeBitTestICmp(L1, L2, PredL, L11, L12, L2)) {
+ L21 = L22 = L1 = nullptr;
+ } else {
+ // Look for ANDs in the LHS icmp.
+ if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
+ // Any icmp can be viewed as being trivially masked; if it allows us to
+ // remove one, it's worth it.
+ L11 = L1;
+ L12 = Constant::getAllOnesValue(L1->getType());
+ }
+
+ if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
+ L21 = L2;
+ L22 = Constant::getAllOnesValue(L2->getType());
+ }
+ }
+
+ // Bail if LHS was a icmp that can't be decomposed into an equality.
+ if (!ICmpInst::isEquality(PredL))
+ return None;
+
+ Value *R1 = RHS->getOperand(0);
+ Value *R2 = RHS->getOperand(1);
+ Value *R11, *R12;
+ bool Ok = false;
+ if (decomposeBitTestICmp(R1, R2, PredR, R11, R12, R2)) {
+ if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
+ A = R11;
+ D = R12;
+ } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
+ A = R12;
+ D = R11;
+ } else {
+ return None;
+ }
+ E = R2;
+ R1 = nullptr;
+ Ok = true;
+ } else {
+ if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
+ // As before, model no mask as a trivial mask if it'll let us do an
+ // optimization.
+ R11 = R1;
+ R12 = Constant::getAllOnesValue(R1->getType());
+ }
+
+ if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
+ A = R11;
+ D = R12;
+ E = R2;
+ Ok = true;
+ } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
+ A = R12;
+ D = R11;
+ E = R2;
+ Ok = true;
+ }
+ }
+
+ // Bail if RHS was a icmp that can't be decomposed into an equality.
+ if (!ICmpInst::isEquality(PredR))
+ return None;
+
+ // Look for ANDs on the right side of the RHS icmp.
+ if (!Ok) {
+ if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
+ R11 = R2;
+ R12 = Constant::getAllOnesValue(R2->getType());
+ }
+
+ if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
+ A = R11;
+ D = R12;
+ E = R1;
+ Ok = true;
+ } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
+ A = R12;
+ D = R11;
+ E = R1;
+ Ok = true;
+ } else {
+ return None;
+ }
+ }
+ if (!Ok)
+ return None;
+
+ if (L11 == A) {
+ B = L12;
+ C = L2;
+ } else if (L12 == A) {
+ B = L11;
+ C = L2;
+ } else if (L21 == A) {
+ B = L22;
+ C = L1;
+ } else if (L22 == A) {
+ B = L21;
+ C = L1;
+ }
+
+ unsigned LeftType = getMaskedICmpType(A, B, C, PredL);
+ unsigned RightType = getMaskedICmpType(A, D, E, PredR);
+ return Optional<std::pair<unsigned, unsigned>>(std::make_pair(LeftType, RightType));
+}
+
+/// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single
+/// (icmp(A & X) ==/!= Y), where the left-hand side is of type Mask_NotAllZeros
+/// and the right hand side is of type BMask_Mixed. For example,
+/// (icmp (A & 12) != 0) & (icmp (A & 15) == 8) -> (icmp (A & 15) == 8).
+static Value * foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
+ ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
+ Value *A, Value *B, Value *C, Value *D, Value *E,
+ ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
+ llvm::InstCombiner::BuilderTy &Builder) {
+ // We are given the canonical form:
+ // (icmp ne (A & B), 0) & (icmp eq (A & D), E).
+ // where D & E == E.
+ //
+ // If IsAnd is false, we get it in negated form:
+ // (icmp eq (A & B), 0) | (icmp ne (A & D), E) ->
+ // !((icmp ne (A & B), 0) & (icmp eq (A & D), E)).
+ //
+ // We currently handle the case of B, C, D, E are constant.
+ //
+ ConstantInt *BCst = dyn_cast<ConstantInt>(B);
+ if (!BCst)
+ return nullptr;
+ ConstantInt *CCst = dyn_cast<ConstantInt>(C);
+ if (!CCst)
+ return nullptr;
+ ConstantInt *DCst = dyn_cast<ConstantInt>(D);
+ if (!DCst)
+ return nullptr;
+ ConstantInt *ECst = dyn_cast<ConstantInt>(E);
+ if (!ECst)
+ return nullptr;
+
+ ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
+
+ // Update E to the canonical form when D is a power of two and RHS is
+ // canonicalized as,
+ // (icmp ne (A & D), 0) -> (icmp eq (A & D), D) or
+ // (icmp ne (A & D), D) -> (icmp eq (A & D), 0).
+ if (PredR != NewCC)
+ ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst));
+
+ // If B or D is zero, skip because if LHS or RHS can be trivially folded by
+ // other folding rules and this pattern won't apply any more.
+ if (BCst->getValue() == 0 || DCst->getValue() == 0)
+ return nullptr;
+
+ // If B and D don't intersect, ie. (B & D) == 0, no folding because we can't
+ // deduce anything from it.
+ // For example,
+ // (icmp ne (A & 12), 0) & (icmp eq (A & 3), 1) -> no folding.
+ if ((BCst->getValue() & DCst->getValue()) == 0)
+ return nullptr;
+
+ // If the following two conditions are met:
+ //
+ // 1. mask B covers only a single bit that's not covered by mask D, that is,
+ // (B & (B ^ D)) is a power of 2 (in other words, B minus the intersection of
+ // B and D has only one bit set) and,
+ //
+ // 2. RHS (and E) indicates that the rest of B's bits are zero (in other
+ // words, the intersection of B and D is zero), that is, ((B & D) & E) == 0
+ //
+ // then that single bit in B must be one and thus the whole expression can be
+ // folded to
+ // (A & (B | D)) == (B & (B ^ D)) | E.
+ //
+ // For example,
+ // (icmp ne (A & 12), 0) & (icmp eq (A & 7), 1) -> (icmp eq (A & 15), 9)
+ // (icmp ne (A & 15), 0) & (icmp eq (A & 7), 0) -> (icmp eq (A & 15), 8)
+ if ((((BCst->getValue() & DCst->getValue()) & ECst->getValue()) == 0) &&
+ (BCst->getValue() & (BCst->getValue() ^ DCst->getValue())).isPowerOf2()) {
+ APInt BorD = BCst->getValue() | DCst->getValue();
+ APInt BandBxorDorE = (BCst->getValue() & (BCst->getValue() ^ DCst->getValue())) |
+ ECst->getValue();
+ Value *NewMask = ConstantInt::get(BCst->getType(), BorD);
+ Value *NewMaskedValue = ConstantInt::get(BCst->getType(), BandBxorDorE);
+ Value *NewAnd = Builder.CreateAnd(A, NewMask);
+ return Builder.CreateICmp(NewCC, NewAnd, NewMaskedValue);
+ }
+
+ auto IsSubSetOrEqual = [](ConstantInt *C1, ConstantInt *C2) {
+ return (C1->getValue() & C2->getValue()) == C1->getValue();
+ };
+ auto IsSuperSetOrEqual = [](ConstantInt *C1, ConstantInt *C2) {
+ return (C1->getValue() & C2->getValue()) == C2->getValue();
+ };
+
+ // In the following, we consider only the cases where B is a superset of D, B
+ // is a subset of D, or B == D because otherwise there's at least one bit
+ // covered by B but not D, in which case we can't deduce much from it, so
+ // no folding (aside from the single must-be-one bit case right above.)
+ // For example,
+ // (icmp ne (A & 14), 0) & (icmp eq (A & 3), 1) -> no folding.
+ if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst))
+ return nullptr;
+
+ // At this point, either B is a superset of D, B is a subset of D or B == D.
+
+ // If E is zero, if B is a subset of (or equal to) D, LHS and RHS contradict
+ // and the whole expression becomes false (or true if negated), otherwise, no
+ // folding.
+ // For example,
+ // (icmp ne (A & 3), 0) & (icmp eq (A & 7), 0) -> false.
+ // (icmp ne (A & 15), 0) & (icmp eq (A & 3), 0) -> no folding.
+ if (ECst->isZero()) {
+ if (IsSubSetOrEqual(BCst, DCst))
+ return ConstantInt::get(LHS->getType(), !IsAnd);
+ return nullptr;
+ }
+
+ // At this point, B, D, E aren't zero and (B & D) == B, (B & D) == D or B ==
+ // D. If B is a superset of (or equal to) D, since E is not zero, LHS is
+ // subsumed by RHS (RHS implies LHS.) So the whole expression becomes
+ // RHS. For example,
+ // (icmp ne (A & 255), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
+ // (icmp ne (A & 15), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
+ if (IsSuperSetOrEqual(BCst, DCst))
+ return RHS;
+ // Otherwise, B is a subset of D. If B and E have a common bit set,
+ // ie. (B & E) != 0, then LHS is subsumed by RHS. For example.
+ // (icmp ne (A & 12), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
+ assert(IsSubSetOrEqual(BCst, DCst) && "Precondition due to above code");
+ if ((BCst->getValue() & ECst->getValue()) != 0)
+ return RHS;
+ // Otherwise, LHS and RHS contradict and the whole expression becomes false
+ // (or true if negated.) For example,
+ // (icmp ne (A & 7), 0) & (icmp eq (A & 15), 8) -> false.
+ // (icmp ne (A & 6), 0) & (icmp eq (A & 15), 8) -> false.
+ return ConstantInt::get(LHS->getType(), !IsAnd);
+}
+
+/// Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single
+/// (icmp(A & X) ==/!= Y), where the left-hand side and the right hand side
+/// aren't of the common mask pattern type.
+static Value *foldLogOpOfMaskedICmpsAsymmetric(
+ ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
+ Value *A, Value *B, Value *C, Value *D, Value *E,
+ ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
+ unsigned LHSMask, unsigned RHSMask,
+ llvm::InstCombiner::BuilderTy &Builder) {
+ assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
+ "Expected equality predicates for masked type of icmps.");
+ // Handle Mask_NotAllZeros-BMask_Mixed cases.
+ // (icmp ne/eq (A & B), C) &/| (icmp eq/ne (A & D), E), or
+ // (icmp eq/ne (A & B), C) &/| (icmp ne/eq (A & D), E)
+ // which gets swapped to
+ // (icmp ne/eq (A & D), E) &/| (icmp eq/ne (A & B), C).
+ if (!IsAnd) {
+ LHSMask = conjugateICmpMask(LHSMask);
+ RHSMask = conjugateICmpMask(RHSMask);
+ }
+ if ((LHSMask & Mask_NotAllZeros) && (RHSMask & BMask_Mixed)) {
+ if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
+ LHS, RHS, IsAnd, A, B, C, D, E,
+ PredL, PredR, Builder)) {
+ return V;
+ }
+ } else if ((LHSMask & BMask_Mixed) && (RHSMask & Mask_NotAllZeros)) {
+ if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
+ RHS, LHS, IsAnd, A, D, E, B, C,
+ PredR, PredL, Builder)) {
+ return V;
+ }
+ }
+ return nullptr;
+}
+
+/// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
+/// into a single (icmp(A & X) ==/!= Y).
+static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
+ llvm::InstCombiner::BuilderTy &Builder) {
+ Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
+ ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
+ Optional<std::pair<unsigned, unsigned>> MaskPair =
+ getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR);
+ if (!MaskPair)
+ return nullptr;
+ assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
+ "Expected equality predicates for masked type of icmps.");
+ unsigned LHSMask = MaskPair->first;
+ unsigned RHSMask = MaskPair->second;
+ unsigned Mask = LHSMask & RHSMask;
+ if (Mask == 0) {
+ // Even if the two sides don't share a common pattern, check if folding can
+ // still happen.
+ if (Value *V = foldLogOpOfMaskedICmpsAsymmetric(
+ LHS, RHS, IsAnd, A, B, C, D, E, PredL, PredR, LHSMask, RHSMask,
+ Builder))
+ return V;
+ return nullptr;
+ }
+
+ // In full generality:
+ // (icmp (A & B) Op C) | (icmp (A & D) Op E)
+ // == ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
+ //
+ // If the latter can be converted into (icmp (A & X) Op Y) then the former is
+ // equivalent to (icmp (A & X) !Op Y).
+ //
+ // Therefore, we can pretend for the rest of this function that we're dealing
+ // with the conjunction, provided we flip the sense of any comparisons (both
+ // input and output).
+
+ // In most cases we're going to produce an EQ for the "&&" case.
+ ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
+ if (!IsAnd) {
+ // Convert the masking analysis into its equivalent with negated
+ // comparisons.
+ Mask = conjugateICmpMask(Mask);
+ }
+
+ if (Mask & Mask_AllZeros) {
+ // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
+ // -> (icmp eq (A & (B|D)), 0)
+ Value *NewOr = Builder.CreateOr(B, D);
+ Value *NewAnd = Builder.CreateAnd(A, NewOr);
+ // We can't use C as zero because we might actually handle
+ // (icmp ne (A & B), B) & (icmp ne (A & D), D)
+ // with B and D, having a single bit set.
+ Value *Zero = Constant::getNullValue(A->getType());
+ return Builder.CreateICmp(NewCC, NewAnd, Zero);
+ }
+ if (Mask & BMask_AllOnes) {
+ // (icmp eq (A & B), B) & (icmp eq (A & D), D)
+ // -> (icmp eq (A & (B|D)), (B|D))
+ Value *NewOr = Builder.CreateOr(B, D);
+ Value *NewAnd = Builder.CreateAnd(A, NewOr);
+ return Builder.CreateICmp(NewCC, NewAnd, NewOr);
+ }
+ if (Mask & AMask_AllOnes) {
+ // (icmp eq (A & B), A) & (icmp eq (A & D), A)
+ // -> (icmp eq (A & (B&D)), A)
+ Value *NewAnd1 = Builder.CreateAnd(B, D);
+ Value *NewAnd2 = Builder.CreateAnd(A, NewAnd1);
+ return Builder.CreateICmp(NewCC, NewAnd2, A);
+ }
+
+ // Remaining cases assume at least that B and D are constant, and depend on
+ // their actual values. This isn't strictly necessary, just a "handle the
+ // easy cases for now" decision.
+ ConstantInt *BCst = dyn_cast<ConstantInt>(B);
+ if (!BCst)
+ return nullptr;
+ ConstantInt *DCst = dyn_cast<ConstantInt>(D);
+ if (!DCst)
+ return nullptr;
+
+ if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) {
+ // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
+ // (icmp ne (A & B), B) & (icmp ne (A & D), D)
+ // -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
+ // Only valid if one of the masks is a superset of the other (check "B&D" is
+ // the same as either B or D).
+ APInt NewMask = BCst->getValue() & DCst->getValue();
+
+ if (NewMask == BCst->getValue())
+ return LHS;
+ else if (NewMask == DCst->getValue())
+ return RHS;
+ }
+
+ if (Mask & AMask_NotAllOnes) {
+ // (icmp ne (A & B), B) & (icmp ne (A & D), D)
+ // -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
+ // Only valid if one of the masks is a superset of the other (check "B|D" is
+ // the same as either B or D).
+ APInt NewMask = BCst->getValue() | DCst->getValue();
+
+ if (NewMask == BCst->getValue())
+ return LHS;
+ else if (NewMask == DCst->getValue())
+ return RHS;
+ }
+
+ if (Mask & BMask_Mixed) {
+ // (icmp eq (A & B), C) & (icmp eq (A & D), E)
+ // We already know that B & C == C && D & E == E.
+ // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
+ // C and E, which are shared by both the mask B and the mask D, don't
+ // contradict, then we can transform to
+ // -> (icmp eq (A & (B|D)), (C|E))
+ // Currently, we only handle the case of B, C, D, and E being constant.
+ // We can't simply use C and E because we might actually handle
+ // (icmp ne (A & B), B) & (icmp eq (A & D), D)
+ // with B and D, having a single bit set.
+ ConstantInt *CCst = dyn_cast<ConstantInt>(C);
+ if (!CCst)
+ return nullptr;
+ ConstantInt *ECst = dyn_cast<ConstantInt>(E);
+ if (!ECst)
+ return nullptr;
+ if (PredL != NewCC)
+ CCst = cast<ConstantInt>(ConstantExpr::getXor(BCst, CCst));
+ if (PredR != NewCC)
+ ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst));
+
+ // If there is a conflict, we should actually return a false for the
+ // whole construct.
+ if (((BCst->getValue() & DCst->getValue()) &
+ (CCst->getValue() ^ ECst->getValue())).getBoolValue())
+ return ConstantInt::get(LHS->getType(), !IsAnd);
+
+ Value *NewOr1 = Builder.CreateOr(B, D);
+ Value *NewOr2 = ConstantExpr::getOr(CCst, ECst);
+ Value *NewAnd = Builder.CreateAnd(A, NewOr1);
+ return Builder.CreateICmp(NewCC, NewAnd, NewOr2);
+ }
+
+ return nullptr;
+}
+
+/// Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
+/// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
+/// If \p Inverted is true then the check is for the inverted range, e.g.
+/// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
+Value *InstCombiner::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1,
+ bool Inverted) {
+ // Check the lower range comparison, e.g. x >= 0
+ // InstCombine already ensured that if there is a constant it's on the RHS.
+ ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1));
+ if (!RangeStart)
+ return nullptr;
+
+ ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() :
+ Cmp0->getPredicate());
+
+ // Accept x > -1 or x >= 0 (after potentially inverting the predicate).
+ if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) ||
+ (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero())))
+ return nullptr;
+
+ ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() :
+ Cmp1->getPredicate());
+
+ Value *Input = Cmp0->getOperand(0);
+ Value *RangeEnd;
+ if (Cmp1->getOperand(0) == Input) {
+ // For the upper range compare we have: icmp x, n
+ RangeEnd = Cmp1->getOperand(1);
+ } else if (Cmp1->getOperand(1) == Input) {
+ // For the upper range compare we have: icmp n, x
+ RangeEnd = Cmp1->getOperand(0);
+ Pred1 = ICmpInst::getSwappedPredicate(Pred1);
+ } else {
+ return nullptr;
+ }
+
+ // Check the upper range comparison, e.g. x < n
+ ICmpInst::Predicate NewPred;
+ switch (Pred1) {
+ case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break;
+ case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break;
+ default: return nullptr;
+ }
+
+ // This simplification is only valid if the upper range is not negative.
+ KnownBits Known = computeKnownBits(RangeEnd, /*Depth=*/0, Cmp1);
+ if (!Known.isNonNegative())
+ return nullptr;
+
+ if (Inverted)
+ NewPred = ICmpInst::getInversePredicate(NewPred);
+
+ return Builder.CreateICmp(NewPred, Input, RangeEnd);
+}
+
+static Value *
+foldAndOrOfEqualityCmpsWithConstants(ICmpInst *LHS, ICmpInst *RHS,
+ bool JoinedByAnd,
+ InstCombiner::BuilderTy &Builder) {
+ Value *X = LHS->getOperand(0);
+ if (X != RHS->getOperand(0))
+ return nullptr;
+
+ const APInt *C1, *C2;
+ if (!match(LHS->getOperand(1), m_APInt(C1)) ||
+ !match(RHS->getOperand(1), m_APInt(C2)))
+ return nullptr;
+
+ // We only handle (X != C1 && X != C2) and (X == C1 || X == C2).
+ ICmpInst::Predicate Pred = LHS->getPredicate();
+ if (Pred != RHS->getPredicate())
+ return nullptr;
+ if (JoinedByAnd && Pred != ICmpInst::ICMP_NE)
+ return nullptr;
+ if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ)
+ return nullptr;
+
+ // The larger unsigned constant goes on the right.
+ if (C1->ugt(*C2))
+ std::swap(C1, C2);
+
+ APInt Xor = *C1 ^ *C2;
+ if (Xor.isPowerOf2()) {
+ // If LHSC and RHSC differ by only one bit, then set that bit in X and
+ // compare against the larger constant:
+ // (X == C1 || X == C2) --> (X | (C1 ^ C2)) == C2
+ // (X != C1 && X != C2) --> (X | (C1 ^ C2)) != C2
+ // We choose an 'or' with a Pow2 constant rather than the inverse mask with
+ // 'and' because that may lead to smaller codegen from a smaller constant.
+ Value *Or = Builder.CreateOr(X, ConstantInt::get(X->getType(), Xor));
+ return Builder.CreateICmp(Pred, Or, ConstantInt::get(X->getType(), *C2));
+ }
+
+ // Special case: get the ordering right when the values wrap around zero.
+ // Ie, we assumed the constants were unsigned when swapping earlier.
+ if (C1->isNullValue() && C2->isAllOnesValue())
+ std::swap(C1, C2);
+
+ if (*C1 == *C2 - 1) {
+ // (X == 13 || X == 14) --> X - 13 <=u 1
+ // (X != 13 && X != 14) --> X - 13 >u 1
+ // An 'add' is the canonical IR form, so favor that over a 'sub'.
+ Value *Add = Builder.CreateAdd(X, ConstantInt::get(X->getType(), -(*C1)));
+ auto NewPred = JoinedByAnd ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_ULE;
+ return Builder.CreateICmp(NewPred, Add, ConstantInt::get(X->getType(), 1));
+ }
+
+ return nullptr;
+}
+
+// Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
+// Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2)
+Value *InstCombiner::foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
+ bool JoinedByAnd,
+ Instruction &CxtI) {
+ ICmpInst::Predicate Pred = LHS->getPredicate();
+ if (Pred != RHS->getPredicate())
+ return nullptr;
+ if (JoinedByAnd && Pred != ICmpInst::ICMP_NE)
+ return nullptr;
+ if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ)
+ return nullptr;
+
+ // TODO support vector splats
+ ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1));
+ ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1));
+ if (!LHSC || !RHSC || !LHSC->isZero() || !RHSC->isZero())
+ return nullptr;
+
+ Value *A, *B, *C, *D;
+ if (match(LHS->getOperand(0), m_And(m_Value(A), m_Value(B))) &&
+ match(RHS->getOperand(0), m_And(m_Value(C), m_Value(D)))) {
+ if (A == D || B == D)
+ std::swap(C, D);
+ if (B == C)
+ std::swap(A, B);
+
+ if (A == C &&
+ isKnownToBeAPowerOfTwo(B, false, 0, &CxtI) &&
+ isKnownToBeAPowerOfTwo(D, false, 0, &CxtI)) {
+ Value *Mask = Builder.CreateOr(B, D);
+ Value *Masked = Builder.CreateAnd(A, Mask);
+ auto NewPred = JoinedByAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
+ return Builder.CreateICmp(NewPred, Masked, Mask);
+ }
+ }
+
+ return nullptr;
+}
+
+/// General pattern:
+/// X & Y
+///
+/// Where Y is checking that all the high bits (covered by a mask 4294967168)
+/// are uniform, i.e. %arg & 4294967168 can be either 4294967168 or 0
+/// Pattern can be one of:
+/// %t = add i32 %arg, 128
+/// %r = icmp ult i32 %t, 256
+/// Or
+/// %t0 = shl i32 %arg, 24
+/// %t1 = ashr i32 %t0, 24
+/// %r = icmp eq i32 %t1, %arg
+/// Or
+/// %t0 = trunc i32 %arg to i8
+/// %t1 = sext i8 %t0 to i32
+/// %r = icmp eq i32 %t1, %arg
+/// This pattern is a signed truncation check.
+///
+/// And X is checking that some bit in that same mask is zero.
+/// I.e. can be one of:
+/// %r = icmp sgt i32 %arg, -1
+/// Or
+/// %t = and i32 %arg, 2147483648
+/// %r = icmp eq i32 %t, 0
+///
+/// Since we are checking that all the bits in that mask are the same,
+/// and a particular bit is zero, what we are really checking is that all the
+/// masked bits are zero.
+/// So this should be transformed to:
+/// %r = icmp ult i32 %arg, 128
+static Value *foldSignedTruncationCheck(ICmpInst *ICmp0, ICmpInst *ICmp1,
+ Instruction &CxtI,
+ InstCombiner::BuilderTy &Builder) {
+ assert(CxtI.getOpcode() == Instruction::And);
+
+ // Match icmp ult (add %arg, C01), C1 (C1 == C01 << 1; powers of two)
+ auto tryToMatchSignedTruncationCheck = [](ICmpInst *ICmp, Value *&X,
+ APInt &SignBitMask) -> bool {
+ CmpInst::Predicate Pred;
+ const APInt *I01, *I1; // powers of two; I1 == I01 << 1
+ if (!(match(ICmp,
+ m_ICmp(Pred, m_Add(m_Value(X), m_Power2(I01)), m_Power2(I1))) &&
+ Pred == ICmpInst::ICMP_ULT && I1->ugt(*I01) && I01->shl(1) == *I1))
+ return false;
+ // Which bit is the new sign bit as per the 'signed truncation' pattern?
+ SignBitMask = *I01;
+ return true;
+ };
+
+ // One icmp needs to be 'signed truncation check'.
+ // We need to match this first, else we will mismatch commutative cases.
+ Value *X1;
+ APInt HighestBit;
+ ICmpInst *OtherICmp;
+ if (tryToMatchSignedTruncationCheck(ICmp1, X1, HighestBit))
+ OtherICmp = ICmp0;
+ else if (tryToMatchSignedTruncationCheck(ICmp0, X1, HighestBit))
+ OtherICmp = ICmp1;
+ else
+ return nullptr;
+
+ assert(HighestBit.isPowerOf2() && "expected to be power of two (non-zero)");
+
+ // Try to match/decompose into: icmp eq (X & Mask), 0
+ auto tryToDecompose = [](ICmpInst *ICmp, Value *&X,
+ APInt &UnsetBitsMask) -> bool {
+ CmpInst::Predicate Pred = ICmp->getPredicate();
+ // Can it be decomposed into icmp eq (X & Mask), 0 ?
+ if (llvm::decomposeBitTestICmp(ICmp->getOperand(0), ICmp->getOperand(1),
+ Pred, X, UnsetBitsMask,
+ /*LookThroughTrunc=*/false) &&
+ Pred == ICmpInst::ICMP_EQ)
+ return true;
+ // Is it icmp eq (X & Mask), 0 already?
+ const APInt *Mask;
+ if (match(ICmp, m_ICmp(Pred, m_And(m_Value(X), m_APInt(Mask)), m_Zero())) &&
+ Pred == ICmpInst::ICMP_EQ) {
+ UnsetBitsMask = *Mask;
+ return true;
+ }
+ return false;
+ };
+
+ // And the other icmp needs to be decomposable into a bit test.
+ Value *X0;
+ APInt UnsetBitsMask;
+ if (!tryToDecompose(OtherICmp, X0, UnsetBitsMask))
+ return nullptr;
+
+ assert(!UnsetBitsMask.isNullValue() && "empty mask makes no sense.");
+
+ // Are they working on the same value?
+ Value *X;
+ if (X1 == X0) {
+ // Ok as is.
+ X = X1;
+ } else if (match(X0, m_Trunc(m_Specific(X1)))) {
+ UnsetBitsMask = UnsetBitsMask.zext(X1->getType()->getScalarSizeInBits());
+ X = X1;
+ } else
+ return nullptr;
+
+ // So which bits should be uniform as per the 'signed truncation check'?
+ // (all the bits starting with (i.e. including) HighestBit)
+ APInt SignBitsMask = ~(HighestBit - 1U);
+
+ // UnsetBitsMask must have some common bits with SignBitsMask,
+ if (!UnsetBitsMask.intersects(SignBitsMask))
+ return nullptr;
+
+ // Does UnsetBitsMask contain any bits outside of SignBitsMask?
+ if (!UnsetBitsMask.isSubsetOf(SignBitsMask)) {
+ APInt OtherHighestBit = (~UnsetBitsMask) + 1U;
+ if (!OtherHighestBit.isPowerOf2())
+ return nullptr;
+ HighestBit = APIntOps::umin(HighestBit, OtherHighestBit);
+ }
+ // Else, if it does not, then all is ok as-is.
+
+ // %r = icmp ult %X, SignBit
+ return Builder.CreateICmpULT(X, ConstantInt::get(X->getType(), HighestBit),
+ CxtI.getName() + ".simplified");
+}
+
+/// Reduce a pair of compares that check if a value has exactly 1 bit set.
+static Value *foldIsPowerOf2(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd,
+ InstCombiner::BuilderTy &Builder) {
+ // Handle 'and' / 'or' commutation: make the equality check the first operand.
+ if (JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_NE)
+ std::swap(Cmp0, Cmp1);
+ else if (!JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_EQ)
+ std::swap(Cmp0, Cmp1);
+
+ // (X != 0) && (ctpop(X) u< 2) --> ctpop(X) == 1
+ CmpInst::Predicate Pred0, Pred1;
+ Value *X;
+ if (JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) &&
+ match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
+ m_SpecificInt(2))) &&
+ Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) {
+ Value *CtPop = Cmp1->getOperand(0);
+ return Builder.CreateICmpEQ(CtPop, ConstantInt::get(CtPop->getType(), 1));
+ }
+ // (X == 0) || (ctpop(X) u> 1) --> ctpop(X) != 1
+ if (!JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) &&
+ match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
+ m_SpecificInt(1))) &&
+ Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_UGT) {
+ Value *CtPop = Cmp1->getOperand(0);
+ return Builder.CreateICmpNE(CtPop, ConstantInt::get(CtPop->getType(), 1));
+ }
+ return nullptr;
+}
+
+/// Commuted variants are assumed to be handled by calling this function again
+/// with the parameters swapped.
+static Value *foldUnsignedUnderflowCheck(ICmpInst *ZeroICmp,
+ ICmpInst *UnsignedICmp, bool IsAnd,
+ const SimplifyQuery &Q,
+ InstCombiner::BuilderTy &Builder) {
+ Value *ZeroCmpOp;
+ ICmpInst::Predicate EqPred;
+ if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(ZeroCmpOp), m_Zero())) ||
+ !ICmpInst::isEquality(EqPred))
+ return nullptr;
+
+ auto IsKnownNonZero = [&](Value *V) {
+ return isKnownNonZero(V, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
+ };
+
+ ICmpInst::Predicate UnsignedPred;
+
+ Value *A, *B;
+ if (match(UnsignedICmp,
+ m_c_ICmp(UnsignedPred, m_Specific(ZeroCmpOp), m_Value(A))) &&
+ match(ZeroCmpOp, m_c_Add(m_Specific(A), m_Value(B))) &&
+ (ZeroICmp->hasOneUse() || UnsignedICmp->hasOneUse())) {
+ if (UnsignedICmp->getOperand(0) != ZeroCmpOp)
+ UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
+
+ auto GetKnownNonZeroAndOther = [&](Value *&NonZero, Value *&Other) {
+ if (!IsKnownNonZero(NonZero))
+ std::swap(NonZero, Other);
+ return IsKnownNonZero(NonZero);
+ };
+
+ // Given ZeroCmpOp = (A + B)
+ // ZeroCmpOp <= A && ZeroCmpOp != 0 --> (0-B) < A
+ // ZeroCmpOp > A || ZeroCmpOp == 0 --> (0-B) >= A
+ //
+ // ZeroCmpOp < A && ZeroCmpOp != 0 --> (0-X) < Y iff
+ // ZeroCmpOp >= A || ZeroCmpOp == 0 --> (0-X) >= Y iff
+ // with X being the value (A/B) that is known to be non-zero,
+ // and Y being remaining value.
+ if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
+ IsAnd)
+ return Builder.CreateICmpULT(Builder.CreateNeg(B), A);
+ if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE &&
+ IsAnd && GetKnownNonZeroAndOther(B, A))
+ return Builder.CreateICmpULT(Builder.CreateNeg(B), A);
+ if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
+ !IsAnd)
+ return Builder.CreateICmpUGE(Builder.CreateNeg(B), A);
+ if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ &&
+ !IsAnd && GetKnownNonZeroAndOther(B, A))
+ return Builder.CreateICmpUGE(Builder.CreateNeg(B), A);
+ }
+
+ Value *Base, *Offset;
+ if (!match(ZeroCmpOp, m_Sub(m_Value(Base), m_Value(Offset))))
+ return nullptr;
+
+ if (!match(UnsignedICmp,
+ m_c_ICmp(UnsignedPred, m_Specific(Base), m_Specific(Offset))) ||
+ !ICmpInst::isUnsigned(UnsignedPred))
+ return nullptr;
+ if (UnsignedICmp->getOperand(0) != Base)
+ UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
+
+ // Base >=/> Offset && (Base - Offset) != 0 <--> Base > Offset
+ // (no overflow and not null)
+ if ((UnsignedPred == ICmpInst::ICMP_UGE ||
+ UnsignedPred == ICmpInst::ICMP_UGT) &&
+ EqPred == ICmpInst::ICMP_NE && IsAnd)
+ return Builder.CreateICmpUGT(Base, Offset);
+
+ // Base <=/< Offset || (Base - Offset) == 0 <--> Base <= Offset
+ // (overflow or null)
+ if ((UnsignedPred == ICmpInst::ICMP_ULE ||
+ UnsignedPred == ICmpInst::ICMP_ULT) &&
+ EqPred == ICmpInst::ICMP_EQ && !IsAnd)
+ return Builder.CreateICmpULE(Base, Offset);
+
+ // Base <= Offset && (Base - Offset) != 0 --> Base < Offset
+ if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
+ IsAnd)
+ return Builder.CreateICmpULT(Base, Offset);
+
+ // Base > Offset || (Base - Offset) == 0 --> Base >= Offset
+ if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
+ !IsAnd)
+ return Builder.CreateICmpUGE(Base, Offset);
+
+ return nullptr;
+}
+
+/// Fold (icmp)&(icmp) if possible.
+Value *InstCombiner::foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS,
+ Instruction &CxtI) {
+ const SimplifyQuery Q = SQ.getWithInstruction(&CxtI);
+
+ // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2)
+ // if K1 and K2 are a one-bit mask.
+ if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, true, CxtI))
+ return V;
+
+ ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
+
+ // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
+ if (predicatesFoldable(PredL, PredR)) {
+ if (LHS->getOperand(0) == RHS->getOperand(1) &&
+ LHS->getOperand(1) == RHS->getOperand(0))
+ LHS->swapOperands();
+ if (LHS->getOperand(0) == RHS->getOperand(0) &&
+ LHS->getOperand(1) == RHS->getOperand(1)) {
+ Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
+ unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
+ bool IsSigned = LHS->isSigned() || RHS->isSigned();
+ return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder);
+ }
+ }
+
+ // handle (roughly): (icmp eq (A & B), C) & (icmp eq (A & D), E)
+ if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder))
+ return V;
+
+ // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
+ if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/false))
+ return V;
+
+ // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n
+ if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/false))
+ return V;
+
+ if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, true, Builder))
+ return V;
+
+ if (Value *V = foldSignedTruncationCheck(LHS, RHS, CxtI, Builder))
+ return V;
+
+ if (Value *V = foldIsPowerOf2(LHS, RHS, true /* JoinedByAnd */, Builder))
+ return V;
+
+ if (Value *X =
+ foldUnsignedUnderflowCheck(LHS, RHS, /*IsAnd=*/true, Q, Builder))
+ return X;
+ if (Value *X =
+ foldUnsignedUnderflowCheck(RHS, LHS, /*IsAnd=*/true, Q, Builder))
+ return X;
+
+ // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
+ Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
+ ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1));
+ ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1));
+ if (!LHSC || !RHSC)
+ return nullptr;
+
+ if (LHSC == RHSC && PredL == PredR) {
+ // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
+ // where C is a power of 2 or
+ // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
+ if ((PredL == ICmpInst::ICMP_ULT && LHSC->getValue().isPowerOf2()) ||
+ (PredL == ICmpInst::ICMP_EQ && LHSC->isZero())) {
+ Value *NewOr = Builder.CreateOr(LHS0, RHS0);
+ return Builder.CreateICmp(PredL, NewOr, LHSC);
+ }
+ }
+
+ // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
+ // where CMAX is the all ones value for the truncated type,
+ // iff the lower bits of C2 and CA are zero.
+ if (PredL == ICmpInst::ICMP_EQ && PredL == PredR && LHS->hasOneUse() &&
+ RHS->hasOneUse()) {
+ Value *V;
+ ConstantInt *AndC, *SmallC = nullptr, *BigC = nullptr;
+
+ // (trunc x) == C1 & (and x, CA) == C2
+ // (and x, CA) == C2 & (trunc x) == C1
+ if (match(RHS0, m_Trunc(m_Value(V))) &&
+ match(LHS0, m_And(m_Specific(V), m_ConstantInt(AndC)))) {
+ SmallC = RHSC;
+ BigC = LHSC;
+ } else if (match(LHS0, m_Trunc(m_Value(V))) &&
+ match(RHS0, m_And(m_Specific(V), m_ConstantInt(AndC)))) {
+ SmallC = LHSC;
+ BigC = RHSC;
+ }
+
+ if (SmallC && BigC) {
+ unsigned BigBitSize = BigC->getType()->getBitWidth();
+ unsigned SmallBitSize = SmallC->getType()->getBitWidth();
+
+ // Check that the low bits are zero.
+ APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
+ if ((Low & AndC->getValue()).isNullValue() &&
+ (Low & BigC->getValue()).isNullValue()) {
+ Value *NewAnd = Builder.CreateAnd(V, Low | AndC->getValue());
+ APInt N = SmallC->getValue().zext(BigBitSize) | BigC->getValue();
+ Value *NewVal = ConstantInt::get(AndC->getType()->getContext(), N);
+ return Builder.CreateICmp(PredL, NewAnd, NewVal);
+ }
+ }
+ }
+
+ // From here on, we only handle:
+ // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
+ if (LHS0 != RHS0)
+ return nullptr;
+
+ // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere.
+ if (PredL == ICmpInst::ICMP_UGE || PredL == ICmpInst::ICMP_ULE ||
+ PredR == ICmpInst::ICMP_UGE || PredR == ICmpInst::ICMP_ULE ||
+ PredL == ICmpInst::ICMP_SGE || PredL == ICmpInst::ICMP_SLE ||
+ PredR == ICmpInst::ICMP_SGE || PredR == ICmpInst::ICMP_SLE)
+ return nullptr;
+
+ // We can't fold (ugt x, C) & (sgt x, C2).
+ if (!predicatesFoldable(PredL, PredR))
+ return nullptr;
+
+ // Ensure that the larger constant is on the RHS.
+ bool ShouldSwap;
+ if (CmpInst::isSigned(PredL) ||
+ (ICmpInst::isEquality(PredL) && CmpInst::isSigned(PredR)))
+ ShouldSwap = LHSC->getValue().sgt(RHSC->getValue());
+ else
+ ShouldSwap = LHSC->getValue().ugt(RHSC->getValue());
+
+ if (ShouldSwap) {
+ std::swap(LHS, RHS);
+ std::swap(LHSC, RHSC);
+ std::swap(PredL, PredR);
+ }
+
+ // At this point, we know we have two icmp instructions
+ // comparing a value against two constants and and'ing the result
+ // together. Because of the above check, we know that we only have
+ // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
+ // (from the icmp folding check above), that the two constants
+ // are not equal and that the larger constant is on the RHS
+ assert(LHSC != RHSC && "Compares not folded above?");
+
+ switch (PredL) {
+ default:
+ llvm_unreachable("Unknown integer condition code!");
+ case ICmpInst::ICMP_NE:
+ switch (PredR) {
+ default:
+ llvm_unreachable("Unknown integer condition code!");
+ case ICmpInst::ICMP_ULT:
+ // (X != 13 & X u< 14) -> X < 13
+ if (LHSC->getValue() == (RHSC->getValue() - 1))
+ return Builder.CreateICmpULT(LHS0, LHSC);
+ if (LHSC->isZero()) // (X != 0 & X u< C) -> X-1 u< C-1
+ return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
+ false, true);
+ break; // (X != 13 & X u< 15) -> no change
+ case ICmpInst::ICMP_SLT:
+ // (X != 13 & X s< 14) -> X < 13
+ if (LHSC->getValue() == (RHSC->getValue() - 1))
+ return Builder.CreateICmpSLT(LHS0, LHSC);
+ // (X != INT_MIN & X s< C) -> X-(INT_MIN+1) u< (C-(INT_MIN+1))
+ if (LHSC->isMinValue(true))
+ return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
+ true, true);
+ break; // (X != 13 & X s< 15) -> no change
+ case ICmpInst::ICMP_NE:
+ // Potential folds for this case should already be handled.
+ break;
+ }
+ break;
+ case ICmpInst::ICMP_UGT:
+ switch (PredR) {
+ default:
+ llvm_unreachable("Unknown integer condition code!");
+ case ICmpInst::ICMP_NE:
+ // (X u> 13 & X != 14) -> X u> 14
+ if (RHSC->getValue() == (LHSC->getValue() + 1))
+ return Builder.CreateICmp(PredL, LHS0, RHSC);
+ // X u> C & X != UINT_MAX -> (X-(C+1)) u< UINT_MAX-(C+1)
+ if (RHSC->isMaxValue(false))
+ return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
+ false, true);
+ break; // (X u> 13 & X != 15) -> no change
+ case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) u< 1
+ return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
+ false, true);
+ }
+ break;
+ case ICmpInst::ICMP_SGT:
+ switch (PredR) {
+ default:
+ llvm_unreachable("Unknown integer condition code!");
+ case ICmpInst::ICMP_NE:
+ // (X s> 13 & X != 14) -> X s> 14
+ if (RHSC->getValue() == (LHSC->getValue() + 1))
+ return Builder.CreateICmp(PredL, LHS0, RHSC);
+ // X s> C & X != INT_MAX -> (X-(C+1)) u< INT_MAX-(C+1)
+ if (RHSC->isMaxValue(true))
+ return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
+ true, true);
+ break; // (X s> 13 & X != 15) -> no change
+ case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) u< 1
+ return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), true,
+ true);
+ }
+ break;
+ }
+
+ return nullptr;
+}
+
+Value *InstCombiner::foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
+ Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
+ Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
+ FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
+
+ if (LHS0 == RHS1 && RHS0 == LHS1) {
+ // Swap RHS operands to match LHS.
+ PredR = FCmpInst::getSwappedPredicate(PredR);
+ std::swap(RHS0, RHS1);
+ }
+
+ // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
+ // Suppose the relation between x and y is R, where R is one of
+ // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for
+ // testing the desired relations.
+ //
+ // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
+ // bool(R & CC0) && bool(R & CC1)
+ // = bool((R & CC0) & (R & CC1))
+ // = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency
+ //
+ // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
+ // bool(R & CC0) || bool(R & CC1)
+ // = bool((R & CC0) | (R & CC1))
+ // = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;)
+ if (LHS0 == RHS0 && LHS1 == RHS1) {
+ unsigned FCmpCodeL = getFCmpCode(PredL);
+ unsigned FCmpCodeR = getFCmpCode(PredR);
+ unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR;
+ return getFCmpValue(NewPred, LHS0, LHS1, Builder);
+ }
+
+ if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
+ (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
+ if (LHS0->getType() != RHS0->getType())
+ return nullptr;
+
+ // FCmp canonicalization ensures that (fcmp ord/uno X, X) and
+ // (fcmp ord/uno X, C) will be transformed to (fcmp X, +0.0).
+ if (match(LHS1, m_PosZeroFP()) && match(RHS1, m_PosZeroFP()))
+ // Ignore the constants because they are obviously not NANs:
+ // (fcmp ord x, 0.0) & (fcmp ord y, 0.0) -> (fcmp ord x, y)
+ // (fcmp uno x, 0.0) | (fcmp uno y, 0.0) -> (fcmp uno x, y)
+ return Builder.CreateFCmp(PredL, LHS0, RHS0);
+ }
+
+ return nullptr;
+}
+
+/// This a limited reassociation for a special case (see above) where we are
+/// checking if two values are either both NAN (unordered) or not-NAN (ordered).
+/// This could be handled more generally in '-reassociation', but it seems like
+/// an unlikely pattern for a large number of logic ops and fcmps.
+static Instruction *reassociateFCmps(BinaryOperator &BO,
+ InstCombiner::BuilderTy &Builder) {
+ Instruction::BinaryOps Opcode = BO.getOpcode();
+ assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
+ "Expecting and/or op for fcmp transform");
+
+ // There are 4 commuted variants of the pattern. Canonicalize operands of this
+ // logic op so an fcmp is operand 0 and a matching logic op is operand 1.
+ Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1), *X;
+ FCmpInst::Predicate Pred;
+ if (match(Op1, m_FCmp(Pred, m_Value(), m_AnyZeroFP())))
+ std::swap(Op0, Op1);
+
+ // Match inner binop and the predicate for combining 2 NAN checks into 1.
+ BinaryOperator *BO1;
+ FCmpInst::Predicate NanPred = Opcode == Instruction::And ? FCmpInst::FCMP_ORD
+ : FCmpInst::FCMP_UNO;
+ if (!match(Op0, m_FCmp(Pred, m_Value(X), m_AnyZeroFP())) || Pred != NanPred ||
+ !match(Op1, m_BinOp(BO1)) || BO1->getOpcode() != Opcode)
+ return nullptr;
+
+ // The inner logic op must have a matching fcmp operand.
+ Value *BO10 = BO1->getOperand(0), *BO11 = BO1->getOperand(1), *Y;
+ if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) ||
+ Pred != NanPred || X->getType() != Y->getType())
+ std::swap(BO10, BO11);
+
+ if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) ||
+ Pred != NanPred || X->getType() != Y->getType())
+ return nullptr;
+
+ // and (fcmp ord X, 0), (and (fcmp ord Y, 0), Z) --> and (fcmp ord X, Y), Z
+ // or (fcmp uno X, 0), (or (fcmp uno Y, 0), Z) --> or (fcmp uno X, Y), Z
+ Value *NewFCmp = Builder.CreateFCmp(Pred, X, Y);
+ if (auto *NewFCmpInst = dyn_cast<FCmpInst>(NewFCmp)) {
+ // Intersect FMF from the 2 source fcmps.
+ NewFCmpInst->copyIRFlags(Op0);
+ NewFCmpInst->andIRFlags(BO10);
+ }
+ return BinaryOperator::Create(Opcode, NewFCmp, BO11);
+}
+
+/// Match De Morgan's Laws:
+/// (~A & ~B) == (~(A | B))
+/// (~A | ~B) == (~(A & B))
+static Instruction *matchDeMorgansLaws(BinaryOperator &I,
+ InstCombiner::BuilderTy &Builder) {
+ auto Opcode = I.getOpcode();
+ assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
+ "Trying to match De Morgan's Laws with something other than and/or");
+
+ // Flip the logic operation.
+ Opcode = (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
+
+ Value *A, *B;
+ if (match(I.getOperand(0), m_OneUse(m_Not(m_Value(A)))) &&
+ match(I.getOperand(1), m_OneUse(m_Not(m_Value(B)))) &&
+ !isFreeToInvert(A, A->hasOneUse()) &&
+ !isFreeToInvert(B, B->hasOneUse())) {
+ Value *AndOr = Builder.CreateBinOp(Opcode, A, B, I.getName() + ".demorgan");
+ return BinaryOperator::CreateNot(AndOr);
+ }
+
+ return nullptr;
+}
+
+bool InstCombiner::shouldOptimizeCast(CastInst *CI) {
+ Value *CastSrc = CI->getOperand(0);
+
+ // Noop casts and casts of constants should be eliminated trivially.
+ if (CI->getSrcTy() == CI->getDestTy() || isa<Constant>(CastSrc))
+ return false;
+
+ // If this cast is paired with another cast that can be eliminated, we prefer
+ // to have it eliminated.
+ if (const auto *PrecedingCI = dyn_cast<CastInst>(CastSrc))
+ if (isEliminableCastPair(PrecedingCI, CI))
+ return false;
+
+ return true;
+}
+
+/// Fold {and,or,xor} (cast X), C.
+static Instruction *foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast,
+ InstCombiner::BuilderTy &Builder) {
+ Constant *C = dyn_cast<Constant>(Logic.getOperand(1));
+ if (!C)
+ return nullptr;
+
+ auto LogicOpc = Logic.getOpcode();
+ Type *DestTy = Logic.getType();
+ Type *SrcTy = Cast->getSrcTy();
+
+ // Move the logic operation ahead of a zext or sext if the constant is
+ // unchanged in the smaller source type. Performing the logic in a smaller
+ // type may provide more information to later folds, and the smaller logic
+ // instruction may be cheaper (particularly in the case of vectors).
+ Value *X;
+ if (match(Cast, m_OneUse(m_ZExt(m_Value(X))))) {
+ Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
+ Constant *ZextTruncC = ConstantExpr::getZExt(TruncC, DestTy);
+ if (ZextTruncC == C) {
+ // LogicOpc (zext X), C --> zext (LogicOpc X, C)
+ Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
+ return new ZExtInst(NewOp, DestTy);
+ }
+ }
+
+ if (match(Cast, m_OneUse(m_SExt(m_Value(X))))) {
+ Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
+ Constant *SextTruncC = ConstantExpr::getSExt(TruncC, DestTy);
+ if (SextTruncC == C) {
+ // LogicOpc (sext X), C --> sext (LogicOpc X, C)
+ Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
+ return new SExtInst(NewOp, DestTy);
+ }
+ }
+
+ return nullptr;
+}
+
+/// Fold {and,or,xor} (cast X), Y.
+Instruction *InstCombiner::foldCastedBitwiseLogic(BinaryOperator &I) {
+ auto LogicOpc = I.getOpcode();
+ assert(I.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding");
+
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ CastInst *Cast0 = dyn_cast<CastInst>(Op0);
+ if (!Cast0)
+ return nullptr;
+
+ // This must be a cast from an integer or integer vector source type to allow
+ // transformation of the logic operation to the source type.
+ Type *DestTy = I.getType();
+ Type *SrcTy = Cast0->getSrcTy();
+ if (!SrcTy->isIntOrIntVectorTy())
+ return nullptr;
+
+ if (Instruction *Ret = foldLogicCastConstant(I, Cast0, Builder))
+ return Ret;
+
+ CastInst *Cast1 = dyn_cast<CastInst>(Op1);
+ if (!Cast1)
+ return nullptr;
+
+ // Both operands of the logic operation are casts. The casts must be of the
+ // same type for reduction.
+ auto CastOpcode = Cast0->getOpcode();
+ if (CastOpcode != Cast1->getOpcode() || SrcTy != Cast1->getSrcTy())
+ return nullptr;
+
+ Value *Cast0Src = Cast0->getOperand(0);
+ Value *Cast1Src = Cast1->getOperand(0);
+
+ // fold logic(cast(A), cast(B)) -> cast(logic(A, B))
+ if (shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) {
+ Value *NewOp = Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src,
+ I.getName());
+ return CastInst::Create(CastOpcode, NewOp, DestTy);
+ }
+
+ // For now, only 'and'/'or' have optimizations after this.
+ if (LogicOpc == Instruction::Xor)
+ return nullptr;
+
+ // If this is logic(cast(icmp), cast(icmp)), try to fold this even if the
+ // cast is otherwise not optimizable. This happens for vector sexts.
+ ICmpInst *ICmp0 = dyn_cast<ICmpInst>(Cast0Src);
+ ICmpInst *ICmp1 = dyn_cast<ICmpInst>(Cast1Src);
+ if (ICmp0 && ICmp1) {
+ Value *Res = LogicOpc == Instruction::And ? foldAndOfICmps(ICmp0, ICmp1, I)
+ : foldOrOfICmps(ICmp0, ICmp1, I);
+ if (Res)
+ return CastInst::Create(CastOpcode, Res, DestTy);
+ return nullptr;
+ }
+
+ // If this is logic(cast(fcmp), cast(fcmp)), try to fold this even if the
+ // cast is otherwise not optimizable. This happens for vector sexts.
+ FCmpInst *FCmp0 = dyn_cast<FCmpInst>(Cast0Src);
+ FCmpInst *FCmp1 = dyn_cast<FCmpInst>(Cast1Src);
+ if (FCmp0 && FCmp1)
+ if (Value *R = foldLogicOfFCmps(FCmp0, FCmp1, LogicOpc == Instruction::And))
+ return CastInst::Create(CastOpcode, R, DestTy);
+
+ return nullptr;
+}
+
+static Instruction *foldAndToXor(BinaryOperator &I,
+ InstCombiner::BuilderTy &Builder) {
+ assert(I.getOpcode() == Instruction::And);
+ Value *Op0 = I.getOperand(0);
+ Value *Op1 = I.getOperand(1);
+ Value *A, *B;
+
+ // Operand complexity canonicalization guarantees that the 'or' is Op0.
+ // (A | B) & ~(A & B) --> A ^ B
+ // (A | B) & ~(B & A) --> A ^ B
+ if (match(&I, m_BinOp(m_Or(m_Value(A), m_Value(B)),
+ m_Not(m_c_And(m_Deferred(A), m_Deferred(B))))))
+ return BinaryOperator::CreateXor(A, B);
+
+ // (A | ~B) & (~A | B) --> ~(A ^ B)
+ // (A | ~B) & (B | ~A) --> ~(A ^ B)
+ // (~B | A) & (~A | B) --> ~(A ^ B)
+ // (~B | A) & (B | ~A) --> ~(A ^ B)
+ if (Op0->hasOneUse() || Op1->hasOneUse())
+ if (match(&I, m_BinOp(m_c_Or(m_Value(A), m_Not(m_Value(B))),
+ m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
+ return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
+
+ return nullptr;
+}
+
+static Instruction *foldOrToXor(BinaryOperator &I,
+ InstCombiner::BuilderTy &Builder) {
+ assert(I.getOpcode() == Instruction::Or);
+ Value *Op0 = I.getOperand(0);
+ Value *Op1 = I.getOperand(1);
+ Value *A, *B;
+
+ // Operand complexity canonicalization guarantees that the 'and' is Op0.
+ // (A & B) | ~(A | B) --> ~(A ^ B)
+ // (A & B) | ~(B | A) --> ~(A ^ B)
+ if (Op0->hasOneUse() || Op1->hasOneUse())
+ if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
+ match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
+ return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
+
+ // (A & ~B) | (~A & B) --> A ^ B
+ // (A & ~B) | (B & ~A) --> A ^ B
+ // (~B & A) | (~A & B) --> A ^ B
+ // (~B & A) | (B & ~A) --> A ^ B
+ if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
+ match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))
+ return BinaryOperator::CreateXor(A, B);
+
+ return nullptr;
+}
+
+/// Return true if a constant shift amount is always less than the specified
+/// bit-width. If not, the shift could create poison in the narrower type.
+static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth) {
+ if (auto *ScalarC = dyn_cast<ConstantInt>(C))
+ return ScalarC->getZExtValue() < BitWidth;
+
+ if (C->getType()->isVectorTy()) {
+ // Check each element of a constant vector.
+ unsigned NumElts = C->getType()->getVectorNumElements();
+ for (unsigned i = 0; i != NumElts; ++i) {
+ Constant *Elt = C->getAggregateElement(i);
+ if (!Elt)
+ return false;
+ if (isa<UndefValue>(Elt))
+ continue;
+ auto *CI = dyn_cast<ConstantInt>(Elt);
+ if (!CI || CI->getZExtValue() >= BitWidth)
+ return false;
+ }
+ return true;
+ }
+
+ // The constant is a constant expression or unknown.
+ return false;
+}
+
+/// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and
+/// a common zext operand: and (binop (zext X), C), (zext X).
+Instruction *InstCombiner::narrowMaskedBinOp(BinaryOperator &And) {
+ // This transform could also apply to {or, and, xor}, but there are better
+ // folds for those cases, so we don't expect those patterns here. AShr is not
+ // handled because it should always be transformed to LShr in this sequence.
+ // The subtract transform is different because it has a constant on the left.
+ // Add/mul commute the constant to RHS; sub with constant RHS becomes add.
+ Value *Op0 = And.getOperand(0), *Op1 = And.getOperand(1);
+ Constant *C;
+ if (!match(Op0, m_OneUse(m_Add(m_Specific(Op1), m_Constant(C)))) &&
+ !match(Op0, m_OneUse(m_Mul(m_Specific(Op1), m_Constant(C)))) &&
+ !match(Op0, m_OneUse(m_LShr(m_Specific(Op1), m_Constant(C)))) &&
+ !match(Op0, m_OneUse(m_Shl(m_Specific(Op1), m_Constant(C)))) &&
+ !match(Op0, m_OneUse(m_Sub(m_Constant(C), m_Specific(Op1)))))
+ return nullptr;
+
+ Value *X;
+ if (!match(Op1, m_ZExt(m_Value(X))) || Op1->hasNUsesOrMore(3))
+ return nullptr;
+
+ Type *Ty = And.getType();
+ if (!isa<VectorType>(Ty) && !shouldChangeType(Ty, X->getType()))
+ return nullptr;
+
+ // If we're narrowing a shift, the shift amount must be safe (less than the
+ // width) in the narrower type. If the shift amount is greater, instsimplify
+ // usually handles that case, but we can't guarantee/assert it.
+ Instruction::BinaryOps Opc = cast<BinaryOperator>(Op0)->getOpcode();
+ if (Opc == Instruction::LShr || Opc == Instruction::Shl)
+ if (!canNarrowShiftAmt(C, X->getType()->getScalarSizeInBits()))
+ return nullptr;
+
+ // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X)
+ // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X)
+ Value *NewC = ConstantExpr::getTrunc(C, X->getType());
+ Value *NewBO = Opc == Instruction::Sub ? Builder.CreateBinOp(Opc, NewC, X)
+ : Builder.CreateBinOp(Opc, X, NewC);
+ return new ZExtInst(Builder.CreateAnd(NewBO, X), Ty);
+}
+
+// FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
+// here. We should standardize that construct where it is needed or choose some
+// other way to ensure that commutated variants of patterns are not missed.
+Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
+ if (Value *V = SimplifyAndInst(I.getOperand(0), I.getOperand(1),
+ SQ.getWithInstruction(&I)))
+ return replaceInstUsesWith(I, V);
+
+ if (SimplifyAssociativeOrCommutative(I))
+ return &I;
+
+ if (Instruction *X = foldVectorBinop(I))
+ return X;
+
+ // See if we can simplify any instructions used by the instruction whose sole
+ // purpose is to compute bits we don't care about.
+ if (SimplifyDemandedInstructionBits(I))
+ return &I;
+
+ // Do this before using distributive laws to catch simple and/or/not patterns.
+ if (Instruction *Xor = foldAndToXor(I, Builder))
+ return Xor;
+
+ // (A|B)&(A|C) -> A|(B&C) etc
+ if (Value *V = SimplifyUsingDistributiveLaws(I))
+ return replaceInstUsesWith(I, V);
+
+ if (Value *V = SimplifyBSwap(I, Builder))
+ return replaceInstUsesWith(I, V);
+
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ const APInt *C;
+ if (match(Op1, m_APInt(C))) {
+ Value *X, *Y;
+ if (match(Op0, m_OneUse(m_LogicalShift(m_One(), m_Value(X)))) &&
+ C->isOneValue()) {
+ // (1 << X) & 1 --> zext(X == 0)
+ // (1 >> X) & 1 --> zext(X == 0)
+ Value *IsZero = Builder.CreateICmpEQ(X, ConstantInt::get(I.getType(), 0));
+ return new ZExtInst(IsZero, I.getType());
+ }
+
+ const APInt *XorC;
+ if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_APInt(XorC))))) {
+ // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
+ Constant *NewC = ConstantInt::get(I.getType(), *C & *XorC);
+ Value *And = Builder.CreateAnd(X, Op1);
+ And->takeName(Op0);
+ return BinaryOperator::CreateXor(And, NewC);
+ }
+
+ const APInt *OrC;
+ if (match(Op0, m_OneUse(m_Or(m_Value(X), m_APInt(OrC))))) {
+ // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2)
+ // NOTE: This reduces the number of bits set in the & mask, which
+ // can expose opportunities for store narrowing for scalars.
+ // NOTE: SimplifyDemandedBits should have already removed bits from C1
+ // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in
+ // above, but this feels safer.
+ APInt Together = *C & *OrC;
+ Value *And = Builder.CreateAnd(X, ConstantInt::get(I.getType(),
+ Together ^ *C));
+ And->takeName(Op0);
+ return BinaryOperator::CreateOr(And, ConstantInt::get(I.getType(),
+ Together));
+ }
+
+ // If the mask is only needed on one incoming arm, push the 'and' op up.
+ if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_Value(Y)))) ||
+ match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
+ APInt NotAndMask(~(*C));
+ BinaryOperator::BinaryOps BinOp = cast<BinaryOperator>(Op0)->getOpcode();
+ if (MaskedValueIsZero(X, NotAndMask, 0, &I)) {
+ // Not masking anything out for the LHS, move mask to RHS.
+ // and ({x}or X, Y), C --> {x}or X, (and Y, C)
+ Value *NewRHS = Builder.CreateAnd(Y, Op1, Y->getName() + ".masked");
+ return BinaryOperator::Create(BinOp, X, NewRHS);
+ }
+ if (!isa<Constant>(Y) && MaskedValueIsZero(Y, NotAndMask, 0, &I)) {
+ // Not masking anything out for the RHS, move mask to LHS.
+ // and ({x}or X, Y), C --> {x}or (and X, C), Y
+ Value *NewLHS = Builder.CreateAnd(X, Op1, X->getName() + ".masked");
+ return BinaryOperator::Create(BinOp, NewLHS, Y);
+ }
+ }
+
+ }
+
+ if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
+ const APInt &AndRHSMask = AndRHS->getValue();
+
+ // Optimize a variety of ((val OP C1) & C2) combinations...
+ if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
+ // ((C1 OP zext(X)) & C2) -> zext((C1-X) & C2) if C2 fits in the bitwidth
+ // of X and OP behaves well when given trunc(C1) and X.
+ // TODO: Do this for vectors by using m_APInt isntead of m_ConstantInt.
+ switch (Op0I->getOpcode()) {
+ default:
+ break;
+ case Instruction::Xor:
+ case Instruction::Or:
+ case Instruction::Mul:
+ case Instruction::Add:
+ case Instruction::Sub:
+ Value *X;
+ ConstantInt *C1;
+ // TODO: The one use restrictions could be relaxed a little if the AND
+ // is going to be removed.
+ if (match(Op0I, m_OneUse(m_c_BinOp(m_OneUse(m_ZExt(m_Value(X))),
+ m_ConstantInt(C1))))) {
+ if (AndRHSMask.isIntN(X->getType()->getScalarSizeInBits())) {
+ auto *TruncC1 = ConstantExpr::getTrunc(C1, X->getType());
+ Value *BinOp;
+ Value *Op0LHS = Op0I->getOperand(0);
+ if (isa<ZExtInst>(Op0LHS))
+ BinOp = Builder.CreateBinOp(Op0I->getOpcode(), X, TruncC1);
+ else
+ BinOp = Builder.CreateBinOp(Op0I->getOpcode(), TruncC1, X);
+ auto *TruncC2 = ConstantExpr::getTrunc(AndRHS, X->getType());
+ auto *And = Builder.CreateAnd(BinOp, TruncC2);
+ return new ZExtInst(And, I.getType());
+ }
+ }
+ }
+
+ if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
+ if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
+ return Res;
+ }
+
+ // If this is an integer truncation, and if the source is an 'and' with
+ // immediate, transform it. This frequently occurs for bitfield accesses.
+ {
+ Value *X = nullptr; ConstantInt *YC = nullptr;
+ if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
+ // Change: and (trunc (and X, YC) to T), C2
+ // into : and (trunc X to T), trunc(YC) & C2
+ // This will fold the two constants together, which may allow
+ // other simplifications.
+ Value *NewCast = Builder.CreateTrunc(X, I.getType(), "and.shrunk");
+ Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
+ C3 = ConstantExpr::getAnd(C3, AndRHS);
+ return BinaryOperator::CreateAnd(NewCast, C3);
+ }
+ }
+ }
+
+ if (Instruction *Z = narrowMaskedBinOp(I))
+ return Z;
+
+ if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
+ return FoldedLogic;
+
+ if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
+ return DeMorgan;
+
+ {
+ Value *A, *B, *C;
+ // A & (A ^ B) --> A & ~B
+ if (match(Op1, m_OneUse(m_c_Xor(m_Specific(Op0), m_Value(B)))))
+ return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(B));
+ // (A ^ B) & A --> A & ~B
+ if (match(Op0, m_OneUse(m_c_Xor(m_Specific(Op1), m_Value(B)))))
+ return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(B));
+
+ // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
+ if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
+ if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
+ if (Op1->hasOneUse() || isFreeToInvert(C, C->hasOneUse()))
+ return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(C));
+
+ // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
+ if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
+ if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
+ if (Op0->hasOneUse() || isFreeToInvert(C, C->hasOneUse()))
+ return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(C));
+
+ // (A | B) & ((~A) ^ B) -> (A & B)
+ // (A | B) & (B ^ (~A)) -> (A & B)
+ // (B | A) & ((~A) ^ B) -> (A & B)
+ // (B | A) & (B ^ (~A)) -> (A & B)
+ if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
+ match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
+ return BinaryOperator::CreateAnd(A, B);
+
+ // ((~A) ^ B) & (A | B) -> (A & B)
+ // ((~A) ^ B) & (B | A) -> (A & B)
+ // (B ^ (~A)) & (A | B) -> (A & B)
+ // (B ^ (~A)) & (B | A) -> (A & B)
+ if (match(Op0, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
+ match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
+ return BinaryOperator::CreateAnd(A, B);
+ }
+
+ {
+ ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
+ ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
+ if (LHS && RHS)
+ if (Value *Res = foldAndOfICmps(LHS, RHS, I))
+ return replaceInstUsesWith(I, Res);
+
+ // TODO: Make this recursive; it's a little tricky because an arbitrary
+ // number of 'and' instructions might have to be created.
+ Value *X, *Y;
+ if (LHS && match(Op1, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
+ if (auto *Cmp = dyn_cast<ICmpInst>(X))
+ if (Value *Res = foldAndOfICmps(LHS, Cmp, I))
+ return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y));
+ if (auto *Cmp = dyn_cast<ICmpInst>(Y))
+ if (Value *Res = foldAndOfICmps(LHS, Cmp, I))
+ return replaceInstUsesWith(I, Builder.CreateAnd(Res, X));
+ }
+ if (RHS && match(Op0, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
+ if (auto *Cmp = dyn_cast<ICmpInst>(X))
+ if (Value *Res = foldAndOfICmps(Cmp, RHS, I))
+ return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y));
+ if (auto *Cmp = dyn_cast<ICmpInst>(Y))
+ if (Value *Res = foldAndOfICmps(Cmp, RHS, I))
+ return replaceInstUsesWith(I, Builder.CreateAnd(Res, X));
+ }
+ }
+
+ if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
+ if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
+ if (Value *Res = foldLogicOfFCmps(LHS, RHS, true))
+ return replaceInstUsesWith(I, Res);
+
+ if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
+ return FoldedFCmps;
+
+ if (Instruction *CastedAnd = foldCastedBitwiseLogic(I))
+ return CastedAnd;
+
+ // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>.
+ Value *A;
+ if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
+ A->getType()->isIntOrIntVectorTy(1))
+ return SelectInst::Create(A, Op1, Constant::getNullValue(I.getType()));
+ if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
+ A->getType()->isIntOrIntVectorTy(1))
+ return SelectInst::Create(A, Op0, Constant::getNullValue(I.getType()));
+
+ // and(ashr(subNSW(Y, X), ScalarSizeInBits(Y)-1), X) --> X s> Y ? X : 0.
+ {
+ Value *X, *Y;
+ const APInt *ShAmt;
+ Type *Ty = I.getType();
+ if (match(&I, m_c_And(m_OneUse(m_AShr(m_NSWSub(m_Value(Y), m_Value(X)),
+ m_APInt(ShAmt))),
+ m_Deferred(X))) &&
+ *ShAmt == Ty->getScalarSizeInBits() - 1) {
+ Value *NewICmpInst = Builder.CreateICmpSGT(X, Y);
+ return SelectInst::Create(NewICmpInst, X, ConstantInt::getNullValue(Ty));
+ }
+ }
+
+ return nullptr;
+}
+
+Instruction *InstCombiner::matchBSwap(BinaryOperator &Or) {
+ assert(Or.getOpcode() == Instruction::Or && "bswap requires an 'or'");
+ Value *Op0 = Or.getOperand(0), *Op1 = Or.getOperand(1);
+
+ // Look through zero extends.
+ if (Instruction *Ext = dyn_cast<ZExtInst>(Op0))
+ Op0 = Ext->getOperand(0);
+
+ if (Instruction *Ext = dyn_cast<ZExtInst>(Op1))
+ Op1 = Ext->getOperand(0);
+
+ // (A | B) | C and A | (B | C) -> bswap if possible.
+ bool OrOfOrs = match(Op0, m_Or(m_Value(), m_Value())) ||
+ match(Op1, m_Or(m_Value(), m_Value()));
+
+ // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
+ bool OrOfShifts = match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
+ match(Op1, m_LogicalShift(m_Value(), m_Value()));
+
+ // (A & B) | (C & D) -> bswap if possible.
+ bool OrOfAnds = match(Op0, m_And(m_Value(), m_Value())) &&
+ match(Op1, m_And(m_Value(), m_Value()));
+
+ // (A << B) | (C & D) -> bswap if possible.
+ // The bigger pattern here is ((A & C1) << C2) | ((B >> C2) & C1), which is a
+ // part of the bswap idiom for specific values of C1, C2 (e.g. C1 = 16711935,
+ // C2 = 8 for i32).
+ // This pattern can occur when the operands of the 'or' are not canonicalized
+ // for some reason (not having only one use, for example).
+ bool OrOfAndAndSh = (match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
+ match(Op1, m_And(m_Value(), m_Value()))) ||
+ (match(Op0, m_And(m_Value(), m_Value())) &&
+ match(Op1, m_LogicalShift(m_Value(), m_Value())));
+
+ if (!OrOfOrs && !OrOfShifts && !OrOfAnds && !OrOfAndAndSh)
+ return nullptr;
+
+ SmallVector<Instruction*, 4> Insts;
+ if (!recognizeBSwapOrBitReverseIdiom(&Or, true, false, Insts))
+ return nullptr;
+ Instruction *LastInst = Insts.pop_back_val();
+ LastInst->removeFromParent();
+
+ for (auto *Inst : Insts)
+ Worklist.Add(Inst);
+ return LastInst;
+}
+
+/// Transform UB-safe variants of bitwise rotate to the funnel shift intrinsic.
+static Instruction *matchRotate(Instruction &Or) {
+ // TODO: Can we reduce the code duplication between this and the related
+ // rotate matching code under visitSelect and visitTrunc?
+ unsigned Width = Or.getType()->getScalarSizeInBits();
+ if (!isPowerOf2_32(Width))
+ return nullptr;
+
+ // First, find an or'd pair of opposite shifts with the same shifted operand:
+ // or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1)
+ BinaryOperator *Or0, *Or1;
+ if (!match(Or.getOperand(0), m_BinOp(Or0)) ||
+ !match(Or.getOperand(1), m_BinOp(Or1)))
+ return nullptr;
+
+ Value *ShVal, *ShAmt0, *ShAmt1;
+ if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) ||
+ !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1)))))
+ return nullptr;
+
+ BinaryOperator::BinaryOps ShiftOpcode0 = Or0->getOpcode();
+ BinaryOperator::BinaryOps ShiftOpcode1 = Or1->getOpcode();
+ if (ShiftOpcode0 == ShiftOpcode1)
+ return nullptr;
+
+ // Match the shift amount operands for a rotate pattern. This always matches
+ // a subtraction on the R operand.
+ auto matchShiftAmount = [](Value *L, Value *R, unsigned Width) -> Value * {
+ // The shift amount may be masked with negation:
+ // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1)))
+ Value *X;
+ unsigned Mask = Width - 1;
+ if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
+ match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
+ return X;
+
+ // Similar to above, but the shift amount may be extended after masking,
+ // so return the extended value as the parameter for the intrinsic.
+ if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
+ match(R, m_And(m_Neg(m_ZExt(m_And(m_Specific(X), m_SpecificInt(Mask)))),
+ m_SpecificInt(Mask))))
+ return L;
+
+ return nullptr;
+ };
+
+ Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, Width);
+ bool SubIsOnLHS = false;
+ if (!ShAmt) {
+ ShAmt = matchShiftAmount(ShAmt1, ShAmt0, Width);
+ SubIsOnLHS = true;
+ }
+ if (!ShAmt)
+ return nullptr;
+
+ bool IsFshl = (!SubIsOnLHS && ShiftOpcode0 == BinaryOperator::Shl) ||
+ (SubIsOnLHS && ShiftOpcode1 == BinaryOperator::Shl);
+ Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
+ Function *F = Intrinsic::getDeclaration(Or.getModule(), IID, Or.getType());
+ return IntrinsicInst::Create(F, { ShVal, ShVal, ShAmt });
+}
+
+/// If all elements of two constant vectors are 0/-1 and inverses, return true.
+static bool areInverseVectorBitmasks(Constant *C1, Constant *C2) {
+ unsigned NumElts = C1->getType()->getVectorNumElements();
+ for (unsigned i = 0; i != NumElts; ++i) {
+ Constant *EltC1 = C1->getAggregateElement(i);
+ Constant *EltC2 = C2->getAggregateElement(i);
+ if (!EltC1 || !EltC2)
+ return false;
+
+ // One element must be all ones, and the other must be all zeros.
+ if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) ||
+ (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes()))))
+ return false;
+ }
+ return true;
+}
+
+/// We have an expression of the form (A & C) | (B & D). If A is a scalar or
+/// vector composed of all-zeros or all-ones values and is the bitwise 'not' of
+/// B, it can be used as the condition operand of a select instruction.
+Value *InstCombiner::getSelectCondition(Value *A, Value *B) {
+ // Step 1: We may have peeked through bitcasts in the caller.
+ // Exit immediately if we don't have (vector) integer types.
+ Type *Ty = A->getType();
+ if (!Ty->isIntOrIntVectorTy() || !B->getType()->isIntOrIntVectorTy())
+ return nullptr;
+
+ // Step 2: We need 0 or all-1's bitmasks.
+ if (ComputeNumSignBits(A) != Ty->getScalarSizeInBits())
+ return nullptr;
+
+ // Step 3: If B is the 'not' value of A, we have our answer.
+ if (match(A, m_Not(m_Specific(B)))) {
+ // If these are scalars or vectors of i1, A can be used directly.
+ if (Ty->isIntOrIntVectorTy(1))
+ return A;
+ return Builder.CreateTrunc(A, CmpInst::makeCmpResultType(Ty));
+ }
+
+ // If both operands are constants, see if the constants are inverse bitmasks.
+ Constant *AConst, *BConst;
+ if (match(A, m_Constant(AConst)) && match(B, m_Constant(BConst)))
+ if (AConst == ConstantExpr::getNot(BConst))
+ return Builder.CreateZExtOrTrunc(A, CmpInst::makeCmpResultType(Ty));
+
+ // Look for more complex patterns. The 'not' op may be hidden behind various
+ // casts. Look through sexts and bitcasts to find the booleans.
+ Value *Cond;
+ Value *NotB;
+ if (match(A, m_SExt(m_Value(Cond))) &&
+ Cond->getType()->isIntOrIntVectorTy(1) &&
+ match(B, m_OneUse(m_Not(m_Value(NotB))))) {
+ NotB = peekThroughBitcast(NotB, true);
+ if (match(NotB, m_SExt(m_Specific(Cond))))
+ return Cond;
+ }
+
+ // All scalar (and most vector) possibilities should be handled now.
+ // Try more matches that only apply to non-splat constant vectors.
+ if (!Ty->isVectorTy())
+ return nullptr;
+
+ // If both operands are xor'd with constants using the same sexted boolean
+ // operand, see if the constants are inverse bitmasks.
+ // TODO: Use ConstantExpr::getNot()?
+ if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AConst)))) &&
+ match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BConst)))) &&
+ Cond->getType()->isIntOrIntVectorTy(1) &&
+ areInverseVectorBitmasks(AConst, BConst)) {
+ AConst = ConstantExpr::getTrunc(AConst, CmpInst::makeCmpResultType(Ty));
+ return Builder.CreateXor(Cond, AConst);
+ }
+ return nullptr;
+}
+
+/// We have an expression of the form (A & C) | (B & D). Try to simplify this
+/// to "A' ? C : D", where A' is a boolean or vector of booleans.
+Value *InstCombiner::matchSelectFromAndOr(Value *A, Value *C, Value *B,
+ Value *D) {
+ // The potential condition of the select may be bitcasted. In that case, look
+ // through its bitcast and the corresponding bitcast of the 'not' condition.
+ Type *OrigType = A->getType();
+ A = peekThroughBitcast(A, true);
+ B = peekThroughBitcast(B, true);
+ if (Value *Cond = getSelectCondition(A, B)) {
+ // ((bc Cond) & C) | ((bc ~Cond) & D) --> bc (select Cond, (bc C), (bc D))
+ // The bitcasts will either all exist or all not exist. The builder will
+ // not create unnecessary casts if the types already match.
+ Value *BitcastC = Builder.CreateBitCast(C, A->getType());
+ Value *BitcastD = Builder.CreateBitCast(D, A->getType());
+ Value *Select = Builder.CreateSelect(Cond, BitcastC, BitcastD);
+ return Builder.CreateBitCast(Select, OrigType);
+ }
+
+ return nullptr;
+}
+
+/// Fold (icmp)|(icmp) if possible.
+Value *InstCombiner::foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
+ Instruction &CxtI) {
+ const SimplifyQuery Q = SQ.getWithInstruction(&CxtI);
+
+ // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
+ // if K1 and K2 are a one-bit mask.
+ if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, false, CxtI))
+ return V;
+
+ ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
+
+ ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1));
+ ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1));
+
+ // Fold (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3)
+ // --> (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3)
+ // The original condition actually refers to the following two ranges:
+ // [MAX_UINT-C1+1, MAX_UINT-C1+1+C3] and [MAX_UINT-C2+1, MAX_UINT-C2+1+C3]
+ // We can fold these two ranges if:
+ // 1) C1 and C2 is unsigned greater than C3.
+ // 2) The two ranges are separated.
+ // 3) C1 ^ C2 is one-bit mask.
+ // 4) LowRange1 ^ LowRange2 and HighRange1 ^ HighRange2 are one-bit mask.
+ // This implies all values in the two ranges differ by exactly one bit.
+
+ if ((PredL == ICmpInst::ICMP_ULT || PredL == ICmpInst::ICMP_ULE) &&
+ PredL == PredR && LHSC && RHSC && LHS->hasOneUse() && RHS->hasOneUse() &&
+ LHSC->getType() == RHSC->getType() &&
+ LHSC->getValue() == (RHSC->getValue())) {
+
+ Value *LAdd = LHS->getOperand(0);
+ Value *RAdd = RHS->getOperand(0);
+
+ Value *LAddOpnd, *RAddOpnd;
+ ConstantInt *LAddC, *RAddC;
+ if (match(LAdd, m_Add(m_Value(LAddOpnd), m_ConstantInt(LAddC))) &&
+ match(RAdd, m_Add(m_Value(RAddOpnd), m_ConstantInt(RAddC))) &&
+ LAddC->getValue().ugt(LHSC->getValue()) &&
+ RAddC->getValue().ugt(LHSC->getValue())) {
+
+ APInt DiffC = LAddC->getValue() ^ RAddC->getValue();
+ if (LAddOpnd == RAddOpnd && DiffC.isPowerOf2()) {
+ ConstantInt *MaxAddC = nullptr;
+ if (LAddC->getValue().ult(RAddC->getValue()))
+ MaxAddC = RAddC;
+ else
+ MaxAddC = LAddC;
+
+ APInt RRangeLow = -RAddC->getValue();
+ APInt RRangeHigh = RRangeLow + LHSC->getValue();
+ APInt LRangeLow = -LAddC->getValue();
+ APInt LRangeHigh = LRangeLow + LHSC->getValue();
+ APInt LowRangeDiff = RRangeLow ^ LRangeLow;
+ APInt HighRangeDiff = RRangeHigh ^ LRangeHigh;
+ APInt RangeDiff = LRangeLow.sgt(RRangeLow) ? LRangeLow - RRangeLow
+ : RRangeLow - LRangeLow;
+
+ if (LowRangeDiff.isPowerOf2() && LowRangeDiff == HighRangeDiff &&
+ RangeDiff.ugt(LHSC->getValue())) {
+ Value *MaskC = ConstantInt::get(LAddC->getType(), ~DiffC);
+
+ Value *NewAnd = Builder.CreateAnd(LAddOpnd, MaskC);
+ Value *NewAdd = Builder.CreateAdd(NewAnd, MaxAddC);
+ return Builder.CreateICmp(LHS->getPredicate(), NewAdd, LHSC);
+ }
+ }
+ }
+ }
+
+ // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
+ if (predicatesFoldable(PredL, PredR)) {
+ if (LHS->getOperand(0) == RHS->getOperand(1) &&
+ LHS->getOperand(1) == RHS->getOperand(0))
+ LHS->swapOperands();
+ if (LHS->getOperand(0) == RHS->getOperand(0) &&
+ LHS->getOperand(1) == RHS->getOperand(1)) {
+ Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
+ unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
+ bool IsSigned = LHS->isSigned() || RHS->isSigned();
+ return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder);
+ }
+ }
+
+ // handle (roughly):
+ // (icmp ne (A & B), C) | (icmp ne (A & D), E)
+ if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder))
+ return V;
+
+ Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
+ if (LHS->hasOneUse() || RHS->hasOneUse()) {
+ // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1)
+ // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1)
+ Value *A = nullptr, *B = nullptr;
+ if (PredL == ICmpInst::ICMP_EQ && LHSC && LHSC->isZero()) {
+ B = LHS0;
+ if (PredR == ICmpInst::ICMP_ULT && LHS0 == RHS->getOperand(1))
+ A = RHS0;
+ else if (PredR == ICmpInst::ICMP_UGT && LHS0 == RHS0)
+ A = RHS->getOperand(1);
+ }
+ // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1)
+ // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1)
+ else if (PredR == ICmpInst::ICMP_EQ && RHSC && RHSC->isZero()) {
+ B = RHS0;
+ if (PredL == ICmpInst::ICMP_ULT && RHS0 == LHS->getOperand(1))
+ A = LHS0;
+ else if (PredL == ICmpInst::ICMP_UGT && LHS0 == RHS0)
+ A = LHS->getOperand(1);
+ }
+ if (A && B)
+ return Builder.CreateICmp(
+ ICmpInst::ICMP_UGE,
+ Builder.CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A);
+ }
+
+ // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
+ if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/true))
+ return V;
+
+ // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n
+ if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/true))
+ return V;
+
+ if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, false, Builder))
+ return V;
+
+ if (Value *V = foldIsPowerOf2(LHS, RHS, false /* JoinedByAnd */, Builder))
+ return V;
+
+ if (Value *X =
+ foldUnsignedUnderflowCheck(LHS, RHS, /*IsAnd=*/false, Q, Builder))
+ return X;
+ if (Value *X =
+ foldUnsignedUnderflowCheck(RHS, LHS, /*IsAnd=*/false, Q, Builder))
+ return X;
+
+ // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
+ if (!LHSC || !RHSC)
+ return nullptr;
+
+ if (LHSC == RHSC && PredL == PredR) {
+ // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
+ if (PredL == ICmpInst::ICMP_NE && LHSC->isZero()) {
+ Value *NewOr = Builder.CreateOr(LHS0, RHS0);
+ return Builder.CreateICmp(PredL, NewOr, LHSC);
+ }
+ }
+
+ // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
+ // iff C2 + CA == C1.
+ if (PredL == ICmpInst::ICMP_ULT && PredR == ICmpInst::ICMP_EQ) {
+ ConstantInt *AddC;
+ if (match(LHS0, m_Add(m_Specific(RHS0), m_ConstantInt(AddC))))
+ if (RHSC->getValue() + AddC->getValue() == LHSC->getValue())
+ return Builder.CreateICmpULE(LHS0, LHSC);
+ }
+
+ // From here on, we only handle:
+ // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
+ if (LHS0 != RHS0)
+ return nullptr;
+
+ // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere.
+ if (PredL == ICmpInst::ICMP_UGE || PredL == ICmpInst::ICMP_ULE ||
+ PredR == ICmpInst::ICMP_UGE || PredR == ICmpInst::ICMP_ULE ||
+ PredL == ICmpInst::ICMP_SGE || PredL == ICmpInst::ICMP_SLE ||
+ PredR == ICmpInst::ICMP_SGE || PredR == ICmpInst::ICMP_SLE)
+ return nullptr;
+
+ // We can't fold (ugt x, C) | (sgt x, C2).
+ if (!predicatesFoldable(PredL, PredR))
+ return nullptr;
+
+ // Ensure that the larger constant is on the RHS.
+ bool ShouldSwap;
+ if (CmpInst::isSigned(PredL) ||
+ (ICmpInst::isEquality(PredL) && CmpInst::isSigned(PredR)))
+ ShouldSwap = LHSC->getValue().sgt(RHSC->getValue());
+ else
+ ShouldSwap = LHSC->getValue().ugt(RHSC->getValue());
+
+ if (ShouldSwap) {
+ std::swap(LHS, RHS);
+ std::swap(LHSC, RHSC);
+ std::swap(PredL, PredR);
+ }
+
+ // At this point, we know we have two icmp instructions
+ // comparing a value against two constants and or'ing the result
+ // together. Because of the above check, we know that we only have
+ // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
+ // icmp folding check above), that the two constants are not
+ // equal.
+ assert(LHSC != RHSC && "Compares not folded above?");
+
+ switch (PredL) {
+ default:
+ llvm_unreachable("Unknown integer condition code!");
+ case ICmpInst::ICMP_EQ:
+ switch (PredR) {
+ default:
+ llvm_unreachable("Unknown integer condition code!");
+ case ICmpInst::ICMP_EQ:
+ // Potential folds for this case should already be handled.
+ break;
+ case ICmpInst::ICMP_UGT:
+ // (X == 0 || X u> C) -> (X-1) u>= C
+ if (LHSC->isMinValue(false))
+ return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue() + 1,
+ false, false);
+ // (X == 13 | X u> 14) -> no change
+ break;
+ case ICmpInst::ICMP_SGT:
+ // (X == INT_MIN || X s> C) -> (X-(INT_MIN+1)) u>= C-INT_MIN
+ if (LHSC->isMinValue(true))
+ return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue() + 1,
+ true, false);
+ // (X == 13 | X s> 14) -> no change
+ break;
+ }
+ break;
+ case ICmpInst::ICMP_ULT:
+ switch (PredR) {
+ default:
+ llvm_unreachable("Unknown integer condition code!");
+ case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
+ // (X u< C || X == UINT_MAX) => (X-C) u>= UINT_MAX-C
+ if (RHSC->isMaxValue(false))
+ return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue(),
+ false, false);
+ break;
+ case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
+ assert(!RHSC->isMaxValue(false) && "Missed icmp simplification");
+ return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue() + 1,
+ false, false);
+ }
+ break;
+ case ICmpInst::ICMP_SLT:
+ switch (PredR) {
+ default:
+ llvm_unreachable("Unknown integer condition code!");
+ case ICmpInst::ICMP_EQ:
+ // (X s< C || X == INT_MAX) => (X-C) u>= INT_MAX-C
+ if (RHSC->isMaxValue(true))
+ return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue(),
+ true, false);
+ // (X s< 13 | X == 14) -> no change
+ break;
+ case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) u> 2
+ assert(!RHSC->isMaxValue(true) && "Missed icmp simplification");
+ return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue() + 1, true,
+ false);
+ }
+ break;
+ }
+ return nullptr;
+}
+
+// FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
+// here. We should standardize that construct where it is needed or choose some
+// other way to ensure that commutated variants of patterns are not missed.
+Instruction *InstCombiner::visitOr(BinaryOperator &I) {
+ if (Value *V = SimplifyOrInst(I.getOperand(0), I.getOperand(1),
+ SQ.getWithInstruction(&I)))
+ return replaceInstUsesWith(I, V);
+
+ if (SimplifyAssociativeOrCommutative(I))
+ return &I;
+
+ if (Instruction *X = foldVectorBinop(I))
+ return X;
+
+ // See if we can simplify any instructions used by the instruction whose sole
+ // purpose is to compute bits we don't care about.
+ if (SimplifyDemandedInstructionBits(I))
+ return &I;
+
+ // Do this before using distributive laws to catch simple and/or/not patterns.
+ if (Instruction *Xor = foldOrToXor(I, Builder))
+ return Xor;
+
+ // (A&B)|(A&C) -> A&(B|C) etc
+ if (Value *V = SimplifyUsingDistributiveLaws(I))
+ return replaceInstUsesWith(I, V);
+
+ if (Value *V = SimplifyBSwap(I, Builder))
+ return replaceInstUsesWith(I, V);
+
+ if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
+ return FoldedLogic;
+
+ if (Instruction *BSwap = matchBSwap(I))
+ return BSwap;
+
+ if (Instruction *Rotate = matchRotate(I))
+ return Rotate;
+
+ Value *X, *Y;
+ const APInt *CV;
+ if (match(&I, m_c_Or(m_OneUse(m_Xor(m_Value(X), m_APInt(CV))), m_Value(Y))) &&
+ !CV->isAllOnesValue() && MaskedValueIsZero(Y, *CV, 0, &I)) {
+ // (X ^ C) | Y -> (X | Y) ^ C iff Y & C == 0
+ // The check for a 'not' op is for efficiency (if Y is known zero --> ~X).
+ Value *Or = Builder.CreateOr(X, Y);
+ return BinaryOperator::CreateXor(Or, ConstantInt::get(I.getType(), *CV));
+ }
+
+ // (A & C)|(B & D)
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ Value *A, *B, *C, *D;
+ if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
+ match(Op1, m_And(m_Value(B), m_Value(D)))) {
+ ConstantInt *C1 = dyn_cast<ConstantInt>(C);
+ ConstantInt *C2 = dyn_cast<ConstantInt>(D);
+ if (C1 && C2) { // (A & C1)|(B & C2)
+ Value *V1 = nullptr, *V2 = nullptr;
+ if ((C1->getValue() & C2->getValue()).isNullValue()) {
+ // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
+ // iff (C1&C2) == 0 and (N&~C1) == 0
+ if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
+ ((V1 == B &&
+ MaskedValueIsZero(V2, ~C1->getValue(), 0, &I)) || // (V|N)
+ (V2 == B &&
+ MaskedValueIsZero(V1, ~C1->getValue(), 0, &I)))) // (N|V)
+ return BinaryOperator::CreateAnd(A,
+ Builder.getInt(C1->getValue()|C2->getValue()));
+ // Or commutes, try both ways.
+ if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
+ ((V1 == A &&
+ MaskedValueIsZero(V2, ~C2->getValue(), 0, &I)) || // (V|N)
+ (V2 == A &&
+ MaskedValueIsZero(V1, ~C2->getValue(), 0, &I)))) // (N|V)
+ return BinaryOperator::CreateAnd(B,
+ Builder.getInt(C1->getValue()|C2->getValue()));
+
+ // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
+ // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
+ ConstantInt *C3 = nullptr, *C4 = nullptr;
+ if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
+ (C3->getValue() & ~C1->getValue()).isNullValue() &&
+ match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
+ (C4->getValue() & ~C2->getValue()).isNullValue()) {
+ V2 = Builder.CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
+ return BinaryOperator::CreateAnd(V2,
+ Builder.getInt(C1->getValue()|C2->getValue()));
+ }
+ }
+
+ if (C1->getValue() == ~C2->getValue()) {
+ Value *X;
+
+ // ((X|B)&C1)|(B&C2) -> (X&C1) | B iff C1 == ~C2
+ if (match(A, m_c_Or(m_Value(X), m_Specific(B))))
+ return BinaryOperator::CreateOr(Builder.CreateAnd(X, C1), B);
+ // (A&C2)|((X|A)&C1) -> (X&C2) | A iff C1 == ~C2
+ if (match(B, m_c_Or(m_Specific(A), m_Value(X))))
+ return BinaryOperator::CreateOr(Builder.CreateAnd(X, C2), A);
+
+ // ((X^B)&C1)|(B&C2) -> (X&C1) ^ B iff C1 == ~C2
+ if (match(A, m_c_Xor(m_Value(X), m_Specific(B))))
+ return BinaryOperator::CreateXor(Builder.CreateAnd(X, C1), B);
+ // (A&C2)|((X^A)&C1) -> (X&C2) ^ A iff C1 == ~C2
+ if (match(B, m_c_Xor(m_Specific(A), m_Value(X))))
+ return BinaryOperator::CreateXor(Builder.CreateAnd(X, C2), A);
+ }
+ }
+
+ // Don't try to form a select if it's unlikely that we'll get rid of at
+ // least one of the operands. A select is generally more expensive than the
+ // 'or' that it is replacing.
+ if (Op0->hasOneUse() || Op1->hasOneUse()) {
+ // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants.
+ if (Value *V = matchSelectFromAndOr(A, C, B, D))
+ return replaceInstUsesWith(I, V);
+ if (Value *V = matchSelectFromAndOr(A, C, D, B))
+ return replaceInstUsesWith(I, V);
+ if (Value *V = matchSelectFromAndOr(C, A, B, D))
+ return replaceInstUsesWith(I, V);
+ if (Value *V = matchSelectFromAndOr(C, A, D, B))
+ return replaceInstUsesWith(I, V);
+ if (Value *V = matchSelectFromAndOr(B, D, A, C))
+ return replaceInstUsesWith(I, V);
+ if (Value *V = matchSelectFromAndOr(B, D, C, A))
+ return replaceInstUsesWith(I, V);
+ if (Value *V = matchSelectFromAndOr(D, B, A, C))
+ return replaceInstUsesWith(I, V);
+ if (Value *V = matchSelectFromAndOr(D, B, C, A))
+ return replaceInstUsesWith(I, V);
+ }
+ }
+
+ // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
+ if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
+ if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
+ return BinaryOperator::CreateOr(Op0, C);
+
+ // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C
+ if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
+ if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
+ return BinaryOperator::CreateOr(Op1, C);
+
+ // ((B | C) & A) | B -> B | (A & C)
+ if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A))))
+ return BinaryOperator::CreateOr(Op1, Builder.CreateAnd(A, C));
+
+ if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
+ return DeMorgan;
+
+ // Canonicalize xor to the RHS.
+ bool SwappedForXor = false;
+ if (match(Op0, m_Xor(m_Value(), m_Value()))) {
+ std::swap(Op0, Op1);
+ SwappedForXor = true;
+ }
+
+ // A | ( A ^ B) -> A | B
+ // A | (~A ^ B) -> A | ~B
+ // (A & B) | (A ^ B)
+ if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
+ if (Op0 == A || Op0 == B)
+ return BinaryOperator::CreateOr(A, B);
+
+ if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
+ match(Op0, m_And(m_Specific(B), m_Specific(A))))
+ return BinaryOperator::CreateOr(A, B);
+
+ if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
+ Value *Not = Builder.CreateNot(B, B->getName() + ".not");
+ return BinaryOperator::CreateOr(Not, Op0);
+ }
+ if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
+ Value *Not = Builder.CreateNot(A, A->getName() + ".not");
+ return BinaryOperator::CreateOr(Not, Op0);
+ }
+ }
+
+ // A | ~(A | B) -> A | ~B
+ // A | ~(A ^ B) -> A | ~B
+ if (match(Op1, m_Not(m_Value(A))))
+ if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
+ if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
+ Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
+ B->getOpcode() == Instruction::Xor)) {
+ Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
+ B->getOperand(0);
+ Value *Not = Builder.CreateNot(NotOp, NotOp->getName() + ".not");
+ return BinaryOperator::CreateOr(Not, Op0);
+ }
+
+ if (SwappedForXor)
+ std::swap(Op0, Op1);
+
+ {
+ ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
+ ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
+ if (LHS && RHS)
+ if (Value *Res = foldOrOfICmps(LHS, RHS, I))
+ return replaceInstUsesWith(I, Res);
+
+ // TODO: Make this recursive; it's a little tricky because an arbitrary
+ // number of 'or' instructions might have to be created.
+ Value *X, *Y;
+ if (LHS && match(Op1, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
+ if (auto *Cmp = dyn_cast<ICmpInst>(X))
+ if (Value *Res = foldOrOfICmps(LHS, Cmp, I))
+ return replaceInstUsesWith(I, Builder.CreateOr(Res, Y));
+ if (auto *Cmp = dyn_cast<ICmpInst>(Y))
+ if (Value *Res = foldOrOfICmps(LHS, Cmp, I))
+ return replaceInstUsesWith(I, Builder.CreateOr(Res, X));
+ }
+ if (RHS && match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
+ if (auto *Cmp = dyn_cast<ICmpInst>(X))
+ if (Value *Res = foldOrOfICmps(Cmp, RHS, I))
+ return replaceInstUsesWith(I, Builder.CreateOr(Res, Y));
+ if (auto *Cmp = dyn_cast<ICmpInst>(Y))
+ if (Value *Res = foldOrOfICmps(Cmp, RHS, I))
+ return replaceInstUsesWith(I, Builder.CreateOr(Res, X));
+ }
+ }
+
+ if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
+ if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
+ if (Value *Res = foldLogicOfFCmps(LHS, RHS, false))
+ return replaceInstUsesWith(I, Res);
+
+ if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
+ return FoldedFCmps;
+
+ if (Instruction *CastedOr = foldCastedBitwiseLogic(I))
+ return CastedOr;
+
+ // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>.
+ if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
+ A->getType()->isIntOrIntVectorTy(1))
+ return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
+ if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
+ A->getType()->isIntOrIntVectorTy(1))
+ return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);
+
+ // Note: If we've gotten to the point of visiting the outer OR, then the
+ // inner one couldn't be simplified. If it was a constant, then it won't
+ // be simplified by a later pass either, so we try swapping the inner/outer
+ // ORs in the hopes that we'll be able to simplify it this way.
+ // (X|C) | V --> (X|V) | C
+ ConstantInt *CI;
+ if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
+ match(Op0, m_Or(m_Value(A), m_ConstantInt(CI)))) {
+ Value *Inner = Builder.CreateOr(A, Op1);
+ Inner->takeName(Op0);
+ return BinaryOperator::CreateOr(Inner, CI);
+ }
+
+ // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
+ // Since this OR statement hasn't been optimized further yet, we hope
+ // that this transformation will allow the new ORs to be optimized.
+ {
+ Value *X = nullptr, *Y = nullptr;
+ if (Op0->hasOneUse() && Op1->hasOneUse() &&
+ match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
+ match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
+ Value *orTrue = Builder.CreateOr(A, C);
+ Value *orFalse = Builder.CreateOr(B, D);
+ return SelectInst::Create(X, orTrue, orFalse);
+ }
+ }
+
+ // or(ashr(subNSW(Y, X), ScalarSizeInBits(Y)-1), X) --> X s> Y ? -1 : X.
+ {
+ Value *X, *Y;
+ const APInt *ShAmt;
+ Type *Ty = I.getType();
+ if (match(&I, m_c_Or(m_OneUse(m_AShr(m_NSWSub(m_Value(Y), m_Value(X)),
+ m_APInt(ShAmt))),
+ m_Deferred(X))) &&
+ *ShAmt == Ty->getScalarSizeInBits() - 1) {
+ Value *NewICmpInst = Builder.CreateICmpSGT(X, Y);
+ return SelectInst::Create(NewICmpInst, ConstantInt::getAllOnesValue(Ty),
+ X);
+ }
+ }
+
+ if (Instruction *V =
+ canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
+ return V;
+
+ return nullptr;
+}
+
+/// A ^ B can be specified using other logic ops in a variety of patterns. We
+/// can fold these early and efficiently by morphing an existing instruction.
+static Instruction *foldXorToXor(BinaryOperator &I,
+ InstCombiner::BuilderTy &Builder) {
+ assert(I.getOpcode() == Instruction::Xor);
+ Value *Op0 = I.getOperand(0);
+ Value *Op1 = I.getOperand(1);
+ Value *A, *B;
+
+ // There are 4 commuted variants for each of the basic patterns.
+
+ // (A & B) ^ (A | B) -> A ^ B
+ // (A & B) ^ (B | A) -> A ^ B
+ // (A | B) ^ (A & B) -> A ^ B
+ // (A | B) ^ (B & A) -> A ^ B
+ if (match(&I, m_c_Xor(m_And(m_Value(A), m_Value(B)),
+ m_c_Or(m_Deferred(A), m_Deferred(B))))) {
+ I.setOperand(0, A);
+ I.setOperand(1, B);
+ return &I;
+ }
+
+ // (A | ~B) ^ (~A | B) -> A ^ B
+ // (~B | A) ^ (~A | B) -> A ^ B
+ // (~A | B) ^ (A | ~B) -> A ^ B
+ // (B | ~A) ^ (A | ~B) -> A ^ B
+ if (match(&I, m_Xor(m_c_Or(m_Value(A), m_Not(m_Value(B))),
+ m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B))))) {
+ I.setOperand(0, A);
+ I.setOperand(1, B);
+ return &I;
+ }
+
+ // (A & ~B) ^ (~A & B) -> A ^ B
+ // (~B & A) ^ (~A & B) -> A ^ B
+ // (~A & B) ^ (A & ~B) -> A ^ B
+ // (B & ~A) ^ (A & ~B) -> A ^ B
+ if (match(&I, m_Xor(m_c_And(m_Value(A), m_Not(m_Value(B))),
+ m_c_And(m_Not(m_Deferred(A)), m_Deferred(B))))) {
+ I.setOperand(0, A);
+ I.setOperand(1, B);
+ return &I;
+ }
+
+ // For the remaining cases we need to get rid of one of the operands.
+ if (!Op0->hasOneUse() && !Op1->hasOneUse())
+ return nullptr;
+
+ // (A | B) ^ ~(A & B) -> ~(A ^ B)
+ // (A | B) ^ ~(B & A) -> ~(A ^ B)
+ // (A & B) ^ ~(A | B) -> ~(A ^ B)
+ // (A & B) ^ ~(B | A) -> ~(A ^ B)
+ // Complexity sorting ensures the not will be on the right side.
+ if ((match(Op0, m_Or(m_Value(A), m_Value(B))) &&
+ match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) ||
+ (match(Op0, m_And(m_Value(A), m_Value(B))) &&
+ match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))))
+ return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
+
+ return nullptr;
+}
+
+Value *InstCombiner::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS,
+ BinaryOperator &I) {
+ assert(I.getOpcode() == Instruction::Xor && I.getOperand(0) == LHS &&
+ I.getOperand(1) == RHS && "Should be 'xor' with these operands");
+
+ if (predicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
+ if (LHS->getOperand(0) == RHS->getOperand(1) &&
+ LHS->getOperand(1) == RHS->getOperand(0))
+ LHS->swapOperands();
+ if (LHS->getOperand(0) == RHS->getOperand(0) &&
+ LHS->getOperand(1) == RHS->getOperand(1)) {
+ // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
+ Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
+ unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
+ bool IsSigned = LHS->isSigned() || RHS->isSigned();
+ return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder);
+ }
+ }
+
+ // TODO: This can be generalized to compares of non-signbits using
+ // decomposeBitTestICmp(). It could be enhanced more by using (something like)
+ // foldLogOpOfMaskedICmps().
+ ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
+ Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
+ Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
+ if ((LHS->hasOneUse() || RHS->hasOneUse()) &&
+ LHS0->getType() == RHS0->getType() &&
+ LHS0->getType()->isIntOrIntVectorTy()) {
+ // (X > -1) ^ (Y > -1) --> (X ^ Y) < 0
+ // (X < 0) ^ (Y < 0) --> (X ^ Y) < 0
+ if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_AllOnes()) &&
+ PredR == CmpInst::ICMP_SGT && match(RHS1, m_AllOnes())) ||
+ (PredL == CmpInst::ICMP_SLT && match(LHS1, m_Zero()) &&
+ PredR == CmpInst::ICMP_SLT && match(RHS1, m_Zero()))) {
+ Value *Zero = ConstantInt::getNullValue(LHS0->getType());
+ return Builder.CreateICmpSLT(Builder.CreateXor(LHS0, RHS0), Zero);
+ }
+ // (X > -1) ^ (Y < 0) --> (X ^ Y) > -1
+ // (X < 0) ^ (Y > -1) --> (X ^ Y) > -1
+ if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_AllOnes()) &&
+ PredR == CmpInst::ICMP_SLT && match(RHS1, m_Zero())) ||
+ (PredL == CmpInst::ICMP_SLT && match(LHS1, m_Zero()) &&
+ PredR == CmpInst::ICMP_SGT && match(RHS1, m_AllOnes()))) {
+ Value *MinusOne = ConstantInt::getAllOnesValue(LHS0->getType());
+ return Builder.CreateICmpSGT(Builder.CreateXor(LHS0, RHS0), MinusOne);
+ }
+ }
+
+ // Instead of trying to imitate the folds for and/or, decompose this 'xor'
+ // into those logic ops. That is, try to turn this into an and-of-icmps
+ // because we have many folds for that pattern.
+ //
+ // This is based on a truth table definition of xor:
+ // X ^ Y --> (X | Y) & !(X & Y)
+ if (Value *OrICmp = SimplifyBinOp(Instruction::Or, LHS, RHS, SQ)) {
+ // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y).
+ // TODO: If OrICmp is false, the whole thing is false (InstSimplify?).
+ if (Value *AndICmp = SimplifyBinOp(Instruction::And, LHS, RHS, SQ)) {
+ // TODO: Independently handle cases where the 'and' side is a constant.
+ ICmpInst *X = nullptr, *Y = nullptr;
+ if (OrICmp == LHS && AndICmp == RHS) {
+ // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS --> X & !Y
+ X = LHS;
+ Y = RHS;
+ }
+ if (OrICmp == RHS && AndICmp == LHS) {
+ // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS --> !Y & X
+ X = RHS;
+ Y = LHS;
+ }
+ if (X && Y && (Y->hasOneUse() || canFreelyInvertAllUsersOf(Y, &I))) {
+ // Invert the predicate of 'Y', thus inverting its output.
+ Y->setPredicate(Y->getInversePredicate());
+ // So, are there other uses of Y?
+ if (!Y->hasOneUse()) {
+ // We need to adapt other uses of Y though. Get a value that matches
+ // the original value of Y before inversion. While this increases
+ // immediate instruction count, we have just ensured that all the
+ // users are freely-invertible, so that 'not' *will* get folded away.
+ BuilderTy::InsertPointGuard Guard(Builder);
+ // Set insertion point to right after the Y.
+ Builder.SetInsertPoint(Y->getParent(), ++(Y->getIterator()));
+ Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
+ // Replace all uses of Y (excluding the one in NotY!) with NotY.
+ Y->replaceUsesWithIf(NotY,
+ [NotY](Use &U) { return U.getUser() != NotY; });
+ }
+ // All done.
+ return Builder.CreateAnd(LHS, RHS);
+ }
+ }
+ }
+
+ return nullptr;
+}
+
+/// If we have a masked merge, in the canonical form of:
+/// (assuming that A only has one use.)
+/// | A | |B|
+/// ((x ^ y) & M) ^ y
+/// | D |
+/// * If M is inverted:
+/// | D |
+/// ((x ^ y) & ~M) ^ y
+/// We can canonicalize by swapping the final xor operand
+/// to eliminate the 'not' of the mask.
+/// ((x ^ y) & M) ^ x
+/// * If M is a constant, and D has one use, we transform to 'and' / 'or' ops
+/// because that shortens the dependency chain and improves analysis:
+/// (x & M) | (y & ~M)
+static Instruction *visitMaskedMerge(BinaryOperator &I,
+ InstCombiner::BuilderTy &Builder) {
+ Value *B, *X, *D;
+ Value *M;
+ if (!match(&I, m_c_Xor(m_Value(B),
+ m_OneUse(m_c_And(
+ m_CombineAnd(m_c_Xor(m_Deferred(B), m_Value(X)),
+ m_Value(D)),
+ m_Value(M))))))
+ return nullptr;
+
+ Value *NotM;
+ if (match(M, m_Not(m_Value(NotM)))) {
+ // De-invert the mask and swap the value in B part.
+ Value *NewA = Builder.CreateAnd(D, NotM);
+ return BinaryOperator::CreateXor(NewA, X);
+ }
+
+ Constant *C;
+ if (D->hasOneUse() && match(M, m_Constant(C))) {
+ // Unfold.
+ Value *LHS = Builder.CreateAnd(X, C);
+ Value *NotC = Builder.CreateNot(C);
+ Value *RHS = Builder.CreateAnd(B, NotC);
+ return BinaryOperator::CreateOr(LHS, RHS);
+ }
+
+ return nullptr;
+}
+
+// Transform
+// ~(x ^ y)
+// into:
+// (~x) ^ y
+// or into
+// x ^ (~y)
+static Instruction *sinkNotIntoXor(BinaryOperator &I,
+ InstCombiner::BuilderTy &Builder) {
+ Value *X, *Y;
+ // FIXME: one-use check is not needed in general, but currently we are unable
+ // to fold 'not' into 'icmp', if that 'icmp' has multiple uses. (D35182)
+ if (!match(&I, m_Not(m_OneUse(m_Xor(m_Value(X), m_Value(Y))))))
+ return nullptr;
+
+ // We only want to do the transform if it is free to do.
+ if (isFreeToInvert(X, X->hasOneUse())) {
+ // Ok, good.
+ } else if (isFreeToInvert(Y, Y->hasOneUse())) {
+ std::swap(X, Y);
+ } else
+ return nullptr;
+
+ Value *NotX = Builder.CreateNot(X, X->getName() + ".not");
+ return BinaryOperator::CreateXor(NotX, Y, I.getName() + ".demorgan");
+}
+
+// FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
+// here. We should standardize that construct where it is needed or choose some
+// other way to ensure that commutated variants of patterns are not missed.
+Instruction *InstCombiner::visitXor(BinaryOperator &I) {
+ if (Value *V = SimplifyXorInst(I.getOperand(0), I.getOperand(1),
+ SQ.getWithInstruction(&I)))
+ return replaceInstUsesWith(I, V);
+
+ if (SimplifyAssociativeOrCommutative(I))
+ return &I;
+
+ if (Instruction *X = foldVectorBinop(I))
+ return X;
+
+ if (Instruction *NewXor = foldXorToXor(I, Builder))
+ return NewXor;
+
+ // (A&B)^(A&C) -> A&(B^C) etc
+ if (Value *V = SimplifyUsingDistributiveLaws(I))
+ return replaceInstUsesWith(I, V);
+
+ // See if we can simplify any instructions used by the instruction whose sole
+ // purpose is to compute bits we don't care about.
+ if (SimplifyDemandedInstructionBits(I))
+ return &I;
+
+ if (Value *V = SimplifyBSwap(I, Builder))
+ return replaceInstUsesWith(I, V);
+
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ // Fold (X & M) ^ (Y & ~M) -> (X & M) | (Y & ~M)
+ // This it a special case in haveNoCommonBitsSet, but the computeKnownBits
+ // calls in there are unnecessary as SimplifyDemandedInstructionBits should
+ // have already taken care of those cases.
+ Value *M;
+ if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(M)), m_Value()),
+ m_c_And(m_Deferred(M), m_Value()))))
+ return BinaryOperator::CreateOr(Op0, Op1);
+
+ // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand.
+ Value *X, *Y;
+
+ // We must eliminate the and/or (one-use) for these transforms to not increase
+ // the instruction count.
+ // ~(~X & Y) --> (X | ~Y)
+ // ~(Y & ~X) --> (X | ~Y)
+ if (match(&I, m_Not(m_OneUse(m_c_And(m_Not(m_Value(X)), m_Value(Y)))))) {
+ Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
+ return BinaryOperator::CreateOr(X, NotY);
+ }
+ // ~(~X | Y) --> (X & ~Y)
+ // ~(Y | ~X) --> (X & ~Y)
+ if (match(&I, m_Not(m_OneUse(m_c_Or(m_Not(m_Value(X)), m_Value(Y)))))) {
+ Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
+ return BinaryOperator::CreateAnd(X, NotY);
+ }
+
+ if (Instruction *Xor = visitMaskedMerge(I, Builder))
+ return Xor;
+
+ // Is this a 'not' (~) fed by a binary operator?
+ BinaryOperator *NotVal;
+ if (match(&I, m_Not(m_BinOp(NotVal)))) {
+ if (NotVal->getOpcode() == Instruction::And ||
+ NotVal->getOpcode() == Instruction::Or) {
+ // Apply DeMorgan's Law when inverts are free:
+ // ~(X & Y) --> (~X | ~Y)
+ // ~(X | Y) --> (~X & ~Y)
+ if (isFreeToInvert(NotVal->getOperand(0),
+ NotVal->getOperand(0)->hasOneUse()) &&
+ isFreeToInvert(NotVal->getOperand(1),
+ NotVal->getOperand(1)->hasOneUse())) {
+ Value *NotX = Builder.CreateNot(NotVal->getOperand(0), "notlhs");
+ Value *NotY = Builder.CreateNot(NotVal->getOperand(1), "notrhs");
+ if (NotVal->getOpcode() == Instruction::And)
+ return BinaryOperator::CreateOr(NotX, NotY);
+ return BinaryOperator::CreateAnd(NotX, NotY);
+ }
+ }
+
+ // ~(X - Y) --> ~X + Y
+ if (match(NotVal, m_Sub(m_Value(X), m_Value(Y))))
+ if (isa<Constant>(X) || NotVal->hasOneUse())
+ return BinaryOperator::CreateAdd(Builder.CreateNot(X), Y);
+
+ // ~(~X >>s Y) --> (X >>s Y)
+ if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y))))
+ return BinaryOperator::CreateAShr(X, Y);
+
+ // If we are inverting a right-shifted constant, we may be able to eliminate
+ // the 'not' by inverting the constant and using the opposite shift type.
+ // Canonicalization rules ensure that only a negative constant uses 'ashr',
+ // but we must check that in case that transform has not fired yet.
+
+ // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits)
+ Constant *C;
+ if (match(NotVal, m_AShr(m_Constant(C), m_Value(Y))) &&
+ match(C, m_Negative()))
+ return BinaryOperator::CreateLShr(ConstantExpr::getNot(C), Y);
+
+ // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits)
+ if (match(NotVal, m_LShr(m_Constant(C), m_Value(Y))) &&
+ match(C, m_NonNegative()))
+ return BinaryOperator::CreateAShr(ConstantExpr::getNot(C), Y);
+
+ // ~(X + C) --> -(C + 1) - X
+ if (match(Op0, m_Add(m_Value(X), m_Constant(C))))
+ return BinaryOperator::CreateSub(ConstantExpr::getNeg(AddOne(C)), X);
+ }
+
+ // Use DeMorgan and reassociation to eliminate a 'not' op.
+ Constant *C1;
+ if (match(Op1, m_Constant(C1))) {
+ Constant *C2;
+ if (match(Op0, m_OneUse(m_Or(m_Not(m_Value(X)), m_Constant(C2))))) {
+ // (~X | C2) ^ C1 --> ((X & ~C2) ^ -1) ^ C1 --> (X & ~C2) ^ ~C1
+ Value *And = Builder.CreateAnd(X, ConstantExpr::getNot(C2));
+ return BinaryOperator::CreateXor(And, ConstantExpr::getNot(C1));
+ }
+ if (match(Op0, m_OneUse(m_And(m_Not(m_Value(X)), m_Constant(C2))))) {
+ // (~X & C2) ^ C1 --> ((X | ~C2) ^ -1) ^ C1 --> (X | ~C2) ^ ~C1
+ Value *Or = Builder.CreateOr(X, ConstantExpr::getNot(C2));
+ return BinaryOperator::CreateXor(Or, ConstantExpr::getNot(C1));
+ }
+ }
+
+ // not (cmp A, B) = !cmp A, B
+ CmpInst::Predicate Pred;
+ if (match(&I, m_Not(m_OneUse(m_Cmp(Pred, m_Value(), m_Value()))))) {
+ cast<CmpInst>(Op0)->setPredicate(CmpInst::getInversePredicate(Pred));
+ return replaceInstUsesWith(I, Op0);
+ }
+
+ {
+ const APInt *RHSC;
+ if (match(Op1, m_APInt(RHSC))) {
+ Value *X;
+ const APInt *C;
+ if (RHSC->isSignMask() && match(Op0, m_Sub(m_APInt(C), m_Value(X)))) {
+ // (C - X) ^ signmask -> (C + signmask - X)
+ Constant *NewC = ConstantInt::get(I.getType(), *C + *RHSC);
+ return BinaryOperator::CreateSub(NewC, X);
+ }
+ if (RHSC->isSignMask() && match(Op0, m_Add(m_Value(X), m_APInt(C)))) {
+ // (X + C) ^ signmask -> (X + C + signmask)
+ Constant *NewC = ConstantInt::get(I.getType(), *C + *RHSC);
+ return BinaryOperator::CreateAdd(X, NewC);
+ }
+
+ // (X|C1)^C2 -> X^(C1^C2) iff X&~C1 == 0
+ if (match(Op0, m_Or(m_Value(X), m_APInt(C))) &&
+ MaskedValueIsZero(X, *C, 0, &I)) {
+ Constant *NewC = ConstantInt::get(I.getType(), *C ^ *RHSC);
+ Worklist.Add(cast<Instruction>(Op0));
+ I.setOperand(0, X);
+ I.setOperand(1, NewC);
+ return &I;
+ }
+ }
+ }
+
+ if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1)) {
+ if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
+ if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
+ if (Op0I->getOpcode() == Instruction::LShr) {
+ // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
+ // E1 = "X ^ C1"
+ BinaryOperator *E1;
+ ConstantInt *C1;
+ if (Op0I->hasOneUse() &&
+ (E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) &&
+ E1->getOpcode() == Instruction::Xor &&
+ (C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) {
+ // fold (C1 >> C2) ^ C3
+ ConstantInt *C2 = Op0CI, *C3 = RHSC;
+ APInt FoldConst = C1->getValue().lshr(C2->getValue());
+ FoldConst ^= C3->getValue();
+ // Prepare the two operands.
+ Value *Opnd0 = Builder.CreateLShr(E1->getOperand(0), C2);
+ Opnd0->takeName(Op0I);
+ cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc());
+ Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst);
+
+ return BinaryOperator::CreateXor(Opnd0, FoldVal);
+ }
+ }
+ }
+ }
+ }
+
+ if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
+ return FoldedLogic;
+
+ // Y ^ (X | Y) --> X & ~Y
+ // Y ^ (Y | X) --> X & ~Y
+ if (match(Op1, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op0)))))
+ return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op0));
+ // (X | Y) ^ Y --> X & ~Y
+ // (Y | X) ^ Y --> X & ~Y
+ if (match(Op0, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op1)))))
+ return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op1));
+
+ // Y ^ (X & Y) --> ~X & Y
+ // Y ^ (Y & X) --> ~X & Y
+ if (match(Op1, m_OneUse(m_c_And(m_Value(X), m_Specific(Op0)))))
+ return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(X));
+ // (X & Y) ^ Y --> ~X & Y
+ // (Y & X) ^ Y --> ~X & Y
+ // Canonical form is (X & C) ^ C; don't touch that.
+ // TODO: A 'not' op is better for analysis and codegen, but demanded bits must
+ // be fixed to prefer that (otherwise we get infinite looping).
+ if (!match(Op1, m_Constant()) &&
+ match(Op0, m_OneUse(m_c_And(m_Value(X), m_Specific(Op1)))))
+ return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(X));
+
+ Value *A, *B, *C;
+ // (A ^ B) ^ (A | C) --> (~A & C) ^ B -- There are 4 commuted variants.
+ if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
+ m_OneUse(m_c_Or(m_Deferred(A), m_Value(C))))))
+ return BinaryOperator::CreateXor(
+ Builder.CreateAnd(Builder.CreateNot(A), C), B);
+
+ // (A ^ B) ^ (B | C) --> (~B & C) ^ A -- There are 4 commuted variants.
+ if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
+ m_OneUse(m_c_Or(m_Deferred(B), m_Value(C))))))
+ return BinaryOperator::CreateXor(
+ Builder.CreateAnd(Builder.CreateNot(B), C), A);
+
+ // (A & B) ^ (A ^ B) -> (A | B)
+ if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
+ match(Op1, m_c_Xor(m_Specific(A), m_Specific(B))))
+ return BinaryOperator::CreateOr(A, B);
+ // (A ^ B) ^ (A & B) -> (A | B)
+ if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
+ match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
+ return BinaryOperator::CreateOr(A, B);
+
+ // (A & ~B) ^ ~A -> ~(A & B)
+ // (~B & A) ^ ~A -> ~(A & B)
+ if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
+ match(Op1, m_Not(m_Specific(A))))
+ return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
+
+ if (auto *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
+ if (auto *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
+ if (Value *V = foldXorOfICmps(LHS, RHS, I))
+ return replaceInstUsesWith(I, V);
+
+ if (Instruction *CastedXor = foldCastedBitwiseLogic(I))
+ return CastedXor;
+
+ // Canonicalize a shifty way to code absolute value to the common pattern.
+ // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1.
+ // We're relying on the fact that we only do this transform when the shift has
+ // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase
+ // instructions).
+ if (Op0->hasNUses(2))
+ std::swap(Op0, Op1);
+
+ const APInt *ShAmt;
+ Type *Ty = I.getType();
+ if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
+ Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
+ match(Op0, m_OneUse(m_c_Add(m_Specific(A), m_Specific(Op1))))) {
+ // B = ashr i32 A, 31 ; smear the sign bit
+ // xor (add A, B), B ; add -1 and flip bits if negative
+ // --> (A < 0) ? -A : A
+ Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty));
+ // Copy the nuw/nsw flags from the add to the negate.
+ auto *Add = cast<BinaryOperator>(Op0);
+ Value *Neg = Builder.CreateNeg(A, "", Add->hasNoUnsignedWrap(),
+ Add->hasNoSignedWrap());
+ return SelectInst::Create(Cmp, Neg, A);
+ }
+
+ // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max:
+ //
+ // %notx = xor i32 %x, -1
+ // %cmp1 = icmp sgt i32 %notx, %y
+ // %smax = select i1 %cmp1, i32 %notx, i32 %y
+ // %res = xor i32 %smax, -1
+ // =>
+ // %noty = xor i32 %y, -1
+ // %cmp2 = icmp slt %x, %noty
+ // %res = select i1 %cmp2, i32 %x, i32 %noty
+ //
+ // Same is applicable for smin/umax/umin.
+ if (match(Op1, m_AllOnes()) && Op0->hasOneUse()) {
+ Value *LHS, *RHS;
+ SelectPatternFlavor SPF = matchSelectPattern(Op0, LHS, RHS).Flavor;
+ if (SelectPatternResult::isMinOrMax(SPF)) {
+ // It's possible we get here before the not has been simplified, so make
+ // sure the input to the not isn't freely invertible.
+ if (match(LHS, m_Not(m_Value(X))) && !isFreeToInvert(X, X->hasOneUse())) {
+ Value *NotY = Builder.CreateNot(RHS);
+ return SelectInst::Create(
+ Builder.CreateICmp(getInverseMinMaxPred(SPF), X, NotY), X, NotY);
+ }
+
+ // It's possible we get here before the not has been simplified, so make
+ // sure the input to the not isn't freely invertible.
+ if (match(RHS, m_Not(m_Value(Y))) && !isFreeToInvert(Y, Y->hasOneUse())) {
+ Value *NotX = Builder.CreateNot(LHS);
+ return SelectInst::Create(
+ Builder.CreateICmp(getInverseMinMaxPred(SPF), NotX, Y), NotX, Y);
+ }
+
+ // If both sides are freely invertible, then we can get rid of the xor
+ // completely.
+ if (isFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) &&
+ isFreeToInvert(RHS, !RHS->hasNUsesOrMore(3))) {
+ Value *NotLHS = Builder.CreateNot(LHS);
+ Value *NotRHS = Builder.CreateNot(RHS);
+ return SelectInst::Create(
+ Builder.CreateICmp(getInverseMinMaxPred(SPF), NotLHS, NotRHS),
+ NotLHS, NotRHS);
+ }
+ }
+ }
+
+ if (Instruction *NewXor = sinkNotIntoXor(I, Builder))
+ return NewXor;
+
+ return nullptr;
+}