diff options
Diffstat (limited to 'llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp')
| -rw-r--r-- | llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp | 3288 | 
1 files changed, 3288 insertions, 0 deletions
| diff --git a/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp b/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp new file mode 100644 index 000000000000..4a30b60ca931 --- /dev/null +++ b/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp @@ -0,0 +1,3288 @@ +//===- InstCombineAndOrXor.cpp --------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the visitAnd, visitOr, and visitXor functions. +// +//===----------------------------------------------------------------------===// + +#include "InstCombineInternal.h" +#include "llvm/Analysis/CmpInstAnalysis.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/IR/ConstantRange.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/PatternMatch.h" +using namespace llvm; +using namespace PatternMatch; + +#define DEBUG_TYPE "instcombine" + +/// Similar to getICmpCode but for FCmpInst. This encodes a fcmp predicate into +/// a four bit mask. +static unsigned getFCmpCode(FCmpInst::Predicate CC) { +  assert(FCmpInst::FCMP_FALSE <= CC && CC <= FCmpInst::FCMP_TRUE && +         "Unexpected FCmp predicate!"); +  // Take advantage of the bit pattern of FCmpInst::Predicate here. +  //                                                 U L G E +  static_assert(FCmpInst::FCMP_FALSE ==  0, "");  // 0 0 0 0 +  static_assert(FCmpInst::FCMP_OEQ   ==  1, "");  // 0 0 0 1 +  static_assert(FCmpInst::FCMP_OGT   ==  2, "");  // 0 0 1 0 +  static_assert(FCmpInst::FCMP_OGE   ==  3, "");  // 0 0 1 1 +  static_assert(FCmpInst::FCMP_OLT   ==  4, "");  // 0 1 0 0 +  static_assert(FCmpInst::FCMP_OLE   ==  5, "");  // 0 1 0 1 +  static_assert(FCmpInst::FCMP_ONE   ==  6, "");  // 0 1 1 0 +  static_assert(FCmpInst::FCMP_ORD   ==  7, "");  // 0 1 1 1 +  static_assert(FCmpInst::FCMP_UNO   ==  8, "");  // 1 0 0 0 +  static_assert(FCmpInst::FCMP_UEQ   ==  9, "");  // 1 0 0 1 +  static_assert(FCmpInst::FCMP_UGT   == 10, "");  // 1 0 1 0 +  static_assert(FCmpInst::FCMP_UGE   == 11, "");  // 1 0 1 1 +  static_assert(FCmpInst::FCMP_ULT   == 12, "");  // 1 1 0 0 +  static_assert(FCmpInst::FCMP_ULE   == 13, "");  // 1 1 0 1 +  static_assert(FCmpInst::FCMP_UNE   == 14, "");  // 1 1 1 0 +  static_assert(FCmpInst::FCMP_TRUE  == 15, "");  // 1 1 1 1 +  return CC; +} + +/// This is the complement of getICmpCode, which turns an opcode and two +/// operands into either a constant true or false, or a brand new ICmp +/// instruction. The sign is passed in to determine which kind of predicate to +/// use in the new icmp instruction. +static Value *getNewICmpValue(unsigned Code, bool Sign, Value *LHS, Value *RHS, +                              InstCombiner::BuilderTy &Builder) { +  ICmpInst::Predicate NewPred; +  if (Constant *TorF = getPredForICmpCode(Code, Sign, LHS->getType(), NewPred)) +    return TorF; +  return Builder.CreateICmp(NewPred, LHS, RHS); +} + +/// This is the complement of getFCmpCode, which turns an opcode and two +/// operands into either a FCmp instruction, or a true/false constant. +static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS, +                           InstCombiner::BuilderTy &Builder) { +  const auto Pred = static_cast<FCmpInst::Predicate>(Code); +  assert(FCmpInst::FCMP_FALSE <= Pred && Pred <= FCmpInst::FCMP_TRUE && +         "Unexpected FCmp predicate!"); +  if (Pred == FCmpInst::FCMP_FALSE) +    return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0); +  if (Pred == FCmpInst::FCMP_TRUE) +    return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1); +  return Builder.CreateFCmp(Pred, LHS, RHS); +} + +/// Transform BITWISE_OP(BSWAP(A),BSWAP(B)) or +/// BITWISE_OP(BSWAP(A), Constant) to BSWAP(BITWISE_OP(A, B)) +/// \param I Binary operator to transform. +/// \return Pointer to node that must replace the original binary operator, or +///         null pointer if no transformation was made. +static Value *SimplifyBSwap(BinaryOperator &I, +                            InstCombiner::BuilderTy &Builder) { +  assert(I.isBitwiseLogicOp() && "Unexpected opcode for bswap simplifying"); + +  Value *OldLHS = I.getOperand(0); +  Value *OldRHS = I.getOperand(1); + +  Value *NewLHS; +  if (!match(OldLHS, m_BSwap(m_Value(NewLHS)))) +    return nullptr; + +  Value *NewRHS; +  const APInt *C; + +  if (match(OldRHS, m_BSwap(m_Value(NewRHS)))) { +    // OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) ) +    if (!OldLHS->hasOneUse() && !OldRHS->hasOneUse()) +      return nullptr; +    // NewRHS initialized by the matcher. +  } else if (match(OldRHS, m_APInt(C))) { +    // OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) ) +    if (!OldLHS->hasOneUse()) +      return nullptr; +    NewRHS = ConstantInt::get(I.getType(), C->byteSwap()); +  } else +    return nullptr; + +  Value *BinOp = Builder.CreateBinOp(I.getOpcode(), NewLHS, NewRHS); +  Function *F = Intrinsic::getDeclaration(I.getModule(), Intrinsic::bswap, +                                          I.getType()); +  return Builder.CreateCall(F, BinOp); +} + +/// This handles expressions of the form ((val OP C1) & C2).  Where +/// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. +Instruction *InstCombiner::OptAndOp(BinaryOperator *Op, +                                    ConstantInt *OpRHS, +                                    ConstantInt *AndRHS, +                                    BinaryOperator &TheAnd) { +  Value *X = Op->getOperand(0); + +  switch (Op->getOpcode()) { +  default: break; +  case Instruction::Add: +    if (Op->hasOneUse()) { +      // Adding a one to a single bit bit-field should be turned into an XOR +      // of the bit.  First thing to check is to see if this AND is with a +      // single bit constant. +      const APInt &AndRHSV = AndRHS->getValue(); + +      // If there is only one bit set. +      if (AndRHSV.isPowerOf2()) { +        // Ok, at this point, we know that we are masking the result of the +        // ADD down to exactly one bit.  If the constant we are adding has +        // no bits set below this bit, then we can eliminate the ADD. +        const APInt& AddRHS = OpRHS->getValue(); + +        // Check to see if any bits below the one bit set in AndRHSV are set. +        if ((AddRHS & (AndRHSV - 1)).isNullValue()) { +          // If not, the only thing that can effect the output of the AND is +          // the bit specified by AndRHSV.  If that bit is set, the effect of +          // the XOR is to toggle the bit.  If it is clear, then the ADD has +          // no effect. +          if ((AddRHS & AndRHSV).isNullValue()) { // Bit is not set, noop +            TheAnd.setOperand(0, X); +            return &TheAnd; +          } else { +            // Pull the XOR out of the AND. +            Value *NewAnd = Builder.CreateAnd(X, AndRHS); +            NewAnd->takeName(Op); +            return BinaryOperator::CreateXor(NewAnd, AndRHS); +          } +        } +      } +    } +    break; +  } +  return nullptr; +} + +/// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise +/// (V < Lo || V >= Hi). This method expects that Lo < Hi. IsSigned indicates +/// whether to treat V, Lo, and Hi as signed or not. +Value *InstCombiner::insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi, +                                     bool isSigned, bool Inside) { +  assert((isSigned ? Lo.slt(Hi) : Lo.ult(Hi)) && +         "Lo is not < Hi in range emission code!"); + +  Type *Ty = V->getType(); + +  // V >= Min && V <  Hi --> V <  Hi +  // V <  Min || V >= Hi --> V >= Hi +  ICmpInst::Predicate Pred = Inside ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE; +  if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) { +    Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred; +    return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty, Hi)); +  } + +  // V >= Lo && V <  Hi --> V - Lo u<  Hi - Lo +  // V <  Lo || V >= Hi --> V - Lo u>= Hi - Lo +  Value *VMinusLo = +      Builder.CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off"); +  Constant *HiMinusLo = ConstantInt::get(Ty, Hi - Lo); +  return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo); +} + +/// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns +/// that can be simplified. +/// One of A and B is considered the mask. The other is the value. This is +/// described as the "AMask" or "BMask" part of the enum. If the enum contains +/// only "Mask", then both A and B can be considered masks. If A is the mask, +/// then it was proven that (A & C) == C. This is trivial if C == A or C == 0. +/// If both A and C are constants, this proof is also easy. +/// For the following explanations, we assume that A is the mask. +/// +/// "AllOnes" declares that the comparison is true only if (A & B) == A or all +/// bits of A are set in B. +///   Example: (icmp eq (A & 3), 3) -> AMask_AllOnes +/// +/// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all +/// bits of A are cleared in B. +///   Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes +/// +/// "Mixed" declares that (A & B) == C and C might or might not contain any +/// number of one bits and zero bits. +///   Example: (icmp eq (A & 3), 1) -> AMask_Mixed +/// +/// "Not" means that in above descriptions "==" should be replaced by "!=". +///   Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes +/// +/// If the mask A contains a single bit, then the following is equivalent: +///    (icmp eq (A & B), A) equals (icmp ne (A & B), 0) +///    (icmp ne (A & B), A) equals (icmp eq (A & B), 0) +enum MaskedICmpType { +  AMask_AllOnes           =     1, +  AMask_NotAllOnes        =     2, +  BMask_AllOnes           =     4, +  BMask_NotAllOnes        =     8, +  Mask_AllZeros           =    16, +  Mask_NotAllZeros        =    32, +  AMask_Mixed             =    64, +  AMask_NotMixed          =   128, +  BMask_Mixed             =   256, +  BMask_NotMixed          =   512 +}; + +/// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C) +/// satisfies. +static unsigned getMaskedICmpType(Value *A, Value *B, Value *C, +                                  ICmpInst::Predicate Pred) { +  ConstantInt *ACst = dyn_cast<ConstantInt>(A); +  ConstantInt *BCst = dyn_cast<ConstantInt>(B); +  ConstantInt *CCst = dyn_cast<ConstantInt>(C); +  bool IsEq = (Pred == ICmpInst::ICMP_EQ); +  bool IsAPow2 = (ACst && !ACst->isZero() && ACst->getValue().isPowerOf2()); +  bool IsBPow2 = (BCst && !BCst->isZero() && BCst->getValue().isPowerOf2()); +  unsigned MaskVal = 0; +  if (CCst && CCst->isZero()) { +    // if C is zero, then both A and B qualify as mask +    MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed) +                     : (Mask_NotAllZeros | AMask_NotMixed | BMask_NotMixed)); +    if (IsAPow2) +      MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed) +                       : (AMask_AllOnes | AMask_Mixed)); +    if (IsBPow2) +      MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed) +                       : (BMask_AllOnes | BMask_Mixed)); +    return MaskVal; +  } + +  if (A == C) { +    MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed) +                     : (AMask_NotAllOnes | AMask_NotMixed)); +    if (IsAPow2) +      MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed) +                       : (Mask_AllZeros | AMask_Mixed)); +  } else if (ACst && CCst && ConstantExpr::getAnd(ACst, CCst) == CCst) { +    MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed); +  } + +  if (B == C) { +    MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed) +                     : (BMask_NotAllOnes | BMask_NotMixed)); +    if (IsBPow2) +      MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed) +                       : (Mask_AllZeros | BMask_Mixed)); +  } else if (BCst && CCst && ConstantExpr::getAnd(BCst, CCst) == CCst) { +    MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed); +  } + +  return MaskVal; +} + +/// Convert an analysis of a masked ICmp into its equivalent if all boolean +/// operations had the opposite sense. Since each "NotXXX" flag (recording !=) +/// is adjacent to the corresponding normal flag (recording ==), this just +/// involves swapping those bits over. +static unsigned conjugateICmpMask(unsigned Mask) { +  unsigned NewMask; +  NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros | +                     AMask_Mixed | BMask_Mixed)) +            << 1; + +  NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros | +                      AMask_NotMixed | BMask_NotMixed)) +             >> 1; + +  return NewMask; +} + +// Adapts the external decomposeBitTestICmp for local use. +static bool decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate &Pred, +                                 Value *&X, Value *&Y, Value *&Z) { +  APInt Mask; +  if (!llvm::decomposeBitTestICmp(LHS, RHS, Pred, X, Mask)) +    return false; + +  Y = ConstantInt::get(X->getType(), Mask); +  Z = ConstantInt::get(X->getType(), 0); +  return true; +} + +/// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E). +/// Return the pattern classes (from MaskedICmpType) for the left hand side and +/// the right hand side as a pair. +/// LHS and RHS are the left hand side and the right hand side ICmps and PredL +/// and PredR are their predicates, respectively. +static +Optional<std::pair<unsigned, unsigned>> +getMaskedTypeForICmpPair(Value *&A, Value *&B, Value *&C, +                         Value *&D, Value *&E, ICmpInst *LHS, +                         ICmpInst *RHS, +                         ICmpInst::Predicate &PredL, +                         ICmpInst::Predicate &PredR) { +  // vectors are not (yet?) supported. Don't support pointers either. +  if (!LHS->getOperand(0)->getType()->isIntegerTy() || +      !RHS->getOperand(0)->getType()->isIntegerTy()) +    return None; + +  // Here comes the tricky part: +  // LHS might be of the form L11 & L12 == X, X == L21 & L22, +  // and L11 & L12 == L21 & L22. The same goes for RHS. +  // Now we must find those components L** and R**, that are equal, so +  // that we can extract the parameters A, B, C, D, and E for the canonical +  // above. +  Value *L1 = LHS->getOperand(0); +  Value *L2 = LHS->getOperand(1); +  Value *L11, *L12, *L21, *L22; +  // Check whether the icmp can be decomposed into a bit test. +  if (decomposeBitTestICmp(L1, L2, PredL, L11, L12, L2)) { +    L21 = L22 = L1 = nullptr; +  } else { +    // Look for ANDs in the LHS icmp. +    if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) { +      // Any icmp can be viewed as being trivially masked; if it allows us to +      // remove one, it's worth it. +      L11 = L1; +      L12 = Constant::getAllOnesValue(L1->getType()); +    } + +    if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) { +      L21 = L2; +      L22 = Constant::getAllOnesValue(L2->getType()); +    } +  } + +  // Bail if LHS was a icmp that can't be decomposed into an equality. +  if (!ICmpInst::isEquality(PredL)) +    return None; + +  Value *R1 = RHS->getOperand(0); +  Value *R2 = RHS->getOperand(1); +  Value *R11, *R12; +  bool Ok = false; +  if (decomposeBitTestICmp(R1, R2, PredR, R11, R12, R2)) { +    if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { +      A = R11; +      D = R12; +    } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { +      A = R12; +      D = R11; +    } else { +      return None; +    } +    E = R2; +    R1 = nullptr; +    Ok = true; +  } else { +    if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) { +      // As before, model no mask as a trivial mask if it'll let us do an +      // optimization. +      R11 = R1; +      R12 = Constant::getAllOnesValue(R1->getType()); +    } + +    if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { +      A = R11; +      D = R12; +      E = R2; +      Ok = true; +    } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { +      A = R12; +      D = R11; +      E = R2; +      Ok = true; +    } +  } + +  // Bail if RHS was a icmp that can't be decomposed into an equality. +  if (!ICmpInst::isEquality(PredR)) +    return None; + +  // Look for ANDs on the right side of the RHS icmp. +  if (!Ok) { +    if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) { +      R11 = R2; +      R12 = Constant::getAllOnesValue(R2->getType()); +    } + +    if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { +      A = R11; +      D = R12; +      E = R1; +      Ok = true; +    } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { +      A = R12; +      D = R11; +      E = R1; +      Ok = true; +    } else { +      return None; +    } +  } +  if (!Ok) +    return None; + +  if (L11 == A) { +    B = L12; +    C = L2; +  } else if (L12 == A) { +    B = L11; +    C = L2; +  } else if (L21 == A) { +    B = L22; +    C = L1; +  } else if (L22 == A) { +    B = L21; +    C = L1; +  } + +  unsigned LeftType = getMaskedICmpType(A, B, C, PredL); +  unsigned RightType = getMaskedICmpType(A, D, E, PredR); +  return Optional<std::pair<unsigned, unsigned>>(std::make_pair(LeftType, RightType)); +} + +/// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single +/// (icmp(A & X) ==/!= Y), where the left-hand side is of type Mask_NotAllZeros +/// and the right hand side is of type BMask_Mixed. For example, +/// (icmp (A & 12) != 0) & (icmp (A & 15) == 8) -> (icmp (A & 15) == 8). +static Value * foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed( +    ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, +    Value *A, Value *B, Value *C, Value *D, Value *E, +    ICmpInst::Predicate PredL, ICmpInst::Predicate PredR, +    llvm::InstCombiner::BuilderTy &Builder) { +  // We are given the canonical form: +  //   (icmp ne (A & B), 0) & (icmp eq (A & D), E). +  // where D & E == E. +  // +  // If IsAnd is false, we get it in negated form: +  //   (icmp eq (A & B), 0) | (icmp ne (A & D), E) -> +  //      !((icmp ne (A & B), 0) & (icmp eq (A & D), E)). +  // +  // We currently handle the case of B, C, D, E are constant. +  // +  ConstantInt *BCst = dyn_cast<ConstantInt>(B); +  if (!BCst) +    return nullptr; +  ConstantInt *CCst = dyn_cast<ConstantInt>(C); +  if (!CCst) +    return nullptr; +  ConstantInt *DCst = dyn_cast<ConstantInt>(D); +  if (!DCst) +    return nullptr; +  ConstantInt *ECst = dyn_cast<ConstantInt>(E); +  if (!ECst) +    return nullptr; + +  ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; + +  // Update E to the canonical form when D is a power of two and RHS is +  // canonicalized as, +  // (icmp ne (A & D), 0) -> (icmp eq (A & D), D) or +  // (icmp ne (A & D), D) -> (icmp eq (A & D), 0). +  if (PredR != NewCC) +    ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst)); + +  // If B or D is zero, skip because if LHS or RHS can be trivially folded by +  // other folding rules and this pattern won't apply any more. +  if (BCst->getValue() == 0 || DCst->getValue() == 0) +    return nullptr; + +  // If B and D don't intersect, ie. (B & D) == 0, no folding because we can't +  // deduce anything from it. +  // For example, +  // (icmp ne (A & 12), 0) & (icmp eq (A & 3), 1) -> no folding. +  if ((BCst->getValue() & DCst->getValue()) == 0) +    return nullptr; + +  // If the following two conditions are met: +  // +  // 1. mask B covers only a single bit that's not covered by mask D, that is, +  // (B & (B ^ D)) is a power of 2 (in other words, B minus the intersection of +  // B and D has only one bit set) and, +  // +  // 2. RHS (and E) indicates that the rest of B's bits are zero (in other +  // words, the intersection of B and D is zero), that is, ((B & D) & E) == 0 +  // +  // then that single bit in B must be one and thus the whole expression can be +  // folded to +  //   (A & (B | D)) == (B & (B ^ D)) | E. +  // +  // For example, +  // (icmp ne (A & 12), 0) & (icmp eq (A & 7), 1) -> (icmp eq (A & 15), 9) +  // (icmp ne (A & 15), 0) & (icmp eq (A & 7), 0) -> (icmp eq (A & 15), 8) +  if ((((BCst->getValue() & DCst->getValue()) & ECst->getValue()) == 0) && +      (BCst->getValue() & (BCst->getValue() ^ DCst->getValue())).isPowerOf2()) { +    APInt BorD = BCst->getValue() | DCst->getValue(); +    APInt BandBxorDorE = (BCst->getValue() & (BCst->getValue() ^ DCst->getValue())) | +        ECst->getValue(); +    Value *NewMask = ConstantInt::get(BCst->getType(), BorD); +    Value *NewMaskedValue = ConstantInt::get(BCst->getType(), BandBxorDorE); +    Value *NewAnd = Builder.CreateAnd(A, NewMask); +    return Builder.CreateICmp(NewCC, NewAnd, NewMaskedValue); +  } + +  auto IsSubSetOrEqual = [](ConstantInt *C1, ConstantInt *C2) { +    return (C1->getValue() & C2->getValue()) == C1->getValue(); +  }; +  auto IsSuperSetOrEqual = [](ConstantInt *C1, ConstantInt *C2) { +    return (C1->getValue() & C2->getValue()) == C2->getValue(); +  }; + +  // In the following, we consider only the cases where B is a superset of D, B +  // is a subset of D, or B == D because otherwise there's at least one bit +  // covered by B but not D, in which case we can't deduce much from it, so +  // no folding (aside from the single must-be-one bit case right above.) +  // For example, +  // (icmp ne (A & 14), 0) & (icmp eq (A & 3), 1) -> no folding. +  if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst)) +    return nullptr; + +  // At this point, either B is a superset of D, B is a subset of D or B == D. + +  // If E is zero, if B is a subset of (or equal to) D, LHS and RHS contradict +  // and the whole expression becomes false (or true if negated), otherwise, no +  // folding. +  // For example, +  // (icmp ne (A & 3), 0) & (icmp eq (A & 7), 0) -> false. +  // (icmp ne (A & 15), 0) & (icmp eq (A & 3), 0) -> no folding. +  if (ECst->isZero()) { +    if (IsSubSetOrEqual(BCst, DCst)) +      return ConstantInt::get(LHS->getType(), !IsAnd); +    return nullptr; +  } + +  // At this point, B, D, E aren't zero and (B & D) == B, (B & D) == D or B == +  // D. If B is a superset of (or equal to) D, since E is not zero, LHS is +  // subsumed by RHS (RHS implies LHS.) So the whole expression becomes +  // RHS. For example, +  // (icmp ne (A & 255), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8). +  // (icmp ne (A & 15), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8). +  if (IsSuperSetOrEqual(BCst, DCst)) +    return RHS; +  // Otherwise, B is a subset of D. If B and E have a common bit set, +  // ie. (B & E) != 0, then LHS is subsumed by RHS. For example. +  // (icmp ne (A & 12), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8). +  assert(IsSubSetOrEqual(BCst, DCst) && "Precondition due to above code"); +  if ((BCst->getValue() & ECst->getValue()) != 0) +    return RHS; +  // Otherwise, LHS and RHS contradict and the whole expression becomes false +  // (or true if negated.) For example, +  // (icmp ne (A & 7), 0) & (icmp eq (A & 15), 8) -> false. +  // (icmp ne (A & 6), 0) & (icmp eq (A & 15), 8) -> false. +  return ConstantInt::get(LHS->getType(), !IsAnd); +} + +/// Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single +/// (icmp(A & X) ==/!= Y), where the left-hand side and the right hand side +/// aren't of the common mask pattern type. +static Value *foldLogOpOfMaskedICmpsAsymmetric( +    ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, +    Value *A, Value *B, Value *C, Value *D, Value *E, +    ICmpInst::Predicate PredL, ICmpInst::Predicate PredR, +    unsigned LHSMask, unsigned RHSMask, +    llvm::InstCombiner::BuilderTy &Builder) { +  assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) && +         "Expected equality predicates for masked type of icmps."); +  // Handle Mask_NotAllZeros-BMask_Mixed cases. +  // (icmp ne/eq (A & B), C) &/| (icmp eq/ne (A & D), E), or +  // (icmp eq/ne (A & B), C) &/| (icmp ne/eq (A & D), E) +  //    which gets swapped to +  //    (icmp ne/eq (A & D), E) &/| (icmp eq/ne (A & B), C). +  if (!IsAnd) { +    LHSMask = conjugateICmpMask(LHSMask); +    RHSMask = conjugateICmpMask(RHSMask); +  } +  if ((LHSMask & Mask_NotAllZeros) && (RHSMask & BMask_Mixed)) { +    if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed( +            LHS, RHS, IsAnd, A, B, C, D, E, +            PredL, PredR, Builder)) { +      return V; +    } +  } else if ((LHSMask & BMask_Mixed) && (RHSMask & Mask_NotAllZeros)) { +    if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed( +            RHS, LHS, IsAnd, A, D, E, B, C, +            PredR, PredL, Builder)) { +      return V; +    } +  } +  return nullptr; +} + +/// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) +/// into a single (icmp(A & X) ==/!= Y). +static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, +                                     llvm::InstCombiner::BuilderTy &Builder) { +  Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr; +  ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); +  Optional<std::pair<unsigned, unsigned>> MaskPair = +      getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR); +  if (!MaskPair) +    return nullptr; +  assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) && +         "Expected equality predicates for masked type of icmps."); +  unsigned LHSMask = MaskPair->first; +  unsigned RHSMask = MaskPair->second; +  unsigned Mask = LHSMask & RHSMask; +  if (Mask == 0) { +    // Even if the two sides don't share a common pattern, check if folding can +    // still happen. +    if (Value *V = foldLogOpOfMaskedICmpsAsymmetric( +            LHS, RHS, IsAnd, A, B, C, D, E, PredL, PredR, LHSMask, RHSMask, +            Builder)) +      return V; +    return nullptr; +  } + +  // In full generality: +  //     (icmp (A & B) Op C) | (icmp (A & D) Op E) +  // ==  ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ] +  // +  // If the latter can be converted into (icmp (A & X) Op Y) then the former is +  // equivalent to (icmp (A & X) !Op Y). +  // +  // Therefore, we can pretend for the rest of this function that we're dealing +  // with the conjunction, provided we flip the sense of any comparisons (both +  // input and output). + +  // In most cases we're going to produce an EQ for the "&&" case. +  ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; +  if (!IsAnd) { +    // Convert the masking analysis into its equivalent with negated +    // comparisons. +    Mask = conjugateICmpMask(Mask); +  } + +  if (Mask & Mask_AllZeros) { +    // (icmp eq (A & B), 0) & (icmp eq (A & D), 0) +    // -> (icmp eq (A & (B|D)), 0) +    Value *NewOr = Builder.CreateOr(B, D); +    Value *NewAnd = Builder.CreateAnd(A, NewOr); +    // We can't use C as zero because we might actually handle +    //   (icmp ne (A & B), B) & (icmp ne (A & D), D) +    // with B and D, having a single bit set. +    Value *Zero = Constant::getNullValue(A->getType()); +    return Builder.CreateICmp(NewCC, NewAnd, Zero); +  } +  if (Mask & BMask_AllOnes) { +    // (icmp eq (A & B), B) & (icmp eq (A & D), D) +    // -> (icmp eq (A & (B|D)), (B|D)) +    Value *NewOr = Builder.CreateOr(B, D); +    Value *NewAnd = Builder.CreateAnd(A, NewOr); +    return Builder.CreateICmp(NewCC, NewAnd, NewOr); +  } +  if (Mask & AMask_AllOnes) { +    // (icmp eq (A & B), A) & (icmp eq (A & D), A) +    // -> (icmp eq (A & (B&D)), A) +    Value *NewAnd1 = Builder.CreateAnd(B, D); +    Value *NewAnd2 = Builder.CreateAnd(A, NewAnd1); +    return Builder.CreateICmp(NewCC, NewAnd2, A); +  } + +  // Remaining cases assume at least that B and D are constant, and depend on +  // their actual values. This isn't strictly necessary, just a "handle the +  // easy cases for now" decision. +  ConstantInt *BCst = dyn_cast<ConstantInt>(B); +  if (!BCst) +    return nullptr; +  ConstantInt *DCst = dyn_cast<ConstantInt>(D); +  if (!DCst) +    return nullptr; + +  if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) { +    // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and +    // (icmp ne (A & B), B) & (icmp ne (A & D), D) +    //     -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0) +    // Only valid if one of the masks is a superset of the other (check "B&D" is +    // the same as either B or D). +    APInt NewMask = BCst->getValue() & DCst->getValue(); + +    if (NewMask == BCst->getValue()) +      return LHS; +    else if (NewMask == DCst->getValue()) +      return RHS; +  } + +  if (Mask & AMask_NotAllOnes) { +    // (icmp ne (A & B), B) & (icmp ne (A & D), D) +    //     -> (icmp ne (A & B), A) or (icmp ne (A & D), A) +    // Only valid if one of the masks is a superset of the other (check "B|D" is +    // the same as either B or D). +    APInt NewMask = BCst->getValue() | DCst->getValue(); + +    if (NewMask == BCst->getValue()) +      return LHS; +    else if (NewMask == DCst->getValue()) +      return RHS; +  } + +  if (Mask & BMask_Mixed) { +    // (icmp eq (A & B), C) & (icmp eq (A & D), E) +    // We already know that B & C == C && D & E == E. +    // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of +    // C and E, which are shared by both the mask B and the mask D, don't +    // contradict, then we can transform to +    // -> (icmp eq (A & (B|D)), (C|E)) +    // Currently, we only handle the case of B, C, D, and E being constant. +    // We can't simply use C and E because we might actually handle +    //   (icmp ne (A & B), B) & (icmp eq (A & D), D) +    // with B and D, having a single bit set. +    ConstantInt *CCst = dyn_cast<ConstantInt>(C); +    if (!CCst) +      return nullptr; +    ConstantInt *ECst = dyn_cast<ConstantInt>(E); +    if (!ECst) +      return nullptr; +    if (PredL != NewCC) +      CCst = cast<ConstantInt>(ConstantExpr::getXor(BCst, CCst)); +    if (PredR != NewCC) +      ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst)); + +    // If there is a conflict, we should actually return a false for the +    // whole construct. +    if (((BCst->getValue() & DCst->getValue()) & +         (CCst->getValue() ^ ECst->getValue())).getBoolValue()) +      return ConstantInt::get(LHS->getType(), !IsAnd); + +    Value *NewOr1 = Builder.CreateOr(B, D); +    Value *NewOr2 = ConstantExpr::getOr(CCst, ECst); +    Value *NewAnd = Builder.CreateAnd(A, NewOr1); +    return Builder.CreateICmp(NewCC, NewAnd, NewOr2); +  } + +  return nullptr; +} + +/// Try to fold a signed range checked with lower bound 0 to an unsigned icmp. +/// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n +/// If \p Inverted is true then the check is for the inverted range, e.g. +/// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n +Value *InstCombiner::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, +                                        bool Inverted) { +  // Check the lower range comparison, e.g. x >= 0 +  // InstCombine already ensured that if there is a constant it's on the RHS. +  ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1)); +  if (!RangeStart) +    return nullptr; + +  ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() : +                               Cmp0->getPredicate()); + +  // Accept x > -1 or x >= 0 (after potentially inverting the predicate). +  if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) || +        (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero()))) +    return nullptr; + +  ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() : +                               Cmp1->getPredicate()); + +  Value *Input = Cmp0->getOperand(0); +  Value *RangeEnd; +  if (Cmp1->getOperand(0) == Input) { +    // For the upper range compare we have: icmp x, n +    RangeEnd = Cmp1->getOperand(1); +  } else if (Cmp1->getOperand(1) == Input) { +    // For the upper range compare we have: icmp n, x +    RangeEnd = Cmp1->getOperand(0); +    Pred1 = ICmpInst::getSwappedPredicate(Pred1); +  } else { +    return nullptr; +  } + +  // Check the upper range comparison, e.g. x < n +  ICmpInst::Predicate NewPred; +  switch (Pred1) { +    case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break; +    case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break; +    default: return nullptr; +  } + +  // This simplification is only valid if the upper range is not negative. +  KnownBits Known = computeKnownBits(RangeEnd, /*Depth=*/0, Cmp1); +  if (!Known.isNonNegative()) +    return nullptr; + +  if (Inverted) +    NewPred = ICmpInst::getInversePredicate(NewPred); + +  return Builder.CreateICmp(NewPred, Input, RangeEnd); +} + +static Value * +foldAndOrOfEqualityCmpsWithConstants(ICmpInst *LHS, ICmpInst *RHS, +                                     bool JoinedByAnd, +                                     InstCombiner::BuilderTy &Builder) { +  Value *X = LHS->getOperand(0); +  if (X != RHS->getOperand(0)) +    return nullptr; + +  const APInt *C1, *C2; +  if (!match(LHS->getOperand(1), m_APInt(C1)) || +      !match(RHS->getOperand(1), m_APInt(C2))) +    return nullptr; + +  // We only handle (X != C1 && X != C2) and (X == C1 || X == C2). +  ICmpInst::Predicate Pred = LHS->getPredicate(); +  if (Pred !=  RHS->getPredicate()) +    return nullptr; +  if (JoinedByAnd && Pred != ICmpInst::ICMP_NE) +    return nullptr; +  if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ) +    return nullptr; + +  // The larger unsigned constant goes on the right. +  if (C1->ugt(*C2)) +    std::swap(C1, C2); + +  APInt Xor = *C1 ^ *C2; +  if (Xor.isPowerOf2()) { +    // If LHSC and RHSC differ by only one bit, then set that bit in X and +    // compare against the larger constant: +    // (X == C1 || X == C2) --> (X | (C1 ^ C2)) == C2 +    // (X != C1 && X != C2) --> (X | (C1 ^ C2)) != C2 +    // We choose an 'or' with a Pow2 constant rather than the inverse mask with +    // 'and' because that may lead to smaller codegen from a smaller constant. +    Value *Or = Builder.CreateOr(X, ConstantInt::get(X->getType(), Xor)); +    return Builder.CreateICmp(Pred, Or, ConstantInt::get(X->getType(), *C2)); +  } + +  // Special case: get the ordering right when the values wrap around zero. +  // Ie, we assumed the constants were unsigned when swapping earlier. +  if (C1->isNullValue() && C2->isAllOnesValue()) +    std::swap(C1, C2); + +  if (*C1 == *C2 - 1) { +    // (X == 13 || X == 14) --> X - 13 <=u 1 +    // (X != 13 && X != 14) --> X - 13  >u 1 +    // An 'add' is the canonical IR form, so favor that over a 'sub'. +    Value *Add = Builder.CreateAdd(X, ConstantInt::get(X->getType(), -(*C1))); +    auto NewPred = JoinedByAnd ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_ULE; +    return Builder.CreateICmp(NewPred, Add, ConstantInt::get(X->getType(), 1)); +  } + +  return nullptr; +} + +// Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2) +// Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2) +Value *InstCombiner::foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS, +                                                   bool JoinedByAnd, +                                                   Instruction &CxtI) { +  ICmpInst::Predicate Pred = LHS->getPredicate(); +  if (Pred != RHS->getPredicate()) +    return nullptr; +  if (JoinedByAnd && Pred != ICmpInst::ICMP_NE) +    return nullptr; +  if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ) +    return nullptr; + +  // TODO support vector splats +  ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1)); +  ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1)); +  if (!LHSC || !RHSC || !LHSC->isZero() || !RHSC->isZero()) +    return nullptr; + +  Value *A, *B, *C, *D; +  if (match(LHS->getOperand(0), m_And(m_Value(A), m_Value(B))) && +      match(RHS->getOperand(0), m_And(m_Value(C), m_Value(D)))) { +    if (A == D || B == D) +      std::swap(C, D); +    if (B == C) +      std::swap(A, B); + +    if (A == C && +        isKnownToBeAPowerOfTwo(B, false, 0, &CxtI) && +        isKnownToBeAPowerOfTwo(D, false, 0, &CxtI)) { +      Value *Mask = Builder.CreateOr(B, D); +      Value *Masked = Builder.CreateAnd(A, Mask); +      auto NewPred = JoinedByAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; +      return Builder.CreateICmp(NewPred, Masked, Mask); +    } +  } + +  return nullptr; +} + +/// General pattern: +///   X & Y +/// +/// Where Y is checking that all the high bits (covered by a mask 4294967168) +/// are uniform, i.e.  %arg & 4294967168  can be either  4294967168  or  0 +/// Pattern can be one of: +///   %t = add        i32 %arg,    128 +///   %r = icmp   ult i32 %t,      256 +/// Or +///   %t0 = shl       i32 %arg,    24 +///   %t1 = ashr      i32 %t0,     24 +///   %r  = icmp  eq  i32 %t1,     %arg +/// Or +///   %t0 = trunc     i32 %arg  to i8 +///   %t1 = sext      i8  %t0   to i32 +///   %r  = icmp  eq  i32 %t1,     %arg +/// This pattern is a signed truncation check. +/// +/// And X is checking that some bit in that same mask is zero. +/// I.e. can be one of: +///   %r = icmp sgt i32   %arg,    -1 +/// Or +///   %t = and      i32   %arg,    2147483648 +///   %r = icmp eq  i32   %t,      0 +/// +/// Since we are checking that all the bits in that mask are the same, +/// and a particular bit is zero, what we are really checking is that all the +/// masked bits are zero. +/// So this should be transformed to: +///   %r = icmp ult i32 %arg, 128 +static Value *foldSignedTruncationCheck(ICmpInst *ICmp0, ICmpInst *ICmp1, +                                        Instruction &CxtI, +                                        InstCombiner::BuilderTy &Builder) { +  assert(CxtI.getOpcode() == Instruction::And); + +  // Match  icmp ult (add %arg, C01), C1   (C1 == C01 << 1; powers of two) +  auto tryToMatchSignedTruncationCheck = [](ICmpInst *ICmp, Value *&X, +                                            APInt &SignBitMask) -> bool { +    CmpInst::Predicate Pred; +    const APInt *I01, *I1; // powers of two; I1 == I01 << 1 +    if (!(match(ICmp, +                m_ICmp(Pred, m_Add(m_Value(X), m_Power2(I01)), m_Power2(I1))) && +          Pred == ICmpInst::ICMP_ULT && I1->ugt(*I01) && I01->shl(1) == *I1)) +      return false; +    // Which bit is the new sign bit as per the 'signed truncation' pattern? +    SignBitMask = *I01; +    return true; +  }; + +  // One icmp needs to be 'signed truncation check'. +  // We need to match this first, else we will mismatch commutative cases. +  Value *X1; +  APInt HighestBit; +  ICmpInst *OtherICmp; +  if (tryToMatchSignedTruncationCheck(ICmp1, X1, HighestBit)) +    OtherICmp = ICmp0; +  else if (tryToMatchSignedTruncationCheck(ICmp0, X1, HighestBit)) +    OtherICmp = ICmp1; +  else +    return nullptr; + +  assert(HighestBit.isPowerOf2() && "expected to be power of two (non-zero)"); + +  // Try to match/decompose into:  icmp eq (X & Mask), 0 +  auto tryToDecompose = [](ICmpInst *ICmp, Value *&X, +                           APInt &UnsetBitsMask) -> bool { +    CmpInst::Predicate Pred = ICmp->getPredicate(); +    // Can it be decomposed into  icmp eq (X & Mask), 0  ? +    if (llvm::decomposeBitTestICmp(ICmp->getOperand(0), ICmp->getOperand(1), +                                   Pred, X, UnsetBitsMask, +                                   /*LookThroughTrunc=*/false) && +        Pred == ICmpInst::ICMP_EQ) +      return true; +    // Is it  icmp eq (X & Mask), 0  already? +    const APInt *Mask; +    if (match(ICmp, m_ICmp(Pred, m_And(m_Value(X), m_APInt(Mask)), m_Zero())) && +        Pred == ICmpInst::ICMP_EQ) { +      UnsetBitsMask = *Mask; +      return true; +    } +    return false; +  }; + +  // And the other icmp needs to be decomposable into a bit test. +  Value *X0; +  APInt UnsetBitsMask; +  if (!tryToDecompose(OtherICmp, X0, UnsetBitsMask)) +    return nullptr; + +  assert(!UnsetBitsMask.isNullValue() && "empty mask makes no sense."); + +  // Are they working on the same value? +  Value *X; +  if (X1 == X0) { +    // Ok as is. +    X = X1; +  } else if (match(X0, m_Trunc(m_Specific(X1)))) { +    UnsetBitsMask = UnsetBitsMask.zext(X1->getType()->getScalarSizeInBits()); +    X = X1; +  } else +    return nullptr; + +  // So which bits should be uniform as per the 'signed truncation check'? +  // (all the bits starting with (i.e. including) HighestBit) +  APInt SignBitsMask = ~(HighestBit - 1U); + +  // UnsetBitsMask must have some common bits with SignBitsMask, +  if (!UnsetBitsMask.intersects(SignBitsMask)) +    return nullptr; + +  // Does UnsetBitsMask contain any bits outside of SignBitsMask? +  if (!UnsetBitsMask.isSubsetOf(SignBitsMask)) { +    APInt OtherHighestBit = (~UnsetBitsMask) + 1U; +    if (!OtherHighestBit.isPowerOf2()) +      return nullptr; +    HighestBit = APIntOps::umin(HighestBit, OtherHighestBit); +  } +  // Else, if it does not, then all is ok as-is. + +  // %r = icmp ult %X, SignBit +  return Builder.CreateICmpULT(X, ConstantInt::get(X->getType(), HighestBit), +                               CxtI.getName() + ".simplified"); +} + +/// Reduce a pair of compares that check if a value has exactly 1 bit set. +static Value *foldIsPowerOf2(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd, +                             InstCombiner::BuilderTy &Builder) { +  // Handle 'and' / 'or' commutation: make the equality check the first operand. +  if (JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_NE) +    std::swap(Cmp0, Cmp1); +  else if (!JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_EQ) +    std::swap(Cmp0, Cmp1); + +  // (X != 0) && (ctpop(X) u< 2) --> ctpop(X) == 1 +  CmpInst::Predicate Pred0, Pred1; +  Value *X; +  if (JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) && +      match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)), +                         m_SpecificInt(2))) && +      Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) { +    Value *CtPop = Cmp1->getOperand(0); +    return Builder.CreateICmpEQ(CtPop, ConstantInt::get(CtPop->getType(), 1)); +  } +  // (X == 0) || (ctpop(X) u> 1) --> ctpop(X) != 1 +  if (!JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) && +      match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)), +                         m_SpecificInt(1))) && +      Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_UGT) { +    Value *CtPop = Cmp1->getOperand(0); +    return Builder.CreateICmpNE(CtPop, ConstantInt::get(CtPop->getType(), 1)); +  } +  return nullptr; +} + +/// Commuted variants are assumed to be handled by calling this function again +/// with the parameters swapped. +static Value *foldUnsignedUnderflowCheck(ICmpInst *ZeroICmp, +                                         ICmpInst *UnsignedICmp, bool IsAnd, +                                         const SimplifyQuery &Q, +                                         InstCombiner::BuilderTy &Builder) { +  Value *ZeroCmpOp; +  ICmpInst::Predicate EqPred; +  if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(ZeroCmpOp), m_Zero())) || +      !ICmpInst::isEquality(EqPred)) +    return nullptr; + +  auto IsKnownNonZero = [&](Value *V) { +    return isKnownNonZero(V, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); +  }; + +  ICmpInst::Predicate UnsignedPred; + +  Value *A, *B; +  if (match(UnsignedICmp, +            m_c_ICmp(UnsignedPred, m_Specific(ZeroCmpOp), m_Value(A))) && +      match(ZeroCmpOp, m_c_Add(m_Specific(A), m_Value(B))) && +      (ZeroICmp->hasOneUse() || UnsignedICmp->hasOneUse())) { +    if (UnsignedICmp->getOperand(0) != ZeroCmpOp) +      UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); + +    auto GetKnownNonZeroAndOther = [&](Value *&NonZero, Value *&Other) { +      if (!IsKnownNonZero(NonZero)) +        std::swap(NonZero, Other); +      return IsKnownNonZero(NonZero); +    }; + +    // Given  ZeroCmpOp = (A + B) +    //   ZeroCmpOp <= A && ZeroCmpOp != 0  -->  (0-B) <  A +    //   ZeroCmpOp >  A || ZeroCmpOp == 0  -->  (0-B) >= A +    // +    //   ZeroCmpOp <  A && ZeroCmpOp != 0  -->  (0-X) <  Y  iff +    //   ZeroCmpOp >= A || ZeroCmpOp == 0  -->  (0-X) >= Y  iff +    //     with X being the value (A/B) that is known to be non-zero, +    //     and Y being remaining value. +    if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && +        IsAnd) +      return Builder.CreateICmpULT(Builder.CreateNeg(B), A); +    if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE && +        IsAnd && GetKnownNonZeroAndOther(B, A)) +      return Builder.CreateICmpULT(Builder.CreateNeg(B), A); +    if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && +        !IsAnd) +      return Builder.CreateICmpUGE(Builder.CreateNeg(B), A); +    if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ && +        !IsAnd && GetKnownNonZeroAndOther(B, A)) +      return Builder.CreateICmpUGE(Builder.CreateNeg(B), A); +  } + +  Value *Base, *Offset; +  if (!match(ZeroCmpOp, m_Sub(m_Value(Base), m_Value(Offset)))) +    return nullptr; + +  if (!match(UnsignedICmp, +             m_c_ICmp(UnsignedPred, m_Specific(Base), m_Specific(Offset))) || +      !ICmpInst::isUnsigned(UnsignedPred)) +    return nullptr; +  if (UnsignedICmp->getOperand(0) != Base) +    UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); + +  // Base >=/> Offset && (Base - Offset) != 0  <-->  Base > Offset +  // (no overflow and not null) +  if ((UnsignedPred == ICmpInst::ICMP_UGE || +       UnsignedPred == ICmpInst::ICMP_UGT) && +      EqPred == ICmpInst::ICMP_NE && IsAnd) +    return Builder.CreateICmpUGT(Base, Offset); + +  // Base <=/< Offset || (Base - Offset) == 0  <-->  Base <= Offset +  // (overflow or null) +  if ((UnsignedPred == ICmpInst::ICMP_ULE || +       UnsignedPred == ICmpInst::ICMP_ULT) && +      EqPred == ICmpInst::ICMP_EQ && !IsAnd) +    return Builder.CreateICmpULE(Base, Offset); + +  // Base <= Offset && (Base - Offset) != 0  -->  Base < Offset +  if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && +      IsAnd) +    return Builder.CreateICmpULT(Base, Offset); + +  // Base > Offset || (Base - Offset) == 0  -->  Base >= Offset +  if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && +      !IsAnd) +    return Builder.CreateICmpUGE(Base, Offset); + +  return nullptr; +} + +/// Fold (icmp)&(icmp) if possible. +Value *InstCombiner::foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS, +                                    Instruction &CxtI) { +  const SimplifyQuery Q = SQ.getWithInstruction(&CxtI); + +  // Fold (!iszero(A & K1) & !iszero(A & K2)) ->  (A & (K1 | K2)) == (K1 | K2) +  // if K1 and K2 are a one-bit mask. +  if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, true, CxtI)) +    return V; + +  ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); + +  // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B) +  if (predicatesFoldable(PredL, PredR)) { +    if (LHS->getOperand(0) == RHS->getOperand(1) && +        LHS->getOperand(1) == RHS->getOperand(0)) +      LHS->swapOperands(); +    if (LHS->getOperand(0) == RHS->getOperand(0) && +        LHS->getOperand(1) == RHS->getOperand(1)) { +      Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1); +      unsigned Code = getICmpCode(LHS) & getICmpCode(RHS); +      bool IsSigned = LHS->isSigned() || RHS->isSigned(); +      return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder); +    } +  } + +  // handle (roughly):  (icmp eq (A & B), C) & (icmp eq (A & D), E) +  if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder)) +    return V; + +  // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n +  if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/false)) +    return V; + +  // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n +  if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/false)) +    return V; + +  if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, true, Builder)) +    return V; + +  if (Value *V = foldSignedTruncationCheck(LHS, RHS, CxtI, Builder)) +    return V; + +  if (Value *V = foldIsPowerOf2(LHS, RHS, true /* JoinedByAnd */, Builder)) +    return V; + +  if (Value *X = +          foldUnsignedUnderflowCheck(LHS, RHS, /*IsAnd=*/true, Q, Builder)) +    return X; +  if (Value *X = +          foldUnsignedUnderflowCheck(RHS, LHS, /*IsAnd=*/true, Q, Builder)) +    return X; + +  // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2). +  Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0); +  ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1)); +  ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1)); +  if (!LHSC || !RHSC) +    return nullptr; + +  if (LHSC == RHSC && PredL == PredR) { +    // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C) +    // where C is a power of 2 or +    // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0) +    if ((PredL == ICmpInst::ICMP_ULT && LHSC->getValue().isPowerOf2()) || +        (PredL == ICmpInst::ICMP_EQ && LHSC->isZero())) { +      Value *NewOr = Builder.CreateOr(LHS0, RHS0); +      return Builder.CreateICmp(PredL, NewOr, LHSC); +    } +  } + +  // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2 +  // where CMAX is the all ones value for the truncated type, +  // iff the lower bits of C2 and CA are zero. +  if (PredL == ICmpInst::ICMP_EQ && PredL == PredR && LHS->hasOneUse() && +      RHS->hasOneUse()) { +    Value *V; +    ConstantInt *AndC, *SmallC = nullptr, *BigC = nullptr; + +    // (trunc x) == C1 & (and x, CA) == C2 +    // (and x, CA) == C2 & (trunc x) == C1 +    if (match(RHS0, m_Trunc(m_Value(V))) && +        match(LHS0, m_And(m_Specific(V), m_ConstantInt(AndC)))) { +      SmallC = RHSC; +      BigC = LHSC; +    } else if (match(LHS0, m_Trunc(m_Value(V))) && +               match(RHS0, m_And(m_Specific(V), m_ConstantInt(AndC)))) { +      SmallC = LHSC; +      BigC = RHSC; +    } + +    if (SmallC && BigC) { +      unsigned BigBitSize = BigC->getType()->getBitWidth(); +      unsigned SmallBitSize = SmallC->getType()->getBitWidth(); + +      // Check that the low bits are zero. +      APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize); +      if ((Low & AndC->getValue()).isNullValue() && +          (Low & BigC->getValue()).isNullValue()) { +        Value *NewAnd = Builder.CreateAnd(V, Low | AndC->getValue()); +        APInt N = SmallC->getValue().zext(BigBitSize) | BigC->getValue(); +        Value *NewVal = ConstantInt::get(AndC->getType()->getContext(), N); +        return Builder.CreateICmp(PredL, NewAnd, NewVal); +      } +    } +  } + +  // From here on, we only handle: +  //    (icmp1 A, C1) & (icmp2 A, C2) --> something simpler. +  if (LHS0 != RHS0) +    return nullptr; + +  // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere. +  if (PredL == ICmpInst::ICMP_UGE || PredL == ICmpInst::ICMP_ULE || +      PredR == ICmpInst::ICMP_UGE || PredR == ICmpInst::ICMP_ULE || +      PredL == ICmpInst::ICMP_SGE || PredL == ICmpInst::ICMP_SLE || +      PredR == ICmpInst::ICMP_SGE || PredR == ICmpInst::ICMP_SLE) +    return nullptr; + +  // We can't fold (ugt x, C) & (sgt x, C2). +  if (!predicatesFoldable(PredL, PredR)) +    return nullptr; + +  // Ensure that the larger constant is on the RHS. +  bool ShouldSwap; +  if (CmpInst::isSigned(PredL) || +      (ICmpInst::isEquality(PredL) && CmpInst::isSigned(PredR))) +    ShouldSwap = LHSC->getValue().sgt(RHSC->getValue()); +  else +    ShouldSwap = LHSC->getValue().ugt(RHSC->getValue()); + +  if (ShouldSwap) { +    std::swap(LHS, RHS); +    std::swap(LHSC, RHSC); +    std::swap(PredL, PredR); +  } + +  // At this point, we know we have two icmp instructions +  // comparing a value against two constants and and'ing the result +  // together.  Because of the above check, we know that we only have +  // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know +  // (from the icmp folding check above), that the two constants +  // are not equal and that the larger constant is on the RHS +  assert(LHSC != RHSC && "Compares not folded above?"); + +  switch (PredL) { +  default: +    llvm_unreachable("Unknown integer condition code!"); +  case ICmpInst::ICMP_NE: +    switch (PredR) { +    default: +      llvm_unreachable("Unknown integer condition code!"); +    case ICmpInst::ICMP_ULT: +      // (X != 13 & X u< 14) -> X < 13 +      if (LHSC->getValue() == (RHSC->getValue() - 1)) +        return Builder.CreateICmpULT(LHS0, LHSC); +      if (LHSC->isZero()) // (X != 0 & X u< C) -> X-1 u< C-1 +        return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), +                               false, true); +      break; // (X != 13 & X u< 15) -> no change +    case ICmpInst::ICMP_SLT: +      // (X != 13 & X s< 14) -> X < 13 +      if (LHSC->getValue() == (RHSC->getValue() - 1)) +        return Builder.CreateICmpSLT(LHS0, LHSC); +      // (X != INT_MIN & X s< C) -> X-(INT_MIN+1) u< (C-(INT_MIN+1)) +      if (LHSC->isMinValue(true)) +        return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), +                               true, true); +      break; // (X != 13 & X s< 15) -> no change +    case ICmpInst::ICMP_NE: +      // Potential folds for this case should already be handled. +      break; +    } +    break; +  case ICmpInst::ICMP_UGT: +    switch (PredR) { +    default: +      llvm_unreachable("Unknown integer condition code!"); +    case ICmpInst::ICMP_NE: +      // (X u> 13 & X != 14) -> X u> 14 +      if (RHSC->getValue() == (LHSC->getValue() + 1)) +        return Builder.CreateICmp(PredL, LHS0, RHSC); +      // X u> C & X != UINT_MAX -> (X-(C+1)) u< UINT_MAX-(C+1) +      if (RHSC->isMaxValue(false)) +        return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), +                               false, true); +      break;                 // (X u> 13 & X != 15) -> no change +    case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) u< 1 +      return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), +                             false, true); +    } +    break; +  case ICmpInst::ICMP_SGT: +    switch (PredR) { +    default: +      llvm_unreachable("Unknown integer condition code!"); +    case ICmpInst::ICMP_NE: +      // (X s> 13 & X != 14) -> X s> 14 +      if (RHSC->getValue() == (LHSC->getValue() + 1)) +        return Builder.CreateICmp(PredL, LHS0, RHSC); +      // X s> C & X != INT_MAX -> (X-(C+1)) u< INT_MAX-(C+1) +      if (RHSC->isMaxValue(true)) +        return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), +                               true, true); +      break;                 // (X s> 13 & X != 15) -> no change +    case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) u< 1 +      return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), true, +                             true); +    } +    break; +  } + +  return nullptr; +} + +Value *InstCombiner::foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { +  Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); +  Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); +  FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); + +  if (LHS0 == RHS1 && RHS0 == LHS1) { +    // Swap RHS operands to match LHS. +    PredR = FCmpInst::getSwappedPredicate(PredR); +    std::swap(RHS0, RHS1); +  } + +  // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y). +  // Suppose the relation between x and y is R, where R is one of +  // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for +  // testing the desired relations. +  // +  // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this: +  //    bool(R & CC0) && bool(R & CC1) +  //  = bool((R & CC0) & (R & CC1)) +  //  = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency +  // +  // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this: +  //    bool(R & CC0) || bool(R & CC1) +  //  = bool((R & CC0) | (R & CC1)) +  //  = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;) +  if (LHS0 == RHS0 && LHS1 == RHS1) { +    unsigned FCmpCodeL = getFCmpCode(PredL); +    unsigned FCmpCodeR = getFCmpCode(PredR); +    unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR; +    return getFCmpValue(NewPred, LHS0, LHS1, Builder); +  } + +  if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || +      (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { +    if (LHS0->getType() != RHS0->getType()) +      return nullptr; + +    // FCmp canonicalization ensures that (fcmp ord/uno X, X) and +    // (fcmp ord/uno X, C) will be transformed to (fcmp X, +0.0). +    if (match(LHS1, m_PosZeroFP()) && match(RHS1, m_PosZeroFP())) +      // Ignore the constants because they are obviously not NANs: +      // (fcmp ord x, 0.0) & (fcmp ord y, 0.0)  -> (fcmp ord x, y) +      // (fcmp uno x, 0.0) | (fcmp uno y, 0.0)  -> (fcmp uno x, y) +      return Builder.CreateFCmp(PredL, LHS0, RHS0); +  } + +  return nullptr; +} + +/// This a limited reassociation for a special case (see above) where we are +/// checking if two values are either both NAN (unordered) or not-NAN (ordered). +/// This could be handled more generally in '-reassociation', but it seems like +/// an unlikely pattern for a large number of logic ops and fcmps. +static Instruction *reassociateFCmps(BinaryOperator &BO, +                                     InstCombiner::BuilderTy &Builder) { +  Instruction::BinaryOps Opcode = BO.getOpcode(); +  assert((Opcode == Instruction::And || Opcode == Instruction::Or) && +         "Expecting and/or op for fcmp transform"); + +  // There are 4 commuted variants of the pattern. Canonicalize operands of this +  // logic op so an fcmp is operand 0 and a matching logic op is operand 1. +  Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1), *X; +  FCmpInst::Predicate Pred; +  if (match(Op1, m_FCmp(Pred, m_Value(), m_AnyZeroFP()))) +    std::swap(Op0, Op1); + +  // Match inner binop and the predicate for combining 2 NAN checks into 1. +  BinaryOperator *BO1; +  FCmpInst::Predicate NanPred = Opcode == Instruction::And ? FCmpInst::FCMP_ORD +                                                           : FCmpInst::FCMP_UNO; +  if (!match(Op0, m_FCmp(Pred, m_Value(X), m_AnyZeroFP())) || Pred != NanPred || +      !match(Op1, m_BinOp(BO1)) || BO1->getOpcode() != Opcode) +    return nullptr; + +  // The inner logic op must have a matching fcmp operand. +  Value *BO10 = BO1->getOperand(0), *BO11 = BO1->getOperand(1), *Y; +  if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) || +      Pred != NanPred || X->getType() != Y->getType()) +    std::swap(BO10, BO11); + +  if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) || +      Pred != NanPred || X->getType() != Y->getType()) +    return nullptr; + +  // and (fcmp ord X, 0), (and (fcmp ord Y, 0), Z) --> and (fcmp ord X, Y), Z +  // or  (fcmp uno X, 0), (or  (fcmp uno Y, 0), Z) --> or  (fcmp uno X, Y), Z +  Value *NewFCmp = Builder.CreateFCmp(Pred, X, Y); +  if (auto *NewFCmpInst = dyn_cast<FCmpInst>(NewFCmp)) { +    // Intersect FMF from the 2 source fcmps. +    NewFCmpInst->copyIRFlags(Op0); +    NewFCmpInst->andIRFlags(BO10); +  } +  return BinaryOperator::Create(Opcode, NewFCmp, BO11); +} + +/// Match De Morgan's Laws: +/// (~A & ~B) == (~(A | B)) +/// (~A | ~B) == (~(A & B)) +static Instruction *matchDeMorgansLaws(BinaryOperator &I, +                                       InstCombiner::BuilderTy &Builder) { +  auto Opcode = I.getOpcode(); +  assert((Opcode == Instruction::And || Opcode == Instruction::Or) && +         "Trying to match De Morgan's Laws with something other than and/or"); + +  // Flip the logic operation. +  Opcode = (Opcode == Instruction::And) ? Instruction::Or : Instruction::And; + +  Value *A, *B; +  if (match(I.getOperand(0), m_OneUse(m_Not(m_Value(A)))) && +      match(I.getOperand(1), m_OneUse(m_Not(m_Value(B)))) && +      !isFreeToInvert(A, A->hasOneUse()) && +      !isFreeToInvert(B, B->hasOneUse())) { +    Value *AndOr = Builder.CreateBinOp(Opcode, A, B, I.getName() + ".demorgan"); +    return BinaryOperator::CreateNot(AndOr); +  } + +  return nullptr; +} + +bool InstCombiner::shouldOptimizeCast(CastInst *CI) { +  Value *CastSrc = CI->getOperand(0); + +  // Noop casts and casts of constants should be eliminated trivially. +  if (CI->getSrcTy() == CI->getDestTy() || isa<Constant>(CastSrc)) +    return false; + +  // If this cast is paired with another cast that can be eliminated, we prefer +  // to have it eliminated. +  if (const auto *PrecedingCI = dyn_cast<CastInst>(CastSrc)) +    if (isEliminableCastPair(PrecedingCI, CI)) +      return false; + +  return true; +} + +/// Fold {and,or,xor} (cast X), C. +static Instruction *foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast, +                                          InstCombiner::BuilderTy &Builder) { +  Constant *C = dyn_cast<Constant>(Logic.getOperand(1)); +  if (!C) +    return nullptr; + +  auto LogicOpc = Logic.getOpcode(); +  Type *DestTy = Logic.getType(); +  Type *SrcTy = Cast->getSrcTy(); + +  // Move the logic operation ahead of a zext or sext if the constant is +  // unchanged in the smaller source type. Performing the logic in a smaller +  // type may provide more information to later folds, and the smaller logic +  // instruction may be cheaper (particularly in the case of vectors). +  Value *X; +  if (match(Cast, m_OneUse(m_ZExt(m_Value(X))))) { +    Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy); +    Constant *ZextTruncC = ConstantExpr::getZExt(TruncC, DestTy); +    if (ZextTruncC == C) { +      // LogicOpc (zext X), C --> zext (LogicOpc X, C) +      Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC); +      return new ZExtInst(NewOp, DestTy); +    } +  } + +  if (match(Cast, m_OneUse(m_SExt(m_Value(X))))) { +    Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy); +    Constant *SextTruncC = ConstantExpr::getSExt(TruncC, DestTy); +    if (SextTruncC == C) { +      // LogicOpc (sext X), C --> sext (LogicOpc X, C) +      Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC); +      return new SExtInst(NewOp, DestTy); +    } +  } + +  return nullptr; +} + +/// Fold {and,or,xor} (cast X), Y. +Instruction *InstCombiner::foldCastedBitwiseLogic(BinaryOperator &I) { +  auto LogicOpc = I.getOpcode(); +  assert(I.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding"); + +  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); +  CastInst *Cast0 = dyn_cast<CastInst>(Op0); +  if (!Cast0) +    return nullptr; + +  // This must be a cast from an integer or integer vector source type to allow +  // transformation of the logic operation to the source type. +  Type *DestTy = I.getType(); +  Type *SrcTy = Cast0->getSrcTy(); +  if (!SrcTy->isIntOrIntVectorTy()) +    return nullptr; + +  if (Instruction *Ret = foldLogicCastConstant(I, Cast0, Builder)) +    return Ret; + +  CastInst *Cast1 = dyn_cast<CastInst>(Op1); +  if (!Cast1) +    return nullptr; + +  // Both operands of the logic operation are casts. The casts must be of the +  // same type for reduction. +  auto CastOpcode = Cast0->getOpcode(); +  if (CastOpcode != Cast1->getOpcode() || SrcTy != Cast1->getSrcTy()) +    return nullptr; + +  Value *Cast0Src = Cast0->getOperand(0); +  Value *Cast1Src = Cast1->getOperand(0); + +  // fold logic(cast(A), cast(B)) -> cast(logic(A, B)) +  if (shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) { +    Value *NewOp = Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src, +                                        I.getName()); +    return CastInst::Create(CastOpcode, NewOp, DestTy); +  } + +  // For now, only 'and'/'or' have optimizations after this. +  if (LogicOpc == Instruction::Xor) +    return nullptr; + +  // If this is logic(cast(icmp), cast(icmp)), try to fold this even if the +  // cast is otherwise not optimizable.  This happens for vector sexts. +  ICmpInst *ICmp0 = dyn_cast<ICmpInst>(Cast0Src); +  ICmpInst *ICmp1 = dyn_cast<ICmpInst>(Cast1Src); +  if (ICmp0 && ICmp1) { +    Value *Res = LogicOpc == Instruction::And ? foldAndOfICmps(ICmp0, ICmp1, I) +                                              : foldOrOfICmps(ICmp0, ICmp1, I); +    if (Res) +      return CastInst::Create(CastOpcode, Res, DestTy); +    return nullptr; +  } + +  // If this is logic(cast(fcmp), cast(fcmp)), try to fold this even if the +  // cast is otherwise not optimizable.  This happens for vector sexts. +  FCmpInst *FCmp0 = dyn_cast<FCmpInst>(Cast0Src); +  FCmpInst *FCmp1 = dyn_cast<FCmpInst>(Cast1Src); +  if (FCmp0 && FCmp1) +    if (Value *R = foldLogicOfFCmps(FCmp0, FCmp1, LogicOpc == Instruction::And)) +      return CastInst::Create(CastOpcode, R, DestTy); + +  return nullptr; +} + +static Instruction *foldAndToXor(BinaryOperator &I, +                                 InstCombiner::BuilderTy &Builder) { +  assert(I.getOpcode() == Instruction::And); +  Value *Op0 = I.getOperand(0); +  Value *Op1 = I.getOperand(1); +  Value *A, *B; + +  // Operand complexity canonicalization guarantees that the 'or' is Op0. +  // (A | B) & ~(A & B) --> A ^ B +  // (A | B) & ~(B & A) --> A ^ B +  if (match(&I, m_BinOp(m_Or(m_Value(A), m_Value(B)), +                        m_Not(m_c_And(m_Deferred(A), m_Deferred(B)))))) +    return BinaryOperator::CreateXor(A, B); + +  // (A | ~B) & (~A | B) --> ~(A ^ B) +  // (A | ~B) & (B | ~A) --> ~(A ^ B) +  // (~B | A) & (~A | B) --> ~(A ^ B) +  // (~B | A) & (B | ~A) --> ~(A ^ B) +  if (Op0->hasOneUse() || Op1->hasOneUse()) +    if (match(&I, m_BinOp(m_c_Or(m_Value(A), m_Not(m_Value(B))), +                          m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B))))) +      return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); + +  return nullptr; +} + +static Instruction *foldOrToXor(BinaryOperator &I, +                                InstCombiner::BuilderTy &Builder) { +  assert(I.getOpcode() == Instruction::Or); +  Value *Op0 = I.getOperand(0); +  Value *Op1 = I.getOperand(1); +  Value *A, *B; + +  // Operand complexity canonicalization guarantees that the 'and' is Op0. +  // (A & B) | ~(A | B) --> ~(A ^ B) +  // (A & B) | ~(B | A) --> ~(A ^ B) +  if (Op0->hasOneUse() || Op1->hasOneUse()) +    if (match(Op0, m_And(m_Value(A), m_Value(B))) && +        match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) +      return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); + +  // (A & ~B) | (~A & B) --> A ^ B +  // (A & ~B) | (B & ~A) --> A ^ B +  // (~B & A) | (~A & B) --> A ^ B +  // (~B & A) | (B & ~A) --> A ^ B +  if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) && +      match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))) +    return BinaryOperator::CreateXor(A, B); + +  return nullptr; +} + +/// Return true if a constant shift amount is always less than the specified +/// bit-width. If not, the shift could create poison in the narrower type. +static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth) { +  if (auto *ScalarC = dyn_cast<ConstantInt>(C)) +    return ScalarC->getZExtValue() < BitWidth; + +  if (C->getType()->isVectorTy()) { +    // Check each element of a constant vector. +    unsigned NumElts = C->getType()->getVectorNumElements(); +    for (unsigned i = 0; i != NumElts; ++i) { +      Constant *Elt = C->getAggregateElement(i); +      if (!Elt) +        return false; +      if (isa<UndefValue>(Elt)) +        continue; +      auto *CI = dyn_cast<ConstantInt>(Elt); +      if (!CI || CI->getZExtValue() >= BitWidth) +        return false; +    } +    return true; +  } + +  // The constant is a constant expression or unknown. +  return false; +} + +/// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and +/// a common zext operand: and (binop (zext X), C), (zext X). +Instruction *InstCombiner::narrowMaskedBinOp(BinaryOperator &And) { +  // This transform could also apply to {or, and, xor}, but there are better +  // folds for those cases, so we don't expect those patterns here. AShr is not +  // handled because it should always be transformed to LShr in this sequence. +  // The subtract transform is different because it has a constant on the left. +  // Add/mul commute the constant to RHS; sub with constant RHS becomes add. +  Value *Op0 = And.getOperand(0), *Op1 = And.getOperand(1); +  Constant *C; +  if (!match(Op0, m_OneUse(m_Add(m_Specific(Op1), m_Constant(C)))) && +      !match(Op0, m_OneUse(m_Mul(m_Specific(Op1), m_Constant(C)))) && +      !match(Op0, m_OneUse(m_LShr(m_Specific(Op1), m_Constant(C)))) && +      !match(Op0, m_OneUse(m_Shl(m_Specific(Op1), m_Constant(C)))) && +      !match(Op0, m_OneUse(m_Sub(m_Constant(C), m_Specific(Op1))))) +    return nullptr; + +  Value *X; +  if (!match(Op1, m_ZExt(m_Value(X))) || Op1->hasNUsesOrMore(3)) +    return nullptr; + +  Type *Ty = And.getType(); +  if (!isa<VectorType>(Ty) && !shouldChangeType(Ty, X->getType())) +    return nullptr; + +  // If we're narrowing a shift, the shift amount must be safe (less than the +  // width) in the narrower type. If the shift amount is greater, instsimplify +  // usually handles that case, but we can't guarantee/assert it. +  Instruction::BinaryOps Opc = cast<BinaryOperator>(Op0)->getOpcode(); +  if (Opc == Instruction::LShr || Opc == Instruction::Shl) +    if (!canNarrowShiftAmt(C, X->getType()->getScalarSizeInBits())) +      return nullptr; + +  // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X) +  // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X) +  Value *NewC = ConstantExpr::getTrunc(C, X->getType()); +  Value *NewBO = Opc == Instruction::Sub ? Builder.CreateBinOp(Opc, NewC, X) +                                         : Builder.CreateBinOp(Opc, X, NewC); +  return new ZExtInst(Builder.CreateAnd(NewBO, X), Ty); +} + +// FIXME: We use commutative matchers (m_c_*) for some, but not all, matches +// here. We should standardize that construct where it is needed or choose some +// other way to ensure that commutated variants of patterns are not missed. +Instruction *InstCombiner::visitAnd(BinaryOperator &I) { +  if (Value *V = SimplifyAndInst(I.getOperand(0), I.getOperand(1), +                                 SQ.getWithInstruction(&I))) +    return replaceInstUsesWith(I, V); + +  if (SimplifyAssociativeOrCommutative(I)) +    return &I; + +  if (Instruction *X = foldVectorBinop(I)) +    return X; + +  // See if we can simplify any instructions used by the instruction whose sole +  // purpose is to compute bits we don't care about. +  if (SimplifyDemandedInstructionBits(I)) +    return &I; + +  // Do this before using distributive laws to catch simple and/or/not patterns. +  if (Instruction *Xor = foldAndToXor(I, Builder)) +    return Xor; + +  // (A|B)&(A|C) -> A|(B&C) etc +  if (Value *V = SimplifyUsingDistributiveLaws(I)) +    return replaceInstUsesWith(I, V); + +  if (Value *V = SimplifyBSwap(I, Builder)) +    return replaceInstUsesWith(I, V); + +  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); +  const APInt *C; +  if (match(Op1, m_APInt(C))) { +    Value *X, *Y; +    if (match(Op0, m_OneUse(m_LogicalShift(m_One(), m_Value(X)))) && +        C->isOneValue()) { +      // (1 << X) & 1 --> zext(X == 0) +      // (1 >> X) & 1 --> zext(X == 0) +      Value *IsZero = Builder.CreateICmpEQ(X, ConstantInt::get(I.getType(), 0)); +      return new ZExtInst(IsZero, I.getType()); +    } + +    const APInt *XorC; +    if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_APInt(XorC))))) { +      // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2) +      Constant *NewC = ConstantInt::get(I.getType(), *C & *XorC); +      Value *And = Builder.CreateAnd(X, Op1); +      And->takeName(Op0); +      return BinaryOperator::CreateXor(And, NewC); +    } + +    const APInt *OrC; +    if (match(Op0, m_OneUse(m_Or(m_Value(X), m_APInt(OrC))))) { +      // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2) +      // NOTE: This reduces the number of bits set in the & mask, which +      // can expose opportunities for store narrowing for scalars. +      // NOTE: SimplifyDemandedBits should have already removed bits from C1 +      // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in +      // above, but this feels safer. +      APInt Together = *C & *OrC; +      Value *And = Builder.CreateAnd(X, ConstantInt::get(I.getType(), +                                                         Together ^ *C)); +      And->takeName(Op0); +      return BinaryOperator::CreateOr(And, ConstantInt::get(I.getType(), +                                                            Together)); +    } + +    // If the mask is only needed on one incoming arm, push the 'and' op up. +    if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_Value(Y)))) || +        match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) { +      APInt NotAndMask(~(*C)); +      BinaryOperator::BinaryOps BinOp = cast<BinaryOperator>(Op0)->getOpcode(); +      if (MaskedValueIsZero(X, NotAndMask, 0, &I)) { +        // Not masking anything out for the LHS, move mask to RHS. +        // and ({x}or X, Y), C --> {x}or X, (and Y, C) +        Value *NewRHS = Builder.CreateAnd(Y, Op1, Y->getName() + ".masked"); +        return BinaryOperator::Create(BinOp, X, NewRHS); +      } +      if (!isa<Constant>(Y) && MaskedValueIsZero(Y, NotAndMask, 0, &I)) { +        // Not masking anything out for the RHS, move mask to LHS. +        // and ({x}or X, Y), C --> {x}or (and X, C), Y +        Value *NewLHS = Builder.CreateAnd(X, Op1, X->getName() + ".masked"); +        return BinaryOperator::Create(BinOp, NewLHS, Y); +      } +    } + +  } + +  if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) { +    const APInt &AndRHSMask = AndRHS->getValue(); + +    // Optimize a variety of ((val OP C1) & C2) combinations... +    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) { +      // ((C1 OP zext(X)) & C2) -> zext((C1-X) & C2) if C2 fits in the bitwidth +      // of X and OP behaves well when given trunc(C1) and X. +      // TODO: Do this for vectors by using m_APInt isntead of m_ConstantInt. +      switch (Op0I->getOpcode()) { +      default: +        break; +      case Instruction::Xor: +      case Instruction::Or: +      case Instruction::Mul: +      case Instruction::Add: +      case Instruction::Sub: +        Value *X; +        ConstantInt *C1; +        // TODO: The one use restrictions could be relaxed a little if the AND +        // is going to be removed. +        if (match(Op0I, m_OneUse(m_c_BinOp(m_OneUse(m_ZExt(m_Value(X))), +                                           m_ConstantInt(C1))))) { +          if (AndRHSMask.isIntN(X->getType()->getScalarSizeInBits())) { +            auto *TruncC1 = ConstantExpr::getTrunc(C1, X->getType()); +            Value *BinOp; +            Value *Op0LHS = Op0I->getOperand(0); +            if (isa<ZExtInst>(Op0LHS)) +              BinOp = Builder.CreateBinOp(Op0I->getOpcode(), X, TruncC1); +            else +              BinOp = Builder.CreateBinOp(Op0I->getOpcode(), TruncC1, X); +            auto *TruncC2 = ConstantExpr::getTrunc(AndRHS, X->getType()); +            auto *And = Builder.CreateAnd(BinOp, TruncC2); +            return new ZExtInst(And, I.getType()); +          } +        } +      } + +      if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) +        if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I)) +          return Res; +    } + +    // If this is an integer truncation, and if the source is an 'and' with +    // immediate, transform it.  This frequently occurs for bitfield accesses. +    { +      Value *X = nullptr; ConstantInt *YC = nullptr; +      if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) { +        // Change: and (trunc (and X, YC) to T), C2 +        // into  : and (trunc X to T), trunc(YC) & C2 +        // This will fold the two constants together, which may allow +        // other simplifications. +        Value *NewCast = Builder.CreateTrunc(X, I.getType(), "and.shrunk"); +        Constant *C3 = ConstantExpr::getTrunc(YC, I.getType()); +        C3 = ConstantExpr::getAnd(C3, AndRHS); +        return BinaryOperator::CreateAnd(NewCast, C3); +      } +    } +  } + +  if (Instruction *Z = narrowMaskedBinOp(I)) +    return Z; + +  if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I)) +    return FoldedLogic; + +  if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder)) +    return DeMorgan; + +  { +    Value *A, *B, *C; +    // A & (A ^ B) --> A & ~B +    if (match(Op1, m_OneUse(m_c_Xor(m_Specific(Op0), m_Value(B))))) +      return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(B)); +    // (A ^ B) & A --> A & ~B +    if (match(Op0, m_OneUse(m_c_Xor(m_Specific(Op1), m_Value(B))))) +      return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(B)); + +    // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C +    if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) +      if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A)))) +        if (Op1->hasOneUse() || isFreeToInvert(C, C->hasOneUse())) +          return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(C)); + +    // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C +    if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B)))) +      if (match(Op1, m_Xor(m_Specific(B), m_Specific(A)))) +        if (Op0->hasOneUse() || isFreeToInvert(C, C->hasOneUse())) +          return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(C)); + +    // (A | B) & ((~A) ^ B) -> (A & B) +    // (A | B) & (B ^ (~A)) -> (A & B) +    // (B | A) & ((~A) ^ B) -> (A & B) +    // (B | A) & (B ^ (~A)) -> (A & B) +    if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) && +        match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) +      return BinaryOperator::CreateAnd(A, B); + +    // ((~A) ^ B) & (A | B) -> (A & B) +    // ((~A) ^ B) & (B | A) -> (A & B) +    // (B ^ (~A)) & (A | B) -> (A & B) +    // (B ^ (~A)) & (B | A) -> (A & B) +    if (match(Op0, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) && +        match(Op1, m_c_Or(m_Specific(A), m_Specific(B)))) +      return BinaryOperator::CreateAnd(A, B); +  } + +  { +    ICmpInst *LHS = dyn_cast<ICmpInst>(Op0); +    ICmpInst *RHS = dyn_cast<ICmpInst>(Op1); +    if (LHS && RHS) +      if (Value *Res = foldAndOfICmps(LHS, RHS, I)) +        return replaceInstUsesWith(I, Res); + +    // TODO: Make this recursive; it's a little tricky because an arbitrary +    // number of 'and' instructions might have to be created. +    Value *X, *Y; +    if (LHS && match(Op1, m_OneUse(m_And(m_Value(X), m_Value(Y))))) { +      if (auto *Cmp = dyn_cast<ICmpInst>(X)) +        if (Value *Res = foldAndOfICmps(LHS, Cmp, I)) +          return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y)); +      if (auto *Cmp = dyn_cast<ICmpInst>(Y)) +        if (Value *Res = foldAndOfICmps(LHS, Cmp, I)) +          return replaceInstUsesWith(I, Builder.CreateAnd(Res, X)); +    } +    if (RHS && match(Op0, m_OneUse(m_And(m_Value(X), m_Value(Y))))) { +      if (auto *Cmp = dyn_cast<ICmpInst>(X)) +        if (Value *Res = foldAndOfICmps(Cmp, RHS, I)) +          return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y)); +      if (auto *Cmp = dyn_cast<ICmpInst>(Y)) +        if (Value *Res = foldAndOfICmps(Cmp, RHS, I)) +          return replaceInstUsesWith(I, Builder.CreateAnd(Res, X)); +    } +  } + +  if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) +    if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) +      if (Value *Res = foldLogicOfFCmps(LHS, RHS, true)) +        return replaceInstUsesWith(I, Res); + +  if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder)) +    return FoldedFCmps; + +  if (Instruction *CastedAnd = foldCastedBitwiseLogic(I)) +    return CastedAnd; + +  // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>. +  Value *A; +  if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) && +      A->getType()->isIntOrIntVectorTy(1)) +    return SelectInst::Create(A, Op1, Constant::getNullValue(I.getType())); +  if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) && +      A->getType()->isIntOrIntVectorTy(1)) +    return SelectInst::Create(A, Op0, Constant::getNullValue(I.getType())); + +  // and(ashr(subNSW(Y, X), ScalarSizeInBits(Y)-1), X) --> X s> Y ? X : 0. +  { +    Value *X, *Y; +    const APInt *ShAmt; +    Type *Ty = I.getType(); +    if (match(&I, m_c_And(m_OneUse(m_AShr(m_NSWSub(m_Value(Y), m_Value(X)), +                                          m_APInt(ShAmt))), +                          m_Deferred(X))) && +        *ShAmt == Ty->getScalarSizeInBits() - 1) { +      Value *NewICmpInst = Builder.CreateICmpSGT(X, Y); +      return SelectInst::Create(NewICmpInst, X, ConstantInt::getNullValue(Ty)); +    } +  } + +  return nullptr; +} + +Instruction *InstCombiner::matchBSwap(BinaryOperator &Or) { +  assert(Or.getOpcode() == Instruction::Or && "bswap requires an 'or'"); +  Value *Op0 = Or.getOperand(0), *Op1 = Or.getOperand(1); + +  // Look through zero extends. +  if (Instruction *Ext = dyn_cast<ZExtInst>(Op0)) +    Op0 = Ext->getOperand(0); + +  if (Instruction *Ext = dyn_cast<ZExtInst>(Op1)) +    Op1 = Ext->getOperand(0); + +  // (A | B) | C  and  A | (B | C)                  -> bswap if possible. +  bool OrOfOrs = match(Op0, m_Or(m_Value(), m_Value())) || +                 match(Op1, m_Or(m_Value(), m_Value())); + +  // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible. +  bool OrOfShifts = match(Op0, m_LogicalShift(m_Value(), m_Value())) && +                    match(Op1, m_LogicalShift(m_Value(), m_Value())); + +  // (A & B) | (C & D)                              -> bswap if possible. +  bool OrOfAnds = match(Op0, m_And(m_Value(), m_Value())) && +                  match(Op1, m_And(m_Value(), m_Value())); + +  // (A << B) | (C & D)                              -> bswap if possible. +  // The bigger pattern here is ((A & C1) << C2) | ((B >> C2) & C1), which is a +  // part of the bswap idiom for specific values of C1, C2 (e.g. C1 = 16711935, +  // C2 = 8 for i32). +  // This pattern can occur when the operands of the 'or' are not canonicalized +  // for some reason (not having only one use, for example). +  bool OrOfAndAndSh = (match(Op0, m_LogicalShift(m_Value(), m_Value())) && +                       match(Op1, m_And(m_Value(), m_Value()))) || +                      (match(Op0, m_And(m_Value(), m_Value())) && +                       match(Op1, m_LogicalShift(m_Value(), m_Value()))); + +  if (!OrOfOrs && !OrOfShifts && !OrOfAnds && !OrOfAndAndSh) +    return nullptr; + +  SmallVector<Instruction*, 4> Insts; +  if (!recognizeBSwapOrBitReverseIdiom(&Or, true, false, Insts)) +    return nullptr; +  Instruction *LastInst = Insts.pop_back_val(); +  LastInst->removeFromParent(); + +  for (auto *Inst : Insts) +    Worklist.Add(Inst); +  return LastInst; +} + +/// Transform UB-safe variants of bitwise rotate to the funnel shift intrinsic. +static Instruction *matchRotate(Instruction &Or) { +  // TODO: Can we reduce the code duplication between this and the related +  // rotate matching code under visitSelect and visitTrunc? +  unsigned Width = Or.getType()->getScalarSizeInBits(); +  if (!isPowerOf2_32(Width)) +    return nullptr; + +  // First, find an or'd pair of opposite shifts with the same shifted operand: +  // or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1) +  BinaryOperator *Or0, *Or1; +  if (!match(Or.getOperand(0), m_BinOp(Or0)) || +      !match(Or.getOperand(1), m_BinOp(Or1))) +    return nullptr; + +  Value *ShVal, *ShAmt0, *ShAmt1; +  if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) || +      !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1))))) +    return nullptr; + +  BinaryOperator::BinaryOps ShiftOpcode0 = Or0->getOpcode(); +  BinaryOperator::BinaryOps ShiftOpcode1 = Or1->getOpcode(); +  if (ShiftOpcode0 == ShiftOpcode1) +    return nullptr; + +  // Match the shift amount operands for a rotate pattern. This always matches +  // a subtraction on the R operand. +  auto matchShiftAmount = [](Value *L, Value *R, unsigned Width) -> Value * { +    // The shift amount may be masked with negation: +    // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1))) +    Value *X; +    unsigned Mask = Width - 1; +    if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) && +        match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))) +      return X; + +    // Similar to above, but the shift amount may be extended after masking, +    // so return the extended value as the parameter for the intrinsic. +    if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) && +        match(R, m_And(m_Neg(m_ZExt(m_And(m_Specific(X), m_SpecificInt(Mask)))), +                       m_SpecificInt(Mask)))) +      return L; + +    return nullptr; +  }; + +  Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, Width); +  bool SubIsOnLHS = false; +  if (!ShAmt) { +    ShAmt = matchShiftAmount(ShAmt1, ShAmt0, Width); +    SubIsOnLHS = true; +  } +  if (!ShAmt) +    return nullptr; + +  bool IsFshl = (!SubIsOnLHS && ShiftOpcode0 == BinaryOperator::Shl) || +                (SubIsOnLHS && ShiftOpcode1 == BinaryOperator::Shl); +  Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; +  Function *F = Intrinsic::getDeclaration(Or.getModule(), IID, Or.getType()); +  return IntrinsicInst::Create(F, { ShVal, ShVal, ShAmt }); +} + +/// If all elements of two constant vectors are 0/-1 and inverses, return true. +static bool areInverseVectorBitmasks(Constant *C1, Constant *C2) { +  unsigned NumElts = C1->getType()->getVectorNumElements(); +  for (unsigned i = 0; i != NumElts; ++i) { +    Constant *EltC1 = C1->getAggregateElement(i); +    Constant *EltC2 = C2->getAggregateElement(i); +    if (!EltC1 || !EltC2) +      return false; + +    // One element must be all ones, and the other must be all zeros. +    if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) || +          (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes())))) +      return false; +  } +  return true; +} + +/// We have an expression of the form (A & C) | (B & D). If A is a scalar or +/// vector composed of all-zeros or all-ones values and is the bitwise 'not' of +/// B, it can be used as the condition operand of a select instruction. +Value *InstCombiner::getSelectCondition(Value *A, Value *B) { +  // Step 1: We may have peeked through bitcasts in the caller. +  // Exit immediately if we don't have (vector) integer types. +  Type *Ty = A->getType(); +  if (!Ty->isIntOrIntVectorTy() || !B->getType()->isIntOrIntVectorTy()) +    return nullptr; + +  // Step 2: We need 0 or all-1's bitmasks. +  if (ComputeNumSignBits(A) != Ty->getScalarSizeInBits()) +    return nullptr; + +  // Step 3: If B is the 'not' value of A, we have our answer. +  if (match(A, m_Not(m_Specific(B)))) { +    // If these are scalars or vectors of i1, A can be used directly. +    if (Ty->isIntOrIntVectorTy(1)) +      return A; +    return Builder.CreateTrunc(A, CmpInst::makeCmpResultType(Ty)); +  } + +  // If both operands are constants, see if the constants are inverse bitmasks. +  Constant *AConst, *BConst; +  if (match(A, m_Constant(AConst)) && match(B, m_Constant(BConst))) +    if (AConst == ConstantExpr::getNot(BConst)) +      return Builder.CreateZExtOrTrunc(A, CmpInst::makeCmpResultType(Ty)); + +  // Look for more complex patterns. The 'not' op may be hidden behind various +  // casts. Look through sexts and bitcasts to find the booleans. +  Value *Cond; +  Value *NotB; +  if (match(A, m_SExt(m_Value(Cond))) && +      Cond->getType()->isIntOrIntVectorTy(1) && +      match(B, m_OneUse(m_Not(m_Value(NotB))))) { +    NotB = peekThroughBitcast(NotB, true); +    if (match(NotB, m_SExt(m_Specific(Cond)))) +      return Cond; +  } + +  // All scalar (and most vector) possibilities should be handled now. +  // Try more matches that only apply to non-splat constant vectors. +  if (!Ty->isVectorTy()) +    return nullptr; + +  // If both operands are xor'd with constants using the same sexted boolean +  // operand, see if the constants are inverse bitmasks. +  // TODO: Use ConstantExpr::getNot()? +  if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AConst)))) && +      match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BConst)))) && +      Cond->getType()->isIntOrIntVectorTy(1) && +      areInverseVectorBitmasks(AConst, BConst)) { +    AConst = ConstantExpr::getTrunc(AConst, CmpInst::makeCmpResultType(Ty)); +    return Builder.CreateXor(Cond, AConst); +  } +  return nullptr; +} + +/// We have an expression of the form (A & C) | (B & D). Try to simplify this +/// to "A' ? C : D", where A' is a boolean or vector of booleans. +Value *InstCombiner::matchSelectFromAndOr(Value *A, Value *C, Value *B, +                                          Value *D) { +  // The potential condition of the select may be bitcasted. In that case, look +  // through its bitcast and the corresponding bitcast of the 'not' condition. +  Type *OrigType = A->getType(); +  A = peekThroughBitcast(A, true); +  B = peekThroughBitcast(B, true); +  if (Value *Cond = getSelectCondition(A, B)) { +    // ((bc Cond) & C) | ((bc ~Cond) & D) --> bc (select Cond, (bc C), (bc D)) +    // The bitcasts will either all exist or all not exist. The builder will +    // not create unnecessary casts if the types already match. +    Value *BitcastC = Builder.CreateBitCast(C, A->getType()); +    Value *BitcastD = Builder.CreateBitCast(D, A->getType()); +    Value *Select = Builder.CreateSelect(Cond, BitcastC, BitcastD); +    return Builder.CreateBitCast(Select, OrigType); +  } + +  return nullptr; +} + +/// Fold (icmp)|(icmp) if possible. +Value *InstCombiner::foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, +                                   Instruction &CxtI) { +  const SimplifyQuery Q = SQ.getWithInstruction(&CxtI); + +  // Fold (iszero(A & K1) | iszero(A & K2)) ->  (A & (K1 | K2)) != (K1 | K2) +  // if K1 and K2 are a one-bit mask. +  if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, false, CxtI)) +    return V; + +  ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); + +  ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1)); +  ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1)); + +  // Fold (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3) +  //                   -->  (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3) +  // The original condition actually refers to the following two ranges: +  // [MAX_UINT-C1+1, MAX_UINT-C1+1+C3] and [MAX_UINT-C2+1, MAX_UINT-C2+1+C3] +  // We can fold these two ranges if: +  // 1) C1 and C2 is unsigned greater than C3. +  // 2) The two ranges are separated. +  // 3) C1 ^ C2 is one-bit mask. +  // 4) LowRange1 ^ LowRange2 and HighRange1 ^ HighRange2 are one-bit mask. +  // This implies all values in the two ranges differ by exactly one bit. + +  if ((PredL == ICmpInst::ICMP_ULT || PredL == ICmpInst::ICMP_ULE) && +      PredL == PredR && LHSC && RHSC && LHS->hasOneUse() && RHS->hasOneUse() && +      LHSC->getType() == RHSC->getType() && +      LHSC->getValue() == (RHSC->getValue())) { + +    Value *LAdd = LHS->getOperand(0); +    Value *RAdd = RHS->getOperand(0); + +    Value *LAddOpnd, *RAddOpnd; +    ConstantInt *LAddC, *RAddC; +    if (match(LAdd, m_Add(m_Value(LAddOpnd), m_ConstantInt(LAddC))) && +        match(RAdd, m_Add(m_Value(RAddOpnd), m_ConstantInt(RAddC))) && +        LAddC->getValue().ugt(LHSC->getValue()) && +        RAddC->getValue().ugt(LHSC->getValue())) { + +      APInt DiffC = LAddC->getValue() ^ RAddC->getValue(); +      if (LAddOpnd == RAddOpnd && DiffC.isPowerOf2()) { +        ConstantInt *MaxAddC = nullptr; +        if (LAddC->getValue().ult(RAddC->getValue())) +          MaxAddC = RAddC; +        else +          MaxAddC = LAddC; + +        APInt RRangeLow = -RAddC->getValue(); +        APInt RRangeHigh = RRangeLow + LHSC->getValue(); +        APInt LRangeLow = -LAddC->getValue(); +        APInt LRangeHigh = LRangeLow + LHSC->getValue(); +        APInt LowRangeDiff = RRangeLow ^ LRangeLow; +        APInt HighRangeDiff = RRangeHigh ^ LRangeHigh; +        APInt RangeDiff = LRangeLow.sgt(RRangeLow) ? LRangeLow - RRangeLow +                                                   : RRangeLow - LRangeLow; + +        if (LowRangeDiff.isPowerOf2() && LowRangeDiff == HighRangeDiff && +            RangeDiff.ugt(LHSC->getValue())) { +          Value *MaskC = ConstantInt::get(LAddC->getType(), ~DiffC); + +          Value *NewAnd = Builder.CreateAnd(LAddOpnd, MaskC); +          Value *NewAdd = Builder.CreateAdd(NewAnd, MaxAddC); +          return Builder.CreateICmp(LHS->getPredicate(), NewAdd, LHSC); +        } +      } +    } +  } + +  // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B) +  if (predicatesFoldable(PredL, PredR)) { +    if (LHS->getOperand(0) == RHS->getOperand(1) && +        LHS->getOperand(1) == RHS->getOperand(0)) +      LHS->swapOperands(); +    if (LHS->getOperand(0) == RHS->getOperand(0) && +        LHS->getOperand(1) == RHS->getOperand(1)) { +      Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1); +      unsigned Code = getICmpCode(LHS) | getICmpCode(RHS); +      bool IsSigned = LHS->isSigned() || RHS->isSigned(); +      return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder); +    } +  } + +  // handle (roughly): +  // (icmp ne (A & B), C) | (icmp ne (A & D), E) +  if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder)) +    return V; + +  Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0); +  if (LHS->hasOneUse() || RHS->hasOneUse()) { +    // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1) +    // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1) +    Value *A = nullptr, *B = nullptr; +    if (PredL == ICmpInst::ICMP_EQ && LHSC && LHSC->isZero()) { +      B = LHS0; +      if (PredR == ICmpInst::ICMP_ULT && LHS0 == RHS->getOperand(1)) +        A = RHS0; +      else if (PredR == ICmpInst::ICMP_UGT && LHS0 == RHS0) +        A = RHS->getOperand(1); +    } +    // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1) +    // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1) +    else if (PredR == ICmpInst::ICMP_EQ && RHSC && RHSC->isZero()) { +      B = RHS0; +      if (PredL == ICmpInst::ICMP_ULT && RHS0 == LHS->getOperand(1)) +        A = LHS0; +      else if (PredL == ICmpInst::ICMP_UGT && LHS0 == RHS0) +        A = LHS->getOperand(1); +    } +    if (A && B) +      return Builder.CreateICmp( +          ICmpInst::ICMP_UGE, +          Builder.CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A); +  } + +  // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n +  if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/true)) +    return V; + +  // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n +  if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/true)) +    return V; + +  if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, false, Builder)) +    return V; + +  if (Value *V = foldIsPowerOf2(LHS, RHS, false /* JoinedByAnd */, Builder)) +    return V; + +  if (Value *X = +          foldUnsignedUnderflowCheck(LHS, RHS, /*IsAnd=*/false, Q, Builder)) +    return X; +  if (Value *X = +          foldUnsignedUnderflowCheck(RHS, LHS, /*IsAnd=*/false, Q, Builder)) +    return X; + +  // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2). +  if (!LHSC || !RHSC) +    return nullptr; + +  if (LHSC == RHSC && PredL == PredR) { +    // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0) +    if (PredL == ICmpInst::ICMP_NE && LHSC->isZero()) { +      Value *NewOr = Builder.CreateOr(LHS0, RHS0); +      return Builder.CreateICmp(PredL, NewOr, LHSC); +    } +  } + +  // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1) +  //   iff C2 + CA == C1. +  if (PredL == ICmpInst::ICMP_ULT && PredR == ICmpInst::ICMP_EQ) { +    ConstantInt *AddC; +    if (match(LHS0, m_Add(m_Specific(RHS0), m_ConstantInt(AddC)))) +      if (RHSC->getValue() + AddC->getValue() == LHSC->getValue()) +        return Builder.CreateICmpULE(LHS0, LHSC); +  } + +  // From here on, we only handle: +  //    (icmp1 A, C1) | (icmp2 A, C2) --> something simpler. +  if (LHS0 != RHS0) +    return nullptr; + +  // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere. +  if (PredL == ICmpInst::ICMP_UGE || PredL == ICmpInst::ICMP_ULE || +      PredR == ICmpInst::ICMP_UGE || PredR == ICmpInst::ICMP_ULE || +      PredL == ICmpInst::ICMP_SGE || PredL == ICmpInst::ICMP_SLE || +      PredR == ICmpInst::ICMP_SGE || PredR == ICmpInst::ICMP_SLE) +    return nullptr; + +  // We can't fold (ugt x, C) | (sgt x, C2). +  if (!predicatesFoldable(PredL, PredR)) +    return nullptr; + +  // Ensure that the larger constant is on the RHS. +  bool ShouldSwap; +  if (CmpInst::isSigned(PredL) || +      (ICmpInst::isEquality(PredL) && CmpInst::isSigned(PredR))) +    ShouldSwap = LHSC->getValue().sgt(RHSC->getValue()); +  else +    ShouldSwap = LHSC->getValue().ugt(RHSC->getValue()); + +  if (ShouldSwap) { +    std::swap(LHS, RHS); +    std::swap(LHSC, RHSC); +    std::swap(PredL, PredR); +  } + +  // At this point, we know we have two icmp instructions +  // comparing a value against two constants and or'ing the result +  // together.  Because of the above check, we know that we only have +  // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the +  // icmp folding check above), that the two constants are not +  // equal. +  assert(LHSC != RHSC && "Compares not folded above?"); + +  switch (PredL) { +  default: +    llvm_unreachable("Unknown integer condition code!"); +  case ICmpInst::ICMP_EQ: +    switch (PredR) { +    default: +      llvm_unreachable("Unknown integer condition code!"); +    case ICmpInst::ICMP_EQ: +      // Potential folds for this case should already be handled. +      break; +    case ICmpInst::ICMP_UGT: +      // (X == 0 || X u> C) -> (X-1) u>= C +      if (LHSC->isMinValue(false)) +        return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue() + 1, +                               false, false); +      // (X == 13 | X u> 14) -> no change +      break; +    case ICmpInst::ICMP_SGT: +      // (X == INT_MIN || X s> C) -> (X-(INT_MIN+1)) u>= C-INT_MIN +      if (LHSC->isMinValue(true)) +        return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue() + 1, +                               true, false); +      // (X == 13 | X s> 14) -> no change +      break; +    } +    break; +  case ICmpInst::ICMP_ULT: +    switch (PredR) { +    default: +      llvm_unreachable("Unknown integer condition code!"); +    case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change +      // (X u< C || X == UINT_MAX) => (X-C) u>= UINT_MAX-C +      if (RHSC->isMaxValue(false)) +        return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue(), +                               false, false); +      break; +    case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2 +      assert(!RHSC->isMaxValue(false) && "Missed icmp simplification"); +      return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue() + 1, +                             false, false); +    } +    break; +  case ICmpInst::ICMP_SLT: +    switch (PredR) { +    default: +      llvm_unreachable("Unknown integer condition code!"); +    case ICmpInst::ICMP_EQ: +      // (X s< C || X == INT_MAX) => (X-C) u>= INT_MAX-C +      if (RHSC->isMaxValue(true)) +        return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue(), +                               true, false); +      // (X s< 13 | X == 14) -> no change +      break; +    case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) u> 2 +      assert(!RHSC->isMaxValue(true) && "Missed icmp simplification"); +      return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue() + 1, true, +                             false); +    } +    break; +  } +  return nullptr; +} + +// FIXME: We use commutative matchers (m_c_*) for some, but not all, matches +// here. We should standardize that construct where it is needed or choose some +// other way to ensure that commutated variants of patterns are not missed. +Instruction *InstCombiner::visitOr(BinaryOperator &I) { +  if (Value *V = SimplifyOrInst(I.getOperand(0), I.getOperand(1), +                                SQ.getWithInstruction(&I))) +    return replaceInstUsesWith(I, V); + +  if (SimplifyAssociativeOrCommutative(I)) +    return &I; + +  if (Instruction *X = foldVectorBinop(I)) +    return X; + +  // See if we can simplify any instructions used by the instruction whose sole +  // purpose is to compute bits we don't care about. +  if (SimplifyDemandedInstructionBits(I)) +    return &I; + +  // Do this before using distributive laws to catch simple and/or/not patterns. +  if (Instruction *Xor = foldOrToXor(I, Builder)) +    return Xor; + +  // (A&B)|(A&C) -> A&(B|C) etc +  if (Value *V = SimplifyUsingDistributiveLaws(I)) +    return replaceInstUsesWith(I, V); + +  if (Value *V = SimplifyBSwap(I, Builder)) +    return replaceInstUsesWith(I, V); + +  if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I)) +    return FoldedLogic; + +  if (Instruction *BSwap = matchBSwap(I)) +    return BSwap; + +  if (Instruction *Rotate = matchRotate(I)) +    return Rotate; + +  Value *X, *Y; +  const APInt *CV; +  if (match(&I, m_c_Or(m_OneUse(m_Xor(m_Value(X), m_APInt(CV))), m_Value(Y))) && +      !CV->isAllOnesValue() && MaskedValueIsZero(Y, *CV, 0, &I)) { +    // (X ^ C) | Y -> (X | Y) ^ C iff Y & C == 0 +    // The check for a 'not' op is for efficiency (if Y is known zero --> ~X). +    Value *Or = Builder.CreateOr(X, Y); +    return BinaryOperator::CreateXor(Or, ConstantInt::get(I.getType(), *CV)); +  } + +  // (A & C)|(B & D) +  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); +  Value *A, *B, *C, *D; +  if (match(Op0, m_And(m_Value(A), m_Value(C))) && +      match(Op1, m_And(m_Value(B), m_Value(D)))) { +    ConstantInt *C1 = dyn_cast<ConstantInt>(C); +    ConstantInt *C2 = dyn_cast<ConstantInt>(D); +    if (C1 && C2) {  // (A & C1)|(B & C2) +      Value *V1 = nullptr, *V2 = nullptr; +      if ((C1->getValue() & C2->getValue()).isNullValue()) { +        // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2) +        // iff (C1&C2) == 0 and (N&~C1) == 0 +        if (match(A, m_Or(m_Value(V1), m_Value(V2))) && +            ((V1 == B && +              MaskedValueIsZero(V2, ~C1->getValue(), 0, &I)) || // (V|N) +             (V2 == B && +              MaskedValueIsZero(V1, ~C1->getValue(), 0, &I))))  // (N|V) +          return BinaryOperator::CreateAnd(A, +                                Builder.getInt(C1->getValue()|C2->getValue())); +        // Or commutes, try both ways. +        if (match(B, m_Or(m_Value(V1), m_Value(V2))) && +            ((V1 == A && +              MaskedValueIsZero(V2, ~C2->getValue(), 0, &I)) || // (V|N) +             (V2 == A && +              MaskedValueIsZero(V1, ~C2->getValue(), 0, &I))))  // (N|V) +          return BinaryOperator::CreateAnd(B, +                                 Builder.getInt(C1->getValue()|C2->getValue())); + +        // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2) +        // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0. +        ConstantInt *C3 = nullptr, *C4 = nullptr; +        if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) && +            (C3->getValue() & ~C1->getValue()).isNullValue() && +            match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) && +            (C4->getValue() & ~C2->getValue()).isNullValue()) { +          V2 = Builder.CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield"); +          return BinaryOperator::CreateAnd(V2, +                                 Builder.getInt(C1->getValue()|C2->getValue())); +        } +      } + +      if (C1->getValue() == ~C2->getValue()) { +        Value *X; + +        // ((X|B)&C1)|(B&C2) -> (X&C1) | B iff C1 == ~C2 +        if (match(A, m_c_Or(m_Value(X), m_Specific(B)))) +          return BinaryOperator::CreateOr(Builder.CreateAnd(X, C1), B); +        // (A&C2)|((X|A)&C1) -> (X&C2) | A iff C1 == ~C2 +        if (match(B, m_c_Or(m_Specific(A), m_Value(X)))) +          return BinaryOperator::CreateOr(Builder.CreateAnd(X, C2), A); + +        // ((X^B)&C1)|(B&C2) -> (X&C1) ^ B iff C1 == ~C2 +        if (match(A, m_c_Xor(m_Value(X), m_Specific(B)))) +          return BinaryOperator::CreateXor(Builder.CreateAnd(X, C1), B); +        // (A&C2)|((X^A)&C1) -> (X&C2) ^ A iff C1 == ~C2 +        if (match(B, m_c_Xor(m_Specific(A), m_Value(X)))) +          return BinaryOperator::CreateXor(Builder.CreateAnd(X, C2), A); +      } +    } + +    // Don't try to form a select if it's unlikely that we'll get rid of at +    // least one of the operands. A select is generally more expensive than the +    // 'or' that it is replacing. +    if (Op0->hasOneUse() || Op1->hasOneUse()) { +      // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants. +      if (Value *V = matchSelectFromAndOr(A, C, B, D)) +        return replaceInstUsesWith(I, V); +      if (Value *V = matchSelectFromAndOr(A, C, D, B)) +        return replaceInstUsesWith(I, V); +      if (Value *V = matchSelectFromAndOr(C, A, B, D)) +        return replaceInstUsesWith(I, V); +      if (Value *V = matchSelectFromAndOr(C, A, D, B)) +        return replaceInstUsesWith(I, V); +      if (Value *V = matchSelectFromAndOr(B, D, A, C)) +        return replaceInstUsesWith(I, V); +      if (Value *V = matchSelectFromAndOr(B, D, C, A)) +        return replaceInstUsesWith(I, V); +      if (Value *V = matchSelectFromAndOr(D, B, A, C)) +        return replaceInstUsesWith(I, V); +      if (Value *V = matchSelectFromAndOr(D, B, C, A)) +        return replaceInstUsesWith(I, V); +    } +  } + +  // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C +  if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) +    if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A)))) +      return BinaryOperator::CreateOr(Op0, C); + +  // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C +  if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B)))) +    if (match(Op1, m_Xor(m_Specific(B), m_Specific(A)))) +      return BinaryOperator::CreateOr(Op1, C); + +  // ((B | C) & A) | B -> B | (A & C) +  if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A)))) +    return BinaryOperator::CreateOr(Op1, Builder.CreateAnd(A, C)); + +  if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder)) +    return DeMorgan; + +  // Canonicalize xor to the RHS. +  bool SwappedForXor = false; +  if (match(Op0, m_Xor(m_Value(), m_Value()))) { +    std::swap(Op0, Op1); +    SwappedForXor = true; +  } + +  // A | ( A ^ B) -> A |  B +  // A | (~A ^ B) -> A | ~B +  // (A & B) | (A ^ B) +  if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) { +    if (Op0 == A || Op0 == B) +      return BinaryOperator::CreateOr(A, B); + +    if (match(Op0, m_And(m_Specific(A), m_Specific(B))) || +        match(Op0, m_And(m_Specific(B), m_Specific(A)))) +      return BinaryOperator::CreateOr(A, B); + +    if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) { +      Value *Not = Builder.CreateNot(B, B->getName() + ".not"); +      return BinaryOperator::CreateOr(Not, Op0); +    } +    if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) { +      Value *Not = Builder.CreateNot(A, A->getName() + ".not"); +      return BinaryOperator::CreateOr(Not, Op0); +    } +  } + +  // A | ~(A | B) -> A | ~B +  // A | ~(A ^ B) -> A | ~B +  if (match(Op1, m_Not(m_Value(A)))) +    if (BinaryOperator *B = dyn_cast<BinaryOperator>(A)) +      if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) && +          Op1->hasOneUse() && (B->getOpcode() == Instruction::Or || +                               B->getOpcode() == Instruction::Xor)) { +        Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) : +                                                 B->getOperand(0); +        Value *Not = Builder.CreateNot(NotOp, NotOp->getName() + ".not"); +        return BinaryOperator::CreateOr(Not, Op0); +      } + +  if (SwappedForXor) +    std::swap(Op0, Op1); + +  { +    ICmpInst *LHS = dyn_cast<ICmpInst>(Op0); +    ICmpInst *RHS = dyn_cast<ICmpInst>(Op1); +    if (LHS && RHS) +      if (Value *Res = foldOrOfICmps(LHS, RHS, I)) +        return replaceInstUsesWith(I, Res); + +    // TODO: Make this recursive; it's a little tricky because an arbitrary +    // number of 'or' instructions might have to be created. +    Value *X, *Y; +    if (LHS && match(Op1, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) { +      if (auto *Cmp = dyn_cast<ICmpInst>(X)) +        if (Value *Res = foldOrOfICmps(LHS, Cmp, I)) +          return replaceInstUsesWith(I, Builder.CreateOr(Res, Y)); +      if (auto *Cmp = dyn_cast<ICmpInst>(Y)) +        if (Value *Res = foldOrOfICmps(LHS, Cmp, I)) +          return replaceInstUsesWith(I, Builder.CreateOr(Res, X)); +    } +    if (RHS && match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) { +      if (auto *Cmp = dyn_cast<ICmpInst>(X)) +        if (Value *Res = foldOrOfICmps(Cmp, RHS, I)) +          return replaceInstUsesWith(I, Builder.CreateOr(Res, Y)); +      if (auto *Cmp = dyn_cast<ICmpInst>(Y)) +        if (Value *Res = foldOrOfICmps(Cmp, RHS, I)) +          return replaceInstUsesWith(I, Builder.CreateOr(Res, X)); +    } +  } + +  if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) +    if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) +      if (Value *Res = foldLogicOfFCmps(LHS, RHS, false)) +        return replaceInstUsesWith(I, Res); + +  if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder)) +    return FoldedFCmps; + +  if (Instruction *CastedOr = foldCastedBitwiseLogic(I)) +    return CastedOr; + +  // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>. +  if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) && +      A->getType()->isIntOrIntVectorTy(1)) +    return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1); +  if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) && +      A->getType()->isIntOrIntVectorTy(1)) +    return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0); + +  // Note: If we've gotten to the point of visiting the outer OR, then the +  // inner one couldn't be simplified.  If it was a constant, then it won't +  // be simplified by a later pass either, so we try swapping the inner/outer +  // ORs in the hopes that we'll be able to simplify it this way. +  // (X|C) | V --> (X|V) | C +  ConstantInt *CI; +  if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) && +      match(Op0, m_Or(m_Value(A), m_ConstantInt(CI)))) { +    Value *Inner = Builder.CreateOr(A, Op1); +    Inner->takeName(Op0); +    return BinaryOperator::CreateOr(Inner, CI); +  } + +  // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D)) +  // Since this OR statement hasn't been optimized further yet, we hope +  // that this transformation will allow the new ORs to be optimized. +  { +    Value *X = nullptr, *Y = nullptr; +    if (Op0->hasOneUse() && Op1->hasOneUse() && +        match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) && +        match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) { +      Value *orTrue = Builder.CreateOr(A, C); +      Value *orFalse = Builder.CreateOr(B, D); +      return SelectInst::Create(X, orTrue, orFalse); +    } +  } + +  // or(ashr(subNSW(Y, X), ScalarSizeInBits(Y)-1), X)  --> X s> Y ? -1 : X. +  { +    Value *X, *Y; +    const APInt *ShAmt; +    Type *Ty = I.getType(); +    if (match(&I, m_c_Or(m_OneUse(m_AShr(m_NSWSub(m_Value(Y), m_Value(X)), +                                         m_APInt(ShAmt))), +                         m_Deferred(X))) && +        *ShAmt == Ty->getScalarSizeInBits() - 1) { +      Value *NewICmpInst = Builder.CreateICmpSGT(X, Y); +      return SelectInst::Create(NewICmpInst, ConstantInt::getAllOnesValue(Ty), +                                X); +    } +  } + +  if (Instruction *V = +          canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) +    return V; + +  return nullptr; +} + +/// A ^ B can be specified using other logic ops in a variety of patterns. We +/// can fold these early and efficiently by morphing an existing instruction. +static Instruction *foldXorToXor(BinaryOperator &I, +                                 InstCombiner::BuilderTy &Builder) { +  assert(I.getOpcode() == Instruction::Xor); +  Value *Op0 = I.getOperand(0); +  Value *Op1 = I.getOperand(1); +  Value *A, *B; + +  // There are 4 commuted variants for each of the basic patterns. + +  // (A & B) ^ (A | B) -> A ^ B +  // (A & B) ^ (B | A) -> A ^ B +  // (A | B) ^ (A & B) -> A ^ B +  // (A | B) ^ (B & A) -> A ^ B +  if (match(&I, m_c_Xor(m_And(m_Value(A), m_Value(B)), +                        m_c_Or(m_Deferred(A), m_Deferred(B))))) { +    I.setOperand(0, A); +    I.setOperand(1, B); +    return &I; +  } + +  // (A | ~B) ^ (~A | B) -> A ^ B +  // (~B | A) ^ (~A | B) -> A ^ B +  // (~A | B) ^ (A | ~B) -> A ^ B +  // (B | ~A) ^ (A | ~B) -> A ^ B +  if (match(&I, m_Xor(m_c_Or(m_Value(A), m_Not(m_Value(B))), +                      m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B))))) { +    I.setOperand(0, A); +    I.setOperand(1, B); +    return &I; +  } + +  // (A & ~B) ^ (~A & B) -> A ^ B +  // (~B & A) ^ (~A & B) -> A ^ B +  // (~A & B) ^ (A & ~B) -> A ^ B +  // (B & ~A) ^ (A & ~B) -> A ^ B +  if (match(&I, m_Xor(m_c_And(m_Value(A), m_Not(m_Value(B))), +                      m_c_And(m_Not(m_Deferred(A)), m_Deferred(B))))) { +    I.setOperand(0, A); +    I.setOperand(1, B); +    return &I; +  } + +  // For the remaining cases we need to get rid of one of the operands. +  if (!Op0->hasOneUse() && !Op1->hasOneUse()) +    return nullptr; + +  // (A | B) ^ ~(A & B) -> ~(A ^ B) +  // (A | B) ^ ~(B & A) -> ~(A ^ B) +  // (A & B) ^ ~(A | B) -> ~(A ^ B) +  // (A & B) ^ ~(B | A) -> ~(A ^ B) +  // Complexity sorting ensures the not will be on the right side. +  if ((match(Op0, m_Or(m_Value(A), m_Value(B))) && +       match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) || +      (match(Op0, m_And(m_Value(A), m_Value(B))) && +       match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))) +    return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); + +  return nullptr; +} + +Value *InstCombiner::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS, +                                    BinaryOperator &I) { +  assert(I.getOpcode() == Instruction::Xor && I.getOperand(0) == LHS && +         I.getOperand(1) == RHS && "Should be 'xor' with these operands"); + +  if (predicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) { +    if (LHS->getOperand(0) == RHS->getOperand(1) && +        LHS->getOperand(1) == RHS->getOperand(0)) +      LHS->swapOperands(); +    if (LHS->getOperand(0) == RHS->getOperand(0) && +        LHS->getOperand(1) == RHS->getOperand(1)) { +      // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B) +      Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1); +      unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS); +      bool IsSigned = LHS->isSigned() || RHS->isSigned(); +      return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder); +    } +  } + +  // TODO: This can be generalized to compares of non-signbits using +  // decomposeBitTestICmp(). It could be enhanced more by using (something like) +  // foldLogOpOfMaskedICmps(). +  ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); +  Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); +  Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); +  if ((LHS->hasOneUse() || RHS->hasOneUse()) && +      LHS0->getType() == RHS0->getType() && +      LHS0->getType()->isIntOrIntVectorTy()) { +    // (X > -1) ^ (Y > -1) --> (X ^ Y) < 0 +    // (X <  0) ^ (Y <  0) --> (X ^ Y) < 0 +    if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_AllOnes()) && +         PredR == CmpInst::ICMP_SGT && match(RHS1, m_AllOnes())) || +        (PredL == CmpInst::ICMP_SLT && match(LHS1, m_Zero()) && +         PredR == CmpInst::ICMP_SLT && match(RHS1, m_Zero()))) { +      Value *Zero = ConstantInt::getNullValue(LHS0->getType()); +      return Builder.CreateICmpSLT(Builder.CreateXor(LHS0, RHS0), Zero); +    } +    // (X > -1) ^ (Y <  0) --> (X ^ Y) > -1 +    // (X <  0) ^ (Y > -1) --> (X ^ Y) > -1 +    if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_AllOnes()) && +         PredR == CmpInst::ICMP_SLT && match(RHS1, m_Zero())) || +        (PredL == CmpInst::ICMP_SLT && match(LHS1, m_Zero()) && +         PredR == CmpInst::ICMP_SGT && match(RHS1, m_AllOnes()))) { +      Value *MinusOne = ConstantInt::getAllOnesValue(LHS0->getType()); +      return Builder.CreateICmpSGT(Builder.CreateXor(LHS0, RHS0), MinusOne); +    } +  } + +  // Instead of trying to imitate the folds for and/or, decompose this 'xor' +  // into those logic ops. That is, try to turn this into an and-of-icmps +  // because we have many folds for that pattern. +  // +  // This is based on a truth table definition of xor: +  // X ^ Y --> (X | Y) & !(X & Y) +  if (Value *OrICmp = SimplifyBinOp(Instruction::Or, LHS, RHS, SQ)) { +    // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y). +    // TODO: If OrICmp is false, the whole thing is false (InstSimplify?). +    if (Value *AndICmp = SimplifyBinOp(Instruction::And, LHS, RHS, SQ)) { +      // TODO: Independently handle cases where the 'and' side is a constant. +      ICmpInst *X = nullptr, *Y = nullptr; +      if (OrICmp == LHS && AndICmp == RHS) { +        // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS  --> X & !Y +        X = LHS; +        Y = RHS; +      } +      if (OrICmp == RHS && AndICmp == LHS) { +        // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS  --> !Y & X +        X = RHS; +        Y = LHS; +      } +      if (X && Y && (Y->hasOneUse() || canFreelyInvertAllUsersOf(Y, &I))) { +        // Invert the predicate of 'Y', thus inverting its output. +        Y->setPredicate(Y->getInversePredicate()); +        // So, are there other uses of Y? +        if (!Y->hasOneUse()) { +          // We need to adapt other uses of Y though. Get a value that matches +          // the original value of Y before inversion. While this increases +          // immediate instruction count, we have just ensured that all the +          // users are freely-invertible, so that 'not' *will* get folded away. +          BuilderTy::InsertPointGuard Guard(Builder); +          // Set insertion point to right after the Y. +          Builder.SetInsertPoint(Y->getParent(), ++(Y->getIterator())); +          Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); +          // Replace all uses of Y (excluding the one in NotY!) with NotY. +          Y->replaceUsesWithIf(NotY, +                               [NotY](Use &U) { return U.getUser() != NotY; }); +        } +        // All done. +        return Builder.CreateAnd(LHS, RHS); +      } +    } +  } + +  return nullptr; +} + +/// If we have a masked merge, in the canonical form of: +/// (assuming that A only has one use.) +///   |        A  |  |B| +///   ((x ^ y) & M) ^ y +///    |  D  | +/// * If M is inverted: +///      |  D  | +///     ((x ^ y) & ~M) ^ y +///   We can canonicalize by swapping the final xor operand +///   to eliminate the 'not' of the mask. +///     ((x ^ y) & M) ^ x +/// * If M is a constant, and D has one use, we transform to 'and' / 'or' ops +///   because that shortens the dependency chain and improves analysis: +///     (x & M) | (y & ~M) +static Instruction *visitMaskedMerge(BinaryOperator &I, +                                     InstCombiner::BuilderTy &Builder) { +  Value *B, *X, *D; +  Value *M; +  if (!match(&I, m_c_Xor(m_Value(B), +                         m_OneUse(m_c_And( +                             m_CombineAnd(m_c_Xor(m_Deferred(B), m_Value(X)), +                                          m_Value(D)), +                             m_Value(M)))))) +    return nullptr; + +  Value *NotM; +  if (match(M, m_Not(m_Value(NotM)))) { +    // De-invert the mask and swap the value in B part. +    Value *NewA = Builder.CreateAnd(D, NotM); +    return BinaryOperator::CreateXor(NewA, X); +  } + +  Constant *C; +  if (D->hasOneUse() && match(M, m_Constant(C))) { +    // Unfold. +    Value *LHS = Builder.CreateAnd(X, C); +    Value *NotC = Builder.CreateNot(C); +    Value *RHS = Builder.CreateAnd(B, NotC); +    return BinaryOperator::CreateOr(LHS, RHS); +  } + +  return nullptr; +} + +// Transform +//   ~(x ^ y) +// into: +//   (~x) ^ y +// or into +//   x ^ (~y) +static Instruction *sinkNotIntoXor(BinaryOperator &I, +                                   InstCombiner::BuilderTy &Builder) { +  Value *X, *Y; +  // FIXME: one-use check is not needed in general, but currently we are unable +  // to fold 'not' into 'icmp', if that 'icmp' has multiple uses. (D35182) +  if (!match(&I, m_Not(m_OneUse(m_Xor(m_Value(X), m_Value(Y)))))) +    return nullptr; + +  // We only want to do the transform if it is free to do. +  if (isFreeToInvert(X, X->hasOneUse())) { +    // Ok, good. +  } else if (isFreeToInvert(Y, Y->hasOneUse())) { +    std::swap(X, Y); +  } else +    return nullptr; + +  Value *NotX = Builder.CreateNot(X, X->getName() + ".not"); +  return BinaryOperator::CreateXor(NotX, Y, I.getName() + ".demorgan"); +} + +// FIXME: We use commutative matchers (m_c_*) for some, but not all, matches +// here. We should standardize that construct where it is needed or choose some +// other way to ensure that commutated variants of patterns are not missed. +Instruction *InstCombiner::visitXor(BinaryOperator &I) { +  if (Value *V = SimplifyXorInst(I.getOperand(0), I.getOperand(1), +                                 SQ.getWithInstruction(&I))) +    return replaceInstUsesWith(I, V); + +  if (SimplifyAssociativeOrCommutative(I)) +    return &I; + +  if (Instruction *X = foldVectorBinop(I)) +    return X; + +  if (Instruction *NewXor = foldXorToXor(I, Builder)) +    return NewXor; + +  // (A&B)^(A&C) -> A&(B^C) etc +  if (Value *V = SimplifyUsingDistributiveLaws(I)) +    return replaceInstUsesWith(I, V); + +  // See if we can simplify any instructions used by the instruction whose sole +  // purpose is to compute bits we don't care about. +  if (SimplifyDemandedInstructionBits(I)) +    return &I; + +  if (Value *V = SimplifyBSwap(I, Builder)) +    return replaceInstUsesWith(I, V); + +  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + +  // Fold (X & M) ^ (Y & ~M) -> (X & M) | (Y & ~M) +  // This it a special case in haveNoCommonBitsSet, but the computeKnownBits +  // calls in there are unnecessary as SimplifyDemandedInstructionBits should +  // have already taken care of those cases. +  Value *M; +  if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(M)), m_Value()), +                        m_c_And(m_Deferred(M), m_Value())))) +    return BinaryOperator::CreateOr(Op0, Op1); + +  // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand. +  Value *X, *Y; + +  // We must eliminate the and/or (one-use) for these transforms to not increase +  // the instruction count. +  // ~(~X & Y) --> (X | ~Y) +  // ~(Y & ~X) --> (X | ~Y) +  if (match(&I, m_Not(m_OneUse(m_c_And(m_Not(m_Value(X)), m_Value(Y)))))) { +    Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); +    return BinaryOperator::CreateOr(X, NotY); +  } +  // ~(~X | Y) --> (X & ~Y) +  // ~(Y | ~X) --> (X & ~Y) +  if (match(&I, m_Not(m_OneUse(m_c_Or(m_Not(m_Value(X)), m_Value(Y)))))) { +    Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); +    return BinaryOperator::CreateAnd(X, NotY); +  } + +  if (Instruction *Xor = visitMaskedMerge(I, Builder)) +    return Xor; + +  // Is this a 'not' (~) fed by a binary operator? +  BinaryOperator *NotVal; +  if (match(&I, m_Not(m_BinOp(NotVal)))) { +    if (NotVal->getOpcode() == Instruction::And || +        NotVal->getOpcode() == Instruction::Or) { +      // Apply DeMorgan's Law when inverts are free: +      // ~(X & Y) --> (~X | ~Y) +      // ~(X | Y) --> (~X & ~Y) +      if (isFreeToInvert(NotVal->getOperand(0), +                         NotVal->getOperand(0)->hasOneUse()) && +          isFreeToInvert(NotVal->getOperand(1), +                         NotVal->getOperand(1)->hasOneUse())) { +        Value *NotX = Builder.CreateNot(NotVal->getOperand(0), "notlhs"); +        Value *NotY = Builder.CreateNot(NotVal->getOperand(1), "notrhs"); +        if (NotVal->getOpcode() == Instruction::And) +          return BinaryOperator::CreateOr(NotX, NotY); +        return BinaryOperator::CreateAnd(NotX, NotY); +      } +    } + +    // ~(X - Y) --> ~X + Y +    if (match(NotVal, m_Sub(m_Value(X), m_Value(Y)))) +      if (isa<Constant>(X) || NotVal->hasOneUse()) +        return BinaryOperator::CreateAdd(Builder.CreateNot(X), Y); + +    // ~(~X >>s Y) --> (X >>s Y) +    if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y)))) +      return BinaryOperator::CreateAShr(X, Y); + +    // If we are inverting a right-shifted constant, we may be able to eliminate +    // the 'not' by inverting the constant and using the opposite shift type. +    // Canonicalization rules ensure that only a negative constant uses 'ashr', +    // but we must check that in case that transform has not fired yet. + +    // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits) +    Constant *C; +    if (match(NotVal, m_AShr(m_Constant(C), m_Value(Y))) && +        match(C, m_Negative())) +      return BinaryOperator::CreateLShr(ConstantExpr::getNot(C), Y); + +    // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits) +    if (match(NotVal, m_LShr(m_Constant(C), m_Value(Y))) && +        match(C, m_NonNegative())) +      return BinaryOperator::CreateAShr(ConstantExpr::getNot(C), Y); + +    // ~(X + C) --> -(C + 1) - X +    if (match(Op0, m_Add(m_Value(X), m_Constant(C)))) +      return BinaryOperator::CreateSub(ConstantExpr::getNeg(AddOne(C)), X); +  } + +  // Use DeMorgan and reassociation to eliminate a 'not' op. +  Constant *C1; +  if (match(Op1, m_Constant(C1))) { +    Constant *C2; +    if (match(Op0, m_OneUse(m_Or(m_Not(m_Value(X)), m_Constant(C2))))) { +      // (~X | C2) ^ C1 --> ((X & ~C2) ^ -1) ^ C1 --> (X & ~C2) ^ ~C1 +      Value *And = Builder.CreateAnd(X, ConstantExpr::getNot(C2)); +      return BinaryOperator::CreateXor(And, ConstantExpr::getNot(C1)); +    } +    if (match(Op0, m_OneUse(m_And(m_Not(m_Value(X)), m_Constant(C2))))) { +      // (~X & C2) ^ C1 --> ((X | ~C2) ^ -1) ^ C1 --> (X | ~C2) ^ ~C1 +      Value *Or = Builder.CreateOr(X, ConstantExpr::getNot(C2)); +      return BinaryOperator::CreateXor(Or, ConstantExpr::getNot(C1)); +    } +  } + +  // not (cmp A, B) = !cmp A, B +  CmpInst::Predicate Pred; +  if (match(&I, m_Not(m_OneUse(m_Cmp(Pred, m_Value(), m_Value()))))) { +    cast<CmpInst>(Op0)->setPredicate(CmpInst::getInversePredicate(Pred)); +    return replaceInstUsesWith(I, Op0); +  } + +  { +    const APInt *RHSC; +    if (match(Op1, m_APInt(RHSC))) { +      Value *X; +      const APInt *C; +      if (RHSC->isSignMask() && match(Op0, m_Sub(m_APInt(C), m_Value(X)))) { +        // (C - X) ^ signmask -> (C + signmask - X) +        Constant *NewC = ConstantInt::get(I.getType(), *C + *RHSC); +        return BinaryOperator::CreateSub(NewC, X); +      } +      if (RHSC->isSignMask() && match(Op0, m_Add(m_Value(X), m_APInt(C)))) { +        // (X + C) ^ signmask -> (X + C + signmask) +        Constant *NewC = ConstantInt::get(I.getType(), *C + *RHSC); +        return BinaryOperator::CreateAdd(X, NewC); +      } + +      // (X|C1)^C2 -> X^(C1^C2) iff X&~C1 == 0 +      if (match(Op0, m_Or(m_Value(X), m_APInt(C))) && +          MaskedValueIsZero(X, *C, 0, &I)) { +        Constant *NewC = ConstantInt::get(I.getType(), *C ^ *RHSC); +        Worklist.Add(cast<Instruction>(Op0)); +        I.setOperand(0, X); +        I.setOperand(1, NewC); +        return &I; +      } +    } +  } + +  if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1)) { +    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) { +      if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) { +        if (Op0I->getOpcode() == Instruction::LShr) { +          // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3) +          // E1 = "X ^ C1" +          BinaryOperator *E1; +          ConstantInt *C1; +          if (Op0I->hasOneUse() && +              (E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) && +              E1->getOpcode() == Instruction::Xor && +              (C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) { +            // fold (C1 >> C2) ^ C3 +            ConstantInt *C2 = Op0CI, *C3 = RHSC; +            APInt FoldConst = C1->getValue().lshr(C2->getValue()); +            FoldConst ^= C3->getValue(); +            // Prepare the two operands. +            Value *Opnd0 = Builder.CreateLShr(E1->getOperand(0), C2); +            Opnd0->takeName(Op0I); +            cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc()); +            Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst); + +            return BinaryOperator::CreateXor(Opnd0, FoldVal); +          } +        } +      } +    } +  } + +  if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I)) +    return FoldedLogic; + +  // Y ^ (X | Y) --> X & ~Y +  // Y ^ (Y | X) --> X & ~Y +  if (match(Op1, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op0))))) +    return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op0)); +  // (X | Y) ^ Y --> X & ~Y +  // (Y | X) ^ Y --> X & ~Y +  if (match(Op0, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op1))))) +    return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op1)); + +  // Y ^ (X & Y) --> ~X & Y +  // Y ^ (Y & X) --> ~X & Y +  if (match(Op1, m_OneUse(m_c_And(m_Value(X), m_Specific(Op0))))) +    return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(X)); +  // (X & Y) ^ Y --> ~X & Y +  // (Y & X) ^ Y --> ~X & Y +  // Canonical form is (X & C) ^ C; don't touch that. +  // TODO: A 'not' op is better for analysis and codegen, but demanded bits must +  //       be fixed to prefer that (otherwise we get infinite looping). +  if (!match(Op1, m_Constant()) && +      match(Op0, m_OneUse(m_c_And(m_Value(X), m_Specific(Op1))))) +    return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(X)); + +  Value *A, *B, *C; +  // (A ^ B) ^ (A | C) --> (~A & C) ^ B -- There are 4 commuted variants. +  if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))), +                        m_OneUse(m_c_Or(m_Deferred(A), m_Value(C)))))) +      return BinaryOperator::CreateXor( +          Builder.CreateAnd(Builder.CreateNot(A), C), B); + +  // (A ^ B) ^ (B | C) --> (~B & C) ^ A -- There are 4 commuted variants. +  if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))), +                        m_OneUse(m_c_Or(m_Deferred(B), m_Value(C)))))) +      return BinaryOperator::CreateXor( +          Builder.CreateAnd(Builder.CreateNot(B), C), A); + +  // (A & B) ^ (A ^ B) -> (A | B) +  if (match(Op0, m_And(m_Value(A), m_Value(B))) && +      match(Op1, m_c_Xor(m_Specific(A), m_Specific(B)))) +    return BinaryOperator::CreateOr(A, B); +  // (A ^ B) ^ (A & B) -> (A | B) +  if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && +      match(Op1, m_c_And(m_Specific(A), m_Specific(B)))) +    return BinaryOperator::CreateOr(A, B); + +  // (A & ~B) ^ ~A -> ~(A & B) +  // (~B & A) ^ ~A -> ~(A & B) +  if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) && +      match(Op1, m_Not(m_Specific(A)))) +    return BinaryOperator::CreateNot(Builder.CreateAnd(A, B)); + +  if (auto *LHS = dyn_cast<ICmpInst>(I.getOperand(0))) +    if (auto *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) +      if (Value *V = foldXorOfICmps(LHS, RHS, I)) +        return replaceInstUsesWith(I, V); + +  if (Instruction *CastedXor = foldCastedBitwiseLogic(I)) +    return CastedXor; + +  // Canonicalize a shifty way to code absolute value to the common pattern. +  // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1. +  // We're relying on the fact that we only do this transform when the shift has +  // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase +  // instructions). +  if (Op0->hasNUses(2)) +    std::swap(Op0, Op1); + +  const APInt *ShAmt; +  Type *Ty = I.getType(); +  if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) && +      Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 && +      match(Op0, m_OneUse(m_c_Add(m_Specific(A), m_Specific(Op1))))) { +    // B = ashr i32 A, 31 ; smear the sign bit +    // xor (add A, B), B  ; add -1 and flip bits if negative +    // --> (A < 0) ? -A : A +    Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty)); +    // Copy the nuw/nsw flags from the add to the negate. +    auto *Add = cast<BinaryOperator>(Op0); +    Value *Neg = Builder.CreateNeg(A, "", Add->hasNoUnsignedWrap(), +                                   Add->hasNoSignedWrap()); +    return SelectInst::Create(Cmp, Neg, A); +  } + +  // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max: +  // +  //   %notx = xor i32 %x, -1 +  //   %cmp1 = icmp sgt i32 %notx, %y +  //   %smax = select i1 %cmp1, i32 %notx, i32 %y +  //   %res = xor i32 %smax, -1 +  // => +  //   %noty = xor i32 %y, -1 +  //   %cmp2 = icmp slt %x, %noty +  //   %res = select i1 %cmp2, i32 %x, i32 %noty +  // +  // Same is applicable for smin/umax/umin. +  if (match(Op1, m_AllOnes()) && Op0->hasOneUse()) { +    Value *LHS, *RHS; +    SelectPatternFlavor SPF = matchSelectPattern(Op0, LHS, RHS).Flavor; +    if (SelectPatternResult::isMinOrMax(SPF)) { +      // It's possible we get here before the not has been simplified, so make +      // sure the input to the not isn't freely invertible. +      if (match(LHS, m_Not(m_Value(X))) && !isFreeToInvert(X, X->hasOneUse())) { +        Value *NotY = Builder.CreateNot(RHS); +        return SelectInst::Create( +            Builder.CreateICmp(getInverseMinMaxPred(SPF), X, NotY), X, NotY); +      } + +      // It's possible we get here before the not has been simplified, so make +      // sure the input to the not isn't freely invertible. +      if (match(RHS, m_Not(m_Value(Y))) && !isFreeToInvert(Y, Y->hasOneUse())) { +        Value *NotX = Builder.CreateNot(LHS); +        return SelectInst::Create( +            Builder.CreateICmp(getInverseMinMaxPred(SPF), NotX, Y), NotX, Y); +      } + +      // If both sides are freely invertible, then we can get rid of the xor +      // completely. +      if (isFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) && +          isFreeToInvert(RHS, !RHS->hasNUsesOrMore(3))) { +        Value *NotLHS = Builder.CreateNot(LHS); +        Value *NotRHS = Builder.CreateNot(RHS); +        return SelectInst::Create( +            Builder.CreateICmp(getInverseMinMaxPred(SPF), NotLHS, NotRHS), +            NotLHS, NotRHS); +      } +    } +  } + +  if (Instruction *NewXor = sinkNotIntoXor(I, Builder)) +    return NewXor; + +  return nullptr; +} | 
