diff options
Diffstat (limited to 'llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp')
| -rw-r--r-- | llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp | 4826 |
1 files changed, 4826 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp b/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp new file mode 100644 index 000000000000..c650d242cd50 --- /dev/null +++ b/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp @@ -0,0 +1,4826 @@ +//===- InstCombineCalls.cpp -----------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the visitCall, visitInvoke, and visitCallBr functions. +// +//===----------------------------------------------------------------------===// + +#include "InstCombineInternal.h" +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/APSInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/Twine.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/Loads.h" +#include "llvm/Analysis/MemoryBuiltins.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Analysis/VectorUtils.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/Statepoint.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/Support/AtomicOrdering.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/KnownBits.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/InstCombine/InstCombineWorklist.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/SimplifyLibCalls.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <cstring> +#include <utility> +#include <vector> + +using namespace llvm; +using namespace PatternMatch; + +#define DEBUG_TYPE "instcombine" + +STATISTIC(NumSimplified, "Number of library calls simplified"); + +static cl::opt<unsigned> GuardWideningWindow( + "instcombine-guard-widening-window", + cl::init(3), + cl::desc("How wide an instruction window to bypass looking for " + "another guard")); + +/// Return the specified type promoted as it would be to pass though a va_arg +/// area. +static Type *getPromotedType(Type *Ty) { + if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) { + if (ITy->getBitWidth() < 32) + return Type::getInt32Ty(Ty->getContext()); + } + return Ty; +} + +/// Return a constant boolean vector that has true elements in all positions +/// where the input constant data vector has an element with the sign bit set. +static Constant *getNegativeIsTrueBoolVec(ConstantDataVector *V) { + SmallVector<Constant *, 32> BoolVec; + IntegerType *BoolTy = Type::getInt1Ty(V->getContext()); + for (unsigned I = 0, E = V->getNumElements(); I != E; ++I) { + Constant *Elt = V->getElementAsConstant(I); + assert((isa<ConstantInt>(Elt) || isa<ConstantFP>(Elt)) && + "Unexpected constant data vector element type"); + bool Sign = V->getElementType()->isIntegerTy() + ? cast<ConstantInt>(Elt)->isNegative() + : cast<ConstantFP>(Elt)->isNegative(); + BoolVec.push_back(ConstantInt::get(BoolTy, Sign)); + } + return ConstantVector::get(BoolVec); +} + +Instruction *InstCombiner::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) { + unsigned DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT); + unsigned CopyDstAlign = MI->getDestAlignment(); + if (CopyDstAlign < DstAlign){ + MI->setDestAlignment(DstAlign); + return MI; + } + + unsigned SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT); + unsigned CopySrcAlign = MI->getSourceAlignment(); + if (CopySrcAlign < SrcAlign) { + MI->setSourceAlignment(SrcAlign); + return MI; + } + + // If we have a store to a location which is known constant, we can conclude + // that the store must be storing the constant value (else the memory + // wouldn't be constant), and this must be a noop. + if (AA->pointsToConstantMemory(MI->getDest())) { + // Set the size of the copy to 0, it will be deleted on the next iteration. + MI->setLength(Constant::getNullValue(MI->getLength()->getType())); + return MI; + } + + // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with + // load/store. + ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength()); + if (!MemOpLength) return nullptr; + + // Source and destination pointer types are always "i8*" for intrinsic. See + // if the size is something we can handle with a single primitive load/store. + // A single load+store correctly handles overlapping memory in the memmove + // case. + uint64_t Size = MemOpLength->getLimitedValue(); + assert(Size && "0-sized memory transferring should be removed already."); + + if (Size > 8 || (Size&(Size-1))) + return nullptr; // If not 1/2/4/8 bytes, exit. + + // If it is an atomic and alignment is less than the size then we will + // introduce the unaligned memory access which will be later transformed + // into libcall in CodeGen. This is not evident performance gain so disable + // it now. + if (isa<AtomicMemTransferInst>(MI)) + if (CopyDstAlign < Size || CopySrcAlign < Size) + return nullptr; + + // Use an integer load+store unless we can find something better. + unsigned SrcAddrSp = + cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace(); + unsigned DstAddrSp = + cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace(); + + IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3); + Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp); + Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp); + + // If the memcpy has metadata describing the members, see if we can get the + // TBAA tag describing our copy. + MDNode *CopyMD = nullptr; + if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa)) { + CopyMD = M; + } else if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) { + if (M->getNumOperands() == 3 && M->getOperand(0) && + mdconst::hasa<ConstantInt>(M->getOperand(0)) && + mdconst::extract<ConstantInt>(M->getOperand(0))->isZero() && + M->getOperand(1) && + mdconst::hasa<ConstantInt>(M->getOperand(1)) && + mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() == + Size && + M->getOperand(2) && isa<MDNode>(M->getOperand(2))) + CopyMD = cast<MDNode>(M->getOperand(2)); + } + + Value *Src = Builder.CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy); + Value *Dest = Builder.CreateBitCast(MI->getArgOperand(0), NewDstPtrTy); + LoadInst *L = Builder.CreateLoad(IntType, Src); + // Alignment from the mem intrinsic will be better, so use it. + L->setAlignment( + MaybeAlign(CopySrcAlign)); // FIXME: Check if we can use Align instead. + if (CopyMD) + L->setMetadata(LLVMContext::MD_tbaa, CopyMD); + MDNode *LoopMemParallelMD = + MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access); + if (LoopMemParallelMD) + L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD); + MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group); + if (AccessGroupMD) + L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD); + + StoreInst *S = Builder.CreateStore(L, Dest); + // Alignment from the mem intrinsic will be better, so use it. + S->setAlignment( + MaybeAlign(CopyDstAlign)); // FIXME: Check if we can use Align instead. + if (CopyMD) + S->setMetadata(LLVMContext::MD_tbaa, CopyMD); + if (LoopMemParallelMD) + S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD); + if (AccessGroupMD) + S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD); + + if (auto *MT = dyn_cast<MemTransferInst>(MI)) { + // non-atomics can be volatile + L->setVolatile(MT->isVolatile()); + S->setVolatile(MT->isVolatile()); + } + if (isa<AtomicMemTransferInst>(MI)) { + // atomics have to be unordered + L->setOrdering(AtomicOrdering::Unordered); + S->setOrdering(AtomicOrdering::Unordered); + } + + // Set the size of the copy to 0, it will be deleted on the next iteration. + MI->setLength(Constant::getNullValue(MemOpLength->getType())); + return MI; +} + +Instruction *InstCombiner::SimplifyAnyMemSet(AnyMemSetInst *MI) { + const unsigned KnownAlignment = + getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT); + if (MI->getDestAlignment() < KnownAlignment) { + MI->setDestAlignment(KnownAlignment); + return MI; + } + + // If we have a store to a location which is known constant, we can conclude + // that the store must be storing the constant value (else the memory + // wouldn't be constant), and this must be a noop. + if (AA->pointsToConstantMemory(MI->getDest())) { + // Set the size of the copy to 0, it will be deleted on the next iteration. + MI->setLength(Constant::getNullValue(MI->getLength()->getType())); + return MI; + } + + // Extract the length and alignment and fill if they are constant. + ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength()); + ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue()); + if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8)) + return nullptr; + const uint64_t Len = LenC->getLimitedValue(); + assert(Len && "0-sized memory setting should be removed already."); + const Align Alignment = assumeAligned(MI->getDestAlignment()); + + // If it is an atomic and alignment is less than the size then we will + // introduce the unaligned memory access which will be later transformed + // into libcall in CodeGen. This is not evident performance gain so disable + // it now. + if (isa<AtomicMemSetInst>(MI)) + if (Alignment < Len) + return nullptr; + + // memset(s,c,n) -> store s, c (for n=1,2,4,8) + if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) { + Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8. + + Value *Dest = MI->getDest(); + unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace(); + Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp); + Dest = Builder.CreateBitCast(Dest, NewDstPtrTy); + + // Extract the fill value and store. + uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL; + StoreInst *S = Builder.CreateStore(ConstantInt::get(ITy, Fill), Dest, + MI->isVolatile()); + S->setAlignment(Alignment); + if (isa<AtomicMemSetInst>(MI)) + S->setOrdering(AtomicOrdering::Unordered); + + // Set the size of the copy to 0, it will be deleted on the next iteration. + MI->setLength(Constant::getNullValue(LenC->getType())); + return MI; + } + + return nullptr; +} + +static Value *simplifyX86immShift(const IntrinsicInst &II, + InstCombiner::BuilderTy &Builder) { + bool LogicalShift = false; + bool ShiftLeft = false; + + switch (II.getIntrinsicID()) { + default: llvm_unreachable("Unexpected intrinsic!"); + case Intrinsic::x86_sse2_psra_d: + case Intrinsic::x86_sse2_psra_w: + case Intrinsic::x86_sse2_psrai_d: + case Intrinsic::x86_sse2_psrai_w: + case Intrinsic::x86_avx2_psra_d: + case Intrinsic::x86_avx2_psra_w: + case Intrinsic::x86_avx2_psrai_d: + case Intrinsic::x86_avx2_psrai_w: + case Intrinsic::x86_avx512_psra_q_128: + case Intrinsic::x86_avx512_psrai_q_128: + case Intrinsic::x86_avx512_psra_q_256: + case Intrinsic::x86_avx512_psrai_q_256: + case Intrinsic::x86_avx512_psra_d_512: + case Intrinsic::x86_avx512_psra_q_512: + case Intrinsic::x86_avx512_psra_w_512: + case Intrinsic::x86_avx512_psrai_d_512: + case Intrinsic::x86_avx512_psrai_q_512: + case Intrinsic::x86_avx512_psrai_w_512: + LogicalShift = false; ShiftLeft = false; + break; + case Intrinsic::x86_sse2_psrl_d: + case Intrinsic::x86_sse2_psrl_q: + case Intrinsic::x86_sse2_psrl_w: + case Intrinsic::x86_sse2_psrli_d: + case Intrinsic::x86_sse2_psrli_q: + case Intrinsic::x86_sse2_psrli_w: + case Intrinsic::x86_avx2_psrl_d: + case Intrinsic::x86_avx2_psrl_q: + case Intrinsic::x86_avx2_psrl_w: + case Intrinsic::x86_avx2_psrli_d: + case Intrinsic::x86_avx2_psrli_q: + case Intrinsic::x86_avx2_psrli_w: + case Intrinsic::x86_avx512_psrl_d_512: + case Intrinsic::x86_avx512_psrl_q_512: + case Intrinsic::x86_avx512_psrl_w_512: + case Intrinsic::x86_avx512_psrli_d_512: + case Intrinsic::x86_avx512_psrli_q_512: + case Intrinsic::x86_avx512_psrli_w_512: + LogicalShift = true; ShiftLeft = false; + break; + case Intrinsic::x86_sse2_psll_d: + case Intrinsic::x86_sse2_psll_q: + case Intrinsic::x86_sse2_psll_w: + case Intrinsic::x86_sse2_pslli_d: + case Intrinsic::x86_sse2_pslli_q: + case Intrinsic::x86_sse2_pslli_w: + case Intrinsic::x86_avx2_psll_d: + case Intrinsic::x86_avx2_psll_q: + case Intrinsic::x86_avx2_psll_w: + case Intrinsic::x86_avx2_pslli_d: + case Intrinsic::x86_avx2_pslli_q: + case Intrinsic::x86_avx2_pslli_w: + case Intrinsic::x86_avx512_psll_d_512: + case Intrinsic::x86_avx512_psll_q_512: + case Intrinsic::x86_avx512_psll_w_512: + case Intrinsic::x86_avx512_pslli_d_512: + case Intrinsic::x86_avx512_pslli_q_512: + case Intrinsic::x86_avx512_pslli_w_512: + LogicalShift = true; ShiftLeft = true; + break; + } + assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left"); + + // Simplify if count is constant. + auto Arg1 = II.getArgOperand(1); + auto CAZ = dyn_cast<ConstantAggregateZero>(Arg1); + auto CDV = dyn_cast<ConstantDataVector>(Arg1); + auto CInt = dyn_cast<ConstantInt>(Arg1); + if (!CAZ && !CDV && !CInt) + return nullptr; + + APInt Count(64, 0); + if (CDV) { + // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector + // operand to compute the shift amount. + auto VT = cast<VectorType>(CDV->getType()); + unsigned BitWidth = VT->getElementType()->getPrimitiveSizeInBits(); + assert((64 % BitWidth) == 0 && "Unexpected packed shift size"); + unsigned NumSubElts = 64 / BitWidth; + + // Concatenate the sub-elements to create the 64-bit value. + for (unsigned i = 0; i != NumSubElts; ++i) { + unsigned SubEltIdx = (NumSubElts - 1) - i; + auto SubElt = cast<ConstantInt>(CDV->getElementAsConstant(SubEltIdx)); + Count <<= BitWidth; + Count |= SubElt->getValue().zextOrTrunc(64); + } + } + else if (CInt) + Count = CInt->getValue(); + + auto Vec = II.getArgOperand(0); + auto VT = cast<VectorType>(Vec->getType()); + auto SVT = VT->getElementType(); + unsigned VWidth = VT->getNumElements(); + unsigned BitWidth = SVT->getPrimitiveSizeInBits(); + + // If shift-by-zero then just return the original value. + if (Count.isNullValue()) + return Vec; + + // Handle cases when Shift >= BitWidth. + if (Count.uge(BitWidth)) { + // If LogicalShift - just return zero. + if (LogicalShift) + return ConstantAggregateZero::get(VT); + + // If ArithmeticShift - clamp Shift to (BitWidth - 1). + Count = APInt(64, BitWidth - 1); + } + + // Get a constant vector of the same type as the first operand. + auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth)); + auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt); + + if (ShiftLeft) + return Builder.CreateShl(Vec, ShiftVec); + + if (LogicalShift) + return Builder.CreateLShr(Vec, ShiftVec); + + return Builder.CreateAShr(Vec, ShiftVec); +} + +// Attempt to simplify AVX2 per-element shift intrinsics to a generic IR shift. +// Unlike the generic IR shifts, the intrinsics have defined behaviour for out +// of range shift amounts (logical - set to zero, arithmetic - splat sign bit). +static Value *simplifyX86varShift(const IntrinsicInst &II, + InstCombiner::BuilderTy &Builder) { + bool LogicalShift = false; + bool ShiftLeft = false; + + switch (II.getIntrinsicID()) { + default: llvm_unreachable("Unexpected intrinsic!"); + case Intrinsic::x86_avx2_psrav_d: + case Intrinsic::x86_avx2_psrav_d_256: + case Intrinsic::x86_avx512_psrav_q_128: + case Intrinsic::x86_avx512_psrav_q_256: + case Intrinsic::x86_avx512_psrav_d_512: + case Intrinsic::x86_avx512_psrav_q_512: + case Intrinsic::x86_avx512_psrav_w_128: + case Intrinsic::x86_avx512_psrav_w_256: + case Intrinsic::x86_avx512_psrav_w_512: + LogicalShift = false; + ShiftLeft = false; + break; + case Intrinsic::x86_avx2_psrlv_d: + case Intrinsic::x86_avx2_psrlv_d_256: + case Intrinsic::x86_avx2_psrlv_q: + case Intrinsic::x86_avx2_psrlv_q_256: + case Intrinsic::x86_avx512_psrlv_d_512: + case Intrinsic::x86_avx512_psrlv_q_512: + case Intrinsic::x86_avx512_psrlv_w_128: + case Intrinsic::x86_avx512_psrlv_w_256: + case Intrinsic::x86_avx512_psrlv_w_512: + LogicalShift = true; + ShiftLeft = false; + break; + case Intrinsic::x86_avx2_psllv_d: + case Intrinsic::x86_avx2_psllv_d_256: + case Intrinsic::x86_avx2_psllv_q: + case Intrinsic::x86_avx2_psllv_q_256: + case Intrinsic::x86_avx512_psllv_d_512: + case Intrinsic::x86_avx512_psllv_q_512: + case Intrinsic::x86_avx512_psllv_w_128: + case Intrinsic::x86_avx512_psllv_w_256: + case Intrinsic::x86_avx512_psllv_w_512: + LogicalShift = true; + ShiftLeft = true; + break; + } + assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left"); + + // Simplify if all shift amounts are constant/undef. + auto *CShift = dyn_cast<Constant>(II.getArgOperand(1)); + if (!CShift) + return nullptr; + + auto Vec = II.getArgOperand(0); + auto VT = cast<VectorType>(II.getType()); + auto SVT = VT->getVectorElementType(); + int NumElts = VT->getNumElements(); + int BitWidth = SVT->getIntegerBitWidth(); + + // Collect each element's shift amount. + // We also collect special cases: UNDEF = -1, OUT-OF-RANGE = BitWidth. + bool AnyOutOfRange = false; + SmallVector<int, 8> ShiftAmts; + for (int I = 0; I < NumElts; ++I) { + auto *CElt = CShift->getAggregateElement(I); + if (CElt && isa<UndefValue>(CElt)) { + ShiftAmts.push_back(-1); + continue; + } + + auto *COp = dyn_cast_or_null<ConstantInt>(CElt); + if (!COp) + return nullptr; + + // Handle out of range shifts. + // If LogicalShift - set to BitWidth (special case). + // If ArithmeticShift - set to (BitWidth - 1) (sign splat). + APInt ShiftVal = COp->getValue(); + if (ShiftVal.uge(BitWidth)) { + AnyOutOfRange = LogicalShift; + ShiftAmts.push_back(LogicalShift ? BitWidth : BitWidth - 1); + continue; + } + + ShiftAmts.push_back((int)ShiftVal.getZExtValue()); + } + + // If all elements out of range or UNDEF, return vector of zeros/undefs. + // ArithmeticShift should only hit this if they are all UNDEF. + auto OutOfRange = [&](int Idx) { return (Idx < 0) || (BitWidth <= Idx); }; + if (llvm::all_of(ShiftAmts, OutOfRange)) { + SmallVector<Constant *, 8> ConstantVec; + for (int Idx : ShiftAmts) { + if (Idx < 0) { + ConstantVec.push_back(UndefValue::get(SVT)); + } else { + assert(LogicalShift && "Logical shift expected"); + ConstantVec.push_back(ConstantInt::getNullValue(SVT)); + } + } + return ConstantVector::get(ConstantVec); + } + + // We can't handle only some out of range values with generic logical shifts. + if (AnyOutOfRange) + return nullptr; + + // Build the shift amount constant vector. + SmallVector<Constant *, 8> ShiftVecAmts; + for (int Idx : ShiftAmts) { + if (Idx < 0) + ShiftVecAmts.push_back(UndefValue::get(SVT)); + else + ShiftVecAmts.push_back(ConstantInt::get(SVT, Idx)); + } + auto ShiftVec = ConstantVector::get(ShiftVecAmts); + + if (ShiftLeft) + return Builder.CreateShl(Vec, ShiftVec); + + if (LogicalShift) + return Builder.CreateLShr(Vec, ShiftVec); + + return Builder.CreateAShr(Vec, ShiftVec); +} + +static Value *simplifyX86pack(IntrinsicInst &II, + InstCombiner::BuilderTy &Builder, bool IsSigned) { + Value *Arg0 = II.getArgOperand(0); + Value *Arg1 = II.getArgOperand(1); + Type *ResTy = II.getType(); + + // Fast all undef handling. + if (isa<UndefValue>(Arg0) && isa<UndefValue>(Arg1)) + return UndefValue::get(ResTy); + + Type *ArgTy = Arg0->getType(); + unsigned NumLanes = ResTy->getPrimitiveSizeInBits() / 128; + unsigned NumSrcElts = ArgTy->getVectorNumElements(); + assert(ResTy->getVectorNumElements() == (2 * NumSrcElts) && + "Unexpected packing types"); + + unsigned NumSrcEltsPerLane = NumSrcElts / NumLanes; + unsigned DstScalarSizeInBits = ResTy->getScalarSizeInBits(); + unsigned SrcScalarSizeInBits = ArgTy->getScalarSizeInBits(); + assert(SrcScalarSizeInBits == (2 * DstScalarSizeInBits) && + "Unexpected packing types"); + + // Constant folding. + if (!isa<Constant>(Arg0) || !isa<Constant>(Arg1)) + return nullptr; + + // Clamp Values - signed/unsigned both use signed clamp values, but they + // differ on the min/max values. + APInt MinValue, MaxValue; + if (IsSigned) { + // PACKSS: Truncate signed value with signed saturation. + // Source values less than dst minint are saturated to minint. + // Source values greater than dst maxint are saturated to maxint. + MinValue = + APInt::getSignedMinValue(DstScalarSizeInBits).sext(SrcScalarSizeInBits); + MaxValue = + APInt::getSignedMaxValue(DstScalarSizeInBits).sext(SrcScalarSizeInBits); + } else { + // PACKUS: Truncate signed value with unsigned saturation. + // Source values less than zero are saturated to zero. + // Source values greater than dst maxuint are saturated to maxuint. + MinValue = APInt::getNullValue(SrcScalarSizeInBits); + MaxValue = APInt::getLowBitsSet(SrcScalarSizeInBits, DstScalarSizeInBits); + } + + auto *MinC = Constant::getIntegerValue(ArgTy, MinValue); + auto *MaxC = Constant::getIntegerValue(ArgTy, MaxValue); + Arg0 = Builder.CreateSelect(Builder.CreateICmpSLT(Arg0, MinC), MinC, Arg0); + Arg1 = Builder.CreateSelect(Builder.CreateICmpSLT(Arg1, MinC), MinC, Arg1); + Arg0 = Builder.CreateSelect(Builder.CreateICmpSGT(Arg0, MaxC), MaxC, Arg0); + Arg1 = Builder.CreateSelect(Builder.CreateICmpSGT(Arg1, MaxC), MaxC, Arg1); + + // Shuffle clamped args together at the lane level. + SmallVector<unsigned, 32> PackMask; + for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { + for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt) + PackMask.push_back(Elt + (Lane * NumSrcEltsPerLane)); + for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt) + PackMask.push_back(Elt + (Lane * NumSrcEltsPerLane) + NumSrcElts); + } + auto *Shuffle = Builder.CreateShuffleVector(Arg0, Arg1, PackMask); + + // Truncate to dst size. + return Builder.CreateTrunc(Shuffle, ResTy); +} + +static Value *simplifyX86movmsk(const IntrinsicInst &II, + InstCombiner::BuilderTy &Builder) { + Value *Arg = II.getArgOperand(0); + Type *ResTy = II.getType(); + Type *ArgTy = Arg->getType(); + + // movmsk(undef) -> zero as we must ensure the upper bits are zero. + if (isa<UndefValue>(Arg)) + return Constant::getNullValue(ResTy); + + // We can't easily peek through x86_mmx types. + if (!ArgTy->isVectorTy()) + return nullptr; + + // Expand MOVMSK to compare/bitcast/zext: + // e.g. PMOVMSKB(v16i8 x): + // %cmp = icmp slt <16 x i8> %x, zeroinitializer + // %int = bitcast <16 x i1> %cmp to i16 + // %res = zext i16 %int to i32 + unsigned NumElts = ArgTy->getVectorNumElements(); + Type *IntegerVecTy = VectorType::getInteger(cast<VectorType>(ArgTy)); + Type *IntegerTy = Builder.getIntNTy(NumElts); + + Value *Res = Builder.CreateBitCast(Arg, IntegerVecTy); + Res = Builder.CreateICmpSLT(Res, Constant::getNullValue(IntegerVecTy)); + Res = Builder.CreateBitCast(Res, IntegerTy); + Res = Builder.CreateZExtOrTrunc(Res, ResTy); + return Res; +} + +static Value *simplifyX86addcarry(const IntrinsicInst &II, + InstCombiner::BuilderTy &Builder) { + Value *CarryIn = II.getArgOperand(0); + Value *Op1 = II.getArgOperand(1); + Value *Op2 = II.getArgOperand(2); + Type *RetTy = II.getType(); + Type *OpTy = Op1->getType(); + assert(RetTy->getStructElementType(0)->isIntegerTy(8) && + RetTy->getStructElementType(1) == OpTy && OpTy == Op2->getType() && + "Unexpected types for x86 addcarry"); + + // If carry-in is zero, this is just an unsigned add with overflow. + if (match(CarryIn, m_ZeroInt())) { + Value *UAdd = Builder.CreateIntrinsic(Intrinsic::uadd_with_overflow, OpTy, + { Op1, Op2 }); + // The types have to be adjusted to match the x86 call types. + Value *UAddResult = Builder.CreateExtractValue(UAdd, 0); + Value *UAddOV = Builder.CreateZExt(Builder.CreateExtractValue(UAdd, 1), + Builder.getInt8Ty()); + Value *Res = UndefValue::get(RetTy); + Res = Builder.CreateInsertValue(Res, UAddOV, 0); + return Builder.CreateInsertValue(Res, UAddResult, 1); + } + + return nullptr; +} + +static Value *simplifyX86insertps(const IntrinsicInst &II, + InstCombiner::BuilderTy &Builder) { + auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2)); + if (!CInt) + return nullptr; + + VectorType *VecTy = cast<VectorType>(II.getType()); + assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type"); + + // The immediate permute control byte looks like this: + // [3:0] - zero mask for each 32-bit lane + // [5:4] - select one 32-bit destination lane + // [7:6] - select one 32-bit source lane + + uint8_t Imm = CInt->getZExtValue(); + uint8_t ZMask = Imm & 0xf; + uint8_t DestLane = (Imm >> 4) & 0x3; + uint8_t SourceLane = (Imm >> 6) & 0x3; + + ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy); + + // If all zero mask bits are set, this was just a weird way to + // generate a zero vector. + if (ZMask == 0xf) + return ZeroVector; + + // Initialize by passing all of the first source bits through. + uint32_t ShuffleMask[4] = { 0, 1, 2, 3 }; + + // We may replace the second operand with the zero vector. + Value *V1 = II.getArgOperand(1); + + if (ZMask) { + // If the zero mask is being used with a single input or the zero mask + // overrides the destination lane, this is a shuffle with the zero vector. + if ((II.getArgOperand(0) == II.getArgOperand(1)) || + (ZMask & (1 << DestLane))) { + V1 = ZeroVector; + // We may still move 32-bits of the first source vector from one lane + // to another. + ShuffleMask[DestLane] = SourceLane; + // The zero mask may override the previous insert operation. + for (unsigned i = 0; i < 4; ++i) + if ((ZMask >> i) & 0x1) + ShuffleMask[i] = i + 4; + } else { + // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle? + return nullptr; + } + } else { + // Replace the selected destination lane with the selected source lane. + ShuffleMask[DestLane] = SourceLane + 4; + } + + return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask); +} + +/// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding +/// or conversion to a shuffle vector. +static Value *simplifyX86extrq(IntrinsicInst &II, Value *Op0, + ConstantInt *CILength, ConstantInt *CIIndex, + InstCombiner::BuilderTy &Builder) { + auto LowConstantHighUndef = [&](uint64_t Val) { + Type *IntTy64 = Type::getInt64Ty(II.getContext()); + Constant *Args[] = {ConstantInt::get(IntTy64, Val), + UndefValue::get(IntTy64)}; + return ConstantVector::get(Args); + }; + + // See if we're dealing with constant values. + Constant *C0 = dyn_cast<Constant>(Op0); + ConstantInt *CI0 = + C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0)) + : nullptr; + + // Attempt to constant fold. + if (CILength && CIIndex) { + // From AMD documentation: "The bit index and field length are each six + // bits in length other bits of the field are ignored." + APInt APIndex = CIIndex->getValue().zextOrTrunc(6); + APInt APLength = CILength->getValue().zextOrTrunc(6); + + unsigned Index = APIndex.getZExtValue(); + + // From AMD documentation: "a value of zero in the field length is + // defined as length of 64". + unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue(); + + // From AMD documentation: "If the sum of the bit index + length field + // is greater than 64, the results are undefined". + unsigned End = Index + Length; + + // Note that both field index and field length are 8-bit quantities. + // Since variables 'Index' and 'Length' are unsigned values + // obtained from zero-extending field index and field length + // respectively, their sum should never wrap around. + if (End > 64) + return UndefValue::get(II.getType()); + + // If we are inserting whole bytes, we can convert this to a shuffle. + // Lowering can recognize EXTRQI shuffle masks. + if ((Length % 8) == 0 && (Index % 8) == 0) { + // Convert bit indices to byte indices. + Length /= 8; + Index /= 8; + + Type *IntTy8 = Type::getInt8Ty(II.getContext()); + Type *IntTy32 = Type::getInt32Ty(II.getContext()); + VectorType *ShufTy = VectorType::get(IntTy8, 16); + + SmallVector<Constant *, 16> ShuffleMask; + for (int i = 0; i != (int)Length; ++i) + ShuffleMask.push_back( + Constant::getIntegerValue(IntTy32, APInt(32, i + Index))); + for (int i = Length; i != 8; ++i) + ShuffleMask.push_back( + Constant::getIntegerValue(IntTy32, APInt(32, i + 16))); + for (int i = 8; i != 16; ++i) + ShuffleMask.push_back(UndefValue::get(IntTy32)); + + Value *SV = Builder.CreateShuffleVector( + Builder.CreateBitCast(Op0, ShufTy), + ConstantAggregateZero::get(ShufTy), ConstantVector::get(ShuffleMask)); + return Builder.CreateBitCast(SV, II.getType()); + } + + // Constant Fold - shift Index'th bit to lowest position and mask off + // Length bits. + if (CI0) { + APInt Elt = CI0->getValue(); + Elt.lshrInPlace(Index); + Elt = Elt.zextOrTrunc(Length); + return LowConstantHighUndef(Elt.getZExtValue()); + } + + // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI. + if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) { + Value *Args[] = {Op0, CILength, CIIndex}; + Module *M = II.getModule(); + Function *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_extrqi); + return Builder.CreateCall(F, Args); + } + } + + // Constant Fold - extraction from zero is always {zero, undef}. + if (CI0 && CI0->isZero()) + return LowConstantHighUndef(0); + + return nullptr; +} + +/// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant +/// folding or conversion to a shuffle vector. +static Value *simplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1, + APInt APLength, APInt APIndex, + InstCombiner::BuilderTy &Builder) { + // From AMD documentation: "The bit index and field length are each six bits + // in length other bits of the field are ignored." + APIndex = APIndex.zextOrTrunc(6); + APLength = APLength.zextOrTrunc(6); + + // Attempt to constant fold. + unsigned Index = APIndex.getZExtValue(); + + // From AMD documentation: "a value of zero in the field length is + // defined as length of 64". + unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue(); + + // From AMD documentation: "If the sum of the bit index + length field + // is greater than 64, the results are undefined". + unsigned End = Index + Length; + + // Note that both field index and field length are 8-bit quantities. + // Since variables 'Index' and 'Length' are unsigned values + // obtained from zero-extending field index and field length + // respectively, their sum should never wrap around. + if (End > 64) + return UndefValue::get(II.getType()); + + // If we are inserting whole bytes, we can convert this to a shuffle. + // Lowering can recognize INSERTQI shuffle masks. + if ((Length % 8) == 0 && (Index % 8) == 0) { + // Convert bit indices to byte indices. + Length /= 8; + Index /= 8; + + Type *IntTy8 = Type::getInt8Ty(II.getContext()); + Type *IntTy32 = Type::getInt32Ty(II.getContext()); + VectorType *ShufTy = VectorType::get(IntTy8, 16); + + SmallVector<Constant *, 16> ShuffleMask; + for (int i = 0; i != (int)Index; ++i) + ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i))); + for (int i = 0; i != (int)Length; ++i) + ShuffleMask.push_back( + Constant::getIntegerValue(IntTy32, APInt(32, i + 16))); + for (int i = Index + Length; i != 8; ++i) + ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i))); + for (int i = 8; i != 16; ++i) + ShuffleMask.push_back(UndefValue::get(IntTy32)); + + Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy), + Builder.CreateBitCast(Op1, ShufTy), + ConstantVector::get(ShuffleMask)); + return Builder.CreateBitCast(SV, II.getType()); + } + + // See if we're dealing with constant values. + Constant *C0 = dyn_cast<Constant>(Op0); + Constant *C1 = dyn_cast<Constant>(Op1); + ConstantInt *CI00 = + C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0)) + : nullptr; + ConstantInt *CI10 = + C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0)) + : nullptr; + + // Constant Fold - insert bottom Length bits starting at the Index'th bit. + if (CI00 && CI10) { + APInt V00 = CI00->getValue(); + APInt V10 = CI10->getValue(); + APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index); + V00 = V00 & ~Mask; + V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index); + APInt Val = V00 | V10; + Type *IntTy64 = Type::getInt64Ty(II.getContext()); + Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()), + UndefValue::get(IntTy64)}; + return ConstantVector::get(Args); + } + + // If we were an INSERTQ call, we'll save demanded elements if we convert to + // INSERTQI. + if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) { + Type *IntTy8 = Type::getInt8Ty(II.getContext()); + Constant *CILength = ConstantInt::get(IntTy8, Length, false); + Constant *CIIndex = ConstantInt::get(IntTy8, Index, false); + + Value *Args[] = {Op0, Op1, CILength, CIIndex}; + Module *M = II.getModule(); + Function *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi); + return Builder.CreateCall(F, Args); + } + + return nullptr; +} + +/// Attempt to convert pshufb* to shufflevector if the mask is constant. +static Value *simplifyX86pshufb(const IntrinsicInst &II, + InstCombiner::BuilderTy &Builder) { + Constant *V = dyn_cast<Constant>(II.getArgOperand(1)); + if (!V) + return nullptr; + + auto *VecTy = cast<VectorType>(II.getType()); + auto *MaskEltTy = Type::getInt32Ty(II.getContext()); + unsigned NumElts = VecTy->getNumElements(); + assert((NumElts == 16 || NumElts == 32 || NumElts == 64) && + "Unexpected number of elements in shuffle mask!"); + + // Construct a shuffle mask from constant integers or UNDEFs. + Constant *Indexes[64] = {nullptr}; + + // Each byte in the shuffle control mask forms an index to permute the + // corresponding byte in the destination operand. + for (unsigned I = 0; I < NumElts; ++I) { + Constant *COp = V->getAggregateElement(I); + if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp))) + return nullptr; + + if (isa<UndefValue>(COp)) { + Indexes[I] = UndefValue::get(MaskEltTy); + continue; + } + + int8_t Index = cast<ConstantInt>(COp)->getValue().getZExtValue(); + + // If the most significant bit (bit[7]) of each byte of the shuffle + // control mask is set, then zero is written in the result byte. + // The zero vector is in the right-hand side of the resulting + // shufflevector. + + // The value of each index for the high 128-bit lane is the least + // significant 4 bits of the respective shuffle control byte. + Index = ((Index < 0) ? NumElts : Index & 0x0F) + (I & 0xF0); + Indexes[I] = ConstantInt::get(MaskEltTy, Index); + } + + auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts)); + auto V1 = II.getArgOperand(0); + auto V2 = Constant::getNullValue(VecTy); + return Builder.CreateShuffleVector(V1, V2, ShuffleMask); +} + +/// Attempt to convert vpermilvar* to shufflevector if the mask is constant. +static Value *simplifyX86vpermilvar(const IntrinsicInst &II, + InstCombiner::BuilderTy &Builder) { + Constant *V = dyn_cast<Constant>(II.getArgOperand(1)); + if (!V) + return nullptr; + + auto *VecTy = cast<VectorType>(II.getType()); + auto *MaskEltTy = Type::getInt32Ty(II.getContext()); + unsigned NumElts = VecTy->getVectorNumElements(); + bool IsPD = VecTy->getScalarType()->isDoubleTy(); + unsigned NumLaneElts = IsPD ? 2 : 4; + assert(NumElts == 16 || NumElts == 8 || NumElts == 4 || NumElts == 2); + + // Construct a shuffle mask from constant integers or UNDEFs. + Constant *Indexes[16] = {nullptr}; + + // The intrinsics only read one or two bits, clear the rest. + for (unsigned I = 0; I < NumElts; ++I) { + Constant *COp = V->getAggregateElement(I); + if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp))) + return nullptr; + + if (isa<UndefValue>(COp)) { + Indexes[I] = UndefValue::get(MaskEltTy); + continue; + } + + APInt Index = cast<ConstantInt>(COp)->getValue(); + Index = Index.zextOrTrunc(32).getLoBits(2); + + // The PD variants uses bit 1 to select per-lane element index, so + // shift down to convert to generic shuffle mask index. + if (IsPD) + Index.lshrInPlace(1); + + // The _256 variants are a bit trickier since the mask bits always index + // into the corresponding 128 half. In order to convert to a generic + // shuffle, we have to make that explicit. + Index += APInt(32, (I / NumLaneElts) * NumLaneElts); + + Indexes[I] = ConstantInt::get(MaskEltTy, Index); + } + + auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts)); + auto V1 = II.getArgOperand(0); + auto V2 = UndefValue::get(V1->getType()); + return Builder.CreateShuffleVector(V1, V2, ShuffleMask); +} + +/// Attempt to convert vpermd/vpermps to shufflevector if the mask is constant. +static Value *simplifyX86vpermv(const IntrinsicInst &II, + InstCombiner::BuilderTy &Builder) { + auto *V = dyn_cast<Constant>(II.getArgOperand(1)); + if (!V) + return nullptr; + + auto *VecTy = cast<VectorType>(II.getType()); + auto *MaskEltTy = Type::getInt32Ty(II.getContext()); + unsigned Size = VecTy->getNumElements(); + assert((Size == 4 || Size == 8 || Size == 16 || Size == 32 || Size == 64) && + "Unexpected shuffle mask size"); + + // Construct a shuffle mask from constant integers or UNDEFs. + Constant *Indexes[64] = {nullptr}; + + for (unsigned I = 0; I < Size; ++I) { + Constant *COp = V->getAggregateElement(I); + if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp))) + return nullptr; + + if (isa<UndefValue>(COp)) { + Indexes[I] = UndefValue::get(MaskEltTy); + continue; + } + + uint32_t Index = cast<ConstantInt>(COp)->getZExtValue(); + Index &= Size - 1; + Indexes[I] = ConstantInt::get(MaskEltTy, Index); + } + + auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, Size)); + auto V1 = II.getArgOperand(0); + auto V2 = UndefValue::get(VecTy); + return Builder.CreateShuffleVector(V1, V2, ShuffleMask); +} + +// TODO, Obvious Missing Transforms: +// * Narrow width by halfs excluding zero/undef lanes +Value *InstCombiner::simplifyMaskedLoad(IntrinsicInst &II) { + Value *LoadPtr = II.getArgOperand(0); + unsigned Alignment = cast<ConstantInt>(II.getArgOperand(1))->getZExtValue(); + + // If the mask is all ones or undefs, this is a plain vector load of the 1st + // argument. + if (maskIsAllOneOrUndef(II.getArgOperand(2))) + return Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment, + "unmaskedload"); + + // If we can unconditionally load from this address, replace with a + // load/select idiom. TODO: use DT for context sensitive query + if (isDereferenceableAndAlignedPointer( + LoadPtr, II.getType(), MaybeAlign(Alignment), + II.getModule()->getDataLayout(), &II, nullptr)) { + Value *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment, + "unmaskedload"); + return Builder.CreateSelect(II.getArgOperand(2), LI, II.getArgOperand(3)); + } + + return nullptr; +} + +// TODO, Obvious Missing Transforms: +// * Single constant active lane -> store +// * Narrow width by halfs excluding zero/undef lanes +Instruction *InstCombiner::simplifyMaskedStore(IntrinsicInst &II) { + auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3)); + if (!ConstMask) + return nullptr; + + // If the mask is all zeros, this instruction does nothing. + if (ConstMask->isNullValue()) + return eraseInstFromFunction(II); + + // If the mask is all ones, this is a plain vector store of the 1st argument. + if (ConstMask->isAllOnesValue()) { + Value *StorePtr = II.getArgOperand(1); + MaybeAlign Alignment( + cast<ConstantInt>(II.getArgOperand(2))->getZExtValue()); + return new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment); + } + + // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts + APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask); + APInt UndefElts(DemandedElts.getBitWidth(), 0); + if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0), + DemandedElts, UndefElts)) { + II.setOperand(0, V); + return &II; + } + + return nullptr; +} + +// TODO, Obvious Missing Transforms: +// * Single constant active lane load -> load +// * Dereferenceable address & few lanes -> scalarize speculative load/selects +// * Adjacent vector addresses -> masked.load +// * Narrow width by halfs excluding zero/undef lanes +// * Vector splat address w/known mask -> scalar load +// * Vector incrementing address -> vector masked load +Instruction *InstCombiner::simplifyMaskedGather(IntrinsicInst &II) { + return nullptr; +} + +// TODO, Obvious Missing Transforms: +// * Single constant active lane -> store +// * Adjacent vector addresses -> masked.store +// * Narrow store width by halfs excluding zero/undef lanes +// * Vector splat address w/known mask -> scalar store +// * Vector incrementing address -> vector masked store +Instruction *InstCombiner::simplifyMaskedScatter(IntrinsicInst &II) { + auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3)); + if (!ConstMask) + return nullptr; + + // If the mask is all zeros, a scatter does nothing. + if (ConstMask->isNullValue()) + return eraseInstFromFunction(II); + + // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts + APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask); + APInt UndefElts(DemandedElts.getBitWidth(), 0); + if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0), + DemandedElts, UndefElts)) { + II.setOperand(0, V); + return &II; + } + if (Value *V = SimplifyDemandedVectorElts(II.getOperand(1), + DemandedElts, UndefElts)) { + II.setOperand(1, V); + return &II; + } + + return nullptr; +} + +/// This function transforms launder.invariant.group and strip.invariant.group +/// like: +/// launder(launder(%x)) -> launder(%x) (the result is not the argument) +/// launder(strip(%x)) -> launder(%x) +/// strip(strip(%x)) -> strip(%x) (the result is not the argument) +/// strip(launder(%x)) -> strip(%x) +/// This is legal because it preserves the most recent information about +/// the presence or absence of invariant.group. +static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II, + InstCombiner &IC) { + auto *Arg = II.getArgOperand(0); + auto *StrippedArg = Arg->stripPointerCasts(); + auto *StrippedInvariantGroupsArg = Arg->stripPointerCastsAndInvariantGroups(); + if (StrippedArg == StrippedInvariantGroupsArg) + return nullptr; // No launders/strips to remove. + + Value *Result = nullptr; + + if (II.getIntrinsicID() == Intrinsic::launder_invariant_group) + Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg); + else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group) + Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg); + else + llvm_unreachable( + "simplifyInvariantGroupIntrinsic only handles launder and strip"); + if (Result->getType()->getPointerAddressSpace() != + II.getType()->getPointerAddressSpace()) + Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType()); + if (Result->getType() != II.getType()) + Result = IC.Builder.CreateBitCast(Result, II.getType()); + + return cast<Instruction>(Result); +} + +static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombiner &IC) { + assert((II.getIntrinsicID() == Intrinsic::cttz || + II.getIntrinsicID() == Intrinsic::ctlz) && + "Expected cttz or ctlz intrinsic"); + bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz; + Value *Op0 = II.getArgOperand(0); + Value *X; + // ctlz(bitreverse(x)) -> cttz(x) + // cttz(bitreverse(x)) -> ctlz(x) + if (match(Op0, m_BitReverse(m_Value(X)))) { + Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz; + Function *F = Intrinsic::getDeclaration(II.getModule(), ID, II.getType()); + return CallInst::Create(F, {X, II.getArgOperand(1)}); + } + + if (IsTZ) { + // cttz(-x) -> cttz(x) + if (match(Op0, m_Neg(m_Value(X)))) { + II.setOperand(0, X); + return &II; + } + + // cttz(abs(x)) -> cttz(x) + // cttz(nabs(x)) -> cttz(x) + Value *Y; + SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor; + if (SPF == SPF_ABS || SPF == SPF_NABS) { + II.setOperand(0, X); + return &II; + } + } + + KnownBits Known = IC.computeKnownBits(Op0, 0, &II); + + // Create a mask for bits above (ctlz) or below (cttz) the first known one. + unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros() + : Known.countMaxLeadingZeros(); + unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros() + : Known.countMinLeadingZeros(); + + // If all bits above (ctlz) or below (cttz) the first known one are known + // zero, this value is constant. + // FIXME: This should be in InstSimplify because we're replacing an + // instruction with a constant. + if (PossibleZeros == DefiniteZeros) { + auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros); + return IC.replaceInstUsesWith(II, C); + } + + // If the input to cttz/ctlz is known to be non-zero, + // then change the 'ZeroIsUndef' parameter to 'true' + // because we know the zero behavior can't affect the result. + if (!Known.One.isNullValue() || + isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II, + &IC.getDominatorTree())) { + if (!match(II.getArgOperand(1), m_One())) { + II.setOperand(1, IC.Builder.getTrue()); + return &II; + } + } + + // Add range metadata since known bits can't completely reflect what we know. + // TODO: Handle splat vectors. + auto *IT = dyn_cast<IntegerType>(Op0->getType()); + if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) { + Metadata *LowAndHigh[] = { + ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)), + ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))}; + II.setMetadata(LLVMContext::MD_range, + MDNode::get(II.getContext(), LowAndHigh)); + return &II; + } + + return nullptr; +} + +static Instruction *foldCtpop(IntrinsicInst &II, InstCombiner &IC) { + assert(II.getIntrinsicID() == Intrinsic::ctpop && + "Expected ctpop intrinsic"); + Value *Op0 = II.getArgOperand(0); + Value *X; + // ctpop(bitreverse(x)) -> ctpop(x) + // ctpop(bswap(x)) -> ctpop(x) + if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X)))) { + II.setOperand(0, X); + return &II; + } + + // FIXME: Try to simplify vectors of integers. + auto *IT = dyn_cast<IntegerType>(Op0->getType()); + if (!IT) + return nullptr; + + unsigned BitWidth = IT->getBitWidth(); + KnownBits Known(BitWidth); + IC.computeKnownBits(Op0, Known, 0, &II); + + unsigned MinCount = Known.countMinPopulation(); + unsigned MaxCount = Known.countMaxPopulation(); + + // Add range metadata since known bits can't completely reflect what we know. + if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) { + Metadata *LowAndHigh[] = { + ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)), + ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))}; + II.setMetadata(LLVMContext::MD_range, + MDNode::get(II.getContext(), LowAndHigh)); + return &II; + } + + return nullptr; +} + +// TODO: If the x86 backend knew how to convert a bool vector mask back to an +// XMM register mask efficiently, we could transform all x86 masked intrinsics +// to LLVM masked intrinsics and remove the x86 masked intrinsic defs. +static Instruction *simplifyX86MaskedLoad(IntrinsicInst &II, InstCombiner &IC) { + Value *Ptr = II.getOperand(0); + Value *Mask = II.getOperand(1); + Constant *ZeroVec = Constant::getNullValue(II.getType()); + + // Special case a zero mask since that's not a ConstantDataVector. + // This masked load instruction creates a zero vector. + if (isa<ConstantAggregateZero>(Mask)) + return IC.replaceInstUsesWith(II, ZeroVec); + + auto *ConstMask = dyn_cast<ConstantDataVector>(Mask); + if (!ConstMask) + return nullptr; + + // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic + // to allow target-independent optimizations. + + // First, cast the x86 intrinsic scalar pointer to a vector pointer to match + // the LLVM intrinsic definition for the pointer argument. + unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace(); + PointerType *VecPtrTy = PointerType::get(II.getType(), AddrSpace); + Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec"); + + // Second, convert the x86 XMM integer vector mask to a vector of bools based + // on each element's most significant bit (the sign bit). + Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask); + + // The pass-through vector for an x86 masked load is a zero vector. + CallInst *NewMaskedLoad = + IC.Builder.CreateMaskedLoad(PtrCast, 1, BoolMask, ZeroVec); + return IC.replaceInstUsesWith(II, NewMaskedLoad); +} + +// TODO: If the x86 backend knew how to convert a bool vector mask back to an +// XMM register mask efficiently, we could transform all x86 masked intrinsics +// to LLVM masked intrinsics and remove the x86 masked intrinsic defs. +static bool simplifyX86MaskedStore(IntrinsicInst &II, InstCombiner &IC) { + Value *Ptr = II.getOperand(0); + Value *Mask = II.getOperand(1); + Value *Vec = II.getOperand(2); + + // Special case a zero mask since that's not a ConstantDataVector: + // this masked store instruction does nothing. + if (isa<ConstantAggregateZero>(Mask)) { + IC.eraseInstFromFunction(II); + return true; + } + + // The SSE2 version is too weird (eg, unaligned but non-temporal) to do + // anything else at this level. + if (II.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu) + return false; + + auto *ConstMask = dyn_cast<ConstantDataVector>(Mask); + if (!ConstMask) + return false; + + // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic + // to allow target-independent optimizations. + + // First, cast the x86 intrinsic scalar pointer to a vector pointer to match + // the LLVM intrinsic definition for the pointer argument. + unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace(); + PointerType *VecPtrTy = PointerType::get(Vec->getType(), AddrSpace); + Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec"); + + // Second, convert the x86 XMM integer vector mask to a vector of bools based + // on each element's most significant bit (the sign bit). + Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask); + + IC.Builder.CreateMaskedStore(Vec, PtrCast, 1, BoolMask); + + // 'Replace uses' doesn't work for stores. Erase the original masked store. + IC.eraseInstFromFunction(II); + return true; +} + +// Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs. +// +// A single NaN input is folded to minnum, so we rely on that folding for +// handling NaNs. +static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1, + const APFloat &Src2) { + APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2); + + APFloat::cmpResult Cmp0 = Max3.compare(Src0); + assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately"); + if (Cmp0 == APFloat::cmpEqual) + return maxnum(Src1, Src2); + + APFloat::cmpResult Cmp1 = Max3.compare(Src1); + assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately"); + if (Cmp1 == APFloat::cmpEqual) + return maxnum(Src0, Src2); + + return maxnum(Src0, Src1); +} + +/// Convert a table lookup to shufflevector if the mask is constant. +/// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in +/// which case we could lower the shufflevector with rev64 instructions +/// as it's actually a byte reverse. +static Value *simplifyNeonTbl1(const IntrinsicInst &II, + InstCombiner::BuilderTy &Builder) { + // Bail out if the mask is not a constant. + auto *C = dyn_cast<Constant>(II.getArgOperand(1)); + if (!C) + return nullptr; + + auto *VecTy = cast<VectorType>(II.getType()); + unsigned NumElts = VecTy->getNumElements(); + + // Only perform this transformation for <8 x i8> vector types. + if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8) + return nullptr; + + uint32_t Indexes[8]; + + for (unsigned I = 0; I < NumElts; ++I) { + Constant *COp = C->getAggregateElement(I); + + if (!COp || !isa<ConstantInt>(COp)) + return nullptr; + + Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue(); + + // Make sure the mask indices are in range. + if (Indexes[I] >= NumElts) + return nullptr; + } + + auto *ShuffleMask = ConstantDataVector::get(II.getContext(), + makeArrayRef(Indexes)); + auto *V1 = II.getArgOperand(0); + auto *V2 = Constant::getNullValue(V1->getType()); + return Builder.CreateShuffleVector(V1, V2, ShuffleMask); +} + +/// Convert a vector load intrinsic into a simple llvm load instruction. +/// This is beneficial when the underlying object being addressed comes +/// from a constant, since we get constant-folding for free. +static Value *simplifyNeonVld1(const IntrinsicInst &II, + unsigned MemAlign, + InstCombiner::BuilderTy &Builder) { + auto *IntrAlign = dyn_cast<ConstantInt>(II.getArgOperand(1)); + + if (!IntrAlign) + return nullptr; + + unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign ? + MemAlign : IntrAlign->getLimitedValue(); + + if (!isPowerOf2_32(Alignment)) + return nullptr; + + auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0), + PointerType::get(II.getType(), 0)); + return Builder.CreateAlignedLoad(II.getType(), BCastInst, Alignment); +} + +// Returns true iff the 2 intrinsics have the same operands, limiting the +// comparison to the first NumOperands. +static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E, + unsigned NumOperands) { + assert(I.getNumArgOperands() >= NumOperands && "Not enough operands"); + assert(E.getNumArgOperands() >= NumOperands && "Not enough operands"); + for (unsigned i = 0; i < NumOperands; i++) + if (I.getArgOperand(i) != E.getArgOperand(i)) + return false; + return true; +} + +// Remove trivially empty start/end intrinsic ranges, i.e. a start +// immediately followed by an end (ignoring debuginfo or other +// start/end intrinsics in between). As this handles only the most trivial +// cases, tracking the nesting level is not needed: +// +// call @llvm.foo.start(i1 0) ; &I +// call @llvm.foo.start(i1 0) +// call @llvm.foo.end(i1 0) ; This one will not be skipped: it will be removed +// call @llvm.foo.end(i1 0) +static bool removeTriviallyEmptyRange(IntrinsicInst &I, unsigned StartID, + unsigned EndID, InstCombiner &IC) { + assert(I.getIntrinsicID() == StartID && + "Start intrinsic does not have expected ID"); + BasicBlock::iterator BI(I), BE(I.getParent()->end()); + for (++BI; BI != BE; ++BI) { + if (auto *E = dyn_cast<IntrinsicInst>(BI)) { + if (isa<DbgInfoIntrinsic>(E) || E->getIntrinsicID() == StartID) + continue; + if (E->getIntrinsicID() == EndID && + haveSameOperands(I, *E, E->getNumArgOperands())) { + IC.eraseInstFromFunction(*E); + IC.eraseInstFromFunction(I); + return true; + } + } + break; + } + + return false; +} + +// Convert NVVM intrinsics to target-generic LLVM code where possible. +static Instruction *SimplifyNVVMIntrinsic(IntrinsicInst *II, InstCombiner &IC) { + // Each NVVM intrinsic we can simplify can be replaced with one of: + // + // * an LLVM intrinsic, + // * an LLVM cast operation, + // * an LLVM binary operation, or + // * ad-hoc LLVM IR for the particular operation. + + // Some transformations are only valid when the module's + // flush-denormals-to-zero (ftz) setting is true/false, whereas other + // transformations are valid regardless of the module's ftz setting. + enum FtzRequirementTy { + FTZ_Any, // Any ftz setting is ok. + FTZ_MustBeOn, // Transformation is valid only if ftz is on. + FTZ_MustBeOff, // Transformation is valid only if ftz is off. + }; + // Classes of NVVM intrinsics that can't be replaced one-to-one with a + // target-generic intrinsic, cast op, or binary op but that we can nonetheless + // simplify. + enum SpecialCase { + SPC_Reciprocal, + }; + + // SimplifyAction is a poor-man's variant (plus an additional flag) that + // represents how to replace an NVVM intrinsic with target-generic LLVM IR. + struct SimplifyAction { + // Invariant: At most one of these Optionals has a value. + Optional<Intrinsic::ID> IID; + Optional<Instruction::CastOps> CastOp; + Optional<Instruction::BinaryOps> BinaryOp; + Optional<SpecialCase> Special; + + FtzRequirementTy FtzRequirement = FTZ_Any; + + SimplifyAction() = default; + + SimplifyAction(Intrinsic::ID IID, FtzRequirementTy FtzReq) + : IID(IID), FtzRequirement(FtzReq) {} + + // Cast operations don't have anything to do with FTZ, so we skip that + // argument. + SimplifyAction(Instruction::CastOps CastOp) : CastOp(CastOp) {} + + SimplifyAction(Instruction::BinaryOps BinaryOp, FtzRequirementTy FtzReq) + : BinaryOp(BinaryOp), FtzRequirement(FtzReq) {} + + SimplifyAction(SpecialCase Special, FtzRequirementTy FtzReq) + : Special(Special), FtzRequirement(FtzReq) {} + }; + + // Try to generate a SimplifyAction describing how to replace our + // IntrinsicInstr with target-generic LLVM IR. + const SimplifyAction Action = [II]() -> SimplifyAction { + switch (II->getIntrinsicID()) { + // NVVM intrinsics that map directly to LLVM intrinsics. + case Intrinsic::nvvm_ceil_d: + return {Intrinsic::ceil, FTZ_Any}; + case Intrinsic::nvvm_ceil_f: + return {Intrinsic::ceil, FTZ_MustBeOff}; + case Intrinsic::nvvm_ceil_ftz_f: + return {Intrinsic::ceil, FTZ_MustBeOn}; + case Intrinsic::nvvm_fabs_d: + return {Intrinsic::fabs, FTZ_Any}; + case Intrinsic::nvvm_fabs_f: + return {Intrinsic::fabs, FTZ_MustBeOff}; + case Intrinsic::nvvm_fabs_ftz_f: + return {Intrinsic::fabs, FTZ_MustBeOn}; + case Intrinsic::nvvm_floor_d: + return {Intrinsic::floor, FTZ_Any}; + case Intrinsic::nvvm_floor_f: + return {Intrinsic::floor, FTZ_MustBeOff}; + case Intrinsic::nvvm_floor_ftz_f: + return {Intrinsic::floor, FTZ_MustBeOn}; + case Intrinsic::nvvm_fma_rn_d: + return {Intrinsic::fma, FTZ_Any}; + case Intrinsic::nvvm_fma_rn_f: + return {Intrinsic::fma, FTZ_MustBeOff}; + case Intrinsic::nvvm_fma_rn_ftz_f: + return {Intrinsic::fma, FTZ_MustBeOn}; + case Intrinsic::nvvm_fmax_d: + return {Intrinsic::maxnum, FTZ_Any}; + case Intrinsic::nvvm_fmax_f: + return {Intrinsic::maxnum, FTZ_MustBeOff}; + case Intrinsic::nvvm_fmax_ftz_f: + return {Intrinsic::maxnum, FTZ_MustBeOn}; + case Intrinsic::nvvm_fmin_d: + return {Intrinsic::minnum, FTZ_Any}; + case Intrinsic::nvvm_fmin_f: + return {Intrinsic::minnum, FTZ_MustBeOff}; + case Intrinsic::nvvm_fmin_ftz_f: + return {Intrinsic::minnum, FTZ_MustBeOn}; + case Intrinsic::nvvm_round_d: + return {Intrinsic::round, FTZ_Any}; + case Intrinsic::nvvm_round_f: + return {Intrinsic::round, FTZ_MustBeOff}; + case Intrinsic::nvvm_round_ftz_f: + return {Intrinsic::round, FTZ_MustBeOn}; + case Intrinsic::nvvm_sqrt_rn_d: + return {Intrinsic::sqrt, FTZ_Any}; + case Intrinsic::nvvm_sqrt_f: + // nvvm_sqrt_f is a special case. For most intrinsics, foo_ftz_f is the + // ftz version, and foo_f is the non-ftz version. But nvvm_sqrt_f adopts + // the ftz-ness of the surrounding code. sqrt_rn_f and sqrt_rn_ftz_f are + // the versions with explicit ftz-ness. + return {Intrinsic::sqrt, FTZ_Any}; + case Intrinsic::nvvm_sqrt_rn_f: + return {Intrinsic::sqrt, FTZ_MustBeOff}; + case Intrinsic::nvvm_sqrt_rn_ftz_f: + return {Intrinsic::sqrt, FTZ_MustBeOn}; + case Intrinsic::nvvm_trunc_d: + return {Intrinsic::trunc, FTZ_Any}; + case Intrinsic::nvvm_trunc_f: + return {Intrinsic::trunc, FTZ_MustBeOff}; + case Intrinsic::nvvm_trunc_ftz_f: + return {Intrinsic::trunc, FTZ_MustBeOn}; + + // NVVM intrinsics that map to LLVM cast operations. + // + // Note that llvm's target-generic conversion operators correspond to the rz + // (round to zero) versions of the nvvm conversion intrinsics, even though + // most everything else here uses the rn (round to nearest even) nvvm ops. + case Intrinsic::nvvm_d2i_rz: + case Intrinsic::nvvm_f2i_rz: + case Intrinsic::nvvm_d2ll_rz: + case Intrinsic::nvvm_f2ll_rz: + return {Instruction::FPToSI}; + case Intrinsic::nvvm_d2ui_rz: + case Intrinsic::nvvm_f2ui_rz: + case Intrinsic::nvvm_d2ull_rz: + case Intrinsic::nvvm_f2ull_rz: + return {Instruction::FPToUI}; + case Intrinsic::nvvm_i2d_rz: + case Intrinsic::nvvm_i2f_rz: + case Intrinsic::nvvm_ll2d_rz: + case Intrinsic::nvvm_ll2f_rz: + return {Instruction::SIToFP}; + case Intrinsic::nvvm_ui2d_rz: + case Intrinsic::nvvm_ui2f_rz: + case Intrinsic::nvvm_ull2d_rz: + case Intrinsic::nvvm_ull2f_rz: + return {Instruction::UIToFP}; + + // NVVM intrinsics that map to LLVM binary ops. + case Intrinsic::nvvm_add_rn_d: + return {Instruction::FAdd, FTZ_Any}; + case Intrinsic::nvvm_add_rn_f: + return {Instruction::FAdd, FTZ_MustBeOff}; + case Intrinsic::nvvm_add_rn_ftz_f: + return {Instruction::FAdd, FTZ_MustBeOn}; + case Intrinsic::nvvm_mul_rn_d: + return {Instruction::FMul, FTZ_Any}; + case Intrinsic::nvvm_mul_rn_f: + return {Instruction::FMul, FTZ_MustBeOff}; + case Intrinsic::nvvm_mul_rn_ftz_f: + return {Instruction::FMul, FTZ_MustBeOn}; + case Intrinsic::nvvm_div_rn_d: + return {Instruction::FDiv, FTZ_Any}; + case Intrinsic::nvvm_div_rn_f: + return {Instruction::FDiv, FTZ_MustBeOff}; + case Intrinsic::nvvm_div_rn_ftz_f: + return {Instruction::FDiv, FTZ_MustBeOn}; + + // The remainder of cases are NVVM intrinsics that map to LLVM idioms, but + // need special handling. + // + // We seem to be missing intrinsics for rcp.approx.{ftz.}f32, which is just + // as well. + case Intrinsic::nvvm_rcp_rn_d: + return {SPC_Reciprocal, FTZ_Any}; + case Intrinsic::nvvm_rcp_rn_f: + return {SPC_Reciprocal, FTZ_MustBeOff}; + case Intrinsic::nvvm_rcp_rn_ftz_f: + return {SPC_Reciprocal, FTZ_MustBeOn}; + + // We do not currently simplify intrinsics that give an approximate answer. + // These include: + // + // - nvvm_cos_approx_{f,ftz_f} + // - nvvm_ex2_approx_{d,f,ftz_f} + // - nvvm_lg2_approx_{d,f,ftz_f} + // - nvvm_sin_approx_{f,ftz_f} + // - nvvm_sqrt_approx_{f,ftz_f} + // - nvvm_rsqrt_approx_{d,f,ftz_f} + // - nvvm_div_approx_{ftz_d,ftz_f,f} + // - nvvm_rcp_approx_ftz_d + // + // Ideally we'd encode them as e.g. "fast call @llvm.cos", where "fast" + // means that fastmath is enabled in the intrinsic. Unfortunately only + // binary operators (currently) have a fastmath bit in SelectionDAG, so this + // information gets lost and we can't select on it. + // + // TODO: div and rcp are lowered to a binary op, so these we could in theory + // lower them to "fast fdiv". + + default: + return {}; + } + }(); + + // If Action.FtzRequirementTy is not satisfied by the module's ftz state, we + // can bail out now. (Notice that in the case that IID is not an NVVM + // intrinsic, we don't have to look up any module metadata, as + // FtzRequirementTy will be FTZ_Any.) + if (Action.FtzRequirement != FTZ_Any) { + bool FtzEnabled = + II->getFunction()->getFnAttribute("nvptx-f32ftz").getValueAsString() == + "true"; + + if (FtzEnabled != (Action.FtzRequirement == FTZ_MustBeOn)) + return nullptr; + } + + // Simplify to target-generic intrinsic. + if (Action.IID) { + SmallVector<Value *, 4> Args(II->arg_operands()); + // All the target-generic intrinsics currently of interest to us have one + // type argument, equal to that of the nvvm intrinsic's argument. + Type *Tys[] = {II->getArgOperand(0)->getType()}; + return CallInst::Create( + Intrinsic::getDeclaration(II->getModule(), *Action.IID, Tys), Args); + } + + // Simplify to target-generic binary op. + if (Action.BinaryOp) + return BinaryOperator::Create(*Action.BinaryOp, II->getArgOperand(0), + II->getArgOperand(1), II->getName()); + + // Simplify to target-generic cast op. + if (Action.CastOp) + return CastInst::Create(*Action.CastOp, II->getArgOperand(0), II->getType(), + II->getName()); + + // All that's left are the special cases. + if (!Action.Special) + return nullptr; + + switch (*Action.Special) { + case SPC_Reciprocal: + // Simplify reciprocal. + return BinaryOperator::Create( + Instruction::FDiv, ConstantFP::get(II->getArgOperand(0)->getType(), 1), + II->getArgOperand(0), II->getName()); + } + llvm_unreachable("All SpecialCase enumerators should be handled in switch."); +} + +Instruction *InstCombiner::visitVAStartInst(VAStartInst &I) { + removeTriviallyEmptyRange(I, Intrinsic::vastart, Intrinsic::vaend, *this); + return nullptr; +} + +Instruction *InstCombiner::visitVACopyInst(VACopyInst &I) { + removeTriviallyEmptyRange(I, Intrinsic::vacopy, Intrinsic::vaend, *this); + return nullptr; +} + +static Instruction *canonicalizeConstantArg0ToArg1(CallInst &Call) { + assert(Call.getNumArgOperands() > 1 && "Need at least 2 args to swap"); + Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1); + if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) { + Call.setArgOperand(0, Arg1); + Call.setArgOperand(1, Arg0); + return &Call; + } + return nullptr; +} + +Instruction *InstCombiner::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) { + WithOverflowInst *WO = cast<WithOverflowInst>(II); + Value *OperationResult = nullptr; + Constant *OverflowResult = nullptr; + if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(), + WO->getRHS(), *WO, OperationResult, OverflowResult)) + return CreateOverflowTuple(WO, OperationResult, OverflowResult); + return nullptr; +} + +/// CallInst simplification. This mostly only handles folding of intrinsic +/// instructions. For normal calls, it allows visitCallBase to do the heavy +/// lifting. +Instruction *InstCombiner::visitCallInst(CallInst &CI) { + if (Value *V = SimplifyCall(&CI, SQ.getWithInstruction(&CI))) + return replaceInstUsesWith(CI, V); + + if (isFreeCall(&CI, &TLI)) + return visitFree(CI); + + // If the caller function is nounwind, mark the call as nounwind, even if the + // callee isn't. + if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) { + CI.setDoesNotThrow(); + return &CI; + } + + IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI); + if (!II) return visitCallBase(CI); + + // Intrinsics cannot occur in an invoke or a callbr, so handle them here + // instead of in visitCallBase. + if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) { + bool Changed = false; + + // memmove/cpy/set of zero bytes is a noop. + if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) { + if (NumBytes->isNullValue()) + return eraseInstFromFunction(CI); + + if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) + if (CI->getZExtValue() == 1) { + // Replace the instruction with just byte operations. We would + // transform other cases to loads/stores, but we don't know if + // alignment is sufficient. + } + } + + // No other transformations apply to volatile transfers. + if (auto *M = dyn_cast<MemIntrinsic>(MI)) + if (M->isVolatile()) + return nullptr; + + // If we have a memmove and the source operation is a constant global, + // then the source and dest pointers can't alias, so we can change this + // into a call to memcpy. + if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) { + if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource())) + if (GVSrc->isConstant()) { + Module *M = CI.getModule(); + Intrinsic::ID MemCpyID = + isa<AtomicMemMoveInst>(MMI) + ? Intrinsic::memcpy_element_unordered_atomic + : Intrinsic::memcpy; + Type *Tys[3] = { CI.getArgOperand(0)->getType(), + CI.getArgOperand(1)->getType(), + CI.getArgOperand(2)->getType() }; + CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys)); + Changed = true; + } + } + + if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) { + // memmove(x,x,size) -> noop. + if (MTI->getSource() == MTI->getDest()) + return eraseInstFromFunction(CI); + } + + // If we can determine a pointer alignment that is bigger than currently + // set, update the alignment. + if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) { + if (Instruction *I = SimplifyAnyMemTransfer(MTI)) + return I; + } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) { + if (Instruction *I = SimplifyAnyMemSet(MSI)) + return I; + } + + if (Changed) return II; + } + + // For vector result intrinsics, use the generic demanded vector support. + if (II->getType()->isVectorTy()) { + auto VWidth = II->getType()->getVectorNumElements(); + APInt UndefElts(VWidth, 0); + APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); + if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) { + if (V != II) + return replaceInstUsesWith(*II, V); + return II; + } + } + + if (Instruction *I = SimplifyNVVMIntrinsic(II, *this)) + return I; + + auto SimplifyDemandedVectorEltsLow = [this](Value *Op, unsigned Width, + unsigned DemandedWidth) { + APInt UndefElts(Width, 0); + APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth); + return SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts); + }; + + Intrinsic::ID IID = II->getIntrinsicID(); + switch (IID) { + default: break; + case Intrinsic::objectsize: + if (Value *V = lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/false)) + return replaceInstUsesWith(CI, V); + return nullptr; + case Intrinsic::bswap: { + Value *IIOperand = II->getArgOperand(0); + Value *X = nullptr; + + // bswap(trunc(bswap(x))) -> trunc(lshr(x, c)) + if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) { + unsigned C = X->getType()->getPrimitiveSizeInBits() - + IIOperand->getType()->getPrimitiveSizeInBits(); + Value *CV = ConstantInt::get(X->getType(), C); + Value *V = Builder.CreateLShr(X, CV); + return new TruncInst(V, IIOperand->getType()); + } + break; + } + case Intrinsic::masked_load: + if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II)) + return replaceInstUsesWith(CI, SimplifiedMaskedOp); + break; + case Intrinsic::masked_store: + return simplifyMaskedStore(*II); + case Intrinsic::masked_gather: + return simplifyMaskedGather(*II); + case Intrinsic::masked_scatter: + return simplifyMaskedScatter(*II); + case Intrinsic::launder_invariant_group: + case Intrinsic::strip_invariant_group: + if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this)) + return replaceInstUsesWith(*II, SkippedBarrier); + break; + case Intrinsic::powi: + if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) { + // 0 and 1 are handled in instsimplify + + // powi(x, -1) -> 1/x + if (Power->isMinusOne()) + return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0), + II->getArgOperand(0)); + // powi(x, 2) -> x*x + if (Power->equalsInt(2)) + return BinaryOperator::CreateFMul(II->getArgOperand(0), + II->getArgOperand(0)); + } + break; + + case Intrinsic::cttz: + case Intrinsic::ctlz: + if (auto *I = foldCttzCtlz(*II, *this)) + return I; + break; + + case Intrinsic::ctpop: + if (auto *I = foldCtpop(*II, *this)) + return I; + break; + + case Intrinsic::fshl: + case Intrinsic::fshr: { + Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1); + Type *Ty = II->getType(); + unsigned BitWidth = Ty->getScalarSizeInBits(); + Constant *ShAmtC; + if (match(II->getArgOperand(2), m_Constant(ShAmtC)) && + !isa<ConstantExpr>(ShAmtC) && !ShAmtC->containsConstantExpression()) { + // Canonicalize a shift amount constant operand to modulo the bit-width. + Constant *WidthC = ConstantInt::get(Ty, BitWidth); + Constant *ModuloC = ConstantExpr::getURem(ShAmtC, WidthC); + if (ModuloC != ShAmtC) { + II->setArgOperand(2, ModuloC); + return II; + } + assert(ConstantExpr::getICmp(ICmpInst::ICMP_UGT, WidthC, ShAmtC) == + ConstantInt::getTrue(CmpInst::makeCmpResultType(Ty)) && + "Shift amount expected to be modulo bitwidth"); + + // Canonicalize funnel shift right by constant to funnel shift left. This + // is not entirely arbitrary. For historical reasons, the backend may + // recognize rotate left patterns but miss rotate right patterns. + if (IID == Intrinsic::fshr) { + // fshr X, Y, C --> fshl X, Y, (BitWidth - C) + Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC); + Module *Mod = II->getModule(); + Function *Fshl = Intrinsic::getDeclaration(Mod, Intrinsic::fshl, Ty); + return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC }); + } + assert(IID == Intrinsic::fshl && + "All funnel shifts by simple constants should go left"); + + // fshl(X, 0, C) --> shl X, C + // fshl(X, undef, C) --> shl X, C + if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef())) + return BinaryOperator::CreateShl(Op0, ShAmtC); + + // fshl(0, X, C) --> lshr X, (BW-C) + // fshl(undef, X, C) --> lshr X, (BW-C) + if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef())) + return BinaryOperator::CreateLShr(Op1, + ConstantExpr::getSub(WidthC, ShAmtC)); + + // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form) + if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) { + Module *Mod = II->getModule(); + Function *Bswap = Intrinsic::getDeclaration(Mod, Intrinsic::bswap, Ty); + return CallInst::Create(Bswap, { Op0 }); + } + } + + // Left or right might be masked. + if (SimplifyDemandedInstructionBits(*II)) + return &CI; + + // The shift amount (operand 2) of a funnel shift is modulo the bitwidth, + // so only the low bits of the shift amount are demanded if the bitwidth is + // a power-of-2. + if (!isPowerOf2_32(BitWidth)) + break; + APInt Op2Demanded = APInt::getLowBitsSet(BitWidth, Log2_32_Ceil(BitWidth)); + KnownBits Op2Known(BitWidth); + if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known)) + return &CI; + break; + } + case Intrinsic::uadd_with_overflow: + case Intrinsic::sadd_with_overflow: { + if (Instruction *I = canonicalizeConstantArg0ToArg1(CI)) + return I; + if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) + return I; + + // Given 2 constant operands whose sum does not overflow: + // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1 + // saddo (X +nsw C0), C1 -> saddo X, C0 + C1 + Value *X; + const APInt *C0, *C1; + Value *Arg0 = II->getArgOperand(0); + Value *Arg1 = II->getArgOperand(1); + bool IsSigned = IID == Intrinsic::sadd_with_overflow; + bool HasNWAdd = IsSigned ? match(Arg0, m_NSWAdd(m_Value(X), m_APInt(C0))) + : match(Arg0, m_NUWAdd(m_Value(X), m_APInt(C0))); + if (HasNWAdd && match(Arg1, m_APInt(C1))) { + bool Overflow; + APInt NewC = + IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow); + if (!Overflow) + return replaceInstUsesWith( + *II, Builder.CreateBinaryIntrinsic( + IID, X, ConstantInt::get(Arg1->getType(), NewC))); + } + break; + } + + case Intrinsic::umul_with_overflow: + case Intrinsic::smul_with_overflow: + if (Instruction *I = canonicalizeConstantArg0ToArg1(CI)) + return I; + LLVM_FALLTHROUGH; + + case Intrinsic::usub_with_overflow: + if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) + return I; + break; + + case Intrinsic::ssub_with_overflow: { + if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) + return I; + + Constant *C; + Value *Arg0 = II->getArgOperand(0); + Value *Arg1 = II->getArgOperand(1); + // Given a constant C that is not the minimum signed value + // for an integer of a given bit width: + // + // ssubo X, C -> saddo X, -C + if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) { + Value *NegVal = ConstantExpr::getNeg(C); + // Build a saddo call that is equivalent to the discovered + // ssubo call. + return replaceInstUsesWith( + *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow, + Arg0, NegVal)); + } + + break; + } + + case Intrinsic::uadd_sat: + case Intrinsic::sadd_sat: + if (Instruction *I = canonicalizeConstantArg0ToArg1(CI)) + return I; + LLVM_FALLTHROUGH; + case Intrinsic::usub_sat: + case Intrinsic::ssub_sat: { + SaturatingInst *SI = cast<SaturatingInst>(II); + Type *Ty = SI->getType(); + Value *Arg0 = SI->getLHS(); + Value *Arg1 = SI->getRHS(); + + // Make use of known overflow information. + OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(), + Arg0, Arg1, SI); + switch (OR) { + case OverflowResult::MayOverflow: + break; + case OverflowResult::NeverOverflows: + if (SI->isSigned()) + return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1); + else + return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1); + case OverflowResult::AlwaysOverflowsLow: { + unsigned BitWidth = Ty->getScalarSizeInBits(); + APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned()); + return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min)); + } + case OverflowResult::AlwaysOverflowsHigh: { + unsigned BitWidth = Ty->getScalarSizeInBits(); + APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned()); + return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max)); + } + } + + // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN + Constant *C; + if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) && + C->isNotMinSignedValue()) { + Value *NegVal = ConstantExpr::getNeg(C); + return replaceInstUsesWith( + *II, Builder.CreateBinaryIntrinsic( + Intrinsic::sadd_sat, Arg0, NegVal)); + } + + // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2)) + // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2)) + // if Val and Val2 have the same sign + if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) { + Value *X; + const APInt *Val, *Val2; + APInt NewVal; + bool IsUnsigned = + IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat; + if (Other->getIntrinsicID() == IID && + match(Arg1, m_APInt(Val)) && + match(Other->getArgOperand(0), m_Value(X)) && + match(Other->getArgOperand(1), m_APInt(Val2))) { + if (IsUnsigned) + NewVal = Val->uadd_sat(*Val2); + else if (Val->isNonNegative() == Val2->isNonNegative()) { + bool Overflow; + NewVal = Val->sadd_ov(*Val2, Overflow); + if (Overflow) { + // Both adds together may add more than SignedMaxValue + // without saturating the final result. + break; + } + } else { + // Cannot fold saturated addition with different signs. + break; + } + + return replaceInstUsesWith( + *II, Builder.CreateBinaryIntrinsic( + IID, X, ConstantInt::get(II->getType(), NewVal))); + } + } + break; + } + + case Intrinsic::minnum: + case Intrinsic::maxnum: + case Intrinsic::minimum: + case Intrinsic::maximum: { + if (Instruction *I = canonicalizeConstantArg0ToArg1(CI)) + return I; + Value *Arg0 = II->getArgOperand(0); + Value *Arg1 = II->getArgOperand(1); + Value *X, *Y; + if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) && + (Arg0->hasOneUse() || Arg1->hasOneUse())) { + // If both operands are negated, invert the call and negate the result: + // min(-X, -Y) --> -(max(X, Y)) + // max(-X, -Y) --> -(min(X, Y)) + Intrinsic::ID NewIID; + switch (IID) { + case Intrinsic::maxnum: + NewIID = Intrinsic::minnum; + break; + case Intrinsic::minnum: + NewIID = Intrinsic::maxnum; + break; + case Intrinsic::maximum: + NewIID = Intrinsic::minimum; + break; + case Intrinsic::minimum: + NewIID = Intrinsic::maximum; + break; + default: + llvm_unreachable("unexpected intrinsic ID"); + } + Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II); + Instruction *FNeg = BinaryOperator::CreateFNeg(NewCall); + FNeg->copyIRFlags(II); + return FNeg; + } + + // m(m(X, C2), C1) -> m(X, C) + const APFloat *C1, *C2; + if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) { + if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) && + ((match(M->getArgOperand(0), m_Value(X)) && + match(M->getArgOperand(1), m_APFloat(C2))) || + (match(M->getArgOperand(1), m_Value(X)) && + match(M->getArgOperand(0), m_APFloat(C2))))) { + APFloat Res(0.0); + switch (IID) { + case Intrinsic::maxnum: + Res = maxnum(*C1, *C2); + break; + case Intrinsic::minnum: + Res = minnum(*C1, *C2); + break; + case Intrinsic::maximum: + Res = maximum(*C1, *C2); + break; + case Intrinsic::minimum: + Res = minimum(*C1, *C2); + break; + default: + llvm_unreachable("unexpected intrinsic ID"); + } + Instruction *NewCall = Builder.CreateBinaryIntrinsic( + IID, X, ConstantFP::get(Arg0->getType(), Res)); + NewCall->copyIRFlags(II); + return replaceInstUsesWith(*II, NewCall); + } + } + + break; + } + case Intrinsic::fmuladd: { + // Canonicalize fast fmuladd to the separate fmul + fadd. + if (II->isFast()) { + BuilderTy::FastMathFlagGuard Guard(Builder); + Builder.setFastMathFlags(II->getFastMathFlags()); + Value *Mul = Builder.CreateFMul(II->getArgOperand(0), + II->getArgOperand(1)); + Value *Add = Builder.CreateFAdd(Mul, II->getArgOperand(2)); + Add->takeName(II); + return replaceInstUsesWith(*II, Add); + } + + // Try to simplify the underlying FMul. + if (Value *V = SimplifyFMulInst(II->getArgOperand(0), II->getArgOperand(1), + II->getFastMathFlags(), + SQ.getWithInstruction(II))) { + auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2)); + FAdd->copyFastMathFlags(II); + return FAdd; + } + + LLVM_FALLTHROUGH; + } + case Intrinsic::fma: { + if (Instruction *I = canonicalizeConstantArg0ToArg1(CI)) + return I; + + // fma fneg(x), fneg(y), z -> fma x, y, z + Value *Src0 = II->getArgOperand(0); + Value *Src1 = II->getArgOperand(1); + Value *X, *Y; + if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) { + II->setArgOperand(0, X); + II->setArgOperand(1, Y); + return II; + } + + // fma fabs(x), fabs(x), z -> fma x, x, z + if (match(Src0, m_FAbs(m_Value(X))) && + match(Src1, m_FAbs(m_Specific(X)))) { + II->setArgOperand(0, X); + II->setArgOperand(1, X); + return II; + } + + // Try to simplify the underlying FMul. We can only apply simplifications + // that do not require rounding. + if (Value *V = SimplifyFMAFMul(II->getArgOperand(0), II->getArgOperand(1), + II->getFastMathFlags(), + SQ.getWithInstruction(II))) { + auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2)); + FAdd->copyFastMathFlags(II); + return FAdd; + } + + break; + } + case Intrinsic::fabs: { + Value *Cond; + Constant *LHS, *RHS; + if (match(II->getArgOperand(0), + m_Select(m_Value(Cond), m_Constant(LHS), m_Constant(RHS)))) { + CallInst *Call0 = Builder.CreateCall(II->getCalledFunction(), {LHS}); + CallInst *Call1 = Builder.CreateCall(II->getCalledFunction(), {RHS}); + return SelectInst::Create(Cond, Call0, Call1); + } + + LLVM_FALLTHROUGH; + } + case Intrinsic::ceil: + case Intrinsic::floor: + case Intrinsic::round: + case Intrinsic::nearbyint: + case Intrinsic::rint: + case Intrinsic::trunc: { + Value *ExtSrc; + if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) { + // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x) + Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II); + return new FPExtInst(NarrowII, II->getType()); + } + break; + } + case Intrinsic::cos: + case Intrinsic::amdgcn_cos: { + Value *X; + Value *Src = II->getArgOperand(0); + if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X)))) { + // cos(-x) -> cos(x) + // cos(fabs(x)) -> cos(x) + II->setArgOperand(0, X); + return II; + } + break; + } + case Intrinsic::sin: { + Value *X; + if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) { + // sin(-x) --> -sin(x) + Value *NewSin = Builder.CreateUnaryIntrinsic(Intrinsic::sin, X, II); + Instruction *FNeg = BinaryOperator::CreateFNeg(NewSin); + FNeg->copyFastMathFlags(II); + return FNeg; + } + break; + } + case Intrinsic::ppc_altivec_lvx: + case Intrinsic::ppc_altivec_lvxl: + // Turn PPC lvx -> load if the pointer is known aligned. + if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC, + &DT) >= 16) { + Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0), + PointerType::getUnqual(II->getType())); + return new LoadInst(II->getType(), Ptr); + } + break; + case Intrinsic::ppc_vsx_lxvw4x: + case Intrinsic::ppc_vsx_lxvd2x: { + // Turn PPC VSX loads into normal loads. + Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0), + PointerType::getUnqual(II->getType())); + return new LoadInst(II->getType(), Ptr, Twine(""), false, Align::None()); + } + case Intrinsic::ppc_altivec_stvx: + case Intrinsic::ppc_altivec_stvxl: + // Turn stvx -> store if the pointer is known aligned. + if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC, + &DT) >= 16) { + Type *OpPtrTy = + PointerType::getUnqual(II->getArgOperand(0)->getType()); + Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy); + return new StoreInst(II->getArgOperand(0), Ptr); + } + break; + case Intrinsic::ppc_vsx_stxvw4x: + case Intrinsic::ppc_vsx_stxvd2x: { + // Turn PPC VSX stores into normal stores. + Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType()); + Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy); + return new StoreInst(II->getArgOperand(0), Ptr, false, Align::None()); + } + case Intrinsic::ppc_qpx_qvlfs: + // Turn PPC QPX qvlfs -> load if the pointer is known aligned. + if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC, + &DT) >= 16) { + Type *VTy = VectorType::get(Builder.getFloatTy(), + II->getType()->getVectorNumElements()); + Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0), + PointerType::getUnqual(VTy)); + Value *Load = Builder.CreateLoad(VTy, Ptr); + return new FPExtInst(Load, II->getType()); + } + break; + case Intrinsic::ppc_qpx_qvlfd: + // Turn PPC QPX qvlfd -> load if the pointer is known aligned. + if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, II, &AC, + &DT) >= 32) { + Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0), + PointerType::getUnqual(II->getType())); + return new LoadInst(II->getType(), Ptr); + } + break; + case Intrinsic::ppc_qpx_qvstfs: + // Turn PPC QPX qvstfs -> store if the pointer is known aligned. + if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC, + &DT) >= 16) { + Type *VTy = VectorType::get(Builder.getFloatTy(), + II->getArgOperand(0)->getType()->getVectorNumElements()); + Value *TOp = Builder.CreateFPTrunc(II->getArgOperand(0), VTy); + Type *OpPtrTy = PointerType::getUnqual(VTy); + Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy); + return new StoreInst(TOp, Ptr); + } + break; + case Intrinsic::ppc_qpx_qvstfd: + // Turn PPC QPX qvstfd -> store if the pointer is known aligned. + if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, II, &AC, + &DT) >= 32) { + Type *OpPtrTy = + PointerType::getUnqual(II->getArgOperand(0)->getType()); + Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy); + return new StoreInst(II->getArgOperand(0), Ptr); + } + break; + + case Intrinsic::x86_bmi_bextr_32: + case Intrinsic::x86_bmi_bextr_64: + case Intrinsic::x86_tbm_bextri_u32: + case Intrinsic::x86_tbm_bextri_u64: + // If the RHS is a constant we can try some simplifications. + if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(1))) { + uint64_t Shift = C->getZExtValue(); + uint64_t Length = (Shift >> 8) & 0xff; + Shift &= 0xff; + unsigned BitWidth = II->getType()->getIntegerBitWidth(); + // If the length is 0 or the shift is out of range, replace with zero. + if (Length == 0 || Shift >= BitWidth) + return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), 0)); + // If the LHS is also a constant, we can completely constant fold this. + if (auto *InC = dyn_cast<ConstantInt>(II->getArgOperand(0))) { + uint64_t Result = InC->getZExtValue() >> Shift; + if (Length > BitWidth) + Length = BitWidth; + Result &= maskTrailingOnes<uint64_t>(Length); + return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Result)); + } + // TODO should we turn this into 'and' if shift is 0? Or 'shl' if we + // are only masking bits that a shift already cleared? + } + break; + + case Intrinsic::x86_bmi_bzhi_32: + case Intrinsic::x86_bmi_bzhi_64: + // If the RHS is a constant we can try some simplifications. + if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(1))) { + uint64_t Index = C->getZExtValue() & 0xff; + unsigned BitWidth = II->getType()->getIntegerBitWidth(); + if (Index >= BitWidth) + return replaceInstUsesWith(CI, II->getArgOperand(0)); + if (Index == 0) + return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), 0)); + // If the LHS is also a constant, we can completely constant fold this. + if (auto *InC = dyn_cast<ConstantInt>(II->getArgOperand(0))) { + uint64_t Result = InC->getZExtValue(); + Result &= maskTrailingOnes<uint64_t>(Index); + return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Result)); + } + // TODO should we convert this to an AND if the RHS is constant? + } + break; + + case Intrinsic::x86_vcvtph2ps_128: + case Intrinsic::x86_vcvtph2ps_256: { + auto Arg = II->getArgOperand(0); + auto ArgType = cast<VectorType>(Arg->getType()); + auto RetType = cast<VectorType>(II->getType()); + unsigned ArgWidth = ArgType->getNumElements(); + unsigned RetWidth = RetType->getNumElements(); + assert(RetWidth <= ArgWidth && "Unexpected input/return vector widths"); + assert(ArgType->isIntOrIntVectorTy() && + ArgType->getScalarSizeInBits() == 16 && + "CVTPH2PS input type should be 16-bit integer vector"); + assert(RetType->getScalarType()->isFloatTy() && + "CVTPH2PS output type should be 32-bit float vector"); + + // Constant folding: Convert to generic half to single conversion. + if (isa<ConstantAggregateZero>(Arg)) + return replaceInstUsesWith(*II, ConstantAggregateZero::get(RetType)); + + if (isa<ConstantDataVector>(Arg)) { + auto VectorHalfAsShorts = Arg; + if (RetWidth < ArgWidth) { + SmallVector<uint32_t, 8> SubVecMask; + for (unsigned i = 0; i != RetWidth; ++i) + SubVecMask.push_back((int)i); + VectorHalfAsShorts = Builder.CreateShuffleVector( + Arg, UndefValue::get(ArgType), SubVecMask); + } + + auto VectorHalfType = + VectorType::get(Type::getHalfTy(II->getContext()), RetWidth); + auto VectorHalfs = + Builder.CreateBitCast(VectorHalfAsShorts, VectorHalfType); + auto VectorFloats = Builder.CreateFPExt(VectorHalfs, RetType); + return replaceInstUsesWith(*II, VectorFloats); + } + + // We only use the lowest lanes of the argument. + if (Value *V = SimplifyDemandedVectorEltsLow(Arg, ArgWidth, RetWidth)) { + II->setArgOperand(0, V); + return II; + } + break; + } + + case Intrinsic::x86_sse_cvtss2si: + case Intrinsic::x86_sse_cvtss2si64: + case Intrinsic::x86_sse_cvttss2si: + case Intrinsic::x86_sse_cvttss2si64: + case Intrinsic::x86_sse2_cvtsd2si: + case Intrinsic::x86_sse2_cvtsd2si64: + case Intrinsic::x86_sse2_cvttsd2si: + case Intrinsic::x86_sse2_cvttsd2si64: + case Intrinsic::x86_avx512_vcvtss2si32: + case Intrinsic::x86_avx512_vcvtss2si64: + case Intrinsic::x86_avx512_vcvtss2usi32: + case Intrinsic::x86_avx512_vcvtss2usi64: + case Intrinsic::x86_avx512_vcvtsd2si32: + case Intrinsic::x86_avx512_vcvtsd2si64: + case Intrinsic::x86_avx512_vcvtsd2usi32: + case Intrinsic::x86_avx512_vcvtsd2usi64: + case Intrinsic::x86_avx512_cvttss2si: + case Intrinsic::x86_avx512_cvttss2si64: + case Intrinsic::x86_avx512_cvttss2usi: + case Intrinsic::x86_avx512_cvttss2usi64: + case Intrinsic::x86_avx512_cvttsd2si: + case Intrinsic::x86_avx512_cvttsd2si64: + case Intrinsic::x86_avx512_cvttsd2usi: + case Intrinsic::x86_avx512_cvttsd2usi64: { + // These intrinsics only demand the 0th element of their input vectors. If + // we can simplify the input based on that, do so now. + Value *Arg = II->getArgOperand(0); + unsigned VWidth = Arg->getType()->getVectorNumElements(); + if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) { + II->setArgOperand(0, V); + return II; + } + break; + } + + case Intrinsic::x86_mmx_pmovmskb: + case Intrinsic::x86_sse_movmsk_ps: + case Intrinsic::x86_sse2_movmsk_pd: + case Intrinsic::x86_sse2_pmovmskb_128: + case Intrinsic::x86_avx_movmsk_pd_256: + case Intrinsic::x86_avx_movmsk_ps_256: + case Intrinsic::x86_avx2_pmovmskb: + if (Value *V = simplifyX86movmsk(*II, Builder)) + return replaceInstUsesWith(*II, V); + break; + + case Intrinsic::x86_sse_comieq_ss: + case Intrinsic::x86_sse_comige_ss: + case Intrinsic::x86_sse_comigt_ss: + case Intrinsic::x86_sse_comile_ss: + case Intrinsic::x86_sse_comilt_ss: + case Intrinsic::x86_sse_comineq_ss: + case Intrinsic::x86_sse_ucomieq_ss: + case Intrinsic::x86_sse_ucomige_ss: + case Intrinsic::x86_sse_ucomigt_ss: + case Intrinsic::x86_sse_ucomile_ss: + case Intrinsic::x86_sse_ucomilt_ss: + case Intrinsic::x86_sse_ucomineq_ss: + case Intrinsic::x86_sse2_comieq_sd: + case Intrinsic::x86_sse2_comige_sd: + case Intrinsic::x86_sse2_comigt_sd: + case Intrinsic::x86_sse2_comile_sd: + case Intrinsic::x86_sse2_comilt_sd: + case Intrinsic::x86_sse2_comineq_sd: + case Intrinsic::x86_sse2_ucomieq_sd: + case Intrinsic::x86_sse2_ucomige_sd: + case Intrinsic::x86_sse2_ucomigt_sd: + case Intrinsic::x86_sse2_ucomile_sd: + case Intrinsic::x86_sse2_ucomilt_sd: + case Intrinsic::x86_sse2_ucomineq_sd: + case Intrinsic::x86_avx512_vcomi_ss: + case Intrinsic::x86_avx512_vcomi_sd: + case Intrinsic::x86_avx512_mask_cmp_ss: + case Intrinsic::x86_avx512_mask_cmp_sd: { + // These intrinsics only demand the 0th element of their input vectors. If + // we can simplify the input based on that, do so now. + bool MadeChange = false; + Value *Arg0 = II->getArgOperand(0); + Value *Arg1 = II->getArgOperand(1); + unsigned VWidth = Arg0->getType()->getVectorNumElements(); + if (Value *V = SimplifyDemandedVectorEltsLow(Arg0, VWidth, 1)) { + II->setArgOperand(0, V); + MadeChange = true; + } + if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) { + II->setArgOperand(1, V); + MadeChange = true; + } + if (MadeChange) + return II; + break; + } + case Intrinsic::x86_avx512_cmp_pd_128: + case Intrinsic::x86_avx512_cmp_pd_256: + case Intrinsic::x86_avx512_cmp_pd_512: + case Intrinsic::x86_avx512_cmp_ps_128: + case Intrinsic::x86_avx512_cmp_ps_256: + case Intrinsic::x86_avx512_cmp_ps_512: { + // Folding cmp(sub(a,b),0) -> cmp(a,b) and cmp(0,sub(a,b)) -> cmp(b,a) + Value *Arg0 = II->getArgOperand(0); + Value *Arg1 = II->getArgOperand(1); + bool Arg0IsZero = match(Arg0, m_PosZeroFP()); + if (Arg0IsZero) + std::swap(Arg0, Arg1); + Value *A, *B; + // This fold requires only the NINF(not +/- inf) since inf minus + // inf is nan. + // NSZ(No Signed Zeros) is not needed because zeros of any sign are + // equal for both compares. + // NNAN is not needed because nans compare the same for both compares. + // The compare intrinsic uses the above assumptions and therefore + // doesn't require additional flags. + if ((match(Arg0, m_OneUse(m_FSub(m_Value(A), m_Value(B)))) && + match(Arg1, m_PosZeroFP()) && isa<Instruction>(Arg0) && + cast<Instruction>(Arg0)->getFastMathFlags().noInfs())) { + if (Arg0IsZero) + std::swap(A, B); + II->setArgOperand(0, A); + II->setArgOperand(1, B); + return II; + } + break; + } + + case Intrinsic::x86_avx512_add_ps_512: + case Intrinsic::x86_avx512_div_ps_512: + case Intrinsic::x86_avx512_mul_ps_512: + case Intrinsic::x86_avx512_sub_ps_512: + case Intrinsic::x86_avx512_add_pd_512: + case Intrinsic::x86_avx512_div_pd_512: + case Intrinsic::x86_avx512_mul_pd_512: + case Intrinsic::x86_avx512_sub_pd_512: + // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular + // IR operations. + if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(2))) { + if (R->getValue() == 4) { + Value *Arg0 = II->getArgOperand(0); + Value *Arg1 = II->getArgOperand(1); + + Value *V; + switch (IID) { + default: llvm_unreachable("Case stmts out of sync!"); + case Intrinsic::x86_avx512_add_ps_512: + case Intrinsic::x86_avx512_add_pd_512: + V = Builder.CreateFAdd(Arg0, Arg1); + break; + case Intrinsic::x86_avx512_sub_ps_512: + case Intrinsic::x86_avx512_sub_pd_512: + V = Builder.CreateFSub(Arg0, Arg1); + break; + case Intrinsic::x86_avx512_mul_ps_512: + case Intrinsic::x86_avx512_mul_pd_512: + V = Builder.CreateFMul(Arg0, Arg1); + break; + case Intrinsic::x86_avx512_div_ps_512: + case Intrinsic::x86_avx512_div_pd_512: + V = Builder.CreateFDiv(Arg0, Arg1); + break; + } + + return replaceInstUsesWith(*II, V); + } + } + break; + + case Intrinsic::x86_avx512_mask_add_ss_round: + case Intrinsic::x86_avx512_mask_div_ss_round: + case Intrinsic::x86_avx512_mask_mul_ss_round: + case Intrinsic::x86_avx512_mask_sub_ss_round: + case Intrinsic::x86_avx512_mask_add_sd_round: + case Intrinsic::x86_avx512_mask_div_sd_round: + case Intrinsic::x86_avx512_mask_mul_sd_round: + case Intrinsic::x86_avx512_mask_sub_sd_round: + // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular + // IR operations. + if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(4))) { + if (R->getValue() == 4) { + // Extract the element as scalars. + Value *Arg0 = II->getArgOperand(0); + Value *Arg1 = II->getArgOperand(1); + Value *LHS = Builder.CreateExtractElement(Arg0, (uint64_t)0); + Value *RHS = Builder.CreateExtractElement(Arg1, (uint64_t)0); + + Value *V; + switch (IID) { + default: llvm_unreachable("Case stmts out of sync!"); + case Intrinsic::x86_avx512_mask_add_ss_round: + case Intrinsic::x86_avx512_mask_add_sd_round: + V = Builder.CreateFAdd(LHS, RHS); + break; + case Intrinsic::x86_avx512_mask_sub_ss_round: + case Intrinsic::x86_avx512_mask_sub_sd_round: + V = Builder.CreateFSub(LHS, RHS); + break; + case Intrinsic::x86_avx512_mask_mul_ss_round: + case Intrinsic::x86_avx512_mask_mul_sd_round: + V = Builder.CreateFMul(LHS, RHS); + break; + case Intrinsic::x86_avx512_mask_div_ss_round: + case Intrinsic::x86_avx512_mask_div_sd_round: + V = Builder.CreateFDiv(LHS, RHS); + break; + } + + // Handle the masking aspect of the intrinsic. + Value *Mask = II->getArgOperand(3); + auto *C = dyn_cast<ConstantInt>(Mask); + // We don't need a select if we know the mask bit is a 1. + if (!C || !C->getValue()[0]) { + // Cast the mask to an i1 vector and then extract the lowest element. + auto *MaskTy = VectorType::get(Builder.getInt1Ty(), + cast<IntegerType>(Mask->getType())->getBitWidth()); + Mask = Builder.CreateBitCast(Mask, MaskTy); + Mask = Builder.CreateExtractElement(Mask, (uint64_t)0); + // Extract the lowest element from the passthru operand. + Value *Passthru = Builder.CreateExtractElement(II->getArgOperand(2), + (uint64_t)0); + V = Builder.CreateSelect(Mask, V, Passthru); + } + + // Insert the result back into the original argument 0. + V = Builder.CreateInsertElement(Arg0, V, (uint64_t)0); + + return replaceInstUsesWith(*II, V); + } + } + break; + + // Constant fold ashr( <A x Bi>, Ci ). + // Constant fold lshr( <A x Bi>, Ci ). + // Constant fold shl( <A x Bi>, Ci ). + case Intrinsic::x86_sse2_psrai_d: + case Intrinsic::x86_sse2_psrai_w: + case Intrinsic::x86_avx2_psrai_d: + case Intrinsic::x86_avx2_psrai_w: + case Intrinsic::x86_avx512_psrai_q_128: + case Intrinsic::x86_avx512_psrai_q_256: + case Intrinsic::x86_avx512_psrai_d_512: + case Intrinsic::x86_avx512_psrai_q_512: + case Intrinsic::x86_avx512_psrai_w_512: + case Intrinsic::x86_sse2_psrli_d: + case Intrinsic::x86_sse2_psrli_q: + case Intrinsic::x86_sse2_psrli_w: + case Intrinsic::x86_avx2_psrli_d: + case Intrinsic::x86_avx2_psrli_q: + case Intrinsic::x86_avx2_psrli_w: + case Intrinsic::x86_avx512_psrli_d_512: + case Intrinsic::x86_avx512_psrli_q_512: + case Intrinsic::x86_avx512_psrli_w_512: + case Intrinsic::x86_sse2_pslli_d: + case Intrinsic::x86_sse2_pslli_q: + case Intrinsic::x86_sse2_pslli_w: + case Intrinsic::x86_avx2_pslli_d: + case Intrinsic::x86_avx2_pslli_q: + case Intrinsic::x86_avx2_pslli_w: + case Intrinsic::x86_avx512_pslli_d_512: + case Intrinsic::x86_avx512_pslli_q_512: + case Intrinsic::x86_avx512_pslli_w_512: + if (Value *V = simplifyX86immShift(*II, Builder)) + return replaceInstUsesWith(*II, V); + break; + + case Intrinsic::x86_sse2_psra_d: + case Intrinsic::x86_sse2_psra_w: + case Intrinsic::x86_avx2_psra_d: + case Intrinsic::x86_avx2_psra_w: + case Intrinsic::x86_avx512_psra_q_128: + case Intrinsic::x86_avx512_psra_q_256: + case Intrinsic::x86_avx512_psra_d_512: + case Intrinsic::x86_avx512_psra_q_512: + case Intrinsic::x86_avx512_psra_w_512: + case Intrinsic::x86_sse2_psrl_d: + case Intrinsic::x86_sse2_psrl_q: + case Intrinsic::x86_sse2_psrl_w: + case Intrinsic::x86_avx2_psrl_d: + case Intrinsic::x86_avx2_psrl_q: + case Intrinsic::x86_avx2_psrl_w: + case Intrinsic::x86_avx512_psrl_d_512: + case Intrinsic::x86_avx512_psrl_q_512: + case Intrinsic::x86_avx512_psrl_w_512: + case Intrinsic::x86_sse2_psll_d: + case Intrinsic::x86_sse2_psll_q: + case Intrinsic::x86_sse2_psll_w: + case Intrinsic::x86_avx2_psll_d: + case Intrinsic::x86_avx2_psll_q: + case Intrinsic::x86_avx2_psll_w: + case Intrinsic::x86_avx512_psll_d_512: + case Intrinsic::x86_avx512_psll_q_512: + case Intrinsic::x86_avx512_psll_w_512: { + if (Value *V = simplifyX86immShift(*II, Builder)) + return replaceInstUsesWith(*II, V); + + // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector + // operand to compute the shift amount. + Value *Arg1 = II->getArgOperand(1); + assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 && + "Unexpected packed shift size"); + unsigned VWidth = Arg1->getType()->getVectorNumElements(); + + if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) { + II->setArgOperand(1, V); + return II; + } + break; + } + + case Intrinsic::x86_avx2_psllv_d: + case Intrinsic::x86_avx2_psllv_d_256: + case Intrinsic::x86_avx2_psllv_q: + case Intrinsic::x86_avx2_psllv_q_256: + case Intrinsic::x86_avx512_psllv_d_512: + case Intrinsic::x86_avx512_psllv_q_512: + case Intrinsic::x86_avx512_psllv_w_128: + case Intrinsic::x86_avx512_psllv_w_256: + case Intrinsic::x86_avx512_psllv_w_512: + case Intrinsic::x86_avx2_psrav_d: + case Intrinsic::x86_avx2_psrav_d_256: + case Intrinsic::x86_avx512_psrav_q_128: + case Intrinsic::x86_avx512_psrav_q_256: + case Intrinsic::x86_avx512_psrav_d_512: + case Intrinsic::x86_avx512_psrav_q_512: + case Intrinsic::x86_avx512_psrav_w_128: + case Intrinsic::x86_avx512_psrav_w_256: + case Intrinsic::x86_avx512_psrav_w_512: + case Intrinsic::x86_avx2_psrlv_d: + case Intrinsic::x86_avx2_psrlv_d_256: + case Intrinsic::x86_avx2_psrlv_q: + case Intrinsic::x86_avx2_psrlv_q_256: + case Intrinsic::x86_avx512_psrlv_d_512: + case Intrinsic::x86_avx512_psrlv_q_512: + case Intrinsic::x86_avx512_psrlv_w_128: + case Intrinsic::x86_avx512_psrlv_w_256: + case Intrinsic::x86_avx512_psrlv_w_512: + if (Value *V = simplifyX86varShift(*II, Builder)) + return replaceInstUsesWith(*II, V); + break; + + case Intrinsic::x86_sse2_packssdw_128: + case Intrinsic::x86_sse2_packsswb_128: + case Intrinsic::x86_avx2_packssdw: + case Intrinsic::x86_avx2_packsswb: + case Intrinsic::x86_avx512_packssdw_512: + case Intrinsic::x86_avx512_packsswb_512: + if (Value *V = simplifyX86pack(*II, Builder, true)) + return replaceInstUsesWith(*II, V); + break; + + case Intrinsic::x86_sse2_packuswb_128: + case Intrinsic::x86_sse41_packusdw: + case Intrinsic::x86_avx2_packusdw: + case Intrinsic::x86_avx2_packuswb: + case Intrinsic::x86_avx512_packusdw_512: + case Intrinsic::x86_avx512_packuswb_512: + if (Value *V = simplifyX86pack(*II, Builder, false)) + return replaceInstUsesWith(*II, V); + break; + + case Intrinsic::x86_pclmulqdq: + case Intrinsic::x86_pclmulqdq_256: + case Intrinsic::x86_pclmulqdq_512: { + if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(2))) { + unsigned Imm = C->getZExtValue(); + + bool MadeChange = false; + Value *Arg0 = II->getArgOperand(0); + Value *Arg1 = II->getArgOperand(1); + unsigned VWidth = Arg0->getType()->getVectorNumElements(); + + APInt UndefElts1(VWidth, 0); + APInt DemandedElts1 = APInt::getSplat(VWidth, + APInt(2, (Imm & 0x01) ? 2 : 1)); + if (Value *V = SimplifyDemandedVectorElts(Arg0, DemandedElts1, + UndefElts1)) { + II->setArgOperand(0, V); + MadeChange = true; + } + + APInt UndefElts2(VWidth, 0); + APInt DemandedElts2 = APInt::getSplat(VWidth, + APInt(2, (Imm & 0x10) ? 2 : 1)); + if (Value *V = SimplifyDemandedVectorElts(Arg1, DemandedElts2, + UndefElts2)) { + II->setArgOperand(1, V); + MadeChange = true; + } + + // If either input elements are undef, the result is zero. + if (DemandedElts1.isSubsetOf(UndefElts1) || + DemandedElts2.isSubsetOf(UndefElts2)) + return replaceInstUsesWith(*II, + ConstantAggregateZero::get(II->getType())); + + if (MadeChange) + return II; + } + break; + } + + case Intrinsic::x86_sse41_insertps: + if (Value *V = simplifyX86insertps(*II, Builder)) + return replaceInstUsesWith(*II, V); + break; + + case Intrinsic::x86_sse4a_extrq: { + Value *Op0 = II->getArgOperand(0); + Value *Op1 = II->getArgOperand(1); + unsigned VWidth0 = Op0->getType()->getVectorNumElements(); + unsigned VWidth1 = Op1->getType()->getVectorNumElements(); + assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && + Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 && + VWidth1 == 16 && "Unexpected operand sizes"); + + // See if we're dealing with constant values. + Constant *C1 = dyn_cast<Constant>(Op1); + ConstantInt *CILength = + C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0)) + : nullptr; + ConstantInt *CIIndex = + C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1)) + : nullptr; + + // Attempt to simplify to a constant, shuffle vector or EXTRQI call. + if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, Builder)) + return replaceInstUsesWith(*II, V); + + // EXTRQ only uses the lowest 64-bits of the first 128-bit vector + // operands and the lowest 16-bits of the second. + bool MadeChange = false; + if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) { + II->setArgOperand(0, V); + MadeChange = true; + } + if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) { + II->setArgOperand(1, V); + MadeChange = true; + } + if (MadeChange) + return II; + break; + } + + case Intrinsic::x86_sse4a_extrqi: { + // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining + // bits of the lower 64-bits. The upper 64-bits are undefined. + Value *Op0 = II->getArgOperand(0); + unsigned VWidth = Op0->getType()->getVectorNumElements(); + assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 && + "Unexpected operand size"); + + // See if we're dealing with constant values. + ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(1)); + ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(2)); + + // Attempt to simplify to a constant or shuffle vector. + if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, Builder)) + return replaceInstUsesWith(*II, V); + + // EXTRQI only uses the lowest 64-bits of the first 128-bit vector + // operand. + if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) { + II->setArgOperand(0, V); + return II; + } + break; + } + + case Intrinsic::x86_sse4a_insertq: { + Value *Op0 = II->getArgOperand(0); + Value *Op1 = II->getArgOperand(1); + unsigned VWidth = Op0->getType()->getVectorNumElements(); + assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && + Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 && + Op1->getType()->getVectorNumElements() == 2 && + "Unexpected operand size"); + + // See if we're dealing with constant values. + Constant *C1 = dyn_cast<Constant>(Op1); + ConstantInt *CI11 = + C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1)) + : nullptr; + + // Attempt to simplify to a constant, shuffle vector or INSERTQI call. + if (CI11) { + const APInt &V11 = CI11->getValue(); + APInt Len = V11.zextOrTrunc(6); + APInt Idx = V11.lshr(8).zextOrTrunc(6); + if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, Builder)) + return replaceInstUsesWith(*II, V); + } + + // INSERTQ only uses the lowest 64-bits of the first 128-bit vector + // operand. + if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) { + II->setArgOperand(0, V); + return II; + } + break; + } + + case Intrinsic::x86_sse4a_insertqi: { + // INSERTQI: Extract lowest Length bits from lower half of second source and + // insert over first source starting at Index bit. The upper 64-bits are + // undefined. + Value *Op0 = II->getArgOperand(0); + Value *Op1 = II->getArgOperand(1); + unsigned VWidth0 = Op0->getType()->getVectorNumElements(); + unsigned VWidth1 = Op1->getType()->getVectorNumElements(); + assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && + Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 && + VWidth1 == 2 && "Unexpected operand sizes"); + + // See if we're dealing with constant values. + ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(2)); + ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(3)); + + // Attempt to simplify to a constant or shuffle vector. + if (CILength && CIIndex) { + APInt Len = CILength->getValue().zextOrTrunc(6); + APInt Idx = CIIndex->getValue().zextOrTrunc(6); + if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, Builder)) + return replaceInstUsesWith(*II, V); + } + + // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector + // operands. + bool MadeChange = false; + if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) { + II->setArgOperand(0, V); + MadeChange = true; + } + if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) { + II->setArgOperand(1, V); + MadeChange = true; + } + if (MadeChange) + return II; + break; + } + + case Intrinsic::x86_sse41_pblendvb: + case Intrinsic::x86_sse41_blendvps: + case Intrinsic::x86_sse41_blendvpd: + case Intrinsic::x86_avx_blendv_ps_256: + case Intrinsic::x86_avx_blendv_pd_256: + case Intrinsic::x86_avx2_pblendvb: { + // fold (blend A, A, Mask) -> A + Value *Op0 = II->getArgOperand(0); + Value *Op1 = II->getArgOperand(1); + Value *Mask = II->getArgOperand(2); + if (Op0 == Op1) + return replaceInstUsesWith(CI, Op0); + + // Zero Mask - select 1st argument. + if (isa<ConstantAggregateZero>(Mask)) + return replaceInstUsesWith(CI, Op0); + + // Constant Mask - select 1st/2nd argument lane based on top bit of mask. + if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask)) { + Constant *NewSelector = getNegativeIsTrueBoolVec(ConstantMask); + return SelectInst::Create(NewSelector, Op1, Op0, "blendv"); + } + + // Convert to a vector select if we can bypass casts and find a boolean + // vector condition value. + Value *BoolVec; + Mask = peekThroughBitcast(Mask); + if (match(Mask, m_SExt(m_Value(BoolVec))) && + BoolVec->getType()->isVectorTy() && + BoolVec->getType()->getScalarSizeInBits() == 1) { + assert(Mask->getType()->getPrimitiveSizeInBits() == + II->getType()->getPrimitiveSizeInBits() && + "Not expecting mask and operands with different sizes"); + + unsigned NumMaskElts = Mask->getType()->getVectorNumElements(); + unsigned NumOperandElts = II->getType()->getVectorNumElements(); + if (NumMaskElts == NumOperandElts) + return SelectInst::Create(BoolVec, Op1, Op0); + + // If the mask has less elements than the operands, each mask bit maps to + // multiple elements of the operands. Bitcast back and forth. + if (NumMaskElts < NumOperandElts) { + Value *CastOp0 = Builder.CreateBitCast(Op0, Mask->getType()); + Value *CastOp1 = Builder.CreateBitCast(Op1, Mask->getType()); + Value *Sel = Builder.CreateSelect(BoolVec, CastOp1, CastOp0); + return new BitCastInst(Sel, II->getType()); + } + } + + break; + } + + case Intrinsic::x86_ssse3_pshuf_b_128: + case Intrinsic::x86_avx2_pshuf_b: + case Intrinsic::x86_avx512_pshuf_b_512: + if (Value *V = simplifyX86pshufb(*II, Builder)) + return replaceInstUsesWith(*II, V); + break; + + case Intrinsic::x86_avx_vpermilvar_ps: + case Intrinsic::x86_avx_vpermilvar_ps_256: + case Intrinsic::x86_avx512_vpermilvar_ps_512: + case Intrinsic::x86_avx_vpermilvar_pd: + case Intrinsic::x86_avx_vpermilvar_pd_256: + case Intrinsic::x86_avx512_vpermilvar_pd_512: + if (Value *V = simplifyX86vpermilvar(*II, Builder)) + return replaceInstUsesWith(*II, V); + break; + + case Intrinsic::x86_avx2_permd: + case Intrinsic::x86_avx2_permps: + case Intrinsic::x86_avx512_permvar_df_256: + case Intrinsic::x86_avx512_permvar_df_512: + case Intrinsic::x86_avx512_permvar_di_256: + case Intrinsic::x86_avx512_permvar_di_512: + case Intrinsic::x86_avx512_permvar_hi_128: + case Intrinsic::x86_avx512_permvar_hi_256: + case Intrinsic::x86_avx512_permvar_hi_512: + case Intrinsic::x86_avx512_permvar_qi_128: + case Intrinsic::x86_avx512_permvar_qi_256: + case Intrinsic::x86_avx512_permvar_qi_512: + case Intrinsic::x86_avx512_permvar_sf_512: + case Intrinsic::x86_avx512_permvar_si_512: + if (Value *V = simplifyX86vpermv(*II, Builder)) + return replaceInstUsesWith(*II, V); + break; + + case Intrinsic::x86_avx_maskload_ps: + case Intrinsic::x86_avx_maskload_pd: + case Intrinsic::x86_avx_maskload_ps_256: + case Intrinsic::x86_avx_maskload_pd_256: + case Intrinsic::x86_avx2_maskload_d: + case Intrinsic::x86_avx2_maskload_q: + case Intrinsic::x86_avx2_maskload_d_256: + case Intrinsic::x86_avx2_maskload_q_256: + if (Instruction *I = simplifyX86MaskedLoad(*II, *this)) + return I; + break; + + case Intrinsic::x86_sse2_maskmov_dqu: + case Intrinsic::x86_avx_maskstore_ps: + case Intrinsic::x86_avx_maskstore_pd: + case Intrinsic::x86_avx_maskstore_ps_256: + case Intrinsic::x86_avx_maskstore_pd_256: + case Intrinsic::x86_avx2_maskstore_d: + case Intrinsic::x86_avx2_maskstore_q: + case Intrinsic::x86_avx2_maskstore_d_256: + case Intrinsic::x86_avx2_maskstore_q_256: + if (simplifyX86MaskedStore(*II, *this)) + return nullptr; + break; + + case Intrinsic::x86_addcarry_32: + case Intrinsic::x86_addcarry_64: + if (Value *V = simplifyX86addcarry(*II, Builder)) + return replaceInstUsesWith(*II, V); + break; + + case Intrinsic::ppc_altivec_vperm: + // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant. + // Note that ppc_altivec_vperm has a big-endian bias, so when creating + // a vectorshuffle for little endian, we must undo the transformation + // performed on vec_perm in altivec.h. That is, we must complement + // the permutation mask with respect to 31 and reverse the order of + // V1 and V2. + if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) { + assert(Mask->getType()->getVectorNumElements() == 16 && + "Bad type for intrinsic!"); + + // Check that all of the elements are integer constants or undefs. + bool AllEltsOk = true; + for (unsigned i = 0; i != 16; ++i) { + Constant *Elt = Mask->getAggregateElement(i); + if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) { + AllEltsOk = false; + break; + } + } + + if (AllEltsOk) { + // Cast the input vectors to byte vectors. + Value *Op0 = Builder.CreateBitCast(II->getArgOperand(0), + Mask->getType()); + Value *Op1 = Builder.CreateBitCast(II->getArgOperand(1), + Mask->getType()); + Value *Result = UndefValue::get(Op0->getType()); + + // Only extract each element once. + Value *ExtractedElts[32]; + memset(ExtractedElts, 0, sizeof(ExtractedElts)); + + for (unsigned i = 0; i != 16; ++i) { + if (isa<UndefValue>(Mask->getAggregateElement(i))) + continue; + unsigned Idx = + cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue(); + Idx &= 31; // Match the hardware behavior. + if (DL.isLittleEndian()) + Idx = 31 - Idx; + + if (!ExtractedElts[Idx]) { + Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0; + Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1; + ExtractedElts[Idx] = + Builder.CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse, + Builder.getInt32(Idx&15)); + } + + // Insert this value into the result vector. + Result = Builder.CreateInsertElement(Result, ExtractedElts[Idx], + Builder.getInt32(i)); + } + return CastInst::Create(Instruction::BitCast, Result, CI.getType()); + } + } + break; + + case Intrinsic::arm_neon_vld1: { + unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), + DL, II, &AC, &DT); + if (Value *V = simplifyNeonVld1(*II, MemAlign, Builder)) + return replaceInstUsesWith(*II, V); + break; + } + + case Intrinsic::arm_neon_vld2: + case Intrinsic::arm_neon_vld3: + case Intrinsic::arm_neon_vld4: + case Intrinsic::arm_neon_vld2lane: + case Intrinsic::arm_neon_vld3lane: + case Intrinsic::arm_neon_vld4lane: + case Intrinsic::arm_neon_vst1: + case Intrinsic::arm_neon_vst2: + case Intrinsic::arm_neon_vst3: + case Intrinsic::arm_neon_vst4: + case Intrinsic::arm_neon_vst2lane: + case Intrinsic::arm_neon_vst3lane: + case Intrinsic::arm_neon_vst4lane: { + unsigned MemAlign = + getKnownAlignment(II->getArgOperand(0), DL, II, &AC, &DT); + unsigned AlignArg = II->getNumArgOperands() - 1; + ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg)); + if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) { + II->setArgOperand(AlignArg, + ConstantInt::get(Type::getInt32Ty(II->getContext()), + MemAlign, false)); + return II; + } + break; + } + + case Intrinsic::arm_neon_vtbl1: + case Intrinsic::aarch64_neon_tbl1: + if (Value *V = simplifyNeonTbl1(*II, Builder)) + return replaceInstUsesWith(*II, V); + break; + + case Intrinsic::arm_neon_vmulls: + case Intrinsic::arm_neon_vmullu: + case Intrinsic::aarch64_neon_smull: + case Intrinsic::aarch64_neon_umull: { + Value *Arg0 = II->getArgOperand(0); + Value *Arg1 = II->getArgOperand(1); + + // Handle mul by zero first: + if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) { + return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType())); + } + + // Check for constant LHS & RHS - in this case we just simplify. + bool Zext = (IID == Intrinsic::arm_neon_vmullu || + IID == Intrinsic::aarch64_neon_umull); + VectorType *NewVT = cast<VectorType>(II->getType()); + if (Constant *CV0 = dyn_cast<Constant>(Arg0)) { + if (Constant *CV1 = dyn_cast<Constant>(Arg1)) { + CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext); + CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext); + + return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1)); + } + + // Couldn't simplify - canonicalize constant to the RHS. + std::swap(Arg0, Arg1); + } + + // Handle mul by one: + if (Constant *CV1 = dyn_cast<Constant>(Arg1)) + if (ConstantInt *Splat = + dyn_cast_or_null<ConstantInt>(CV1->getSplatValue())) + if (Splat->isOne()) + return CastInst::CreateIntegerCast(Arg0, II->getType(), + /*isSigned=*/!Zext); + + break; + } + case Intrinsic::arm_neon_aesd: + case Intrinsic::arm_neon_aese: + case Intrinsic::aarch64_crypto_aesd: + case Intrinsic::aarch64_crypto_aese: { + Value *DataArg = II->getArgOperand(0); + Value *KeyArg = II->getArgOperand(1); + + // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR + Value *Data, *Key; + if (match(KeyArg, m_ZeroInt()) && + match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) { + II->setArgOperand(0, Data); + II->setArgOperand(1, Key); + return II; + } + break; + } + case Intrinsic::amdgcn_rcp: { + Value *Src = II->getArgOperand(0); + + // TODO: Move to ConstantFolding/InstSimplify? + if (isa<UndefValue>(Src)) + return replaceInstUsesWith(CI, Src); + + if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) { + const APFloat &ArgVal = C->getValueAPF(); + APFloat Val(ArgVal.getSemantics(), 1.0); + APFloat::opStatus Status = Val.divide(ArgVal, + APFloat::rmNearestTiesToEven); + // Only do this if it was exact and therefore not dependent on the + // rounding mode. + if (Status == APFloat::opOK) + return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val)); + } + + break; + } + case Intrinsic::amdgcn_rsq: { + Value *Src = II->getArgOperand(0); + + // TODO: Move to ConstantFolding/InstSimplify? + if (isa<UndefValue>(Src)) + return replaceInstUsesWith(CI, Src); + break; + } + case Intrinsic::amdgcn_frexp_mant: + case Intrinsic::amdgcn_frexp_exp: { + Value *Src = II->getArgOperand(0); + if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) { + int Exp; + APFloat Significand = frexp(C->getValueAPF(), Exp, + APFloat::rmNearestTiesToEven); + + if (IID == Intrinsic::amdgcn_frexp_mant) { + return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(), + Significand)); + } + + // Match instruction special case behavior. + if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf) + Exp = 0; + + return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Exp)); + } + + if (isa<UndefValue>(Src)) + return replaceInstUsesWith(CI, UndefValue::get(II->getType())); + + break; + } + case Intrinsic::amdgcn_class: { + enum { + S_NAN = 1 << 0, // Signaling NaN + Q_NAN = 1 << 1, // Quiet NaN + N_INFINITY = 1 << 2, // Negative infinity + N_NORMAL = 1 << 3, // Negative normal + N_SUBNORMAL = 1 << 4, // Negative subnormal + N_ZERO = 1 << 5, // Negative zero + P_ZERO = 1 << 6, // Positive zero + P_SUBNORMAL = 1 << 7, // Positive subnormal + P_NORMAL = 1 << 8, // Positive normal + P_INFINITY = 1 << 9 // Positive infinity + }; + + const uint32_t FullMask = S_NAN | Q_NAN | N_INFINITY | N_NORMAL | + N_SUBNORMAL | N_ZERO | P_ZERO | P_SUBNORMAL | P_NORMAL | P_INFINITY; + + Value *Src0 = II->getArgOperand(0); + Value *Src1 = II->getArgOperand(1); + const ConstantInt *CMask = dyn_cast<ConstantInt>(Src1); + if (!CMask) { + if (isa<UndefValue>(Src0)) + return replaceInstUsesWith(*II, UndefValue::get(II->getType())); + + if (isa<UndefValue>(Src1)) + return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false)); + break; + } + + uint32_t Mask = CMask->getZExtValue(); + + // If all tests are made, it doesn't matter what the value is. + if ((Mask & FullMask) == FullMask) + return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), true)); + + if ((Mask & FullMask) == 0) + return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false)); + + if (Mask == (S_NAN | Q_NAN)) { + // Equivalent of isnan. Replace with standard fcmp. + Value *FCmp = Builder.CreateFCmpUNO(Src0, Src0); + FCmp->takeName(II); + return replaceInstUsesWith(*II, FCmp); + } + + if (Mask == (N_ZERO | P_ZERO)) { + // Equivalent of == 0. + Value *FCmp = Builder.CreateFCmpOEQ( + Src0, ConstantFP::get(Src0->getType(), 0.0)); + + FCmp->takeName(II); + return replaceInstUsesWith(*II, FCmp); + } + + // fp_class (nnan x), qnan|snan|other -> fp_class (nnan x), other + if (((Mask & S_NAN) || (Mask & Q_NAN)) && isKnownNeverNaN(Src0, &TLI)) { + II->setArgOperand(1, ConstantInt::get(Src1->getType(), + Mask & ~(S_NAN | Q_NAN))); + return II; + } + + const ConstantFP *CVal = dyn_cast<ConstantFP>(Src0); + if (!CVal) { + if (isa<UndefValue>(Src0)) + return replaceInstUsesWith(*II, UndefValue::get(II->getType())); + + // Clamp mask to used bits + if ((Mask & FullMask) != Mask) { + CallInst *NewCall = Builder.CreateCall(II->getCalledFunction(), + { Src0, ConstantInt::get(Src1->getType(), Mask & FullMask) } + ); + + NewCall->takeName(II); + return replaceInstUsesWith(*II, NewCall); + } + + break; + } + + const APFloat &Val = CVal->getValueAPF(); + + bool Result = + ((Mask & S_NAN) && Val.isNaN() && Val.isSignaling()) || + ((Mask & Q_NAN) && Val.isNaN() && !Val.isSignaling()) || + ((Mask & N_INFINITY) && Val.isInfinity() && Val.isNegative()) || + ((Mask & N_NORMAL) && Val.isNormal() && Val.isNegative()) || + ((Mask & N_SUBNORMAL) && Val.isDenormal() && Val.isNegative()) || + ((Mask & N_ZERO) && Val.isZero() && Val.isNegative()) || + ((Mask & P_ZERO) && Val.isZero() && !Val.isNegative()) || + ((Mask & P_SUBNORMAL) && Val.isDenormal() && !Val.isNegative()) || + ((Mask & P_NORMAL) && Val.isNormal() && !Val.isNegative()) || + ((Mask & P_INFINITY) && Val.isInfinity() && !Val.isNegative()); + + return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), Result)); + } + case Intrinsic::amdgcn_cvt_pkrtz: { + Value *Src0 = II->getArgOperand(0); + Value *Src1 = II->getArgOperand(1); + if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) { + if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) { + const fltSemantics &HalfSem + = II->getType()->getScalarType()->getFltSemantics(); + bool LosesInfo; + APFloat Val0 = C0->getValueAPF(); + APFloat Val1 = C1->getValueAPF(); + Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo); + Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo); + + Constant *Folded = ConstantVector::get({ + ConstantFP::get(II->getContext(), Val0), + ConstantFP::get(II->getContext(), Val1) }); + return replaceInstUsesWith(*II, Folded); + } + } + + if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1)) + return replaceInstUsesWith(*II, UndefValue::get(II->getType())); + + break; + } + case Intrinsic::amdgcn_cvt_pknorm_i16: + case Intrinsic::amdgcn_cvt_pknorm_u16: + case Intrinsic::amdgcn_cvt_pk_i16: + case Intrinsic::amdgcn_cvt_pk_u16: { + Value *Src0 = II->getArgOperand(0); + Value *Src1 = II->getArgOperand(1); + + if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1)) + return replaceInstUsesWith(*II, UndefValue::get(II->getType())); + + break; + } + case Intrinsic::amdgcn_ubfe: + case Intrinsic::amdgcn_sbfe: { + // Decompose simple cases into standard shifts. + Value *Src = II->getArgOperand(0); + if (isa<UndefValue>(Src)) + return replaceInstUsesWith(*II, Src); + + unsigned Width; + Type *Ty = II->getType(); + unsigned IntSize = Ty->getIntegerBitWidth(); + + ConstantInt *CWidth = dyn_cast<ConstantInt>(II->getArgOperand(2)); + if (CWidth) { + Width = CWidth->getZExtValue(); + if ((Width & (IntSize - 1)) == 0) + return replaceInstUsesWith(*II, ConstantInt::getNullValue(Ty)); + + if (Width >= IntSize) { + // Hardware ignores high bits, so remove those. + II->setArgOperand(2, ConstantInt::get(CWidth->getType(), + Width & (IntSize - 1))); + return II; + } + } + + unsigned Offset; + ConstantInt *COffset = dyn_cast<ConstantInt>(II->getArgOperand(1)); + if (COffset) { + Offset = COffset->getZExtValue(); + if (Offset >= IntSize) { + II->setArgOperand(1, ConstantInt::get(COffset->getType(), + Offset & (IntSize - 1))); + return II; + } + } + + bool Signed = IID == Intrinsic::amdgcn_sbfe; + + if (!CWidth || !COffset) + break; + + // The case of Width == 0 is handled above, which makes this tranformation + // safe. If Width == 0, then the ashr and lshr instructions become poison + // value since the shift amount would be equal to the bit size. + assert(Width != 0); + + // TODO: This allows folding to undef when the hardware has specific + // behavior? + if (Offset + Width < IntSize) { + Value *Shl = Builder.CreateShl(Src, IntSize - Offset - Width); + Value *RightShift = Signed ? Builder.CreateAShr(Shl, IntSize - Width) + : Builder.CreateLShr(Shl, IntSize - Width); + RightShift->takeName(II); + return replaceInstUsesWith(*II, RightShift); + } + + Value *RightShift = Signed ? Builder.CreateAShr(Src, Offset) + : Builder.CreateLShr(Src, Offset); + + RightShift->takeName(II); + return replaceInstUsesWith(*II, RightShift); + } + case Intrinsic::amdgcn_exp: + case Intrinsic::amdgcn_exp_compr: { + ConstantInt *En = cast<ConstantInt>(II->getArgOperand(1)); + unsigned EnBits = En->getZExtValue(); + if (EnBits == 0xf) + break; // All inputs enabled. + + bool IsCompr = IID == Intrinsic::amdgcn_exp_compr; + bool Changed = false; + for (int I = 0; I < (IsCompr ? 2 : 4); ++I) { + if ((!IsCompr && (EnBits & (1 << I)) == 0) || + (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) { + Value *Src = II->getArgOperand(I + 2); + if (!isa<UndefValue>(Src)) { + II->setArgOperand(I + 2, UndefValue::get(Src->getType())); + Changed = true; + } + } + } + + if (Changed) + return II; + + break; + } + case Intrinsic::amdgcn_fmed3: { + // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled + // for the shader. + + Value *Src0 = II->getArgOperand(0); + Value *Src1 = II->getArgOperand(1); + Value *Src2 = II->getArgOperand(2); + + // Checking for NaN before canonicalization provides better fidelity when + // mapping other operations onto fmed3 since the order of operands is + // unchanged. + CallInst *NewCall = nullptr; + if (match(Src0, m_NaN()) || isa<UndefValue>(Src0)) { + NewCall = Builder.CreateMinNum(Src1, Src2); + } else if (match(Src1, m_NaN()) || isa<UndefValue>(Src1)) { + NewCall = Builder.CreateMinNum(Src0, Src2); + } else if (match(Src2, m_NaN()) || isa<UndefValue>(Src2)) { + NewCall = Builder.CreateMaxNum(Src0, Src1); + } + + if (NewCall) { + NewCall->copyFastMathFlags(II); + NewCall->takeName(II); + return replaceInstUsesWith(*II, NewCall); + } + + bool Swap = false; + // Canonicalize constants to RHS operands. + // + // fmed3(c0, x, c1) -> fmed3(x, c0, c1) + if (isa<Constant>(Src0) && !isa<Constant>(Src1)) { + std::swap(Src0, Src1); + Swap = true; + } + + if (isa<Constant>(Src1) && !isa<Constant>(Src2)) { + std::swap(Src1, Src2); + Swap = true; + } + + if (isa<Constant>(Src0) && !isa<Constant>(Src1)) { + std::swap(Src0, Src1); + Swap = true; + } + + if (Swap) { + II->setArgOperand(0, Src0); + II->setArgOperand(1, Src1); + II->setArgOperand(2, Src2); + return II; + } + + if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) { + if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) { + if (const ConstantFP *C2 = dyn_cast<ConstantFP>(Src2)) { + APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(), + C2->getValueAPF()); + return replaceInstUsesWith(*II, + ConstantFP::get(Builder.getContext(), Result)); + } + } + } + + break; + } + case Intrinsic::amdgcn_icmp: + case Intrinsic::amdgcn_fcmp: { + const ConstantInt *CC = cast<ConstantInt>(II->getArgOperand(2)); + // Guard against invalid arguments. + int64_t CCVal = CC->getZExtValue(); + bool IsInteger = IID == Intrinsic::amdgcn_icmp; + if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE || + CCVal > CmpInst::LAST_ICMP_PREDICATE)) || + (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE || + CCVal > CmpInst::LAST_FCMP_PREDICATE))) + break; + + Value *Src0 = II->getArgOperand(0); + Value *Src1 = II->getArgOperand(1); + + if (auto *CSrc0 = dyn_cast<Constant>(Src0)) { + if (auto *CSrc1 = dyn_cast<Constant>(Src1)) { + Constant *CCmp = ConstantExpr::getCompare(CCVal, CSrc0, CSrc1); + if (CCmp->isNullValue()) { + return replaceInstUsesWith( + *II, ConstantExpr::getSExt(CCmp, II->getType())); + } + + // The result of V_ICMP/V_FCMP assembly instructions (which this + // intrinsic exposes) is one bit per thread, masked with the EXEC + // register (which contains the bitmask of live threads). So a + // comparison that always returns true is the same as a read of the + // EXEC register. + Function *NewF = Intrinsic::getDeclaration( + II->getModule(), Intrinsic::read_register, II->getType()); + Metadata *MDArgs[] = {MDString::get(II->getContext(), "exec")}; + MDNode *MD = MDNode::get(II->getContext(), MDArgs); + Value *Args[] = {MetadataAsValue::get(II->getContext(), MD)}; + CallInst *NewCall = Builder.CreateCall(NewF, Args); + NewCall->addAttribute(AttributeList::FunctionIndex, + Attribute::Convergent); + NewCall->takeName(II); + return replaceInstUsesWith(*II, NewCall); + } + + // Canonicalize constants to RHS. + CmpInst::Predicate SwapPred + = CmpInst::getSwappedPredicate(static_cast<CmpInst::Predicate>(CCVal)); + II->setArgOperand(0, Src1); + II->setArgOperand(1, Src0); + II->setArgOperand(2, ConstantInt::get(CC->getType(), + static_cast<int>(SwapPred))); + return II; + } + + if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE) + break; + + // Canonicalize compare eq with true value to compare != 0 + // llvm.amdgcn.icmp(zext (i1 x), 1, eq) + // -> llvm.amdgcn.icmp(zext (i1 x), 0, ne) + // llvm.amdgcn.icmp(sext (i1 x), -1, eq) + // -> llvm.amdgcn.icmp(sext (i1 x), 0, ne) + Value *ExtSrc; + if (CCVal == CmpInst::ICMP_EQ && + ((match(Src1, m_One()) && match(Src0, m_ZExt(m_Value(ExtSrc)))) || + (match(Src1, m_AllOnes()) && match(Src0, m_SExt(m_Value(ExtSrc))))) && + ExtSrc->getType()->isIntegerTy(1)) { + II->setArgOperand(1, ConstantInt::getNullValue(Src1->getType())); + II->setArgOperand(2, ConstantInt::get(CC->getType(), CmpInst::ICMP_NE)); + return II; + } + + CmpInst::Predicate SrcPred; + Value *SrcLHS; + Value *SrcRHS; + + // Fold compare eq/ne with 0 from a compare result as the predicate to the + // intrinsic. The typical use is a wave vote function in the library, which + // will be fed from a user code condition compared with 0. Fold in the + // redundant compare. + + // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne) + // -> llvm.amdgcn.[if]cmp(a, b, pred) + // + // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq) + // -> llvm.amdgcn.[if]cmp(a, b, inv pred) + if (match(Src1, m_Zero()) && + match(Src0, + m_ZExtOrSExt(m_Cmp(SrcPred, m_Value(SrcLHS), m_Value(SrcRHS))))) { + if (CCVal == CmpInst::ICMP_EQ) + SrcPred = CmpInst::getInversePredicate(SrcPred); + + Intrinsic::ID NewIID = CmpInst::isFPPredicate(SrcPred) ? + Intrinsic::amdgcn_fcmp : Intrinsic::amdgcn_icmp; + + Type *Ty = SrcLHS->getType(); + if (auto *CmpType = dyn_cast<IntegerType>(Ty)) { + // Promote to next legal integer type. + unsigned Width = CmpType->getBitWidth(); + unsigned NewWidth = Width; + + // Don't do anything for i1 comparisons. + if (Width == 1) + break; + + if (Width <= 16) + NewWidth = 16; + else if (Width <= 32) + NewWidth = 32; + else if (Width <= 64) + NewWidth = 64; + else if (Width > 64) + break; // Can't handle this. + + if (Width != NewWidth) { + IntegerType *CmpTy = Builder.getIntNTy(NewWidth); + if (CmpInst::isSigned(SrcPred)) { + SrcLHS = Builder.CreateSExt(SrcLHS, CmpTy); + SrcRHS = Builder.CreateSExt(SrcRHS, CmpTy); + } else { + SrcLHS = Builder.CreateZExt(SrcLHS, CmpTy); + SrcRHS = Builder.CreateZExt(SrcRHS, CmpTy); + } + } + } else if (!Ty->isFloatTy() && !Ty->isDoubleTy() && !Ty->isHalfTy()) + break; + + Function *NewF = + Intrinsic::getDeclaration(II->getModule(), NewIID, + { II->getType(), + SrcLHS->getType() }); + Value *Args[] = { SrcLHS, SrcRHS, + ConstantInt::get(CC->getType(), SrcPred) }; + CallInst *NewCall = Builder.CreateCall(NewF, Args); + NewCall->takeName(II); + return replaceInstUsesWith(*II, NewCall); + } + + break; + } + case Intrinsic::amdgcn_wqm_vote: { + // wqm_vote is identity when the argument is constant. + if (!isa<Constant>(II->getArgOperand(0))) + break; + + return replaceInstUsesWith(*II, II->getArgOperand(0)); + } + case Intrinsic::amdgcn_kill: { + const ConstantInt *C = dyn_cast<ConstantInt>(II->getArgOperand(0)); + if (!C || !C->getZExtValue()) + break; + + // amdgcn.kill(i1 1) is a no-op + return eraseInstFromFunction(CI); + } + case Intrinsic::amdgcn_update_dpp: { + Value *Old = II->getArgOperand(0); + + auto BC = cast<ConstantInt>(II->getArgOperand(5)); + auto RM = cast<ConstantInt>(II->getArgOperand(3)); + auto BM = cast<ConstantInt>(II->getArgOperand(4)); + if (BC->isZeroValue() || + RM->getZExtValue() != 0xF || + BM->getZExtValue() != 0xF || + isa<UndefValue>(Old)) + break; + + // If bound_ctrl = 1, row mask = bank mask = 0xf we can omit old value. + II->setOperand(0, UndefValue::get(Old->getType())); + return II; + } + case Intrinsic::amdgcn_readfirstlane: + case Intrinsic::amdgcn_readlane: { + // A constant value is trivially uniform. + if (Constant *C = dyn_cast<Constant>(II->getArgOperand(0))) + return replaceInstUsesWith(*II, C); + + // The rest of these may not be safe if the exec may not be the same between + // the def and use. + Value *Src = II->getArgOperand(0); + Instruction *SrcInst = dyn_cast<Instruction>(Src); + if (SrcInst && SrcInst->getParent() != II->getParent()) + break; + + // readfirstlane (readfirstlane x) -> readfirstlane x + // readlane (readfirstlane x), y -> readfirstlane x + if (match(Src, m_Intrinsic<Intrinsic::amdgcn_readfirstlane>())) + return replaceInstUsesWith(*II, Src); + + if (IID == Intrinsic::amdgcn_readfirstlane) { + // readfirstlane (readlane x, y) -> readlane x, y + if (match(Src, m_Intrinsic<Intrinsic::amdgcn_readlane>())) + return replaceInstUsesWith(*II, Src); + } else { + // readlane (readlane x, y), y -> readlane x, y + if (match(Src, m_Intrinsic<Intrinsic::amdgcn_readlane>( + m_Value(), m_Specific(II->getArgOperand(1))))) + return replaceInstUsesWith(*II, Src); + } + + break; + } + case Intrinsic::stackrestore: { + // If the save is right next to the restore, remove the restore. This can + // happen when variable allocas are DCE'd. + if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) { + if (SS->getIntrinsicID() == Intrinsic::stacksave) { + // Skip over debug info. + if (SS->getNextNonDebugInstruction() == II) { + return eraseInstFromFunction(CI); + } + } + } + + // Scan down this block to see if there is another stack restore in the + // same block without an intervening call/alloca. + BasicBlock::iterator BI(II); + Instruction *TI = II->getParent()->getTerminator(); + bool CannotRemove = false; + for (++BI; &*BI != TI; ++BI) { + if (isa<AllocaInst>(BI)) { + CannotRemove = true; + break; + } + if (CallInst *BCI = dyn_cast<CallInst>(BI)) { + if (auto *II2 = dyn_cast<IntrinsicInst>(BCI)) { + // If there is a stackrestore below this one, remove this one. + if (II2->getIntrinsicID() == Intrinsic::stackrestore) + return eraseInstFromFunction(CI); + + // Bail if we cross over an intrinsic with side effects, such as + // llvm.stacksave, llvm.read_register, or llvm.setjmp. + if (II2->mayHaveSideEffects()) { + CannotRemove = true; + break; + } + } else { + // If we found a non-intrinsic call, we can't remove the stack + // restore. + CannotRemove = true; + break; + } + } + } + + // If the stack restore is in a return, resume, or unwind block and if there + // are no allocas or calls between the restore and the return, nuke the + // restore. + if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI))) + return eraseInstFromFunction(CI); + break; + } + case Intrinsic::lifetime_start: + // Asan needs to poison memory to detect invalid access which is possible + // even for empty lifetime range. + if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) || + II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) || + II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress)) + break; + + if (removeTriviallyEmptyRange(*II, Intrinsic::lifetime_start, + Intrinsic::lifetime_end, *this)) + return nullptr; + break; + case Intrinsic::assume: { + Value *IIOperand = II->getArgOperand(0); + // Remove an assume if it is followed by an identical assume. + // TODO: Do we need this? Unless there are conflicting assumptions, the + // computeKnownBits(IIOperand) below here eliminates redundant assumes. + Instruction *Next = II->getNextNonDebugInstruction(); + if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand)))) + return eraseInstFromFunction(CI); + + // Canonicalize assume(a && b) -> assume(a); assume(b); + // Note: New assumption intrinsics created here are registered by + // the InstCombineIRInserter object. + FunctionType *AssumeIntrinsicTy = II->getFunctionType(); + Value *AssumeIntrinsic = II->getCalledValue(); + Value *A, *B; + if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) { + Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, II->getName()); + Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName()); + return eraseInstFromFunction(*II); + } + // assume(!(a || b)) -> assume(!a); assume(!b); + if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) { + Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, + Builder.CreateNot(A), II->getName()); + Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, + Builder.CreateNot(B), II->getName()); + return eraseInstFromFunction(*II); + } + + // assume( (load addr) != null ) -> add 'nonnull' metadata to load + // (if assume is valid at the load) + CmpInst::Predicate Pred; + Instruction *LHS; + if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) && + Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load && + LHS->getType()->isPointerTy() && + isValidAssumeForContext(II, LHS, &DT)) { + MDNode *MD = MDNode::get(II->getContext(), None); + LHS->setMetadata(LLVMContext::MD_nonnull, MD); + return eraseInstFromFunction(*II); + + // TODO: apply nonnull return attributes to calls and invokes + // TODO: apply range metadata for range check patterns? + } + + // If there is a dominating assume with the same condition as this one, + // then this one is redundant, and should be removed. + KnownBits Known(1); + computeKnownBits(IIOperand, Known, 0, II); + if (Known.isAllOnes()) + return eraseInstFromFunction(*II); + + // Update the cache of affected values for this assumption (we might be + // here because we just simplified the condition). + AC.updateAffectedValues(II); + break; + } + case Intrinsic::experimental_gc_relocate: { + auto &GCR = *cast<GCRelocateInst>(II); + + // If we have two copies of the same pointer in the statepoint argument + // list, canonicalize to one. This may let us common gc.relocates. + if (GCR.getBasePtr() == GCR.getDerivedPtr() && + GCR.getBasePtrIndex() != GCR.getDerivedPtrIndex()) { + auto *OpIntTy = GCR.getOperand(2)->getType(); + II->setOperand(2, ConstantInt::get(OpIntTy, GCR.getBasePtrIndex())); + return II; + } + + // Translate facts known about a pointer before relocating into + // facts about the relocate value, while being careful to + // preserve relocation semantics. + Value *DerivedPtr = GCR.getDerivedPtr(); + + // Remove the relocation if unused, note that this check is required + // to prevent the cases below from looping forever. + if (II->use_empty()) + return eraseInstFromFunction(*II); + + // Undef is undef, even after relocation. + // TODO: provide a hook for this in GCStrategy. This is clearly legal for + // most practical collectors, but there was discussion in the review thread + // about whether it was legal for all possible collectors. + if (isa<UndefValue>(DerivedPtr)) + // Use undef of gc_relocate's type to replace it. + return replaceInstUsesWith(*II, UndefValue::get(II->getType())); + + if (auto *PT = dyn_cast<PointerType>(II->getType())) { + // The relocation of null will be null for most any collector. + // TODO: provide a hook for this in GCStrategy. There might be some + // weird collector this property does not hold for. + if (isa<ConstantPointerNull>(DerivedPtr)) + // Use null-pointer of gc_relocate's type to replace it. + return replaceInstUsesWith(*II, ConstantPointerNull::get(PT)); + + // isKnownNonNull -> nonnull attribute + if (!II->hasRetAttr(Attribute::NonNull) && + isKnownNonZero(DerivedPtr, DL, 0, &AC, II, &DT)) { + II->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull); + return II; + } + } + + // TODO: bitcast(relocate(p)) -> relocate(bitcast(p)) + // Canonicalize on the type from the uses to the defs + + // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...) + break; + } + + case Intrinsic::experimental_guard: { + // Is this guard followed by another guard? We scan forward over a small + // fixed window of instructions to handle common cases with conditions + // computed between guards. + Instruction *NextInst = II->getNextNode(); + for (unsigned i = 0; i < GuardWideningWindow; i++) { + // Note: Using context-free form to avoid compile time blow up + if (!isSafeToSpeculativelyExecute(NextInst)) + break; + NextInst = NextInst->getNextNode(); + } + Value *NextCond = nullptr; + if (match(NextInst, + m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) { + Value *CurrCond = II->getArgOperand(0); + + // Remove a guard that it is immediately preceded by an identical guard. + if (CurrCond == NextCond) + return eraseInstFromFunction(*NextInst); + + // Otherwise canonicalize guard(a); guard(b) -> guard(a & b). + Instruction* MoveI = II->getNextNode(); + while (MoveI != NextInst) { + auto *Temp = MoveI; + MoveI = MoveI->getNextNode(); + Temp->moveBefore(II); + } + II->setArgOperand(0, Builder.CreateAnd(CurrCond, NextCond)); + return eraseInstFromFunction(*NextInst); + } + break; + } + } + return visitCallBase(*II); +} + +// Fence instruction simplification +Instruction *InstCombiner::visitFenceInst(FenceInst &FI) { + // Remove identical consecutive fences. + Instruction *Next = FI.getNextNonDebugInstruction(); + if (auto *NFI = dyn_cast<FenceInst>(Next)) + if (FI.isIdenticalTo(NFI)) + return eraseInstFromFunction(FI); + return nullptr; +} + +// InvokeInst simplification +Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) { + return visitCallBase(II); +} + +// CallBrInst simplification +Instruction *InstCombiner::visitCallBrInst(CallBrInst &CBI) { + return visitCallBase(CBI); +} + +/// If this cast does not affect the value passed through the varargs area, we +/// can eliminate the use of the cast. +static bool isSafeToEliminateVarargsCast(const CallBase &Call, + const DataLayout &DL, + const CastInst *const CI, + const int ix) { + if (!CI->isLosslessCast()) + return false; + + // If this is a GC intrinsic, avoid munging types. We need types for + // statepoint reconstruction in SelectionDAG. + // TODO: This is probably something which should be expanded to all + // intrinsics since the entire point of intrinsics is that + // they are understandable by the optimizer. + if (isStatepoint(&Call) || isGCRelocate(&Call) || isGCResult(&Call)) + return false; + + // The size of ByVal or InAlloca arguments is derived from the type, so we + // can't change to a type with a different size. If the size were + // passed explicitly we could avoid this check. + if (!Call.isByValOrInAllocaArgument(ix)) + return true; + + Type* SrcTy = + cast<PointerType>(CI->getOperand(0)->getType())->getElementType(); + Type *DstTy = Call.isByValArgument(ix) + ? Call.getParamByValType(ix) + : cast<PointerType>(CI->getType())->getElementType(); + if (!SrcTy->isSized() || !DstTy->isSized()) + return false; + if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy)) + return false; + return true; +} + +Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) { + if (!CI->getCalledFunction()) return nullptr; + + auto InstCombineRAUW = [this](Instruction *From, Value *With) { + replaceInstUsesWith(*From, With); + }; + auto InstCombineErase = [this](Instruction *I) { + eraseInstFromFunction(*I); + }; + LibCallSimplifier Simplifier(DL, &TLI, ORE, BFI, PSI, InstCombineRAUW, + InstCombineErase); + if (Value *With = Simplifier.optimizeCall(CI)) { + ++NumSimplified; + return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With); + } + + return nullptr; +} + +static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) { + // Strip off at most one level of pointer casts, looking for an alloca. This + // is good enough in practice and simpler than handling any number of casts. + Value *Underlying = TrampMem->stripPointerCasts(); + if (Underlying != TrampMem && + (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem)) + return nullptr; + if (!isa<AllocaInst>(Underlying)) + return nullptr; + + IntrinsicInst *InitTrampoline = nullptr; + for (User *U : TrampMem->users()) { + IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); + if (!II) + return nullptr; + if (II->getIntrinsicID() == Intrinsic::init_trampoline) { + if (InitTrampoline) + // More than one init_trampoline writes to this value. Give up. + return nullptr; + InitTrampoline = II; + continue; + } + if (II->getIntrinsicID() == Intrinsic::adjust_trampoline) + // Allow any number of calls to adjust.trampoline. + continue; + return nullptr; + } + + // No call to init.trampoline found. + if (!InitTrampoline) + return nullptr; + + // Check that the alloca is being used in the expected way. + if (InitTrampoline->getOperand(0) != TrampMem) + return nullptr; + + return InitTrampoline; +} + +static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp, + Value *TrampMem) { + // Visit all the previous instructions in the basic block, and try to find a + // init.trampoline which has a direct path to the adjust.trampoline. + for (BasicBlock::iterator I = AdjustTramp->getIterator(), + E = AdjustTramp->getParent()->begin(); + I != E;) { + Instruction *Inst = &*--I; + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) + if (II->getIntrinsicID() == Intrinsic::init_trampoline && + II->getOperand(0) == TrampMem) + return II; + if (Inst->mayWriteToMemory()) + return nullptr; + } + return nullptr; +} + +// Given a call to llvm.adjust.trampoline, find and return the corresponding +// call to llvm.init.trampoline if the call to the trampoline can be optimized +// to a direct call to a function. Otherwise return NULL. +static IntrinsicInst *findInitTrampoline(Value *Callee) { + Callee = Callee->stripPointerCasts(); + IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee); + if (!AdjustTramp || + AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline) + return nullptr; + + Value *TrampMem = AdjustTramp->getOperand(0); + + if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem)) + return IT; + if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem)) + return IT; + return nullptr; +} + +static void annotateAnyAllocSite(CallBase &Call, const TargetLibraryInfo *TLI) { + unsigned NumArgs = Call.getNumArgOperands(); + ConstantInt *Op0C = dyn_cast<ConstantInt>(Call.getOperand(0)); + ConstantInt *Op1C = + (NumArgs == 1) ? nullptr : dyn_cast<ConstantInt>(Call.getOperand(1)); + // Bail out if the allocation size is zero. + if ((Op0C && Op0C->isNullValue()) || (Op1C && Op1C->isNullValue())) + return; + + if (isMallocLikeFn(&Call, TLI) && Op0C) { + if (isOpNewLikeFn(&Call, TLI)) + Call.addAttribute(AttributeList::ReturnIndex, + Attribute::getWithDereferenceableBytes( + Call.getContext(), Op0C->getZExtValue())); + else + Call.addAttribute(AttributeList::ReturnIndex, + Attribute::getWithDereferenceableOrNullBytes( + Call.getContext(), Op0C->getZExtValue())); + } else if (isReallocLikeFn(&Call, TLI) && Op1C) { + Call.addAttribute(AttributeList::ReturnIndex, + Attribute::getWithDereferenceableOrNullBytes( + Call.getContext(), Op1C->getZExtValue())); + } else if (isCallocLikeFn(&Call, TLI) && Op0C && Op1C) { + bool Overflow; + const APInt &N = Op0C->getValue(); + APInt Size = N.umul_ov(Op1C->getValue(), Overflow); + if (!Overflow) + Call.addAttribute(AttributeList::ReturnIndex, + Attribute::getWithDereferenceableOrNullBytes( + Call.getContext(), Size.getZExtValue())); + } else if (isStrdupLikeFn(&Call, TLI)) { + uint64_t Len = GetStringLength(Call.getOperand(0)); + if (Len) { + // strdup + if (NumArgs == 1) + Call.addAttribute(AttributeList::ReturnIndex, + Attribute::getWithDereferenceableOrNullBytes( + Call.getContext(), Len)); + // strndup + else if (NumArgs == 2 && Op1C) + Call.addAttribute( + AttributeList::ReturnIndex, + Attribute::getWithDereferenceableOrNullBytes( + Call.getContext(), std::min(Len, Op1C->getZExtValue() + 1))); + } + } +} + +/// Improvements for call, callbr and invoke instructions. +Instruction *InstCombiner::visitCallBase(CallBase &Call) { + if (isAllocationFn(&Call, &TLI)) + annotateAnyAllocSite(Call, &TLI); + + bool Changed = false; + + // Mark any parameters that are known to be non-null with the nonnull + // attribute. This is helpful for inlining calls to functions with null + // checks on their arguments. + SmallVector<unsigned, 4> ArgNos; + unsigned ArgNo = 0; + + for (Value *V : Call.args()) { + if (V->getType()->isPointerTy() && + !Call.paramHasAttr(ArgNo, Attribute::NonNull) && + isKnownNonZero(V, DL, 0, &AC, &Call, &DT)) + ArgNos.push_back(ArgNo); + ArgNo++; + } + + assert(ArgNo == Call.arg_size() && "sanity check"); + + if (!ArgNos.empty()) { + AttributeList AS = Call.getAttributes(); + LLVMContext &Ctx = Call.getContext(); + AS = AS.addParamAttribute(Ctx, ArgNos, + Attribute::get(Ctx, Attribute::NonNull)); + Call.setAttributes(AS); + Changed = true; + } + + // If the callee is a pointer to a function, attempt to move any casts to the + // arguments of the call/callbr/invoke. + Value *Callee = Call.getCalledValue(); + if (!isa<Function>(Callee) && transformConstExprCastCall(Call)) + return nullptr; + + if (Function *CalleeF = dyn_cast<Function>(Callee)) { + // Remove the convergent attr on calls when the callee is not convergent. + if (Call.isConvergent() && !CalleeF->isConvergent() && + !CalleeF->isIntrinsic()) { + LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call + << "\n"); + Call.setNotConvergent(); + return &Call; + } + + // If the call and callee calling conventions don't match, this call must + // be unreachable, as the call is undefined. + if (CalleeF->getCallingConv() != Call.getCallingConv() && + // Only do this for calls to a function with a body. A prototype may + // not actually end up matching the implementation's calling conv for a + // variety of reasons (e.g. it may be written in assembly). + !CalleeF->isDeclaration()) { + Instruction *OldCall = &Call; + CreateNonTerminatorUnreachable(OldCall); + // If OldCall does not return void then replaceAllUsesWith undef. + // This allows ValueHandlers and custom metadata to adjust itself. + if (!OldCall->getType()->isVoidTy()) + replaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType())); + if (isa<CallInst>(OldCall)) + return eraseInstFromFunction(*OldCall); + + // We cannot remove an invoke or a callbr, because it would change thexi + // CFG, just change the callee to a null pointer. + cast<CallBase>(OldCall)->setCalledFunction( + CalleeF->getFunctionType(), + Constant::getNullValue(CalleeF->getType())); + return nullptr; + } + } + + if ((isa<ConstantPointerNull>(Callee) && + !NullPointerIsDefined(Call.getFunction())) || + isa<UndefValue>(Callee)) { + // If Call does not return void then replaceAllUsesWith undef. + // This allows ValueHandlers and custom metadata to adjust itself. + if (!Call.getType()->isVoidTy()) + replaceInstUsesWith(Call, UndefValue::get(Call.getType())); + + if (Call.isTerminator()) { + // Can't remove an invoke or callbr because we cannot change the CFG. + return nullptr; + } + + // This instruction is not reachable, just remove it. + CreateNonTerminatorUnreachable(&Call); + return eraseInstFromFunction(Call); + } + + if (IntrinsicInst *II = findInitTrampoline(Callee)) + return transformCallThroughTrampoline(Call, *II); + + PointerType *PTy = cast<PointerType>(Callee->getType()); + FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); + if (FTy->isVarArg()) { + int ix = FTy->getNumParams(); + // See if we can optimize any arguments passed through the varargs area of + // the call. + for (auto I = Call.arg_begin() + FTy->getNumParams(), E = Call.arg_end(); + I != E; ++I, ++ix) { + CastInst *CI = dyn_cast<CastInst>(*I); + if (CI && isSafeToEliminateVarargsCast(Call, DL, CI, ix)) { + *I = CI->getOperand(0); + + // Update the byval type to match the argument type. + if (Call.isByValArgument(ix)) { + Call.removeParamAttr(ix, Attribute::ByVal); + Call.addParamAttr( + ix, Attribute::getWithByValType( + Call.getContext(), + CI->getOperand(0)->getType()->getPointerElementType())); + } + Changed = true; + } + } + } + + if (isa<InlineAsm>(Callee) && !Call.doesNotThrow()) { + // Inline asm calls cannot throw - mark them 'nounwind'. + Call.setDoesNotThrow(); + Changed = true; + } + + // Try to optimize the call if possible, we require DataLayout for most of + // this. None of these calls are seen as possibly dead so go ahead and + // delete the instruction now. + if (CallInst *CI = dyn_cast<CallInst>(&Call)) { + Instruction *I = tryOptimizeCall(CI); + // If we changed something return the result, etc. Otherwise let + // the fallthrough check. + if (I) return eraseInstFromFunction(*I); + } + + if (isAllocLikeFn(&Call, &TLI)) + return visitAllocSite(Call); + + return Changed ? &Call : nullptr; +} + +/// If the callee is a constexpr cast of a function, attempt to move the cast to +/// the arguments of the call/callbr/invoke. +bool InstCombiner::transformConstExprCastCall(CallBase &Call) { + auto *Callee = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts()); + if (!Callee) + return false; + + // If this is a call to a thunk function, don't remove the cast. Thunks are + // used to transparently forward all incoming parameters and outgoing return + // values, so it's important to leave the cast in place. + if (Callee->hasFnAttribute("thunk")) + return false; + + // If this is a musttail call, the callee's prototype must match the caller's + // prototype with the exception of pointee types. The code below doesn't + // implement that, so we can't do this transform. + // TODO: Do the transform if it only requires adding pointer casts. + if (Call.isMustTailCall()) + return false; + + Instruction *Caller = &Call; + const AttributeList &CallerPAL = Call.getAttributes(); + + // Okay, this is a cast from a function to a different type. Unless doing so + // would cause a type conversion of one of our arguments, change this call to + // be a direct call with arguments casted to the appropriate types. + FunctionType *FT = Callee->getFunctionType(); + Type *OldRetTy = Caller->getType(); + Type *NewRetTy = FT->getReturnType(); + + // Check to see if we are changing the return type... + if (OldRetTy != NewRetTy) { + + if (NewRetTy->isStructTy()) + return false; // TODO: Handle multiple return values. + + if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) { + if (Callee->isDeclaration()) + return false; // Cannot transform this return value. + + if (!Caller->use_empty() && + // void -> non-void is handled specially + !NewRetTy->isVoidTy()) + return false; // Cannot transform this return value. + } + + if (!CallerPAL.isEmpty() && !Caller->use_empty()) { + AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex); + if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy))) + return false; // Attribute not compatible with transformed value. + } + + // If the callbase is an invoke/callbr instruction, and the return value is + // used by a PHI node in a successor, we cannot change the return type of + // the call because there is no place to put the cast instruction (without + // breaking the critical edge). Bail out in this case. + if (!Caller->use_empty()) { + if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) + for (User *U : II->users()) + if (PHINode *PN = dyn_cast<PHINode>(U)) + if (PN->getParent() == II->getNormalDest() || + PN->getParent() == II->getUnwindDest()) + return false; + // FIXME: Be conservative for callbr to avoid a quadratic search. + if (isa<CallBrInst>(Caller)) + return false; + } + } + + unsigned NumActualArgs = Call.arg_size(); + unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs); + + // Prevent us turning: + // declare void @takes_i32_inalloca(i32* inalloca) + // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0) + // + // into: + // call void @takes_i32_inalloca(i32* null) + // + // Similarly, avoid folding away bitcasts of byval calls. + if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) || + Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal)) + return false; + + auto AI = Call.arg_begin(); + for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) { + Type *ParamTy = FT->getParamType(i); + Type *ActTy = (*AI)->getType(); + + if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL)) + return false; // Cannot transform this parameter value. + + if (AttrBuilder(CallerPAL.getParamAttributes(i)) + .overlaps(AttributeFuncs::typeIncompatible(ParamTy))) + return false; // Attribute not compatible with transformed value. + + if (Call.isInAllocaArgument(i)) + return false; // Cannot transform to and from inalloca. + + // If the parameter is passed as a byval argument, then we have to have a + // sized type and the sized type has to have the same size as the old type. + if (ParamTy != ActTy && CallerPAL.hasParamAttribute(i, Attribute::ByVal)) { + PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy); + if (!ParamPTy || !ParamPTy->getElementType()->isSized()) + return false; + + Type *CurElTy = Call.getParamByValType(i); + if (DL.getTypeAllocSize(CurElTy) != + DL.getTypeAllocSize(ParamPTy->getElementType())) + return false; + } + } + + if (Callee->isDeclaration()) { + // Do not delete arguments unless we have a function body. + if (FT->getNumParams() < NumActualArgs && !FT->isVarArg()) + return false; + + // If the callee is just a declaration, don't change the varargsness of the + // call. We don't want to introduce a varargs call where one doesn't + // already exist. + PointerType *APTy = cast<PointerType>(Call.getCalledValue()->getType()); + if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg()) + return false; + + // If both the callee and the cast type are varargs, we still have to make + // sure the number of fixed parameters are the same or we have the same + // ABI issues as if we introduce a varargs call. + if (FT->isVarArg() && + cast<FunctionType>(APTy->getElementType())->isVarArg() && + FT->getNumParams() != + cast<FunctionType>(APTy->getElementType())->getNumParams()) + return false; + } + + if (FT->getNumParams() < NumActualArgs && FT->isVarArg() && + !CallerPAL.isEmpty()) { + // In this case we have more arguments than the new function type, but we + // won't be dropping them. Check that these extra arguments have attributes + // that are compatible with being a vararg call argument. + unsigned SRetIdx; + if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) && + SRetIdx > FT->getNumParams()) + return false; + } + + // Okay, we decided that this is a safe thing to do: go ahead and start + // inserting cast instructions as necessary. + SmallVector<Value *, 8> Args; + SmallVector<AttributeSet, 8> ArgAttrs; + Args.reserve(NumActualArgs); + ArgAttrs.reserve(NumActualArgs); + + // Get any return attributes. + AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex); + + // If the return value is not being used, the type may not be compatible + // with the existing attributes. Wipe out any problematic attributes. + RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy)); + + LLVMContext &Ctx = Call.getContext(); + AI = Call.arg_begin(); + for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) { + Type *ParamTy = FT->getParamType(i); + + Value *NewArg = *AI; + if ((*AI)->getType() != ParamTy) + NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy); + Args.push_back(NewArg); + + // Add any parameter attributes. + if (CallerPAL.hasParamAttribute(i, Attribute::ByVal)) { + AttrBuilder AB(CallerPAL.getParamAttributes(i)); + AB.addByValAttr(NewArg->getType()->getPointerElementType()); + ArgAttrs.push_back(AttributeSet::get(Ctx, AB)); + } else + ArgAttrs.push_back(CallerPAL.getParamAttributes(i)); + } + + // If the function takes more arguments than the call was taking, add them + // now. + for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) { + Args.push_back(Constant::getNullValue(FT->getParamType(i))); + ArgAttrs.push_back(AttributeSet()); + } + + // If we are removing arguments to the function, emit an obnoxious warning. + if (FT->getNumParams() < NumActualArgs) { + // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722 + if (FT->isVarArg()) { + // Add all of the arguments in their promoted form to the arg list. + for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) { + Type *PTy = getPromotedType((*AI)->getType()); + Value *NewArg = *AI; + if (PTy != (*AI)->getType()) { + // Must promote to pass through va_arg area! + Instruction::CastOps opcode = + CastInst::getCastOpcode(*AI, false, PTy, false); + NewArg = Builder.CreateCast(opcode, *AI, PTy); + } + Args.push_back(NewArg); + + // Add any parameter attributes. + ArgAttrs.push_back(CallerPAL.getParamAttributes(i)); + } + } + } + + AttributeSet FnAttrs = CallerPAL.getFnAttributes(); + + if (NewRetTy->isVoidTy()) + Caller->setName(""); // Void type should not have a name. + + assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) && + "missing argument attributes"); + AttributeList NewCallerPAL = AttributeList::get( + Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs); + + SmallVector<OperandBundleDef, 1> OpBundles; + Call.getOperandBundlesAsDefs(OpBundles); + + CallBase *NewCall; + if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { + NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(), + II->getUnwindDest(), Args, OpBundles); + } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) { + NewCall = Builder.CreateCallBr(Callee, CBI->getDefaultDest(), + CBI->getIndirectDests(), Args, OpBundles); + } else { + NewCall = Builder.CreateCall(Callee, Args, OpBundles); + cast<CallInst>(NewCall)->setTailCallKind( + cast<CallInst>(Caller)->getTailCallKind()); + } + NewCall->takeName(Caller); + NewCall->setCallingConv(Call.getCallingConv()); + NewCall->setAttributes(NewCallerPAL); + + // Preserve the weight metadata for the new call instruction. The metadata + // is used by SamplePGO to check callsite's hotness. + uint64_t W; + if (Caller->extractProfTotalWeight(W)) + NewCall->setProfWeight(W); + + // Insert a cast of the return type as necessary. + Instruction *NC = NewCall; + Value *NV = NC; + if (OldRetTy != NV->getType() && !Caller->use_empty()) { + if (!NV->getType()->isVoidTy()) { + NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy); + NC->setDebugLoc(Caller->getDebugLoc()); + + // If this is an invoke/callbr instruction, we should insert it after the + // first non-phi instruction in the normal successor block. + if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { + BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt(); + InsertNewInstBefore(NC, *I); + } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) { + BasicBlock::iterator I = CBI->getDefaultDest()->getFirstInsertionPt(); + InsertNewInstBefore(NC, *I); + } else { + // Otherwise, it's a call, just insert cast right after the call. + InsertNewInstBefore(NC, *Caller); + } + Worklist.AddUsersToWorkList(*Caller); + } else { + NV = UndefValue::get(Caller->getType()); + } + } + + if (!Caller->use_empty()) + replaceInstUsesWith(*Caller, NV); + else if (Caller->hasValueHandle()) { + if (OldRetTy == NV->getType()) + ValueHandleBase::ValueIsRAUWd(Caller, NV); + else + // We cannot call ValueIsRAUWd with a different type, and the + // actual tracked value will disappear. + ValueHandleBase::ValueIsDeleted(Caller); + } + + eraseInstFromFunction(*Caller); + return true; +} + +/// Turn a call to a function created by init_trampoline / adjust_trampoline +/// intrinsic pair into a direct call to the underlying function. +Instruction * +InstCombiner::transformCallThroughTrampoline(CallBase &Call, + IntrinsicInst &Tramp) { + Value *Callee = Call.getCalledValue(); + Type *CalleeTy = Callee->getType(); + FunctionType *FTy = Call.getFunctionType(); + AttributeList Attrs = Call.getAttributes(); + + // If the call already has the 'nest' attribute somewhere then give up - + // otherwise 'nest' would occur twice after splicing in the chain. + if (Attrs.hasAttrSomewhere(Attribute::Nest)) + return nullptr; + + Function *NestF = cast<Function>(Tramp.getArgOperand(1)->stripPointerCasts()); + FunctionType *NestFTy = NestF->getFunctionType(); + + AttributeList NestAttrs = NestF->getAttributes(); + if (!NestAttrs.isEmpty()) { + unsigned NestArgNo = 0; + Type *NestTy = nullptr; + AttributeSet NestAttr; + + // Look for a parameter marked with the 'nest' attribute. + for (FunctionType::param_iterator I = NestFTy->param_begin(), + E = NestFTy->param_end(); + I != E; ++NestArgNo, ++I) { + AttributeSet AS = NestAttrs.getParamAttributes(NestArgNo); + if (AS.hasAttribute(Attribute::Nest)) { + // Record the parameter type and any other attributes. + NestTy = *I; + NestAttr = AS; + break; + } + } + + if (NestTy) { + std::vector<Value*> NewArgs; + std::vector<AttributeSet> NewArgAttrs; + NewArgs.reserve(Call.arg_size() + 1); + NewArgAttrs.reserve(Call.arg_size()); + + // Insert the nest argument into the call argument list, which may + // mean appending it. Likewise for attributes. + + { + unsigned ArgNo = 0; + auto I = Call.arg_begin(), E = Call.arg_end(); + do { + if (ArgNo == NestArgNo) { + // Add the chain argument and attributes. + Value *NestVal = Tramp.getArgOperand(2); + if (NestVal->getType() != NestTy) + NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest"); + NewArgs.push_back(NestVal); + NewArgAttrs.push_back(NestAttr); + } + + if (I == E) + break; + + // Add the original argument and attributes. + NewArgs.push_back(*I); + NewArgAttrs.push_back(Attrs.getParamAttributes(ArgNo)); + + ++ArgNo; + ++I; + } while (true); + } + + // The trampoline may have been bitcast to a bogus type (FTy). + // Handle this by synthesizing a new function type, equal to FTy + // with the chain parameter inserted. + + std::vector<Type*> NewTypes; + NewTypes.reserve(FTy->getNumParams()+1); + + // Insert the chain's type into the list of parameter types, which may + // mean appending it. + { + unsigned ArgNo = 0; + FunctionType::param_iterator I = FTy->param_begin(), + E = FTy->param_end(); + + do { + if (ArgNo == NestArgNo) + // Add the chain's type. + NewTypes.push_back(NestTy); + + if (I == E) + break; + + // Add the original type. + NewTypes.push_back(*I); + + ++ArgNo; + ++I; + } while (true); + } + + // Replace the trampoline call with a direct call. Let the generic + // code sort out any function type mismatches. + FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes, + FTy->isVarArg()); + Constant *NewCallee = + NestF->getType() == PointerType::getUnqual(NewFTy) ? + NestF : ConstantExpr::getBitCast(NestF, + PointerType::getUnqual(NewFTy)); + AttributeList NewPAL = + AttributeList::get(FTy->getContext(), Attrs.getFnAttributes(), + Attrs.getRetAttributes(), NewArgAttrs); + + SmallVector<OperandBundleDef, 1> OpBundles; + Call.getOperandBundlesAsDefs(OpBundles); + + Instruction *NewCaller; + if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) { + NewCaller = InvokeInst::Create(NewFTy, NewCallee, + II->getNormalDest(), II->getUnwindDest(), + NewArgs, OpBundles); + cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv()); + cast<InvokeInst>(NewCaller)->setAttributes(NewPAL); + } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&Call)) { + NewCaller = + CallBrInst::Create(NewFTy, NewCallee, CBI->getDefaultDest(), + CBI->getIndirectDests(), NewArgs, OpBundles); + cast<CallBrInst>(NewCaller)->setCallingConv(CBI->getCallingConv()); + cast<CallBrInst>(NewCaller)->setAttributes(NewPAL); + } else { + NewCaller = CallInst::Create(NewFTy, NewCallee, NewArgs, OpBundles); + cast<CallInst>(NewCaller)->setTailCallKind( + cast<CallInst>(Call).getTailCallKind()); + cast<CallInst>(NewCaller)->setCallingConv( + cast<CallInst>(Call).getCallingConv()); + cast<CallInst>(NewCaller)->setAttributes(NewPAL); + } + NewCaller->setDebugLoc(Call.getDebugLoc()); + + return NewCaller; + } + } + + // Replace the trampoline call with a direct call. Since there is no 'nest' + // parameter, there is no need to adjust the argument list. Let the generic + // code sort out any function type mismatches. + Constant *NewCallee = ConstantExpr::getBitCast(NestF, CalleeTy); + Call.setCalledFunction(FTy, NewCallee); + return &Call; +} |
