summaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp')
-rw-r--r--llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp4826
1 files changed, 4826 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp b/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp
new file mode 100644
index 000000000000..c650d242cd50
--- /dev/null
+++ b/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp
@@ -0,0 +1,4826 @@
+//===- InstCombineCalls.cpp -----------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visitCall, visitInvoke, and visitCallBr functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombineInternal.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/APSInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/Loads.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Analysis/VectorUtils.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/Statepoint.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/Support/AtomicOrdering.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/KnownBits.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <cstring>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+using namespace PatternMatch;
+
+#define DEBUG_TYPE "instcombine"
+
+STATISTIC(NumSimplified, "Number of library calls simplified");
+
+static cl::opt<unsigned> GuardWideningWindow(
+ "instcombine-guard-widening-window",
+ cl::init(3),
+ cl::desc("How wide an instruction window to bypass looking for "
+ "another guard"));
+
+/// Return the specified type promoted as it would be to pass though a va_arg
+/// area.
+static Type *getPromotedType(Type *Ty) {
+ if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
+ if (ITy->getBitWidth() < 32)
+ return Type::getInt32Ty(Ty->getContext());
+ }
+ return Ty;
+}
+
+/// Return a constant boolean vector that has true elements in all positions
+/// where the input constant data vector has an element with the sign bit set.
+static Constant *getNegativeIsTrueBoolVec(ConstantDataVector *V) {
+ SmallVector<Constant *, 32> BoolVec;
+ IntegerType *BoolTy = Type::getInt1Ty(V->getContext());
+ for (unsigned I = 0, E = V->getNumElements(); I != E; ++I) {
+ Constant *Elt = V->getElementAsConstant(I);
+ assert((isa<ConstantInt>(Elt) || isa<ConstantFP>(Elt)) &&
+ "Unexpected constant data vector element type");
+ bool Sign = V->getElementType()->isIntegerTy()
+ ? cast<ConstantInt>(Elt)->isNegative()
+ : cast<ConstantFP>(Elt)->isNegative();
+ BoolVec.push_back(ConstantInt::get(BoolTy, Sign));
+ }
+ return ConstantVector::get(BoolVec);
+}
+
+Instruction *InstCombiner::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) {
+ unsigned DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT);
+ unsigned CopyDstAlign = MI->getDestAlignment();
+ if (CopyDstAlign < DstAlign){
+ MI->setDestAlignment(DstAlign);
+ return MI;
+ }
+
+ unsigned SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT);
+ unsigned CopySrcAlign = MI->getSourceAlignment();
+ if (CopySrcAlign < SrcAlign) {
+ MI->setSourceAlignment(SrcAlign);
+ return MI;
+ }
+
+ // If we have a store to a location which is known constant, we can conclude
+ // that the store must be storing the constant value (else the memory
+ // wouldn't be constant), and this must be a noop.
+ if (AA->pointsToConstantMemory(MI->getDest())) {
+ // Set the size of the copy to 0, it will be deleted on the next iteration.
+ MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
+ return MI;
+ }
+
+ // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
+ // load/store.
+ ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength());
+ if (!MemOpLength) return nullptr;
+
+ // Source and destination pointer types are always "i8*" for intrinsic. See
+ // if the size is something we can handle with a single primitive load/store.
+ // A single load+store correctly handles overlapping memory in the memmove
+ // case.
+ uint64_t Size = MemOpLength->getLimitedValue();
+ assert(Size && "0-sized memory transferring should be removed already.");
+
+ if (Size > 8 || (Size&(Size-1)))
+ return nullptr; // If not 1/2/4/8 bytes, exit.
+
+ // If it is an atomic and alignment is less than the size then we will
+ // introduce the unaligned memory access which will be later transformed
+ // into libcall in CodeGen. This is not evident performance gain so disable
+ // it now.
+ if (isa<AtomicMemTransferInst>(MI))
+ if (CopyDstAlign < Size || CopySrcAlign < Size)
+ return nullptr;
+
+ // Use an integer load+store unless we can find something better.
+ unsigned SrcAddrSp =
+ cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
+ unsigned DstAddrSp =
+ cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
+
+ IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
+ Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
+ Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
+
+ // If the memcpy has metadata describing the members, see if we can get the
+ // TBAA tag describing our copy.
+ MDNode *CopyMD = nullptr;
+ if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa)) {
+ CopyMD = M;
+ } else if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
+ if (M->getNumOperands() == 3 && M->getOperand(0) &&
+ mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
+ mdconst::extract<ConstantInt>(M->getOperand(0))->isZero() &&
+ M->getOperand(1) &&
+ mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
+ mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
+ Size &&
+ M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
+ CopyMD = cast<MDNode>(M->getOperand(2));
+ }
+
+ Value *Src = Builder.CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
+ Value *Dest = Builder.CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
+ LoadInst *L = Builder.CreateLoad(IntType, Src);
+ // Alignment from the mem intrinsic will be better, so use it.
+ L->setAlignment(
+ MaybeAlign(CopySrcAlign)); // FIXME: Check if we can use Align instead.
+ if (CopyMD)
+ L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
+ MDNode *LoopMemParallelMD =
+ MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
+ if (LoopMemParallelMD)
+ L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
+ MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group);
+ if (AccessGroupMD)
+ L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
+
+ StoreInst *S = Builder.CreateStore(L, Dest);
+ // Alignment from the mem intrinsic will be better, so use it.
+ S->setAlignment(
+ MaybeAlign(CopyDstAlign)); // FIXME: Check if we can use Align instead.
+ if (CopyMD)
+ S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
+ if (LoopMemParallelMD)
+ S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
+ if (AccessGroupMD)
+ S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
+
+ if (auto *MT = dyn_cast<MemTransferInst>(MI)) {
+ // non-atomics can be volatile
+ L->setVolatile(MT->isVolatile());
+ S->setVolatile(MT->isVolatile());
+ }
+ if (isa<AtomicMemTransferInst>(MI)) {
+ // atomics have to be unordered
+ L->setOrdering(AtomicOrdering::Unordered);
+ S->setOrdering(AtomicOrdering::Unordered);
+ }
+
+ // Set the size of the copy to 0, it will be deleted on the next iteration.
+ MI->setLength(Constant::getNullValue(MemOpLength->getType()));
+ return MI;
+}
+
+Instruction *InstCombiner::SimplifyAnyMemSet(AnyMemSetInst *MI) {
+ const unsigned KnownAlignment =
+ getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT);
+ if (MI->getDestAlignment() < KnownAlignment) {
+ MI->setDestAlignment(KnownAlignment);
+ return MI;
+ }
+
+ // If we have a store to a location which is known constant, we can conclude
+ // that the store must be storing the constant value (else the memory
+ // wouldn't be constant), and this must be a noop.
+ if (AA->pointsToConstantMemory(MI->getDest())) {
+ // Set the size of the copy to 0, it will be deleted on the next iteration.
+ MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
+ return MI;
+ }
+
+ // Extract the length and alignment and fill if they are constant.
+ ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
+ ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
+ if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
+ return nullptr;
+ const uint64_t Len = LenC->getLimitedValue();
+ assert(Len && "0-sized memory setting should be removed already.");
+ const Align Alignment = assumeAligned(MI->getDestAlignment());
+
+ // If it is an atomic and alignment is less than the size then we will
+ // introduce the unaligned memory access which will be later transformed
+ // into libcall in CodeGen. This is not evident performance gain so disable
+ // it now.
+ if (isa<AtomicMemSetInst>(MI))
+ if (Alignment < Len)
+ return nullptr;
+
+ // memset(s,c,n) -> store s, c (for n=1,2,4,8)
+ if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
+ Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
+
+ Value *Dest = MI->getDest();
+ unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
+ Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
+ Dest = Builder.CreateBitCast(Dest, NewDstPtrTy);
+
+ // Extract the fill value and store.
+ uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
+ StoreInst *S = Builder.CreateStore(ConstantInt::get(ITy, Fill), Dest,
+ MI->isVolatile());
+ S->setAlignment(Alignment);
+ if (isa<AtomicMemSetInst>(MI))
+ S->setOrdering(AtomicOrdering::Unordered);
+
+ // Set the size of the copy to 0, it will be deleted on the next iteration.
+ MI->setLength(Constant::getNullValue(LenC->getType()));
+ return MI;
+ }
+
+ return nullptr;
+}
+
+static Value *simplifyX86immShift(const IntrinsicInst &II,
+ InstCombiner::BuilderTy &Builder) {
+ bool LogicalShift = false;
+ bool ShiftLeft = false;
+
+ switch (II.getIntrinsicID()) {
+ default: llvm_unreachable("Unexpected intrinsic!");
+ case Intrinsic::x86_sse2_psra_d:
+ case Intrinsic::x86_sse2_psra_w:
+ case Intrinsic::x86_sse2_psrai_d:
+ case Intrinsic::x86_sse2_psrai_w:
+ case Intrinsic::x86_avx2_psra_d:
+ case Intrinsic::x86_avx2_psra_w:
+ case Intrinsic::x86_avx2_psrai_d:
+ case Intrinsic::x86_avx2_psrai_w:
+ case Intrinsic::x86_avx512_psra_q_128:
+ case Intrinsic::x86_avx512_psrai_q_128:
+ case Intrinsic::x86_avx512_psra_q_256:
+ case Intrinsic::x86_avx512_psrai_q_256:
+ case Intrinsic::x86_avx512_psra_d_512:
+ case Intrinsic::x86_avx512_psra_q_512:
+ case Intrinsic::x86_avx512_psra_w_512:
+ case Intrinsic::x86_avx512_psrai_d_512:
+ case Intrinsic::x86_avx512_psrai_q_512:
+ case Intrinsic::x86_avx512_psrai_w_512:
+ LogicalShift = false; ShiftLeft = false;
+ break;
+ case Intrinsic::x86_sse2_psrl_d:
+ case Intrinsic::x86_sse2_psrl_q:
+ case Intrinsic::x86_sse2_psrl_w:
+ case Intrinsic::x86_sse2_psrli_d:
+ case Intrinsic::x86_sse2_psrli_q:
+ case Intrinsic::x86_sse2_psrli_w:
+ case Intrinsic::x86_avx2_psrl_d:
+ case Intrinsic::x86_avx2_psrl_q:
+ case Intrinsic::x86_avx2_psrl_w:
+ case Intrinsic::x86_avx2_psrli_d:
+ case Intrinsic::x86_avx2_psrli_q:
+ case Intrinsic::x86_avx2_psrli_w:
+ case Intrinsic::x86_avx512_psrl_d_512:
+ case Intrinsic::x86_avx512_psrl_q_512:
+ case Intrinsic::x86_avx512_psrl_w_512:
+ case Intrinsic::x86_avx512_psrli_d_512:
+ case Intrinsic::x86_avx512_psrli_q_512:
+ case Intrinsic::x86_avx512_psrli_w_512:
+ LogicalShift = true; ShiftLeft = false;
+ break;
+ case Intrinsic::x86_sse2_psll_d:
+ case Intrinsic::x86_sse2_psll_q:
+ case Intrinsic::x86_sse2_psll_w:
+ case Intrinsic::x86_sse2_pslli_d:
+ case Intrinsic::x86_sse2_pslli_q:
+ case Intrinsic::x86_sse2_pslli_w:
+ case Intrinsic::x86_avx2_psll_d:
+ case Intrinsic::x86_avx2_psll_q:
+ case Intrinsic::x86_avx2_psll_w:
+ case Intrinsic::x86_avx2_pslli_d:
+ case Intrinsic::x86_avx2_pslli_q:
+ case Intrinsic::x86_avx2_pslli_w:
+ case Intrinsic::x86_avx512_psll_d_512:
+ case Intrinsic::x86_avx512_psll_q_512:
+ case Intrinsic::x86_avx512_psll_w_512:
+ case Intrinsic::x86_avx512_pslli_d_512:
+ case Intrinsic::x86_avx512_pslli_q_512:
+ case Intrinsic::x86_avx512_pslli_w_512:
+ LogicalShift = true; ShiftLeft = true;
+ break;
+ }
+ assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
+
+ // Simplify if count is constant.
+ auto Arg1 = II.getArgOperand(1);
+ auto CAZ = dyn_cast<ConstantAggregateZero>(Arg1);
+ auto CDV = dyn_cast<ConstantDataVector>(Arg1);
+ auto CInt = dyn_cast<ConstantInt>(Arg1);
+ if (!CAZ && !CDV && !CInt)
+ return nullptr;
+
+ APInt Count(64, 0);
+ if (CDV) {
+ // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector
+ // operand to compute the shift amount.
+ auto VT = cast<VectorType>(CDV->getType());
+ unsigned BitWidth = VT->getElementType()->getPrimitiveSizeInBits();
+ assert((64 % BitWidth) == 0 && "Unexpected packed shift size");
+ unsigned NumSubElts = 64 / BitWidth;
+
+ // Concatenate the sub-elements to create the 64-bit value.
+ for (unsigned i = 0; i != NumSubElts; ++i) {
+ unsigned SubEltIdx = (NumSubElts - 1) - i;
+ auto SubElt = cast<ConstantInt>(CDV->getElementAsConstant(SubEltIdx));
+ Count <<= BitWidth;
+ Count |= SubElt->getValue().zextOrTrunc(64);
+ }
+ }
+ else if (CInt)
+ Count = CInt->getValue();
+
+ auto Vec = II.getArgOperand(0);
+ auto VT = cast<VectorType>(Vec->getType());
+ auto SVT = VT->getElementType();
+ unsigned VWidth = VT->getNumElements();
+ unsigned BitWidth = SVT->getPrimitiveSizeInBits();
+
+ // If shift-by-zero then just return the original value.
+ if (Count.isNullValue())
+ return Vec;
+
+ // Handle cases when Shift >= BitWidth.
+ if (Count.uge(BitWidth)) {
+ // If LogicalShift - just return zero.
+ if (LogicalShift)
+ return ConstantAggregateZero::get(VT);
+
+ // If ArithmeticShift - clamp Shift to (BitWidth - 1).
+ Count = APInt(64, BitWidth - 1);
+ }
+
+ // Get a constant vector of the same type as the first operand.
+ auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth));
+ auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt);
+
+ if (ShiftLeft)
+ return Builder.CreateShl(Vec, ShiftVec);
+
+ if (LogicalShift)
+ return Builder.CreateLShr(Vec, ShiftVec);
+
+ return Builder.CreateAShr(Vec, ShiftVec);
+}
+
+// Attempt to simplify AVX2 per-element shift intrinsics to a generic IR shift.
+// Unlike the generic IR shifts, the intrinsics have defined behaviour for out
+// of range shift amounts (logical - set to zero, arithmetic - splat sign bit).
+static Value *simplifyX86varShift(const IntrinsicInst &II,
+ InstCombiner::BuilderTy &Builder) {
+ bool LogicalShift = false;
+ bool ShiftLeft = false;
+
+ switch (II.getIntrinsicID()) {
+ default: llvm_unreachable("Unexpected intrinsic!");
+ case Intrinsic::x86_avx2_psrav_d:
+ case Intrinsic::x86_avx2_psrav_d_256:
+ case Intrinsic::x86_avx512_psrav_q_128:
+ case Intrinsic::x86_avx512_psrav_q_256:
+ case Intrinsic::x86_avx512_psrav_d_512:
+ case Intrinsic::x86_avx512_psrav_q_512:
+ case Intrinsic::x86_avx512_psrav_w_128:
+ case Intrinsic::x86_avx512_psrav_w_256:
+ case Intrinsic::x86_avx512_psrav_w_512:
+ LogicalShift = false;
+ ShiftLeft = false;
+ break;
+ case Intrinsic::x86_avx2_psrlv_d:
+ case Intrinsic::x86_avx2_psrlv_d_256:
+ case Intrinsic::x86_avx2_psrlv_q:
+ case Intrinsic::x86_avx2_psrlv_q_256:
+ case Intrinsic::x86_avx512_psrlv_d_512:
+ case Intrinsic::x86_avx512_psrlv_q_512:
+ case Intrinsic::x86_avx512_psrlv_w_128:
+ case Intrinsic::x86_avx512_psrlv_w_256:
+ case Intrinsic::x86_avx512_psrlv_w_512:
+ LogicalShift = true;
+ ShiftLeft = false;
+ break;
+ case Intrinsic::x86_avx2_psllv_d:
+ case Intrinsic::x86_avx2_psllv_d_256:
+ case Intrinsic::x86_avx2_psllv_q:
+ case Intrinsic::x86_avx2_psllv_q_256:
+ case Intrinsic::x86_avx512_psllv_d_512:
+ case Intrinsic::x86_avx512_psllv_q_512:
+ case Intrinsic::x86_avx512_psllv_w_128:
+ case Intrinsic::x86_avx512_psllv_w_256:
+ case Intrinsic::x86_avx512_psllv_w_512:
+ LogicalShift = true;
+ ShiftLeft = true;
+ break;
+ }
+ assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
+
+ // Simplify if all shift amounts are constant/undef.
+ auto *CShift = dyn_cast<Constant>(II.getArgOperand(1));
+ if (!CShift)
+ return nullptr;
+
+ auto Vec = II.getArgOperand(0);
+ auto VT = cast<VectorType>(II.getType());
+ auto SVT = VT->getVectorElementType();
+ int NumElts = VT->getNumElements();
+ int BitWidth = SVT->getIntegerBitWidth();
+
+ // Collect each element's shift amount.
+ // We also collect special cases: UNDEF = -1, OUT-OF-RANGE = BitWidth.
+ bool AnyOutOfRange = false;
+ SmallVector<int, 8> ShiftAmts;
+ for (int I = 0; I < NumElts; ++I) {
+ auto *CElt = CShift->getAggregateElement(I);
+ if (CElt && isa<UndefValue>(CElt)) {
+ ShiftAmts.push_back(-1);
+ continue;
+ }
+
+ auto *COp = dyn_cast_or_null<ConstantInt>(CElt);
+ if (!COp)
+ return nullptr;
+
+ // Handle out of range shifts.
+ // If LogicalShift - set to BitWidth (special case).
+ // If ArithmeticShift - set to (BitWidth - 1) (sign splat).
+ APInt ShiftVal = COp->getValue();
+ if (ShiftVal.uge(BitWidth)) {
+ AnyOutOfRange = LogicalShift;
+ ShiftAmts.push_back(LogicalShift ? BitWidth : BitWidth - 1);
+ continue;
+ }
+
+ ShiftAmts.push_back((int)ShiftVal.getZExtValue());
+ }
+
+ // If all elements out of range or UNDEF, return vector of zeros/undefs.
+ // ArithmeticShift should only hit this if they are all UNDEF.
+ auto OutOfRange = [&](int Idx) { return (Idx < 0) || (BitWidth <= Idx); };
+ if (llvm::all_of(ShiftAmts, OutOfRange)) {
+ SmallVector<Constant *, 8> ConstantVec;
+ for (int Idx : ShiftAmts) {
+ if (Idx < 0) {
+ ConstantVec.push_back(UndefValue::get(SVT));
+ } else {
+ assert(LogicalShift && "Logical shift expected");
+ ConstantVec.push_back(ConstantInt::getNullValue(SVT));
+ }
+ }
+ return ConstantVector::get(ConstantVec);
+ }
+
+ // We can't handle only some out of range values with generic logical shifts.
+ if (AnyOutOfRange)
+ return nullptr;
+
+ // Build the shift amount constant vector.
+ SmallVector<Constant *, 8> ShiftVecAmts;
+ for (int Idx : ShiftAmts) {
+ if (Idx < 0)
+ ShiftVecAmts.push_back(UndefValue::get(SVT));
+ else
+ ShiftVecAmts.push_back(ConstantInt::get(SVT, Idx));
+ }
+ auto ShiftVec = ConstantVector::get(ShiftVecAmts);
+
+ if (ShiftLeft)
+ return Builder.CreateShl(Vec, ShiftVec);
+
+ if (LogicalShift)
+ return Builder.CreateLShr(Vec, ShiftVec);
+
+ return Builder.CreateAShr(Vec, ShiftVec);
+}
+
+static Value *simplifyX86pack(IntrinsicInst &II,
+ InstCombiner::BuilderTy &Builder, bool IsSigned) {
+ Value *Arg0 = II.getArgOperand(0);
+ Value *Arg1 = II.getArgOperand(1);
+ Type *ResTy = II.getType();
+
+ // Fast all undef handling.
+ if (isa<UndefValue>(Arg0) && isa<UndefValue>(Arg1))
+ return UndefValue::get(ResTy);
+
+ Type *ArgTy = Arg0->getType();
+ unsigned NumLanes = ResTy->getPrimitiveSizeInBits() / 128;
+ unsigned NumSrcElts = ArgTy->getVectorNumElements();
+ assert(ResTy->getVectorNumElements() == (2 * NumSrcElts) &&
+ "Unexpected packing types");
+
+ unsigned NumSrcEltsPerLane = NumSrcElts / NumLanes;
+ unsigned DstScalarSizeInBits = ResTy->getScalarSizeInBits();
+ unsigned SrcScalarSizeInBits = ArgTy->getScalarSizeInBits();
+ assert(SrcScalarSizeInBits == (2 * DstScalarSizeInBits) &&
+ "Unexpected packing types");
+
+ // Constant folding.
+ if (!isa<Constant>(Arg0) || !isa<Constant>(Arg1))
+ return nullptr;
+
+ // Clamp Values - signed/unsigned both use signed clamp values, but they
+ // differ on the min/max values.
+ APInt MinValue, MaxValue;
+ if (IsSigned) {
+ // PACKSS: Truncate signed value with signed saturation.
+ // Source values less than dst minint are saturated to minint.
+ // Source values greater than dst maxint are saturated to maxint.
+ MinValue =
+ APInt::getSignedMinValue(DstScalarSizeInBits).sext(SrcScalarSizeInBits);
+ MaxValue =
+ APInt::getSignedMaxValue(DstScalarSizeInBits).sext(SrcScalarSizeInBits);
+ } else {
+ // PACKUS: Truncate signed value with unsigned saturation.
+ // Source values less than zero are saturated to zero.
+ // Source values greater than dst maxuint are saturated to maxuint.
+ MinValue = APInt::getNullValue(SrcScalarSizeInBits);
+ MaxValue = APInt::getLowBitsSet(SrcScalarSizeInBits, DstScalarSizeInBits);
+ }
+
+ auto *MinC = Constant::getIntegerValue(ArgTy, MinValue);
+ auto *MaxC = Constant::getIntegerValue(ArgTy, MaxValue);
+ Arg0 = Builder.CreateSelect(Builder.CreateICmpSLT(Arg0, MinC), MinC, Arg0);
+ Arg1 = Builder.CreateSelect(Builder.CreateICmpSLT(Arg1, MinC), MinC, Arg1);
+ Arg0 = Builder.CreateSelect(Builder.CreateICmpSGT(Arg0, MaxC), MaxC, Arg0);
+ Arg1 = Builder.CreateSelect(Builder.CreateICmpSGT(Arg1, MaxC), MaxC, Arg1);
+
+ // Shuffle clamped args together at the lane level.
+ SmallVector<unsigned, 32> PackMask;
+ for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
+ for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt)
+ PackMask.push_back(Elt + (Lane * NumSrcEltsPerLane));
+ for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt)
+ PackMask.push_back(Elt + (Lane * NumSrcEltsPerLane) + NumSrcElts);
+ }
+ auto *Shuffle = Builder.CreateShuffleVector(Arg0, Arg1, PackMask);
+
+ // Truncate to dst size.
+ return Builder.CreateTrunc(Shuffle, ResTy);
+}
+
+static Value *simplifyX86movmsk(const IntrinsicInst &II,
+ InstCombiner::BuilderTy &Builder) {
+ Value *Arg = II.getArgOperand(0);
+ Type *ResTy = II.getType();
+ Type *ArgTy = Arg->getType();
+
+ // movmsk(undef) -> zero as we must ensure the upper bits are zero.
+ if (isa<UndefValue>(Arg))
+ return Constant::getNullValue(ResTy);
+
+ // We can't easily peek through x86_mmx types.
+ if (!ArgTy->isVectorTy())
+ return nullptr;
+
+ // Expand MOVMSK to compare/bitcast/zext:
+ // e.g. PMOVMSKB(v16i8 x):
+ // %cmp = icmp slt <16 x i8> %x, zeroinitializer
+ // %int = bitcast <16 x i1> %cmp to i16
+ // %res = zext i16 %int to i32
+ unsigned NumElts = ArgTy->getVectorNumElements();
+ Type *IntegerVecTy = VectorType::getInteger(cast<VectorType>(ArgTy));
+ Type *IntegerTy = Builder.getIntNTy(NumElts);
+
+ Value *Res = Builder.CreateBitCast(Arg, IntegerVecTy);
+ Res = Builder.CreateICmpSLT(Res, Constant::getNullValue(IntegerVecTy));
+ Res = Builder.CreateBitCast(Res, IntegerTy);
+ Res = Builder.CreateZExtOrTrunc(Res, ResTy);
+ return Res;
+}
+
+static Value *simplifyX86addcarry(const IntrinsicInst &II,
+ InstCombiner::BuilderTy &Builder) {
+ Value *CarryIn = II.getArgOperand(0);
+ Value *Op1 = II.getArgOperand(1);
+ Value *Op2 = II.getArgOperand(2);
+ Type *RetTy = II.getType();
+ Type *OpTy = Op1->getType();
+ assert(RetTy->getStructElementType(0)->isIntegerTy(8) &&
+ RetTy->getStructElementType(1) == OpTy && OpTy == Op2->getType() &&
+ "Unexpected types for x86 addcarry");
+
+ // If carry-in is zero, this is just an unsigned add with overflow.
+ if (match(CarryIn, m_ZeroInt())) {
+ Value *UAdd = Builder.CreateIntrinsic(Intrinsic::uadd_with_overflow, OpTy,
+ { Op1, Op2 });
+ // The types have to be adjusted to match the x86 call types.
+ Value *UAddResult = Builder.CreateExtractValue(UAdd, 0);
+ Value *UAddOV = Builder.CreateZExt(Builder.CreateExtractValue(UAdd, 1),
+ Builder.getInt8Ty());
+ Value *Res = UndefValue::get(RetTy);
+ Res = Builder.CreateInsertValue(Res, UAddOV, 0);
+ return Builder.CreateInsertValue(Res, UAddResult, 1);
+ }
+
+ return nullptr;
+}
+
+static Value *simplifyX86insertps(const IntrinsicInst &II,
+ InstCombiner::BuilderTy &Builder) {
+ auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2));
+ if (!CInt)
+ return nullptr;
+
+ VectorType *VecTy = cast<VectorType>(II.getType());
+ assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type");
+
+ // The immediate permute control byte looks like this:
+ // [3:0] - zero mask for each 32-bit lane
+ // [5:4] - select one 32-bit destination lane
+ // [7:6] - select one 32-bit source lane
+
+ uint8_t Imm = CInt->getZExtValue();
+ uint8_t ZMask = Imm & 0xf;
+ uint8_t DestLane = (Imm >> 4) & 0x3;
+ uint8_t SourceLane = (Imm >> 6) & 0x3;
+
+ ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
+
+ // If all zero mask bits are set, this was just a weird way to
+ // generate a zero vector.
+ if (ZMask == 0xf)
+ return ZeroVector;
+
+ // Initialize by passing all of the first source bits through.
+ uint32_t ShuffleMask[4] = { 0, 1, 2, 3 };
+
+ // We may replace the second operand with the zero vector.
+ Value *V1 = II.getArgOperand(1);
+
+ if (ZMask) {
+ // If the zero mask is being used with a single input or the zero mask
+ // overrides the destination lane, this is a shuffle with the zero vector.
+ if ((II.getArgOperand(0) == II.getArgOperand(1)) ||
+ (ZMask & (1 << DestLane))) {
+ V1 = ZeroVector;
+ // We may still move 32-bits of the first source vector from one lane
+ // to another.
+ ShuffleMask[DestLane] = SourceLane;
+ // The zero mask may override the previous insert operation.
+ for (unsigned i = 0; i < 4; ++i)
+ if ((ZMask >> i) & 0x1)
+ ShuffleMask[i] = i + 4;
+ } else {
+ // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle?
+ return nullptr;
+ }
+ } else {
+ // Replace the selected destination lane with the selected source lane.
+ ShuffleMask[DestLane] = SourceLane + 4;
+ }
+
+ return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask);
+}
+
+/// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding
+/// or conversion to a shuffle vector.
+static Value *simplifyX86extrq(IntrinsicInst &II, Value *Op0,
+ ConstantInt *CILength, ConstantInt *CIIndex,
+ InstCombiner::BuilderTy &Builder) {
+ auto LowConstantHighUndef = [&](uint64_t Val) {
+ Type *IntTy64 = Type::getInt64Ty(II.getContext());
+ Constant *Args[] = {ConstantInt::get(IntTy64, Val),
+ UndefValue::get(IntTy64)};
+ return ConstantVector::get(Args);
+ };
+
+ // See if we're dealing with constant values.
+ Constant *C0 = dyn_cast<Constant>(Op0);
+ ConstantInt *CI0 =
+ C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
+ : nullptr;
+
+ // Attempt to constant fold.
+ if (CILength && CIIndex) {
+ // From AMD documentation: "The bit index and field length are each six
+ // bits in length other bits of the field are ignored."
+ APInt APIndex = CIIndex->getValue().zextOrTrunc(6);
+ APInt APLength = CILength->getValue().zextOrTrunc(6);
+
+ unsigned Index = APIndex.getZExtValue();
+
+ // From AMD documentation: "a value of zero in the field length is
+ // defined as length of 64".
+ unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
+
+ // From AMD documentation: "If the sum of the bit index + length field
+ // is greater than 64, the results are undefined".
+ unsigned End = Index + Length;
+
+ // Note that both field index and field length are 8-bit quantities.
+ // Since variables 'Index' and 'Length' are unsigned values
+ // obtained from zero-extending field index and field length
+ // respectively, their sum should never wrap around.
+ if (End > 64)
+ return UndefValue::get(II.getType());
+
+ // If we are inserting whole bytes, we can convert this to a shuffle.
+ // Lowering can recognize EXTRQI shuffle masks.
+ if ((Length % 8) == 0 && (Index % 8) == 0) {
+ // Convert bit indices to byte indices.
+ Length /= 8;
+ Index /= 8;
+
+ Type *IntTy8 = Type::getInt8Ty(II.getContext());
+ Type *IntTy32 = Type::getInt32Ty(II.getContext());
+ VectorType *ShufTy = VectorType::get(IntTy8, 16);
+
+ SmallVector<Constant *, 16> ShuffleMask;
+ for (int i = 0; i != (int)Length; ++i)
+ ShuffleMask.push_back(
+ Constant::getIntegerValue(IntTy32, APInt(32, i + Index)));
+ for (int i = Length; i != 8; ++i)
+ ShuffleMask.push_back(
+ Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
+ for (int i = 8; i != 16; ++i)
+ ShuffleMask.push_back(UndefValue::get(IntTy32));
+
+ Value *SV = Builder.CreateShuffleVector(
+ Builder.CreateBitCast(Op0, ShufTy),
+ ConstantAggregateZero::get(ShufTy), ConstantVector::get(ShuffleMask));
+ return Builder.CreateBitCast(SV, II.getType());
+ }
+
+ // Constant Fold - shift Index'th bit to lowest position and mask off
+ // Length bits.
+ if (CI0) {
+ APInt Elt = CI0->getValue();
+ Elt.lshrInPlace(Index);
+ Elt = Elt.zextOrTrunc(Length);
+ return LowConstantHighUndef(Elt.getZExtValue());
+ }
+
+ // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI.
+ if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) {
+ Value *Args[] = {Op0, CILength, CIIndex};
+ Module *M = II.getModule();
+ Function *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_extrqi);
+ return Builder.CreateCall(F, Args);
+ }
+ }
+
+ // Constant Fold - extraction from zero is always {zero, undef}.
+ if (CI0 && CI0->isZero())
+ return LowConstantHighUndef(0);
+
+ return nullptr;
+}
+
+/// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant
+/// folding or conversion to a shuffle vector.
+static Value *simplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1,
+ APInt APLength, APInt APIndex,
+ InstCombiner::BuilderTy &Builder) {
+ // From AMD documentation: "The bit index and field length are each six bits
+ // in length other bits of the field are ignored."
+ APIndex = APIndex.zextOrTrunc(6);
+ APLength = APLength.zextOrTrunc(6);
+
+ // Attempt to constant fold.
+ unsigned Index = APIndex.getZExtValue();
+
+ // From AMD documentation: "a value of zero in the field length is
+ // defined as length of 64".
+ unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
+
+ // From AMD documentation: "If the sum of the bit index + length field
+ // is greater than 64, the results are undefined".
+ unsigned End = Index + Length;
+
+ // Note that both field index and field length are 8-bit quantities.
+ // Since variables 'Index' and 'Length' are unsigned values
+ // obtained from zero-extending field index and field length
+ // respectively, their sum should never wrap around.
+ if (End > 64)
+ return UndefValue::get(II.getType());
+
+ // If we are inserting whole bytes, we can convert this to a shuffle.
+ // Lowering can recognize INSERTQI shuffle masks.
+ if ((Length % 8) == 0 && (Index % 8) == 0) {
+ // Convert bit indices to byte indices.
+ Length /= 8;
+ Index /= 8;
+
+ Type *IntTy8 = Type::getInt8Ty(II.getContext());
+ Type *IntTy32 = Type::getInt32Ty(II.getContext());
+ VectorType *ShufTy = VectorType::get(IntTy8, 16);
+
+ SmallVector<Constant *, 16> ShuffleMask;
+ for (int i = 0; i != (int)Index; ++i)
+ ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
+ for (int i = 0; i != (int)Length; ++i)
+ ShuffleMask.push_back(
+ Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
+ for (int i = Index + Length; i != 8; ++i)
+ ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
+ for (int i = 8; i != 16; ++i)
+ ShuffleMask.push_back(UndefValue::get(IntTy32));
+
+ Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy),
+ Builder.CreateBitCast(Op1, ShufTy),
+ ConstantVector::get(ShuffleMask));
+ return Builder.CreateBitCast(SV, II.getType());
+ }
+
+ // See if we're dealing with constant values.
+ Constant *C0 = dyn_cast<Constant>(Op0);
+ Constant *C1 = dyn_cast<Constant>(Op1);
+ ConstantInt *CI00 =
+ C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
+ : nullptr;
+ ConstantInt *CI10 =
+ C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
+ : nullptr;
+
+ // Constant Fold - insert bottom Length bits starting at the Index'th bit.
+ if (CI00 && CI10) {
+ APInt V00 = CI00->getValue();
+ APInt V10 = CI10->getValue();
+ APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index);
+ V00 = V00 & ~Mask;
+ V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index);
+ APInt Val = V00 | V10;
+ Type *IntTy64 = Type::getInt64Ty(II.getContext());
+ Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()),
+ UndefValue::get(IntTy64)};
+ return ConstantVector::get(Args);
+ }
+
+ // If we were an INSERTQ call, we'll save demanded elements if we convert to
+ // INSERTQI.
+ if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) {
+ Type *IntTy8 = Type::getInt8Ty(II.getContext());
+ Constant *CILength = ConstantInt::get(IntTy8, Length, false);
+ Constant *CIIndex = ConstantInt::get(IntTy8, Index, false);
+
+ Value *Args[] = {Op0, Op1, CILength, CIIndex};
+ Module *M = II.getModule();
+ Function *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi);
+ return Builder.CreateCall(F, Args);
+ }
+
+ return nullptr;
+}
+
+/// Attempt to convert pshufb* to shufflevector if the mask is constant.
+static Value *simplifyX86pshufb(const IntrinsicInst &II,
+ InstCombiner::BuilderTy &Builder) {
+ Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
+ if (!V)
+ return nullptr;
+
+ auto *VecTy = cast<VectorType>(II.getType());
+ auto *MaskEltTy = Type::getInt32Ty(II.getContext());
+ unsigned NumElts = VecTy->getNumElements();
+ assert((NumElts == 16 || NumElts == 32 || NumElts == 64) &&
+ "Unexpected number of elements in shuffle mask!");
+
+ // Construct a shuffle mask from constant integers or UNDEFs.
+ Constant *Indexes[64] = {nullptr};
+
+ // Each byte in the shuffle control mask forms an index to permute the
+ // corresponding byte in the destination operand.
+ for (unsigned I = 0; I < NumElts; ++I) {
+ Constant *COp = V->getAggregateElement(I);
+ if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
+ return nullptr;
+
+ if (isa<UndefValue>(COp)) {
+ Indexes[I] = UndefValue::get(MaskEltTy);
+ continue;
+ }
+
+ int8_t Index = cast<ConstantInt>(COp)->getValue().getZExtValue();
+
+ // If the most significant bit (bit[7]) of each byte of the shuffle
+ // control mask is set, then zero is written in the result byte.
+ // The zero vector is in the right-hand side of the resulting
+ // shufflevector.
+
+ // The value of each index for the high 128-bit lane is the least
+ // significant 4 bits of the respective shuffle control byte.
+ Index = ((Index < 0) ? NumElts : Index & 0x0F) + (I & 0xF0);
+ Indexes[I] = ConstantInt::get(MaskEltTy, Index);
+ }
+
+ auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts));
+ auto V1 = II.getArgOperand(0);
+ auto V2 = Constant::getNullValue(VecTy);
+ return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
+}
+
+/// Attempt to convert vpermilvar* to shufflevector if the mask is constant.
+static Value *simplifyX86vpermilvar(const IntrinsicInst &II,
+ InstCombiner::BuilderTy &Builder) {
+ Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
+ if (!V)
+ return nullptr;
+
+ auto *VecTy = cast<VectorType>(II.getType());
+ auto *MaskEltTy = Type::getInt32Ty(II.getContext());
+ unsigned NumElts = VecTy->getVectorNumElements();
+ bool IsPD = VecTy->getScalarType()->isDoubleTy();
+ unsigned NumLaneElts = IsPD ? 2 : 4;
+ assert(NumElts == 16 || NumElts == 8 || NumElts == 4 || NumElts == 2);
+
+ // Construct a shuffle mask from constant integers or UNDEFs.
+ Constant *Indexes[16] = {nullptr};
+
+ // The intrinsics only read one or two bits, clear the rest.
+ for (unsigned I = 0; I < NumElts; ++I) {
+ Constant *COp = V->getAggregateElement(I);
+ if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
+ return nullptr;
+
+ if (isa<UndefValue>(COp)) {
+ Indexes[I] = UndefValue::get(MaskEltTy);
+ continue;
+ }
+
+ APInt Index = cast<ConstantInt>(COp)->getValue();
+ Index = Index.zextOrTrunc(32).getLoBits(2);
+
+ // The PD variants uses bit 1 to select per-lane element index, so
+ // shift down to convert to generic shuffle mask index.
+ if (IsPD)
+ Index.lshrInPlace(1);
+
+ // The _256 variants are a bit trickier since the mask bits always index
+ // into the corresponding 128 half. In order to convert to a generic
+ // shuffle, we have to make that explicit.
+ Index += APInt(32, (I / NumLaneElts) * NumLaneElts);
+
+ Indexes[I] = ConstantInt::get(MaskEltTy, Index);
+ }
+
+ auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts));
+ auto V1 = II.getArgOperand(0);
+ auto V2 = UndefValue::get(V1->getType());
+ return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
+}
+
+/// Attempt to convert vpermd/vpermps to shufflevector if the mask is constant.
+static Value *simplifyX86vpermv(const IntrinsicInst &II,
+ InstCombiner::BuilderTy &Builder) {
+ auto *V = dyn_cast<Constant>(II.getArgOperand(1));
+ if (!V)
+ return nullptr;
+
+ auto *VecTy = cast<VectorType>(II.getType());
+ auto *MaskEltTy = Type::getInt32Ty(II.getContext());
+ unsigned Size = VecTy->getNumElements();
+ assert((Size == 4 || Size == 8 || Size == 16 || Size == 32 || Size == 64) &&
+ "Unexpected shuffle mask size");
+
+ // Construct a shuffle mask from constant integers or UNDEFs.
+ Constant *Indexes[64] = {nullptr};
+
+ for (unsigned I = 0; I < Size; ++I) {
+ Constant *COp = V->getAggregateElement(I);
+ if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
+ return nullptr;
+
+ if (isa<UndefValue>(COp)) {
+ Indexes[I] = UndefValue::get(MaskEltTy);
+ continue;
+ }
+
+ uint32_t Index = cast<ConstantInt>(COp)->getZExtValue();
+ Index &= Size - 1;
+ Indexes[I] = ConstantInt::get(MaskEltTy, Index);
+ }
+
+ auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, Size));
+ auto V1 = II.getArgOperand(0);
+ auto V2 = UndefValue::get(VecTy);
+ return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
+}
+
+// TODO, Obvious Missing Transforms:
+// * Narrow width by halfs excluding zero/undef lanes
+Value *InstCombiner::simplifyMaskedLoad(IntrinsicInst &II) {
+ Value *LoadPtr = II.getArgOperand(0);
+ unsigned Alignment = cast<ConstantInt>(II.getArgOperand(1))->getZExtValue();
+
+ // If the mask is all ones or undefs, this is a plain vector load of the 1st
+ // argument.
+ if (maskIsAllOneOrUndef(II.getArgOperand(2)))
+ return Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
+ "unmaskedload");
+
+ // If we can unconditionally load from this address, replace with a
+ // load/select idiom. TODO: use DT for context sensitive query
+ if (isDereferenceableAndAlignedPointer(
+ LoadPtr, II.getType(), MaybeAlign(Alignment),
+ II.getModule()->getDataLayout(), &II, nullptr)) {
+ Value *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
+ "unmaskedload");
+ return Builder.CreateSelect(II.getArgOperand(2), LI, II.getArgOperand(3));
+ }
+
+ return nullptr;
+}
+
+// TODO, Obvious Missing Transforms:
+// * Single constant active lane -> store
+// * Narrow width by halfs excluding zero/undef lanes
+Instruction *InstCombiner::simplifyMaskedStore(IntrinsicInst &II) {
+ auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
+ if (!ConstMask)
+ return nullptr;
+
+ // If the mask is all zeros, this instruction does nothing.
+ if (ConstMask->isNullValue())
+ return eraseInstFromFunction(II);
+
+ // If the mask is all ones, this is a plain vector store of the 1st argument.
+ if (ConstMask->isAllOnesValue()) {
+ Value *StorePtr = II.getArgOperand(1);
+ MaybeAlign Alignment(
+ cast<ConstantInt>(II.getArgOperand(2))->getZExtValue());
+ return new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
+ }
+
+ // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
+ APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
+ APInt UndefElts(DemandedElts.getBitWidth(), 0);
+ if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0),
+ DemandedElts, UndefElts)) {
+ II.setOperand(0, V);
+ return &II;
+ }
+
+ return nullptr;
+}
+
+// TODO, Obvious Missing Transforms:
+// * Single constant active lane load -> load
+// * Dereferenceable address & few lanes -> scalarize speculative load/selects
+// * Adjacent vector addresses -> masked.load
+// * Narrow width by halfs excluding zero/undef lanes
+// * Vector splat address w/known mask -> scalar load
+// * Vector incrementing address -> vector masked load
+Instruction *InstCombiner::simplifyMaskedGather(IntrinsicInst &II) {
+ return nullptr;
+}
+
+// TODO, Obvious Missing Transforms:
+// * Single constant active lane -> store
+// * Adjacent vector addresses -> masked.store
+// * Narrow store width by halfs excluding zero/undef lanes
+// * Vector splat address w/known mask -> scalar store
+// * Vector incrementing address -> vector masked store
+Instruction *InstCombiner::simplifyMaskedScatter(IntrinsicInst &II) {
+ auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
+ if (!ConstMask)
+ return nullptr;
+
+ // If the mask is all zeros, a scatter does nothing.
+ if (ConstMask->isNullValue())
+ return eraseInstFromFunction(II);
+
+ // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
+ APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
+ APInt UndefElts(DemandedElts.getBitWidth(), 0);
+ if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0),
+ DemandedElts, UndefElts)) {
+ II.setOperand(0, V);
+ return &II;
+ }
+ if (Value *V = SimplifyDemandedVectorElts(II.getOperand(1),
+ DemandedElts, UndefElts)) {
+ II.setOperand(1, V);
+ return &II;
+ }
+
+ return nullptr;
+}
+
+/// This function transforms launder.invariant.group and strip.invariant.group
+/// like:
+/// launder(launder(%x)) -> launder(%x) (the result is not the argument)
+/// launder(strip(%x)) -> launder(%x)
+/// strip(strip(%x)) -> strip(%x) (the result is not the argument)
+/// strip(launder(%x)) -> strip(%x)
+/// This is legal because it preserves the most recent information about
+/// the presence or absence of invariant.group.
+static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II,
+ InstCombiner &IC) {
+ auto *Arg = II.getArgOperand(0);
+ auto *StrippedArg = Arg->stripPointerCasts();
+ auto *StrippedInvariantGroupsArg = Arg->stripPointerCastsAndInvariantGroups();
+ if (StrippedArg == StrippedInvariantGroupsArg)
+ return nullptr; // No launders/strips to remove.
+
+ Value *Result = nullptr;
+
+ if (II.getIntrinsicID() == Intrinsic::launder_invariant_group)
+ Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg);
+ else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group)
+ Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg);
+ else
+ llvm_unreachable(
+ "simplifyInvariantGroupIntrinsic only handles launder and strip");
+ if (Result->getType()->getPointerAddressSpace() !=
+ II.getType()->getPointerAddressSpace())
+ Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType());
+ if (Result->getType() != II.getType())
+ Result = IC.Builder.CreateBitCast(Result, II.getType());
+
+ return cast<Instruction>(Result);
+}
+
+static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombiner &IC) {
+ assert((II.getIntrinsicID() == Intrinsic::cttz ||
+ II.getIntrinsicID() == Intrinsic::ctlz) &&
+ "Expected cttz or ctlz intrinsic");
+ bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz;
+ Value *Op0 = II.getArgOperand(0);
+ Value *X;
+ // ctlz(bitreverse(x)) -> cttz(x)
+ // cttz(bitreverse(x)) -> ctlz(x)
+ if (match(Op0, m_BitReverse(m_Value(X)))) {
+ Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz;
+ Function *F = Intrinsic::getDeclaration(II.getModule(), ID, II.getType());
+ return CallInst::Create(F, {X, II.getArgOperand(1)});
+ }
+
+ if (IsTZ) {
+ // cttz(-x) -> cttz(x)
+ if (match(Op0, m_Neg(m_Value(X)))) {
+ II.setOperand(0, X);
+ return &II;
+ }
+
+ // cttz(abs(x)) -> cttz(x)
+ // cttz(nabs(x)) -> cttz(x)
+ Value *Y;
+ SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
+ if (SPF == SPF_ABS || SPF == SPF_NABS) {
+ II.setOperand(0, X);
+ return &II;
+ }
+ }
+
+ KnownBits Known = IC.computeKnownBits(Op0, 0, &II);
+
+ // Create a mask for bits above (ctlz) or below (cttz) the first known one.
+ unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros()
+ : Known.countMaxLeadingZeros();
+ unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros()
+ : Known.countMinLeadingZeros();
+
+ // If all bits above (ctlz) or below (cttz) the first known one are known
+ // zero, this value is constant.
+ // FIXME: This should be in InstSimplify because we're replacing an
+ // instruction with a constant.
+ if (PossibleZeros == DefiniteZeros) {
+ auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros);
+ return IC.replaceInstUsesWith(II, C);
+ }
+
+ // If the input to cttz/ctlz is known to be non-zero,
+ // then change the 'ZeroIsUndef' parameter to 'true'
+ // because we know the zero behavior can't affect the result.
+ if (!Known.One.isNullValue() ||
+ isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II,
+ &IC.getDominatorTree())) {
+ if (!match(II.getArgOperand(1), m_One())) {
+ II.setOperand(1, IC.Builder.getTrue());
+ return &II;
+ }
+ }
+
+ // Add range metadata since known bits can't completely reflect what we know.
+ // TODO: Handle splat vectors.
+ auto *IT = dyn_cast<IntegerType>(Op0->getType());
+ if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
+ Metadata *LowAndHigh[] = {
+ ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)),
+ ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))};
+ II.setMetadata(LLVMContext::MD_range,
+ MDNode::get(II.getContext(), LowAndHigh));
+ return &II;
+ }
+
+ return nullptr;
+}
+
+static Instruction *foldCtpop(IntrinsicInst &II, InstCombiner &IC) {
+ assert(II.getIntrinsicID() == Intrinsic::ctpop &&
+ "Expected ctpop intrinsic");
+ Value *Op0 = II.getArgOperand(0);
+ Value *X;
+ // ctpop(bitreverse(x)) -> ctpop(x)
+ // ctpop(bswap(x)) -> ctpop(x)
+ if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X)))) {
+ II.setOperand(0, X);
+ return &II;
+ }
+
+ // FIXME: Try to simplify vectors of integers.
+ auto *IT = dyn_cast<IntegerType>(Op0->getType());
+ if (!IT)
+ return nullptr;
+
+ unsigned BitWidth = IT->getBitWidth();
+ KnownBits Known(BitWidth);
+ IC.computeKnownBits(Op0, Known, 0, &II);
+
+ unsigned MinCount = Known.countMinPopulation();
+ unsigned MaxCount = Known.countMaxPopulation();
+
+ // Add range metadata since known bits can't completely reflect what we know.
+ if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
+ Metadata *LowAndHigh[] = {
+ ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)),
+ ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))};
+ II.setMetadata(LLVMContext::MD_range,
+ MDNode::get(II.getContext(), LowAndHigh));
+ return &II;
+ }
+
+ return nullptr;
+}
+
+// TODO: If the x86 backend knew how to convert a bool vector mask back to an
+// XMM register mask efficiently, we could transform all x86 masked intrinsics
+// to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
+static Instruction *simplifyX86MaskedLoad(IntrinsicInst &II, InstCombiner &IC) {
+ Value *Ptr = II.getOperand(0);
+ Value *Mask = II.getOperand(1);
+ Constant *ZeroVec = Constant::getNullValue(II.getType());
+
+ // Special case a zero mask since that's not a ConstantDataVector.
+ // This masked load instruction creates a zero vector.
+ if (isa<ConstantAggregateZero>(Mask))
+ return IC.replaceInstUsesWith(II, ZeroVec);
+
+ auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
+ if (!ConstMask)
+ return nullptr;
+
+ // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
+ // to allow target-independent optimizations.
+
+ // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
+ // the LLVM intrinsic definition for the pointer argument.
+ unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
+ PointerType *VecPtrTy = PointerType::get(II.getType(), AddrSpace);
+ Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec");
+
+ // Second, convert the x86 XMM integer vector mask to a vector of bools based
+ // on each element's most significant bit (the sign bit).
+ Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
+
+ // The pass-through vector for an x86 masked load is a zero vector.
+ CallInst *NewMaskedLoad =
+ IC.Builder.CreateMaskedLoad(PtrCast, 1, BoolMask, ZeroVec);
+ return IC.replaceInstUsesWith(II, NewMaskedLoad);
+}
+
+// TODO: If the x86 backend knew how to convert a bool vector mask back to an
+// XMM register mask efficiently, we could transform all x86 masked intrinsics
+// to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
+static bool simplifyX86MaskedStore(IntrinsicInst &II, InstCombiner &IC) {
+ Value *Ptr = II.getOperand(0);
+ Value *Mask = II.getOperand(1);
+ Value *Vec = II.getOperand(2);
+
+ // Special case a zero mask since that's not a ConstantDataVector:
+ // this masked store instruction does nothing.
+ if (isa<ConstantAggregateZero>(Mask)) {
+ IC.eraseInstFromFunction(II);
+ return true;
+ }
+
+ // The SSE2 version is too weird (eg, unaligned but non-temporal) to do
+ // anything else at this level.
+ if (II.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu)
+ return false;
+
+ auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
+ if (!ConstMask)
+ return false;
+
+ // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
+ // to allow target-independent optimizations.
+
+ // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
+ // the LLVM intrinsic definition for the pointer argument.
+ unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
+ PointerType *VecPtrTy = PointerType::get(Vec->getType(), AddrSpace);
+ Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec");
+
+ // Second, convert the x86 XMM integer vector mask to a vector of bools based
+ // on each element's most significant bit (the sign bit).
+ Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
+
+ IC.Builder.CreateMaskedStore(Vec, PtrCast, 1, BoolMask);
+
+ // 'Replace uses' doesn't work for stores. Erase the original masked store.
+ IC.eraseInstFromFunction(II);
+ return true;
+}
+
+// Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs.
+//
+// A single NaN input is folded to minnum, so we rely on that folding for
+// handling NaNs.
+static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1,
+ const APFloat &Src2) {
+ APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2);
+
+ APFloat::cmpResult Cmp0 = Max3.compare(Src0);
+ assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately");
+ if (Cmp0 == APFloat::cmpEqual)
+ return maxnum(Src1, Src2);
+
+ APFloat::cmpResult Cmp1 = Max3.compare(Src1);
+ assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately");
+ if (Cmp1 == APFloat::cmpEqual)
+ return maxnum(Src0, Src2);
+
+ return maxnum(Src0, Src1);
+}
+
+/// Convert a table lookup to shufflevector if the mask is constant.
+/// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in
+/// which case we could lower the shufflevector with rev64 instructions
+/// as it's actually a byte reverse.
+static Value *simplifyNeonTbl1(const IntrinsicInst &II,
+ InstCombiner::BuilderTy &Builder) {
+ // Bail out if the mask is not a constant.
+ auto *C = dyn_cast<Constant>(II.getArgOperand(1));
+ if (!C)
+ return nullptr;
+
+ auto *VecTy = cast<VectorType>(II.getType());
+ unsigned NumElts = VecTy->getNumElements();
+
+ // Only perform this transformation for <8 x i8> vector types.
+ if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8)
+ return nullptr;
+
+ uint32_t Indexes[8];
+
+ for (unsigned I = 0; I < NumElts; ++I) {
+ Constant *COp = C->getAggregateElement(I);
+
+ if (!COp || !isa<ConstantInt>(COp))
+ return nullptr;
+
+ Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue();
+
+ // Make sure the mask indices are in range.
+ if (Indexes[I] >= NumElts)
+ return nullptr;
+ }
+
+ auto *ShuffleMask = ConstantDataVector::get(II.getContext(),
+ makeArrayRef(Indexes));
+ auto *V1 = II.getArgOperand(0);
+ auto *V2 = Constant::getNullValue(V1->getType());
+ return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
+}
+
+/// Convert a vector load intrinsic into a simple llvm load instruction.
+/// This is beneficial when the underlying object being addressed comes
+/// from a constant, since we get constant-folding for free.
+static Value *simplifyNeonVld1(const IntrinsicInst &II,
+ unsigned MemAlign,
+ InstCombiner::BuilderTy &Builder) {
+ auto *IntrAlign = dyn_cast<ConstantInt>(II.getArgOperand(1));
+
+ if (!IntrAlign)
+ return nullptr;
+
+ unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign ?
+ MemAlign : IntrAlign->getLimitedValue();
+
+ if (!isPowerOf2_32(Alignment))
+ return nullptr;
+
+ auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0),
+ PointerType::get(II.getType(), 0));
+ return Builder.CreateAlignedLoad(II.getType(), BCastInst, Alignment);
+}
+
+// Returns true iff the 2 intrinsics have the same operands, limiting the
+// comparison to the first NumOperands.
+static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
+ unsigned NumOperands) {
+ assert(I.getNumArgOperands() >= NumOperands && "Not enough operands");
+ assert(E.getNumArgOperands() >= NumOperands && "Not enough operands");
+ for (unsigned i = 0; i < NumOperands; i++)
+ if (I.getArgOperand(i) != E.getArgOperand(i))
+ return false;
+ return true;
+}
+
+// Remove trivially empty start/end intrinsic ranges, i.e. a start
+// immediately followed by an end (ignoring debuginfo or other
+// start/end intrinsics in between). As this handles only the most trivial
+// cases, tracking the nesting level is not needed:
+//
+// call @llvm.foo.start(i1 0) ; &I
+// call @llvm.foo.start(i1 0)
+// call @llvm.foo.end(i1 0) ; This one will not be skipped: it will be removed
+// call @llvm.foo.end(i1 0)
+static bool removeTriviallyEmptyRange(IntrinsicInst &I, unsigned StartID,
+ unsigned EndID, InstCombiner &IC) {
+ assert(I.getIntrinsicID() == StartID &&
+ "Start intrinsic does not have expected ID");
+ BasicBlock::iterator BI(I), BE(I.getParent()->end());
+ for (++BI; BI != BE; ++BI) {
+ if (auto *E = dyn_cast<IntrinsicInst>(BI)) {
+ if (isa<DbgInfoIntrinsic>(E) || E->getIntrinsicID() == StartID)
+ continue;
+ if (E->getIntrinsicID() == EndID &&
+ haveSameOperands(I, *E, E->getNumArgOperands())) {
+ IC.eraseInstFromFunction(*E);
+ IC.eraseInstFromFunction(I);
+ return true;
+ }
+ }
+ break;
+ }
+
+ return false;
+}
+
+// Convert NVVM intrinsics to target-generic LLVM code where possible.
+static Instruction *SimplifyNVVMIntrinsic(IntrinsicInst *II, InstCombiner &IC) {
+ // Each NVVM intrinsic we can simplify can be replaced with one of:
+ //
+ // * an LLVM intrinsic,
+ // * an LLVM cast operation,
+ // * an LLVM binary operation, or
+ // * ad-hoc LLVM IR for the particular operation.
+
+ // Some transformations are only valid when the module's
+ // flush-denormals-to-zero (ftz) setting is true/false, whereas other
+ // transformations are valid regardless of the module's ftz setting.
+ enum FtzRequirementTy {
+ FTZ_Any, // Any ftz setting is ok.
+ FTZ_MustBeOn, // Transformation is valid only if ftz is on.
+ FTZ_MustBeOff, // Transformation is valid only if ftz is off.
+ };
+ // Classes of NVVM intrinsics that can't be replaced one-to-one with a
+ // target-generic intrinsic, cast op, or binary op but that we can nonetheless
+ // simplify.
+ enum SpecialCase {
+ SPC_Reciprocal,
+ };
+
+ // SimplifyAction is a poor-man's variant (plus an additional flag) that
+ // represents how to replace an NVVM intrinsic with target-generic LLVM IR.
+ struct SimplifyAction {
+ // Invariant: At most one of these Optionals has a value.
+ Optional<Intrinsic::ID> IID;
+ Optional<Instruction::CastOps> CastOp;
+ Optional<Instruction::BinaryOps> BinaryOp;
+ Optional<SpecialCase> Special;
+
+ FtzRequirementTy FtzRequirement = FTZ_Any;
+
+ SimplifyAction() = default;
+
+ SimplifyAction(Intrinsic::ID IID, FtzRequirementTy FtzReq)
+ : IID(IID), FtzRequirement(FtzReq) {}
+
+ // Cast operations don't have anything to do with FTZ, so we skip that
+ // argument.
+ SimplifyAction(Instruction::CastOps CastOp) : CastOp(CastOp) {}
+
+ SimplifyAction(Instruction::BinaryOps BinaryOp, FtzRequirementTy FtzReq)
+ : BinaryOp(BinaryOp), FtzRequirement(FtzReq) {}
+
+ SimplifyAction(SpecialCase Special, FtzRequirementTy FtzReq)
+ : Special(Special), FtzRequirement(FtzReq) {}
+ };
+
+ // Try to generate a SimplifyAction describing how to replace our
+ // IntrinsicInstr with target-generic LLVM IR.
+ const SimplifyAction Action = [II]() -> SimplifyAction {
+ switch (II->getIntrinsicID()) {
+ // NVVM intrinsics that map directly to LLVM intrinsics.
+ case Intrinsic::nvvm_ceil_d:
+ return {Intrinsic::ceil, FTZ_Any};
+ case Intrinsic::nvvm_ceil_f:
+ return {Intrinsic::ceil, FTZ_MustBeOff};
+ case Intrinsic::nvvm_ceil_ftz_f:
+ return {Intrinsic::ceil, FTZ_MustBeOn};
+ case Intrinsic::nvvm_fabs_d:
+ return {Intrinsic::fabs, FTZ_Any};
+ case Intrinsic::nvvm_fabs_f:
+ return {Intrinsic::fabs, FTZ_MustBeOff};
+ case Intrinsic::nvvm_fabs_ftz_f:
+ return {Intrinsic::fabs, FTZ_MustBeOn};
+ case Intrinsic::nvvm_floor_d:
+ return {Intrinsic::floor, FTZ_Any};
+ case Intrinsic::nvvm_floor_f:
+ return {Intrinsic::floor, FTZ_MustBeOff};
+ case Intrinsic::nvvm_floor_ftz_f:
+ return {Intrinsic::floor, FTZ_MustBeOn};
+ case Intrinsic::nvvm_fma_rn_d:
+ return {Intrinsic::fma, FTZ_Any};
+ case Intrinsic::nvvm_fma_rn_f:
+ return {Intrinsic::fma, FTZ_MustBeOff};
+ case Intrinsic::nvvm_fma_rn_ftz_f:
+ return {Intrinsic::fma, FTZ_MustBeOn};
+ case Intrinsic::nvvm_fmax_d:
+ return {Intrinsic::maxnum, FTZ_Any};
+ case Intrinsic::nvvm_fmax_f:
+ return {Intrinsic::maxnum, FTZ_MustBeOff};
+ case Intrinsic::nvvm_fmax_ftz_f:
+ return {Intrinsic::maxnum, FTZ_MustBeOn};
+ case Intrinsic::nvvm_fmin_d:
+ return {Intrinsic::minnum, FTZ_Any};
+ case Intrinsic::nvvm_fmin_f:
+ return {Intrinsic::minnum, FTZ_MustBeOff};
+ case Intrinsic::nvvm_fmin_ftz_f:
+ return {Intrinsic::minnum, FTZ_MustBeOn};
+ case Intrinsic::nvvm_round_d:
+ return {Intrinsic::round, FTZ_Any};
+ case Intrinsic::nvvm_round_f:
+ return {Intrinsic::round, FTZ_MustBeOff};
+ case Intrinsic::nvvm_round_ftz_f:
+ return {Intrinsic::round, FTZ_MustBeOn};
+ case Intrinsic::nvvm_sqrt_rn_d:
+ return {Intrinsic::sqrt, FTZ_Any};
+ case Intrinsic::nvvm_sqrt_f:
+ // nvvm_sqrt_f is a special case. For most intrinsics, foo_ftz_f is the
+ // ftz version, and foo_f is the non-ftz version. But nvvm_sqrt_f adopts
+ // the ftz-ness of the surrounding code. sqrt_rn_f and sqrt_rn_ftz_f are
+ // the versions with explicit ftz-ness.
+ return {Intrinsic::sqrt, FTZ_Any};
+ case Intrinsic::nvvm_sqrt_rn_f:
+ return {Intrinsic::sqrt, FTZ_MustBeOff};
+ case Intrinsic::nvvm_sqrt_rn_ftz_f:
+ return {Intrinsic::sqrt, FTZ_MustBeOn};
+ case Intrinsic::nvvm_trunc_d:
+ return {Intrinsic::trunc, FTZ_Any};
+ case Intrinsic::nvvm_trunc_f:
+ return {Intrinsic::trunc, FTZ_MustBeOff};
+ case Intrinsic::nvvm_trunc_ftz_f:
+ return {Intrinsic::trunc, FTZ_MustBeOn};
+
+ // NVVM intrinsics that map to LLVM cast operations.
+ //
+ // Note that llvm's target-generic conversion operators correspond to the rz
+ // (round to zero) versions of the nvvm conversion intrinsics, even though
+ // most everything else here uses the rn (round to nearest even) nvvm ops.
+ case Intrinsic::nvvm_d2i_rz:
+ case Intrinsic::nvvm_f2i_rz:
+ case Intrinsic::nvvm_d2ll_rz:
+ case Intrinsic::nvvm_f2ll_rz:
+ return {Instruction::FPToSI};
+ case Intrinsic::nvvm_d2ui_rz:
+ case Intrinsic::nvvm_f2ui_rz:
+ case Intrinsic::nvvm_d2ull_rz:
+ case Intrinsic::nvvm_f2ull_rz:
+ return {Instruction::FPToUI};
+ case Intrinsic::nvvm_i2d_rz:
+ case Intrinsic::nvvm_i2f_rz:
+ case Intrinsic::nvvm_ll2d_rz:
+ case Intrinsic::nvvm_ll2f_rz:
+ return {Instruction::SIToFP};
+ case Intrinsic::nvvm_ui2d_rz:
+ case Intrinsic::nvvm_ui2f_rz:
+ case Intrinsic::nvvm_ull2d_rz:
+ case Intrinsic::nvvm_ull2f_rz:
+ return {Instruction::UIToFP};
+
+ // NVVM intrinsics that map to LLVM binary ops.
+ case Intrinsic::nvvm_add_rn_d:
+ return {Instruction::FAdd, FTZ_Any};
+ case Intrinsic::nvvm_add_rn_f:
+ return {Instruction::FAdd, FTZ_MustBeOff};
+ case Intrinsic::nvvm_add_rn_ftz_f:
+ return {Instruction::FAdd, FTZ_MustBeOn};
+ case Intrinsic::nvvm_mul_rn_d:
+ return {Instruction::FMul, FTZ_Any};
+ case Intrinsic::nvvm_mul_rn_f:
+ return {Instruction::FMul, FTZ_MustBeOff};
+ case Intrinsic::nvvm_mul_rn_ftz_f:
+ return {Instruction::FMul, FTZ_MustBeOn};
+ case Intrinsic::nvvm_div_rn_d:
+ return {Instruction::FDiv, FTZ_Any};
+ case Intrinsic::nvvm_div_rn_f:
+ return {Instruction::FDiv, FTZ_MustBeOff};
+ case Intrinsic::nvvm_div_rn_ftz_f:
+ return {Instruction::FDiv, FTZ_MustBeOn};
+
+ // The remainder of cases are NVVM intrinsics that map to LLVM idioms, but
+ // need special handling.
+ //
+ // We seem to be missing intrinsics for rcp.approx.{ftz.}f32, which is just
+ // as well.
+ case Intrinsic::nvvm_rcp_rn_d:
+ return {SPC_Reciprocal, FTZ_Any};
+ case Intrinsic::nvvm_rcp_rn_f:
+ return {SPC_Reciprocal, FTZ_MustBeOff};
+ case Intrinsic::nvvm_rcp_rn_ftz_f:
+ return {SPC_Reciprocal, FTZ_MustBeOn};
+
+ // We do not currently simplify intrinsics that give an approximate answer.
+ // These include:
+ //
+ // - nvvm_cos_approx_{f,ftz_f}
+ // - nvvm_ex2_approx_{d,f,ftz_f}
+ // - nvvm_lg2_approx_{d,f,ftz_f}
+ // - nvvm_sin_approx_{f,ftz_f}
+ // - nvvm_sqrt_approx_{f,ftz_f}
+ // - nvvm_rsqrt_approx_{d,f,ftz_f}
+ // - nvvm_div_approx_{ftz_d,ftz_f,f}
+ // - nvvm_rcp_approx_ftz_d
+ //
+ // Ideally we'd encode them as e.g. "fast call @llvm.cos", where "fast"
+ // means that fastmath is enabled in the intrinsic. Unfortunately only
+ // binary operators (currently) have a fastmath bit in SelectionDAG, so this
+ // information gets lost and we can't select on it.
+ //
+ // TODO: div and rcp are lowered to a binary op, so these we could in theory
+ // lower them to "fast fdiv".
+
+ default:
+ return {};
+ }
+ }();
+
+ // If Action.FtzRequirementTy is not satisfied by the module's ftz state, we
+ // can bail out now. (Notice that in the case that IID is not an NVVM
+ // intrinsic, we don't have to look up any module metadata, as
+ // FtzRequirementTy will be FTZ_Any.)
+ if (Action.FtzRequirement != FTZ_Any) {
+ bool FtzEnabled =
+ II->getFunction()->getFnAttribute("nvptx-f32ftz").getValueAsString() ==
+ "true";
+
+ if (FtzEnabled != (Action.FtzRequirement == FTZ_MustBeOn))
+ return nullptr;
+ }
+
+ // Simplify to target-generic intrinsic.
+ if (Action.IID) {
+ SmallVector<Value *, 4> Args(II->arg_operands());
+ // All the target-generic intrinsics currently of interest to us have one
+ // type argument, equal to that of the nvvm intrinsic's argument.
+ Type *Tys[] = {II->getArgOperand(0)->getType()};
+ return CallInst::Create(
+ Intrinsic::getDeclaration(II->getModule(), *Action.IID, Tys), Args);
+ }
+
+ // Simplify to target-generic binary op.
+ if (Action.BinaryOp)
+ return BinaryOperator::Create(*Action.BinaryOp, II->getArgOperand(0),
+ II->getArgOperand(1), II->getName());
+
+ // Simplify to target-generic cast op.
+ if (Action.CastOp)
+ return CastInst::Create(*Action.CastOp, II->getArgOperand(0), II->getType(),
+ II->getName());
+
+ // All that's left are the special cases.
+ if (!Action.Special)
+ return nullptr;
+
+ switch (*Action.Special) {
+ case SPC_Reciprocal:
+ // Simplify reciprocal.
+ return BinaryOperator::Create(
+ Instruction::FDiv, ConstantFP::get(II->getArgOperand(0)->getType(), 1),
+ II->getArgOperand(0), II->getName());
+ }
+ llvm_unreachable("All SpecialCase enumerators should be handled in switch.");
+}
+
+Instruction *InstCombiner::visitVAStartInst(VAStartInst &I) {
+ removeTriviallyEmptyRange(I, Intrinsic::vastart, Intrinsic::vaend, *this);
+ return nullptr;
+}
+
+Instruction *InstCombiner::visitVACopyInst(VACopyInst &I) {
+ removeTriviallyEmptyRange(I, Intrinsic::vacopy, Intrinsic::vaend, *this);
+ return nullptr;
+}
+
+static Instruction *canonicalizeConstantArg0ToArg1(CallInst &Call) {
+ assert(Call.getNumArgOperands() > 1 && "Need at least 2 args to swap");
+ Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1);
+ if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) {
+ Call.setArgOperand(0, Arg1);
+ Call.setArgOperand(1, Arg0);
+ return &Call;
+ }
+ return nullptr;
+}
+
+Instruction *InstCombiner::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) {
+ WithOverflowInst *WO = cast<WithOverflowInst>(II);
+ Value *OperationResult = nullptr;
+ Constant *OverflowResult = nullptr;
+ if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(),
+ WO->getRHS(), *WO, OperationResult, OverflowResult))
+ return CreateOverflowTuple(WO, OperationResult, OverflowResult);
+ return nullptr;
+}
+
+/// CallInst simplification. This mostly only handles folding of intrinsic
+/// instructions. For normal calls, it allows visitCallBase to do the heavy
+/// lifting.
+Instruction *InstCombiner::visitCallInst(CallInst &CI) {
+ if (Value *V = SimplifyCall(&CI, SQ.getWithInstruction(&CI)))
+ return replaceInstUsesWith(CI, V);
+
+ if (isFreeCall(&CI, &TLI))
+ return visitFree(CI);
+
+ // If the caller function is nounwind, mark the call as nounwind, even if the
+ // callee isn't.
+ if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) {
+ CI.setDoesNotThrow();
+ return &CI;
+ }
+
+ IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
+ if (!II) return visitCallBase(CI);
+
+ // Intrinsics cannot occur in an invoke or a callbr, so handle them here
+ // instead of in visitCallBase.
+ if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) {
+ bool Changed = false;
+
+ // memmove/cpy/set of zero bytes is a noop.
+ if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
+ if (NumBytes->isNullValue())
+ return eraseInstFromFunction(CI);
+
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
+ if (CI->getZExtValue() == 1) {
+ // Replace the instruction with just byte operations. We would
+ // transform other cases to loads/stores, but we don't know if
+ // alignment is sufficient.
+ }
+ }
+
+ // No other transformations apply to volatile transfers.
+ if (auto *M = dyn_cast<MemIntrinsic>(MI))
+ if (M->isVolatile())
+ return nullptr;
+
+ // If we have a memmove and the source operation is a constant global,
+ // then the source and dest pointers can't alias, so we can change this
+ // into a call to memcpy.
+ if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) {
+ if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
+ if (GVSrc->isConstant()) {
+ Module *M = CI.getModule();
+ Intrinsic::ID MemCpyID =
+ isa<AtomicMemMoveInst>(MMI)
+ ? Intrinsic::memcpy_element_unordered_atomic
+ : Intrinsic::memcpy;
+ Type *Tys[3] = { CI.getArgOperand(0)->getType(),
+ CI.getArgOperand(1)->getType(),
+ CI.getArgOperand(2)->getType() };
+ CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
+ Changed = true;
+ }
+ }
+
+ if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
+ // memmove(x,x,size) -> noop.
+ if (MTI->getSource() == MTI->getDest())
+ return eraseInstFromFunction(CI);
+ }
+
+ // If we can determine a pointer alignment that is bigger than currently
+ // set, update the alignment.
+ if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
+ if (Instruction *I = SimplifyAnyMemTransfer(MTI))
+ return I;
+ } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) {
+ if (Instruction *I = SimplifyAnyMemSet(MSI))
+ return I;
+ }
+
+ if (Changed) return II;
+ }
+
+ // For vector result intrinsics, use the generic demanded vector support.
+ if (II->getType()->isVectorTy()) {
+ auto VWidth = II->getType()->getVectorNumElements();
+ APInt UndefElts(VWidth, 0);
+ APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
+ if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) {
+ if (V != II)
+ return replaceInstUsesWith(*II, V);
+ return II;
+ }
+ }
+
+ if (Instruction *I = SimplifyNVVMIntrinsic(II, *this))
+ return I;
+
+ auto SimplifyDemandedVectorEltsLow = [this](Value *Op, unsigned Width,
+ unsigned DemandedWidth) {
+ APInt UndefElts(Width, 0);
+ APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth);
+ return SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts);
+ };
+
+ Intrinsic::ID IID = II->getIntrinsicID();
+ switch (IID) {
+ default: break;
+ case Intrinsic::objectsize:
+ if (Value *V = lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/false))
+ return replaceInstUsesWith(CI, V);
+ return nullptr;
+ case Intrinsic::bswap: {
+ Value *IIOperand = II->getArgOperand(0);
+ Value *X = nullptr;
+
+ // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
+ if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
+ unsigned C = X->getType()->getPrimitiveSizeInBits() -
+ IIOperand->getType()->getPrimitiveSizeInBits();
+ Value *CV = ConstantInt::get(X->getType(), C);
+ Value *V = Builder.CreateLShr(X, CV);
+ return new TruncInst(V, IIOperand->getType());
+ }
+ break;
+ }
+ case Intrinsic::masked_load:
+ if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II))
+ return replaceInstUsesWith(CI, SimplifiedMaskedOp);
+ break;
+ case Intrinsic::masked_store:
+ return simplifyMaskedStore(*II);
+ case Intrinsic::masked_gather:
+ return simplifyMaskedGather(*II);
+ case Intrinsic::masked_scatter:
+ return simplifyMaskedScatter(*II);
+ case Intrinsic::launder_invariant_group:
+ case Intrinsic::strip_invariant_group:
+ if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this))
+ return replaceInstUsesWith(*II, SkippedBarrier);
+ break;
+ case Intrinsic::powi:
+ if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
+ // 0 and 1 are handled in instsimplify
+
+ // powi(x, -1) -> 1/x
+ if (Power->isMinusOne())
+ return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
+ II->getArgOperand(0));
+ // powi(x, 2) -> x*x
+ if (Power->equalsInt(2))
+ return BinaryOperator::CreateFMul(II->getArgOperand(0),
+ II->getArgOperand(0));
+ }
+ break;
+
+ case Intrinsic::cttz:
+ case Intrinsic::ctlz:
+ if (auto *I = foldCttzCtlz(*II, *this))
+ return I;
+ break;
+
+ case Intrinsic::ctpop:
+ if (auto *I = foldCtpop(*II, *this))
+ return I;
+ break;
+
+ case Intrinsic::fshl:
+ case Intrinsic::fshr: {
+ Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
+ Type *Ty = II->getType();
+ unsigned BitWidth = Ty->getScalarSizeInBits();
+ Constant *ShAmtC;
+ if (match(II->getArgOperand(2), m_Constant(ShAmtC)) &&
+ !isa<ConstantExpr>(ShAmtC) && !ShAmtC->containsConstantExpression()) {
+ // Canonicalize a shift amount constant operand to modulo the bit-width.
+ Constant *WidthC = ConstantInt::get(Ty, BitWidth);
+ Constant *ModuloC = ConstantExpr::getURem(ShAmtC, WidthC);
+ if (ModuloC != ShAmtC) {
+ II->setArgOperand(2, ModuloC);
+ return II;
+ }
+ assert(ConstantExpr::getICmp(ICmpInst::ICMP_UGT, WidthC, ShAmtC) ==
+ ConstantInt::getTrue(CmpInst::makeCmpResultType(Ty)) &&
+ "Shift amount expected to be modulo bitwidth");
+
+ // Canonicalize funnel shift right by constant to funnel shift left. This
+ // is not entirely arbitrary. For historical reasons, the backend may
+ // recognize rotate left patterns but miss rotate right patterns.
+ if (IID == Intrinsic::fshr) {
+ // fshr X, Y, C --> fshl X, Y, (BitWidth - C)
+ Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC);
+ Module *Mod = II->getModule();
+ Function *Fshl = Intrinsic::getDeclaration(Mod, Intrinsic::fshl, Ty);
+ return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC });
+ }
+ assert(IID == Intrinsic::fshl &&
+ "All funnel shifts by simple constants should go left");
+
+ // fshl(X, 0, C) --> shl X, C
+ // fshl(X, undef, C) --> shl X, C
+ if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef()))
+ return BinaryOperator::CreateShl(Op0, ShAmtC);
+
+ // fshl(0, X, C) --> lshr X, (BW-C)
+ // fshl(undef, X, C) --> lshr X, (BW-C)
+ if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef()))
+ return BinaryOperator::CreateLShr(Op1,
+ ConstantExpr::getSub(WidthC, ShAmtC));
+
+ // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form)
+ if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) {
+ Module *Mod = II->getModule();
+ Function *Bswap = Intrinsic::getDeclaration(Mod, Intrinsic::bswap, Ty);
+ return CallInst::Create(Bswap, { Op0 });
+ }
+ }
+
+ // Left or right might be masked.
+ if (SimplifyDemandedInstructionBits(*II))
+ return &CI;
+
+ // The shift amount (operand 2) of a funnel shift is modulo the bitwidth,
+ // so only the low bits of the shift amount are demanded if the bitwidth is
+ // a power-of-2.
+ if (!isPowerOf2_32(BitWidth))
+ break;
+ APInt Op2Demanded = APInt::getLowBitsSet(BitWidth, Log2_32_Ceil(BitWidth));
+ KnownBits Op2Known(BitWidth);
+ if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known))
+ return &CI;
+ break;
+ }
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::sadd_with_overflow: {
+ if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
+ return I;
+ if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
+ return I;
+
+ // Given 2 constant operands whose sum does not overflow:
+ // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1
+ // saddo (X +nsw C0), C1 -> saddo X, C0 + C1
+ Value *X;
+ const APInt *C0, *C1;
+ Value *Arg0 = II->getArgOperand(0);
+ Value *Arg1 = II->getArgOperand(1);
+ bool IsSigned = IID == Intrinsic::sadd_with_overflow;
+ bool HasNWAdd = IsSigned ? match(Arg0, m_NSWAdd(m_Value(X), m_APInt(C0)))
+ : match(Arg0, m_NUWAdd(m_Value(X), m_APInt(C0)));
+ if (HasNWAdd && match(Arg1, m_APInt(C1))) {
+ bool Overflow;
+ APInt NewC =
+ IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow);
+ if (!Overflow)
+ return replaceInstUsesWith(
+ *II, Builder.CreateBinaryIntrinsic(
+ IID, X, ConstantInt::get(Arg1->getType(), NewC)));
+ }
+ break;
+ }
+
+ case Intrinsic::umul_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
+ return I;
+ LLVM_FALLTHROUGH;
+
+ case Intrinsic::usub_with_overflow:
+ if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
+ return I;
+ break;
+
+ case Intrinsic::ssub_with_overflow: {
+ if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
+ return I;
+
+ Constant *C;
+ Value *Arg0 = II->getArgOperand(0);
+ Value *Arg1 = II->getArgOperand(1);
+ // Given a constant C that is not the minimum signed value
+ // for an integer of a given bit width:
+ //
+ // ssubo X, C -> saddo X, -C
+ if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) {
+ Value *NegVal = ConstantExpr::getNeg(C);
+ // Build a saddo call that is equivalent to the discovered
+ // ssubo call.
+ return replaceInstUsesWith(
+ *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow,
+ Arg0, NegVal));
+ }
+
+ break;
+ }
+
+ case Intrinsic::uadd_sat:
+ case Intrinsic::sadd_sat:
+ if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
+ return I;
+ LLVM_FALLTHROUGH;
+ case Intrinsic::usub_sat:
+ case Intrinsic::ssub_sat: {
+ SaturatingInst *SI = cast<SaturatingInst>(II);
+ Type *Ty = SI->getType();
+ Value *Arg0 = SI->getLHS();
+ Value *Arg1 = SI->getRHS();
+
+ // Make use of known overflow information.
+ OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(),
+ Arg0, Arg1, SI);
+ switch (OR) {
+ case OverflowResult::MayOverflow:
+ break;
+ case OverflowResult::NeverOverflows:
+ if (SI->isSigned())
+ return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1);
+ else
+ return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1);
+ case OverflowResult::AlwaysOverflowsLow: {
+ unsigned BitWidth = Ty->getScalarSizeInBits();
+ APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned());
+ return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min));
+ }
+ case OverflowResult::AlwaysOverflowsHigh: {
+ unsigned BitWidth = Ty->getScalarSizeInBits();
+ APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned());
+ return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max));
+ }
+ }
+
+ // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN
+ Constant *C;
+ if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) &&
+ C->isNotMinSignedValue()) {
+ Value *NegVal = ConstantExpr::getNeg(C);
+ return replaceInstUsesWith(
+ *II, Builder.CreateBinaryIntrinsic(
+ Intrinsic::sadd_sat, Arg0, NegVal));
+ }
+
+ // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2))
+ // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2))
+ // if Val and Val2 have the same sign
+ if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) {
+ Value *X;
+ const APInt *Val, *Val2;
+ APInt NewVal;
+ bool IsUnsigned =
+ IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat;
+ if (Other->getIntrinsicID() == IID &&
+ match(Arg1, m_APInt(Val)) &&
+ match(Other->getArgOperand(0), m_Value(X)) &&
+ match(Other->getArgOperand(1), m_APInt(Val2))) {
+ if (IsUnsigned)
+ NewVal = Val->uadd_sat(*Val2);
+ else if (Val->isNonNegative() == Val2->isNonNegative()) {
+ bool Overflow;
+ NewVal = Val->sadd_ov(*Val2, Overflow);
+ if (Overflow) {
+ // Both adds together may add more than SignedMaxValue
+ // without saturating the final result.
+ break;
+ }
+ } else {
+ // Cannot fold saturated addition with different signs.
+ break;
+ }
+
+ return replaceInstUsesWith(
+ *II, Builder.CreateBinaryIntrinsic(
+ IID, X, ConstantInt::get(II->getType(), NewVal)));
+ }
+ }
+ break;
+ }
+
+ case Intrinsic::minnum:
+ case Intrinsic::maxnum:
+ case Intrinsic::minimum:
+ case Intrinsic::maximum: {
+ if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
+ return I;
+ Value *Arg0 = II->getArgOperand(0);
+ Value *Arg1 = II->getArgOperand(1);
+ Value *X, *Y;
+ if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) &&
+ (Arg0->hasOneUse() || Arg1->hasOneUse())) {
+ // If both operands are negated, invert the call and negate the result:
+ // min(-X, -Y) --> -(max(X, Y))
+ // max(-X, -Y) --> -(min(X, Y))
+ Intrinsic::ID NewIID;
+ switch (IID) {
+ case Intrinsic::maxnum:
+ NewIID = Intrinsic::minnum;
+ break;
+ case Intrinsic::minnum:
+ NewIID = Intrinsic::maxnum;
+ break;
+ case Intrinsic::maximum:
+ NewIID = Intrinsic::minimum;
+ break;
+ case Intrinsic::minimum:
+ NewIID = Intrinsic::maximum;
+ break;
+ default:
+ llvm_unreachable("unexpected intrinsic ID");
+ }
+ Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II);
+ Instruction *FNeg = BinaryOperator::CreateFNeg(NewCall);
+ FNeg->copyIRFlags(II);
+ return FNeg;
+ }
+
+ // m(m(X, C2), C1) -> m(X, C)
+ const APFloat *C1, *C2;
+ if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) {
+ if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) &&
+ ((match(M->getArgOperand(0), m_Value(X)) &&
+ match(M->getArgOperand(1), m_APFloat(C2))) ||
+ (match(M->getArgOperand(1), m_Value(X)) &&
+ match(M->getArgOperand(0), m_APFloat(C2))))) {
+ APFloat Res(0.0);
+ switch (IID) {
+ case Intrinsic::maxnum:
+ Res = maxnum(*C1, *C2);
+ break;
+ case Intrinsic::minnum:
+ Res = minnum(*C1, *C2);
+ break;
+ case Intrinsic::maximum:
+ Res = maximum(*C1, *C2);
+ break;
+ case Intrinsic::minimum:
+ Res = minimum(*C1, *C2);
+ break;
+ default:
+ llvm_unreachable("unexpected intrinsic ID");
+ }
+ Instruction *NewCall = Builder.CreateBinaryIntrinsic(
+ IID, X, ConstantFP::get(Arg0->getType(), Res));
+ NewCall->copyIRFlags(II);
+ return replaceInstUsesWith(*II, NewCall);
+ }
+ }
+
+ break;
+ }
+ case Intrinsic::fmuladd: {
+ // Canonicalize fast fmuladd to the separate fmul + fadd.
+ if (II->isFast()) {
+ BuilderTy::FastMathFlagGuard Guard(Builder);
+ Builder.setFastMathFlags(II->getFastMathFlags());
+ Value *Mul = Builder.CreateFMul(II->getArgOperand(0),
+ II->getArgOperand(1));
+ Value *Add = Builder.CreateFAdd(Mul, II->getArgOperand(2));
+ Add->takeName(II);
+ return replaceInstUsesWith(*II, Add);
+ }
+
+ // Try to simplify the underlying FMul.
+ if (Value *V = SimplifyFMulInst(II->getArgOperand(0), II->getArgOperand(1),
+ II->getFastMathFlags(),
+ SQ.getWithInstruction(II))) {
+ auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2));
+ FAdd->copyFastMathFlags(II);
+ return FAdd;
+ }
+
+ LLVM_FALLTHROUGH;
+ }
+ case Intrinsic::fma: {
+ if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
+ return I;
+
+ // fma fneg(x), fneg(y), z -> fma x, y, z
+ Value *Src0 = II->getArgOperand(0);
+ Value *Src1 = II->getArgOperand(1);
+ Value *X, *Y;
+ if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) {
+ II->setArgOperand(0, X);
+ II->setArgOperand(1, Y);
+ return II;
+ }
+
+ // fma fabs(x), fabs(x), z -> fma x, x, z
+ if (match(Src0, m_FAbs(m_Value(X))) &&
+ match(Src1, m_FAbs(m_Specific(X)))) {
+ II->setArgOperand(0, X);
+ II->setArgOperand(1, X);
+ return II;
+ }
+
+ // Try to simplify the underlying FMul. We can only apply simplifications
+ // that do not require rounding.
+ if (Value *V = SimplifyFMAFMul(II->getArgOperand(0), II->getArgOperand(1),
+ II->getFastMathFlags(),
+ SQ.getWithInstruction(II))) {
+ auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2));
+ FAdd->copyFastMathFlags(II);
+ return FAdd;
+ }
+
+ break;
+ }
+ case Intrinsic::fabs: {
+ Value *Cond;
+ Constant *LHS, *RHS;
+ if (match(II->getArgOperand(0),
+ m_Select(m_Value(Cond), m_Constant(LHS), m_Constant(RHS)))) {
+ CallInst *Call0 = Builder.CreateCall(II->getCalledFunction(), {LHS});
+ CallInst *Call1 = Builder.CreateCall(II->getCalledFunction(), {RHS});
+ return SelectInst::Create(Cond, Call0, Call1);
+ }
+
+ LLVM_FALLTHROUGH;
+ }
+ case Intrinsic::ceil:
+ case Intrinsic::floor:
+ case Intrinsic::round:
+ case Intrinsic::nearbyint:
+ case Intrinsic::rint:
+ case Intrinsic::trunc: {
+ Value *ExtSrc;
+ if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) {
+ // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x)
+ Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II);
+ return new FPExtInst(NarrowII, II->getType());
+ }
+ break;
+ }
+ case Intrinsic::cos:
+ case Intrinsic::amdgcn_cos: {
+ Value *X;
+ Value *Src = II->getArgOperand(0);
+ if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X)))) {
+ // cos(-x) -> cos(x)
+ // cos(fabs(x)) -> cos(x)
+ II->setArgOperand(0, X);
+ return II;
+ }
+ break;
+ }
+ case Intrinsic::sin: {
+ Value *X;
+ if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) {
+ // sin(-x) --> -sin(x)
+ Value *NewSin = Builder.CreateUnaryIntrinsic(Intrinsic::sin, X, II);
+ Instruction *FNeg = BinaryOperator::CreateFNeg(NewSin);
+ FNeg->copyFastMathFlags(II);
+ return FNeg;
+ }
+ break;
+ }
+ case Intrinsic::ppc_altivec_lvx:
+ case Intrinsic::ppc_altivec_lvxl:
+ // Turn PPC lvx -> load if the pointer is known aligned.
+ if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC,
+ &DT) >= 16) {
+ Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
+ PointerType::getUnqual(II->getType()));
+ return new LoadInst(II->getType(), Ptr);
+ }
+ break;
+ case Intrinsic::ppc_vsx_lxvw4x:
+ case Intrinsic::ppc_vsx_lxvd2x: {
+ // Turn PPC VSX loads into normal loads.
+ Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
+ PointerType::getUnqual(II->getType()));
+ return new LoadInst(II->getType(), Ptr, Twine(""), false, Align::None());
+ }
+ case Intrinsic::ppc_altivec_stvx:
+ case Intrinsic::ppc_altivec_stvxl:
+ // Turn stvx -> store if the pointer is known aligned.
+ if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC,
+ &DT) >= 16) {
+ Type *OpPtrTy =
+ PointerType::getUnqual(II->getArgOperand(0)->getType());
+ Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
+ return new StoreInst(II->getArgOperand(0), Ptr);
+ }
+ break;
+ case Intrinsic::ppc_vsx_stxvw4x:
+ case Intrinsic::ppc_vsx_stxvd2x: {
+ // Turn PPC VSX stores into normal stores.
+ Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType());
+ Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
+ return new StoreInst(II->getArgOperand(0), Ptr, false, Align::None());
+ }
+ case Intrinsic::ppc_qpx_qvlfs:
+ // Turn PPC QPX qvlfs -> load if the pointer is known aligned.
+ if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC,
+ &DT) >= 16) {
+ Type *VTy = VectorType::get(Builder.getFloatTy(),
+ II->getType()->getVectorNumElements());
+ Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
+ PointerType::getUnqual(VTy));
+ Value *Load = Builder.CreateLoad(VTy, Ptr);
+ return new FPExtInst(Load, II->getType());
+ }
+ break;
+ case Intrinsic::ppc_qpx_qvlfd:
+ // Turn PPC QPX qvlfd -> load if the pointer is known aligned.
+ if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, II, &AC,
+ &DT) >= 32) {
+ Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
+ PointerType::getUnqual(II->getType()));
+ return new LoadInst(II->getType(), Ptr);
+ }
+ break;
+ case Intrinsic::ppc_qpx_qvstfs:
+ // Turn PPC QPX qvstfs -> store if the pointer is known aligned.
+ if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC,
+ &DT) >= 16) {
+ Type *VTy = VectorType::get(Builder.getFloatTy(),
+ II->getArgOperand(0)->getType()->getVectorNumElements());
+ Value *TOp = Builder.CreateFPTrunc(II->getArgOperand(0), VTy);
+ Type *OpPtrTy = PointerType::getUnqual(VTy);
+ Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
+ return new StoreInst(TOp, Ptr);
+ }
+ break;
+ case Intrinsic::ppc_qpx_qvstfd:
+ // Turn PPC QPX qvstfd -> store if the pointer is known aligned.
+ if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, II, &AC,
+ &DT) >= 32) {
+ Type *OpPtrTy =
+ PointerType::getUnqual(II->getArgOperand(0)->getType());
+ Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
+ return new StoreInst(II->getArgOperand(0), Ptr);
+ }
+ break;
+
+ case Intrinsic::x86_bmi_bextr_32:
+ case Intrinsic::x86_bmi_bextr_64:
+ case Intrinsic::x86_tbm_bextri_u32:
+ case Intrinsic::x86_tbm_bextri_u64:
+ // If the RHS is a constant we can try some simplifications.
+ if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
+ uint64_t Shift = C->getZExtValue();
+ uint64_t Length = (Shift >> 8) & 0xff;
+ Shift &= 0xff;
+ unsigned BitWidth = II->getType()->getIntegerBitWidth();
+ // If the length is 0 or the shift is out of range, replace with zero.
+ if (Length == 0 || Shift >= BitWidth)
+ return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), 0));
+ // If the LHS is also a constant, we can completely constant fold this.
+ if (auto *InC = dyn_cast<ConstantInt>(II->getArgOperand(0))) {
+ uint64_t Result = InC->getZExtValue() >> Shift;
+ if (Length > BitWidth)
+ Length = BitWidth;
+ Result &= maskTrailingOnes<uint64_t>(Length);
+ return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Result));
+ }
+ // TODO should we turn this into 'and' if shift is 0? Or 'shl' if we
+ // are only masking bits that a shift already cleared?
+ }
+ break;
+
+ case Intrinsic::x86_bmi_bzhi_32:
+ case Intrinsic::x86_bmi_bzhi_64:
+ // If the RHS is a constant we can try some simplifications.
+ if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
+ uint64_t Index = C->getZExtValue() & 0xff;
+ unsigned BitWidth = II->getType()->getIntegerBitWidth();
+ if (Index >= BitWidth)
+ return replaceInstUsesWith(CI, II->getArgOperand(0));
+ if (Index == 0)
+ return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), 0));
+ // If the LHS is also a constant, we can completely constant fold this.
+ if (auto *InC = dyn_cast<ConstantInt>(II->getArgOperand(0))) {
+ uint64_t Result = InC->getZExtValue();
+ Result &= maskTrailingOnes<uint64_t>(Index);
+ return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Result));
+ }
+ // TODO should we convert this to an AND if the RHS is constant?
+ }
+ break;
+
+ case Intrinsic::x86_vcvtph2ps_128:
+ case Intrinsic::x86_vcvtph2ps_256: {
+ auto Arg = II->getArgOperand(0);
+ auto ArgType = cast<VectorType>(Arg->getType());
+ auto RetType = cast<VectorType>(II->getType());
+ unsigned ArgWidth = ArgType->getNumElements();
+ unsigned RetWidth = RetType->getNumElements();
+ assert(RetWidth <= ArgWidth && "Unexpected input/return vector widths");
+ assert(ArgType->isIntOrIntVectorTy() &&
+ ArgType->getScalarSizeInBits() == 16 &&
+ "CVTPH2PS input type should be 16-bit integer vector");
+ assert(RetType->getScalarType()->isFloatTy() &&
+ "CVTPH2PS output type should be 32-bit float vector");
+
+ // Constant folding: Convert to generic half to single conversion.
+ if (isa<ConstantAggregateZero>(Arg))
+ return replaceInstUsesWith(*II, ConstantAggregateZero::get(RetType));
+
+ if (isa<ConstantDataVector>(Arg)) {
+ auto VectorHalfAsShorts = Arg;
+ if (RetWidth < ArgWidth) {
+ SmallVector<uint32_t, 8> SubVecMask;
+ for (unsigned i = 0; i != RetWidth; ++i)
+ SubVecMask.push_back((int)i);
+ VectorHalfAsShorts = Builder.CreateShuffleVector(
+ Arg, UndefValue::get(ArgType), SubVecMask);
+ }
+
+ auto VectorHalfType =
+ VectorType::get(Type::getHalfTy(II->getContext()), RetWidth);
+ auto VectorHalfs =
+ Builder.CreateBitCast(VectorHalfAsShorts, VectorHalfType);
+ auto VectorFloats = Builder.CreateFPExt(VectorHalfs, RetType);
+ return replaceInstUsesWith(*II, VectorFloats);
+ }
+
+ // We only use the lowest lanes of the argument.
+ if (Value *V = SimplifyDemandedVectorEltsLow(Arg, ArgWidth, RetWidth)) {
+ II->setArgOperand(0, V);
+ return II;
+ }
+ break;
+ }
+
+ case Intrinsic::x86_sse_cvtss2si:
+ case Intrinsic::x86_sse_cvtss2si64:
+ case Intrinsic::x86_sse_cvttss2si:
+ case Intrinsic::x86_sse_cvttss2si64:
+ case Intrinsic::x86_sse2_cvtsd2si:
+ case Intrinsic::x86_sse2_cvtsd2si64:
+ case Intrinsic::x86_sse2_cvttsd2si:
+ case Intrinsic::x86_sse2_cvttsd2si64:
+ case Intrinsic::x86_avx512_vcvtss2si32:
+ case Intrinsic::x86_avx512_vcvtss2si64:
+ case Intrinsic::x86_avx512_vcvtss2usi32:
+ case Intrinsic::x86_avx512_vcvtss2usi64:
+ case Intrinsic::x86_avx512_vcvtsd2si32:
+ case Intrinsic::x86_avx512_vcvtsd2si64:
+ case Intrinsic::x86_avx512_vcvtsd2usi32:
+ case Intrinsic::x86_avx512_vcvtsd2usi64:
+ case Intrinsic::x86_avx512_cvttss2si:
+ case Intrinsic::x86_avx512_cvttss2si64:
+ case Intrinsic::x86_avx512_cvttss2usi:
+ case Intrinsic::x86_avx512_cvttss2usi64:
+ case Intrinsic::x86_avx512_cvttsd2si:
+ case Intrinsic::x86_avx512_cvttsd2si64:
+ case Intrinsic::x86_avx512_cvttsd2usi:
+ case Intrinsic::x86_avx512_cvttsd2usi64: {
+ // These intrinsics only demand the 0th element of their input vectors. If
+ // we can simplify the input based on that, do so now.
+ Value *Arg = II->getArgOperand(0);
+ unsigned VWidth = Arg->getType()->getVectorNumElements();
+ if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) {
+ II->setArgOperand(0, V);
+ return II;
+ }
+ break;
+ }
+
+ case Intrinsic::x86_mmx_pmovmskb:
+ case Intrinsic::x86_sse_movmsk_ps:
+ case Intrinsic::x86_sse2_movmsk_pd:
+ case Intrinsic::x86_sse2_pmovmskb_128:
+ case Intrinsic::x86_avx_movmsk_pd_256:
+ case Intrinsic::x86_avx_movmsk_ps_256:
+ case Intrinsic::x86_avx2_pmovmskb:
+ if (Value *V = simplifyX86movmsk(*II, Builder))
+ return replaceInstUsesWith(*II, V);
+ break;
+
+ case Intrinsic::x86_sse_comieq_ss:
+ case Intrinsic::x86_sse_comige_ss:
+ case Intrinsic::x86_sse_comigt_ss:
+ case Intrinsic::x86_sse_comile_ss:
+ case Intrinsic::x86_sse_comilt_ss:
+ case Intrinsic::x86_sse_comineq_ss:
+ case Intrinsic::x86_sse_ucomieq_ss:
+ case Intrinsic::x86_sse_ucomige_ss:
+ case Intrinsic::x86_sse_ucomigt_ss:
+ case Intrinsic::x86_sse_ucomile_ss:
+ case Intrinsic::x86_sse_ucomilt_ss:
+ case Intrinsic::x86_sse_ucomineq_ss:
+ case Intrinsic::x86_sse2_comieq_sd:
+ case Intrinsic::x86_sse2_comige_sd:
+ case Intrinsic::x86_sse2_comigt_sd:
+ case Intrinsic::x86_sse2_comile_sd:
+ case Intrinsic::x86_sse2_comilt_sd:
+ case Intrinsic::x86_sse2_comineq_sd:
+ case Intrinsic::x86_sse2_ucomieq_sd:
+ case Intrinsic::x86_sse2_ucomige_sd:
+ case Intrinsic::x86_sse2_ucomigt_sd:
+ case Intrinsic::x86_sse2_ucomile_sd:
+ case Intrinsic::x86_sse2_ucomilt_sd:
+ case Intrinsic::x86_sse2_ucomineq_sd:
+ case Intrinsic::x86_avx512_vcomi_ss:
+ case Intrinsic::x86_avx512_vcomi_sd:
+ case Intrinsic::x86_avx512_mask_cmp_ss:
+ case Intrinsic::x86_avx512_mask_cmp_sd: {
+ // These intrinsics only demand the 0th element of their input vectors. If
+ // we can simplify the input based on that, do so now.
+ bool MadeChange = false;
+ Value *Arg0 = II->getArgOperand(0);
+ Value *Arg1 = II->getArgOperand(1);
+ unsigned VWidth = Arg0->getType()->getVectorNumElements();
+ if (Value *V = SimplifyDemandedVectorEltsLow(Arg0, VWidth, 1)) {
+ II->setArgOperand(0, V);
+ MadeChange = true;
+ }
+ if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) {
+ II->setArgOperand(1, V);
+ MadeChange = true;
+ }
+ if (MadeChange)
+ return II;
+ break;
+ }
+ case Intrinsic::x86_avx512_cmp_pd_128:
+ case Intrinsic::x86_avx512_cmp_pd_256:
+ case Intrinsic::x86_avx512_cmp_pd_512:
+ case Intrinsic::x86_avx512_cmp_ps_128:
+ case Intrinsic::x86_avx512_cmp_ps_256:
+ case Intrinsic::x86_avx512_cmp_ps_512: {
+ // Folding cmp(sub(a,b),0) -> cmp(a,b) and cmp(0,sub(a,b)) -> cmp(b,a)
+ Value *Arg0 = II->getArgOperand(0);
+ Value *Arg1 = II->getArgOperand(1);
+ bool Arg0IsZero = match(Arg0, m_PosZeroFP());
+ if (Arg0IsZero)
+ std::swap(Arg0, Arg1);
+ Value *A, *B;
+ // This fold requires only the NINF(not +/- inf) since inf minus
+ // inf is nan.
+ // NSZ(No Signed Zeros) is not needed because zeros of any sign are
+ // equal for both compares.
+ // NNAN is not needed because nans compare the same for both compares.
+ // The compare intrinsic uses the above assumptions and therefore
+ // doesn't require additional flags.
+ if ((match(Arg0, m_OneUse(m_FSub(m_Value(A), m_Value(B)))) &&
+ match(Arg1, m_PosZeroFP()) && isa<Instruction>(Arg0) &&
+ cast<Instruction>(Arg0)->getFastMathFlags().noInfs())) {
+ if (Arg0IsZero)
+ std::swap(A, B);
+ II->setArgOperand(0, A);
+ II->setArgOperand(1, B);
+ return II;
+ }
+ break;
+ }
+
+ case Intrinsic::x86_avx512_add_ps_512:
+ case Intrinsic::x86_avx512_div_ps_512:
+ case Intrinsic::x86_avx512_mul_ps_512:
+ case Intrinsic::x86_avx512_sub_ps_512:
+ case Intrinsic::x86_avx512_add_pd_512:
+ case Intrinsic::x86_avx512_div_pd_512:
+ case Intrinsic::x86_avx512_mul_pd_512:
+ case Intrinsic::x86_avx512_sub_pd_512:
+ // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
+ // IR operations.
+ if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
+ if (R->getValue() == 4) {
+ Value *Arg0 = II->getArgOperand(0);
+ Value *Arg1 = II->getArgOperand(1);
+
+ Value *V;
+ switch (IID) {
+ default: llvm_unreachable("Case stmts out of sync!");
+ case Intrinsic::x86_avx512_add_ps_512:
+ case Intrinsic::x86_avx512_add_pd_512:
+ V = Builder.CreateFAdd(Arg0, Arg1);
+ break;
+ case Intrinsic::x86_avx512_sub_ps_512:
+ case Intrinsic::x86_avx512_sub_pd_512:
+ V = Builder.CreateFSub(Arg0, Arg1);
+ break;
+ case Intrinsic::x86_avx512_mul_ps_512:
+ case Intrinsic::x86_avx512_mul_pd_512:
+ V = Builder.CreateFMul(Arg0, Arg1);
+ break;
+ case Intrinsic::x86_avx512_div_ps_512:
+ case Intrinsic::x86_avx512_div_pd_512:
+ V = Builder.CreateFDiv(Arg0, Arg1);
+ break;
+ }
+
+ return replaceInstUsesWith(*II, V);
+ }
+ }
+ break;
+
+ case Intrinsic::x86_avx512_mask_add_ss_round:
+ case Intrinsic::x86_avx512_mask_div_ss_round:
+ case Intrinsic::x86_avx512_mask_mul_ss_round:
+ case Intrinsic::x86_avx512_mask_sub_ss_round:
+ case Intrinsic::x86_avx512_mask_add_sd_round:
+ case Intrinsic::x86_avx512_mask_div_sd_round:
+ case Intrinsic::x86_avx512_mask_mul_sd_round:
+ case Intrinsic::x86_avx512_mask_sub_sd_round:
+ // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
+ // IR operations.
+ if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(4))) {
+ if (R->getValue() == 4) {
+ // Extract the element as scalars.
+ Value *Arg0 = II->getArgOperand(0);
+ Value *Arg1 = II->getArgOperand(1);
+ Value *LHS = Builder.CreateExtractElement(Arg0, (uint64_t)0);
+ Value *RHS = Builder.CreateExtractElement(Arg1, (uint64_t)0);
+
+ Value *V;
+ switch (IID) {
+ default: llvm_unreachable("Case stmts out of sync!");
+ case Intrinsic::x86_avx512_mask_add_ss_round:
+ case Intrinsic::x86_avx512_mask_add_sd_round:
+ V = Builder.CreateFAdd(LHS, RHS);
+ break;
+ case Intrinsic::x86_avx512_mask_sub_ss_round:
+ case Intrinsic::x86_avx512_mask_sub_sd_round:
+ V = Builder.CreateFSub(LHS, RHS);
+ break;
+ case Intrinsic::x86_avx512_mask_mul_ss_round:
+ case Intrinsic::x86_avx512_mask_mul_sd_round:
+ V = Builder.CreateFMul(LHS, RHS);
+ break;
+ case Intrinsic::x86_avx512_mask_div_ss_round:
+ case Intrinsic::x86_avx512_mask_div_sd_round:
+ V = Builder.CreateFDiv(LHS, RHS);
+ break;
+ }
+
+ // Handle the masking aspect of the intrinsic.
+ Value *Mask = II->getArgOperand(3);
+ auto *C = dyn_cast<ConstantInt>(Mask);
+ // We don't need a select if we know the mask bit is a 1.
+ if (!C || !C->getValue()[0]) {
+ // Cast the mask to an i1 vector and then extract the lowest element.
+ auto *MaskTy = VectorType::get(Builder.getInt1Ty(),
+ cast<IntegerType>(Mask->getType())->getBitWidth());
+ Mask = Builder.CreateBitCast(Mask, MaskTy);
+ Mask = Builder.CreateExtractElement(Mask, (uint64_t)0);
+ // Extract the lowest element from the passthru operand.
+ Value *Passthru = Builder.CreateExtractElement(II->getArgOperand(2),
+ (uint64_t)0);
+ V = Builder.CreateSelect(Mask, V, Passthru);
+ }
+
+ // Insert the result back into the original argument 0.
+ V = Builder.CreateInsertElement(Arg0, V, (uint64_t)0);
+
+ return replaceInstUsesWith(*II, V);
+ }
+ }
+ break;
+
+ // Constant fold ashr( <A x Bi>, Ci ).
+ // Constant fold lshr( <A x Bi>, Ci ).
+ // Constant fold shl( <A x Bi>, Ci ).
+ case Intrinsic::x86_sse2_psrai_d:
+ case Intrinsic::x86_sse2_psrai_w:
+ case Intrinsic::x86_avx2_psrai_d:
+ case Intrinsic::x86_avx2_psrai_w:
+ case Intrinsic::x86_avx512_psrai_q_128:
+ case Intrinsic::x86_avx512_psrai_q_256:
+ case Intrinsic::x86_avx512_psrai_d_512:
+ case Intrinsic::x86_avx512_psrai_q_512:
+ case Intrinsic::x86_avx512_psrai_w_512:
+ case Intrinsic::x86_sse2_psrli_d:
+ case Intrinsic::x86_sse2_psrli_q:
+ case Intrinsic::x86_sse2_psrli_w:
+ case Intrinsic::x86_avx2_psrli_d:
+ case Intrinsic::x86_avx2_psrli_q:
+ case Intrinsic::x86_avx2_psrli_w:
+ case Intrinsic::x86_avx512_psrli_d_512:
+ case Intrinsic::x86_avx512_psrli_q_512:
+ case Intrinsic::x86_avx512_psrli_w_512:
+ case Intrinsic::x86_sse2_pslli_d:
+ case Intrinsic::x86_sse2_pslli_q:
+ case Intrinsic::x86_sse2_pslli_w:
+ case Intrinsic::x86_avx2_pslli_d:
+ case Intrinsic::x86_avx2_pslli_q:
+ case Intrinsic::x86_avx2_pslli_w:
+ case Intrinsic::x86_avx512_pslli_d_512:
+ case Intrinsic::x86_avx512_pslli_q_512:
+ case Intrinsic::x86_avx512_pslli_w_512:
+ if (Value *V = simplifyX86immShift(*II, Builder))
+ return replaceInstUsesWith(*II, V);
+ break;
+
+ case Intrinsic::x86_sse2_psra_d:
+ case Intrinsic::x86_sse2_psra_w:
+ case Intrinsic::x86_avx2_psra_d:
+ case Intrinsic::x86_avx2_psra_w:
+ case Intrinsic::x86_avx512_psra_q_128:
+ case Intrinsic::x86_avx512_psra_q_256:
+ case Intrinsic::x86_avx512_psra_d_512:
+ case Intrinsic::x86_avx512_psra_q_512:
+ case Intrinsic::x86_avx512_psra_w_512:
+ case Intrinsic::x86_sse2_psrl_d:
+ case Intrinsic::x86_sse2_psrl_q:
+ case Intrinsic::x86_sse2_psrl_w:
+ case Intrinsic::x86_avx2_psrl_d:
+ case Intrinsic::x86_avx2_psrl_q:
+ case Intrinsic::x86_avx2_psrl_w:
+ case Intrinsic::x86_avx512_psrl_d_512:
+ case Intrinsic::x86_avx512_psrl_q_512:
+ case Intrinsic::x86_avx512_psrl_w_512:
+ case Intrinsic::x86_sse2_psll_d:
+ case Intrinsic::x86_sse2_psll_q:
+ case Intrinsic::x86_sse2_psll_w:
+ case Intrinsic::x86_avx2_psll_d:
+ case Intrinsic::x86_avx2_psll_q:
+ case Intrinsic::x86_avx2_psll_w:
+ case Intrinsic::x86_avx512_psll_d_512:
+ case Intrinsic::x86_avx512_psll_q_512:
+ case Intrinsic::x86_avx512_psll_w_512: {
+ if (Value *V = simplifyX86immShift(*II, Builder))
+ return replaceInstUsesWith(*II, V);
+
+ // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector
+ // operand to compute the shift amount.
+ Value *Arg1 = II->getArgOperand(1);
+ assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 &&
+ "Unexpected packed shift size");
+ unsigned VWidth = Arg1->getType()->getVectorNumElements();
+
+ if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) {
+ II->setArgOperand(1, V);
+ return II;
+ }
+ break;
+ }
+
+ case Intrinsic::x86_avx2_psllv_d:
+ case Intrinsic::x86_avx2_psllv_d_256:
+ case Intrinsic::x86_avx2_psllv_q:
+ case Intrinsic::x86_avx2_psllv_q_256:
+ case Intrinsic::x86_avx512_psllv_d_512:
+ case Intrinsic::x86_avx512_psllv_q_512:
+ case Intrinsic::x86_avx512_psllv_w_128:
+ case Intrinsic::x86_avx512_psllv_w_256:
+ case Intrinsic::x86_avx512_psllv_w_512:
+ case Intrinsic::x86_avx2_psrav_d:
+ case Intrinsic::x86_avx2_psrav_d_256:
+ case Intrinsic::x86_avx512_psrav_q_128:
+ case Intrinsic::x86_avx512_psrav_q_256:
+ case Intrinsic::x86_avx512_psrav_d_512:
+ case Intrinsic::x86_avx512_psrav_q_512:
+ case Intrinsic::x86_avx512_psrav_w_128:
+ case Intrinsic::x86_avx512_psrav_w_256:
+ case Intrinsic::x86_avx512_psrav_w_512:
+ case Intrinsic::x86_avx2_psrlv_d:
+ case Intrinsic::x86_avx2_psrlv_d_256:
+ case Intrinsic::x86_avx2_psrlv_q:
+ case Intrinsic::x86_avx2_psrlv_q_256:
+ case Intrinsic::x86_avx512_psrlv_d_512:
+ case Intrinsic::x86_avx512_psrlv_q_512:
+ case Intrinsic::x86_avx512_psrlv_w_128:
+ case Intrinsic::x86_avx512_psrlv_w_256:
+ case Intrinsic::x86_avx512_psrlv_w_512:
+ if (Value *V = simplifyX86varShift(*II, Builder))
+ return replaceInstUsesWith(*II, V);
+ break;
+
+ case Intrinsic::x86_sse2_packssdw_128:
+ case Intrinsic::x86_sse2_packsswb_128:
+ case Intrinsic::x86_avx2_packssdw:
+ case Intrinsic::x86_avx2_packsswb:
+ case Intrinsic::x86_avx512_packssdw_512:
+ case Intrinsic::x86_avx512_packsswb_512:
+ if (Value *V = simplifyX86pack(*II, Builder, true))
+ return replaceInstUsesWith(*II, V);
+ break;
+
+ case Intrinsic::x86_sse2_packuswb_128:
+ case Intrinsic::x86_sse41_packusdw:
+ case Intrinsic::x86_avx2_packusdw:
+ case Intrinsic::x86_avx2_packuswb:
+ case Intrinsic::x86_avx512_packusdw_512:
+ case Intrinsic::x86_avx512_packuswb_512:
+ if (Value *V = simplifyX86pack(*II, Builder, false))
+ return replaceInstUsesWith(*II, V);
+ break;
+
+ case Intrinsic::x86_pclmulqdq:
+ case Intrinsic::x86_pclmulqdq_256:
+ case Intrinsic::x86_pclmulqdq_512: {
+ if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
+ unsigned Imm = C->getZExtValue();
+
+ bool MadeChange = false;
+ Value *Arg0 = II->getArgOperand(0);
+ Value *Arg1 = II->getArgOperand(1);
+ unsigned VWidth = Arg0->getType()->getVectorNumElements();
+
+ APInt UndefElts1(VWidth, 0);
+ APInt DemandedElts1 = APInt::getSplat(VWidth,
+ APInt(2, (Imm & 0x01) ? 2 : 1));
+ if (Value *V = SimplifyDemandedVectorElts(Arg0, DemandedElts1,
+ UndefElts1)) {
+ II->setArgOperand(0, V);
+ MadeChange = true;
+ }
+
+ APInt UndefElts2(VWidth, 0);
+ APInt DemandedElts2 = APInt::getSplat(VWidth,
+ APInt(2, (Imm & 0x10) ? 2 : 1));
+ if (Value *V = SimplifyDemandedVectorElts(Arg1, DemandedElts2,
+ UndefElts2)) {
+ II->setArgOperand(1, V);
+ MadeChange = true;
+ }
+
+ // If either input elements are undef, the result is zero.
+ if (DemandedElts1.isSubsetOf(UndefElts1) ||
+ DemandedElts2.isSubsetOf(UndefElts2))
+ return replaceInstUsesWith(*II,
+ ConstantAggregateZero::get(II->getType()));
+
+ if (MadeChange)
+ return II;
+ }
+ break;
+ }
+
+ case Intrinsic::x86_sse41_insertps:
+ if (Value *V = simplifyX86insertps(*II, Builder))
+ return replaceInstUsesWith(*II, V);
+ break;
+
+ case Intrinsic::x86_sse4a_extrq: {
+ Value *Op0 = II->getArgOperand(0);
+ Value *Op1 = II->getArgOperand(1);
+ unsigned VWidth0 = Op0->getType()->getVectorNumElements();
+ unsigned VWidth1 = Op1->getType()->getVectorNumElements();
+ assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
+ Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
+ VWidth1 == 16 && "Unexpected operand sizes");
+
+ // See if we're dealing with constant values.
+ Constant *C1 = dyn_cast<Constant>(Op1);
+ ConstantInt *CILength =
+ C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
+ : nullptr;
+ ConstantInt *CIIndex =
+ C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
+ : nullptr;
+
+ // Attempt to simplify to a constant, shuffle vector or EXTRQI call.
+ if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, Builder))
+ return replaceInstUsesWith(*II, V);
+
+ // EXTRQ only uses the lowest 64-bits of the first 128-bit vector
+ // operands and the lowest 16-bits of the second.
+ bool MadeChange = false;
+ if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
+ II->setArgOperand(0, V);
+ MadeChange = true;
+ }
+ if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) {
+ II->setArgOperand(1, V);
+ MadeChange = true;
+ }
+ if (MadeChange)
+ return II;
+ break;
+ }
+
+ case Intrinsic::x86_sse4a_extrqi: {
+ // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining
+ // bits of the lower 64-bits. The upper 64-bits are undefined.
+ Value *Op0 = II->getArgOperand(0);
+ unsigned VWidth = Op0->getType()->getVectorNumElements();
+ assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
+ "Unexpected operand size");
+
+ // See if we're dealing with constant values.
+ ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(1));
+ ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(2));
+
+ // Attempt to simplify to a constant or shuffle vector.
+ if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, Builder))
+ return replaceInstUsesWith(*II, V);
+
+ // EXTRQI only uses the lowest 64-bits of the first 128-bit vector
+ // operand.
+ if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
+ II->setArgOperand(0, V);
+ return II;
+ }
+ break;
+ }
+
+ case Intrinsic::x86_sse4a_insertq: {
+ Value *Op0 = II->getArgOperand(0);
+ Value *Op1 = II->getArgOperand(1);
+ unsigned VWidth = Op0->getType()->getVectorNumElements();
+ assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
+ Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
+ Op1->getType()->getVectorNumElements() == 2 &&
+ "Unexpected operand size");
+
+ // See if we're dealing with constant values.
+ Constant *C1 = dyn_cast<Constant>(Op1);
+ ConstantInt *CI11 =
+ C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
+ : nullptr;
+
+ // Attempt to simplify to a constant, shuffle vector or INSERTQI call.
+ if (CI11) {
+ const APInt &V11 = CI11->getValue();
+ APInt Len = V11.zextOrTrunc(6);
+ APInt Idx = V11.lshr(8).zextOrTrunc(6);
+ if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, Builder))
+ return replaceInstUsesWith(*II, V);
+ }
+
+ // INSERTQ only uses the lowest 64-bits of the first 128-bit vector
+ // operand.
+ if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
+ II->setArgOperand(0, V);
+ return II;
+ }
+ break;
+ }
+
+ case Intrinsic::x86_sse4a_insertqi: {
+ // INSERTQI: Extract lowest Length bits from lower half of second source and
+ // insert over first source starting at Index bit. The upper 64-bits are
+ // undefined.
+ Value *Op0 = II->getArgOperand(0);
+ Value *Op1 = II->getArgOperand(1);
+ unsigned VWidth0 = Op0->getType()->getVectorNumElements();
+ unsigned VWidth1 = Op1->getType()->getVectorNumElements();
+ assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
+ Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
+ VWidth1 == 2 && "Unexpected operand sizes");
+
+ // See if we're dealing with constant values.
+ ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(2));
+ ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(3));
+
+ // Attempt to simplify to a constant or shuffle vector.
+ if (CILength && CIIndex) {
+ APInt Len = CILength->getValue().zextOrTrunc(6);
+ APInt Idx = CIIndex->getValue().zextOrTrunc(6);
+ if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, Builder))
+ return replaceInstUsesWith(*II, V);
+ }
+
+ // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector
+ // operands.
+ bool MadeChange = false;
+ if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
+ II->setArgOperand(0, V);
+ MadeChange = true;
+ }
+ if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) {
+ II->setArgOperand(1, V);
+ MadeChange = true;
+ }
+ if (MadeChange)
+ return II;
+ break;
+ }
+
+ case Intrinsic::x86_sse41_pblendvb:
+ case Intrinsic::x86_sse41_blendvps:
+ case Intrinsic::x86_sse41_blendvpd:
+ case Intrinsic::x86_avx_blendv_ps_256:
+ case Intrinsic::x86_avx_blendv_pd_256:
+ case Intrinsic::x86_avx2_pblendvb: {
+ // fold (blend A, A, Mask) -> A
+ Value *Op0 = II->getArgOperand(0);
+ Value *Op1 = II->getArgOperand(1);
+ Value *Mask = II->getArgOperand(2);
+ if (Op0 == Op1)
+ return replaceInstUsesWith(CI, Op0);
+
+ // Zero Mask - select 1st argument.
+ if (isa<ConstantAggregateZero>(Mask))
+ return replaceInstUsesWith(CI, Op0);
+
+ // Constant Mask - select 1st/2nd argument lane based on top bit of mask.
+ if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask)) {
+ Constant *NewSelector = getNegativeIsTrueBoolVec(ConstantMask);
+ return SelectInst::Create(NewSelector, Op1, Op0, "blendv");
+ }
+
+ // Convert to a vector select if we can bypass casts and find a boolean
+ // vector condition value.
+ Value *BoolVec;
+ Mask = peekThroughBitcast(Mask);
+ if (match(Mask, m_SExt(m_Value(BoolVec))) &&
+ BoolVec->getType()->isVectorTy() &&
+ BoolVec->getType()->getScalarSizeInBits() == 1) {
+ assert(Mask->getType()->getPrimitiveSizeInBits() ==
+ II->getType()->getPrimitiveSizeInBits() &&
+ "Not expecting mask and operands with different sizes");
+
+ unsigned NumMaskElts = Mask->getType()->getVectorNumElements();
+ unsigned NumOperandElts = II->getType()->getVectorNumElements();
+ if (NumMaskElts == NumOperandElts)
+ return SelectInst::Create(BoolVec, Op1, Op0);
+
+ // If the mask has less elements than the operands, each mask bit maps to
+ // multiple elements of the operands. Bitcast back and forth.
+ if (NumMaskElts < NumOperandElts) {
+ Value *CastOp0 = Builder.CreateBitCast(Op0, Mask->getType());
+ Value *CastOp1 = Builder.CreateBitCast(Op1, Mask->getType());
+ Value *Sel = Builder.CreateSelect(BoolVec, CastOp1, CastOp0);
+ return new BitCastInst(Sel, II->getType());
+ }
+ }
+
+ break;
+ }
+
+ case Intrinsic::x86_ssse3_pshuf_b_128:
+ case Intrinsic::x86_avx2_pshuf_b:
+ case Intrinsic::x86_avx512_pshuf_b_512:
+ if (Value *V = simplifyX86pshufb(*II, Builder))
+ return replaceInstUsesWith(*II, V);
+ break;
+
+ case Intrinsic::x86_avx_vpermilvar_ps:
+ case Intrinsic::x86_avx_vpermilvar_ps_256:
+ case Intrinsic::x86_avx512_vpermilvar_ps_512:
+ case Intrinsic::x86_avx_vpermilvar_pd:
+ case Intrinsic::x86_avx_vpermilvar_pd_256:
+ case Intrinsic::x86_avx512_vpermilvar_pd_512:
+ if (Value *V = simplifyX86vpermilvar(*II, Builder))
+ return replaceInstUsesWith(*II, V);
+ break;
+
+ case Intrinsic::x86_avx2_permd:
+ case Intrinsic::x86_avx2_permps:
+ case Intrinsic::x86_avx512_permvar_df_256:
+ case Intrinsic::x86_avx512_permvar_df_512:
+ case Intrinsic::x86_avx512_permvar_di_256:
+ case Intrinsic::x86_avx512_permvar_di_512:
+ case Intrinsic::x86_avx512_permvar_hi_128:
+ case Intrinsic::x86_avx512_permvar_hi_256:
+ case Intrinsic::x86_avx512_permvar_hi_512:
+ case Intrinsic::x86_avx512_permvar_qi_128:
+ case Intrinsic::x86_avx512_permvar_qi_256:
+ case Intrinsic::x86_avx512_permvar_qi_512:
+ case Intrinsic::x86_avx512_permvar_sf_512:
+ case Intrinsic::x86_avx512_permvar_si_512:
+ if (Value *V = simplifyX86vpermv(*II, Builder))
+ return replaceInstUsesWith(*II, V);
+ break;
+
+ case Intrinsic::x86_avx_maskload_ps:
+ case Intrinsic::x86_avx_maskload_pd:
+ case Intrinsic::x86_avx_maskload_ps_256:
+ case Intrinsic::x86_avx_maskload_pd_256:
+ case Intrinsic::x86_avx2_maskload_d:
+ case Intrinsic::x86_avx2_maskload_q:
+ case Intrinsic::x86_avx2_maskload_d_256:
+ case Intrinsic::x86_avx2_maskload_q_256:
+ if (Instruction *I = simplifyX86MaskedLoad(*II, *this))
+ return I;
+ break;
+
+ case Intrinsic::x86_sse2_maskmov_dqu:
+ case Intrinsic::x86_avx_maskstore_ps:
+ case Intrinsic::x86_avx_maskstore_pd:
+ case Intrinsic::x86_avx_maskstore_ps_256:
+ case Intrinsic::x86_avx_maskstore_pd_256:
+ case Intrinsic::x86_avx2_maskstore_d:
+ case Intrinsic::x86_avx2_maskstore_q:
+ case Intrinsic::x86_avx2_maskstore_d_256:
+ case Intrinsic::x86_avx2_maskstore_q_256:
+ if (simplifyX86MaskedStore(*II, *this))
+ return nullptr;
+ break;
+
+ case Intrinsic::x86_addcarry_32:
+ case Intrinsic::x86_addcarry_64:
+ if (Value *V = simplifyX86addcarry(*II, Builder))
+ return replaceInstUsesWith(*II, V);
+ break;
+
+ case Intrinsic::ppc_altivec_vperm:
+ // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
+ // Note that ppc_altivec_vperm has a big-endian bias, so when creating
+ // a vectorshuffle for little endian, we must undo the transformation
+ // performed on vec_perm in altivec.h. That is, we must complement
+ // the permutation mask with respect to 31 and reverse the order of
+ // V1 and V2.
+ if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
+ assert(Mask->getType()->getVectorNumElements() == 16 &&
+ "Bad type for intrinsic!");
+
+ // Check that all of the elements are integer constants or undefs.
+ bool AllEltsOk = true;
+ for (unsigned i = 0; i != 16; ++i) {
+ Constant *Elt = Mask->getAggregateElement(i);
+ if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
+ AllEltsOk = false;
+ break;
+ }
+ }
+
+ if (AllEltsOk) {
+ // Cast the input vectors to byte vectors.
+ Value *Op0 = Builder.CreateBitCast(II->getArgOperand(0),
+ Mask->getType());
+ Value *Op1 = Builder.CreateBitCast(II->getArgOperand(1),
+ Mask->getType());
+ Value *Result = UndefValue::get(Op0->getType());
+
+ // Only extract each element once.
+ Value *ExtractedElts[32];
+ memset(ExtractedElts, 0, sizeof(ExtractedElts));
+
+ for (unsigned i = 0; i != 16; ++i) {
+ if (isa<UndefValue>(Mask->getAggregateElement(i)))
+ continue;
+ unsigned Idx =
+ cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
+ Idx &= 31; // Match the hardware behavior.
+ if (DL.isLittleEndian())
+ Idx = 31 - Idx;
+
+ if (!ExtractedElts[Idx]) {
+ Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
+ Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
+ ExtractedElts[Idx] =
+ Builder.CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse,
+ Builder.getInt32(Idx&15));
+ }
+
+ // Insert this value into the result vector.
+ Result = Builder.CreateInsertElement(Result, ExtractedElts[Idx],
+ Builder.getInt32(i));
+ }
+ return CastInst::Create(Instruction::BitCast, Result, CI.getType());
+ }
+ }
+ break;
+
+ case Intrinsic::arm_neon_vld1: {
+ unsigned MemAlign = getKnownAlignment(II->getArgOperand(0),
+ DL, II, &AC, &DT);
+ if (Value *V = simplifyNeonVld1(*II, MemAlign, Builder))
+ return replaceInstUsesWith(*II, V);
+ break;
+ }
+
+ case Intrinsic::arm_neon_vld2:
+ case Intrinsic::arm_neon_vld3:
+ case Intrinsic::arm_neon_vld4:
+ case Intrinsic::arm_neon_vld2lane:
+ case Intrinsic::arm_neon_vld3lane:
+ case Intrinsic::arm_neon_vld4lane:
+ case Intrinsic::arm_neon_vst1:
+ case Intrinsic::arm_neon_vst2:
+ case Intrinsic::arm_neon_vst3:
+ case Intrinsic::arm_neon_vst4:
+ case Intrinsic::arm_neon_vst2lane:
+ case Intrinsic::arm_neon_vst3lane:
+ case Intrinsic::arm_neon_vst4lane: {
+ unsigned MemAlign =
+ getKnownAlignment(II->getArgOperand(0), DL, II, &AC, &DT);
+ unsigned AlignArg = II->getNumArgOperands() - 1;
+ ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
+ if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
+ II->setArgOperand(AlignArg,
+ ConstantInt::get(Type::getInt32Ty(II->getContext()),
+ MemAlign, false));
+ return II;
+ }
+ break;
+ }
+
+ case Intrinsic::arm_neon_vtbl1:
+ case Intrinsic::aarch64_neon_tbl1:
+ if (Value *V = simplifyNeonTbl1(*II, Builder))
+ return replaceInstUsesWith(*II, V);
+ break;
+
+ case Intrinsic::arm_neon_vmulls:
+ case Intrinsic::arm_neon_vmullu:
+ case Intrinsic::aarch64_neon_smull:
+ case Intrinsic::aarch64_neon_umull: {
+ Value *Arg0 = II->getArgOperand(0);
+ Value *Arg1 = II->getArgOperand(1);
+
+ // Handle mul by zero first:
+ if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
+ return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
+ }
+
+ // Check for constant LHS & RHS - in this case we just simplify.
+ bool Zext = (IID == Intrinsic::arm_neon_vmullu ||
+ IID == Intrinsic::aarch64_neon_umull);
+ VectorType *NewVT = cast<VectorType>(II->getType());
+ if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
+ if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
+ CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
+ CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
+
+ return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
+ }
+
+ // Couldn't simplify - canonicalize constant to the RHS.
+ std::swap(Arg0, Arg1);
+ }
+
+ // Handle mul by one:
+ if (Constant *CV1 = dyn_cast<Constant>(Arg1))
+ if (ConstantInt *Splat =
+ dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
+ if (Splat->isOne())
+ return CastInst::CreateIntegerCast(Arg0, II->getType(),
+ /*isSigned=*/!Zext);
+
+ break;
+ }
+ case Intrinsic::arm_neon_aesd:
+ case Intrinsic::arm_neon_aese:
+ case Intrinsic::aarch64_crypto_aesd:
+ case Intrinsic::aarch64_crypto_aese: {
+ Value *DataArg = II->getArgOperand(0);
+ Value *KeyArg = II->getArgOperand(1);
+
+ // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR
+ Value *Data, *Key;
+ if (match(KeyArg, m_ZeroInt()) &&
+ match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) {
+ II->setArgOperand(0, Data);
+ II->setArgOperand(1, Key);
+ return II;
+ }
+ break;
+ }
+ case Intrinsic::amdgcn_rcp: {
+ Value *Src = II->getArgOperand(0);
+
+ // TODO: Move to ConstantFolding/InstSimplify?
+ if (isa<UndefValue>(Src))
+ return replaceInstUsesWith(CI, Src);
+
+ if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
+ const APFloat &ArgVal = C->getValueAPF();
+ APFloat Val(ArgVal.getSemantics(), 1.0);
+ APFloat::opStatus Status = Val.divide(ArgVal,
+ APFloat::rmNearestTiesToEven);
+ // Only do this if it was exact and therefore not dependent on the
+ // rounding mode.
+ if (Status == APFloat::opOK)
+ return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val));
+ }
+
+ break;
+ }
+ case Intrinsic::amdgcn_rsq: {
+ Value *Src = II->getArgOperand(0);
+
+ // TODO: Move to ConstantFolding/InstSimplify?
+ if (isa<UndefValue>(Src))
+ return replaceInstUsesWith(CI, Src);
+ break;
+ }
+ case Intrinsic::amdgcn_frexp_mant:
+ case Intrinsic::amdgcn_frexp_exp: {
+ Value *Src = II->getArgOperand(0);
+ if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
+ int Exp;
+ APFloat Significand = frexp(C->getValueAPF(), Exp,
+ APFloat::rmNearestTiesToEven);
+
+ if (IID == Intrinsic::amdgcn_frexp_mant) {
+ return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(),
+ Significand));
+ }
+
+ // Match instruction special case behavior.
+ if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf)
+ Exp = 0;
+
+ return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Exp));
+ }
+
+ if (isa<UndefValue>(Src))
+ return replaceInstUsesWith(CI, UndefValue::get(II->getType()));
+
+ break;
+ }
+ case Intrinsic::amdgcn_class: {
+ enum {
+ S_NAN = 1 << 0, // Signaling NaN
+ Q_NAN = 1 << 1, // Quiet NaN
+ N_INFINITY = 1 << 2, // Negative infinity
+ N_NORMAL = 1 << 3, // Negative normal
+ N_SUBNORMAL = 1 << 4, // Negative subnormal
+ N_ZERO = 1 << 5, // Negative zero
+ P_ZERO = 1 << 6, // Positive zero
+ P_SUBNORMAL = 1 << 7, // Positive subnormal
+ P_NORMAL = 1 << 8, // Positive normal
+ P_INFINITY = 1 << 9 // Positive infinity
+ };
+
+ const uint32_t FullMask = S_NAN | Q_NAN | N_INFINITY | N_NORMAL |
+ N_SUBNORMAL | N_ZERO | P_ZERO | P_SUBNORMAL | P_NORMAL | P_INFINITY;
+
+ Value *Src0 = II->getArgOperand(0);
+ Value *Src1 = II->getArgOperand(1);
+ const ConstantInt *CMask = dyn_cast<ConstantInt>(Src1);
+ if (!CMask) {
+ if (isa<UndefValue>(Src0))
+ return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
+
+ if (isa<UndefValue>(Src1))
+ return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false));
+ break;
+ }
+
+ uint32_t Mask = CMask->getZExtValue();
+
+ // If all tests are made, it doesn't matter what the value is.
+ if ((Mask & FullMask) == FullMask)
+ return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), true));
+
+ if ((Mask & FullMask) == 0)
+ return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false));
+
+ if (Mask == (S_NAN | Q_NAN)) {
+ // Equivalent of isnan. Replace with standard fcmp.
+ Value *FCmp = Builder.CreateFCmpUNO(Src0, Src0);
+ FCmp->takeName(II);
+ return replaceInstUsesWith(*II, FCmp);
+ }
+
+ if (Mask == (N_ZERO | P_ZERO)) {
+ // Equivalent of == 0.
+ Value *FCmp = Builder.CreateFCmpOEQ(
+ Src0, ConstantFP::get(Src0->getType(), 0.0));
+
+ FCmp->takeName(II);
+ return replaceInstUsesWith(*II, FCmp);
+ }
+
+ // fp_class (nnan x), qnan|snan|other -> fp_class (nnan x), other
+ if (((Mask & S_NAN) || (Mask & Q_NAN)) && isKnownNeverNaN(Src0, &TLI)) {
+ II->setArgOperand(1, ConstantInt::get(Src1->getType(),
+ Mask & ~(S_NAN | Q_NAN)));
+ return II;
+ }
+
+ const ConstantFP *CVal = dyn_cast<ConstantFP>(Src0);
+ if (!CVal) {
+ if (isa<UndefValue>(Src0))
+ return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
+
+ // Clamp mask to used bits
+ if ((Mask & FullMask) != Mask) {
+ CallInst *NewCall = Builder.CreateCall(II->getCalledFunction(),
+ { Src0, ConstantInt::get(Src1->getType(), Mask & FullMask) }
+ );
+
+ NewCall->takeName(II);
+ return replaceInstUsesWith(*II, NewCall);
+ }
+
+ break;
+ }
+
+ const APFloat &Val = CVal->getValueAPF();
+
+ bool Result =
+ ((Mask & S_NAN) && Val.isNaN() && Val.isSignaling()) ||
+ ((Mask & Q_NAN) && Val.isNaN() && !Val.isSignaling()) ||
+ ((Mask & N_INFINITY) && Val.isInfinity() && Val.isNegative()) ||
+ ((Mask & N_NORMAL) && Val.isNormal() && Val.isNegative()) ||
+ ((Mask & N_SUBNORMAL) && Val.isDenormal() && Val.isNegative()) ||
+ ((Mask & N_ZERO) && Val.isZero() && Val.isNegative()) ||
+ ((Mask & P_ZERO) && Val.isZero() && !Val.isNegative()) ||
+ ((Mask & P_SUBNORMAL) && Val.isDenormal() && !Val.isNegative()) ||
+ ((Mask & P_NORMAL) && Val.isNormal() && !Val.isNegative()) ||
+ ((Mask & P_INFINITY) && Val.isInfinity() && !Val.isNegative());
+
+ return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), Result));
+ }
+ case Intrinsic::amdgcn_cvt_pkrtz: {
+ Value *Src0 = II->getArgOperand(0);
+ Value *Src1 = II->getArgOperand(1);
+ if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
+ if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
+ const fltSemantics &HalfSem
+ = II->getType()->getScalarType()->getFltSemantics();
+ bool LosesInfo;
+ APFloat Val0 = C0->getValueAPF();
+ APFloat Val1 = C1->getValueAPF();
+ Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
+ Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
+
+ Constant *Folded = ConstantVector::get({
+ ConstantFP::get(II->getContext(), Val0),
+ ConstantFP::get(II->getContext(), Val1) });
+ return replaceInstUsesWith(*II, Folded);
+ }
+ }
+
+ if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1))
+ return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
+
+ break;
+ }
+ case Intrinsic::amdgcn_cvt_pknorm_i16:
+ case Intrinsic::amdgcn_cvt_pknorm_u16:
+ case Intrinsic::amdgcn_cvt_pk_i16:
+ case Intrinsic::amdgcn_cvt_pk_u16: {
+ Value *Src0 = II->getArgOperand(0);
+ Value *Src1 = II->getArgOperand(1);
+
+ if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1))
+ return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
+
+ break;
+ }
+ case Intrinsic::amdgcn_ubfe:
+ case Intrinsic::amdgcn_sbfe: {
+ // Decompose simple cases into standard shifts.
+ Value *Src = II->getArgOperand(0);
+ if (isa<UndefValue>(Src))
+ return replaceInstUsesWith(*II, Src);
+
+ unsigned Width;
+ Type *Ty = II->getType();
+ unsigned IntSize = Ty->getIntegerBitWidth();
+
+ ConstantInt *CWidth = dyn_cast<ConstantInt>(II->getArgOperand(2));
+ if (CWidth) {
+ Width = CWidth->getZExtValue();
+ if ((Width & (IntSize - 1)) == 0)
+ return replaceInstUsesWith(*II, ConstantInt::getNullValue(Ty));
+
+ if (Width >= IntSize) {
+ // Hardware ignores high bits, so remove those.
+ II->setArgOperand(2, ConstantInt::get(CWidth->getType(),
+ Width & (IntSize - 1)));
+ return II;
+ }
+ }
+
+ unsigned Offset;
+ ConstantInt *COffset = dyn_cast<ConstantInt>(II->getArgOperand(1));
+ if (COffset) {
+ Offset = COffset->getZExtValue();
+ if (Offset >= IntSize) {
+ II->setArgOperand(1, ConstantInt::get(COffset->getType(),
+ Offset & (IntSize - 1)));
+ return II;
+ }
+ }
+
+ bool Signed = IID == Intrinsic::amdgcn_sbfe;
+
+ if (!CWidth || !COffset)
+ break;
+
+ // The case of Width == 0 is handled above, which makes this tranformation
+ // safe. If Width == 0, then the ashr and lshr instructions become poison
+ // value since the shift amount would be equal to the bit size.
+ assert(Width != 0);
+
+ // TODO: This allows folding to undef when the hardware has specific
+ // behavior?
+ if (Offset + Width < IntSize) {
+ Value *Shl = Builder.CreateShl(Src, IntSize - Offset - Width);
+ Value *RightShift = Signed ? Builder.CreateAShr(Shl, IntSize - Width)
+ : Builder.CreateLShr(Shl, IntSize - Width);
+ RightShift->takeName(II);
+ return replaceInstUsesWith(*II, RightShift);
+ }
+
+ Value *RightShift = Signed ? Builder.CreateAShr(Src, Offset)
+ : Builder.CreateLShr(Src, Offset);
+
+ RightShift->takeName(II);
+ return replaceInstUsesWith(*II, RightShift);
+ }
+ case Intrinsic::amdgcn_exp:
+ case Intrinsic::amdgcn_exp_compr: {
+ ConstantInt *En = cast<ConstantInt>(II->getArgOperand(1));
+ unsigned EnBits = En->getZExtValue();
+ if (EnBits == 0xf)
+ break; // All inputs enabled.
+
+ bool IsCompr = IID == Intrinsic::amdgcn_exp_compr;
+ bool Changed = false;
+ for (int I = 0; I < (IsCompr ? 2 : 4); ++I) {
+ if ((!IsCompr && (EnBits & (1 << I)) == 0) ||
+ (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) {
+ Value *Src = II->getArgOperand(I + 2);
+ if (!isa<UndefValue>(Src)) {
+ II->setArgOperand(I + 2, UndefValue::get(Src->getType()));
+ Changed = true;
+ }
+ }
+ }
+
+ if (Changed)
+ return II;
+
+ break;
+ }
+ case Intrinsic::amdgcn_fmed3: {
+ // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled
+ // for the shader.
+
+ Value *Src0 = II->getArgOperand(0);
+ Value *Src1 = II->getArgOperand(1);
+ Value *Src2 = II->getArgOperand(2);
+
+ // Checking for NaN before canonicalization provides better fidelity when
+ // mapping other operations onto fmed3 since the order of operands is
+ // unchanged.
+ CallInst *NewCall = nullptr;
+ if (match(Src0, m_NaN()) || isa<UndefValue>(Src0)) {
+ NewCall = Builder.CreateMinNum(Src1, Src2);
+ } else if (match(Src1, m_NaN()) || isa<UndefValue>(Src1)) {
+ NewCall = Builder.CreateMinNum(Src0, Src2);
+ } else if (match(Src2, m_NaN()) || isa<UndefValue>(Src2)) {
+ NewCall = Builder.CreateMaxNum(Src0, Src1);
+ }
+
+ if (NewCall) {
+ NewCall->copyFastMathFlags(II);
+ NewCall->takeName(II);
+ return replaceInstUsesWith(*II, NewCall);
+ }
+
+ bool Swap = false;
+ // Canonicalize constants to RHS operands.
+ //
+ // fmed3(c0, x, c1) -> fmed3(x, c0, c1)
+ if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
+ std::swap(Src0, Src1);
+ Swap = true;
+ }
+
+ if (isa<Constant>(Src1) && !isa<Constant>(Src2)) {
+ std::swap(Src1, Src2);
+ Swap = true;
+ }
+
+ if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
+ std::swap(Src0, Src1);
+ Swap = true;
+ }
+
+ if (Swap) {
+ II->setArgOperand(0, Src0);
+ II->setArgOperand(1, Src1);
+ II->setArgOperand(2, Src2);
+ return II;
+ }
+
+ if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
+ if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
+ if (const ConstantFP *C2 = dyn_cast<ConstantFP>(Src2)) {
+ APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(),
+ C2->getValueAPF());
+ return replaceInstUsesWith(*II,
+ ConstantFP::get(Builder.getContext(), Result));
+ }
+ }
+ }
+
+ break;
+ }
+ case Intrinsic::amdgcn_icmp:
+ case Intrinsic::amdgcn_fcmp: {
+ const ConstantInt *CC = cast<ConstantInt>(II->getArgOperand(2));
+ // Guard against invalid arguments.
+ int64_t CCVal = CC->getZExtValue();
+ bool IsInteger = IID == Intrinsic::amdgcn_icmp;
+ if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE ||
+ CCVal > CmpInst::LAST_ICMP_PREDICATE)) ||
+ (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE ||
+ CCVal > CmpInst::LAST_FCMP_PREDICATE)))
+ break;
+
+ Value *Src0 = II->getArgOperand(0);
+ Value *Src1 = II->getArgOperand(1);
+
+ if (auto *CSrc0 = dyn_cast<Constant>(Src0)) {
+ if (auto *CSrc1 = dyn_cast<Constant>(Src1)) {
+ Constant *CCmp = ConstantExpr::getCompare(CCVal, CSrc0, CSrc1);
+ if (CCmp->isNullValue()) {
+ return replaceInstUsesWith(
+ *II, ConstantExpr::getSExt(CCmp, II->getType()));
+ }
+
+ // The result of V_ICMP/V_FCMP assembly instructions (which this
+ // intrinsic exposes) is one bit per thread, masked with the EXEC
+ // register (which contains the bitmask of live threads). So a
+ // comparison that always returns true is the same as a read of the
+ // EXEC register.
+ Function *NewF = Intrinsic::getDeclaration(
+ II->getModule(), Intrinsic::read_register, II->getType());
+ Metadata *MDArgs[] = {MDString::get(II->getContext(), "exec")};
+ MDNode *MD = MDNode::get(II->getContext(), MDArgs);
+ Value *Args[] = {MetadataAsValue::get(II->getContext(), MD)};
+ CallInst *NewCall = Builder.CreateCall(NewF, Args);
+ NewCall->addAttribute(AttributeList::FunctionIndex,
+ Attribute::Convergent);
+ NewCall->takeName(II);
+ return replaceInstUsesWith(*II, NewCall);
+ }
+
+ // Canonicalize constants to RHS.
+ CmpInst::Predicate SwapPred
+ = CmpInst::getSwappedPredicate(static_cast<CmpInst::Predicate>(CCVal));
+ II->setArgOperand(0, Src1);
+ II->setArgOperand(1, Src0);
+ II->setArgOperand(2, ConstantInt::get(CC->getType(),
+ static_cast<int>(SwapPred)));
+ return II;
+ }
+
+ if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE)
+ break;
+
+ // Canonicalize compare eq with true value to compare != 0
+ // llvm.amdgcn.icmp(zext (i1 x), 1, eq)
+ // -> llvm.amdgcn.icmp(zext (i1 x), 0, ne)
+ // llvm.amdgcn.icmp(sext (i1 x), -1, eq)
+ // -> llvm.amdgcn.icmp(sext (i1 x), 0, ne)
+ Value *ExtSrc;
+ if (CCVal == CmpInst::ICMP_EQ &&
+ ((match(Src1, m_One()) && match(Src0, m_ZExt(m_Value(ExtSrc)))) ||
+ (match(Src1, m_AllOnes()) && match(Src0, m_SExt(m_Value(ExtSrc))))) &&
+ ExtSrc->getType()->isIntegerTy(1)) {
+ II->setArgOperand(1, ConstantInt::getNullValue(Src1->getType()));
+ II->setArgOperand(2, ConstantInt::get(CC->getType(), CmpInst::ICMP_NE));
+ return II;
+ }
+
+ CmpInst::Predicate SrcPred;
+ Value *SrcLHS;
+ Value *SrcRHS;
+
+ // Fold compare eq/ne with 0 from a compare result as the predicate to the
+ // intrinsic. The typical use is a wave vote function in the library, which
+ // will be fed from a user code condition compared with 0. Fold in the
+ // redundant compare.
+
+ // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne)
+ // -> llvm.amdgcn.[if]cmp(a, b, pred)
+ //
+ // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq)
+ // -> llvm.amdgcn.[if]cmp(a, b, inv pred)
+ if (match(Src1, m_Zero()) &&
+ match(Src0,
+ m_ZExtOrSExt(m_Cmp(SrcPred, m_Value(SrcLHS), m_Value(SrcRHS))))) {
+ if (CCVal == CmpInst::ICMP_EQ)
+ SrcPred = CmpInst::getInversePredicate(SrcPred);
+
+ Intrinsic::ID NewIID = CmpInst::isFPPredicate(SrcPred) ?
+ Intrinsic::amdgcn_fcmp : Intrinsic::amdgcn_icmp;
+
+ Type *Ty = SrcLHS->getType();
+ if (auto *CmpType = dyn_cast<IntegerType>(Ty)) {
+ // Promote to next legal integer type.
+ unsigned Width = CmpType->getBitWidth();
+ unsigned NewWidth = Width;
+
+ // Don't do anything for i1 comparisons.
+ if (Width == 1)
+ break;
+
+ if (Width <= 16)
+ NewWidth = 16;
+ else if (Width <= 32)
+ NewWidth = 32;
+ else if (Width <= 64)
+ NewWidth = 64;
+ else if (Width > 64)
+ break; // Can't handle this.
+
+ if (Width != NewWidth) {
+ IntegerType *CmpTy = Builder.getIntNTy(NewWidth);
+ if (CmpInst::isSigned(SrcPred)) {
+ SrcLHS = Builder.CreateSExt(SrcLHS, CmpTy);
+ SrcRHS = Builder.CreateSExt(SrcRHS, CmpTy);
+ } else {
+ SrcLHS = Builder.CreateZExt(SrcLHS, CmpTy);
+ SrcRHS = Builder.CreateZExt(SrcRHS, CmpTy);
+ }
+ }
+ } else if (!Ty->isFloatTy() && !Ty->isDoubleTy() && !Ty->isHalfTy())
+ break;
+
+ Function *NewF =
+ Intrinsic::getDeclaration(II->getModule(), NewIID,
+ { II->getType(),
+ SrcLHS->getType() });
+ Value *Args[] = { SrcLHS, SrcRHS,
+ ConstantInt::get(CC->getType(), SrcPred) };
+ CallInst *NewCall = Builder.CreateCall(NewF, Args);
+ NewCall->takeName(II);
+ return replaceInstUsesWith(*II, NewCall);
+ }
+
+ break;
+ }
+ case Intrinsic::amdgcn_wqm_vote: {
+ // wqm_vote is identity when the argument is constant.
+ if (!isa<Constant>(II->getArgOperand(0)))
+ break;
+
+ return replaceInstUsesWith(*II, II->getArgOperand(0));
+ }
+ case Intrinsic::amdgcn_kill: {
+ const ConstantInt *C = dyn_cast<ConstantInt>(II->getArgOperand(0));
+ if (!C || !C->getZExtValue())
+ break;
+
+ // amdgcn.kill(i1 1) is a no-op
+ return eraseInstFromFunction(CI);
+ }
+ case Intrinsic::amdgcn_update_dpp: {
+ Value *Old = II->getArgOperand(0);
+
+ auto BC = cast<ConstantInt>(II->getArgOperand(5));
+ auto RM = cast<ConstantInt>(II->getArgOperand(3));
+ auto BM = cast<ConstantInt>(II->getArgOperand(4));
+ if (BC->isZeroValue() ||
+ RM->getZExtValue() != 0xF ||
+ BM->getZExtValue() != 0xF ||
+ isa<UndefValue>(Old))
+ break;
+
+ // If bound_ctrl = 1, row mask = bank mask = 0xf we can omit old value.
+ II->setOperand(0, UndefValue::get(Old->getType()));
+ return II;
+ }
+ case Intrinsic::amdgcn_readfirstlane:
+ case Intrinsic::amdgcn_readlane: {
+ // A constant value is trivially uniform.
+ if (Constant *C = dyn_cast<Constant>(II->getArgOperand(0)))
+ return replaceInstUsesWith(*II, C);
+
+ // The rest of these may not be safe if the exec may not be the same between
+ // the def and use.
+ Value *Src = II->getArgOperand(0);
+ Instruction *SrcInst = dyn_cast<Instruction>(Src);
+ if (SrcInst && SrcInst->getParent() != II->getParent())
+ break;
+
+ // readfirstlane (readfirstlane x) -> readfirstlane x
+ // readlane (readfirstlane x), y -> readfirstlane x
+ if (match(Src, m_Intrinsic<Intrinsic::amdgcn_readfirstlane>()))
+ return replaceInstUsesWith(*II, Src);
+
+ if (IID == Intrinsic::amdgcn_readfirstlane) {
+ // readfirstlane (readlane x, y) -> readlane x, y
+ if (match(Src, m_Intrinsic<Intrinsic::amdgcn_readlane>()))
+ return replaceInstUsesWith(*II, Src);
+ } else {
+ // readlane (readlane x, y), y -> readlane x, y
+ if (match(Src, m_Intrinsic<Intrinsic::amdgcn_readlane>(
+ m_Value(), m_Specific(II->getArgOperand(1)))))
+ return replaceInstUsesWith(*II, Src);
+ }
+
+ break;
+ }
+ case Intrinsic::stackrestore: {
+ // If the save is right next to the restore, remove the restore. This can
+ // happen when variable allocas are DCE'd.
+ if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
+ if (SS->getIntrinsicID() == Intrinsic::stacksave) {
+ // Skip over debug info.
+ if (SS->getNextNonDebugInstruction() == II) {
+ return eraseInstFromFunction(CI);
+ }
+ }
+ }
+
+ // Scan down this block to see if there is another stack restore in the
+ // same block without an intervening call/alloca.
+ BasicBlock::iterator BI(II);
+ Instruction *TI = II->getParent()->getTerminator();
+ bool CannotRemove = false;
+ for (++BI; &*BI != TI; ++BI) {
+ if (isa<AllocaInst>(BI)) {
+ CannotRemove = true;
+ break;
+ }
+ if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
+ if (auto *II2 = dyn_cast<IntrinsicInst>(BCI)) {
+ // If there is a stackrestore below this one, remove this one.
+ if (II2->getIntrinsicID() == Intrinsic::stackrestore)
+ return eraseInstFromFunction(CI);
+
+ // Bail if we cross over an intrinsic with side effects, such as
+ // llvm.stacksave, llvm.read_register, or llvm.setjmp.
+ if (II2->mayHaveSideEffects()) {
+ CannotRemove = true;
+ break;
+ }
+ } else {
+ // If we found a non-intrinsic call, we can't remove the stack
+ // restore.
+ CannotRemove = true;
+ break;
+ }
+ }
+ }
+
+ // If the stack restore is in a return, resume, or unwind block and if there
+ // are no allocas or calls between the restore and the return, nuke the
+ // restore.
+ if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
+ return eraseInstFromFunction(CI);
+ break;
+ }
+ case Intrinsic::lifetime_start:
+ // Asan needs to poison memory to detect invalid access which is possible
+ // even for empty lifetime range.
+ if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
+ II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) ||
+ II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
+ break;
+
+ if (removeTriviallyEmptyRange(*II, Intrinsic::lifetime_start,
+ Intrinsic::lifetime_end, *this))
+ return nullptr;
+ break;
+ case Intrinsic::assume: {
+ Value *IIOperand = II->getArgOperand(0);
+ // Remove an assume if it is followed by an identical assume.
+ // TODO: Do we need this? Unless there are conflicting assumptions, the
+ // computeKnownBits(IIOperand) below here eliminates redundant assumes.
+ Instruction *Next = II->getNextNonDebugInstruction();
+ if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand))))
+ return eraseInstFromFunction(CI);
+
+ // Canonicalize assume(a && b) -> assume(a); assume(b);
+ // Note: New assumption intrinsics created here are registered by
+ // the InstCombineIRInserter object.
+ FunctionType *AssumeIntrinsicTy = II->getFunctionType();
+ Value *AssumeIntrinsic = II->getCalledValue();
+ Value *A, *B;
+ if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) {
+ Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, II->getName());
+ Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName());
+ return eraseInstFromFunction(*II);
+ }
+ // assume(!(a || b)) -> assume(!a); assume(!b);
+ if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) {
+ Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
+ Builder.CreateNot(A), II->getName());
+ Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
+ Builder.CreateNot(B), II->getName());
+ return eraseInstFromFunction(*II);
+ }
+
+ // assume( (load addr) != null ) -> add 'nonnull' metadata to load
+ // (if assume is valid at the load)
+ CmpInst::Predicate Pred;
+ Instruction *LHS;
+ if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) &&
+ Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load &&
+ LHS->getType()->isPointerTy() &&
+ isValidAssumeForContext(II, LHS, &DT)) {
+ MDNode *MD = MDNode::get(II->getContext(), None);
+ LHS->setMetadata(LLVMContext::MD_nonnull, MD);
+ return eraseInstFromFunction(*II);
+
+ // TODO: apply nonnull return attributes to calls and invokes
+ // TODO: apply range metadata for range check patterns?
+ }
+
+ // If there is a dominating assume with the same condition as this one,
+ // then this one is redundant, and should be removed.
+ KnownBits Known(1);
+ computeKnownBits(IIOperand, Known, 0, II);
+ if (Known.isAllOnes())
+ return eraseInstFromFunction(*II);
+
+ // Update the cache of affected values for this assumption (we might be
+ // here because we just simplified the condition).
+ AC.updateAffectedValues(II);
+ break;
+ }
+ case Intrinsic::experimental_gc_relocate: {
+ auto &GCR = *cast<GCRelocateInst>(II);
+
+ // If we have two copies of the same pointer in the statepoint argument
+ // list, canonicalize to one. This may let us common gc.relocates.
+ if (GCR.getBasePtr() == GCR.getDerivedPtr() &&
+ GCR.getBasePtrIndex() != GCR.getDerivedPtrIndex()) {
+ auto *OpIntTy = GCR.getOperand(2)->getType();
+ II->setOperand(2, ConstantInt::get(OpIntTy, GCR.getBasePtrIndex()));
+ return II;
+ }
+
+ // Translate facts known about a pointer before relocating into
+ // facts about the relocate value, while being careful to
+ // preserve relocation semantics.
+ Value *DerivedPtr = GCR.getDerivedPtr();
+
+ // Remove the relocation if unused, note that this check is required
+ // to prevent the cases below from looping forever.
+ if (II->use_empty())
+ return eraseInstFromFunction(*II);
+
+ // Undef is undef, even after relocation.
+ // TODO: provide a hook for this in GCStrategy. This is clearly legal for
+ // most practical collectors, but there was discussion in the review thread
+ // about whether it was legal for all possible collectors.
+ if (isa<UndefValue>(DerivedPtr))
+ // Use undef of gc_relocate's type to replace it.
+ return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
+
+ if (auto *PT = dyn_cast<PointerType>(II->getType())) {
+ // The relocation of null will be null for most any collector.
+ // TODO: provide a hook for this in GCStrategy. There might be some
+ // weird collector this property does not hold for.
+ if (isa<ConstantPointerNull>(DerivedPtr))
+ // Use null-pointer of gc_relocate's type to replace it.
+ return replaceInstUsesWith(*II, ConstantPointerNull::get(PT));
+
+ // isKnownNonNull -> nonnull attribute
+ if (!II->hasRetAttr(Attribute::NonNull) &&
+ isKnownNonZero(DerivedPtr, DL, 0, &AC, II, &DT)) {
+ II->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
+ return II;
+ }
+ }
+
+ // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
+ // Canonicalize on the type from the uses to the defs
+
+ // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
+ break;
+ }
+
+ case Intrinsic::experimental_guard: {
+ // Is this guard followed by another guard? We scan forward over a small
+ // fixed window of instructions to handle common cases with conditions
+ // computed between guards.
+ Instruction *NextInst = II->getNextNode();
+ for (unsigned i = 0; i < GuardWideningWindow; i++) {
+ // Note: Using context-free form to avoid compile time blow up
+ if (!isSafeToSpeculativelyExecute(NextInst))
+ break;
+ NextInst = NextInst->getNextNode();
+ }
+ Value *NextCond = nullptr;
+ if (match(NextInst,
+ m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) {
+ Value *CurrCond = II->getArgOperand(0);
+
+ // Remove a guard that it is immediately preceded by an identical guard.
+ if (CurrCond == NextCond)
+ return eraseInstFromFunction(*NextInst);
+
+ // Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
+ Instruction* MoveI = II->getNextNode();
+ while (MoveI != NextInst) {
+ auto *Temp = MoveI;
+ MoveI = MoveI->getNextNode();
+ Temp->moveBefore(II);
+ }
+ II->setArgOperand(0, Builder.CreateAnd(CurrCond, NextCond));
+ return eraseInstFromFunction(*NextInst);
+ }
+ break;
+ }
+ }
+ return visitCallBase(*II);
+}
+
+// Fence instruction simplification
+Instruction *InstCombiner::visitFenceInst(FenceInst &FI) {
+ // Remove identical consecutive fences.
+ Instruction *Next = FI.getNextNonDebugInstruction();
+ if (auto *NFI = dyn_cast<FenceInst>(Next))
+ if (FI.isIdenticalTo(NFI))
+ return eraseInstFromFunction(FI);
+ return nullptr;
+}
+
+// InvokeInst simplification
+Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
+ return visitCallBase(II);
+}
+
+// CallBrInst simplification
+Instruction *InstCombiner::visitCallBrInst(CallBrInst &CBI) {
+ return visitCallBase(CBI);
+}
+
+/// If this cast does not affect the value passed through the varargs area, we
+/// can eliminate the use of the cast.
+static bool isSafeToEliminateVarargsCast(const CallBase &Call,
+ const DataLayout &DL,
+ const CastInst *const CI,
+ const int ix) {
+ if (!CI->isLosslessCast())
+ return false;
+
+ // If this is a GC intrinsic, avoid munging types. We need types for
+ // statepoint reconstruction in SelectionDAG.
+ // TODO: This is probably something which should be expanded to all
+ // intrinsics since the entire point of intrinsics is that
+ // they are understandable by the optimizer.
+ if (isStatepoint(&Call) || isGCRelocate(&Call) || isGCResult(&Call))
+ return false;
+
+ // The size of ByVal or InAlloca arguments is derived from the type, so we
+ // can't change to a type with a different size. If the size were
+ // passed explicitly we could avoid this check.
+ if (!Call.isByValOrInAllocaArgument(ix))
+ return true;
+
+ Type* SrcTy =
+ cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
+ Type *DstTy = Call.isByValArgument(ix)
+ ? Call.getParamByValType(ix)
+ : cast<PointerType>(CI->getType())->getElementType();
+ if (!SrcTy->isSized() || !DstTy->isSized())
+ return false;
+ if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy))
+ return false;
+ return true;
+}
+
+Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) {
+ if (!CI->getCalledFunction()) return nullptr;
+
+ auto InstCombineRAUW = [this](Instruction *From, Value *With) {
+ replaceInstUsesWith(*From, With);
+ };
+ auto InstCombineErase = [this](Instruction *I) {
+ eraseInstFromFunction(*I);
+ };
+ LibCallSimplifier Simplifier(DL, &TLI, ORE, BFI, PSI, InstCombineRAUW,
+ InstCombineErase);
+ if (Value *With = Simplifier.optimizeCall(CI)) {
+ ++NumSimplified;
+ return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
+ }
+
+ return nullptr;
+}
+
+static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) {
+ // Strip off at most one level of pointer casts, looking for an alloca. This
+ // is good enough in practice and simpler than handling any number of casts.
+ Value *Underlying = TrampMem->stripPointerCasts();
+ if (Underlying != TrampMem &&
+ (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
+ return nullptr;
+ if (!isa<AllocaInst>(Underlying))
+ return nullptr;
+
+ IntrinsicInst *InitTrampoline = nullptr;
+ for (User *U : TrampMem->users()) {
+ IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
+ if (!II)
+ return nullptr;
+ if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
+ if (InitTrampoline)
+ // More than one init_trampoline writes to this value. Give up.
+ return nullptr;
+ InitTrampoline = II;
+ continue;
+ }
+ if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
+ // Allow any number of calls to adjust.trampoline.
+ continue;
+ return nullptr;
+ }
+
+ // No call to init.trampoline found.
+ if (!InitTrampoline)
+ return nullptr;
+
+ // Check that the alloca is being used in the expected way.
+ if (InitTrampoline->getOperand(0) != TrampMem)
+ return nullptr;
+
+ return InitTrampoline;
+}
+
+static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
+ Value *TrampMem) {
+ // Visit all the previous instructions in the basic block, and try to find a
+ // init.trampoline which has a direct path to the adjust.trampoline.
+ for (BasicBlock::iterator I = AdjustTramp->getIterator(),
+ E = AdjustTramp->getParent()->begin();
+ I != E;) {
+ Instruction *Inst = &*--I;
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
+ if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
+ II->getOperand(0) == TrampMem)
+ return II;
+ if (Inst->mayWriteToMemory())
+ return nullptr;
+ }
+ return nullptr;
+}
+
+// Given a call to llvm.adjust.trampoline, find and return the corresponding
+// call to llvm.init.trampoline if the call to the trampoline can be optimized
+// to a direct call to a function. Otherwise return NULL.
+static IntrinsicInst *findInitTrampoline(Value *Callee) {
+ Callee = Callee->stripPointerCasts();
+ IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
+ if (!AdjustTramp ||
+ AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
+ return nullptr;
+
+ Value *TrampMem = AdjustTramp->getOperand(0);
+
+ if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem))
+ return IT;
+ if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
+ return IT;
+ return nullptr;
+}
+
+static void annotateAnyAllocSite(CallBase &Call, const TargetLibraryInfo *TLI) {
+ unsigned NumArgs = Call.getNumArgOperands();
+ ConstantInt *Op0C = dyn_cast<ConstantInt>(Call.getOperand(0));
+ ConstantInt *Op1C =
+ (NumArgs == 1) ? nullptr : dyn_cast<ConstantInt>(Call.getOperand(1));
+ // Bail out if the allocation size is zero.
+ if ((Op0C && Op0C->isNullValue()) || (Op1C && Op1C->isNullValue()))
+ return;
+
+ if (isMallocLikeFn(&Call, TLI) && Op0C) {
+ if (isOpNewLikeFn(&Call, TLI))
+ Call.addAttribute(AttributeList::ReturnIndex,
+ Attribute::getWithDereferenceableBytes(
+ Call.getContext(), Op0C->getZExtValue()));
+ else
+ Call.addAttribute(AttributeList::ReturnIndex,
+ Attribute::getWithDereferenceableOrNullBytes(
+ Call.getContext(), Op0C->getZExtValue()));
+ } else if (isReallocLikeFn(&Call, TLI) && Op1C) {
+ Call.addAttribute(AttributeList::ReturnIndex,
+ Attribute::getWithDereferenceableOrNullBytes(
+ Call.getContext(), Op1C->getZExtValue()));
+ } else if (isCallocLikeFn(&Call, TLI) && Op0C && Op1C) {
+ bool Overflow;
+ const APInt &N = Op0C->getValue();
+ APInt Size = N.umul_ov(Op1C->getValue(), Overflow);
+ if (!Overflow)
+ Call.addAttribute(AttributeList::ReturnIndex,
+ Attribute::getWithDereferenceableOrNullBytes(
+ Call.getContext(), Size.getZExtValue()));
+ } else if (isStrdupLikeFn(&Call, TLI)) {
+ uint64_t Len = GetStringLength(Call.getOperand(0));
+ if (Len) {
+ // strdup
+ if (NumArgs == 1)
+ Call.addAttribute(AttributeList::ReturnIndex,
+ Attribute::getWithDereferenceableOrNullBytes(
+ Call.getContext(), Len));
+ // strndup
+ else if (NumArgs == 2 && Op1C)
+ Call.addAttribute(
+ AttributeList::ReturnIndex,
+ Attribute::getWithDereferenceableOrNullBytes(
+ Call.getContext(), std::min(Len, Op1C->getZExtValue() + 1)));
+ }
+ }
+}
+
+/// Improvements for call, callbr and invoke instructions.
+Instruction *InstCombiner::visitCallBase(CallBase &Call) {
+ if (isAllocationFn(&Call, &TLI))
+ annotateAnyAllocSite(Call, &TLI);
+
+ bool Changed = false;
+
+ // Mark any parameters that are known to be non-null with the nonnull
+ // attribute. This is helpful for inlining calls to functions with null
+ // checks on their arguments.
+ SmallVector<unsigned, 4> ArgNos;
+ unsigned ArgNo = 0;
+
+ for (Value *V : Call.args()) {
+ if (V->getType()->isPointerTy() &&
+ !Call.paramHasAttr(ArgNo, Attribute::NonNull) &&
+ isKnownNonZero(V, DL, 0, &AC, &Call, &DT))
+ ArgNos.push_back(ArgNo);
+ ArgNo++;
+ }
+
+ assert(ArgNo == Call.arg_size() && "sanity check");
+
+ if (!ArgNos.empty()) {
+ AttributeList AS = Call.getAttributes();
+ LLVMContext &Ctx = Call.getContext();
+ AS = AS.addParamAttribute(Ctx, ArgNos,
+ Attribute::get(Ctx, Attribute::NonNull));
+ Call.setAttributes(AS);
+ Changed = true;
+ }
+
+ // If the callee is a pointer to a function, attempt to move any casts to the
+ // arguments of the call/callbr/invoke.
+ Value *Callee = Call.getCalledValue();
+ if (!isa<Function>(Callee) && transformConstExprCastCall(Call))
+ return nullptr;
+
+ if (Function *CalleeF = dyn_cast<Function>(Callee)) {
+ // Remove the convergent attr on calls when the callee is not convergent.
+ if (Call.isConvergent() && !CalleeF->isConvergent() &&
+ !CalleeF->isIntrinsic()) {
+ LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call
+ << "\n");
+ Call.setNotConvergent();
+ return &Call;
+ }
+
+ // If the call and callee calling conventions don't match, this call must
+ // be unreachable, as the call is undefined.
+ if (CalleeF->getCallingConv() != Call.getCallingConv() &&
+ // Only do this for calls to a function with a body. A prototype may
+ // not actually end up matching the implementation's calling conv for a
+ // variety of reasons (e.g. it may be written in assembly).
+ !CalleeF->isDeclaration()) {
+ Instruction *OldCall = &Call;
+ CreateNonTerminatorUnreachable(OldCall);
+ // If OldCall does not return void then replaceAllUsesWith undef.
+ // This allows ValueHandlers and custom metadata to adjust itself.
+ if (!OldCall->getType()->isVoidTy())
+ replaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
+ if (isa<CallInst>(OldCall))
+ return eraseInstFromFunction(*OldCall);
+
+ // We cannot remove an invoke or a callbr, because it would change thexi
+ // CFG, just change the callee to a null pointer.
+ cast<CallBase>(OldCall)->setCalledFunction(
+ CalleeF->getFunctionType(),
+ Constant::getNullValue(CalleeF->getType()));
+ return nullptr;
+ }
+ }
+
+ if ((isa<ConstantPointerNull>(Callee) &&
+ !NullPointerIsDefined(Call.getFunction())) ||
+ isa<UndefValue>(Callee)) {
+ // If Call does not return void then replaceAllUsesWith undef.
+ // This allows ValueHandlers and custom metadata to adjust itself.
+ if (!Call.getType()->isVoidTy())
+ replaceInstUsesWith(Call, UndefValue::get(Call.getType()));
+
+ if (Call.isTerminator()) {
+ // Can't remove an invoke or callbr because we cannot change the CFG.
+ return nullptr;
+ }
+
+ // This instruction is not reachable, just remove it.
+ CreateNonTerminatorUnreachable(&Call);
+ return eraseInstFromFunction(Call);
+ }
+
+ if (IntrinsicInst *II = findInitTrampoline(Callee))
+ return transformCallThroughTrampoline(Call, *II);
+
+ PointerType *PTy = cast<PointerType>(Callee->getType());
+ FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
+ if (FTy->isVarArg()) {
+ int ix = FTy->getNumParams();
+ // See if we can optimize any arguments passed through the varargs area of
+ // the call.
+ for (auto I = Call.arg_begin() + FTy->getNumParams(), E = Call.arg_end();
+ I != E; ++I, ++ix) {
+ CastInst *CI = dyn_cast<CastInst>(*I);
+ if (CI && isSafeToEliminateVarargsCast(Call, DL, CI, ix)) {
+ *I = CI->getOperand(0);
+
+ // Update the byval type to match the argument type.
+ if (Call.isByValArgument(ix)) {
+ Call.removeParamAttr(ix, Attribute::ByVal);
+ Call.addParamAttr(
+ ix, Attribute::getWithByValType(
+ Call.getContext(),
+ CI->getOperand(0)->getType()->getPointerElementType()));
+ }
+ Changed = true;
+ }
+ }
+ }
+
+ if (isa<InlineAsm>(Callee) && !Call.doesNotThrow()) {
+ // Inline asm calls cannot throw - mark them 'nounwind'.
+ Call.setDoesNotThrow();
+ Changed = true;
+ }
+
+ // Try to optimize the call if possible, we require DataLayout for most of
+ // this. None of these calls are seen as possibly dead so go ahead and
+ // delete the instruction now.
+ if (CallInst *CI = dyn_cast<CallInst>(&Call)) {
+ Instruction *I = tryOptimizeCall(CI);
+ // If we changed something return the result, etc. Otherwise let
+ // the fallthrough check.
+ if (I) return eraseInstFromFunction(*I);
+ }
+
+ if (isAllocLikeFn(&Call, &TLI))
+ return visitAllocSite(Call);
+
+ return Changed ? &Call : nullptr;
+}
+
+/// If the callee is a constexpr cast of a function, attempt to move the cast to
+/// the arguments of the call/callbr/invoke.
+bool InstCombiner::transformConstExprCastCall(CallBase &Call) {
+ auto *Callee = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts());
+ if (!Callee)
+ return false;
+
+ // If this is a call to a thunk function, don't remove the cast. Thunks are
+ // used to transparently forward all incoming parameters and outgoing return
+ // values, so it's important to leave the cast in place.
+ if (Callee->hasFnAttribute("thunk"))
+ return false;
+
+ // If this is a musttail call, the callee's prototype must match the caller's
+ // prototype with the exception of pointee types. The code below doesn't
+ // implement that, so we can't do this transform.
+ // TODO: Do the transform if it only requires adding pointer casts.
+ if (Call.isMustTailCall())
+ return false;
+
+ Instruction *Caller = &Call;
+ const AttributeList &CallerPAL = Call.getAttributes();
+
+ // Okay, this is a cast from a function to a different type. Unless doing so
+ // would cause a type conversion of one of our arguments, change this call to
+ // be a direct call with arguments casted to the appropriate types.
+ FunctionType *FT = Callee->getFunctionType();
+ Type *OldRetTy = Caller->getType();
+ Type *NewRetTy = FT->getReturnType();
+
+ // Check to see if we are changing the return type...
+ if (OldRetTy != NewRetTy) {
+
+ if (NewRetTy->isStructTy())
+ return false; // TODO: Handle multiple return values.
+
+ if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
+ if (Callee->isDeclaration())
+ return false; // Cannot transform this return value.
+
+ if (!Caller->use_empty() &&
+ // void -> non-void is handled specially
+ !NewRetTy->isVoidTy())
+ return false; // Cannot transform this return value.
+ }
+
+ if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
+ AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex);
+ if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
+ return false; // Attribute not compatible with transformed value.
+ }
+
+ // If the callbase is an invoke/callbr instruction, and the return value is
+ // used by a PHI node in a successor, we cannot change the return type of
+ // the call because there is no place to put the cast instruction (without
+ // breaking the critical edge). Bail out in this case.
+ if (!Caller->use_empty()) {
+ if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
+ for (User *U : II->users())
+ if (PHINode *PN = dyn_cast<PHINode>(U))
+ if (PN->getParent() == II->getNormalDest() ||
+ PN->getParent() == II->getUnwindDest())
+ return false;
+ // FIXME: Be conservative for callbr to avoid a quadratic search.
+ if (isa<CallBrInst>(Caller))
+ return false;
+ }
+ }
+
+ unsigned NumActualArgs = Call.arg_size();
+ unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
+
+ // Prevent us turning:
+ // declare void @takes_i32_inalloca(i32* inalloca)
+ // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
+ //
+ // into:
+ // call void @takes_i32_inalloca(i32* null)
+ //
+ // Similarly, avoid folding away bitcasts of byval calls.
+ if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
+ Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal))
+ return false;
+
+ auto AI = Call.arg_begin();
+ for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
+ Type *ParamTy = FT->getParamType(i);
+ Type *ActTy = (*AI)->getType();
+
+ if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
+ return false; // Cannot transform this parameter value.
+
+ if (AttrBuilder(CallerPAL.getParamAttributes(i))
+ .overlaps(AttributeFuncs::typeIncompatible(ParamTy)))
+ return false; // Attribute not compatible with transformed value.
+
+ if (Call.isInAllocaArgument(i))
+ return false; // Cannot transform to and from inalloca.
+
+ // If the parameter is passed as a byval argument, then we have to have a
+ // sized type and the sized type has to have the same size as the old type.
+ if (ParamTy != ActTy && CallerPAL.hasParamAttribute(i, Attribute::ByVal)) {
+ PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
+ if (!ParamPTy || !ParamPTy->getElementType()->isSized())
+ return false;
+
+ Type *CurElTy = Call.getParamByValType(i);
+ if (DL.getTypeAllocSize(CurElTy) !=
+ DL.getTypeAllocSize(ParamPTy->getElementType()))
+ return false;
+ }
+ }
+
+ if (Callee->isDeclaration()) {
+ // Do not delete arguments unless we have a function body.
+ if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
+ return false;
+
+ // If the callee is just a declaration, don't change the varargsness of the
+ // call. We don't want to introduce a varargs call where one doesn't
+ // already exist.
+ PointerType *APTy = cast<PointerType>(Call.getCalledValue()->getType());
+ if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
+ return false;
+
+ // If both the callee and the cast type are varargs, we still have to make
+ // sure the number of fixed parameters are the same or we have the same
+ // ABI issues as if we introduce a varargs call.
+ if (FT->isVarArg() &&
+ cast<FunctionType>(APTy->getElementType())->isVarArg() &&
+ FT->getNumParams() !=
+ cast<FunctionType>(APTy->getElementType())->getNumParams())
+ return false;
+ }
+
+ if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
+ !CallerPAL.isEmpty()) {
+ // In this case we have more arguments than the new function type, but we
+ // won't be dropping them. Check that these extra arguments have attributes
+ // that are compatible with being a vararg call argument.
+ unsigned SRetIdx;
+ if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
+ SRetIdx > FT->getNumParams())
+ return false;
+ }
+
+ // Okay, we decided that this is a safe thing to do: go ahead and start
+ // inserting cast instructions as necessary.
+ SmallVector<Value *, 8> Args;
+ SmallVector<AttributeSet, 8> ArgAttrs;
+ Args.reserve(NumActualArgs);
+ ArgAttrs.reserve(NumActualArgs);
+
+ // Get any return attributes.
+ AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex);
+
+ // If the return value is not being used, the type may not be compatible
+ // with the existing attributes. Wipe out any problematic attributes.
+ RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
+
+ LLVMContext &Ctx = Call.getContext();
+ AI = Call.arg_begin();
+ for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
+ Type *ParamTy = FT->getParamType(i);
+
+ Value *NewArg = *AI;
+ if ((*AI)->getType() != ParamTy)
+ NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy);
+ Args.push_back(NewArg);
+
+ // Add any parameter attributes.
+ if (CallerPAL.hasParamAttribute(i, Attribute::ByVal)) {
+ AttrBuilder AB(CallerPAL.getParamAttributes(i));
+ AB.addByValAttr(NewArg->getType()->getPointerElementType());
+ ArgAttrs.push_back(AttributeSet::get(Ctx, AB));
+ } else
+ ArgAttrs.push_back(CallerPAL.getParamAttributes(i));
+ }
+
+ // If the function takes more arguments than the call was taking, add them
+ // now.
+ for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) {
+ Args.push_back(Constant::getNullValue(FT->getParamType(i)));
+ ArgAttrs.push_back(AttributeSet());
+ }
+
+ // If we are removing arguments to the function, emit an obnoxious warning.
+ if (FT->getNumParams() < NumActualArgs) {
+ // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
+ if (FT->isVarArg()) {
+ // Add all of the arguments in their promoted form to the arg list.
+ for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
+ Type *PTy = getPromotedType((*AI)->getType());
+ Value *NewArg = *AI;
+ if (PTy != (*AI)->getType()) {
+ // Must promote to pass through va_arg area!
+ Instruction::CastOps opcode =
+ CastInst::getCastOpcode(*AI, false, PTy, false);
+ NewArg = Builder.CreateCast(opcode, *AI, PTy);
+ }
+ Args.push_back(NewArg);
+
+ // Add any parameter attributes.
+ ArgAttrs.push_back(CallerPAL.getParamAttributes(i));
+ }
+ }
+ }
+
+ AttributeSet FnAttrs = CallerPAL.getFnAttributes();
+
+ if (NewRetTy->isVoidTy())
+ Caller->setName(""); // Void type should not have a name.
+
+ assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) &&
+ "missing argument attributes");
+ AttributeList NewCallerPAL = AttributeList::get(
+ Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs);
+
+ SmallVector<OperandBundleDef, 1> OpBundles;
+ Call.getOperandBundlesAsDefs(OpBundles);
+
+ CallBase *NewCall;
+ if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
+ NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(),
+ II->getUnwindDest(), Args, OpBundles);
+ } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) {
+ NewCall = Builder.CreateCallBr(Callee, CBI->getDefaultDest(),
+ CBI->getIndirectDests(), Args, OpBundles);
+ } else {
+ NewCall = Builder.CreateCall(Callee, Args, OpBundles);
+ cast<CallInst>(NewCall)->setTailCallKind(
+ cast<CallInst>(Caller)->getTailCallKind());
+ }
+ NewCall->takeName(Caller);
+ NewCall->setCallingConv(Call.getCallingConv());
+ NewCall->setAttributes(NewCallerPAL);
+
+ // Preserve the weight metadata for the new call instruction. The metadata
+ // is used by SamplePGO to check callsite's hotness.
+ uint64_t W;
+ if (Caller->extractProfTotalWeight(W))
+ NewCall->setProfWeight(W);
+
+ // Insert a cast of the return type as necessary.
+ Instruction *NC = NewCall;
+ Value *NV = NC;
+ if (OldRetTy != NV->getType() && !Caller->use_empty()) {
+ if (!NV->getType()->isVoidTy()) {
+ NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
+ NC->setDebugLoc(Caller->getDebugLoc());
+
+ // If this is an invoke/callbr instruction, we should insert it after the
+ // first non-phi instruction in the normal successor block.
+ if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
+ BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
+ InsertNewInstBefore(NC, *I);
+ } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) {
+ BasicBlock::iterator I = CBI->getDefaultDest()->getFirstInsertionPt();
+ InsertNewInstBefore(NC, *I);
+ } else {
+ // Otherwise, it's a call, just insert cast right after the call.
+ InsertNewInstBefore(NC, *Caller);
+ }
+ Worklist.AddUsersToWorkList(*Caller);
+ } else {
+ NV = UndefValue::get(Caller->getType());
+ }
+ }
+
+ if (!Caller->use_empty())
+ replaceInstUsesWith(*Caller, NV);
+ else if (Caller->hasValueHandle()) {
+ if (OldRetTy == NV->getType())
+ ValueHandleBase::ValueIsRAUWd(Caller, NV);
+ else
+ // We cannot call ValueIsRAUWd with a different type, and the
+ // actual tracked value will disappear.
+ ValueHandleBase::ValueIsDeleted(Caller);
+ }
+
+ eraseInstFromFunction(*Caller);
+ return true;
+}
+
+/// Turn a call to a function created by init_trampoline / adjust_trampoline
+/// intrinsic pair into a direct call to the underlying function.
+Instruction *
+InstCombiner::transformCallThroughTrampoline(CallBase &Call,
+ IntrinsicInst &Tramp) {
+ Value *Callee = Call.getCalledValue();
+ Type *CalleeTy = Callee->getType();
+ FunctionType *FTy = Call.getFunctionType();
+ AttributeList Attrs = Call.getAttributes();
+
+ // If the call already has the 'nest' attribute somewhere then give up -
+ // otherwise 'nest' would occur twice after splicing in the chain.
+ if (Attrs.hasAttrSomewhere(Attribute::Nest))
+ return nullptr;
+
+ Function *NestF = cast<Function>(Tramp.getArgOperand(1)->stripPointerCasts());
+ FunctionType *NestFTy = NestF->getFunctionType();
+
+ AttributeList NestAttrs = NestF->getAttributes();
+ if (!NestAttrs.isEmpty()) {
+ unsigned NestArgNo = 0;
+ Type *NestTy = nullptr;
+ AttributeSet NestAttr;
+
+ // Look for a parameter marked with the 'nest' attribute.
+ for (FunctionType::param_iterator I = NestFTy->param_begin(),
+ E = NestFTy->param_end();
+ I != E; ++NestArgNo, ++I) {
+ AttributeSet AS = NestAttrs.getParamAttributes(NestArgNo);
+ if (AS.hasAttribute(Attribute::Nest)) {
+ // Record the parameter type and any other attributes.
+ NestTy = *I;
+ NestAttr = AS;
+ break;
+ }
+ }
+
+ if (NestTy) {
+ std::vector<Value*> NewArgs;
+ std::vector<AttributeSet> NewArgAttrs;
+ NewArgs.reserve(Call.arg_size() + 1);
+ NewArgAttrs.reserve(Call.arg_size());
+
+ // Insert the nest argument into the call argument list, which may
+ // mean appending it. Likewise for attributes.
+
+ {
+ unsigned ArgNo = 0;
+ auto I = Call.arg_begin(), E = Call.arg_end();
+ do {
+ if (ArgNo == NestArgNo) {
+ // Add the chain argument and attributes.
+ Value *NestVal = Tramp.getArgOperand(2);
+ if (NestVal->getType() != NestTy)
+ NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest");
+ NewArgs.push_back(NestVal);
+ NewArgAttrs.push_back(NestAttr);
+ }
+
+ if (I == E)
+ break;
+
+ // Add the original argument and attributes.
+ NewArgs.push_back(*I);
+ NewArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
+
+ ++ArgNo;
+ ++I;
+ } while (true);
+ }
+
+ // The trampoline may have been bitcast to a bogus type (FTy).
+ // Handle this by synthesizing a new function type, equal to FTy
+ // with the chain parameter inserted.
+
+ std::vector<Type*> NewTypes;
+ NewTypes.reserve(FTy->getNumParams()+1);
+
+ // Insert the chain's type into the list of parameter types, which may
+ // mean appending it.
+ {
+ unsigned ArgNo = 0;
+ FunctionType::param_iterator I = FTy->param_begin(),
+ E = FTy->param_end();
+
+ do {
+ if (ArgNo == NestArgNo)
+ // Add the chain's type.
+ NewTypes.push_back(NestTy);
+
+ if (I == E)
+ break;
+
+ // Add the original type.
+ NewTypes.push_back(*I);
+
+ ++ArgNo;
+ ++I;
+ } while (true);
+ }
+
+ // Replace the trampoline call with a direct call. Let the generic
+ // code sort out any function type mismatches.
+ FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
+ FTy->isVarArg());
+ Constant *NewCallee =
+ NestF->getType() == PointerType::getUnqual(NewFTy) ?
+ NestF : ConstantExpr::getBitCast(NestF,
+ PointerType::getUnqual(NewFTy));
+ AttributeList NewPAL =
+ AttributeList::get(FTy->getContext(), Attrs.getFnAttributes(),
+ Attrs.getRetAttributes(), NewArgAttrs);
+
+ SmallVector<OperandBundleDef, 1> OpBundles;
+ Call.getOperandBundlesAsDefs(OpBundles);
+
+ Instruction *NewCaller;
+ if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
+ NewCaller = InvokeInst::Create(NewFTy, NewCallee,
+ II->getNormalDest(), II->getUnwindDest(),
+ NewArgs, OpBundles);
+ cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
+ cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
+ } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&Call)) {
+ NewCaller =
+ CallBrInst::Create(NewFTy, NewCallee, CBI->getDefaultDest(),
+ CBI->getIndirectDests(), NewArgs, OpBundles);
+ cast<CallBrInst>(NewCaller)->setCallingConv(CBI->getCallingConv());
+ cast<CallBrInst>(NewCaller)->setAttributes(NewPAL);
+ } else {
+ NewCaller = CallInst::Create(NewFTy, NewCallee, NewArgs, OpBundles);
+ cast<CallInst>(NewCaller)->setTailCallKind(
+ cast<CallInst>(Call).getTailCallKind());
+ cast<CallInst>(NewCaller)->setCallingConv(
+ cast<CallInst>(Call).getCallingConv());
+ cast<CallInst>(NewCaller)->setAttributes(NewPAL);
+ }
+ NewCaller->setDebugLoc(Call.getDebugLoc());
+
+ return NewCaller;
+ }
+ }
+
+ // Replace the trampoline call with a direct call. Since there is no 'nest'
+ // parameter, there is no need to adjust the argument list. Let the generic
+ // code sort out any function type mismatches.
+ Constant *NewCallee = ConstantExpr::getBitCast(NestF, CalleeTy);
+ Call.setCalledFunction(FTy, NewCallee);
+ return &Call;
+}