diff options
Diffstat (limited to 'llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp')
| -rw-r--r-- | llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp | 1247 | 
1 files changed, 1247 insertions, 0 deletions
| diff --git a/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp b/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp new file mode 100644 index 000000000000..64294838644f --- /dev/null +++ b/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp @@ -0,0 +1,1247 @@ +//===- InstCombineShifts.cpp ----------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the visitShl, visitLShr, and visitAShr functions. +// +//===----------------------------------------------------------------------===// + +#include "InstCombineInternal.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/PatternMatch.h" +using namespace llvm; +using namespace PatternMatch; + +#define DEBUG_TYPE "instcombine" + +// Given pattern: +//   (x shiftopcode Q) shiftopcode K +// we should rewrite it as +//   x shiftopcode (Q+K)  iff (Q+K) u< bitwidth(x) +// This is valid for any shift, but they must be identical. +// +// AnalyzeForSignBitExtraction indicates that we will only analyze whether this +// pattern has any 2 right-shifts that sum to 1 less than original bit width. +Value *InstCombiner::reassociateShiftAmtsOfTwoSameDirectionShifts( +    BinaryOperator *Sh0, const SimplifyQuery &SQ, +    bool AnalyzeForSignBitExtraction) { +  // Look for a shift of some instruction, ignore zext of shift amount if any. +  Instruction *Sh0Op0; +  Value *ShAmt0; +  if (!match(Sh0, +             m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0))))) +    return nullptr; + +  // If there is a truncation between the two shifts, we must make note of it +  // and look through it. The truncation imposes additional constraints on the +  // transform. +  Instruction *Sh1; +  Value *Trunc = nullptr; +  match(Sh0Op0, +        m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1)), m_Value(Trunc)), +                    m_Instruction(Sh1))); + +  // Inner shift: (x shiftopcode ShAmt1) +  // Like with other shift, ignore zext of shift amount if any. +  Value *X, *ShAmt1; +  if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1))))) +    return nullptr; + +  // We have two shift amounts from two different shifts. The types of those +  // shift amounts may not match. If that's the case let's bailout now.. +  if (ShAmt0->getType() != ShAmt1->getType()) +    return nullptr; + +  // We are only looking for signbit extraction if we have two right shifts. +  bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) && +                           match(Sh1, m_Shr(m_Value(), m_Value())); +  // ... and if it's not two right-shifts, we know the answer already. +  if (AnalyzeForSignBitExtraction && !HadTwoRightShifts) +    return nullptr; + +  // The shift opcodes must be identical, unless we are just checking whether +  // this pattern can be interpreted as a sign-bit-extraction. +  Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode(); +  bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode(); +  if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction) +    return nullptr; + +  // If we saw truncation, we'll need to produce extra instruction, +  // and for that one of the operands of the shift must be one-use, +  // unless of course we don't actually plan to produce any instructions here. +  if (Trunc && !AnalyzeForSignBitExtraction && +      !match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) +    return nullptr; + +  // Can we fold (ShAmt0+ShAmt1) ? +  auto *NewShAmt = dyn_cast_or_null<Constant>( +      SimplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false, +                      SQ.getWithInstruction(Sh0))); +  if (!NewShAmt) +    return nullptr; // Did not simplify. +  unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits(); +  unsigned XBitWidth = X->getType()->getScalarSizeInBits(); +  // Is the new shift amount smaller than the bit width of inner/new shift? +  if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, +                                          APInt(NewShAmtBitWidth, XBitWidth)))) +    return nullptr; // FIXME: could perform constant-folding. + +  // If there was a truncation, and we have a right-shift, we can only fold if +  // we are left with the original sign bit. Likewise, if we were just checking +  // that this is a sighbit extraction, this is the place to check it. +  // FIXME: zero shift amount is also legal here, but we can't *easily* check +  // more than one predicate so it's not really worth it. +  if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) { +    // If it's not a sign bit extraction, then we're done. +    if (!match(NewShAmt, +               m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, +                                  APInt(NewShAmtBitWidth, XBitWidth - 1)))) +      return nullptr; +    // If it is, and that was the question, return the base value. +    if (AnalyzeForSignBitExtraction) +      return X; +  } + +  assert(IdenticalShOpcodes && "Should not get here with different shifts."); + +  // All good, we can do this fold. +  NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, X->getType()); + +  BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt); + +  // The flags can only be propagated if there wasn't a trunc. +  if (!Trunc) { +    // If the pattern did not involve trunc, and both of the original shifts +    // had the same flag set, preserve the flag. +    if (ShiftOpcode == Instruction::BinaryOps::Shl) { +      NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() && +                                     Sh1->hasNoUnsignedWrap()); +      NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() && +                                   Sh1->hasNoSignedWrap()); +    } else { +      NewShift->setIsExact(Sh0->isExact() && Sh1->isExact()); +    } +  } + +  Instruction *Ret = NewShift; +  if (Trunc) { +    Builder.Insert(NewShift); +    Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType()); +  } + +  return Ret; +} + +// Try to replace `undef` constants in C with Replacement. +static Constant *replaceUndefsWith(Constant *C, Constant *Replacement) { +  if (C && match(C, m_Undef())) +    return Replacement; + +  if (auto *CV = dyn_cast<ConstantVector>(C)) { +    llvm::SmallVector<Constant *, 32> NewOps(CV->getNumOperands()); +    for (unsigned i = 0, NumElts = NewOps.size(); i != NumElts; ++i) { +      Constant *EltC = CV->getOperand(i); +      NewOps[i] = EltC && match(EltC, m_Undef()) ? Replacement : EltC; +    } +    return ConstantVector::get(NewOps); +  } + +  // Don't know how to deal with this constant. +  return C; +} + +// If we have some pattern that leaves only some low bits set, and then performs +// left-shift of those bits, if none of the bits that are left after the final +// shift are modified by the mask, we can omit the mask. +// +// There are many variants to this pattern: +//   a)  (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt +//   b)  (x & (~(-1 << MaskShAmt))) << ShiftShAmt +//   c)  (x & (-1 >> MaskShAmt)) << ShiftShAmt +//   d)  (x & ((-1 << MaskShAmt) >> MaskShAmt)) << ShiftShAmt +//   e)  ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt +//   f)  ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt +// All these patterns can be simplified to just: +//   x << ShiftShAmt +// iff: +//   a,b)     (MaskShAmt+ShiftShAmt) u>= bitwidth(x) +//   c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt) +static Instruction * +dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift, +                                     const SimplifyQuery &Q, +                                     InstCombiner::BuilderTy &Builder) { +  assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl && +         "The input must be 'shl'!"); + +  Value *Masked, *ShiftShAmt; +  match(OuterShift, m_Shift(m_Value(Masked), m_Value(ShiftShAmt))); + +  Type *NarrowestTy = OuterShift->getType(); +  Type *WidestTy = Masked->getType(); +  // The mask must be computed in a type twice as wide to ensure +  // that no bits are lost if the sum-of-shifts is wider than the base type. +  Type *ExtendedTy = WidestTy->getExtendedType(); + +  Value *MaskShAmt; + +  // ((1 << MaskShAmt) - 1) +  auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes()); +  // (~(-1 << maskNbits)) +  auto MaskB = m_Xor(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_AllOnes()); +  // (-1 >> MaskShAmt) +  auto MaskC = m_Shr(m_AllOnes(), m_Value(MaskShAmt)); +  // ((-1 << MaskShAmt) >> MaskShAmt) +  auto MaskD = +      m_Shr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt)); + +  Value *X; +  Constant *NewMask; + +  if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) { +    // Can we simplify (MaskShAmt+ShiftShAmt) ? +    auto *SumOfShAmts = dyn_cast_or_null<Constant>(SimplifyAddInst( +        MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q)); +    if (!SumOfShAmts) +      return nullptr; // Did not simplify. +    // In this pattern SumOfShAmts correlates with the number of low bits +    // that shall remain in the root value (OuterShift). + +    // An extend of an undef value becomes zero because the high bits are never +    // completely unknown. Replace the the `undef` shift amounts with final +    // shift bitwidth to ensure that the value remains undef when creating the +    // subsequent shift op. +    SumOfShAmts = replaceUndefsWith( +        SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(), +                                      ExtendedTy->getScalarSizeInBits())); +    auto *ExtendedSumOfShAmts = ConstantExpr::getZExt(SumOfShAmts, ExtendedTy); +    // And compute the mask as usual: ~(-1 << (SumOfShAmts)) +    auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy); +    auto *ExtendedInvertedMask = +        ConstantExpr::getShl(ExtendedAllOnes, ExtendedSumOfShAmts); +    NewMask = ConstantExpr::getNot(ExtendedInvertedMask); +  } else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) || +             match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)), +                                 m_Deferred(MaskShAmt)))) { +    // Can we simplify (ShiftShAmt-MaskShAmt) ? +    auto *ShAmtsDiff = dyn_cast_or_null<Constant>(SimplifySubInst( +        ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q)); +    if (!ShAmtsDiff) +      return nullptr; // Did not simplify. +    // In this pattern ShAmtsDiff correlates with the number of high bits that +    // shall be unset in the root value (OuterShift). + +    // An extend of an undef value becomes zero because the high bits are never +    // completely unknown. Replace the the `undef` shift amounts with negated +    // bitwidth of innermost shift to ensure that the value remains undef when +    // creating the subsequent shift op. +    unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits(); +    ShAmtsDiff = replaceUndefsWith( +        ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(), +                                     -WidestTyBitWidth)); +    auto *ExtendedNumHighBitsToClear = ConstantExpr::getZExt( +        ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(), +                                              WidestTyBitWidth, +                                              /*isSigned=*/false), +                             ShAmtsDiff), +        ExtendedTy); +    // And compute the mask as usual: (-1 l>> (NumHighBitsToClear)) +    auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy); +    NewMask = +        ConstantExpr::getLShr(ExtendedAllOnes, ExtendedNumHighBitsToClear); +  } else +    return nullptr; // Don't know anything about this pattern. + +  NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy); + +  // Does this mask has any unset bits? If not then we can just not apply it. +  bool NeedMask = !match(NewMask, m_AllOnes()); + +  // If we need to apply a mask, there are several more restrictions we have. +  if (NeedMask) { +    // The old masking instruction must go away. +    if (!Masked->hasOneUse()) +      return nullptr; +    // The original "masking" instruction must not have been`ashr`. +    if (match(Masked, m_AShr(m_Value(), m_Value()))) +      return nullptr; +  } + +  // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits. +  auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X, +                                          OuterShift->getOperand(1)); + +  if (!NeedMask) +    return NewShift; + +  Builder.Insert(NewShift); +  return BinaryOperator::Create(Instruction::And, NewShift, NewMask); +} + +Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) { +  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); +  assert(Op0->getType() == Op1->getType()); + +  // If the shift amount is a one-use `sext`, we can demote it to `zext`. +  Value *Y; +  if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) { +    Value *NewExt = Builder.CreateZExt(Y, I.getType(), Op1->getName()); +    return BinaryOperator::Create(I.getOpcode(), Op0, NewExt); +  } + +  // See if we can fold away this shift. +  if (SimplifyDemandedInstructionBits(I)) +    return &I; + +  // Try to fold constant and into select arguments. +  if (isa<Constant>(Op0)) +    if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) +      if (Instruction *R = FoldOpIntoSelect(I, SI)) +        return R; + +  if (Constant *CUI = dyn_cast<Constant>(Op1)) +    if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I)) +      return Res; + +  if (auto *NewShift = cast_or_null<Instruction>( +          reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ))) +    return NewShift; + +  // (C1 shift (A add C2)) -> (C1 shift C2) shift A) +  // iff A and C2 are both positive. +  Value *A; +  Constant *C; +  if (match(Op0, m_Constant()) && match(Op1, m_Add(m_Value(A), m_Constant(C)))) +    if (isKnownNonNegative(A, DL, 0, &AC, &I, &DT) && +        isKnownNonNegative(C, DL, 0, &AC, &I, &DT)) +      return BinaryOperator::Create( +          I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), Op0, C), A); + +  // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2. +  // Because shifts by negative values (which could occur if A were negative) +  // are undefined. +  const APInt *B; +  if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) { +    // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't +    // demand the sign bit (and many others) here?? +    Value *Rem = Builder.CreateAnd(A, ConstantInt::get(I.getType(), *B - 1), +                                   Op1->getName()); +    I.setOperand(1, Rem); +    return &I; +  } + +  return nullptr; +} + +/// Return true if we can simplify two logical (either left or right) shifts +/// that have constant shift amounts: OuterShift (InnerShift X, C1), C2. +static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl, +                                    Instruction *InnerShift, InstCombiner &IC, +                                    Instruction *CxtI) { +  assert(InnerShift->isLogicalShift() && "Unexpected instruction type"); + +  // We need constant scalar or constant splat shifts. +  const APInt *InnerShiftConst; +  if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst))) +    return false; + +  // Two logical shifts in the same direction: +  // shl (shl X, C1), C2 -->  shl X, C1 + C2 +  // lshr (lshr X, C1), C2 --> lshr X, C1 + C2 +  bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl; +  if (IsInnerShl == IsOuterShl) +    return true; + +  // Equal shift amounts in opposite directions become bitwise 'and': +  // lshr (shl X, C), C --> and X, C' +  // shl (lshr X, C), C --> and X, C' +  if (*InnerShiftConst == OuterShAmt) +    return true; + +  // If the 2nd shift is bigger than the 1st, we can fold: +  // lshr (shl X, C1), C2 -->  and (shl X, C1 - C2), C3 +  // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3 +  // but it isn't profitable unless we know the and'd out bits are already zero. +  // Also, check that the inner shift is valid (less than the type width) or +  // we'll crash trying to produce the bit mask for the 'and'. +  unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits(); +  if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) { +    unsigned InnerShAmt = InnerShiftConst->getZExtValue(); +    unsigned MaskShift = +        IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt; +    APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift; +    if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI)) +      return true; +  } + +  return false; +} + +/// See if we can compute the specified value, but shifted logically to the left +/// or right by some number of bits. This should return true if the expression +/// can be computed for the same cost as the current expression tree. This is +/// used to eliminate extraneous shifting from things like: +///      %C = shl i128 %A, 64 +///      %D = shl i128 %B, 96 +///      %E = or i128 %C, %D +///      %F = lshr i128 %E, 64 +/// where the client will ask if E can be computed shifted right by 64-bits. If +/// this succeeds, getShiftedValue() will be called to produce the value. +static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift, +                               InstCombiner &IC, Instruction *CxtI) { +  // We can always evaluate constants shifted. +  if (isa<Constant>(V)) +    return true; + +  Instruction *I = dyn_cast<Instruction>(V); +  if (!I) return false; + +  // If this is the opposite shift, we can directly reuse the input of the shift +  // if the needed bits are already zero in the input.  This allows us to reuse +  // the value which means that we don't care if the shift has multiple uses. +  //  TODO:  Handle opposite shift by exact value. +  ConstantInt *CI = nullptr; +  if ((IsLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) || +      (!IsLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) { +    if (CI->getValue() == NumBits) { +      // TODO: Check that the input bits are already zero with MaskedValueIsZero +#if 0 +      // If this is a truncate of a logical shr, we can truncate it to a smaller +      // lshr iff we know that the bits we would otherwise be shifting in are +      // already zeros. +      uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); +      uint32_t BitWidth = Ty->getScalarSizeInBits(); +      if (MaskedValueIsZero(I->getOperand(0), +            APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) && +          CI->getLimitedValue(BitWidth) < BitWidth) { +        return CanEvaluateTruncated(I->getOperand(0), Ty); +      } +#endif + +    } +  } + +  // We can't mutate something that has multiple uses: doing so would +  // require duplicating the instruction in general, which isn't profitable. +  if (!I->hasOneUse()) return false; + +  switch (I->getOpcode()) { +  default: return false; +  case Instruction::And: +  case Instruction::Or: +  case Instruction::Xor: +    // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted. +    return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) && +           canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I); + +  case Instruction::Shl: +  case Instruction::LShr: +    return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI); + +  case Instruction::Select: { +    SelectInst *SI = cast<SelectInst>(I); +    Value *TrueVal = SI->getTrueValue(); +    Value *FalseVal = SI->getFalseValue(); +    return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) && +           canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI); +  } +  case Instruction::PHI: { +    // We can change a phi if we can change all operands.  Note that we never +    // get into trouble with cyclic PHIs here because we only consider +    // instructions with a single use. +    PHINode *PN = cast<PHINode>(I); +    for (Value *IncValue : PN->incoming_values()) +      if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN)) +        return false; +    return true; +  } +  } +} + +/// Fold OuterShift (InnerShift X, C1), C2. +/// See canEvaluateShiftedShift() for the constraints on these instructions. +static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt, +                               bool IsOuterShl, +                               InstCombiner::BuilderTy &Builder) { +  bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl; +  Type *ShType = InnerShift->getType(); +  unsigned TypeWidth = ShType->getScalarSizeInBits(); + +  // We only accept shifts-by-a-constant in canEvaluateShifted(). +  const APInt *C1; +  match(InnerShift->getOperand(1), m_APInt(C1)); +  unsigned InnerShAmt = C1->getZExtValue(); + +  // Change the shift amount and clear the appropriate IR flags. +  auto NewInnerShift = [&](unsigned ShAmt) { +    InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt)); +    if (IsInnerShl) { +      InnerShift->setHasNoUnsignedWrap(false); +      InnerShift->setHasNoSignedWrap(false); +    } else { +      InnerShift->setIsExact(false); +    } +    return InnerShift; +  }; + +  // Two logical shifts in the same direction: +  // shl (shl X, C1), C2 -->  shl X, C1 + C2 +  // lshr (lshr X, C1), C2 --> lshr X, C1 + C2 +  if (IsInnerShl == IsOuterShl) { +    // If this is an oversized composite shift, then unsigned shifts get 0. +    if (InnerShAmt + OuterShAmt >= TypeWidth) +      return Constant::getNullValue(ShType); + +    return NewInnerShift(InnerShAmt + OuterShAmt); +  } + +  // Equal shift amounts in opposite directions become bitwise 'and': +  // lshr (shl X, C), C --> and X, C' +  // shl (lshr X, C), C --> and X, C' +  if (InnerShAmt == OuterShAmt) { +    APInt Mask = IsInnerShl +                     ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt) +                     : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt); +    Value *And = Builder.CreateAnd(InnerShift->getOperand(0), +                                   ConstantInt::get(ShType, Mask)); +    if (auto *AndI = dyn_cast<Instruction>(And)) { +      AndI->moveBefore(InnerShift); +      AndI->takeName(InnerShift); +    } +    return And; +  } + +  assert(InnerShAmt > OuterShAmt && +         "Unexpected opposite direction logical shift pair"); + +  // In general, we would need an 'and' for this transform, but +  // canEvaluateShiftedShift() guarantees that the masked-off bits are not used. +  // lshr (shl X, C1), C2 -->  shl X, C1 - C2 +  // shl (lshr X, C1), C2 --> lshr X, C1 - C2 +  return NewInnerShift(InnerShAmt - OuterShAmt); +} + +/// When canEvaluateShifted() returns true for an expression, this function +/// inserts the new computation that produces the shifted value. +static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift, +                              InstCombiner &IC, const DataLayout &DL) { +  // We can always evaluate constants shifted. +  if (Constant *C = dyn_cast<Constant>(V)) { +    if (isLeftShift) +      V = IC.Builder.CreateShl(C, NumBits); +    else +      V = IC.Builder.CreateLShr(C, NumBits); +    // If we got a constantexpr back, try to simplify it with TD info. +    if (auto *C = dyn_cast<Constant>(V)) +      if (auto *FoldedC = +              ConstantFoldConstant(C, DL, &IC.getTargetLibraryInfo())) +        V = FoldedC; +    return V; +  } + +  Instruction *I = cast<Instruction>(V); +  IC.Worklist.Add(I); + +  switch (I->getOpcode()) { +  default: llvm_unreachable("Inconsistency with CanEvaluateShifted"); +  case Instruction::And: +  case Instruction::Or: +  case Instruction::Xor: +    // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted. +    I->setOperand( +        0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL)); +    I->setOperand( +        1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL)); +    return I; + +  case Instruction::Shl: +  case Instruction::LShr: +    return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift, +                            IC.Builder); + +  case Instruction::Select: +    I->setOperand( +        1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL)); +    I->setOperand( +        2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL)); +    return I; +  case Instruction::PHI: { +    // We can change a phi if we can change all operands.  Note that we never +    // get into trouble with cyclic PHIs here because we only consider +    // instructions with a single use. +    PHINode *PN = cast<PHINode>(I); +    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) +      PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits, +                                              isLeftShift, IC, DL)); +    return PN; +  } +  } +} + +// If this is a bitwise operator or add with a constant RHS we might be able +// to pull it through a shift. +static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift, +                                         BinaryOperator *BO) { +  switch (BO->getOpcode()) { +  default: +    return false; // Do not perform transform! +  case Instruction::Add: +    return Shift.getOpcode() == Instruction::Shl; +  case Instruction::Or: +  case Instruction::Xor: +  case Instruction::And: +    return true; +  } +} + +Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, Constant *Op1, +                                               BinaryOperator &I) { +  bool isLeftShift = I.getOpcode() == Instruction::Shl; + +  const APInt *Op1C; +  if (!match(Op1, m_APInt(Op1C))) +    return nullptr; + +  // See if we can propagate this shift into the input, this covers the trivial +  // cast of lshr(shl(x,c1),c2) as well as other more complex cases. +  if (I.getOpcode() != Instruction::AShr && +      canEvaluateShifted(Op0, Op1C->getZExtValue(), isLeftShift, *this, &I)) { +    LLVM_DEBUG( +        dbgs() << "ICE: GetShiftedValue propagating shift through expression" +                  " to eliminate shift:\n  IN: " +               << *Op0 << "\n  SH: " << I << "\n"); + +    return replaceInstUsesWith( +        I, getShiftedValue(Op0, Op1C->getZExtValue(), isLeftShift, *this, DL)); +  } + +  // See if we can simplify any instructions used by the instruction whose sole +  // purpose is to compute bits we don't care about. +  unsigned TypeBits = Op0->getType()->getScalarSizeInBits(); + +  assert(!Op1C->uge(TypeBits) && +         "Shift over the type width should have been removed already"); + +  if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I)) +    return FoldedShift; + +  // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2)) +  if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) { +    Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0)); +    // If 'shift2' is an ashr, we would have to get the sign bit into a funny +    // place.  Don't try to do this transformation in this case.  Also, we +    // require that the input operand is a shift-by-constant so that we have +    // confidence that the shifts will get folded together.  We could do this +    // xform in more cases, but it is unlikely to be profitable. +    if (TrOp && I.isLogicalShift() && TrOp->isShift() && +        isa<ConstantInt>(TrOp->getOperand(1))) { +      // Okay, we'll do this xform.  Make the shift of shift. +      Constant *ShAmt = +          ConstantExpr::getZExt(cast<Constant>(Op1), TrOp->getType()); +      // (shift2 (shift1 & 0x00FF), c2) +      Value *NSh = Builder.CreateBinOp(I.getOpcode(), TrOp, ShAmt, I.getName()); + +      // For logical shifts, the truncation has the effect of making the high +      // part of the register be zeros.  Emulate this by inserting an AND to +      // clear the top bits as needed.  This 'and' will usually be zapped by +      // other xforms later if dead. +      unsigned SrcSize = TrOp->getType()->getScalarSizeInBits(); +      unsigned DstSize = TI->getType()->getScalarSizeInBits(); +      APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize)); + +      // The mask we constructed says what the trunc would do if occurring +      // between the shifts.  We want to know the effect *after* the second +      // shift.  We know that it is a logical shift by a constant, so adjust the +      // mask as appropriate. +      if (I.getOpcode() == Instruction::Shl) +        MaskV <<= Op1C->getZExtValue(); +      else { +        assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift"); +        MaskV.lshrInPlace(Op1C->getZExtValue()); +      } + +      // shift1 & 0x00FF +      Value *And = Builder.CreateAnd(NSh, +                                     ConstantInt::get(I.getContext(), MaskV), +                                     TI->getName()); + +      // Return the value truncated to the interesting size. +      return new TruncInst(And, I.getType()); +    } +  } + +  if (Op0->hasOneUse()) { +    if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) { +      // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C) +      Value *V1, *V2; +      ConstantInt *CC; +      switch (Op0BO->getOpcode()) { +      default: break; +      case Instruction::Add: +      case Instruction::And: +      case Instruction::Or: +      case Instruction::Xor: { +        // These operators commute. +        // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C) +        if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() && +            match(Op0BO->getOperand(1), m_Shr(m_Value(V1), +                  m_Specific(Op1)))) { +          Value *YS =         // (Y << C) +            Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName()); +          // (X + (Y << C)) +          Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), YS, V1, +                                         Op0BO->getOperand(1)->getName()); +          unsigned Op1Val = Op1C->getLimitedValue(TypeBits); + +          APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val); +          Constant *Mask = ConstantInt::get(I.getContext(), Bits); +          if (VectorType *VT = dyn_cast<VectorType>(X->getType())) +            Mask = ConstantVector::getSplat(VT->getNumElements(), Mask); +          return BinaryOperator::CreateAnd(X, Mask); +        } + +        // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C)) +        Value *Op0BOOp1 = Op0BO->getOperand(1); +        if (isLeftShift && Op0BOOp1->hasOneUse() && +            match(Op0BOOp1, +                  m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))), +                        m_ConstantInt(CC)))) { +          Value *YS =   // (Y << C) +            Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName()); +          // X & (CC << C) +          Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1), +                                        V1->getName()+".mask"); +          return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM); +        } +        LLVM_FALLTHROUGH; +      } + +      case Instruction::Sub: { +        // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C) +        if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && +            match(Op0BO->getOperand(0), m_Shr(m_Value(V1), +                  m_Specific(Op1)))) { +          Value *YS =  // (Y << C) +            Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName()); +          // (X + (Y << C)) +          Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), V1, YS, +                                         Op0BO->getOperand(0)->getName()); +          unsigned Op1Val = Op1C->getLimitedValue(TypeBits); + +          APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val); +          Constant *Mask = ConstantInt::get(I.getContext(), Bits); +          if (VectorType *VT = dyn_cast<VectorType>(X->getType())) +            Mask = ConstantVector::getSplat(VT->getNumElements(), Mask); +          return BinaryOperator::CreateAnd(X, Mask); +        } + +        // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C) +        if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && +            match(Op0BO->getOperand(0), +                  m_And(m_OneUse(m_Shr(m_Value(V1), m_Value(V2))), +                        m_ConstantInt(CC))) && V2 == Op1) { +          Value *YS = // (Y << C) +            Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName()); +          // X & (CC << C) +          Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1), +                                        V1->getName()+".mask"); + +          return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS); +        } + +        break; +      } +      } + + +      // If the operand is a bitwise operator with a constant RHS, and the +      // shift is the only use, we can pull it out of the shift. +      const APInt *Op0C; +      if (match(Op0BO->getOperand(1), m_APInt(Op0C))) { +        if (canShiftBinOpWithConstantRHS(I, Op0BO)) { +          Constant *NewRHS = ConstantExpr::get(I.getOpcode(), +                                     cast<Constant>(Op0BO->getOperand(1)), Op1); + +          Value *NewShift = +            Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1); +          NewShift->takeName(Op0BO); + +          return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, +                                        NewRHS); +        } +      } + +      // If the operand is a subtract with a constant LHS, and the shift +      // is the only use, we can pull it out of the shift. +      // This folds (shl (sub C1, X), C2) -> (sub (C1 << C2), (shl X, C2)) +      if (isLeftShift && Op0BO->getOpcode() == Instruction::Sub && +          match(Op0BO->getOperand(0), m_APInt(Op0C))) { +        Constant *NewRHS = ConstantExpr::get(I.getOpcode(), +                                   cast<Constant>(Op0BO->getOperand(0)), Op1); + +        Value *NewShift = Builder.CreateShl(Op0BO->getOperand(1), Op1); +        NewShift->takeName(Op0BO); + +        return BinaryOperator::CreateSub(NewRHS, NewShift); +      } +    } + +    // If we have a select that conditionally executes some binary operator, +    // see if we can pull it the select and operator through the shift. +    // +    // For example, turning: +    //   shl (select C, (add X, C1), X), C2 +    // Into: +    //   Y = shl X, C2 +    //   select C, (add Y, C1 << C2), Y +    Value *Cond; +    BinaryOperator *TBO; +    Value *FalseVal; +    if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)), +                            m_Value(FalseVal)))) { +      const APInt *C; +      if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal && +          match(TBO->getOperand(1), m_APInt(C)) && +          canShiftBinOpWithConstantRHS(I, TBO)) { +        Constant *NewRHS = ConstantExpr::get(I.getOpcode(), +                                       cast<Constant>(TBO->getOperand(1)), Op1); + +        Value *NewShift = +          Builder.CreateBinOp(I.getOpcode(), FalseVal, Op1); +        Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift, +                                           NewRHS); +        return SelectInst::Create(Cond, NewOp, NewShift); +      } +    } + +    BinaryOperator *FBO; +    Value *TrueVal; +    if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal), +                            m_OneUse(m_BinOp(FBO))))) { +      const APInt *C; +      if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal && +          match(FBO->getOperand(1), m_APInt(C)) && +          canShiftBinOpWithConstantRHS(I, FBO)) { +        Constant *NewRHS = ConstantExpr::get(I.getOpcode(), +                                       cast<Constant>(FBO->getOperand(1)), Op1); + +        Value *NewShift = +          Builder.CreateBinOp(I.getOpcode(), TrueVal, Op1); +        Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift, +                                           NewRHS); +        return SelectInst::Create(Cond, NewShift, NewOp); +      } +    } +  } + +  return nullptr; +} + +Instruction *InstCombiner::visitShl(BinaryOperator &I) { +  const SimplifyQuery Q = SQ.getWithInstruction(&I); + +  if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1), +                                 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q)) +    return replaceInstUsesWith(I, V); + +  if (Instruction *X = foldVectorBinop(I)) +    return X; + +  if (Instruction *V = commonShiftTransforms(I)) +    return V; + +  if (Instruction *V = dropRedundantMaskingOfLeftShiftInput(&I, Q, Builder)) +    return V; + +  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); +  Type *Ty = I.getType(); +  unsigned BitWidth = Ty->getScalarSizeInBits(); + +  const APInt *ShAmtAPInt; +  if (match(Op1, m_APInt(ShAmtAPInt))) { +    unsigned ShAmt = ShAmtAPInt->getZExtValue(); + +    // shl (zext X), ShAmt --> zext (shl X, ShAmt) +    // This is only valid if X would have zeros shifted out. +    Value *X; +    if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) { +      unsigned SrcWidth = X->getType()->getScalarSizeInBits(); +      if (ShAmt < SrcWidth && +          MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmt), 0, &I)) +        return new ZExtInst(Builder.CreateShl(X, ShAmt), Ty); +    } + +    // (X >> C) << C --> X & (-1 << C) +    if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) { +      APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt)); +      return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask)); +    } + +    // FIXME: we do not yet transform non-exact shr's. The backend (DAGCombine) +    // needs a few fixes for the rotate pattern recognition first. +    const APInt *ShOp1; +    if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(ShOp1))))) { +      unsigned ShrAmt = ShOp1->getZExtValue(); +      if (ShrAmt < ShAmt) { +        // If C1 < C2: (X >>?,exact C1) << C2 --> X << (C2 - C1) +        Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShrAmt); +        auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); +        NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); +        NewShl->setHasNoSignedWrap(I.hasNoSignedWrap()); +        return NewShl; +      } +      if (ShrAmt > ShAmt) { +        // If C1 > C2: (X >>?exact C1) << C2 --> X >>?exact (C1 - C2) +        Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmt); +        auto *NewShr = BinaryOperator::Create( +            cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff); +        NewShr->setIsExact(true); +        return NewShr; +      } +    } + +    if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1)))) { +      unsigned AmtSum = ShAmt + ShOp1->getZExtValue(); +      // Oversized shifts are simplified to zero in InstSimplify. +      if (AmtSum < BitWidth) +        // (X << C1) << C2 --> X << (C1 + C2) +        return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum)); +    } + +    // If the shifted-out value is known-zero, then this is a NUW shift. +    if (!I.hasNoUnsignedWrap() && +        MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmt), 0, &I)) { +      I.setHasNoUnsignedWrap(); +      return &I; +    } + +    // If the shifted-out value is all signbits, then this is a NSW shift. +    if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmt) { +      I.setHasNoSignedWrap(); +      return &I; +    } +  } + +  // Transform  (x >> y) << y  to  x & (-1 << y) +  // Valid for any type of right-shift. +  Value *X; +  if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) { +    Constant *AllOnes = ConstantInt::getAllOnesValue(Ty); +    Value *Mask = Builder.CreateShl(AllOnes, Op1); +    return BinaryOperator::CreateAnd(Mask, X); +  } + +  Constant *C1; +  if (match(Op1, m_Constant(C1))) { +    Constant *C2; +    Value *X; +    // (C2 << X) << C1 --> (C2 << C1) << X +    if (match(Op0, m_OneUse(m_Shl(m_Constant(C2), m_Value(X))))) +      return BinaryOperator::CreateShl(ConstantExpr::getShl(C2, C1), X); + +    // (X * C2) << C1 --> X * (C2 << C1) +    if (match(Op0, m_Mul(m_Value(X), m_Constant(C2)))) +      return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1)); + +    // shl (zext i1 X), C1 --> select (X, 1 << C1, 0) +    if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { +      auto *NewC = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C1); +      return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty)); +    } +  } + +  // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1 +  if (match(Op0, m_One()) && +      match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X)))) +    return BinaryOperator::CreateLShr( +        ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X); + +  return nullptr; +} + +Instruction *InstCombiner::visitLShr(BinaryOperator &I) { +  if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(), +                                  SQ.getWithInstruction(&I))) +    return replaceInstUsesWith(I, V); + +  if (Instruction *X = foldVectorBinop(I)) +    return X; + +  if (Instruction *R = commonShiftTransforms(I)) +    return R; + +  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); +  Type *Ty = I.getType(); +  const APInt *ShAmtAPInt; +  if (match(Op1, m_APInt(ShAmtAPInt))) { +    unsigned ShAmt = ShAmtAPInt->getZExtValue(); +    unsigned BitWidth = Ty->getScalarSizeInBits(); +    auto *II = dyn_cast<IntrinsicInst>(Op0); +    if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt && +        (II->getIntrinsicID() == Intrinsic::ctlz || +         II->getIntrinsicID() == Intrinsic::cttz || +         II->getIntrinsicID() == Intrinsic::ctpop)) { +      // ctlz.i32(x)>>5  --> zext(x == 0) +      // cttz.i32(x)>>5  --> zext(x == 0) +      // ctpop.i32(x)>>5 --> zext(x == -1) +      bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop; +      Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0); +      Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS); +      return new ZExtInst(Cmp, Ty); +    } + +    Value *X; +    const APInt *ShOp1; +    if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1))) && ShOp1->ult(BitWidth)) { +      if (ShOp1->ult(ShAmt)) { +        unsigned ShlAmt = ShOp1->getZExtValue(); +        Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt); +        if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) { +          // (X <<nuw C1) >>u C2 --> X >>u (C2 - C1) +          auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff); +          NewLShr->setIsExact(I.isExact()); +          return NewLShr; +        } +        // (X << C1) >>u C2  --> (X >>u (C2 - C1)) & (-1 >> C2) +        Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact()); +        APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt)); +        return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask)); +      } +      if (ShOp1->ugt(ShAmt)) { +        unsigned ShlAmt = ShOp1->getZExtValue(); +        Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt); +        if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) { +          // (X <<nuw C1) >>u C2 --> X <<nuw (C1 - C2) +          auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); +          NewShl->setHasNoUnsignedWrap(true); +          return NewShl; +        } +        // (X << C1) >>u C2  --> X << (C1 - C2) & (-1 >> C2) +        Value *NewShl = Builder.CreateShl(X, ShiftDiff); +        APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt)); +        return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask)); +      } +      assert(*ShOp1 == ShAmt); +      // (X << C) >>u C --> X & (-1 >>u C) +      APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt)); +      return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask)); +    } + +    if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && +        (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) { +      assert(ShAmt < X->getType()->getScalarSizeInBits() && +             "Big shift not simplified to zero?"); +      // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN +      Value *NewLShr = Builder.CreateLShr(X, ShAmt); +      return new ZExtInst(NewLShr, Ty); +    } + +    if (match(Op0, m_SExt(m_Value(X))) && +        (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) { +      // Are we moving the sign bit to the low bit and widening with high zeros? +      unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits(); +      if (ShAmt == BitWidth - 1) { +        // lshr (sext i1 X to iN), N-1 --> zext X to iN +        if (SrcTyBitWidth == 1) +          return new ZExtInst(X, Ty); + +        // lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN +        if (Op0->hasOneUse()) { +          Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1); +          return new ZExtInst(NewLShr, Ty); +        } +      } + +      // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN +      if (ShAmt == BitWidth - SrcTyBitWidth && Op0->hasOneUse()) { +        // The new shift amount can't be more than the narrow source type. +        unsigned NewShAmt = std::min(ShAmt, SrcTyBitWidth - 1); +        Value *AShr = Builder.CreateAShr(X, NewShAmt); +        return new ZExtInst(AShr, Ty); +      } +    } + +    if (match(Op0, m_LShr(m_Value(X), m_APInt(ShOp1)))) { +      unsigned AmtSum = ShAmt + ShOp1->getZExtValue(); +      // Oversized shifts are simplified to zero in InstSimplify. +      if (AmtSum < BitWidth) +        // (X >>u C1) >>u C2 --> X >>u (C1 + C2) +        return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum)); +    } + +    // If the shifted-out value is known-zero, then this is an exact shift. +    if (!I.isExact() && +        MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) { +      I.setIsExact(); +      return &I; +    } +  } + +  // Transform  (x << y) >> y  to  x & (-1 >> y) +  Value *X; +  if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) { +    Constant *AllOnes = ConstantInt::getAllOnesValue(Ty); +    Value *Mask = Builder.CreateLShr(AllOnes, Op1); +    return BinaryOperator::CreateAnd(Mask, X); +  } + +  return nullptr; +} + +Instruction * +InstCombiner::foldVariableSignZeroExtensionOfVariableHighBitExtract( +    BinaryOperator &OldAShr) { +  assert(OldAShr.getOpcode() == Instruction::AShr && +         "Must be called with arithmetic right-shift instruction only."); + +  // Check that constant C is a splat of the element-wise bitwidth of V. +  auto BitWidthSplat = [](Constant *C, Value *V) { +    return match( +        C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, +                              APInt(C->getType()->getScalarSizeInBits(), +                                    V->getType()->getScalarSizeInBits()))); +  }; + +  // It should look like variable-length sign-extension on the outside: +  //   (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits) +  Value *NBits; +  Instruction *MaybeTrunc; +  Constant *C1, *C2; +  if (!match(&OldAShr, +             m_AShr(m_Shl(m_Instruction(MaybeTrunc), +                          m_ZExtOrSelf(m_Sub(m_Constant(C1), +                                             m_ZExtOrSelf(m_Value(NBits))))), +                    m_ZExtOrSelf(m_Sub(m_Constant(C2), +                                       m_ZExtOrSelf(m_Deferred(NBits)))))) || +      !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr)) +    return nullptr; + +  // There may or may not be a truncation after outer two shifts. +  Instruction *HighBitExtract; +  match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract))); +  bool HadTrunc = MaybeTrunc != HighBitExtract; + +  // And finally, the innermost part of the pattern must be a right-shift. +  Value *X, *NumLowBitsToSkip; +  if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip)))) +    return nullptr; + +  // Said right-shift must extract high NBits bits - C0 must be it's bitwidth. +  Constant *C0; +  if (!match(NumLowBitsToSkip, +             m_ZExtOrSelf( +                 m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) || +      !BitWidthSplat(C0, HighBitExtract)) +    return nullptr; + +  // Since the NBits is identical for all shifts, if the outermost and +  // innermost shifts are identical, then outermost shifts are redundant. +  // If we had truncation, do keep it though. +  if (HighBitExtract->getOpcode() == OldAShr.getOpcode()) +    return replaceInstUsesWith(OldAShr, MaybeTrunc); + +  // Else, if there was a truncation, then we need to ensure that one +  // instruction will go away. +  if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) +    return nullptr; + +  // Finally, bypass two innermost shifts, and perform the outermost shift on +  // the operands of the innermost shift. +  Instruction *NewAShr = +      BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip); +  NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness. +  if (!HadTrunc) +    return NewAShr; + +  Builder.Insert(NewAShr); +  return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType()); +} + +Instruction *InstCombiner::visitAShr(BinaryOperator &I) { +  if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(), +                                  SQ.getWithInstruction(&I))) +    return replaceInstUsesWith(I, V); + +  if (Instruction *X = foldVectorBinop(I)) +    return X; + +  if (Instruction *R = commonShiftTransforms(I)) +    return R; + +  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); +  Type *Ty = I.getType(); +  unsigned BitWidth = Ty->getScalarSizeInBits(); +  const APInt *ShAmtAPInt; +  if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) { +    unsigned ShAmt = ShAmtAPInt->getZExtValue(); + +    // If the shift amount equals the difference in width of the destination +    // and source scalar types: +    // ashr (shl (zext X), C), C --> sext X +    Value *X; +    if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) && +        ShAmt == BitWidth - X->getType()->getScalarSizeInBits()) +      return new SExtInst(X, Ty); + +    // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However, +    // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits. +    const APInt *ShOp1; +    if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) && +        ShOp1->ult(BitWidth)) { +      unsigned ShlAmt = ShOp1->getZExtValue(); +      if (ShlAmt < ShAmt) { +        // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1) +        Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt); +        auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff); +        NewAShr->setIsExact(I.isExact()); +        return NewAShr; +      } +      if (ShlAmt > ShAmt) { +        // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2) +        Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt); +        auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff); +        NewShl->setHasNoSignedWrap(true); +        return NewShl; +      } +    } + +    if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) && +        ShOp1->ult(BitWidth)) { +      unsigned AmtSum = ShAmt + ShOp1->getZExtValue(); +      // Oversized arithmetic shifts replicate the sign bit. +      AmtSum = std::min(AmtSum, BitWidth - 1); +      // (X >>s C1) >>s C2 --> X >>s (C1 + C2) +      return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum)); +    } + +    if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) && +        (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) { +      // ashr (sext X), C --> sext (ashr X, C') +      Type *SrcTy = X->getType(); +      ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1); +      Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt)); +      return new SExtInst(NewSh, Ty); +    } + +    // If the shifted-out value is known-zero, then this is an exact shift. +    if (!I.isExact() && +        MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) { +      I.setIsExact(); +      return &I; +    } +  } + +  if (Instruction *R = foldVariableSignZeroExtensionOfVariableHighBitExtract(I)) +    return R; + +  // See if we can turn a signed shr into an unsigned shr. +  if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I)) +    return BinaryOperator::CreateLShr(Op0, Op1); + +  return nullptr; +} | 
