summaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp')
-rw-r--r--llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp1247
1 files changed, 1247 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp b/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp
new file mode 100644
index 000000000000..64294838644f
--- /dev/null
+++ b/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp
@@ -0,0 +1,1247 @@
+//===- InstCombineShifts.cpp ----------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visitShl, visitLShr, and visitAShr functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombineInternal.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/PatternMatch.h"
+using namespace llvm;
+using namespace PatternMatch;
+
+#define DEBUG_TYPE "instcombine"
+
+// Given pattern:
+// (x shiftopcode Q) shiftopcode K
+// we should rewrite it as
+// x shiftopcode (Q+K) iff (Q+K) u< bitwidth(x)
+// This is valid for any shift, but they must be identical.
+//
+// AnalyzeForSignBitExtraction indicates that we will only analyze whether this
+// pattern has any 2 right-shifts that sum to 1 less than original bit width.
+Value *InstCombiner::reassociateShiftAmtsOfTwoSameDirectionShifts(
+ BinaryOperator *Sh0, const SimplifyQuery &SQ,
+ bool AnalyzeForSignBitExtraction) {
+ // Look for a shift of some instruction, ignore zext of shift amount if any.
+ Instruction *Sh0Op0;
+ Value *ShAmt0;
+ if (!match(Sh0,
+ m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0)))))
+ return nullptr;
+
+ // If there is a truncation between the two shifts, we must make note of it
+ // and look through it. The truncation imposes additional constraints on the
+ // transform.
+ Instruction *Sh1;
+ Value *Trunc = nullptr;
+ match(Sh0Op0,
+ m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1)), m_Value(Trunc)),
+ m_Instruction(Sh1)));
+
+ // Inner shift: (x shiftopcode ShAmt1)
+ // Like with other shift, ignore zext of shift amount if any.
+ Value *X, *ShAmt1;
+ if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1)))))
+ return nullptr;
+
+ // We have two shift amounts from two different shifts. The types of those
+ // shift amounts may not match. If that's the case let's bailout now..
+ if (ShAmt0->getType() != ShAmt1->getType())
+ return nullptr;
+
+ // We are only looking for signbit extraction if we have two right shifts.
+ bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) &&
+ match(Sh1, m_Shr(m_Value(), m_Value()));
+ // ... and if it's not two right-shifts, we know the answer already.
+ if (AnalyzeForSignBitExtraction && !HadTwoRightShifts)
+ return nullptr;
+
+ // The shift opcodes must be identical, unless we are just checking whether
+ // this pattern can be interpreted as a sign-bit-extraction.
+ Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode();
+ bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode();
+ if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction)
+ return nullptr;
+
+ // If we saw truncation, we'll need to produce extra instruction,
+ // and for that one of the operands of the shift must be one-use,
+ // unless of course we don't actually plan to produce any instructions here.
+ if (Trunc && !AnalyzeForSignBitExtraction &&
+ !match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
+ return nullptr;
+
+ // Can we fold (ShAmt0+ShAmt1) ?
+ auto *NewShAmt = dyn_cast_or_null<Constant>(
+ SimplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false,
+ SQ.getWithInstruction(Sh0)));
+ if (!NewShAmt)
+ return nullptr; // Did not simplify.
+ unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits();
+ unsigned XBitWidth = X->getType()->getScalarSizeInBits();
+ // Is the new shift amount smaller than the bit width of inner/new shift?
+ if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
+ APInt(NewShAmtBitWidth, XBitWidth))))
+ return nullptr; // FIXME: could perform constant-folding.
+
+ // If there was a truncation, and we have a right-shift, we can only fold if
+ // we are left with the original sign bit. Likewise, if we were just checking
+ // that this is a sighbit extraction, this is the place to check it.
+ // FIXME: zero shift amount is also legal here, but we can't *easily* check
+ // more than one predicate so it's not really worth it.
+ if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) {
+ // If it's not a sign bit extraction, then we're done.
+ if (!match(NewShAmt,
+ m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
+ APInt(NewShAmtBitWidth, XBitWidth - 1))))
+ return nullptr;
+ // If it is, and that was the question, return the base value.
+ if (AnalyzeForSignBitExtraction)
+ return X;
+ }
+
+ assert(IdenticalShOpcodes && "Should not get here with different shifts.");
+
+ // All good, we can do this fold.
+ NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, X->getType());
+
+ BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt);
+
+ // The flags can only be propagated if there wasn't a trunc.
+ if (!Trunc) {
+ // If the pattern did not involve trunc, and both of the original shifts
+ // had the same flag set, preserve the flag.
+ if (ShiftOpcode == Instruction::BinaryOps::Shl) {
+ NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() &&
+ Sh1->hasNoUnsignedWrap());
+ NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() &&
+ Sh1->hasNoSignedWrap());
+ } else {
+ NewShift->setIsExact(Sh0->isExact() && Sh1->isExact());
+ }
+ }
+
+ Instruction *Ret = NewShift;
+ if (Trunc) {
+ Builder.Insert(NewShift);
+ Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType());
+ }
+
+ return Ret;
+}
+
+// Try to replace `undef` constants in C with Replacement.
+static Constant *replaceUndefsWith(Constant *C, Constant *Replacement) {
+ if (C && match(C, m_Undef()))
+ return Replacement;
+
+ if (auto *CV = dyn_cast<ConstantVector>(C)) {
+ llvm::SmallVector<Constant *, 32> NewOps(CV->getNumOperands());
+ for (unsigned i = 0, NumElts = NewOps.size(); i != NumElts; ++i) {
+ Constant *EltC = CV->getOperand(i);
+ NewOps[i] = EltC && match(EltC, m_Undef()) ? Replacement : EltC;
+ }
+ return ConstantVector::get(NewOps);
+ }
+
+ // Don't know how to deal with this constant.
+ return C;
+}
+
+// If we have some pattern that leaves only some low bits set, and then performs
+// left-shift of those bits, if none of the bits that are left after the final
+// shift are modified by the mask, we can omit the mask.
+//
+// There are many variants to this pattern:
+// a) (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt
+// b) (x & (~(-1 << MaskShAmt))) << ShiftShAmt
+// c) (x & (-1 >> MaskShAmt)) << ShiftShAmt
+// d) (x & ((-1 << MaskShAmt) >> MaskShAmt)) << ShiftShAmt
+// e) ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt
+// f) ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt
+// All these patterns can be simplified to just:
+// x << ShiftShAmt
+// iff:
+// a,b) (MaskShAmt+ShiftShAmt) u>= bitwidth(x)
+// c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt)
+static Instruction *
+dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift,
+ const SimplifyQuery &Q,
+ InstCombiner::BuilderTy &Builder) {
+ assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl &&
+ "The input must be 'shl'!");
+
+ Value *Masked, *ShiftShAmt;
+ match(OuterShift, m_Shift(m_Value(Masked), m_Value(ShiftShAmt)));
+
+ Type *NarrowestTy = OuterShift->getType();
+ Type *WidestTy = Masked->getType();
+ // The mask must be computed in a type twice as wide to ensure
+ // that no bits are lost if the sum-of-shifts is wider than the base type.
+ Type *ExtendedTy = WidestTy->getExtendedType();
+
+ Value *MaskShAmt;
+
+ // ((1 << MaskShAmt) - 1)
+ auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes());
+ // (~(-1 << maskNbits))
+ auto MaskB = m_Xor(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_AllOnes());
+ // (-1 >> MaskShAmt)
+ auto MaskC = m_Shr(m_AllOnes(), m_Value(MaskShAmt));
+ // ((-1 << MaskShAmt) >> MaskShAmt)
+ auto MaskD =
+ m_Shr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt));
+
+ Value *X;
+ Constant *NewMask;
+
+ if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) {
+ // Can we simplify (MaskShAmt+ShiftShAmt) ?
+ auto *SumOfShAmts = dyn_cast_or_null<Constant>(SimplifyAddInst(
+ MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
+ if (!SumOfShAmts)
+ return nullptr; // Did not simplify.
+ // In this pattern SumOfShAmts correlates with the number of low bits
+ // that shall remain in the root value (OuterShift).
+
+ // An extend of an undef value becomes zero because the high bits are never
+ // completely unknown. Replace the the `undef` shift amounts with final
+ // shift bitwidth to ensure that the value remains undef when creating the
+ // subsequent shift op.
+ SumOfShAmts = replaceUndefsWith(
+ SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(),
+ ExtendedTy->getScalarSizeInBits()));
+ auto *ExtendedSumOfShAmts = ConstantExpr::getZExt(SumOfShAmts, ExtendedTy);
+ // And compute the mask as usual: ~(-1 << (SumOfShAmts))
+ auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
+ auto *ExtendedInvertedMask =
+ ConstantExpr::getShl(ExtendedAllOnes, ExtendedSumOfShAmts);
+ NewMask = ConstantExpr::getNot(ExtendedInvertedMask);
+ } else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) ||
+ match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)),
+ m_Deferred(MaskShAmt)))) {
+ // Can we simplify (ShiftShAmt-MaskShAmt) ?
+ auto *ShAmtsDiff = dyn_cast_or_null<Constant>(SimplifySubInst(
+ ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
+ if (!ShAmtsDiff)
+ return nullptr; // Did not simplify.
+ // In this pattern ShAmtsDiff correlates with the number of high bits that
+ // shall be unset in the root value (OuterShift).
+
+ // An extend of an undef value becomes zero because the high bits are never
+ // completely unknown. Replace the the `undef` shift amounts with negated
+ // bitwidth of innermost shift to ensure that the value remains undef when
+ // creating the subsequent shift op.
+ unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits();
+ ShAmtsDiff = replaceUndefsWith(
+ ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(),
+ -WidestTyBitWidth));
+ auto *ExtendedNumHighBitsToClear = ConstantExpr::getZExt(
+ ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(),
+ WidestTyBitWidth,
+ /*isSigned=*/false),
+ ShAmtsDiff),
+ ExtendedTy);
+ // And compute the mask as usual: (-1 l>> (NumHighBitsToClear))
+ auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
+ NewMask =
+ ConstantExpr::getLShr(ExtendedAllOnes, ExtendedNumHighBitsToClear);
+ } else
+ return nullptr; // Don't know anything about this pattern.
+
+ NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy);
+
+ // Does this mask has any unset bits? If not then we can just not apply it.
+ bool NeedMask = !match(NewMask, m_AllOnes());
+
+ // If we need to apply a mask, there are several more restrictions we have.
+ if (NeedMask) {
+ // The old masking instruction must go away.
+ if (!Masked->hasOneUse())
+ return nullptr;
+ // The original "masking" instruction must not have been`ashr`.
+ if (match(Masked, m_AShr(m_Value(), m_Value())))
+ return nullptr;
+ }
+
+ // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits.
+ auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X,
+ OuterShift->getOperand(1));
+
+ if (!NeedMask)
+ return NewShift;
+
+ Builder.Insert(NewShift);
+ return BinaryOperator::Create(Instruction::And, NewShift, NewMask);
+}
+
+Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ assert(Op0->getType() == Op1->getType());
+
+ // If the shift amount is a one-use `sext`, we can demote it to `zext`.
+ Value *Y;
+ if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) {
+ Value *NewExt = Builder.CreateZExt(Y, I.getType(), Op1->getName());
+ return BinaryOperator::Create(I.getOpcode(), Op0, NewExt);
+ }
+
+ // See if we can fold away this shift.
+ if (SimplifyDemandedInstructionBits(I))
+ return &I;
+
+ // Try to fold constant and into select arguments.
+ if (isa<Constant>(Op0))
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
+ if (Instruction *R = FoldOpIntoSelect(I, SI))
+ return R;
+
+ if (Constant *CUI = dyn_cast<Constant>(Op1))
+ if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
+ return Res;
+
+ if (auto *NewShift = cast_or_null<Instruction>(
+ reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ)))
+ return NewShift;
+
+ // (C1 shift (A add C2)) -> (C1 shift C2) shift A)
+ // iff A and C2 are both positive.
+ Value *A;
+ Constant *C;
+ if (match(Op0, m_Constant()) && match(Op1, m_Add(m_Value(A), m_Constant(C))))
+ if (isKnownNonNegative(A, DL, 0, &AC, &I, &DT) &&
+ isKnownNonNegative(C, DL, 0, &AC, &I, &DT))
+ return BinaryOperator::Create(
+ I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), Op0, C), A);
+
+ // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2.
+ // Because shifts by negative values (which could occur if A were negative)
+ // are undefined.
+ const APInt *B;
+ if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) {
+ // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
+ // demand the sign bit (and many others) here??
+ Value *Rem = Builder.CreateAnd(A, ConstantInt::get(I.getType(), *B - 1),
+ Op1->getName());
+ I.setOperand(1, Rem);
+ return &I;
+ }
+
+ return nullptr;
+}
+
+/// Return true if we can simplify two logical (either left or right) shifts
+/// that have constant shift amounts: OuterShift (InnerShift X, C1), C2.
+static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl,
+ Instruction *InnerShift, InstCombiner &IC,
+ Instruction *CxtI) {
+ assert(InnerShift->isLogicalShift() && "Unexpected instruction type");
+
+ // We need constant scalar or constant splat shifts.
+ const APInt *InnerShiftConst;
+ if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst)))
+ return false;
+
+ // Two logical shifts in the same direction:
+ // shl (shl X, C1), C2 --> shl X, C1 + C2
+ // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
+ bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
+ if (IsInnerShl == IsOuterShl)
+ return true;
+
+ // Equal shift amounts in opposite directions become bitwise 'and':
+ // lshr (shl X, C), C --> and X, C'
+ // shl (lshr X, C), C --> and X, C'
+ if (*InnerShiftConst == OuterShAmt)
+ return true;
+
+ // If the 2nd shift is bigger than the 1st, we can fold:
+ // lshr (shl X, C1), C2 --> and (shl X, C1 - C2), C3
+ // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3
+ // but it isn't profitable unless we know the and'd out bits are already zero.
+ // Also, check that the inner shift is valid (less than the type width) or
+ // we'll crash trying to produce the bit mask for the 'and'.
+ unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits();
+ if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) {
+ unsigned InnerShAmt = InnerShiftConst->getZExtValue();
+ unsigned MaskShift =
+ IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt;
+ APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift;
+ if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI))
+ return true;
+ }
+
+ return false;
+}
+
+/// See if we can compute the specified value, but shifted logically to the left
+/// or right by some number of bits. This should return true if the expression
+/// can be computed for the same cost as the current expression tree. This is
+/// used to eliminate extraneous shifting from things like:
+/// %C = shl i128 %A, 64
+/// %D = shl i128 %B, 96
+/// %E = or i128 %C, %D
+/// %F = lshr i128 %E, 64
+/// where the client will ask if E can be computed shifted right by 64-bits. If
+/// this succeeds, getShiftedValue() will be called to produce the value.
+static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift,
+ InstCombiner &IC, Instruction *CxtI) {
+ // We can always evaluate constants shifted.
+ if (isa<Constant>(V))
+ return true;
+
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I) return false;
+
+ // If this is the opposite shift, we can directly reuse the input of the shift
+ // if the needed bits are already zero in the input. This allows us to reuse
+ // the value which means that we don't care if the shift has multiple uses.
+ // TODO: Handle opposite shift by exact value.
+ ConstantInt *CI = nullptr;
+ if ((IsLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) ||
+ (!IsLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) {
+ if (CI->getValue() == NumBits) {
+ // TODO: Check that the input bits are already zero with MaskedValueIsZero
+#if 0
+ // If this is a truncate of a logical shr, we can truncate it to a smaller
+ // lshr iff we know that the bits we would otherwise be shifting in are
+ // already zeros.
+ uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
+ uint32_t BitWidth = Ty->getScalarSizeInBits();
+ if (MaskedValueIsZero(I->getOperand(0),
+ APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
+ CI->getLimitedValue(BitWidth) < BitWidth) {
+ return CanEvaluateTruncated(I->getOperand(0), Ty);
+ }
+#endif
+
+ }
+ }
+
+ // We can't mutate something that has multiple uses: doing so would
+ // require duplicating the instruction in general, which isn't profitable.
+ if (!I->hasOneUse()) return false;
+
+ switch (I->getOpcode()) {
+ default: return false;
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
+ return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) &&
+ canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I);
+
+ case Instruction::Shl:
+ case Instruction::LShr:
+ return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI);
+
+ case Instruction::Select: {
+ SelectInst *SI = cast<SelectInst>(I);
+ Value *TrueVal = SI->getTrueValue();
+ Value *FalseVal = SI->getFalseValue();
+ return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) &&
+ canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI);
+ }
+ case Instruction::PHI: {
+ // We can change a phi if we can change all operands. Note that we never
+ // get into trouble with cyclic PHIs here because we only consider
+ // instructions with a single use.
+ PHINode *PN = cast<PHINode>(I);
+ for (Value *IncValue : PN->incoming_values())
+ if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN))
+ return false;
+ return true;
+ }
+ }
+}
+
+/// Fold OuterShift (InnerShift X, C1), C2.
+/// See canEvaluateShiftedShift() for the constraints on these instructions.
+static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt,
+ bool IsOuterShl,
+ InstCombiner::BuilderTy &Builder) {
+ bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
+ Type *ShType = InnerShift->getType();
+ unsigned TypeWidth = ShType->getScalarSizeInBits();
+
+ // We only accept shifts-by-a-constant in canEvaluateShifted().
+ const APInt *C1;
+ match(InnerShift->getOperand(1), m_APInt(C1));
+ unsigned InnerShAmt = C1->getZExtValue();
+
+ // Change the shift amount and clear the appropriate IR flags.
+ auto NewInnerShift = [&](unsigned ShAmt) {
+ InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt));
+ if (IsInnerShl) {
+ InnerShift->setHasNoUnsignedWrap(false);
+ InnerShift->setHasNoSignedWrap(false);
+ } else {
+ InnerShift->setIsExact(false);
+ }
+ return InnerShift;
+ };
+
+ // Two logical shifts in the same direction:
+ // shl (shl X, C1), C2 --> shl X, C1 + C2
+ // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
+ if (IsInnerShl == IsOuterShl) {
+ // If this is an oversized composite shift, then unsigned shifts get 0.
+ if (InnerShAmt + OuterShAmt >= TypeWidth)
+ return Constant::getNullValue(ShType);
+
+ return NewInnerShift(InnerShAmt + OuterShAmt);
+ }
+
+ // Equal shift amounts in opposite directions become bitwise 'and':
+ // lshr (shl X, C), C --> and X, C'
+ // shl (lshr X, C), C --> and X, C'
+ if (InnerShAmt == OuterShAmt) {
+ APInt Mask = IsInnerShl
+ ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt)
+ : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt);
+ Value *And = Builder.CreateAnd(InnerShift->getOperand(0),
+ ConstantInt::get(ShType, Mask));
+ if (auto *AndI = dyn_cast<Instruction>(And)) {
+ AndI->moveBefore(InnerShift);
+ AndI->takeName(InnerShift);
+ }
+ return And;
+ }
+
+ assert(InnerShAmt > OuterShAmt &&
+ "Unexpected opposite direction logical shift pair");
+
+ // In general, we would need an 'and' for this transform, but
+ // canEvaluateShiftedShift() guarantees that the masked-off bits are not used.
+ // lshr (shl X, C1), C2 --> shl X, C1 - C2
+ // shl (lshr X, C1), C2 --> lshr X, C1 - C2
+ return NewInnerShift(InnerShAmt - OuterShAmt);
+}
+
+/// When canEvaluateShifted() returns true for an expression, this function
+/// inserts the new computation that produces the shifted value.
+static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
+ InstCombiner &IC, const DataLayout &DL) {
+ // We can always evaluate constants shifted.
+ if (Constant *C = dyn_cast<Constant>(V)) {
+ if (isLeftShift)
+ V = IC.Builder.CreateShl(C, NumBits);
+ else
+ V = IC.Builder.CreateLShr(C, NumBits);
+ // If we got a constantexpr back, try to simplify it with TD info.
+ if (auto *C = dyn_cast<Constant>(V))
+ if (auto *FoldedC =
+ ConstantFoldConstant(C, DL, &IC.getTargetLibraryInfo()))
+ V = FoldedC;
+ return V;
+ }
+
+ Instruction *I = cast<Instruction>(V);
+ IC.Worklist.Add(I);
+
+ switch (I->getOpcode()) {
+ default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
+ I->setOperand(
+ 0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
+ I->setOperand(
+ 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
+ return I;
+
+ case Instruction::Shl:
+ case Instruction::LShr:
+ return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift,
+ IC.Builder);
+
+ case Instruction::Select:
+ I->setOperand(
+ 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
+ I->setOperand(
+ 2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
+ return I;
+ case Instruction::PHI: {
+ // We can change a phi if we can change all operands. Note that we never
+ // get into trouble with cyclic PHIs here because we only consider
+ // instructions with a single use.
+ PHINode *PN = cast<PHINode>(I);
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits,
+ isLeftShift, IC, DL));
+ return PN;
+ }
+ }
+}
+
+// If this is a bitwise operator or add with a constant RHS we might be able
+// to pull it through a shift.
+static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift,
+ BinaryOperator *BO) {
+ switch (BO->getOpcode()) {
+ default:
+ return false; // Do not perform transform!
+ case Instruction::Add:
+ return Shift.getOpcode() == Instruction::Shl;
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::And:
+ return true;
+ }
+}
+
+Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, Constant *Op1,
+ BinaryOperator &I) {
+ bool isLeftShift = I.getOpcode() == Instruction::Shl;
+
+ const APInt *Op1C;
+ if (!match(Op1, m_APInt(Op1C)))
+ return nullptr;
+
+ // See if we can propagate this shift into the input, this covers the trivial
+ // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
+ if (I.getOpcode() != Instruction::AShr &&
+ canEvaluateShifted(Op0, Op1C->getZExtValue(), isLeftShift, *this, &I)) {
+ LLVM_DEBUG(
+ dbgs() << "ICE: GetShiftedValue propagating shift through expression"
+ " to eliminate shift:\n IN: "
+ << *Op0 << "\n SH: " << I << "\n");
+
+ return replaceInstUsesWith(
+ I, getShiftedValue(Op0, Op1C->getZExtValue(), isLeftShift, *this, DL));
+ }
+
+ // See if we can simplify any instructions used by the instruction whose sole
+ // purpose is to compute bits we don't care about.
+ unsigned TypeBits = Op0->getType()->getScalarSizeInBits();
+
+ assert(!Op1C->uge(TypeBits) &&
+ "Shift over the type width should have been removed already");
+
+ if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I))
+ return FoldedShift;
+
+ // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
+ if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
+ Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
+ // If 'shift2' is an ashr, we would have to get the sign bit into a funny
+ // place. Don't try to do this transformation in this case. Also, we
+ // require that the input operand is a shift-by-constant so that we have
+ // confidence that the shifts will get folded together. We could do this
+ // xform in more cases, but it is unlikely to be profitable.
+ if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
+ isa<ConstantInt>(TrOp->getOperand(1))) {
+ // Okay, we'll do this xform. Make the shift of shift.
+ Constant *ShAmt =
+ ConstantExpr::getZExt(cast<Constant>(Op1), TrOp->getType());
+ // (shift2 (shift1 & 0x00FF), c2)
+ Value *NSh = Builder.CreateBinOp(I.getOpcode(), TrOp, ShAmt, I.getName());
+
+ // For logical shifts, the truncation has the effect of making the high
+ // part of the register be zeros. Emulate this by inserting an AND to
+ // clear the top bits as needed. This 'and' will usually be zapped by
+ // other xforms later if dead.
+ unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
+ unsigned DstSize = TI->getType()->getScalarSizeInBits();
+ APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
+
+ // The mask we constructed says what the trunc would do if occurring
+ // between the shifts. We want to know the effect *after* the second
+ // shift. We know that it is a logical shift by a constant, so adjust the
+ // mask as appropriate.
+ if (I.getOpcode() == Instruction::Shl)
+ MaskV <<= Op1C->getZExtValue();
+ else {
+ assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
+ MaskV.lshrInPlace(Op1C->getZExtValue());
+ }
+
+ // shift1 & 0x00FF
+ Value *And = Builder.CreateAnd(NSh,
+ ConstantInt::get(I.getContext(), MaskV),
+ TI->getName());
+
+ // Return the value truncated to the interesting size.
+ return new TruncInst(And, I.getType());
+ }
+ }
+
+ if (Op0->hasOneUse()) {
+ if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
+ // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
+ Value *V1, *V2;
+ ConstantInt *CC;
+ switch (Op0BO->getOpcode()) {
+ default: break;
+ case Instruction::Add:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: {
+ // These operators commute.
+ // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
+ if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
+ match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
+ m_Specific(Op1)))) {
+ Value *YS = // (Y << C)
+ Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
+ // (X + (Y << C))
+ Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), YS, V1,
+ Op0BO->getOperand(1)->getName());
+ unsigned Op1Val = Op1C->getLimitedValue(TypeBits);
+
+ APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
+ Constant *Mask = ConstantInt::get(I.getContext(), Bits);
+ if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
+ Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
+ return BinaryOperator::CreateAnd(X, Mask);
+ }
+
+ // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
+ Value *Op0BOOp1 = Op0BO->getOperand(1);
+ if (isLeftShift && Op0BOOp1->hasOneUse() &&
+ match(Op0BOOp1,
+ m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))),
+ m_ConstantInt(CC)))) {
+ Value *YS = // (Y << C)
+ Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
+ // X & (CC << C)
+ Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
+ V1->getName()+".mask");
+ return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
+ }
+ LLVM_FALLTHROUGH;
+ }
+
+ case Instruction::Sub: {
+ // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
+ if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
+ match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
+ m_Specific(Op1)))) {
+ Value *YS = // (Y << C)
+ Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
+ // (X + (Y << C))
+ Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), V1, YS,
+ Op0BO->getOperand(0)->getName());
+ unsigned Op1Val = Op1C->getLimitedValue(TypeBits);
+
+ APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
+ Constant *Mask = ConstantInt::get(I.getContext(), Bits);
+ if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
+ Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
+ return BinaryOperator::CreateAnd(X, Mask);
+ }
+
+ // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
+ if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
+ match(Op0BO->getOperand(0),
+ m_And(m_OneUse(m_Shr(m_Value(V1), m_Value(V2))),
+ m_ConstantInt(CC))) && V2 == Op1) {
+ Value *YS = // (Y << C)
+ Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
+ // X & (CC << C)
+ Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
+ V1->getName()+".mask");
+
+ return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
+ }
+
+ break;
+ }
+ }
+
+
+ // If the operand is a bitwise operator with a constant RHS, and the
+ // shift is the only use, we can pull it out of the shift.
+ const APInt *Op0C;
+ if (match(Op0BO->getOperand(1), m_APInt(Op0C))) {
+ if (canShiftBinOpWithConstantRHS(I, Op0BO)) {
+ Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
+ cast<Constant>(Op0BO->getOperand(1)), Op1);
+
+ Value *NewShift =
+ Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
+ NewShift->takeName(Op0BO);
+
+ return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
+ NewRHS);
+ }
+ }
+
+ // If the operand is a subtract with a constant LHS, and the shift
+ // is the only use, we can pull it out of the shift.
+ // This folds (shl (sub C1, X), C2) -> (sub (C1 << C2), (shl X, C2))
+ if (isLeftShift && Op0BO->getOpcode() == Instruction::Sub &&
+ match(Op0BO->getOperand(0), m_APInt(Op0C))) {
+ Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
+ cast<Constant>(Op0BO->getOperand(0)), Op1);
+
+ Value *NewShift = Builder.CreateShl(Op0BO->getOperand(1), Op1);
+ NewShift->takeName(Op0BO);
+
+ return BinaryOperator::CreateSub(NewRHS, NewShift);
+ }
+ }
+
+ // If we have a select that conditionally executes some binary operator,
+ // see if we can pull it the select and operator through the shift.
+ //
+ // For example, turning:
+ // shl (select C, (add X, C1), X), C2
+ // Into:
+ // Y = shl X, C2
+ // select C, (add Y, C1 << C2), Y
+ Value *Cond;
+ BinaryOperator *TBO;
+ Value *FalseVal;
+ if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)),
+ m_Value(FalseVal)))) {
+ const APInt *C;
+ if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal &&
+ match(TBO->getOperand(1), m_APInt(C)) &&
+ canShiftBinOpWithConstantRHS(I, TBO)) {
+ Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
+ cast<Constant>(TBO->getOperand(1)), Op1);
+
+ Value *NewShift =
+ Builder.CreateBinOp(I.getOpcode(), FalseVal, Op1);
+ Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift,
+ NewRHS);
+ return SelectInst::Create(Cond, NewOp, NewShift);
+ }
+ }
+
+ BinaryOperator *FBO;
+ Value *TrueVal;
+ if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal),
+ m_OneUse(m_BinOp(FBO))))) {
+ const APInt *C;
+ if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal &&
+ match(FBO->getOperand(1), m_APInt(C)) &&
+ canShiftBinOpWithConstantRHS(I, FBO)) {
+ Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
+ cast<Constant>(FBO->getOperand(1)), Op1);
+
+ Value *NewShift =
+ Builder.CreateBinOp(I.getOpcode(), TrueVal, Op1);
+ Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift,
+ NewRHS);
+ return SelectInst::Create(Cond, NewShift, NewOp);
+ }
+ }
+ }
+
+ return nullptr;
+}
+
+Instruction *InstCombiner::visitShl(BinaryOperator &I) {
+ const SimplifyQuery Q = SQ.getWithInstruction(&I);
+
+ if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1),
+ I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q))
+ return replaceInstUsesWith(I, V);
+
+ if (Instruction *X = foldVectorBinop(I))
+ return X;
+
+ if (Instruction *V = commonShiftTransforms(I))
+ return V;
+
+ if (Instruction *V = dropRedundantMaskingOfLeftShiftInput(&I, Q, Builder))
+ return V;
+
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ Type *Ty = I.getType();
+ unsigned BitWidth = Ty->getScalarSizeInBits();
+
+ const APInt *ShAmtAPInt;
+ if (match(Op1, m_APInt(ShAmtAPInt))) {
+ unsigned ShAmt = ShAmtAPInt->getZExtValue();
+
+ // shl (zext X), ShAmt --> zext (shl X, ShAmt)
+ // This is only valid if X would have zeros shifted out.
+ Value *X;
+ if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
+ unsigned SrcWidth = X->getType()->getScalarSizeInBits();
+ if (ShAmt < SrcWidth &&
+ MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmt), 0, &I))
+ return new ZExtInst(Builder.CreateShl(X, ShAmt), Ty);
+ }
+
+ // (X >> C) << C --> X & (-1 << C)
+ if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) {
+ APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt));
+ return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
+ }
+
+ // FIXME: we do not yet transform non-exact shr's. The backend (DAGCombine)
+ // needs a few fixes for the rotate pattern recognition first.
+ const APInt *ShOp1;
+ if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(ShOp1))))) {
+ unsigned ShrAmt = ShOp1->getZExtValue();
+ if (ShrAmt < ShAmt) {
+ // If C1 < C2: (X >>?,exact C1) << C2 --> X << (C2 - C1)
+ Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShrAmt);
+ auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
+ NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
+ NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
+ return NewShl;
+ }
+ if (ShrAmt > ShAmt) {
+ // If C1 > C2: (X >>?exact C1) << C2 --> X >>?exact (C1 - C2)
+ Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmt);
+ auto *NewShr = BinaryOperator::Create(
+ cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff);
+ NewShr->setIsExact(true);
+ return NewShr;
+ }
+ }
+
+ if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1)))) {
+ unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
+ // Oversized shifts are simplified to zero in InstSimplify.
+ if (AmtSum < BitWidth)
+ // (X << C1) << C2 --> X << (C1 + C2)
+ return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum));
+ }
+
+ // If the shifted-out value is known-zero, then this is a NUW shift.
+ if (!I.hasNoUnsignedWrap() &&
+ MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmt), 0, &I)) {
+ I.setHasNoUnsignedWrap();
+ return &I;
+ }
+
+ // If the shifted-out value is all signbits, then this is a NSW shift.
+ if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmt) {
+ I.setHasNoSignedWrap();
+ return &I;
+ }
+ }
+
+ // Transform (x >> y) << y to x & (-1 << y)
+ // Valid for any type of right-shift.
+ Value *X;
+ if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
+ Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
+ Value *Mask = Builder.CreateShl(AllOnes, Op1);
+ return BinaryOperator::CreateAnd(Mask, X);
+ }
+
+ Constant *C1;
+ if (match(Op1, m_Constant(C1))) {
+ Constant *C2;
+ Value *X;
+ // (C2 << X) << C1 --> (C2 << C1) << X
+ if (match(Op0, m_OneUse(m_Shl(m_Constant(C2), m_Value(X)))))
+ return BinaryOperator::CreateShl(ConstantExpr::getShl(C2, C1), X);
+
+ // (X * C2) << C1 --> X * (C2 << C1)
+ if (match(Op0, m_Mul(m_Value(X), m_Constant(C2))))
+ return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1));
+
+ // shl (zext i1 X), C1 --> select (X, 1 << C1, 0)
+ if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
+ auto *NewC = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C1);
+ return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
+ }
+ }
+
+ // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1
+ if (match(Op0, m_One()) &&
+ match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X))))
+ return BinaryOperator::CreateLShr(
+ ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X);
+
+ return nullptr;
+}
+
+Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
+ if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
+ SQ.getWithInstruction(&I)))
+ return replaceInstUsesWith(I, V);
+
+ if (Instruction *X = foldVectorBinop(I))
+ return X;
+
+ if (Instruction *R = commonShiftTransforms(I))
+ return R;
+
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ Type *Ty = I.getType();
+ const APInt *ShAmtAPInt;
+ if (match(Op1, m_APInt(ShAmtAPInt))) {
+ unsigned ShAmt = ShAmtAPInt->getZExtValue();
+ unsigned BitWidth = Ty->getScalarSizeInBits();
+ auto *II = dyn_cast<IntrinsicInst>(Op0);
+ if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt &&
+ (II->getIntrinsicID() == Intrinsic::ctlz ||
+ II->getIntrinsicID() == Intrinsic::cttz ||
+ II->getIntrinsicID() == Intrinsic::ctpop)) {
+ // ctlz.i32(x)>>5 --> zext(x == 0)
+ // cttz.i32(x)>>5 --> zext(x == 0)
+ // ctpop.i32(x)>>5 --> zext(x == -1)
+ bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop;
+ Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0);
+ Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS);
+ return new ZExtInst(Cmp, Ty);
+ }
+
+ Value *X;
+ const APInt *ShOp1;
+ if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1))) && ShOp1->ult(BitWidth)) {
+ if (ShOp1->ult(ShAmt)) {
+ unsigned ShlAmt = ShOp1->getZExtValue();
+ Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
+ if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
+ // (X <<nuw C1) >>u C2 --> X >>u (C2 - C1)
+ auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff);
+ NewLShr->setIsExact(I.isExact());
+ return NewLShr;
+ }
+ // (X << C1) >>u C2 --> (X >>u (C2 - C1)) & (-1 >> C2)
+ Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact());
+ APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
+ return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask));
+ }
+ if (ShOp1->ugt(ShAmt)) {
+ unsigned ShlAmt = ShOp1->getZExtValue();
+ Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
+ if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
+ // (X <<nuw C1) >>u C2 --> X <<nuw (C1 - C2)
+ auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
+ NewShl->setHasNoUnsignedWrap(true);
+ return NewShl;
+ }
+ // (X << C1) >>u C2 --> X << (C1 - C2) & (-1 >> C2)
+ Value *NewShl = Builder.CreateShl(X, ShiftDiff);
+ APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
+ return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
+ }
+ assert(*ShOp1 == ShAmt);
+ // (X << C) >>u C --> X & (-1 >>u C)
+ APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
+ return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
+ }
+
+ if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) &&
+ (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
+ assert(ShAmt < X->getType()->getScalarSizeInBits() &&
+ "Big shift not simplified to zero?");
+ // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN
+ Value *NewLShr = Builder.CreateLShr(X, ShAmt);
+ return new ZExtInst(NewLShr, Ty);
+ }
+
+ if (match(Op0, m_SExt(m_Value(X))) &&
+ (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
+ // Are we moving the sign bit to the low bit and widening with high zeros?
+ unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits();
+ if (ShAmt == BitWidth - 1) {
+ // lshr (sext i1 X to iN), N-1 --> zext X to iN
+ if (SrcTyBitWidth == 1)
+ return new ZExtInst(X, Ty);
+
+ // lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN
+ if (Op0->hasOneUse()) {
+ Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1);
+ return new ZExtInst(NewLShr, Ty);
+ }
+ }
+
+ // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN
+ if (ShAmt == BitWidth - SrcTyBitWidth && Op0->hasOneUse()) {
+ // The new shift amount can't be more than the narrow source type.
+ unsigned NewShAmt = std::min(ShAmt, SrcTyBitWidth - 1);
+ Value *AShr = Builder.CreateAShr(X, NewShAmt);
+ return new ZExtInst(AShr, Ty);
+ }
+ }
+
+ if (match(Op0, m_LShr(m_Value(X), m_APInt(ShOp1)))) {
+ unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
+ // Oversized shifts are simplified to zero in InstSimplify.
+ if (AmtSum < BitWidth)
+ // (X >>u C1) >>u C2 --> X >>u (C1 + C2)
+ return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
+ }
+
+ // If the shifted-out value is known-zero, then this is an exact shift.
+ if (!I.isExact() &&
+ MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
+ I.setIsExact();
+ return &I;
+ }
+ }
+
+ // Transform (x << y) >> y to x & (-1 >> y)
+ Value *X;
+ if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) {
+ Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
+ Value *Mask = Builder.CreateLShr(AllOnes, Op1);
+ return BinaryOperator::CreateAnd(Mask, X);
+ }
+
+ return nullptr;
+}
+
+Instruction *
+InstCombiner::foldVariableSignZeroExtensionOfVariableHighBitExtract(
+ BinaryOperator &OldAShr) {
+ assert(OldAShr.getOpcode() == Instruction::AShr &&
+ "Must be called with arithmetic right-shift instruction only.");
+
+ // Check that constant C is a splat of the element-wise bitwidth of V.
+ auto BitWidthSplat = [](Constant *C, Value *V) {
+ return match(
+ C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
+ APInt(C->getType()->getScalarSizeInBits(),
+ V->getType()->getScalarSizeInBits())));
+ };
+
+ // It should look like variable-length sign-extension on the outside:
+ // (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits)
+ Value *NBits;
+ Instruction *MaybeTrunc;
+ Constant *C1, *C2;
+ if (!match(&OldAShr,
+ m_AShr(m_Shl(m_Instruction(MaybeTrunc),
+ m_ZExtOrSelf(m_Sub(m_Constant(C1),
+ m_ZExtOrSelf(m_Value(NBits))))),
+ m_ZExtOrSelf(m_Sub(m_Constant(C2),
+ m_ZExtOrSelf(m_Deferred(NBits)))))) ||
+ !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr))
+ return nullptr;
+
+ // There may or may not be a truncation after outer two shifts.
+ Instruction *HighBitExtract;
+ match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract)));
+ bool HadTrunc = MaybeTrunc != HighBitExtract;
+
+ // And finally, the innermost part of the pattern must be a right-shift.
+ Value *X, *NumLowBitsToSkip;
+ if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip))))
+ return nullptr;
+
+ // Said right-shift must extract high NBits bits - C0 must be it's bitwidth.
+ Constant *C0;
+ if (!match(NumLowBitsToSkip,
+ m_ZExtOrSelf(
+ m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) ||
+ !BitWidthSplat(C0, HighBitExtract))
+ return nullptr;
+
+ // Since the NBits is identical for all shifts, if the outermost and
+ // innermost shifts are identical, then outermost shifts are redundant.
+ // If we had truncation, do keep it though.
+ if (HighBitExtract->getOpcode() == OldAShr.getOpcode())
+ return replaceInstUsesWith(OldAShr, MaybeTrunc);
+
+ // Else, if there was a truncation, then we need to ensure that one
+ // instruction will go away.
+ if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
+ return nullptr;
+
+ // Finally, bypass two innermost shifts, and perform the outermost shift on
+ // the operands of the innermost shift.
+ Instruction *NewAShr =
+ BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip);
+ NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness.
+ if (!HadTrunc)
+ return NewAShr;
+
+ Builder.Insert(NewAShr);
+ return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType());
+}
+
+Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
+ if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
+ SQ.getWithInstruction(&I)))
+ return replaceInstUsesWith(I, V);
+
+ if (Instruction *X = foldVectorBinop(I))
+ return X;
+
+ if (Instruction *R = commonShiftTransforms(I))
+ return R;
+
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ Type *Ty = I.getType();
+ unsigned BitWidth = Ty->getScalarSizeInBits();
+ const APInt *ShAmtAPInt;
+ if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) {
+ unsigned ShAmt = ShAmtAPInt->getZExtValue();
+
+ // If the shift amount equals the difference in width of the destination
+ // and source scalar types:
+ // ashr (shl (zext X), C), C --> sext X
+ Value *X;
+ if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) &&
+ ShAmt == BitWidth - X->getType()->getScalarSizeInBits())
+ return new SExtInst(X, Ty);
+
+ // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However,
+ // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
+ const APInt *ShOp1;
+ if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) &&
+ ShOp1->ult(BitWidth)) {
+ unsigned ShlAmt = ShOp1->getZExtValue();
+ if (ShlAmt < ShAmt) {
+ // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1)
+ Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
+ auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff);
+ NewAShr->setIsExact(I.isExact());
+ return NewAShr;
+ }
+ if (ShlAmt > ShAmt) {
+ // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2)
+ Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
+ auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff);
+ NewShl->setHasNoSignedWrap(true);
+ return NewShl;
+ }
+ }
+
+ if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) &&
+ ShOp1->ult(BitWidth)) {
+ unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
+ // Oversized arithmetic shifts replicate the sign bit.
+ AmtSum = std::min(AmtSum, BitWidth - 1);
+ // (X >>s C1) >>s C2 --> X >>s (C1 + C2)
+ return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
+ }
+
+ if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) &&
+ (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) {
+ // ashr (sext X), C --> sext (ashr X, C')
+ Type *SrcTy = X->getType();
+ ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1);
+ Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt));
+ return new SExtInst(NewSh, Ty);
+ }
+
+ // If the shifted-out value is known-zero, then this is an exact shift.
+ if (!I.isExact() &&
+ MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
+ I.setIsExact();
+ return &I;
+ }
+ }
+
+ if (Instruction *R = foldVariableSignZeroExtensionOfVariableHighBitExtract(I))
+ return R;
+
+ // See if we can turn a signed shr into an unsigned shr.
+ if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I))
+ return BinaryOperator::CreateLShr(Op0, Op1);
+
+ return nullptr;
+}