diff options
Diffstat (limited to 'llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp')
-rw-r--r-- | llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp | 2246 |
1 files changed, 2246 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp b/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp new file mode 100644 index 000000000000..9c890748e5ab --- /dev/null +++ b/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp @@ -0,0 +1,2246 @@ +//===- InstCombineVectorOps.cpp -------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements instcombine for ExtractElement, InsertElement and +// ShuffleVector. +// +//===----------------------------------------------------------------------===// + +#include "InstCombineInternal.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/VectorUtils.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Transforms/InstCombine/InstCombineWorklist.h" +#include <cassert> +#include <cstdint> +#include <iterator> +#include <utility> + +using namespace llvm; +using namespace PatternMatch; + +#define DEBUG_TYPE "instcombine" + +/// Return true if the value is cheaper to scalarize than it is to leave as a +/// vector operation. IsConstantExtractIndex indicates whether we are extracting +/// one known element from a vector constant. +/// +/// FIXME: It's possible to create more instructions than previously existed. +static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) { + // If we can pick a scalar constant value out of a vector, that is free. + if (auto *C = dyn_cast<Constant>(V)) + return IsConstantExtractIndex || C->getSplatValue(); + + // An insertelement to the same constant index as our extract will simplify + // to the scalar inserted element. An insertelement to a different constant + // index is irrelevant to our extract. + if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt()))) + return IsConstantExtractIndex; + + if (match(V, m_OneUse(m_Load(m_Value())))) + return true; + + Value *V0, *V1; + if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1))))) + if (cheapToScalarize(V0, IsConstantExtractIndex) || + cheapToScalarize(V1, IsConstantExtractIndex)) + return true; + + CmpInst::Predicate UnusedPred; + if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1))))) + if (cheapToScalarize(V0, IsConstantExtractIndex) || + cheapToScalarize(V1, IsConstantExtractIndex)) + return true; + + return false; +} + +// If we have a PHI node with a vector type that is only used to feed +// itself and be an operand of extractelement at a constant location, +// try to replace the PHI of the vector type with a PHI of a scalar type. +Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) { + SmallVector<Instruction *, 2> Extracts; + // The users we want the PHI to have are: + // 1) The EI ExtractElement (we already know this) + // 2) Possibly more ExtractElements with the same index. + // 3) Another operand, which will feed back into the PHI. + Instruction *PHIUser = nullptr; + for (auto U : PN->users()) { + if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) { + if (EI.getIndexOperand() == EU->getIndexOperand()) + Extracts.push_back(EU); + else + return nullptr; + } else if (!PHIUser) { + PHIUser = cast<Instruction>(U); + } else { + return nullptr; + } + } + + if (!PHIUser) + return nullptr; + + // Verify that this PHI user has one use, which is the PHI itself, + // and that it is a binary operation which is cheap to scalarize. + // otherwise return nullptr. + if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) || + !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true)) + return nullptr; + + // Create a scalar PHI node that will replace the vector PHI node + // just before the current PHI node. + PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith( + PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN)); + // Scalarize each PHI operand. + for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { + Value *PHIInVal = PN->getIncomingValue(i); + BasicBlock *inBB = PN->getIncomingBlock(i); + Value *Elt = EI.getIndexOperand(); + // If the operand is the PHI induction variable: + if (PHIInVal == PHIUser) { + // Scalarize the binary operation. Its first operand is the + // scalar PHI, and the second operand is extracted from the other + // vector operand. + BinaryOperator *B0 = cast<BinaryOperator>(PHIUser); + unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0; + Value *Op = InsertNewInstWith( + ExtractElementInst::Create(B0->getOperand(opId), Elt, + B0->getOperand(opId)->getName() + ".Elt"), + *B0); + Value *newPHIUser = InsertNewInstWith( + BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(), + scalarPHI, Op, B0), *B0); + scalarPHI->addIncoming(newPHIUser, inBB); + } else { + // Scalarize PHI input: + Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, ""); + // Insert the new instruction into the predecessor basic block. + Instruction *pos = dyn_cast<Instruction>(PHIInVal); + BasicBlock::iterator InsertPos; + if (pos && !isa<PHINode>(pos)) { + InsertPos = ++pos->getIterator(); + } else { + InsertPos = inBB->getFirstInsertionPt(); + } + + InsertNewInstWith(newEI, *InsertPos); + + scalarPHI->addIncoming(newEI, inBB); + } + } + + for (auto E : Extracts) + replaceInstUsesWith(*E, scalarPHI); + + return &EI; +} + +static Instruction *foldBitcastExtElt(ExtractElementInst &Ext, + InstCombiner::BuilderTy &Builder, + bool IsBigEndian) { + Value *X; + uint64_t ExtIndexC; + if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) || + !X->getType()->isVectorTy() || + !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC))) + return nullptr; + + // If this extractelement is using a bitcast from a vector of the same number + // of elements, see if we can find the source element from the source vector: + // extelt (bitcast VecX), IndexC --> bitcast X[IndexC] + Type *SrcTy = X->getType(); + Type *DestTy = Ext.getType(); + unsigned NumSrcElts = SrcTy->getVectorNumElements(); + unsigned NumElts = Ext.getVectorOperandType()->getNumElements(); + if (NumSrcElts == NumElts) + if (Value *Elt = findScalarElement(X, ExtIndexC)) + return new BitCastInst(Elt, DestTy); + + // If the source elements are wider than the destination, try to shift and + // truncate a subset of scalar bits of an insert op. + if (NumSrcElts < NumElts) { + Value *Scalar; + uint64_t InsIndexC; + if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar), + m_ConstantInt(InsIndexC)))) + return nullptr; + + // The extract must be from the subset of vector elements that we inserted + // into. Example: if we inserted element 1 of a <2 x i64> and we are + // extracting an i16 (narrowing ratio = 4), then this extract must be from 1 + // of elements 4-7 of the bitcasted vector. + unsigned NarrowingRatio = NumElts / NumSrcElts; + if (ExtIndexC / NarrowingRatio != InsIndexC) + return nullptr; + + // We are extracting part of the original scalar. How that scalar is + // inserted into the vector depends on the endian-ness. Example: + // Vector Byte Elt Index: 0 1 2 3 4 5 6 7 + // +--+--+--+--+--+--+--+--+ + // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3| + // extelt <4 x i16> V', 3: | |S2|S3| + // +--+--+--+--+--+--+--+--+ + // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value. + // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value. + // In this example, we must right-shift little-endian. Big-endian is just a + // truncate. + unsigned Chunk = ExtIndexC % NarrowingRatio; + if (IsBigEndian) + Chunk = NarrowingRatio - 1 - Chunk; + + // Bail out if this is an FP vector to FP vector sequence. That would take + // more instructions than we started with unless there is no shift, and it + // may not be handled as well in the backend. + bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy(); + bool NeedDestBitcast = DestTy->isFloatingPointTy(); + if (NeedSrcBitcast && NeedDestBitcast) + return nullptr; + + unsigned SrcWidth = SrcTy->getScalarSizeInBits(); + unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); + unsigned ShAmt = Chunk * DestWidth; + + // TODO: This limitation is more strict than necessary. We could sum the + // number of new instructions and subtract the number eliminated to know if + // we can proceed. + if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse()) + if (NeedSrcBitcast || NeedDestBitcast) + return nullptr; + + if (NeedSrcBitcast) { + Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth); + Scalar = Builder.CreateBitCast(Scalar, SrcIntTy); + } + + if (ShAmt) { + // Bail out if we could end with more instructions than we started with. + if (!Ext.getVectorOperand()->hasOneUse()) + return nullptr; + Scalar = Builder.CreateLShr(Scalar, ShAmt); + } + + if (NeedDestBitcast) { + Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth); + return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy); + } + return new TruncInst(Scalar, DestTy); + } + + return nullptr; +} + +/// Find elements of V demanded by UserInstr. +static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) { + unsigned VWidth = V->getType()->getVectorNumElements(); + + // Conservatively assume that all elements are needed. + APInt UsedElts(APInt::getAllOnesValue(VWidth)); + + switch (UserInstr->getOpcode()) { + case Instruction::ExtractElement: { + ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr); + assert(EEI->getVectorOperand() == V); + ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand()); + if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) { + UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue()); + } + break; + } + case Instruction::ShuffleVector: { + ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr); + unsigned MaskNumElts = UserInstr->getType()->getVectorNumElements(); + + UsedElts = APInt(VWidth, 0); + for (unsigned i = 0; i < MaskNumElts; i++) { + unsigned MaskVal = Shuffle->getMaskValue(i); + if (MaskVal == -1u || MaskVal >= 2 * VWidth) + continue; + if (Shuffle->getOperand(0) == V && (MaskVal < VWidth)) + UsedElts.setBit(MaskVal); + if (Shuffle->getOperand(1) == V && + ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth))) + UsedElts.setBit(MaskVal - VWidth); + } + break; + } + default: + break; + } + return UsedElts; +} + +/// Find union of elements of V demanded by all its users. +/// If it is known by querying findDemandedEltsBySingleUser that +/// no user demands an element of V, then the corresponding bit +/// remains unset in the returned value. +static APInt findDemandedEltsByAllUsers(Value *V) { + unsigned VWidth = V->getType()->getVectorNumElements(); + + APInt UnionUsedElts(VWidth, 0); + for (const Use &U : V->uses()) { + if (Instruction *I = dyn_cast<Instruction>(U.getUser())) { + UnionUsedElts |= findDemandedEltsBySingleUser(V, I); + } else { + UnionUsedElts = APInt::getAllOnesValue(VWidth); + break; + } + + if (UnionUsedElts.isAllOnesValue()) + break; + } + + return UnionUsedElts; +} + +Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) { + Value *SrcVec = EI.getVectorOperand(); + Value *Index = EI.getIndexOperand(); + if (Value *V = SimplifyExtractElementInst(SrcVec, Index, + SQ.getWithInstruction(&EI))) + return replaceInstUsesWith(EI, V); + + // If extracting a specified index from the vector, see if we can recursively + // find a previously computed scalar that was inserted into the vector. + auto *IndexC = dyn_cast<ConstantInt>(Index); + if (IndexC) { + unsigned NumElts = EI.getVectorOperandType()->getNumElements(); + + // InstSimplify should handle cases where the index is invalid. + if (!IndexC->getValue().ule(NumElts)) + return nullptr; + + // This instruction only demands the single element from the input vector. + if (NumElts != 1) { + // If the input vector has a single use, simplify it based on this use + // property. + if (SrcVec->hasOneUse()) { + APInt UndefElts(NumElts, 0); + APInt DemandedElts(NumElts, 0); + DemandedElts.setBit(IndexC->getZExtValue()); + if (Value *V = + SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) { + EI.setOperand(0, V); + return &EI; + } + } else { + // If the input vector has multiple uses, simplify it based on a union + // of all elements used. + APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec); + if (!DemandedElts.isAllOnesValue()) { + APInt UndefElts(NumElts, 0); + if (Value *V = SimplifyDemandedVectorElts( + SrcVec, DemandedElts, UndefElts, 0 /* Depth */, + true /* AllowMultipleUsers */)) { + if (V != SrcVec) { + SrcVec->replaceAllUsesWith(V); + return &EI; + } + } + } + } + } + if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian())) + return I; + + // If there's a vector PHI feeding a scalar use through this extractelement + // instruction, try to scalarize the PHI. + if (auto *Phi = dyn_cast<PHINode>(SrcVec)) + if (Instruction *ScalarPHI = scalarizePHI(EI, Phi)) + return ScalarPHI; + } + + BinaryOperator *BO; + if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) { + // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index) + Value *X = BO->getOperand(0), *Y = BO->getOperand(1); + Value *E0 = Builder.CreateExtractElement(X, Index); + Value *E1 = Builder.CreateExtractElement(Y, Index); + return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO); + } + + Value *X, *Y; + CmpInst::Predicate Pred; + if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) && + cheapToScalarize(SrcVec, IndexC)) { + // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index) + Value *E0 = Builder.CreateExtractElement(X, Index); + Value *E1 = Builder.CreateExtractElement(Y, Index); + return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1); + } + + if (auto *I = dyn_cast<Instruction>(SrcVec)) { + if (auto *IE = dyn_cast<InsertElementInst>(I)) { + // Extracting the inserted element? + if (IE->getOperand(2) == Index) + return replaceInstUsesWith(EI, IE->getOperand(1)); + // If the inserted and extracted elements are constants, they must not + // be the same value, extract from the pre-inserted value instead. + if (isa<Constant>(IE->getOperand(2)) && IndexC) { + Worklist.AddValue(SrcVec); + EI.setOperand(0, IE->getOperand(0)); + return &EI; + } + } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) { + // If this is extracting an element from a shufflevector, figure out where + // it came from and extract from the appropriate input element instead. + if (auto *Elt = dyn_cast<ConstantInt>(Index)) { + int SrcIdx = SVI->getMaskValue(Elt->getZExtValue()); + Value *Src; + unsigned LHSWidth = + SVI->getOperand(0)->getType()->getVectorNumElements(); + + if (SrcIdx < 0) + return replaceInstUsesWith(EI, UndefValue::get(EI.getType())); + if (SrcIdx < (int)LHSWidth) + Src = SVI->getOperand(0); + else { + SrcIdx -= LHSWidth; + Src = SVI->getOperand(1); + } + Type *Int32Ty = Type::getInt32Ty(EI.getContext()); + return ExtractElementInst::Create(Src, + ConstantInt::get(Int32Ty, + SrcIdx, false)); + } + } else if (auto *CI = dyn_cast<CastInst>(I)) { + // Canonicalize extractelement(cast) -> cast(extractelement). + // Bitcasts can change the number of vector elements, and they cost + // nothing. + if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) { + Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index); + Worklist.AddValue(EE); + return CastInst::Create(CI->getOpcode(), EE, EI.getType()); + } + } + } + return nullptr; +} + +/// If V is a shuffle of values that ONLY returns elements from either LHS or +/// RHS, return the shuffle mask and true. Otherwise, return false. +static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, + SmallVectorImpl<Constant*> &Mask) { + assert(LHS->getType() == RHS->getType() && + "Invalid CollectSingleShuffleElements"); + unsigned NumElts = V->getType()->getVectorNumElements(); + + if (isa<UndefValue>(V)) { + Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); + return true; + } + + if (V == LHS) { + for (unsigned i = 0; i != NumElts; ++i) + Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); + return true; + } + + if (V == RHS) { + for (unsigned i = 0; i != NumElts; ++i) + Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), + i+NumElts)); + return true; + } + + if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { + // If this is an insert of an extract from some other vector, include it. + Value *VecOp = IEI->getOperand(0); + Value *ScalarOp = IEI->getOperand(1); + Value *IdxOp = IEI->getOperand(2); + + if (!isa<ConstantInt>(IdxOp)) + return false; + unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); + + if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector. + // We can handle this if the vector we are inserting into is + // transitively ok. + if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { + // If so, update the mask to reflect the inserted undef. + Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext())); + return true; + } + } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){ + if (isa<ConstantInt>(EI->getOperand(1))) { + unsigned ExtractedIdx = + cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); + unsigned NumLHSElts = LHS->getType()->getVectorNumElements(); + + // This must be extracting from either LHS or RHS. + if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { + // We can handle this if the vector we are inserting into is + // transitively ok. + if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { + // If so, update the mask to reflect the inserted value. + if (EI->getOperand(0) == LHS) { + Mask[InsertedIdx % NumElts] = + ConstantInt::get(Type::getInt32Ty(V->getContext()), + ExtractedIdx); + } else { + assert(EI->getOperand(0) == RHS); + Mask[InsertedIdx % NumElts] = + ConstantInt::get(Type::getInt32Ty(V->getContext()), + ExtractedIdx + NumLHSElts); + } + return true; + } + } + } + } + } + + return false; +} + +/// If we have insertion into a vector that is wider than the vector that we +/// are extracting from, try to widen the source vector to allow a single +/// shufflevector to replace one or more insert/extract pairs. +static void replaceExtractElements(InsertElementInst *InsElt, + ExtractElementInst *ExtElt, + InstCombiner &IC) { + VectorType *InsVecType = InsElt->getType(); + VectorType *ExtVecType = ExtElt->getVectorOperandType(); + unsigned NumInsElts = InsVecType->getVectorNumElements(); + unsigned NumExtElts = ExtVecType->getVectorNumElements(); + + // The inserted-to vector must be wider than the extracted-from vector. + if (InsVecType->getElementType() != ExtVecType->getElementType() || + NumExtElts >= NumInsElts) + return; + + // Create a shuffle mask to widen the extended-from vector using undefined + // values. The mask selects all of the values of the original vector followed + // by as many undefined values as needed to create a vector of the same length + // as the inserted-to vector. + SmallVector<Constant *, 16> ExtendMask; + IntegerType *IntType = Type::getInt32Ty(InsElt->getContext()); + for (unsigned i = 0; i < NumExtElts; ++i) + ExtendMask.push_back(ConstantInt::get(IntType, i)); + for (unsigned i = NumExtElts; i < NumInsElts; ++i) + ExtendMask.push_back(UndefValue::get(IntType)); + + Value *ExtVecOp = ExtElt->getVectorOperand(); + auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp); + BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) + ? ExtVecOpInst->getParent() + : ExtElt->getParent(); + + // TODO: This restriction matches the basic block check below when creating + // new extractelement instructions. If that limitation is removed, this one + // could also be removed. But for now, we just bail out to ensure that we + // will replace the extractelement instruction that is feeding our + // insertelement instruction. This allows the insertelement to then be + // replaced by a shufflevector. If the insertelement is not replaced, we can + // induce infinite looping because there's an optimization for extractelement + // that will delete our widening shuffle. This would trigger another attempt + // here to create that shuffle, and we spin forever. + if (InsertionBlock != InsElt->getParent()) + return; + + // TODO: This restriction matches the check in visitInsertElementInst() and + // prevents an infinite loop caused by not turning the extract/insert pair + // into a shuffle. We really should not need either check, but we're lacking + // folds for shufflevectors because we're afraid to generate shuffle masks + // that the backend can't handle. + if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back())) + return; + + auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType), + ConstantVector::get(ExtendMask)); + + // Insert the new shuffle after the vector operand of the extract is defined + // (as long as it's not a PHI) or at the start of the basic block of the + // extract, so any subsequent extracts in the same basic block can use it. + // TODO: Insert before the earliest ExtractElementInst that is replaced. + if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst)) + WideVec->insertAfter(ExtVecOpInst); + else + IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt()); + + // Replace extracts from the original narrow vector with extracts from the new + // wide vector. + for (User *U : ExtVecOp->users()) { + ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U); + if (!OldExt || OldExt->getParent() != WideVec->getParent()) + continue; + auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1)); + NewExt->insertAfter(OldExt); + IC.replaceInstUsesWith(*OldExt, NewExt); + } +} + +/// We are building a shuffle to create V, which is a sequence of insertelement, +/// extractelement pairs. If PermittedRHS is set, then we must either use it or +/// not rely on the second vector source. Return a std::pair containing the +/// left and right vectors of the proposed shuffle (or 0), and set the Mask +/// parameter as required. +/// +/// Note: we intentionally don't try to fold earlier shuffles since they have +/// often been chosen carefully to be efficiently implementable on the target. +using ShuffleOps = std::pair<Value *, Value *>; + +static ShuffleOps collectShuffleElements(Value *V, + SmallVectorImpl<Constant *> &Mask, + Value *PermittedRHS, + InstCombiner &IC) { + assert(V->getType()->isVectorTy() && "Invalid shuffle!"); + unsigned NumElts = V->getType()->getVectorNumElements(); + + if (isa<UndefValue>(V)) { + Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext()))); + return std::make_pair( + PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr); + } + + if (isa<ConstantAggregateZero>(V)) { + Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0)); + return std::make_pair(V, nullptr); + } + + if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) { + // If this is an insert of an extract from some other vector, include it. + Value *VecOp = IEI->getOperand(0); + Value *ScalarOp = IEI->getOperand(1); + Value *IdxOp = IEI->getOperand(2); + + if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) { + if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) { + unsigned ExtractedIdx = + cast<ConstantInt>(EI->getOperand(1))->getZExtValue(); + unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue(); + + // Either the extracted from or inserted into vector must be RHSVec, + // otherwise we'd end up with a shuffle of three inputs. + if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) { + Value *RHS = EI->getOperand(0); + ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC); + assert(LR.second == nullptr || LR.second == RHS); + + if (LR.first->getType() != RHS->getType()) { + // Although we are giving up for now, see if we can create extracts + // that match the inserts for another round of combining. + replaceExtractElements(IEI, EI, IC); + + // We tried our best, but we can't find anything compatible with RHS + // further up the chain. Return a trivial shuffle. + for (unsigned i = 0; i < NumElts; ++i) + Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i); + return std::make_pair(V, nullptr); + } + + unsigned NumLHSElts = RHS->getType()->getVectorNumElements(); + Mask[InsertedIdx % NumElts] = + ConstantInt::get(Type::getInt32Ty(V->getContext()), + NumLHSElts+ExtractedIdx); + return std::make_pair(LR.first, RHS); + } + + if (VecOp == PermittedRHS) { + // We've gone as far as we can: anything on the other side of the + // extractelement will already have been converted into a shuffle. + unsigned NumLHSElts = + EI->getOperand(0)->getType()->getVectorNumElements(); + for (unsigned i = 0; i != NumElts; ++i) + Mask.push_back(ConstantInt::get( + Type::getInt32Ty(V->getContext()), + i == InsertedIdx ? ExtractedIdx : NumLHSElts + i)); + return std::make_pair(EI->getOperand(0), PermittedRHS); + } + + // If this insertelement is a chain that comes from exactly these two + // vectors, return the vector and the effective shuffle. + if (EI->getOperand(0)->getType() == PermittedRHS->getType() && + collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS, + Mask)) + return std::make_pair(EI->getOperand(0), PermittedRHS); + } + } + } + + // Otherwise, we can't do anything fancy. Return an identity vector. + for (unsigned i = 0; i != NumElts; ++i) + Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i)); + return std::make_pair(V, nullptr); +} + +/// Try to find redundant insertvalue instructions, like the following ones: +/// %0 = insertvalue { i8, i32 } undef, i8 %x, 0 +/// %1 = insertvalue { i8, i32 } %0, i8 %y, 0 +/// Here the second instruction inserts values at the same indices, as the +/// first one, making the first one redundant. +/// It should be transformed to: +/// %0 = insertvalue { i8, i32 } undef, i8 %y, 0 +Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) { + bool IsRedundant = false; + ArrayRef<unsigned int> FirstIndices = I.getIndices(); + + // If there is a chain of insertvalue instructions (each of them except the + // last one has only one use and it's another insertvalue insn from this + // chain), check if any of the 'children' uses the same indices as the first + // instruction. In this case, the first one is redundant. + Value *V = &I; + unsigned Depth = 0; + while (V->hasOneUse() && Depth < 10) { + User *U = V->user_back(); + auto UserInsInst = dyn_cast<InsertValueInst>(U); + if (!UserInsInst || U->getOperand(0) != V) + break; + if (UserInsInst->getIndices() == FirstIndices) { + IsRedundant = true; + break; + } + V = UserInsInst; + Depth++; + } + + if (IsRedundant) + return replaceInstUsesWith(I, I.getOperand(0)); + return nullptr; +} + +static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) { + int MaskSize = Shuf.getMask()->getType()->getVectorNumElements(); + int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements(); + + // A vector select does not change the size of the operands. + if (MaskSize != VecSize) + return false; + + // Each mask element must be undefined or choose a vector element from one of + // the source operands without crossing vector lanes. + for (int i = 0; i != MaskSize; ++i) { + int Elt = Shuf.getMaskValue(i); + if (Elt != -1 && Elt != i && Elt != i + VecSize) + return false; + } + + return true; +} + +/// Turn a chain of inserts that splats a value into an insert + shuffle: +/// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... -> +/// shufflevector(insertelt(X, %k, 0), undef, zero) +static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) { + // We are interested in the last insert in a chain. So if this insert has a + // single user and that user is an insert, bail. + if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back())) + return nullptr; + + auto *VecTy = cast<VectorType>(InsElt.getType()); + unsigned NumElements = VecTy->getNumElements(); + + // Do not try to do this for a one-element vector, since that's a nop, + // and will cause an inf-loop. + if (NumElements == 1) + return nullptr; + + Value *SplatVal = InsElt.getOperand(1); + InsertElementInst *CurrIE = &InsElt; + SmallVector<bool, 16> ElementPresent(NumElements, false); + InsertElementInst *FirstIE = nullptr; + + // Walk the chain backwards, keeping track of which indices we inserted into, + // until we hit something that isn't an insert of the splatted value. + while (CurrIE) { + auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2)); + if (!Idx || CurrIE->getOperand(1) != SplatVal) + return nullptr; + + auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0)); + // Check none of the intermediate steps have any additional uses, except + // for the root insertelement instruction, which can be re-used, if it + // inserts at position 0. + if (CurrIE != &InsElt && + (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero()))) + return nullptr; + + ElementPresent[Idx->getZExtValue()] = true; + FirstIE = CurrIE; + CurrIE = NextIE; + } + + // If this is just a single insertelement (not a sequence), we are done. + if (FirstIE == &InsElt) + return nullptr; + + // If we are not inserting into an undef vector, make sure we've seen an + // insert into every element. + // TODO: If the base vector is not undef, it might be better to create a splat + // and then a select-shuffle (blend) with the base vector. + if (!isa<UndefValue>(FirstIE->getOperand(0))) + if (any_of(ElementPresent, [](bool Present) { return !Present; })) + return nullptr; + + // Create the insert + shuffle. + Type *Int32Ty = Type::getInt32Ty(InsElt.getContext()); + UndefValue *UndefVec = UndefValue::get(VecTy); + Constant *Zero = ConstantInt::get(Int32Ty, 0); + if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero()) + FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt); + + // Splat from element 0, but replace absent elements with undef in the mask. + SmallVector<Constant *, 16> Mask(NumElements, Zero); + for (unsigned i = 0; i != NumElements; ++i) + if (!ElementPresent[i]) + Mask[i] = UndefValue::get(Int32Ty); + + return new ShuffleVectorInst(FirstIE, UndefVec, ConstantVector::get(Mask)); +} + +/// Try to fold an insert element into an existing splat shuffle by changing +/// the shuffle's mask to include the index of this insert element. +static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) { + // Check if the vector operand of this insert is a canonical splat shuffle. + auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); + if (!Shuf || !Shuf->isZeroEltSplat()) + return nullptr; + + // Check for a constant insertion index. + uint64_t IdxC; + if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) + return nullptr; + + // Check if the splat shuffle's input is the same as this insert's scalar op. + Value *X = InsElt.getOperand(1); + Value *Op0 = Shuf->getOperand(0); + if (!match(Op0, m_InsertElement(m_Undef(), m_Specific(X), m_ZeroInt()))) + return nullptr; + + // Replace the shuffle mask element at the index of this insert with a zero. + // For example: + // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1 + // --> shuf (inselt undef, X, 0), undef, <0,0,0,undef> + unsigned NumMaskElts = Shuf->getType()->getVectorNumElements(); + SmallVector<Constant *, 16> NewMaskVec(NumMaskElts); + Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext()); + Constant *Zero = ConstantInt::getNullValue(I32Ty); + for (unsigned i = 0; i != NumMaskElts; ++i) + NewMaskVec[i] = i == IdxC ? Zero : Shuf->getMask()->getAggregateElement(i); + + Constant *NewMask = ConstantVector::get(NewMaskVec); + return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask); +} + +/// Try to fold an extract+insert element into an existing identity shuffle by +/// changing the shuffle's mask to include the index of this insert element. +static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) { + // Check if the vector operand of this insert is an identity shuffle. + auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0)); + if (!Shuf || !isa<UndefValue>(Shuf->getOperand(1)) || + !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding())) + return nullptr; + + // Check for a constant insertion index. + uint64_t IdxC; + if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC))) + return nullptr; + + // Check if this insert's scalar op is extracted from the identity shuffle's + // input vector. + Value *Scalar = InsElt.getOperand(1); + Value *X = Shuf->getOperand(0); + if (!match(Scalar, m_ExtractElement(m_Specific(X), m_SpecificInt(IdxC)))) + return nullptr; + + // Replace the shuffle mask element at the index of this extract+insert with + // that same index value. + // For example: + // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask' + unsigned NumMaskElts = Shuf->getType()->getVectorNumElements(); + SmallVector<Constant *, 16> NewMaskVec(NumMaskElts); + Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext()); + Constant *NewMaskEltC = ConstantInt::get(I32Ty, IdxC); + Constant *OldMask = Shuf->getMask(); + for (unsigned i = 0; i != NumMaskElts; ++i) { + if (i != IdxC) { + // All mask elements besides the inserted element remain the same. + NewMaskVec[i] = OldMask->getAggregateElement(i); + } else if (OldMask->getAggregateElement(i) == NewMaskEltC) { + // If the mask element was already set, there's nothing to do + // (demanded elements analysis may unset it later). + return nullptr; + } else { + assert(isa<UndefValue>(OldMask->getAggregateElement(i)) && + "Unexpected shuffle mask element for identity shuffle"); + NewMaskVec[i] = NewMaskEltC; + } + } + + Constant *NewMask = ConstantVector::get(NewMaskVec); + return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask); +} + +/// If we have an insertelement instruction feeding into another insertelement +/// and the 2nd is inserting a constant into the vector, canonicalize that +/// constant insertion before the insertion of a variable: +/// +/// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 --> +/// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1 +/// +/// This has the potential of eliminating the 2nd insertelement instruction +/// via constant folding of the scalar constant into a vector constant. +static Instruction *hoistInsEltConst(InsertElementInst &InsElt2, + InstCombiner::BuilderTy &Builder) { + auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0)); + if (!InsElt1 || !InsElt1->hasOneUse()) + return nullptr; + + Value *X, *Y; + Constant *ScalarC; + ConstantInt *IdxC1, *IdxC2; + if (match(InsElt1->getOperand(0), m_Value(X)) && + match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) && + match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) && + match(InsElt2.getOperand(1), m_Constant(ScalarC)) && + match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) { + Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2); + return InsertElementInst::Create(NewInsElt1, Y, IdxC1); + } + + return nullptr; +} + +/// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex +/// --> shufflevector X, CVec', Mask' +static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) { + auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0)); + // Bail out if the parent has more than one use. In that case, we'd be + // replacing the insertelt with a shuffle, and that's not a clear win. + if (!Inst || !Inst->hasOneUse()) + return nullptr; + if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) { + // The shuffle must have a constant vector operand. The insertelt must have + // a constant scalar being inserted at a constant position in the vector. + Constant *ShufConstVec, *InsEltScalar; + uint64_t InsEltIndex; + if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) || + !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) || + !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex))) + return nullptr; + + // Adding an element to an arbitrary shuffle could be expensive, but a + // shuffle that selects elements from vectors without crossing lanes is + // assumed cheap. + // If we're just adding a constant into that shuffle, it will still be + // cheap. + if (!isShuffleEquivalentToSelect(*Shuf)) + return nullptr; + + // From the above 'select' check, we know that the mask has the same number + // of elements as the vector input operands. We also know that each constant + // input element is used in its lane and can not be used more than once by + // the shuffle. Therefore, replace the constant in the shuffle's constant + // vector with the insertelt constant. Replace the constant in the shuffle's + // mask vector with the insertelt index plus the length of the vector + // (because the constant vector operand of a shuffle is always the 2nd + // operand). + Constant *Mask = Shuf->getMask(); + unsigned NumElts = Mask->getType()->getVectorNumElements(); + SmallVector<Constant *, 16> NewShufElts(NumElts); + SmallVector<Constant *, 16> NewMaskElts(NumElts); + for (unsigned I = 0; I != NumElts; ++I) { + if (I == InsEltIndex) { + NewShufElts[I] = InsEltScalar; + Type *Int32Ty = Type::getInt32Ty(Shuf->getContext()); + NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts); + } else { + // Copy over the existing values. + NewShufElts[I] = ShufConstVec->getAggregateElement(I); + NewMaskElts[I] = Mask->getAggregateElement(I); + } + } + + // Create new operands for a shuffle that includes the constant of the + // original insertelt. The old shuffle will be dead now. + return new ShuffleVectorInst(Shuf->getOperand(0), + ConstantVector::get(NewShufElts), + ConstantVector::get(NewMaskElts)); + } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) { + // Transform sequences of insertelements ops with constant data/indexes into + // a single shuffle op. + unsigned NumElts = InsElt.getType()->getNumElements(); + + uint64_t InsertIdx[2]; + Constant *Val[2]; + if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) || + !match(InsElt.getOperand(1), m_Constant(Val[0])) || + !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) || + !match(IEI->getOperand(1), m_Constant(Val[1]))) + return nullptr; + SmallVector<Constant *, 16> Values(NumElts); + SmallVector<Constant *, 16> Mask(NumElts); + auto ValI = std::begin(Val); + // Generate new constant vector and mask. + // We have 2 values/masks from the insertelements instructions. Insert them + // into new value/mask vectors. + for (uint64_t I : InsertIdx) { + if (!Values[I]) { + assert(!Mask[I]); + Values[I] = *ValI; + Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), + NumElts + I); + } + ++ValI; + } + // Remaining values are filled with 'undef' values. + for (unsigned I = 0; I < NumElts; ++I) { + if (!Values[I]) { + assert(!Mask[I]); + Values[I] = UndefValue::get(InsElt.getType()->getElementType()); + Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I); + } + } + // Create new operands for a shuffle that includes the constant of the + // original insertelt. + return new ShuffleVectorInst(IEI->getOperand(0), + ConstantVector::get(Values), + ConstantVector::get(Mask)); + } + return nullptr; +} + +Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) { + Value *VecOp = IE.getOperand(0); + Value *ScalarOp = IE.getOperand(1); + Value *IdxOp = IE.getOperand(2); + + if (auto *V = SimplifyInsertElementInst( + VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE))) + return replaceInstUsesWith(IE, V); + + // If the vector and scalar are both bitcast from the same element type, do + // the insert in that source type followed by bitcast. + Value *VecSrc, *ScalarSrc; + if (match(VecOp, m_BitCast(m_Value(VecSrc))) && + match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) && + (VecOp->hasOneUse() || ScalarOp->hasOneUse()) && + VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() && + VecSrc->getType()->getVectorElementType() == ScalarSrc->getType()) { + // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp --> + // bitcast (inselt VecSrc, ScalarSrc, IdxOp) + Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp); + return new BitCastInst(NewInsElt, IE.getType()); + } + + // If the inserted element was extracted from some other vector and both + // indexes are valid constants, try to turn this into a shuffle. + uint64_t InsertedIdx, ExtractedIdx; + Value *ExtVecOp; + if (match(IdxOp, m_ConstantInt(InsertedIdx)) && + match(ScalarOp, m_ExtractElement(m_Value(ExtVecOp), + m_ConstantInt(ExtractedIdx))) && + ExtractedIdx < ExtVecOp->getType()->getVectorNumElements()) { + // TODO: Looking at the user(s) to determine if this insert is a + // fold-to-shuffle opportunity does not match the usual instcombine + // constraints. We should decide if the transform is worthy based only + // on this instruction and its operands, but that may not work currently. + // + // Here, we are trying to avoid creating shuffles before reaching + // the end of a chain of extract-insert pairs. This is complicated because + // we do not generally form arbitrary shuffle masks in instcombine + // (because those may codegen poorly), but collectShuffleElements() does + // exactly that. + // + // The rules for determining what is an acceptable target-independent + // shuffle mask are fuzzy because they evolve based on the backend's + // capabilities and real-world impact. + auto isShuffleRootCandidate = [](InsertElementInst &Insert) { + if (!Insert.hasOneUse()) + return true; + auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back()); + if (!InsertUser) + return true; + return false; + }; + + // Try to form a shuffle from a chain of extract-insert ops. + if (isShuffleRootCandidate(IE)) { + SmallVector<Constant*, 16> Mask; + ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this); + + // The proposed shuffle may be trivial, in which case we shouldn't + // perform the combine. + if (LR.first != &IE && LR.second != &IE) { + // We now have a shuffle of LHS, RHS, Mask. + if (LR.second == nullptr) + LR.second = UndefValue::get(LR.first->getType()); + return new ShuffleVectorInst(LR.first, LR.second, + ConstantVector::get(Mask)); + } + } + } + + unsigned VWidth = VecOp->getType()->getVectorNumElements(); + APInt UndefElts(VWidth, 0); + APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); + if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) { + if (V != &IE) + return replaceInstUsesWith(IE, V); + return &IE; + } + + if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE)) + return Shuf; + + if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder)) + return NewInsElt; + + if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE)) + return Broadcast; + + if (Instruction *Splat = foldInsEltIntoSplat(IE)) + return Splat; + + if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE)) + return IdentityShuf; + + return nullptr; +} + +/// Return true if we can evaluate the specified expression tree if the vector +/// elements were shuffled in a different order. +static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask, + unsigned Depth = 5) { + // We can always reorder the elements of a constant. + if (isa<Constant>(V)) + return true; + + // We won't reorder vector arguments. No IPO here. + Instruction *I = dyn_cast<Instruction>(V); + if (!I) return false; + + // Two users may expect different orders of the elements. Don't try it. + if (!I->hasOneUse()) + return false; + + if (Depth == 0) return false; + + switch (I->getOpcode()) { + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::URem: + case Instruction::SRem: + // Propagating an undefined shuffle mask element to integer div/rem is not + // allowed because those opcodes can create immediate undefined behavior + // from an undefined element in an operand. + if (llvm::any_of(Mask, [](int M){ return M == -1; })) + return false; + LLVM_FALLTHROUGH; + case Instruction::Add: + case Instruction::FAdd: + case Instruction::Sub: + case Instruction::FSub: + case Instruction::Mul: + case Instruction::FMul: + case Instruction::FDiv: + case Instruction::FRem: + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + case Instruction::ICmp: + case Instruction::FCmp: + case Instruction::Trunc: + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::FPToUI: + case Instruction::FPToSI: + case Instruction::UIToFP: + case Instruction::SIToFP: + case Instruction::FPTrunc: + case Instruction::FPExt: + case Instruction::GetElementPtr: { + // Bail out if we would create longer vector ops. We could allow creating + // longer vector ops, but that may result in more expensive codegen. + Type *ITy = I->getType(); + if (ITy->isVectorTy() && Mask.size() > ITy->getVectorNumElements()) + return false; + for (Value *Operand : I->operands()) { + if (!canEvaluateShuffled(Operand, Mask, Depth - 1)) + return false; + } + return true; + } + case Instruction::InsertElement: { + ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2)); + if (!CI) return false; + int ElementNumber = CI->getLimitedValue(); + + // Verify that 'CI' does not occur twice in Mask. A single 'insertelement' + // can't put an element into multiple indices. + bool SeenOnce = false; + for (int i = 0, e = Mask.size(); i != e; ++i) { + if (Mask[i] == ElementNumber) { + if (SeenOnce) + return false; + SeenOnce = true; + } + } + return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1); + } + } + return false; +} + +/// Rebuild a new instruction just like 'I' but with the new operands given. +/// In the event of type mismatch, the type of the operands is correct. +static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) { + // We don't want to use the IRBuilder here because we want the replacement + // instructions to appear next to 'I', not the builder's insertion point. + switch (I->getOpcode()) { + case Instruction::Add: + case Instruction::FAdd: + case Instruction::Sub: + case Instruction::FSub: + case Instruction::Mul: + case Instruction::FMul: + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::FDiv: + case Instruction::URem: + case Instruction::SRem: + case Instruction::FRem: + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: { + BinaryOperator *BO = cast<BinaryOperator>(I); + assert(NewOps.size() == 2 && "binary operator with #ops != 2"); + BinaryOperator *New = + BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(), + NewOps[0], NewOps[1], "", BO); + if (isa<OverflowingBinaryOperator>(BO)) { + New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap()); + New->setHasNoSignedWrap(BO->hasNoSignedWrap()); + } + if (isa<PossiblyExactOperator>(BO)) { + New->setIsExact(BO->isExact()); + } + if (isa<FPMathOperator>(BO)) + New->copyFastMathFlags(I); + return New; + } + case Instruction::ICmp: + assert(NewOps.size() == 2 && "icmp with #ops != 2"); + return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(), + NewOps[0], NewOps[1]); + case Instruction::FCmp: + assert(NewOps.size() == 2 && "fcmp with #ops != 2"); + return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(), + NewOps[0], NewOps[1]); + case Instruction::Trunc: + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::FPToUI: + case Instruction::FPToSI: + case Instruction::UIToFP: + case Instruction::SIToFP: + case Instruction::FPTrunc: + case Instruction::FPExt: { + // It's possible that the mask has a different number of elements from + // the original cast. We recompute the destination type to match the mask. + Type *DestTy = + VectorType::get(I->getType()->getScalarType(), + NewOps[0]->getType()->getVectorNumElements()); + assert(NewOps.size() == 1 && "cast with #ops != 1"); + return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy, + "", I); + } + case Instruction::GetElementPtr: { + Value *Ptr = NewOps[0]; + ArrayRef<Value*> Idx = NewOps.slice(1); + GetElementPtrInst *GEP = GetElementPtrInst::Create( + cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I); + GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds()); + return GEP; + } + } + llvm_unreachable("failed to rebuild vector instructions"); +} + +static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) { + // Mask.size() does not need to be equal to the number of vector elements. + + assert(V->getType()->isVectorTy() && "can't reorder non-vector elements"); + Type *EltTy = V->getType()->getScalarType(); + Type *I32Ty = IntegerType::getInt32Ty(V->getContext()); + if (isa<UndefValue>(V)) + return UndefValue::get(VectorType::get(EltTy, Mask.size())); + + if (isa<ConstantAggregateZero>(V)) + return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size())); + + if (Constant *C = dyn_cast<Constant>(V)) { + SmallVector<Constant *, 16> MaskValues; + for (int i = 0, e = Mask.size(); i != e; ++i) { + if (Mask[i] == -1) + MaskValues.push_back(UndefValue::get(I32Ty)); + else + MaskValues.push_back(ConstantInt::get(I32Ty, Mask[i])); + } + return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()), + ConstantVector::get(MaskValues)); + } + + Instruction *I = cast<Instruction>(V); + switch (I->getOpcode()) { + case Instruction::Add: + case Instruction::FAdd: + case Instruction::Sub: + case Instruction::FSub: + case Instruction::Mul: + case Instruction::FMul: + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::FDiv: + case Instruction::URem: + case Instruction::SRem: + case Instruction::FRem: + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + case Instruction::ICmp: + case Instruction::FCmp: + case Instruction::Trunc: + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::FPToUI: + case Instruction::FPToSI: + case Instruction::UIToFP: + case Instruction::SIToFP: + case Instruction::FPTrunc: + case Instruction::FPExt: + case Instruction::Select: + case Instruction::GetElementPtr: { + SmallVector<Value*, 8> NewOps; + bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements()); + for (int i = 0, e = I->getNumOperands(); i != e; ++i) { + Value *V; + // Recursively call evaluateInDifferentElementOrder on vector arguments + // as well. E.g. GetElementPtr may have scalar operands even if the + // return value is a vector, so we need to examine the operand type. + if (I->getOperand(i)->getType()->isVectorTy()) + V = evaluateInDifferentElementOrder(I->getOperand(i), Mask); + else + V = I->getOperand(i); + NewOps.push_back(V); + NeedsRebuild |= (V != I->getOperand(i)); + } + if (NeedsRebuild) { + return buildNew(I, NewOps); + } + return I; + } + case Instruction::InsertElement: { + int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue(); + + // The insertelement was inserting at Element. Figure out which element + // that becomes after shuffling. The answer is guaranteed to be unique + // by CanEvaluateShuffled. + bool Found = false; + int Index = 0; + for (int e = Mask.size(); Index != e; ++Index) { + if (Mask[Index] == Element) { + Found = true; + break; + } + } + + // If element is not in Mask, no need to handle the operand 1 (element to + // be inserted). Just evaluate values in operand 0 according to Mask. + if (!Found) + return evaluateInDifferentElementOrder(I->getOperand(0), Mask); + + Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask); + return InsertElementInst::Create(V, I->getOperand(1), + ConstantInt::get(I32Ty, Index), "", I); + } + } + llvm_unreachable("failed to reorder elements of vector instruction!"); +} + +static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask, + bool &isLHSID, bool &isRHSID) { + isLHSID = isRHSID = true; + + for (unsigned i = 0, e = Mask.size(); i != e; ++i) { + if (Mask[i] < 0) continue; // Ignore undef values. + // Is this an identity shuffle of the LHS value? + isLHSID &= (Mask[i] == (int)i); + + // Is this an identity shuffle of the RHS value? + isRHSID &= (Mask[i]-e == i); + } +} + +// Returns true if the shuffle is extracting a contiguous range of values from +// LHS, for example: +// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ +// Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP| +// Shuffles to: |EE|FF|GG|HH| +// +--+--+--+--+ +static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI, + SmallVector<int, 16> &Mask) { + unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements(); + unsigned MaskElems = Mask.size(); + unsigned BegIdx = Mask.front(); + unsigned EndIdx = Mask.back(); + if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1) + return false; + for (unsigned I = 0; I != MaskElems; ++I) + if (static_cast<unsigned>(Mask[I]) != BegIdx + I) + return false; + return true; +} + +/// These are the ingredients in an alternate form binary operator as described +/// below. +struct BinopElts { + BinaryOperator::BinaryOps Opcode; + Value *Op0; + Value *Op1; + BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0, + Value *V0 = nullptr, Value *V1 = nullptr) : + Opcode(Opc), Op0(V0), Op1(V1) {} + operator bool() const { return Opcode != 0; } +}; + +/// Binops may be transformed into binops with different opcodes and operands. +/// Reverse the usual canonicalization to enable folds with the non-canonical +/// form of the binop. If a transform is possible, return the elements of the +/// new binop. If not, return invalid elements. +static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) { + Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1); + Type *Ty = BO->getType(); + switch (BO->getOpcode()) { + case Instruction::Shl: { + // shl X, C --> mul X, (1 << C) + Constant *C; + if (match(BO1, m_Constant(C))) { + Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C); + return { Instruction::Mul, BO0, ShlOne }; + } + break; + } + case Instruction::Or: { + // or X, C --> add X, C (when X and C have no common bits set) + const APInt *C; + if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL)) + return { Instruction::Add, BO0, BO1 }; + break; + } + default: + break; + } + return {}; +} + +static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) { + assert(Shuf.isSelect() && "Must have select-equivalent shuffle"); + + // Are we shuffling together some value and that same value after it has been + // modified by a binop with a constant? + Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); + Constant *C; + bool Op0IsBinop; + if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C)))) + Op0IsBinop = true; + else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C)))) + Op0IsBinop = false; + else + return nullptr; + + // The identity constant for a binop leaves a variable operand unchanged. For + // a vector, this is a splat of something like 0, -1, or 1. + // If there's no identity constant for this binop, we're done. + auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1); + BinaryOperator::BinaryOps BOpcode = BO->getOpcode(); + Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true); + if (!IdC) + return nullptr; + + // Shuffle identity constants into the lanes that return the original value. + // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4} + // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4} + // The existing binop constant vector remains in the same operand position. + Constant *Mask = Shuf.getMask(); + Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) : + ConstantExpr::getShuffleVector(IdC, C, Mask); + + bool MightCreatePoisonOrUB = + Mask->containsUndefElement() && + (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode)); + if (MightCreatePoisonOrUB) + NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true); + + // shuf (bop X, C), X, M --> bop X, C' + // shuf X, (bop X, C), M --> bop X, C' + Value *X = Op0IsBinop ? Op1 : Op0; + Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC); + NewBO->copyIRFlags(BO); + + // An undef shuffle mask element may propagate as an undef constant element in + // the new binop. That would produce poison where the original code might not. + // If we already made a safe constant, then there's no danger. + if (Mask->containsUndefElement() && !MightCreatePoisonOrUB) + NewBO->dropPoisonGeneratingFlags(); + return NewBO; +} + +/// If we have an insert of a scalar to a non-zero element of an undefined +/// vector and then shuffle that value, that's the same as inserting to the zero +/// element and shuffling. Splatting from the zero element is recognized as the +/// canonical form of splat. +static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf, + InstCombiner::BuilderTy &Builder) { + Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); + Constant *Mask = Shuf.getMask(); + Value *X; + uint64_t IndexC; + + // Match a shuffle that is a splat to a non-zero element. + if (!match(Op0, m_OneUse(m_InsertElement(m_Undef(), m_Value(X), + m_ConstantInt(IndexC)))) || + !match(Op1, m_Undef()) || match(Mask, m_ZeroInt()) || IndexC == 0) + return nullptr; + + // Insert into element 0 of an undef vector. + UndefValue *UndefVec = UndefValue::get(Shuf.getType()); + Constant *Zero = Builder.getInt32(0); + Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero); + + // Splat from element 0. Any mask element that is undefined remains undefined. + // For example: + // shuf (inselt undef, X, 2), undef, <2,2,undef> + // --> shuf (inselt undef, X, 0), undef, <0,0,undef> + unsigned NumMaskElts = Shuf.getType()->getVectorNumElements(); + SmallVector<Constant *, 16> NewMask(NumMaskElts, Zero); + for (unsigned i = 0; i != NumMaskElts; ++i) + if (isa<UndefValue>(Mask->getAggregateElement(i))) + NewMask[i] = Mask->getAggregateElement(i); + + return new ShuffleVectorInst(NewIns, UndefVec, ConstantVector::get(NewMask)); +} + +/// Try to fold shuffles that are the equivalent of a vector select. +static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf, + InstCombiner::BuilderTy &Builder, + const DataLayout &DL) { + if (!Shuf.isSelect()) + return nullptr; + + // Canonicalize to choose from operand 0 first. + unsigned NumElts = Shuf.getType()->getVectorNumElements(); + if (Shuf.getMaskValue(0) >= (int)NumElts) { + // TODO: Can we assert that both operands of a shuffle-select are not undef + // (otherwise, it would have been folded by instsimplify? + Shuf.commute(); + return &Shuf; + } + + if (Instruction *I = foldSelectShuffleWith1Binop(Shuf)) + return I; + + BinaryOperator *B0, *B1; + if (!match(Shuf.getOperand(0), m_BinOp(B0)) || + !match(Shuf.getOperand(1), m_BinOp(B1))) + return nullptr; + + Value *X, *Y; + Constant *C0, *C1; + bool ConstantsAreOp1; + if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) && + match(B1, m_BinOp(m_Value(Y), m_Constant(C1)))) + ConstantsAreOp1 = true; + else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) && + match(B1, m_BinOp(m_Constant(C1), m_Value(Y)))) + ConstantsAreOp1 = false; + else + return nullptr; + + // We need matching binops to fold the lanes together. + BinaryOperator::BinaryOps Opc0 = B0->getOpcode(); + BinaryOperator::BinaryOps Opc1 = B1->getOpcode(); + bool DropNSW = false; + if (ConstantsAreOp1 && Opc0 != Opc1) { + // TODO: We drop "nsw" if shift is converted into multiply because it may + // not be correct when the shift amount is BitWidth - 1. We could examine + // each vector element to determine if it is safe to keep that flag. + if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl) + DropNSW = true; + if (BinopElts AltB0 = getAlternateBinop(B0, DL)) { + assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop"); + Opc0 = AltB0.Opcode; + C0 = cast<Constant>(AltB0.Op1); + } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) { + assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop"); + Opc1 = AltB1.Opcode; + C1 = cast<Constant>(AltB1.Op1); + } + } + + if (Opc0 != Opc1) + return nullptr; + + // The opcodes must be the same. Use a new name to make that clear. + BinaryOperator::BinaryOps BOpc = Opc0; + + // Select the constant elements needed for the single binop. + Constant *Mask = Shuf.getMask(); + Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask); + + // We are moving a binop after a shuffle. When a shuffle has an undefined + // mask element, the result is undefined, but it is not poison or undefined + // behavior. That is not necessarily true for div/rem/shift. + bool MightCreatePoisonOrUB = + Mask->containsUndefElement() && + (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc)); + if (MightCreatePoisonOrUB) + NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1); + + Value *V; + if (X == Y) { + // Remove a binop and the shuffle by rearranging the constant: + // shuffle (op V, C0), (op V, C1), M --> op V, C' + // shuffle (op C0, V), (op C1, V), M --> op C', V + V = X; + } else { + // If there are 2 different variable operands, we must create a new shuffle + // (select) first, so check uses to ensure that we don't end up with more + // instructions than we started with. + if (!B0->hasOneUse() && !B1->hasOneUse()) + return nullptr; + + // If we use the original shuffle mask and op1 is *variable*, we would be + // putting an undef into operand 1 of div/rem/shift. This is either UB or + // poison. We do not have to guard against UB when *constants* are op1 + // because safe constants guarantee that we do not overflow sdiv/srem (and + // there's no danger for other opcodes). + // TODO: To allow this case, create a new shuffle mask with no undefs. + if (MightCreatePoisonOrUB && !ConstantsAreOp1) + return nullptr; + + // Note: In general, we do not create new shuffles in InstCombine because we + // do not know if a target can lower an arbitrary shuffle optimally. In this + // case, the shuffle uses the existing mask, so there is no additional risk. + + // Select the variable vectors first, then perform the binop: + // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C' + // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M) + V = Builder.CreateShuffleVector(X, Y, Mask); + } + + Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) : + BinaryOperator::Create(BOpc, NewC, V); + + // Flags are intersected from the 2 source binops. But there are 2 exceptions: + // 1. If we changed an opcode, poison conditions might have changed. + // 2. If the shuffle had undef mask elements, the new binop might have undefs + // where the original code did not. But if we already made a safe constant, + // then there's no danger. + NewBO->copyIRFlags(B0); + NewBO->andIRFlags(B1); + if (DropNSW) + NewBO->setHasNoSignedWrap(false); + if (Mask->containsUndefElement() && !MightCreatePoisonOrUB) + NewBO->dropPoisonGeneratingFlags(); + return NewBO; +} + +/// Match a shuffle-select-shuffle pattern where the shuffles are widening and +/// narrowing (concatenating with undef and extracting back to the original +/// length). This allows replacing the wide select with a narrow select. +static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf, + InstCombiner::BuilderTy &Builder) { + // This must be a narrowing identity shuffle. It extracts the 1st N elements + // of the 1st vector operand of a shuffle. + if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract()) + return nullptr; + + // The vector being shuffled must be a vector select that we can eliminate. + // TODO: The one-use requirement could be eased if X and/or Y are constants. + Value *Cond, *X, *Y; + if (!match(Shuf.getOperand(0), + m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) + return nullptr; + + // We need a narrow condition value. It must be extended with undef elements + // and have the same number of elements as this shuffle. + unsigned NarrowNumElts = Shuf.getType()->getVectorNumElements(); + Value *NarrowCond; + if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef(), + m_Constant()))) || + NarrowCond->getType()->getVectorNumElements() != NarrowNumElts || + !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding()) + return nullptr; + + // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) --> + // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask) + Value *Undef = UndefValue::get(X->getType()); + Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getMask()); + Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getMask()); + return SelectInst::Create(NarrowCond, NarrowX, NarrowY); +} + +/// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask. +static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) { + Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1); + if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1)) + return nullptr; + + Value *X, *Y; + Constant *Mask; + if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Constant(Mask)))) + return nullptr; + + // Be conservative with shuffle transforms. If we can't kill the 1st shuffle, + // then combining may result in worse codegen. + if (!Op0->hasOneUse()) + return nullptr; + + // We are extracting a subvector from a shuffle. Remove excess elements from + // the 1st shuffle mask to eliminate the extract. + // + // This transform is conservatively limited to identity extracts because we do + // not allow arbitrary shuffle mask creation as a target-independent transform + // (because we can't guarantee that will lower efficiently). + // + // If the extracting shuffle has an undef mask element, it transfers to the + // new shuffle mask. Otherwise, copy the original mask element. Example: + // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> --> + // shuf X, Y, <C0, undef, C2, undef> + unsigned NumElts = Shuf.getType()->getVectorNumElements(); + SmallVector<Constant *, 16> NewMask(NumElts); + assert(NumElts < Mask->getType()->getVectorNumElements() && + "Identity with extract must have less elements than its inputs"); + + for (unsigned i = 0; i != NumElts; ++i) { + Constant *ExtractMaskElt = Shuf.getMask()->getAggregateElement(i); + Constant *MaskElt = Mask->getAggregateElement(i); + NewMask[i] = isa<UndefValue>(ExtractMaskElt) ? ExtractMaskElt : MaskElt; + } + return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask)); +} + +/// Try to replace a shuffle with an insertelement. +static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf) { + Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1); + SmallVector<int, 16> Mask = Shuf.getShuffleMask(); + + // The shuffle must not change vector sizes. + // TODO: This restriction could be removed if the insert has only one use + // (because the transform would require a new length-changing shuffle). + int NumElts = Mask.size(); + if (NumElts != (int)(V0->getType()->getVectorNumElements())) + return nullptr; + + // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC' + auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) { + // We need an insertelement with a constant index. + if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar), + m_ConstantInt(IndexC)))) + return false; + + // Test the shuffle mask to see if it splices the inserted scalar into the + // operand 1 vector of the shuffle. + int NewInsIndex = -1; + for (int i = 0; i != NumElts; ++i) { + // Ignore undef mask elements. + if (Mask[i] == -1) + continue; + + // The shuffle takes elements of operand 1 without lane changes. + if (Mask[i] == NumElts + i) + continue; + + // The shuffle must choose the inserted scalar exactly once. + if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue()) + return false; + + // The shuffle is placing the inserted scalar into element i. + NewInsIndex = i; + } + + assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?"); + + // Index is updated to the potentially translated insertion lane. + IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex); + return true; + }; + + // If the shuffle is unnecessary, insert the scalar operand directly into + // operand 1 of the shuffle. Example: + // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0 + Value *Scalar; + ConstantInt *IndexC; + if (isShufflingScalarIntoOp1(Scalar, IndexC)) + return InsertElementInst::Create(V1, Scalar, IndexC); + + // Try again after commuting shuffle. Example: + // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> --> + // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3 + std::swap(V0, V1); + ShuffleVectorInst::commuteShuffleMask(Mask, NumElts); + if (isShufflingScalarIntoOp1(Scalar, IndexC)) + return InsertElementInst::Create(V1, Scalar, IndexC); + + return nullptr; +} + +static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) { + // Match the operands as identity with padding (also known as concatenation + // with undef) shuffles of the same source type. The backend is expected to + // recreate these concatenations from a shuffle of narrow operands. + auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0)); + auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1)); + if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() || + !Shuffle1 || !Shuffle1->isIdentityWithPadding()) + return nullptr; + + // We limit this transform to power-of-2 types because we expect that the + // backend can convert the simplified IR patterns to identical nodes as the + // original IR. + // TODO: If we can verify the same behavior for arbitrary types, the + // power-of-2 checks can be removed. + Value *X = Shuffle0->getOperand(0); + Value *Y = Shuffle1->getOperand(0); + if (X->getType() != Y->getType() || + !isPowerOf2_32(Shuf.getType()->getVectorNumElements()) || + !isPowerOf2_32(Shuffle0->getType()->getVectorNumElements()) || + !isPowerOf2_32(X->getType()->getVectorNumElements()) || + isa<UndefValue>(X) || isa<UndefValue>(Y)) + return nullptr; + assert(isa<UndefValue>(Shuffle0->getOperand(1)) && + isa<UndefValue>(Shuffle1->getOperand(1)) && + "Unexpected operand for identity shuffle"); + + // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source + // operands directly by adjusting the shuffle mask to account for the narrower + // types: + // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask' + int NarrowElts = X->getType()->getVectorNumElements(); + int WideElts = Shuffle0->getType()->getVectorNumElements(); + assert(WideElts > NarrowElts && "Unexpected types for identity with padding"); + + Type *I32Ty = IntegerType::getInt32Ty(Shuf.getContext()); + SmallVector<int, 16> Mask = Shuf.getShuffleMask(); + SmallVector<Constant *, 16> NewMask(Mask.size(), UndefValue::get(I32Ty)); + for (int i = 0, e = Mask.size(); i != e; ++i) { + if (Mask[i] == -1) + continue; + + // If this shuffle is choosing an undef element from 1 of the sources, that + // element is undef. + if (Mask[i] < WideElts) { + if (Shuffle0->getMaskValue(Mask[i]) == -1) + continue; + } else { + if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1) + continue; + } + + // If this shuffle is choosing from the 1st narrow op, the mask element is + // the same. If this shuffle is choosing from the 2nd narrow op, the mask + // element is offset down to adjust for the narrow vector widths. + if (Mask[i] < WideElts) { + assert(Mask[i] < NarrowElts && "Unexpected shuffle mask"); + NewMask[i] = ConstantInt::get(I32Ty, Mask[i]); + } else { + assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask"); + NewMask[i] = ConstantInt::get(I32Ty, Mask[i] - (WideElts - NarrowElts)); + } + } + return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask)); +} + +Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { + Value *LHS = SVI.getOperand(0); + Value *RHS = SVI.getOperand(1); + if (auto *V = SimplifyShuffleVectorInst( + LHS, RHS, SVI.getMask(), SVI.getType(), SQ.getWithInstruction(&SVI))) + return replaceInstUsesWith(SVI, V); + + // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask') + // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask'). + unsigned VWidth = SVI.getType()->getVectorNumElements(); + unsigned LHSWidth = LHS->getType()->getVectorNumElements(); + SmallVector<int, 16> Mask = SVI.getShuffleMask(); + Type *Int32Ty = Type::getInt32Ty(SVI.getContext()); + if (LHS == RHS || isa<UndefValue>(LHS)) { + // Remap any references to RHS to use LHS. + SmallVector<Constant*, 16> Elts; + for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) { + if (Mask[i] < 0) { + Elts.push_back(UndefValue::get(Int32Ty)); + continue; + } + + if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) || + (Mask[i] < (int)e && isa<UndefValue>(LHS))) { + Mask[i] = -1; // Turn into undef. + Elts.push_back(UndefValue::get(Int32Ty)); + } else { + Mask[i] = Mask[i] % e; // Force to LHS. + Elts.push_back(ConstantInt::get(Int32Ty, Mask[i])); + } + } + SVI.setOperand(0, SVI.getOperand(1)); + SVI.setOperand(1, UndefValue::get(RHS->getType())); + SVI.setOperand(2, ConstantVector::get(Elts)); + return &SVI; + } + + if (Instruction *I = canonicalizeInsertSplat(SVI, Builder)) + return I; + + if (Instruction *I = foldSelectShuffle(SVI, Builder, DL)) + return I; + + if (Instruction *I = narrowVectorSelect(SVI, Builder)) + return I; + + APInt UndefElts(VWidth, 0); + APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); + if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) { + if (V != &SVI) + return replaceInstUsesWith(SVI, V); + return &SVI; + } + + if (Instruction *I = foldIdentityExtractShuffle(SVI)) + return I; + + // These transforms have the potential to lose undef knowledge, so they are + // intentionally placed after SimplifyDemandedVectorElts(). + if (Instruction *I = foldShuffleWithInsert(SVI)) + return I; + if (Instruction *I = foldIdentityPaddedShuffles(SVI)) + return I; + + if (VWidth == LHSWidth) { + // Analyze the shuffle, are the LHS or RHS and identity shuffles? + bool isLHSID, isRHSID; + recognizeIdentityMask(Mask, isLHSID, isRHSID); + + // Eliminate identity shuffles. + if (isLHSID) return replaceInstUsesWith(SVI, LHS); + if (isRHSID) return replaceInstUsesWith(SVI, RHS); + } + + if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) { + Value *V = evaluateInDifferentElementOrder(LHS, Mask); + return replaceInstUsesWith(SVI, V); + } + + // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to + // a non-vector type. We can instead bitcast the original vector followed by + // an extract of the desired element: + // + // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef, + // <4 x i32> <i32 0, i32 1, i32 2, i32 3> + // %1 = bitcast <4 x i8> %sroa to i32 + // Becomes: + // %bc = bitcast <16 x i8> %in to <4 x i32> + // %ext = extractelement <4 x i32> %bc, i32 0 + // + // If the shuffle is extracting a contiguous range of values from the input + // vector then each use which is a bitcast of the extracted size can be + // replaced. This will work if the vector types are compatible, and the begin + // index is aligned to a value in the casted vector type. If the begin index + // isn't aligned then we can shuffle the original vector (keeping the same + // vector type) before extracting. + // + // This code will bail out if the target type is fundamentally incompatible + // with vectors of the source type. + // + // Example of <16 x i8>, target type i32: + // Index range [4,8): v-----------v Will work. + // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ + // <16 x i8>: | | | | | | | | | | | | | | | | | + // <4 x i32>: | | | | | + // +-----------+-----------+-----------+-----------+ + // Index range [6,10): ^-----------^ Needs an extra shuffle. + // Target type i40: ^--------------^ Won't work, bail. + bool MadeChange = false; + if (isShuffleExtractingFromLHS(SVI, Mask)) { + Value *V = LHS; + unsigned MaskElems = Mask.size(); + VectorType *SrcTy = cast<VectorType>(V->getType()); + unsigned VecBitWidth = SrcTy->getBitWidth(); + unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType()); + assert(SrcElemBitWidth && "vector elements must have a bitwidth"); + unsigned SrcNumElems = SrcTy->getNumElements(); + SmallVector<BitCastInst *, 8> BCs; + DenseMap<Type *, Value *> NewBCs; + for (User *U : SVI.users()) + if (BitCastInst *BC = dyn_cast<BitCastInst>(U)) + if (!BC->use_empty()) + // Only visit bitcasts that weren't previously handled. + BCs.push_back(BC); + for (BitCastInst *BC : BCs) { + unsigned BegIdx = Mask.front(); + Type *TgtTy = BC->getDestTy(); + unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy); + if (!TgtElemBitWidth) + continue; + unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth; + bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth; + bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth); + if (!VecBitWidthsEqual) + continue; + if (!VectorType::isValidElementType(TgtTy)) + continue; + VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems); + if (!BegIsAligned) { + // Shuffle the input so [0,NumElements) contains the output, and + // [NumElems,SrcNumElems) is undef. + SmallVector<Constant *, 16> ShuffleMask(SrcNumElems, + UndefValue::get(Int32Ty)); + for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I) + ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx); + V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), + ConstantVector::get(ShuffleMask), + SVI.getName() + ".extract"); + BegIdx = 0; + } + unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth; + assert(SrcElemsPerTgtElem); + BegIdx /= SrcElemsPerTgtElem; + bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end(); + auto *NewBC = + BCAlreadyExists + ? NewBCs[CastSrcTy] + : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc"); + if (!BCAlreadyExists) + NewBCs[CastSrcTy] = NewBC; + auto *Ext = Builder.CreateExtractElement( + NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract"); + // The shufflevector isn't being replaced: the bitcast that used it + // is. InstCombine will visit the newly-created instructions. + replaceInstUsesWith(*BC, Ext); + MadeChange = true; + } + } + + // If the LHS is a shufflevector itself, see if we can combine it with this + // one without producing an unusual shuffle. + // Cases that might be simplified: + // 1. + // x1=shuffle(v1,v2,mask1) + // x=shuffle(x1,undef,mask) + // ==> + // x=shuffle(v1,undef,newMask) + // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1 + // 2. + // x1=shuffle(v1,undef,mask1) + // x=shuffle(x1,x2,mask) + // where v1.size() == mask1.size() + // ==> + // x=shuffle(v1,x2,newMask) + // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i] + // 3. + // x2=shuffle(v2,undef,mask2) + // x=shuffle(x1,x2,mask) + // where v2.size() == mask2.size() + // ==> + // x=shuffle(x1,v2,newMask) + // newMask[i] = (mask[i] < x1.size()) + // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size() + // 4. + // x1=shuffle(v1,undef,mask1) + // x2=shuffle(v2,undef,mask2) + // x=shuffle(x1,x2,mask) + // where v1.size() == v2.size() + // ==> + // x=shuffle(v1,v2,newMask) + // newMask[i] = (mask[i] < x1.size()) + // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size() + // + // Here we are really conservative: + // we are absolutely afraid of producing a shuffle mask not in the input + // program, because the code gen may not be smart enough to turn a merged + // shuffle into two specific shuffles: it may produce worse code. As such, + // we only merge two shuffles if the result is either a splat or one of the + // input shuffle masks. In this case, merging the shuffles just removes + // one instruction, which we know is safe. This is good for things like + // turning: (splat(splat)) -> splat, or + // merge(V[0..n], V[n+1..2n]) -> V[0..2n] + ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS); + ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS); + if (LHSShuffle) + if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS)) + LHSShuffle = nullptr; + if (RHSShuffle) + if (!isa<UndefValue>(RHSShuffle->getOperand(1))) + RHSShuffle = nullptr; + if (!LHSShuffle && !RHSShuffle) + return MadeChange ? &SVI : nullptr; + + Value* LHSOp0 = nullptr; + Value* LHSOp1 = nullptr; + Value* RHSOp0 = nullptr; + unsigned LHSOp0Width = 0; + unsigned RHSOp0Width = 0; + if (LHSShuffle) { + LHSOp0 = LHSShuffle->getOperand(0); + LHSOp1 = LHSShuffle->getOperand(1); + LHSOp0Width = LHSOp0->getType()->getVectorNumElements(); + } + if (RHSShuffle) { + RHSOp0 = RHSShuffle->getOperand(0); + RHSOp0Width = RHSOp0->getType()->getVectorNumElements(); + } + Value* newLHS = LHS; + Value* newRHS = RHS; + if (LHSShuffle) { + // case 1 + if (isa<UndefValue>(RHS)) { + newLHS = LHSOp0; + newRHS = LHSOp1; + } + // case 2 or 4 + else if (LHSOp0Width == LHSWidth) { + newLHS = LHSOp0; + } + } + // case 3 or 4 + if (RHSShuffle && RHSOp0Width == LHSWidth) { + newRHS = RHSOp0; + } + // case 4 + if (LHSOp0 == RHSOp0) { + newLHS = LHSOp0; + newRHS = nullptr; + } + + if (newLHS == LHS && newRHS == RHS) + return MadeChange ? &SVI : nullptr; + + SmallVector<int, 16> LHSMask; + SmallVector<int, 16> RHSMask; + if (newLHS != LHS) + LHSMask = LHSShuffle->getShuffleMask(); + if (RHSShuffle && newRHS != RHS) + RHSMask = RHSShuffle->getShuffleMask(); + + unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth; + SmallVector<int, 16> newMask; + bool isSplat = true; + int SplatElt = -1; + // Create a new mask for the new ShuffleVectorInst so that the new + // ShuffleVectorInst is equivalent to the original one. + for (unsigned i = 0; i < VWidth; ++i) { + int eltMask; + if (Mask[i] < 0) { + // This element is an undef value. + eltMask = -1; + } else if (Mask[i] < (int)LHSWidth) { + // This element is from left hand side vector operand. + // + // If LHS is going to be replaced (case 1, 2, or 4), calculate the + // new mask value for the element. + if (newLHS != LHS) { + eltMask = LHSMask[Mask[i]]; + // If the value selected is an undef value, explicitly specify it + // with a -1 mask value. + if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1)) + eltMask = -1; + } else + eltMask = Mask[i]; + } else { + // This element is from right hand side vector operand + // + // If the value selected is an undef value, explicitly specify it + // with a -1 mask value. (case 1) + if (isa<UndefValue>(RHS)) + eltMask = -1; + // If RHS is going to be replaced (case 3 or 4), calculate the + // new mask value for the element. + else if (newRHS != RHS) { + eltMask = RHSMask[Mask[i]-LHSWidth]; + // If the value selected is an undef value, explicitly specify it + // with a -1 mask value. + if (eltMask >= (int)RHSOp0Width) { + assert(isa<UndefValue>(RHSShuffle->getOperand(1)) + && "should have been check above"); + eltMask = -1; + } + } else + eltMask = Mask[i]-LHSWidth; + + // If LHS's width is changed, shift the mask value accordingly. + // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any + // references from RHSOp0 to LHSOp0, so we don't need to shift the mask. + // If newRHS == newLHS, we want to remap any references from newRHS to + // newLHS so that we can properly identify splats that may occur due to + // obfuscation across the two vectors. + if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS) + eltMask += newLHSWidth; + } + + // Check if this could still be a splat. + if (eltMask >= 0) { + if (SplatElt >= 0 && SplatElt != eltMask) + isSplat = false; + SplatElt = eltMask; + } + + newMask.push_back(eltMask); + } + + // If the result mask is equal to one of the original shuffle masks, + // or is a splat, do the replacement. + if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) { + SmallVector<Constant*, 16> Elts; + for (unsigned i = 0, e = newMask.size(); i != e; ++i) { + if (newMask[i] < 0) { + Elts.push_back(UndefValue::get(Int32Ty)); + } else { + Elts.push_back(ConstantInt::get(Int32Ty, newMask[i])); + } + } + if (!newRHS) + newRHS = UndefValue::get(newLHS->getType()); + return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts)); + } + + // If the result mask is an identity, replace uses of this instruction with + // corresponding argument. + bool isLHSID, isRHSID; + recognizeIdentityMask(newMask, isLHSID, isRHSID); + if (isLHSID && VWidth == LHSOp0Width) return replaceInstUsesWith(SVI, newLHS); + if (isRHSID && VWidth == RHSOp0Width) return replaceInstUsesWith(SVI, newRHS); + + return MadeChange ? &SVI : nullptr; +} |