summaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp')
-rw-r--r--llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp2246
1 files changed, 2246 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp b/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp
new file mode 100644
index 000000000000..9c890748e5ab
--- /dev/null
+++ b/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp
@@ -0,0 +1,2246 @@
+//===- InstCombineVectorOps.cpp -------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements instcombine for ExtractElement, InsertElement and
+// ShuffleVector.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombineInternal.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/VectorUtils.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
+#include <cassert>
+#include <cstdint>
+#include <iterator>
+#include <utility>
+
+using namespace llvm;
+using namespace PatternMatch;
+
+#define DEBUG_TYPE "instcombine"
+
+/// Return true if the value is cheaper to scalarize than it is to leave as a
+/// vector operation. IsConstantExtractIndex indicates whether we are extracting
+/// one known element from a vector constant.
+///
+/// FIXME: It's possible to create more instructions than previously existed.
+static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) {
+ // If we can pick a scalar constant value out of a vector, that is free.
+ if (auto *C = dyn_cast<Constant>(V))
+ return IsConstantExtractIndex || C->getSplatValue();
+
+ // An insertelement to the same constant index as our extract will simplify
+ // to the scalar inserted element. An insertelement to a different constant
+ // index is irrelevant to our extract.
+ if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt())))
+ return IsConstantExtractIndex;
+
+ if (match(V, m_OneUse(m_Load(m_Value()))))
+ return true;
+
+ Value *V0, *V1;
+ if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
+ if (cheapToScalarize(V0, IsConstantExtractIndex) ||
+ cheapToScalarize(V1, IsConstantExtractIndex))
+ return true;
+
+ CmpInst::Predicate UnusedPred;
+ if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
+ if (cheapToScalarize(V0, IsConstantExtractIndex) ||
+ cheapToScalarize(V1, IsConstantExtractIndex))
+ return true;
+
+ return false;
+}
+
+// If we have a PHI node with a vector type that is only used to feed
+// itself and be an operand of extractelement at a constant location,
+// try to replace the PHI of the vector type with a PHI of a scalar type.
+Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
+ SmallVector<Instruction *, 2> Extracts;
+ // The users we want the PHI to have are:
+ // 1) The EI ExtractElement (we already know this)
+ // 2) Possibly more ExtractElements with the same index.
+ // 3) Another operand, which will feed back into the PHI.
+ Instruction *PHIUser = nullptr;
+ for (auto U : PN->users()) {
+ if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
+ if (EI.getIndexOperand() == EU->getIndexOperand())
+ Extracts.push_back(EU);
+ else
+ return nullptr;
+ } else if (!PHIUser) {
+ PHIUser = cast<Instruction>(U);
+ } else {
+ return nullptr;
+ }
+ }
+
+ if (!PHIUser)
+ return nullptr;
+
+ // Verify that this PHI user has one use, which is the PHI itself,
+ // and that it is a binary operation which is cheap to scalarize.
+ // otherwise return nullptr.
+ if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
+ !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
+ return nullptr;
+
+ // Create a scalar PHI node that will replace the vector PHI node
+ // just before the current PHI node.
+ PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
+ PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
+ // Scalarize each PHI operand.
+ for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
+ Value *PHIInVal = PN->getIncomingValue(i);
+ BasicBlock *inBB = PN->getIncomingBlock(i);
+ Value *Elt = EI.getIndexOperand();
+ // If the operand is the PHI induction variable:
+ if (PHIInVal == PHIUser) {
+ // Scalarize the binary operation. Its first operand is the
+ // scalar PHI, and the second operand is extracted from the other
+ // vector operand.
+ BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
+ unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
+ Value *Op = InsertNewInstWith(
+ ExtractElementInst::Create(B0->getOperand(opId), Elt,
+ B0->getOperand(opId)->getName() + ".Elt"),
+ *B0);
+ Value *newPHIUser = InsertNewInstWith(
+ BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
+ scalarPHI, Op, B0), *B0);
+ scalarPHI->addIncoming(newPHIUser, inBB);
+ } else {
+ // Scalarize PHI input:
+ Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
+ // Insert the new instruction into the predecessor basic block.
+ Instruction *pos = dyn_cast<Instruction>(PHIInVal);
+ BasicBlock::iterator InsertPos;
+ if (pos && !isa<PHINode>(pos)) {
+ InsertPos = ++pos->getIterator();
+ } else {
+ InsertPos = inBB->getFirstInsertionPt();
+ }
+
+ InsertNewInstWith(newEI, *InsertPos);
+
+ scalarPHI->addIncoming(newEI, inBB);
+ }
+ }
+
+ for (auto E : Extracts)
+ replaceInstUsesWith(*E, scalarPHI);
+
+ return &EI;
+}
+
+static Instruction *foldBitcastExtElt(ExtractElementInst &Ext,
+ InstCombiner::BuilderTy &Builder,
+ bool IsBigEndian) {
+ Value *X;
+ uint64_t ExtIndexC;
+ if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
+ !X->getType()->isVectorTy() ||
+ !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
+ return nullptr;
+
+ // If this extractelement is using a bitcast from a vector of the same number
+ // of elements, see if we can find the source element from the source vector:
+ // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
+ Type *SrcTy = X->getType();
+ Type *DestTy = Ext.getType();
+ unsigned NumSrcElts = SrcTy->getVectorNumElements();
+ unsigned NumElts = Ext.getVectorOperandType()->getNumElements();
+ if (NumSrcElts == NumElts)
+ if (Value *Elt = findScalarElement(X, ExtIndexC))
+ return new BitCastInst(Elt, DestTy);
+
+ // If the source elements are wider than the destination, try to shift and
+ // truncate a subset of scalar bits of an insert op.
+ if (NumSrcElts < NumElts) {
+ Value *Scalar;
+ uint64_t InsIndexC;
+ if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar),
+ m_ConstantInt(InsIndexC))))
+ return nullptr;
+
+ // The extract must be from the subset of vector elements that we inserted
+ // into. Example: if we inserted element 1 of a <2 x i64> and we are
+ // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
+ // of elements 4-7 of the bitcasted vector.
+ unsigned NarrowingRatio = NumElts / NumSrcElts;
+ if (ExtIndexC / NarrowingRatio != InsIndexC)
+ return nullptr;
+
+ // We are extracting part of the original scalar. How that scalar is
+ // inserted into the vector depends on the endian-ness. Example:
+ // Vector Byte Elt Index: 0 1 2 3 4 5 6 7
+ // +--+--+--+--+--+--+--+--+
+ // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3|
+ // extelt <4 x i16> V', 3: | |S2|S3|
+ // +--+--+--+--+--+--+--+--+
+ // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
+ // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
+ // In this example, we must right-shift little-endian. Big-endian is just a
+ // truncate.
+ unsigned Chunk = ExtIndexC % NarrowingRatio;
+ if (IsBigEndian)
+ Chunk = NarrowingRatio - 1 - Chunk;
+
+ // Bail out if this is an FP vector to FP vector sequence. That would take
+ // more instructions than we started with unless there is no shift, and it
+ // may not be handled as well in the backend.
+ bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
+ bool NeedDestBitcast = DestTy->isFloatingPointTy();
+ if (NeedSrcBitcast && NeedDestBitcast)
+ return nullptr;
+
+ unsigned SrcWidth = SrcTy->getScalarSizeInBits();
+ unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
+ unsigned ShAmt = Chunk * DestWidth;
+
+ // TODO: This limitation is more strict than necessary. We could sum the
+ // number of new instructions and subtract the number eliminated to know if
+ // we can proceed.
+ if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
+ if (NeedSrcBitcast || NeedDestBitcast)
+ return nullptr;
+
+ if (NeedSrcBitcast) {
+ Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
+ Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
+ }
+
+ if (ShAmt) {
+ // Bail out if we could end with more instructions than we started with.
+ if (!Ext.getVectorOperand()->hasOneUse())
+ return nullptr;
+ Scalar = Builder.CreateLShr(Scalar, ShAmt);
+ }
+
+ if (NeedDestBitcast) {
+ Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
+ return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
+ }
+ return new TruncInst(Scalar, DestTy);
+ }
+
+ return nullptr;
+}
+
+/// Find elements of V demanded by UserInstr.
+static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) {
+ unsigned VWidth = V->getType()->getVectorNumElements();
+
+ // Conservatively assume that all elements are needed.
+ APInt UsedElts(APInt::getAllOnesValue(VWidth));
+
+ switch (UserInstr->getOpcode()) {
+ case Instruction::ExtractElement: {
+ ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr);
+ assert(EEI->getVectorOperand() == V);
+ ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand());
+ if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) {
+ UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue());
+ }
+ break;
+ }
+ case Instruction::ShuffleVector: {
+ ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr);
+ unsigned MaskNumElts = UserInstr->getType()->getVectorNumElements();
+
+ UsedElts = APInt(VWidth, 0);
+ for (unsigned i = 0; i < MaskNumElts; i++) {
+ unsigned MaskVal = Shuffle->getMaskValue(i);
+ if (MaskVal == -1u || MaskVal >= 2 * VWidth)
+ continue;
+ if (Shuffle->getOperand(0) == V && (MaskVal < VWidth))
+ UsedElts.setBit(MaskVal);
+ if (Shuffle->getOperand(1) == V &&
+ ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
+ UsedElts.setBit(MaskVal - VWidth);
+ }
+ break;
+ }
+ default:
+ break;
+ }
+ return UsedElts;
+}
+
+/// Find union of elements of V demanded by all its users.
+/// If it is known by querying findDemandedEltsBySingleUser that
+/// no user demands an element of V, then the corresponding bit
+/// remains unset in the returned value.
+static APInt findDemandedEltsByAllUsers(Value *V) {
+ unsigned VWidth = V->getType()->getVectorNumElements();
+
+ APInt UnionUsedElts(VWidth, 0);
+ for (const Use &U : V->uses()) {
+ if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
+ UnionUsedElts |= findDemandedEltsBySingleUser(V, I);
+ } else {
+ UnionUsedElts = APInt::getAllOnesValue(VWidth);
+ break;
+ }
+
+ if (UnionUsedElts.isAllOnesValue())
+ break;
+ }
+
+ return UnionUsedElts;
+}
+
+Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
+ Value *SrcVec = EI.getVectorOperand();
+ Value *Index = EI.getIndexOperand();
+ if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
+ SQ.getWithInstruction(&EI)))
+ return replaceInstUsesWith(EI, V);
+
+ // If extracting a specified index from the vector, see if we can recursively
+ // find a previously computed scalar that was inserted into the vector.
+ auto *IndexC = dyn_cast<ConstantInt>(Index);
+ if (IndexC) {
+ unsigned NumElts = EI.getVectorOperandType()->getNumElements();
+
+ // InstSimplify should handle cases where the index is invalid.
+ if (!IndexC->getValue().ule(NumElts))
+ return nullptr;
+
+ // This instruction only demands the single element from the input vector.
+ if (NumElts != 1) {
+ // If the input vector has a single use, simplify it based on this use
+ // property.
+ if (SrcVec->hasOneUse()) {
+ APInt UndefElts(NumElts, 0);
+ APInt DemandedElts(NumElts, 0);
+ DemandedElts.setBit(IndexC->getZExtValue());
+ if (Value *V =
+ SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) {
+ EI.setOperand(0, V);
+ return &EI;
+ }
+ } else {
+ // If the input vector has multiple uses, simplify it based on a union
+ // of all elements used.
+ APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec);
+ if (!DemandedElts.isAllOnesValue()) {
+ APInt UndefElts(NumElts, 0);
+ if (Value *V = SimplifyDemandedVectorElts(
+ SrcVec, DemandedElts, UndefElts, 0 /* Depth */,
+ true /* AllowMultipleUsers */)) {
+ if (V != SrcVec) {
+ SrcVec->replaceAllUsesWith(V);
+ return &EI;
+ }
+ }
+ }
+ }
+ }
+ if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian()))
+ return I;
+
+ // If there's a vector PHI feeding a scalar use through this extractelement
+ // instruction, try to scalarize the PHI.
+ if (auto *Phi = dyn_cast<PHINode>(SrcVec))
+ if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
+ return ScalarPHI;
+ }
+
+ BinaryOperator *BO;
+ if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) {
+ // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
+ Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
+ Value *E0 = Builder.CreateExtractElement(X, Index);
+ Value *E1 = Builder.CreateExtractElement(Y, Index);
+ return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
+ }
+
+ Value *X, *Y;
+ CmpInst::Predicate Pred;
+ if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
+ cheapToScalarize(SrcVec, IndexC)) {
+ // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
+ Value *E0 = Builder.CreateExtractElement(X, Index);
+ Value *E1 = Builder.CreateExtractElement(Y, Index);
+ return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
+ }
+
+ if (auto *I = dyn_cast<Instruction>(SrcVec)) {
+ if (auto *IE = dyn_cast<InsertElementInst>(I)) {
+ // Extracting the inserted element?
+ if (IE->getOperand(2) == Index)
+ return replaceInstUsesWith(EI, IE->getOperand(1));
+ // If the inserted and extracted elements are constants, they must not
+ // be the same value, extract from the pre-inserted value instead.
+ if (isa<Constant>(IE->getOperand(2)) && IndexC) {
+ Worklist.AddValue(SrcVec);
+ EI.setOperand(0, IE->getOperand(0));
+ return &EI;
+ }
+ } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
+ // If this is extracting an element from a shufflevector, figure out where
+ // it came from and extract from the appropriate input element instead.
+ if (auto *Elt = dyn_cast<ConstantInt>(Index)) {
+ int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
+ Value *Src;
+ unsigned LHSWidth =
+ SVI->getOperand(0)->getType()->getVectorNumElements();
+
+ if (SrcIdx < 0)
+ return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
+ if (SrcIdx < (int)LHSWidth)
+ Src = SVI->getOperand(0);
+ else {
+ SrcIdx -= LHSWidth;
+ Src = SVI->getOperand(1);
+ }
+ Type *Int32Ty = Type::getInt32Ty(EI.getContext());
+ return ExtractElementInst::Create(Src,
+ ConstantInt::get(Int32Ty,
+ SrcIdx, false));
+ }
+ } else if (auto *CI = dyn_cast<CastInst>(I)) {
+ // Canonicalize extractelement(cast) -> cast(extractelement).
+ // Bitcasts can change the number of vector elements, and they cost
+ // nothing.
+ if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
+ Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
+ Worklist.AddValue(EE);
+ return CastInst::Create(CI->getOpcode(), EE, EI.getType());
+ }
+ }
+ }
+ return nullptr;
+}
+
+/// If V is a shuffle of values that ONLY returns elements from either LHS or
+/// RHS, return the shuffle mask and true. Otherwise, return false.
+static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
+ SmallVectorImpl<Constant*> &Mask) {
+ assert(LHS->getType() == RHS->getType() &&
+ "Invalid CollectSingleShuffleElements");
+ unsigned NumElts = V->getType()->getVectorNumElements();
+
+ if (isa<UndefValue>(V)) {
+ Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
+ return true;
+ }
+
+ if (V == LHS) {
+ for (unsigned i = 0; i != NumElts; ++i)
+ Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
+ return true;
+ }
+
+ if (V == RHS) {
+ for (unsigned i = 0; i != NumElts; ++i)
+ Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
+ i+NumElts));
+ return true;
+ }
+
+ if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
+ // If this is an insert of an extract from some other vector, include it.
+ Value *VecOp = IEI->getOperand(0);
+ Value *ScalarOp = IEI->getOperand(1);
+ Value *IdxOp = IEI->getOperand(2);
+
+ if (!isa<ConstantInt>(IdxOp))
+ return false;
+ unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
+
+ if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
+ // We can handle this if the vector we are inserting into is
+ // transitively ok.
+ if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
+ // If so, update the mask to reflect the inserted undef.
+ Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
+ return true;
+ }
+ } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
+ if (isa<ConstantInt>(EI->getOperand(1))) {
+ unsigned ExtractedIdx =
+ cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
+ unsigned NumLHSElts = LHS->getType()->getVectorNumElements();
+
+ // This must be extracting from either LHS or RHS.
+ if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
+ // We can handle this if the vector we are inserting into is
+ // transitively ok.
+ if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
+ // If so, update the mask to reflect the inserted value.
+ if (EI->getOperand(0) == LHS) {
+ Mask[InsertedIdx % NumElts] =
+ ConstantInt::get(Type::getInt32Ty(V->getContext()),
+ ExtractedIdx);
+ } else {
+ assert(EI->getOperand(0) == RHS);
+ Mask[InsertedIdx % NumElts] =
+ ConstantInt::get(Type::getInt32Ty(V->getContext()),
+ ExtractedIdx + NumLHSElts);
+ }
+ return true;
+ }
+ }
+ }
+ }
+ }
+
+ return false;
+}
+
+/// If we have insertion into a vector that is wider than the vector that we
+/// are extracting from, try to widen the source vector to allow a single
+/// shufflevector to replace one or more insert/extract pairs.
+static void replaceExtractElements(InsertElementInst *InsElt,
+ ExtractElementInst *ExtElt,
+ InstCombiner &IC) {
+ VectorType *InsVecType = InsElt->getType();
+ VectorType *ExtVecType = ExtElt->getVectorOperandType();
+ unsigned NumInsElts = InsVecType->getVectorNumElements();
+ unsigned NumExtElts = ExtVecType->getVectorNumElements();
+
+ // The inserted-to vector must be wider than the extracted-from vector.
+ if (InsVecType->getElementType() != ExtVecType->getElementType() ||
+ NumExtElts >= NumInsElts)
+ return;
+
+ // Create a shuffle mask to widen the extended-from vector using undefined
+ // values. The mask selects all of the values of the original vector followed
+ // by as many undefined values as needed to create a vector of the same length
+ // as the inserted-to vector.
+ SmallVector<Constant *, 16> ExtendMask;
+ IntegerType *IntType = Type::getInt32Ty(InsElt->getContext());
+ for (unsigned i = 0; i < NumExtElts; ++i)
+ ExtendMask.push_back(ConstantInt::get(IntType, i));
+ for (unsigned i = NumExtElts; i < NumInsElts; ++i)
+ ExtendMask.push_back(UndefValue::get(IntType));
+
+ Value *ExtVecOp = ExtElt->getVectorOperand();
+ auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
+ BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
+ ? ExtVecOpInst->getParent()
+ : ExtElt->getParent();
+
+ // TODO: This restriction matches the basic block check below when creating
+ // new extractelement instructions. If that limitation is removed, this one
+ // could also be removed. But for now, we just bail out to ensure that we
+ // will replace the extractelement instruction that is feeding our
+ // insertelement instruction. This allows the insertelement to then be
+ // replaced by a shufflevector. If the insertelement is not replaced, we can
+ // induce infinite looping because there's an optimization for extractelement
+ // that will delete our widening shuffle. This would trigger another attempt
+ // here to create that shuffle, and we spin forever.
+ if (InsertionBlock != InsElt->getParent())
+ return;
+
+ // TODO: This restriction matches the check in visitInsertElementInst() and
+ // prevents an infinite loop caused by not turning the extract/insert pair
+ // into a shuffle. We really should not need either check, but we're lacking
+ // folds for shufflevectors because we're afraid to generate shuffle masks
+ // that the backend can't handle.
+ if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
+ return;
+
+ auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType),
+ ConstantVector::get(ExtendMask));
+
+ // Insert the new shuffle after the vector operand of the extract is defined
+ // (as long as it's not a PHI) or at the start of the basic block of the
+ // extract, so any subsequent extracts in the same basic block can use it.
+ // TODO: Insert before the earliest ExtractElementInst that is replaced.
+ if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
+ WideVec->insertAfter(ExtVecOpInst);
+ else
+ IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
+
+ // Replace extracts from the original narrow vector with extracts from the new
+ // wide vector.
+ for (User *U : ExtVecOp->users()) {
+ ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
+ if (!OldExt || OldExt->getParent() != WideVec->getParent())
+ continue;
+ auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
+ NewExt->insertAfter(OldExt);
+ IC.replaceInstUsesWith(*OldExt, NewExt);
+ }
+}
+
+/// We are building a shuffle to create V, which is a sequence of insertelement,
+/// extractelement pairs. If PermittedRHS is set, then we must either use it or
+/// not rely on the second vector source. Return a std::pair containing the
+/// left and right vectors of the proposed shuffle (or 0), and set the Mask
+/// parameter as required.
+///
+/// Note: we intentionally don't try to fold earlier shuffles since they have
+/// often been chosen carefully to be efficiently implementable on the target.
+using ShuffleOps = std::pair<Value *, Value *>;
+
+static ShuffleOps collectShuffleElements(Value *V,
+ SmallVectorImpl<Constant *> &Mask,
+ Value *PermittedRHS,
+ InstCombiner &IC) {
+ assert(V->getType()->isVectorTy() && "Invalid shuffle!");
+ unsigned NumElts = V->getType()->getVectorNumElements();
+
+ if (isa<UndefValue>(V)) {
+ Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
+ return std::make_pair(
+ PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
+ }
+
+ if (isa<ConstantAggregateZero>(V)) {
+ Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
+ return std::make_pair(V, nullptr);
+ }
+
+ if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
+ // If this is an insert of an extract from some other vector, include it.
+ Value *VecOp = IEI->getOperand(0);
+ Value *ScalarOp = IEI->getOperand(1);
+ Value *IdxOp = IEI->getOperand(2);
+
+ if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
+ if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
+ unsigned ExtractedIdx =
+ cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
+ unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
+
+ // Either the extracted from or inserted into vector must be RHSVec,
+ // otherwise we'd end up with a shuffle of three inputs.
+ if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
+ Value *RHS = EI->getOperand(0);
+ ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
+ assert(LR.second == nullptr || LR.second == RHS);
+
+ if (LR.first->getType() != RHS->getType()) {
+ // Although we are giving up for now, see if we can create extracts
+ // that match the inserts for another round of combining.
+ replaceExtractElements(IEI, EI, IC);
+
+ // We tried our best, but we can't find anything compatible with RHS
+ // further up the chain. Return a trivial shuffle.
+ for (unsigned i = 0; i < NumElts; ++i)
+ Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
+ return std::make_pair(V, nullptr);
+ }
+
+ unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
+ Mask[InsertedIdx % NumElts] =
+ ConstantInt::get(Type::getInt32Ty(V->getContext()),
+ NumLHSElts+ExtractedIdx);
+ return std::make_pair(LR.first, RHS);
+ }
+
+ if (VecOp == PermittedRHS) {
+ // We've gone as far as we can: anything on the other side of the
+ // extractelement will already have been converted into a shuffle.
+ unsigned NumLHSElts =
+ EI->getOperand(0)->getType()->getVectorNumElements();
+ for (unsigned i = 0; i != NumElts; ++i)
+ Mask.push_back(ConstantInt::get(
+ Type::getInt32Ty(V->getContext()),
+ i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
+ return std::make_pair(EI->getOperand(0), PermittedRHS);
+ }
+
+ // If this insertelement is a chain that comes from exactly these two
+ // vectors, return the vector and the effective shuffle.
+ if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
+ collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
+ Mask))
+ return std::make_pair(EI->getOperand(0), PermittedRHS);
+ }
+ }
+ }
+
+ // Otherwise, we can't do anything fancy. Return an identity vector.
+ for (unsigned i = 0; i != NumElts; ++i)
+ Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
+ return std::make_pair(V, nullptr);
+}
+
+/// Try to find redundant insertvalue instructions, like the following ones:
+/// %0 = insertvalue { i8, i32 } undef, i8 %x, 0
+/// %1 = insertvalue { i8, i32 } %0, i8 %y, 0
+/// Here the second instruction inserts values at the same indices, as the
+/// first one, making the first one redundant.
+/// It should be transformed to:
+/// %0 = insertvalue { i8, i32 } undef, i8 %y, 0
+Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
+ bool IsRedundant = false;
+ ArrayRef<unsigned int> FirstIndices = I.getIndices();
+
+ // If there is a chain of insertvalue instructions (each of them except the
+ // last one has only one use and it's another insertvalue insn from this
+ // chain), check if any of the 'children' uses the same indices as the first
+ // instruction. In this case, the first one is redundant.
+ Value *V = &I;
+ unsigned Depth = 0;
+ while (V->hasOneUse() && Depth < 10) {
+ User *U = V->user_back();
+ auto UserInsInst = dyn_cast<InsertValueInst>(U);
+ if (!UserInsInst || U->getOperand(0) != V)
+ break;
+ if (UserInsInst->getIndices() == FirstIndices) {
+ IsRedundant = true;
+ break;
+ }
+ V = UserInsInst;
+ Depth++;
+ }
+
+ if (IsRedundant)
+ return replaceInstUsesWith(I, I.getOperand(0));
+ return nullptr;
+}
+
+static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
+ int MaskSize = Shuf.getMask()->getType()->getVectorNumElements();
+ int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements();
+
+ // A vector select does not change the size of the operands.
+ if (MaskSize != VecSize)
+ return false;
+
+ // Each mask element must be undefined or choose a vector element from one of
+ // the source operands without crossing vector lanes.
+ for (int i = 0; i != MaskSize; ++i) {
+ int Elt = Shuf.getMaskValue(i);
+ if (Elt != -1 && Elt != i && Elt != i + VecSize)
+ return false;
+ }
+
+ return true;
+}
+
+/// Turn a chain of inserts that splats a value into an insert + shuffle:
+/// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
+/// shufflevector(insertelt(X, %k, 0), undef, zero)
+static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
+ // We are interested in the last insert in a chain. So if this insert has a
+ // single user and that user is an insert, bail.
+ if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
+ return nullptr;
+
+ auto *VecTy = cast<VectorType>(InsElt.getType());
+ unsigned NumElements = VecTy->getNumElements();
+
+ // Do not try to do this for a one-element vector, since that's a nop,
+ // and will cause an inf-loop.
+ if (NumElements == 1)
+ return nullptr;
+
+ Value *SplatVal = InsElt.getOperand(1);
+ InsertElementInst *CurrIE = &InsElt;
+ SmallVector<bool, 16> ElementPresent(NumElements, false);
+ InsertElementInst *FirstIE = nullptr;
+
+ // Walk the chain backwards, keeping track of which indices we inserted into,
+ // until we hit something that isn't an insert of the splatted value.
+ while (CurrIE) {
+ auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
+ if (!Idx || CurrIE->getOperand(1) != SplatVal)
+ return nullptr;
+
+ auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
+ // Check none of the intermediate steps have any additional uses, except
+ // for the root insertelement instruction, which can be re-used, if it
+ // inserts at position 0.
+ if (CurrIE != &InsElt &&
+ (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
+ return nullptr;
+
+ ElementPresent[Idx->getZExtValue()] = true;
+ FirstIE = CurrIE;
+ CurrIE = NextIE;
+ }
+
+ // If this is just a single insertelement (not a sequence), we are done.
+ if (FirstIE == &InsElt)
+ return nullptr;
+
+ // If we are not inserting into an undef vector, make sure we've seen an
+ // insert into every element.
+ // TODO: If the base vector is not undef, it might be better to create a splat
+ // and then a select-shuffle (blend) with the base vector.
+ if (!isa<UndefValue>(FirstIE->getOperand(0)))
+ if (any_of(ElementPresent, [](bool Present) { return !Present; }))
+ return nullptr;
+
+ // Create the insert + shuffle.
+ Type *Int32Ty = Type::getInt32Ty(InsElt.getContext());
+ UndefValue *UndefVec = UndefValue::get(VecTy);
+ Constant *Zero = ConstantInt::get(Int32Ty, 0);
+ if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
+ FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt);
+
+ // Splat from element 0, but replace absent elements with undef in the mask.
+ SmallVector<Constant *, 16> Mask(NumElements, Zero);
+ for (unsigned i = 0; i != NumElements; ++i)
+ if (!ElementPresent[i])
+ Mask[i] = UndefValue::get(Int32Ty);
+
+ return new ShuffleVectorInst(FirstIE, UndefVec, ConstantVector::get(Mask));
+}
+
+/// Try to fold an insert element into an existing splat shuffle by changing
+/// the shuffle's mask to include the index of this insert element.
+static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
+ // Check if the vector operand of this insert is a canonical splat shuffle.
+ auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
+ if (!Shuf || !Shuf->isZeroEltSplat())
+ return nullptr;
+
+ // Check for a constant insertion index.
+ uint64_t IdxC;
+ if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
+ return nullptr;
+
+ // Check if the splat shuffle's input is the same as this insert's scalar op.
+ Value *X = InsElt.getOperand(1);
+ Value *Op0 = Shuf->getOperand(0);
+ if (!match(Op0, m_InsertElement(m_Undef(), m_Specific(X), m_ZeroInt())))
+ return nullptr;
+
+ // Replace the shuffle mask element at the index of this insert with a zero.
+ // For example:
+ // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1
+ // --> shuf (inselt undef, X, 0), undef, <0,0,0,undef>
+ unsigned NumMaskElts = Shuf->getType()->getVectorNumElements();
+ SmallVector<Constant *, 16> NewMaskVec(NumMaskElts);
+ Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext());
+ Constant *Zero = ConstantInt::getNullValue(I32Ty);
+ for (unsigned i = 0; i != NumMaskElts; ++i)
+ NewMaskVec[i] = i == IdxC ? Zero : Shuf->getMask()->getAggregateElement(i);
+
+ Constant *NewMask = ConstantVector::get(NewMaskVec);
+ return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask);
+}
+
+/// Try to fold an extract+insert element into an existing identity shuffle by
+/// changing the shuffle's mask to include the index of this insert element.
+static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) {
+ // Check if the vector operand of this insert is an identity shuffle.
+ auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
+ if (!Shuf || !isa<UndefValue>(Shuf->getOperand(1)) ||
+ !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
+ return nullptr;
+
+ // Check for a constant insertion index.
+ uint64_t IdxC;
+ if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
+ return nullptr;
+
+ // Check if this insert's scalar op is extracted from the identity shuffle's
+ // input vector.
+ Value *Scalar = InsElt.getOperand(1);
+ Value *X = Shuf->getOperand(0);
+ if (!match(Scalar, m_ExtractElement(m_Specific(X), m_SpecificInt(IdxC))))
+ return nullptr;
+
+ // Replace the shuffle mask element at the index of this extract+insert with
+ // that same index value.
+ // For example:
+ // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
+ unsigned NumMaskElts = Shuf->getType()->getVectorNumElements();
+ SmallVector<Constant *, 16> NewMaskVec(NumMaskElts);
+ Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext());
+ Constant *NewMaskEltC = ConstantInt::get(I32Ty, IdxC);
+ Constant *OldMask = Shuf->getMask();
+ for (unsigned i = 0; i != NumMaskElts; ++i) {
+ if (i != IdxC) {
+ // All mask elements besides the inserted element remain the same.
+ NewMaskVec[i] = OldMask->getAggregateElement(i);
+ } else if (OldMask->getAggregateElement(i) == NewMaskEltC) {
+ // If the mask element was already set, there's nothing to do
+ // (demanded elements analysis may unset it later).
+ return nullptr;
+ } else {
+ assert(isa<UndefValue>(OldMask->getAggregateElement(i)) &&
+ "Unexpected shuffle mask element for identity shuffle");
+ NewMaskVec[i] = NewMaskEltC;
+ }
+ }
+
+ Constant *NewMask = ConstantVector::get(NewMaskVec);
+ return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask);
+}
+
+/// If we have an insertelement instruction feeding into another insertelement
+/// and the 2nd is inserting a constant into the vector, canonicalize that
+/// constant insertion before the insertion of a variable:
+///
+/// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
+/// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
+///
+/// This has the potential of eliminating the 2nd insertelement instruction
+/// via constant folding of the scalar constant into a vector constant.
+static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
+ InstCombiner::BuilderTy &Builder) {
+ auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
+ if (!InsElt1 || !InsElt1->hasOneUse())
+ return nullptr;
+
+ Value *X, *Y;
+ Constant *ScalarC;
+ ConstantInt *IdxC1, *IdxC2;
+ if (match(InsElt1->getOperand(0), m_Value(X)) &&
+ match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
+ match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
+ match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
+ match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
+ Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
+ return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
+ }
+
+ return nullptr;
+}
+
+/// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
+/// --> shufflevector X, CVec', Mask'
+static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
+ auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
+ // Bail out if the parent has more than one use. In that case, we'd be
+ // replacing the insertelt with a shuffle, and that's not a clear win.
+ if (!Inst || !Inst->hasOneUse())
+ return nullptr;
+ if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
+ // The shuffle must have a constant vector operand. The insertelt must have
+ // a constant scalar being inserted at a constant position in the vector.
+ Constant *ShufConstVec, *InsEltScalar;
+ uint64_t InsEltIndex;
+ if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
+ !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
+ !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
+ return nullptr;
+
+ // Adding an element to an arbitrary shuffle could be expensive, but a
+ // shuffle that selects elements from vectors without crossing lanes is
+ // assumed cheap.
+ // If we're just adding a constant into that shuffle, it will still be
+ // cheap.
+ if (!isShuffleEquivalentToSelect(*Shuf))
+ return nullptr;
+
+ // From the above 'select' check, we know that the mask has the same number
+ // of elements as the vector input operands. We also know that each constant
+ // input element is used in its lane and can not be used more than once by
+ // the shuffle. Therefore, replace the constant in the shuffle's constant
+ // vector with the insertelt constant. Replace the constant in the shuffle's
+ // mask vector with the insertelt index plus the length of the vector
+ // (because the constant vector operand of a shuffle is always the 2nd
+ // operand).
+ Constant *Mask = Shuf->getMask();
+ unsigned NumElts = Mask->getType()->getVectorNumElements();
+ SmallVector<Constant *, 16> NewShufElts(NumElts);
+ SmallVector<Constant *, 16> NewMaskElts(NumElts);
+ for (unsigned I = 0; I != NumElts; ++I) {
+ if (I == InsEltIndex) {
+ NewShufElts[I] = InsEltScalar;
+ Type *Int32Ty = Type::getInt32Ty(Shuf->getContext());
+ NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts);
+ } else {
+ // Copy over the existing values.
+ NewShufElts[I] = ShufConstVec->getAggregateElement(I);
+ NewMaskElts[I] = Mask->getAggregateElement(I);
+ }
+ }
+
+ // Create new operands for a shuffle that includes the constant of the
+ // original insertelt. The old shuffle will be dead now.
+ return new ShuffleVectorInst(Shuf->getOperand(0),
+ ConstantVector::get(NewShufElts),
+ ConstantVector::get(NewMaskElts));
+ } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
+ // Transform sequences of insertelements ops with constant data/indexes into
+ // a single shuffle op.
+ unsigned NumElts = InsElt.getType()->getNumElements();
+
+ uint64_t InsertIdx[2];
+ Constant *Val[2];
+ if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
+ !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
+ !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
+ !match(IEI->getOperand(1), m_Constant(Val[1])))
+ return nullptr;
+ SmallVector<Constant *, 16> Values(NumElts);
+ SmallVector<Constant *, 16> Mask(NumElts);
+ auto ValI = std::begin(Val);
+ // Generate new constant vector and mask.
+ // We have 2 values/masks from the insertelements instructions. Insert them
+ // into new value/mask vectors.
+ for (uint64_t I : InsertIdx) {
+ if (!Values[I]) {
+ assert(!Mask[I]);
+ Values[I] = *ValI;
+ Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()),
+ NumElts + I);
+ }
+ ++ValI;
+ }
+ // Remaining values are filled with 'undef' values.
+ for (unsigned I = 0; I < NumElts; ++I) {
+ if (!Values[I]) {
+ assert(!Mask[I]);
+ Values[I] = UndefValue::get(InsElt.getType()->getElementType());
+ Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I);
+ }
+ }
+ // Create new operands for a shuffle that includes the constant of the
+ // original insertelt.
+ return new ShuffleVectorInst(IEI->getOperand(0),
+ ConstantVector::get(Values),
+ ConstantVector::get(Mask));
+ }
+ return nullptr;
+}
+
+Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
+ Value *VecOp = IE.getOperand(0);
+ Value *ScalarOp = IE.getOperand(1);
+ Value *IdxOp = IE.getOperand(2);
+
+ if (auto *V = SimplifyInsertElementInst(
+ VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
+ return replaceInstUsesWith(IE, V);
+
+ // If the vector and scalar are both bitcast from the same element type, do
+ // the insert in that source type followed by bitcast.
+ Value *VecSrc, *ScalarSrc;
+ if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
+ match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
+ (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
+ VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
+ VecSrc->getType()->getVectorElementType() == ScalarSrc->getType()) {
+ // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
+ // bitcast (inselt VecSrc, ScalarSrc, IdxOp)
+ Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
+ return new BitCastInst(NewInsElt, IE.getType());
+ }
+
+ // If the inserted element was extracted from some other vector and both
+ // indexes are valid constants, try to turn this into a shuffle.
+ uint64_t InsertedIdx, ExtractedIdx;
+ Value *ExtVecOp;
+ if (match(IdxOp, m_ConstantInt(InsertedIdx)) &&
+ match(ScalarOp, m_ExtractElement(m_Value(ExtVecOp),
+ m_ConstantInt(ExtractedIdx))) &&
+ ExtractedIdx < ExtVecOp->getType()->getVectorNumElements()) {
+ // TODO: Looking at the user(s) to determine if this insert is a
+ // fold-to-shuffle opportunity does not match the usual instcombine
+ // constraints. We should decide if the transform is worthy based only
+ // on this instruction and its operands, but that may not work currently.
+ //
+ // Here, we are trying to avoid creating shuffles before reaching
+ // the end of a chain of extract-insert pairs. This is complicated because
+ // we do not generally form arbitrary shuffle masks in instcombine
+ // (because those may codegen poorly), but collectShuffleElements() does
+ // exactly that.
+ //
+ // The rules for determining what is an acceptable target-independent
+ // shuffle mask are fuzzy because they evolve based on the backend's
+ // capabilities and real-world impact.
+ auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
+ if (!Insert.hasOneUse())
+ return true;
+ auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
+ if (!InsertUser)
+ return true;
+ return false;
+ };
+
+ // Try to form a shuffle from a chain of extract-insert ops.
+ if (isShuffleRootCandidate(IE)) {
+ SmallVector<Constant*, 16> Mask;
+ ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
+
+ // The proposed shuffle may be trivial, in which case we shouldn't
+ // perform the combine.
+ if (LR.first != &IE && LR.second != &IE) {
+ // We now have a shuffle of LHS, RHS, Mask.
+ if (LR.second == nullptr)
+ LR.second = UndefValue::get(LR.first->getType());
+ return new ShuffleVectorInst(LR.first, LR.second,
+ ConstantVector::get(Mask));
+ }
+ }
+ }
+
+ unsigned VWidth = VecOp->getType()->getVectorNumElements();
+ APInt UndefElts(VWidth, 0);
+ APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
+ if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
+ if (V != &IE)
+ return replaceInstUsesWith(IE, V);
+ return &IE;
+ }
+
+ if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
+ return Shuf;
+
+ if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
+ return NewInsElt;
+
+ if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
+ return Broadcast;
+
+ if (Instruction *Splat = foldInsEltIntoSplat(IE))
+ return Splat;
+
+ if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE))
+ return IdentityShuf;
+
+ return nullptr;
+}
+
+/// Return true if we can evaluate the specified expression tree if the vector
+/// elements were shuffled in a different order.
+static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
+ unsigned Depth = 5) {
+ // We can always reorder the elements of a constant.
+ if (isa<Constant>(V))
+ return true;
+
+ // We won't reorder vector arguments. No IPO here.
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I) return false;
+
+ // Two users may expect different orders of the elements. Don't try it.
+ if (!I->hasOneUse())
+ return false;
+
+ if (Depth == 0) return false;
+
+ switch (I->getOpcode()) {
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ // Propagating an undefined shuffle mask element to integer div/rem is not
+ // allowed because those opcodes can create immediate undefined behavior
+ // from an undefined element in an operand.
+ if (llvm::any_of(Mask, [](int M){ return M == -1; }))
+ return false;
+ LLVM_FALLTHROUGH;
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::FDiv:
+ case Instruction::FRem:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::GetElementPtr: {
+ // Bail out if we would create longer vector ops. We could allow creating
+ // longer vector ops, but that may result in more expensive codegen.
+ Type *ITy = I->getType();
+ if (ITy->isVectorTy() && Mask.size() > ITy->getVectorNumElements())
+ return false;
+ for (Value *Operand : I->operands()) {
+ if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
+ return false;
+ }
+ return true;
+ }
+ case Instruction::InsertElement: {
+ ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
+ if (!CI) return false;
+ int ElementNumber = CI->getLimitedValue();
+
+ // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
+ // can't put an element into multiple indices.
+ bool SeenOnce = false;
+ for (int i = 0, e = Mask.size(); i != e; ++i) {
+ if (Mask[i] == ElementNumber) {
+ if (SeenOnce)
+ return false;
+ SeenOnce = true;
+ }
+ }
+ return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
+ }
+ }
+ return false;
+}
+
+/// Rebuild a new instruction just like 'I' but with the new operands given.
+/// In the event of type mismatch, the type of the operands is correct.
+static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
+ // We don't want to use the IRBuilder here because we want the replacement
+ // instructions to appear next to 'I', not the builder's insertion point.
+ switch (I->getOpcode()) {
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: {
+ BinaryOperator *BO = cast<BinaryOperator>(I);
+ assert(NewOps.size() == 2 && "binary operator with #ops != 2");
+ BinaryOperator *New =
+ BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
+ NewOps[0], NewOps[1], "", BO);
+ if (isa<OverflowingBinaryOperator>(BO)) {
+ New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
+ New->setHasNoSignedWrap(BO->hasNoSignedWrap());
+ }
+ if (isa<PossiblyExactOperator>(BO)) {
+ New->setIsExact(BO->isExact());
+ }
+ if (isa<FPMathOperator>(BO))
+ New->copyFastMathFlags(I);
+ return New;
+ }
+ case Instruction::ICmp:
+ assert(NewOps.size() == 2 && "icmp with #ops != 2");
+ return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
+ NewOps[0], NewOps[1]);
+ case Instruction::FCmp:
+ assert(NewOps.size() == 2 && "fcmp with #ops != 2");
+ return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
+ NewOps[0], NewOps[1]);
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt: {
+ // It's possible that the mask has a different number of elements from
+ // the original cast. We recompute the destination type to match the mask.
+ Type *DestTy =
+ VectorType::get(I->getType()->getScalarType(),
+ NewOps[0]->getType()->getVectorNumElements());
+ assert(NewOps.size() == 1 && "cast with #ops != 1");
+ return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
+ "", I);
+ }
+ case Instruction::GetElementPtr: {
+ Value *Ptr = NewOps[0];
+ ArrayRef<Value*> Idx = NewOps.slice(1);
+ GetElementPtrInst *GEP = GetElementPtrInst::Create(
+ cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
+ GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
+ return GEP;
+ }
+ }
+ llvm_unreachable("failed to rebuild vector instructions");
+}
+
+static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
+ // Mask.size() does not need to be equal to the number of vector elements.
+
+ assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
+ Type *EltTy = V->getType()->getScalarType();
+ Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
+ if (isa<UndefValue>(V))
+ return UndefValue::get(VectorType::get(EltTy, Mask.size()));
+
+ if (isa<ConstantAggregateZero>(V))
+ return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size()));
+
+ if (Constant *C = dyn_cast<Constant>(V)) {
+ SmallVector<Constant *, 16> MaskValues;
+ for (int i = 0, e = Mask.size(); i != e; ++i) {
+ if (Mask[i] == -1)
+ MaskValues.push_back(UndefValue::get(I32Ty));
+ else
+ MaskValues.push_back(ConstantInt::get(I32Ty, Mask[i]));
+ }
+ return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
+ ConstantVector::get(MaskValues));
+ }
+
+ Instruction *I = cast<Instruction>(V);
+ switch (I->getOpcode()) {
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::Select:
+ case Instruction::GetElementPtr: {
+ SmallVector<Value*, 8> NewOps;
+ bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
+ for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
+ Value *V;
+ // Recursively call evaluateInDifferentElementOrder on vector arguments
+ // as well. E.g. GetElementPtr may have scalar operands even if the
+ // return value is a vector, so we need to examine the operand type.
+ if (I->getOperand(i)->getType()->isVectorTy())
+ V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
+ else
+ V = I->getOperand(i);
+ NewOps.push_back(V);
+ NeedsRebuild |= (V != I->getOperand(i));
+ }
+ if (NeedsRebuild) {
+ return buildNew(I, NewOps);
+ }
+ return I;
+ }
+ case Instruction::InsertElement: {
+ int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
+
+ // The insertelement was inserting at Element. Figure out which element
+ // that becomes after shuffling. The answer is guaranteed to be unique
+ // by CanEvaluateShuffled.
+ bool Found = false;
+ int Index = 0;
+ for (int e = Mask.size(); Index != e; ++Index) {
+ if (Mask[Index] == Element) {
+ Found = true;
+ break;
+ }
+ }
+
+ // If element is not in Mask, no need to handle the operand 1 (element to
+ // be inserted). Just evaluate values in operand 0 according to Mask.
+ if (!Found)
+ return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
+
+ Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
+ return InsertElementInst::Create(V, I->getOperand(1),
+ ConstantInt::get(I32Ty, Index), "", I);
+ }
+ }
+ llvm_unreachable("failed to reorder elements of vector instruction!");
+}
+
+static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask,
+ bool &isLHSID, bool &isRHSID) {
+ isLHSID = isRHSID = true;
+
+ for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
+ if (Mask[i] < 0) continue; // Ignore undef values.
+ // Is this an identity shuffle of the LHS value?
+ isLHSID &= (Mask[i] == (int)i);
+
+ // Is this an identity shuffle of the RHS value?
+ isRHSID &= (Mask[i]-e == i);
+ }
+}
+
+// Returns true if the shuffle is extracting a contiguous range of values from
+// LHS, for example:
+// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
+// Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
+// Shuffles to: |EE|FF|GG|HH|
+// +--+--+--+--+
+static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
+ SmallVector<int, 16> &Mask) {
+ unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements();
+ unsigned MaskElems = Mask.size();
+ unsigned BegIdx = Mask.front();
+ unsigned EndIdx = Mask.back();
+ if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
+ return false;
+ for (unsigned I = 0; I != MaskElems; ++I)
+ if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
+ return false;
+ return true;
+}
+
+/// These are the ingredients in an alternate form binary operator as described
+/// below.
+struct BinopElts {
+ BinaryOperator::BinaryOps Opcode;
+ Value *Op0;
+ Value *Op1;
+ BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
+ Value *V0 = nullptr, Value *V1 = nullptr) :
+ Opcode(Opc), Op0(V0), Op1(V1) {}
+ operator bool() const { return Opcode != 0; }
+};
+
+/// Binops may be transformed into binops with different opcodes and operands.
+/// Reverse the usual canonicalization to enable folds with the non-canonical
+/// form of the binop. If a transform is possible, return the elements of the
+/// new binop. If not, return invalid elements.
+static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
+ Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
+ Type *Ty = BO->getType();
+ switch (BO->getOpcode()) {
+ case Instruction::Shl: {
+ // shl X, C --> mul X, (1 << C)
+ Constant *C;
+ if (match(BO1, m_Constant(C))) {
+ Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
+ return { Instruction::Mul, BO0, ShlOne };
+ }
+ break;
+ }
+ case Instruction::Or: {
+ // or X, C --> add X, C (when X and C have no common bits set)
+ const APInt *C;
+ if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
+ return { Instruction::Add, BO0, BO1 };
+ break;
+ }
+ default:
+ break;
+ }
+ return {};
+}
+
+static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
+ assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
+
+ // Are we shuffling together some value and that same value after it has been
+ // modified by a binop with a constant?
+ Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
+ Constant *C;
+ bool Op0IsBinop;
+ if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
+ Op0IsBinop = true;
+ else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
+ Op0IsBinop = false;
+ else
+ return nullptr;
+
+ // The identity constant for a binop leaves a variable operand unchanged. For
+ // a vector, this is a splat of something like 0, -1, or 1.
+ // If there's no identity constant for this binop, we're done.
+ auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
+ BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
+ Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
+ if (!IdC)
+ return nullptr;
+
+ // Shuffle identity constants into the lanes that return the original value.
+ // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
+ // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
+ // The existing binop constant vector remains in the same operand position.
+ Constant *Mask = Shuf.getMask();
+ Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
+ ConstantExpr::getShuffleVector(IdC, C, Mask);
+
+ bool MightCreatePoisonOrUB =
+ Mask->containsUndefElement() &&
+ (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
+ if (MightCreatePoisonOrUB)
+ NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true);
+
+ // shuf (bop X, C), X, M --> bop X, C'
+ // shuf X, (bop X, C), M --> bop X, C'
+ Value *X = Op0IsBinop ? Op1 : Op0;
+ Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
+ NewBO->copyIRFlags(BO);
+
+ // An undef shuffle mask element may propagate as an undef constant element in
+ // the new binop. That would produce poison where the original code might not.
+ // If we already made a safe constant, then there's no danger.
+ if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
+ NewBO->dropPoisonGeneratingFlags();
+ return NewBO;
+}
+
+/// If we have an insert of a scalar to a non-zero element of an undefined
+/// vector and then shuffle that value, that's the same as inserting to the zero
+/// element and shuffling. Splatting from the zero element is recognized as the
+/// canonical form of splat.
+static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
+ InstCombiner::BuilderTy &Builder) {
+ Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
+ Constant *Mask = Shuf.getMask();
+ Value *X;
+ uint64_t IndexC;
+
+ // Match a shuffle that is a splat to a non-zero element.
+ if (!match(Op0, m_OneUse(m_InsertElement(m_Undef(), m_Value(X),
+ m_ConstantInt(IndexC)))) ||
+ !match(Op1, m_Undef()) || match(Mask, m_ZeroInt()) || IndexC == 0)
+ return nullptr;
+
+ // Insert into element 0 of an undef vector.
+ UndefValue *UndefVec = UndefValue::get(Shuf.getType());
+ Constant *Zero = Builder.getInt32(0);
+ Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero);
+
+ // Splat from element 0. Any mask element that is undefined remains undefined.
+ // For example:
+ // shuf (inselt undef, X, 2), undef, <2,2,undef>
+ // --> shuf (inselt undef, X, 0), undef, <0,0,undef>
+ unsigned NumMaskElts = Shuf.getType()->getVectorNumElements();
+ SmallVector<Constant *, 16> NewMask(NumMaskElts, Zero);
+ for (unsigned i = 0; i != NumMaskElts; ++i)
+ if (isa<UndefValue>(Mask->getAggregateElement(i)))
+ NewMask[i] = Mask->getAggregateElement(i);
+
+ return new ShuffleVectorInst(NewIns, UndefVec, ConstantVector::get(NewMask));
+}
+
+/// Try to fold shuffles that are the equivalent of a vector select.
+static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf,
+ InstCombiner::BuilderTy &Builder,
+ const DataLayout &DL) {
+ if (!Shuf.isSelect())
+ return nullptr;
+
+ // Canonicalize to choose from operand 0 first.
+ unsigned NumElts = Shuf.getType()->getVectorNumElements();
+ if (Shuf.getMaskValue(0) >= (int)NumElts) {
+ // TODO: Can we assert that both operands of a shuffle-select are not undef
+ // (otherwise, it would have been folded by instsimplify?
+ Shuf.commute();
+ return &Shuf;
+ }
+
+ if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
+ return I;
+
+ BinaryOperator *B0, *B1;
+ if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
+ !match(Shuf.getOperand(1), m_BinOp(B1)))
+ return nullptr;
+
+ Value *X, *Y;
+ Constant *C0, *C1;
+ bool ConstantsAreOp1;
+ if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
+ match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
+ ConstantsAreOp1 = true;
+ else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
+ match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
+ ConstantsAreOp1 = false;
+ else
+ return nullptr;
+
+ // We need matching binops to fold the lanes together.
+ BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
+ BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
+ bool DropNSW = false;
+ if (ConstantsAreOp1 && Opc0 != Opc1) {
+ // TODO: We drop "nsw" if shift is converted into multiply because it may
+ // not be correct when the shift amount is BitWidth - 1. We could examine
+ // each vector element to determine if it is safe to keep that flag.
+ if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
+ DropNSW = true;
+ if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
+ assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
+ Opc0 = AltB0.Opcode;
+ C0 = cast<Constant>(AltB0.Op1);
+ } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
+ assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
+ Opc1 = AltB1.Opcode;
+ C1 = cast<Constant>(AltB1.Op1);
+ }
+ }
+
+ if (Opc0 != Opc1)
+ return nullptr;
+
+ // The opcodes must be the same. Use a new name to make that clear.
+ BinaryOperator::BinaryOps BOpc = Opc0;
+
+ // Select the constant elements needed for the single binop.
+ Constant *Mask = Shuf.getMask();
+ Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
+
+ // We are moving a binop after a shuffle. When a shuffle has an undefined
+ // mask element, the result is undefined, but it is not poison or undefined
+ // behavior. That is not necessarily true for div/rem/shift.
+ bool MightCreatePoisonOrUB =
+ Mask->containsUndefElement() &&
+ (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
+ if (MightCreatePoisonOrUB)
+ NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1);
+
+ Value *V;
+ if (X == Y) {
+ // Remove a binop and the shuffle by rearranging the constant:
+ // shuffle (op V, C0), (op V, C1), M --> op V, C'
+ // shuffle (op C0, V), (op C1, V), M --> op C', V
+ V = X;
+ } else {
+ // If there are 2 different variable operands, we must create a new shuffle
+ // (select) first, so check uses to ensure that we don't end up with more
+ // instructions than we started with.
+ if (!B0->hasOneUse() && !B1->hasOneUse())
+ return nullptr;
+
+ // If we use the original shuffle mask and op1 is *variable*, we would be
+ // putting an undef into operand 1 of div/rem/shift. This is either UB or
+ // poison. We do not have to guard against UB when *constants* are op1
+ // because safe constants guarantee that we do not overflow sdiv/srem (and
+ // there's no danger for other opcodes).
+ // TODO: To allow this case, create a new shuffle mask with no undefs.
+ if (MightCreatePoisonOrUB && !ConstantsAreOp1)
+ return nullptr;
+
+ // Note: In general, we do not create new shuffles in InstCombine because we
+ // do not know if a target can lower an arbitrary shuffle optimally. In this
+ // case, the shuffle uses the existing mask, so there is no additional risk.
+
+ // Select the variable vectors first, then perform the binop:
+ // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
+ // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
+ V = Builder.CreateShuffleVector(X, Y, Mask);
+ }
+
+ Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) :
+ BinaryOperator::Create(BOpc, NewC, V);
+
+ // Flags are intersected from the 2 source binops. But there are 2 exceptions:
+ // 1. If we changed an opcode, poison conditions might have changed.
+ // 2. If the shuffle had undef mask elements, the new binop might have undefs
+ // where the original code did not. But if we already made a safe constant,
+ // then there's no danger.
+ NewBO->copyIRFlags(B0);
+ NewBO->andIRFlags(B1);
+ if (DropNSW)
+ NewBO->setHasNoSignedWrap(false);
+ if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
+ NewBO->dropPoisonGeneratingFlags();
+ return NewBO;
+}
+
+/// Match a shuffle-select-shuffle pattern where the shuffles are widening and
+/// narrowing (concatenating with undef and extracting back to the original
+/// length). This allows replacing the wide select with a narrow select.
+static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
+ InstCombiner::BuilderTy &Builder) {
+ // This must be a narrowing identity shuffle. It extracts the 1st N elements
+ // of the 1st vector operand of a shuffle.
+ if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
+ return nullptr;
+
+ // The vector being shuffled must be a vector select that we can eliminate.
+ // TODO: The one-use requirement could be eased if X and/or Y are constants.
+ Value *Cond, *X, *Y;
+ if (!match(Shuf.getOperand(0),
+ m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
+ return nullptr;
+
+ // We need a narrow condition value. It must be extended with undef elements
+ // and have the same number of elements as this shuffle.
+ unsigned NarrowNumElts = Shuf.getType()->getVectorNumElements();
+ Value *NarrowCond;
+ if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef(),
+ m_Constant()))) ||
+ NarrowCond->getType()->getVectorNumElements() != NarrowNumElts ||
+ !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
+ return nullptr;
+
+ // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
+ // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
+ Value *Undef = UndefValue::get(X->getType());
+ Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getMask());
+ Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getMask());
+ return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
+}
+
+/// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
+static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
+ Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
+ if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1))
+ return nullptr;
+
+ Value *X, *Y;
+ Constant *Mask;
+ if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Constant(Mask))))
+ return nullptr;
+
+ // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
+ // then combining may result in worse codegen.
+ if (!Op0->hasOneUse())
+ return nullptr;
+
+ // We are extracting a subvector from a shuffle. Remove excess elements from
+ // the 1st shuffle mask to eliminate the extract.
+ //
+ // This transform is conservatively limited to identity extracts because we do
+ // not allow arbitrary shuffle mask creation as a target-independent transform
+ // (because we can't guarantee that will lower efficiently).
+ //
+ // If the extracting shuffle has an undef mask element, it transfers to the
+ // new shuffle mask. Otherwise, copy the original mask element. Example:
+ // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
+ // shuf X, Y, <C0, undef, C2, undef>
+ unsigned NumElts = Shuf.getType()->getVectorNumElements();
+ SmallVector<Constant *, 16> NewMask(NumElts);
+ assert(NumElts < Mask->getType()->getVectorNumElements() &&
+ "Identity with extract must have less elements than its inputs");
+
+ for (unsigned i = 0; i != NumElts; ++i) {
+ Constant *ExtractMaskElt = Shuf.getMask()->getAggregateElement(i);
+ Constant *MaskElt = Mask->getAggregateElement(i);
+ NewMask[i] = isa<UndefValue>(ExtractMaskElt) ? ExtractMaskElt : MaskElt;
+ }
+ return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
+}
+
+/// Try to replace a shuffle with an insertelement.
+static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf) {
+ Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
+ SmallVector<int, 16> Mask = Shuf.getShuffleMask();
+
+ // The shuffle must not change vector sizes.
+ // TODO: This restriction could be removed if the insert has only one use
+ // (because the transform would require a new length-changing shuffle).
+ int NumElts = Mask.size();
+ if (NumElts != (int)(V0->getType()->getVectorNumElements()))
+ return nullptr;
+
+ // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
+ auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
+ // We need an insertelement with a constant index.
+ if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar),
+ m_ConstantInt(IndexC))))
+ return false;
+
+ // Test the shuffle mask to see if it splices the inserted scalar into the
+ // operand 1 vector of the shuffle.
+ int NewInsIndex = -1;
+ for (int i = 0; i != NumElts; ++i) {
+ // Ignore undef mask elements.
+ if (Mask[i] == -1)
+ continue;
+
+ // The shuffle takes elements of operand 1 without lane changes.
+ if (Mask[i] == NumElts + i)
+ continue;
+
+ // The shuffle must choose the inserted scalar exactly once.
+ if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
+ return false;
+
+ // The shuffle is placing the inserted scalar into element i.
+ NewInsIndex = i;
+ }
+
+ assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
+
+ // Index is updated to the potentially translated insertion lane.
+ IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
+ return true;
+ };
+
+ // If the shuffle is unnecessary, insert the scalar operand directly into
+ // operand 1 of the shuffle. Example:
+ // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
+ Value *Scalar;
+ ConstantInt *IndexC;
+ if (isShufflingScalarIntoOp1(Scalar, IndexC))
+ return InsertElementInst::Create(V1, Scalar, IndexC);
+
+ // Try again after commuting shuffle. Example:
+ // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
+ // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
+ std::swap(V0, V1);
+ ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
+ if (isShufflingScalarIntoOp1(Scalar, IndexC))
+ return InsertElementInst::Create(V1, Scalar, IndexC);
+
+ return nullptr;
+}
+
+static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
+ // Match the operands as identity with padding (also known as concatenation
+ // with undef) shuffles of the same source type. The backend is expected to
+ // recreate these concatenations from a shuffle of narrow operands.
+ auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
+ auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
+ if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
+ !Shuffle1 || !Shuffle1->isIdentityWithPadding())
+ return nullptr;
+
+ // We limit this transform to power-of-2 types because we expect that the
+ // backend can convert the simplified IR patterns to identical nodes as the
+ // original IR.
+ // TODO: If we can verify the same behavior for arbitrary types, the
+ // power-of-2 checks can be removed.
+ Value *X = Shuffle0->getOperand(0);
+ Value *Y = Shuffle1->getOperand(0);
+ if (X->getType() != Y->getType() ||
+ !isPowerOf2_32(Shuf.getType()->getVectorNumElements()) ||
+ !isPowerOf2_32(Shuffle0->getType()->getVectorNumElements()) ||
+ !isPowerOf2_32(X->getType()->getVectorNumElements()) ||
+ isa<UndefValue>(X) || isa<UndefValue>(Y))
+ return nullptr;
+ assert(isa<UndefValue>(Shuffle0->getOperand(1)) &&
+ isa<UndefValue>(Shuffle1->getOperand(1)) &&
+ "Unexpected operand for identity shuffle");
+
+ // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
+ // operands directly by adjusting the shuffle mask to account for the narrower
+ // types:
+ // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
+ int NarrowElts = X->getType()->getVectorNumElements();
+ int WideElts = Shuffle0->getType()->getVectorNumElements();
+ assert(WideElts > NarrowElts && "Unexpected types for identity with padding");
+
+ Type *I32Ty = IntegerType::getInt32Ty(Shuf.getContext());
+ SmallVector<int, 16> Mask = Shuf.getShuffleMask();
+ SmallVector<Constant *, 16> NewMask(Mask.size(), UndefValue::get(I32Ty));
+ for (int i = 0, e = Mask.size(); i != e; ++i) {
+ if (Mask[i] == -1)
+ continue;
+
+ // If this shuffle is choosing an undef element from 1 of the sources, that
+ // element is undef.
+ if (Mask[i] < WideElts) {
+ if (Shuffle0->getMaskValue(Mask[i]) == -1)
+ continue;
+ } else {
+ if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
+ continue;
+ }
+
+ // If this shuffle is choosing from the 1st narrow op, the mask element is
+ // the same. If this shuffle is choosing from the 2nd narrow op, the mask
+ // element is offset down to adjust for the narrow vector widths.
+ if (Mask[i] < WideElts) {
+ assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
+ NewMask[i] = ConstantInt::get(I32Ty, Mask[i]);
+ } else {
+ assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
+ NewMask[i] = ConstantInt::get(I32Ty, Mask[i] - (WideElts - NarrowElts));
+ }
+ }
+ return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
+}
+
+Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
+ Value *LHS = SVI.getOperand(0);
+ Value *RHS = SVI.getOperand(1);
+ if (auto *V = SimplifyShuffleVectorInst(
+ LHS, RHS, SVI.getMask(), SVI.getType(), SQ.getWithInstruction(&SVI)))
+ return replaceInstUsesWith(SVI, V);
+
+ // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
+ // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
+ unsigned VWidth = SVI.getType()->getVectorNumElements();
+ unsigned LHSWidth = LHS->getType()->getVectorNumElements();
+ SmallVector<int, 16> Mask = SVI.getShuffleMask();
+ Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
+ if (LHS == RHS || isa<UndefValue>(LHS)) {
+ // Remap any references to RHS to use LHS.
+ SmallVector<Constant*, 16> Elts;
+ for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
+ if (Mask[i] < 0) {
+ Elts.push_back(UndefValue::get(Int32Ty));
+ continue;
+ }
+
+ if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
+ (Mask[i] < (int)e && isa<UndefValue>(LHS))) {
+ Mask[i] = -1; // Turn into undef.
+ Elts.push_back(UndefValue::get(Int32Ty));
+ } else {
+ Mask[i] = Mask[i] % e; // Force to LHS.
+ Elts.push_back(ConstantInt::get(Int32Ty, Mask[i]));
+ }
+ }
+ SVI.setOperand(0, SVI.getOperand(1));
+ SVI.setOperand(1, UndefValue::get(RHS->getType()));
+ SVI.setOperand(2, ConstantVector::get(Elts));
+ return &SVI;
+ }
+
+ if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
+ return I;
+
+ if (Instruction *I = foldSelectShuffle(SVI, Builder, DL))
+ return I;
+
+ if (Instruction *I = narrowVectorSelect(SVI, Builder))
+ return I;
+
+ APInt UndefElts(VWidth, 0);
+ APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
+ if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
+ if (V != &SVI)
+ return replaceInstUsesWith(SVI, V);
+ return &SVI;
+ }
+
+ if (Instruction *I = foldIdentityExtractShuffle(SVI))
+ return I;
+
+ // These transforms have the potential to lose undef knowledge, so they are
+ // intentionally placed after SimplifyDemandedVectorElts().
+ if (Instruction *I = foldShuffleWithInsert(SVI))
+ return I;
+ if (Instruction *I = foldIdentityPaddedShuffles(SVI))
+ return I;
+
+ if (VWidth == LHSWidth) {
+ // Analyze the shuffle, are the LHS or RHS and identity shuffles?
+ bool isLHSID, isRHSID;
+ recognizeIdentityMask(Mask, isLHSID, isRHSID);
+
+ // Eliminate identity shuffles.
+ if (isLHSID) return replaceInstUsesWith(SVI, LHS);
+ if (isRHSID) return replaceInstUsesWith(SVI, RHS);
+ }
+
+ if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) {
+ Value *V = evaluateInDifferentElementOrder(LHS, Mask);
+ return replaceInstUsesWith(SVI, V);
+ }
+
+ // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
+ // a non-vector type. We can instead bitcast the original vector followed by
+ // an extract of the desired element:
+ //
+ // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
+ // <4 x i32> <i32 0, i32 1, i32 2, i32 3>
+ // %1 = bitcast <4 x i8> %sroa to i32
+ // Becomes:
+ // %bc = bitcast <16 x i8> %in to <4 x i32>
+ // %ext = extractelement <4 x i32> %bc, i32 0
+ //
+ // If the shuffle is extracting a contiguous range of values from the input
+ // vector then each use which is a bitcast of the extracted size can be
+ // replaced. This will work if the vector types are compatible, and the begin
+ // index is aligned to a value in the casted vector type. If the begin index
+ // isn't aligned then we can shuffle the original vector (keeping the same
+ // vector type) before extracting.
+ //
+ // This code will bail out if the target type is fundamentally incompatible
+ // with vectors of the source type.
+ //
+ // Example of <16 x i8>, target type i32:
+ // Index range [4,8): v-----------v Will work.
+ // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
+ // <16 x i8>: | | | | | | | | | | | | | | | | |
+ // <4 x i32>: | | | | |
+ // +-----------+-----------+-----------+-----------+
+ // Index range [6,10): ^-----------^ Needs an extra shuffle.
+ // Target type i40: ^--------------^ Won't work, bail.
+ bool MadeChange = false;
+ if (isShuffleExtractingFromLHS(SVI, Mask)) {
+ Value *V = LHS;
+ unsigned MaskElems = Mask.size();
+ VectorType *SrcTy = cast<VectorType>(V->getType());
+ unsigned VecBitWidth = SrcTy->getBitWidth();
+ unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
+ assert(SrcElemBitWidth && "vector elements must have a bitwidth");
+ unsigned SrcNumElems = SrcTy->getNumElements();
+ SmallVector<BitCastInst *, 8> BCs;
+ DenseMap<Type *, Value *> NewBCs;
+ for (User *U : SVI.users())
+ if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
+ if (!BC->use_empty())
+ // Only visit bitcasts that weren't previously handled.
+ BCs.push_back(BC);
+ for (BitCastInst *BC : BCs) {
+ unsigned BegIdx = Mask.front();
+ Type *TgtTy = BC->getDestTy();
+ unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
+ if (!TgtElemBitWidth)
+ continue;
+ unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
+ bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
+ bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
+ if (!VecBitWidthsEqual)
+ continue;
+ if (!VectorType::isValidElementType(TgtTy))
+ continue;
+ VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems);
+ if (!BegIsAligned) {
+ // Shuffle the input so [0,NumElements) contains the output, and
+ // [NumElems,SrcNumElems) is undef.
+ SmallVector<Constant *, 16> ShuffleMask(SrcNumElems,
+ UndefValue::get(Int32Ty));
+ for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
+ ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx);
+ V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
+ ConstantVector::get(ShuffleMask),
+ SVI.getName() + ".extract");
+ BegIdx = 0;
+ }
+ unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
+ assert(SrcElemsPerTgtElem);
+ BegIdx /= SrcElemsPerTgtElem;
+ bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
+ auto *NewBC =
+ BCAlreadyExists
+ ? NewBCs[CastSrcTy]
+ : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
+ if (!BCAlreadyExists)
+ NewBCs[CastSrcTy] = NewBC;
+ auto *Ext = Builder.CreateExtractElement(
+ NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
+ // The shufflevector isn't being replaced: the bitcast that used it
+ // is. InstCombine will visit the newly-created instructions.
+ replaceInstUsesWith(*BC, Ext);
+ MadeChange = true;
+ }
+ }
+
+ // If the LHS is a shufflevector itself, see if we can combine it with this
+ // one without producing an unusual shuffle.
+ // Cases that might be simplified:
+ // 1.
+ // x1=shuffle(v1,v2,mask1)
+ // x=shuffle(x1,undef,mask)
+ // ==>
+ // x=shuffle(v1,undef,newMask)
+ // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
+ // 2.
+ // x1=shuffle(v1,undef,mask1)
+ // x=shuffle(x1,x2,mask)
+ // where v1.size() == mask1.size()
+ // ==>
+ // x=shuffle(v1,x2,newMask)
+ // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
+ // 3.
+ // x2=shuffle(v2,undef,mask2)
+ // x=shuffle(x1,x2,mask)
+ // where v2.size() == mask2.size()
+ // ==>
+ // x=shuffle(x1,v2,newMask)
+ // newMask[i] = (mask[i] < x1.size())
+ // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
+ // 4.
+ // x1=shuffle(v1,undef,mask1)
+ // x2=shuffle(v2,undef,mask2)
+ // x=shuffle(x1,x2,mask)
+ // where v1.size() == v2.size()
+ // ==>
+ // x=shuffle(v1,v2,newMask)
+ // newMask[i] = (mask[i] < x1.size())
+ // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
+ //
+ // Here we are really conservative:
+ // we are absolutely afraid of producing a shuffle mask not in the input
+ // program, because the code gen may not be smart enough to turn a merged
+ // shuffle into two specific shuffles: it may produce worse code. As such,
+ // we only merge two shuffles if the result is either a splat or one of the
+ // input shuffle masks. In this case, merging the shuffles just removes
+ // one instruction, which we know is safe. This is good for things like
+ // turning: (splat(splat)) -> splat, or
+ // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
+ ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
+ ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
+ if (LHSShuffle)
+ if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
+ LHSShuffle = nullptr;
+ if (RHSShuffle)
+ if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
+ RHSShuffle = nullptr;
+ if (!LHSShuffle && !RHSShuffle)
+ return MadeChange ? &SVI : nullptr;
+
+ Value* LHSOp0 = nullptr;
+ Value* LHSOp1 = nullptr;
+ Value* RHSOp0 = nullptr;
+ unsigned LHSOp0Width = 0;
+ unsigned RHSOp0Width = 0;
+ if (LHSShuffle) {
+ LHSOp0 = LHSShuffle->getOperand(0);
+ LHSOp1 = LHSShuffle->getOperand(1);
+ LHSOp0Width = LHSOp0->getType()->getVectorNumElements();
+ }
+ if (RHSShuffle) {
+ RHSOp0 = RHSShuffle->getOperand(0);
+ RHSOp0Width = RHSOp0->getType()->getVectorNumElements();
+ }
+ Value* newLHS = LHS;
+ Value* newRHS = RHS;
+ if (LHSShuffle) {
+ // case 1
+ if (isa<UndefValue>(RHS)) {
+ newLHS = LHSOp0;
+ newRHS = LHSOp1;
+ }
+ // case 2 or 4
+ else if (LHSOp0Width == LHSWidth) {
+ newLHS = LHSOp0;
+ }
+ }
+ // case 3 or 4
+ if (RHSShuffle && RHSOp0Width == LHSWidth) {
+ newRHS = RHSOp0;
+ }
+ // case 4
+ if (LHSOp0 == RHSOp0) {
+ newLHS = LHSOp0;
+ newRHS = nullptr;
+ }
+
+ if (newLHS == LHS && newRHS == RHS)
+ return MadeChange ? &SVI : nullptr;
+
+ SmallVector<int, 16> LHSMask;
+ SmallVector<int, 16> RHSMask;
+ if (newLHS != LHS)
+ LHSMask = LHSShuffle->getShuffleMask();
+ if (RHSShuffle && newRHS != RHS)
+ RHSMask = RHSShuffle->getShuffleMask();
+
+ unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
+ SmallVector<int, 16> newMask;
+ bool isSplat = true;
+ int SplatElt = -1;
+ // Create a new mask for the new ShuffleVectorInst so that the new
+ // ShuffleVectorInst is equivalent to the original one.
+ for (unsigned i = 0; i < VWidth; ++i) {
+ int eltMask;
+ if (Mask[i] < 0) {
+ // This element is an undef value.
+ eltMask = -1;
+ } else if (Mask[i] < (int)LHSWidth) {
+ // This element is from left hand side vector operand.
+ //
+ // If LHS is going to be replaced (case 1, 2, or 4), calculate the
+ // new mask value for the element.
+ if (newLHS != LHS) {
+ eltMask = LHSMask[Mask[i]];
+ // If the value selected is an undef value, explicitly specify it
+ // with a -1 mask value.
+ if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
+ eltMask = -1;
+ } else
+ eltMask = Mask[i];
+ } else {
+ // This element is from right hand side vector operand
+ //
+ // If the value selected is an undef value, explicitly specify it
+ // with a -1 mask value. (case 1)
+ if (isa<UndefValue>(RHS))
+ eltMask = -1;
+ // If RHS is going to be replaced (case 3 or 4), calculate the
+ // new mask value for the element.
+ else if (newRHS != RHS) {
+ eltMask = RHSMask[Mask[i]-LHSWidth];
+ // If the value selected is an undef value, explicitly specify it
+ // with a -1 mask value.
+ if (eltMask >= (int)RHSOp0Width) {
+ assert(isa<UndefValue>(RHSShuffle->getOperand(1))
+ && "should have been check above");
+ eltMask = -1;
+ }
+ } else
+ eltMask = Mask[i]-LHSWidth;
+
+ // If LHS's width is changed, shift the mask value accordingly.
+ // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
+ // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
+ // If newRHS == newLHS, we want to remap any references from newRHS to
+ // newLHS so that we can properly identify splats that may occur due to
+ // obfuscation across the two vectors.
+ if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
+ eltMask += newLHSWidth;
+ }
+
+ // Check if this could still be a splat.
+ if (eltMask >= 0) {
+ if (SplatElt >= 0 && SplatElt != eltMask)
+ isSplat = false;
+ SplatElt = eltMask;
+ }
+
+ newMask.push_back(eltMask);
+ }
+
+ // If the result mask is equal to one of the original shuffle masks,
+ // or is a splat, do the replacement.
+ if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
+ SmallVector<Constant*, 16> Elts;
+ for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
+ if (newMask[i] < 0) {
+ Elts.push_back(UndefValue::get(Int32Ty));
+ } else {
+ Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
+ }
+ }
+ if (!newRHS)
+ newRHS = UndefValue::get(newLHS->getType());
+ return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
+ }
+
+ // If the result mask is an identity, replace uses of this instruction with
+ // corresponding argument.
+ bool isLHSID, isRHSID;
+ recognizeIdentityMask(newMask, isLHSID, isRHSID);
+ if (isLHSID && VWidth == LHSOp0Width) return replaceInstUsesWith(SVI, newLHS);
+ if (isRHSID && VWidth == RHSOp0Width) return replaceInstUsesWith(SVI, newRHS);
+
+ return MadeChange ? &SVI : nullptr;
+}