summaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp')
-rw-r--r--llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp3337
1 files changed, 3337 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp b/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp
new file mode 100644
index 000000000000..d92ee11c2e1a
--- /dev/null
+++ b/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp
@@ -0,0 +1,3337 @@
+//===- AddressSanitizer.cpp - memory error detector -----------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is a part of AddressSanitizer, an address sanity checker.
+// Details of the algorithm:
+// https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/BinaryFormat/MachO.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/Comdat.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DIBuilder.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/InstVisitor.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Use.h"
+#include "llvm/IR/Value.h"
+#include "llvm/MC/MCSectionMachO.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/ScopedPrinter.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Instrumentation.h"
+#include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/ModuleUtils.h"
+#include "llvm/Transforms/Utils/PromoteMemToReg.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <iomanip>
+#include <limits>
+#include <memory>
+#include <sstream>
+#include <string>
+#include <tuple>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "asan"
+
+static const uint64_t kDefaultShadowScale = 3;
+static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
+static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
+static const uint64_t kDynamicShadowSentinel =
+ std::numeric_limits<uint64_t>::max();
+static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G.
+static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL;
+static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
+static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44;
+static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
+static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
+static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
+static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
+static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
+static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
+static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30;
+static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46;
+static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000;
+static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40;
+static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
+static const uint64_t kEmscriptenShadowOffset = 0;
+
+static const uint64_t kMyriadShadowScale = 5;
+static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL;
+static const uint64_t kMyriadMemorySize32 = 0x20000000ULL;
+static const uint64_t kMyriadTagShift = 29;
+static const uint64_t kMyriadDDRTag = 4;
+static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL;
+
+// The shadow memory space is dynamically allocated.
+static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel;
+
+static const size_t kMinStackMallocSize = 1 << 6; // 64B
+static const size_t kMaxStackMallocSize = 1 << 16; // 64K
+static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
+static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
+
+static const char *const kAsanModuleCtorName = "asan.module_ctor";
+static const char *const kAsanModuleDtorName = "asan.module_dtor";
+static const uint64_t kAsanCtorAndDtorPriority = 1;
+// On Emscripten, the system needs more than one priorities for constructors.
+static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50;
+static const char *const kAsanReportErrorTemplate = "__asan_report_";
+static const char *const kAsanRegisterGlobalsName = "__asan_register_globals";
+static const char *const kAsanUnregisterGlobalsName =
+ "__asan_unregister_globals";
+static const char *const kAsanRegisterImageGlobalsName =
+ "__asan_register_image_globals";
+static const char *const kAsanUnregisterImageGlobalsName =
+ "__asan_unregister_image_globals";
+static const char *const kAsanRegisterElfGlobalsName =
+ "__asan_register_elf_globals";
+static const char *const kAsanUnregisterElfGlobalsName =
+ "__asan_unregister_elf_globals";
+static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
+static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
+static const char *const kAsanInitName = "__asan_init";
+static const char *const kAsanVersionCheckNamePrefix =
+ "__asan_version_mismatch_check_v";
+static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp";
+static const char *const kAsanPtrSub = "__sanitizer_ptr_sub";
+static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return";
+static const int kMaxAsanStackMallocSizeClass = 10;
+static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_";
+static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_";
+static const char *const kAsanGenPrefix = "___asan_gen_";
+static const char *const kODRGenPrefix = "__odr_asan_gen_";
+static const char *const kSanCovGenPrefix = "__sancov_gen_";
+static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_";
+static const char *const kAsanPoisonStackMemoryName =
+ "__asan_poison_stack_memory";
+static const char *const kAsanUnpoisonStackMemoryName =
+ "__asan_unpoison_stack_memory";
+
+// ASan version script has __asan_* wildcard. Triple underscore prevents a
+// linker (gold) warning about attempting to export a local symbol.
+static const char *const kAsanGlobalsRegisteredFlagName =
+ "___asan_globals_registered";
+
+static const char *const kAsanOptionDetectUseAfterReturn =
+ "__asan_option_detect_stack_use_after_return";
+
+static const char *const kAsanShadowMemoryDynamicAddress =
+ "__asan_shadow_memory_dynamic_address";
+
+static const char *const kAsanAllocaPoison = "__asan_alloca_poison";
+static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison";
+
+// Accesses sizes are powers of two: 1, 2, 4, 8, 16.
+static const size_t kNumberOfAccessSizes = 5;
+
+static const unsigned kAllocaRzSize = 32;
+
+// Command-line flags.
+
+static cl::opt<bool> ClEnableKasan(
+ "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
+ cl::Hidden, cl::init(false));
+
+static cl::opt<bool> ClRecover(
+ "asan-recover",
+ cl::desc("Enable recovery mode (continue-after-error)."),
+ cl::Hidden, cl::init(false));
+
+static cl::opt<bool> ClInsertVersionCheck(
+ "asan-guard-against-version-mismatch",
+ cl::desc("Guard against compiler/runtime version mismatch."),
+ cl::Hidden, cl::init(true));
+
+// This flag may need to be replaced with -f[no-]asan-reads.
+static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
+ cl::desc("instrument read instructions"),
+ cl::Hidden, cl::init(true));
+
+static cl::opt<bool> ClInstrumentWrites(
+ "asan-instrument-writes", cl::desc("instrument write instructions"),
+ cl::Hidden, cl::init(true));
+
+static cl::opt<bool> ClInstrumentAtomics(
+ "asan-instrument-atomics",
+ cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
+ cl::init(true));
+
+static cl::opt<bool> ClAlwaysSlowPath(
+ "asan-always-slow-path",
+ cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
+ cl::init(false));
+
+static cl::opt<bool> ClForceDynamicShadow(
+ "asan-force-dynamic-shadow",
+ cl::desc("Load shadow address into a local variable for each function"),
+ cl::Hidden, cl::init(false));
+
+static cl::opt<bool>
+ ClWithIfunc("asan-with-ifunc",
+ cl::desc("Access dynamic shadow through an ifunc global on "
+ "platforms that support this"),
+ cl::Hidden, cl::init(true));
+
+static cl::opt<bool> ClWithIfuncSuppressRemat(
+ "asan-with-ifunc-suppress-remat",
+ cl::desc("Suppress rematerialization of dynamic shadow address by passing "
+ "it through inline asm in prologue."),
+ cl::Hidden, cl::init(true));
+
+// This flag limits the number of instructions to be instrumented
+// in any given BB. Normally, this should be set to unlimited (INT_MAX),
+// but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
+// set it to 10000.
+static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
+ "asan-max-ins-per-bb", cl::init(10000),
+ cl::desc("maximal number of instructions to instrument in any given BB"),
+ cl::Hidden);
+
+// This flag may need to be replaced with -f[no]asan-stack.
+static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
+ cl::Hidden, cl::init(true));
+static cl::opt<uint32_t> ClMaxInlinePoisoningSize(
+ "asan-max-inline-poisoning-size",
+ cl::desc(
+ "Inline shadow poisoning for blocks up to the given size in bytes."),
+ cl::Hidden, cl::init(64));
+
+static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
+ cl::desc("Check stack-use-after-return"),
+ cl::Hidden, cl::init(true));
+
+static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args",
+ cl::desc("Create redzones for byval "
+ "arguments (extra copy "
+ "required)"), cl::Hidden,
+ cl::init(true));
+
+static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
+ cl::desc("Check stack-use-after-scope"),
+ cl::Hidden, cl::init(false));
+
+// This flag may need to be replaced with -f[no]asan-globals.
+static cl::opt<bool> ClGlobals("asan-globals",
+ cl::desc("Handle global objects"), cl::Hidden,
+ cl::init(true));
+
+static cl::opt<bool> ClInitializers("asan-initialization-order",
+ cl::desc("Handle C++ initializer order"),
+ cl::Hidden, cl::init(true));
+
+static cl::opt<bool> ClInvalidPointerPairs(
+ "asan-detect-invalid-pointer-pair",
+ cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
+ cl::init(false));
+
+static cl::opt<bool> ClInvalidPointerCmp(
+ "asan-detect-invalid-pointer-cmp",
+ cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden,
+ cl::init(false));
+
+static cl::opt<bool> ClInvalidPointerSub(
+ "asan-detect-invalid-pointer-sub",
+ cl::desc("Instrument - operations with pointer operands"), cl::Hidden,
+ cl::init(false));
+
+static cl::opt<unsigned> ClRealignStack(
+ "asan-realign-stack",
+ cl::desc("Realign stack to the value of this flag (power of two)"),
+ cl::Hidden, cl::init(32));
+
+static cl::opt<int> ClInstrumentationWithCallsThreshold(
+ "asan-instrumentation-with-call-threshold",
+ cl::desc(
+ "If the function being instrumented contains more than "
+ "this number of memory accesses, use callbacks instead of "
+ "inline checks (-1 means never use callbacks)."),
+ cl::Hidden, cl::init(7000));
+
+static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
+ "asan-memory-access-callback-prefix",
+ cl::desc("Prefix for memory access callbacks"), cl::Hidden,
+ cl::init("__asan_"));
+
+static cl::opt<bool>
+ ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
+ cl::desc("instrument dynamic allocas"),
+ cl::Hidden, cl::init(true));
+
+static cl::opt<bool> ClSkipPromotableAllocas(
+ "asan-skip-promotable-allocas",
+ cl::desc("Do not instrument promotable allocas"), cl::Hidden,
+ cl::init(true));
+
+// These flags allow to change the shadow mapping.
+// The shadow mapping looks like
+// Shadow = (Mem >> scale) + offset
+
+static cl::opt<int> ClMappingScale("asan-mapping-scale",
+ cl::desc("scale of asan shadow mapping"),
+ cl::Hidden, cl::init(0));
+
+static cl::opt<uint64_t>
+ ClMappingOffset("asan-mapping-offset",
+ cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"),
+ cl::Hidden, cl::init(0));
+
+// Optimization flags. Not user visible, used mostly for testing
+// and benchmarking the tool.
+
+static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
+ cl::Hidden, cl::init(true));
+
+static cl::opt<bool> ClOptSameTemp(
+ "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
+ cl::Hidden, cl::init(true));
+
+static cl::opt<bool> ClOptGlobals("asan-opt-globals",
+ cl::desc("Don't instrument scalar globals"),
+ cl::Hidden, cl::init(true));
+
+static cl::opt<bool> ClOptStack(
+ "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
+ cl::Hidden, cl::init(false));
+
+static cl::opt<bool> ClDynamicAllocaStack(
+ "asan-stack-dynamic-alloca",
+ cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
+ cl::init(true));
+
+static cl::opt<uint32_t> ClForceExperiment(
+ "asan-force-experiment",
+ cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
+ cl::init(0));
+
+static cl::opt<bool>
+ ClUsePrivateAlias("asan-use-private-alias",
+ cl::desc("Use private aliases for global variables"),
+ cl::Hidden, cl::init(false));
+
+static cl::opt<bool>
+ ClUseOdrIndicator("asan-use-odr-indicator",
+ cl::desc("Use odr indicators to improve ODR reporting"),
+ cl::Hidden, cl::init(false));
+
+static cl::opt<bool>
+ ClUseGlobalsGC("asan-globals-live-support",
+ cl::desc("Use linker features to support dead "
+ "code stripping of globals"),
+ cl::Hidden, cl::init(true));
+
+// This is on by default even though there is a bug in gold:
+// https://sourceware.org/bugzilla/show_bug.cgi?id=19002
+static cl::opt<bool>
+ ClWithComdat("asan-with-comdat",
+ cl::desc("Place ASan constructors in comdat sections"),
+ cl::Hidden, cl::init(true));
+
+// Debug flags.
+
+static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
+ cl::init(0));
+
+static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
+ cl::Hidden, cl::init(0));
+
+static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
+ cl::desc("Debug func"));
+
+static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
+ cl::Hidden, cl::init(-1));
+
+static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
+ cl::Hidden, cl::init(-1));
+
+STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
+STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
+STATISTIC(NumOptimizedAccessesToGlobalVar,
+ "Number of optimized accesses to global vars");
+STATISTIC(NumOptimizedAccessesToStackVar,
+ "Number of optimized accesses to stack vars");
+
+namespace {
+
+/// This struct defines the shadow mapping using the rule:
+/// shadow = (mem >> Scale) ADD-or-OR Offset.
+/// If InGlobal is true, then
+/// extern char __asan_shadow[];
+/// shadow = (mem >> Scale) + &__asan_shadow
+struct ShadowMapping {
+ int Scale;
+ uint64_t Offset;
+ bool OrShadowOffset;
+ bool InGlobal;
+};
+
+} // end anonymous namespace
+
+static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize,
+ bool IsKasan) {
+ bool IsAndroid = TargetTriple.isAndroid();
+ bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS();
+ bool IsFreeBSD = TargetTriple.isOSFreeBSD();
+ bool IsNetBSD = TargetTriple.isOSNetBSD();
+ bool IsPS4CPU = TargetTriple.isPS4CPU();
+ bool IsLinux = TargetTriple.isOSLinux();
+ bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 ||
+ TargetTriple.getArch() == Triple::ppc64le;
+ bool IsSystemZ = TargetTriple.getArch() == Triple::systemz;
+ bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
+ bool IsMIPS32 = TargetTriple.isMIPS32();
+ bool IsMIPS64 = TargetTriple.isMIPS64();
+ bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb();
+ bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64;
+ bool IsWindows = TargetTriple.isOSWindows();
+ bool IsFuchsia = TargetTriple.isOSFuchsia();
+ bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad;
+ bool IsEmscripten = TargetTriple.isOSEmscripten();
+
+ ShadowMapping Mapping;
+
+ Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale;
+ if (ClMappingScale.getNumOccurrences() > 0) {
+ Mapping.Scale = ClMappingScale;
+ }
+
+ if (LongSize == 32) {
+ if (IsAndroid)
+ Mapping.Offset = kDynamicShadowSentinel;
+ else if (IsMIPS32)
+ Mapping.Offset = kMIPS32_ShadowOffset32;
+ else if (IsFreeBSD)
+ Mapping.Offset = kFreeBSD_ShadowOffset32;
+ else if (IsNetBSD)
+ Mapping.Offset = kNetBSD_ShadowOffset32;
+ else if (IsIOS)
+ Mapping.Offset = kDynamicShadowSentinel;
+ else if (IsWindows)
+ Mapping.Offset = kWindowsShadowOffset32;
+ else if (IsEmscripten)
+ Mapping.Offset = kEmscriptenShadowOffset;
+ else if (IsMyriad) {
+ uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 -
+ (kMyriadMemorySize32 >> Mapping.Scale));
+ Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale);
+ }
+ else
+ Mapping.Offset = kDefaultShadowOffset32;
+ } else { // LongSize == 64
+ // Fuchsia is always PIE, which means that the beginning of the address
+ // space is always available.
+ if (IsFuchsia)
+ Mapping.Offset = 0;
+ else if (IsPPC64)
+ Mapping.Offset = kPPC64_ShadowOffset64;
+ else if (IsSystemZ)
+ Mapping.Offset = kSystemZ_ShadowOffset64;
+ else if (IsFreeBSD && !IsMIPS64)
+ Mapping.Offset = kFreeBSD_ShadowOffset64;
+ else if (IsNetBSD) {
+ if (IsKasan)
+ Mapping.Offset = kNetBSDKasan_ShadowOffset64;
+ else
+ Mapping.Offset = kNetBSD_ShadowOffset64;
+ } else if (IsPS4CPU)
+ Mapping.Offset = kPS4CPU_ShadowOffset64;
+ else if (IsLinux && IsX86_64) {
+ if (IsKasan)
+ Mapping.Offset = kLinuxKasan_ShadowOffset64;
+ else
+ Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
+ (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
+ } else if (IsWindows && IsX86_64) {
+ Mapping.Offset = kWindowsShadowOffset64;
+ } else if (IsMIPS64)
+ Mapping.Offset = kMIPS64_ShadowOffset64;
+ else if (IsIOS)
+ Mapping.Offset = kDynamicShadowSentinel;
+ else if (IsAArch64)
+ Mapping.Offset = kAArch64_ShadowOffset64;
+ else
+ Mapping.Offset = kDefaultShadowOffset64;
+ }
+
+ if (ClForceDynamicShadow) {
+ Mapping.Offset = kDynamicShadowSentinel;
+ }
+
+ if (ClMappingOffset.getNumOccurrences() > 0) {
+ Mapping.Offset = ClMappingOffset;
+ }
+
+ // OR-ing shadow offset if more efficient (at least on x86) if the offset
+ // is a power of two, but on ppc64 we have to use add since the shadow
+ // offset is not necessary 1/8-th of the address space. On SystemZ,
+ // we could OR the constant in a single instruction, but it's more
+ // efficient to load it once and use indexed addressing.
+ Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU &&
+ !(Mapping.Offset & (Mapping.Offset - 1)) &&
+ Mapping.Offset != kDynamicShadowSentinel;
+ bool IsAndroidWithIfuncSupport =
+ IsAndroid && !TargetTriple.isAndroidVersionLT(21);
+ Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb;
+
+ return Mapping;
+}
+
+static size_t RedzoneSizeForScale(int MappingScale) {
+ // Redzone used for stack and globals is at least 32 bytes.
+ // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
+ return std::max(32U, 1U << MappingScale);
+}
+
+static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) {
+ if (TargetTriple.isOSEmscripten()) {
+ return kAsanEmscriptenCtorAndDtorPriority;
+ } else {
+ return kAsanCtorAndDtorPriority;
+ }
+}
+
+namespace {
+
+/// Module analysis for getting various metadata about the module.
+class ASanGlobalsMetadataWrapperPass : public ModulePass {
+public:
+ static char ID;
+
+ ASanGlobalsMetadataWrapperPass() : ModulePass(ID) {
+ initializeASanGlobalsMetadataWrapperPassPass(
+ *PassRegistry::getPassRegistry());
+ }
+
+ bool runOnModule(Module &M) override {
+ GlobalsMD = GlobalsMetadata(M);
+ return false;
+ }
+
+ StringRef getPassName() const override {
+ return "ASanGlobalsMetadataWrapperPass";
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesAll();
+ }
+
+ GlobalsMetadata &getGlobalsMD() { return GlobalsMD; }
+
+private:
+ GlobalsMetadata GlobalsMD;
+};
+
+char ASanGlobalsMetadataWrapperPass::ID = 0;
+
+/// AddressSanitizer: instrument the code in module to find memory bugs.
+struct AddressSanitizer {
+ AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD,
+ bool CompileKernel = false, bool Recover = false,
+ bool UseAfterScope = false)
+ : UseAfterScope(UseAfterScope || ClUseAfterScope), GlobalsMD(*GlobalsMD) {
+ this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover;
+ this->CompileKernel =
+ ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan : CompileKernel;
+
+ C = &(M.getContext());
+ LongSize = M.getDataLayout().getPointerSizeInBits();
+ IntptrTy = Type::getIntNTy(*C, LongSize);
+ TargetTriple = Triple(M.getTargetTriple());
+
+ Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
+ }
+
+ uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const {
+ uint64_t ArraySize = 1;
+ if (AI.isArrayAllocation()) {
+ const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize());
+ assert(CI && "non-constant array size");
+ ArraySize = CI->getZExtValue();
+ }
+ Type *Ty = AI.getAllocatedType();
+ uint64_t SizeInBytes =
+ AI.getModule()->getDataLayout().getTypeAllocSize(Ty);
+ return SizeInBytes * ArraySize;
+ }
+
+ /// Check if we want (and can) handle this alloca.
+ bool isInterestingAlloca(const AllocaInst &AI);
+
+ /// If it is an interesting memory access, return the PointerOperand
+ /// and set IsWrite/Alignment. Otherwise return nullptr.
+ /// MaybeMask is an output parameter for the mask Value, if we're looking at a
+ /// masked load/store.
+ Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite,
+ uint64_t *TypeSize, unsigned *Alignment,
+ Value **MaybeMask = nullptr);
+
+ void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I,
+ bool UseCalls, const DataLayout &DL);
+ void instrumentPointerComparisonOrSubtraction(Instruction *I);
+ void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
+ Value *Addr, uint32_t TypeSize, bool IsWrite,
+ Value *SizeArgument, bool UseCalls, uint32_t Exp);
+ void instrumentUnusualSizeOrAlignment(Instruction *I,
+ Instruction *InsertBefore, Value *Addr,
+ uint32_t TypeSize, bool IsWrite,
+ Value *SizeArgument, bool UseCalls,
+ uint32_t Exp);
+ Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
+ Value *ShadowValue, uint32_t TypeSize);
+ Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
+ bool IsWrite, size_t AccessSizeIndex,
+ Value *SizeArgument, uint32_t Exp);
+ void instrumentMemIntrinsic(MemIntrinsic *MI);
+ Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
+ bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI);
+ bool maybeInsertAsanInitAtFunctionEntry(Function &F);
+ void maybeInsertDynamicShadowAtFunctionEntry(Function &F);
+ void markEscapedLocalAllocas(Function &F);
+
+private:
+ friend struct FunctionStackPoisoner;
+
+ void initializeCallbacks(Module &M);
+
+ bool LooksLikeCodeInBug11395(Instruction *I);
+ bool GlobalIsLinkerInitialized(GlobalVariable *G);
+ bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
+ uint64_t TypeSize) const;
+
+ /// Helper to cleanup per-function state.
+ struct FunctionStateRAII {
+ AddressSanitizer *Pass;
+
+ FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
+ assert(Pass->ProcessedAllocas.empty() &&
+ "last pass forgot to clear cache");
+ assert(!Pass->LocalDynamicShadow);
+ }
+
+ ~FunctionStateRAII() {
+ Pass->LocalDynamicShadow = nullptr;
+ Pass->ProcessedAllocas.clear();
+ }
+ };
+
+ LLVMContext *C;
+ Triple TargetTriple;
+ int LongSize;
+ bool CompileKernel;
+ bool Recover;
+ bool UseAfterScope;
+ Type *IntptrTy;
+ ShadowMapping Mapping;
+ FunctionCallee AsanHandleNoReturnFunc;
+ FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction;
+ Constant *AsanShadowGlobal;
+
+ // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize).
+ FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes];
+ FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
+
+ // These arrays is indexed by AccessIsWrite and Experiment.
+ FunctionCallee AsanErrorCallbackSized[2][2];
+ FunctionCallee AsanMemoryAccessCallbackSized[2][2];
+
+ FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset;
+ InlineAsm *EmptyAsm;
+ Value *LocalDynamicShadow = nullptr;
+ const GlobalsMetadata &GlobalsMD;
+ DenseMap<const AllocaInst *, bool> ProcessedAllocas;
+};
+
+class AddressSanitizerLegacyPass : public FunctionPass {
+public:
+ static char ID;
+
+ explicit AddressSanitizerLegacyPass(bool CompileKernel = false,
+ bool Recover = false,
+ bool UseAfterScope = false)
+ : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover),
+ UseAfterScope(UseAfterScope) {
+ initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ StringRef getPassName() const override {
+ return "AddressSanitizerFunctionPass";
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<ASanGlobalsMetadataWrapperPass>();
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+ }
+
+ bool runOnFunction(Function &F) override {
+ GlobalsMetadata &GlobalsMD =
+ getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
+ const TargetLibraryInfo *TLI =
+ &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
+ AddressSanitizer ASan(*F.getParent(), &GlobalsMD, CompileKernel, Recover,
+ UseAfterScope);
+ return ASan.instrumentFunction(F, TLI);
+ }
+
+private:
+ bool CompileKernel;
+ bool Recover;
+ bool UseAfterScope;
+};
+
+class ModuleAddressSanitizer {
+public:
+ ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD,
+ bool CompileKernel = false, bool Recover = false,
+ bool UseGlobalsGC = true, bool UseOdrIndicator = false)
+ : GlobalsMD(*GlobalsMD), UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC),
+ // Enable aliases as they should have no downside with ODR indicators.
+ UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias),
+ UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator),
+ // Not a typo: ClWithComdat is almost completely pointless without
+ // ClUseGlobalsGC (because then it only works on modules without
+ // globals, which are rare); it is a prerequisite for ClUseGlobalsGC;
+ // and both suffer from gold PR19002 for which UseGlobalsGC constructor
+ // argument is designed as workaround. Therefore, disable both
+ // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to
+ // do globals-gc.
+ UseCtorComdat(UseGlobalsGC && ClWithComdat) {
+ this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover;
+ this->CompileKernel =
+ ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan : CompileKernel;
+
+ C = &(M.getContext());
+ int LongSize = M.getDataLayout().getPointerSizeInBits();
+ IntptrTy = Type::getIntNTy(*C, LongSize);
+ TargetTriple = Triple(M.getTargetTriple());
+ Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
+ }
+
+ bool instrumentModule(Module &);
+
+private:
+ void initializeCallbacks(Module &M);
+
+ bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat);
+ void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M,
+ ArrayRef<GlobalVariable *> ExtendedGlobals,
+ ArrayRef<Constant *> MetadataInitializers);
+ void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M,
+ ArrayRef<GlobalVariable *> ExtendedGlobals,
+ ArrayRef<Constant *> MetadataInitializers,
+ const std::string &UniqueModuleId);
+ void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M,
+ ArrayRef<GlobalVariable *> ExtendedGlobals,
+ ArrayRef<Constant *> MetadataInitializers);
+ void
+ InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M,
+ ArrayRef<GlobalVariable *> ExtendedGlobals,
+ ArrayRef<Constant *> MetadataInitializers);
+
+ GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer,
+ StringRef OriginalName);
+ void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata,
+ StringRef InternalSuffix);
+ IRBuilder<> CreateAsanModuleDtor(Module &M);
+
+ bool ShouldInstrumentGlobal(GlobalVariable *G);
+ bool ShouldUseMachOGlobalsSection() const;
+ StringRef getGlobalMetadataSection() const;
+ void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
+ void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
+ size_t MinRedzoneSizeForGlobal() const {
+ return RedzoneSizeForScale(Mapping.Scale);
+ }
+ int GetAsanVersion(const Module &M) const;
+
+ const GlobalsMetadata &GlobalsMD;
+ bool CompileKernel;
+ bool Recover;
+ bool UseGlobalsGC;
+ bool UsePrivateAlias;
+ bool UseOdrIndicator;
+ bool UseCtorComdat;
+ Type *IntptrTy;
+ LLVMContext *C;
+ Triple TargetTriple;
+ ShadowMapping Mapping;
+ FunctionCallee AsanPoisonGlobals;
+ FunctionCallee AsanUnpoisonGlobals;
+ FunctionCallee AsanRegisterGlobals;
+ FunctionCallee AsanUnregisterGlobals;
+ FunctionCallee AsanRegisterImageGlobals;
+ FunctionCallee AsanUnregisterImageGlobals;
+ FunctionCallee AsanRegisterElfGlobals;
+ FunctionCallee AsanUnregisterElfGlobals;
+
+ Function *AsanCtorFunction = nullptr;
+ Function *AsanDtorFunction = nullptr;
+};
+
+class ModuleAddressSanitizerLegacyPass : public ModulePass {
+public:
+ static char ID;
+
+ explicit ModuleAddressSanitizerLegacyPass(bool CompileKernel = false,
+ bool Recover = false,
+ bool UseGlobalGC = true,
+ bool UseOdrIndicator = false)
+ : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover),
+ UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator) {
+ initializeModuleAddressSanitizerLegacyPassPass(
+ *PassRegistry::getPassRegistry());
+ }
+
+ StringRef getPassName() const override { return "ModuleAddressSanitizer"; }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<ASanGlobalsMetadataWrapperPass>();
+ }
+
+ bool runOnModule(Module &M) override {
+ GlobalsMetadata &GlobalsMD =
+ getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
+ ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover,
+ UseGlobalGC, UseOdrIndicator);
+ return ASanModule.instrumentModule(M);
+ }
+
+private:
+ bool CompileKernel;
+ bool Recover;
+ bool UseGlobalGC;
+ bool UseOdrIndicator;
+};
+
+// Stack poisoning does not play well with exception handling.
+// When an exception is thrown, we essentially bypass the code
+// that unpoisones the stack. This is why the run-time library has
+// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
+// stack in the interceptor. This however does not work inside the
+// actual function which catches the exception. Most likely because the
+// compiler hoists the load of the shadow value somewhere too high.
+// This causes asan to report a non-existing bug on 453.povray.
+// It sounds like an LLVM bug.
+struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
+ Function &F;
+ AddressSanitizer &ASan;
+ DIBuilder DIB;
+ LLVMContext *C;
+ Type *IntptrTy;
+ Type *IntptrPtrTy;
+ ShadowMapping Mapping;
+
+ SmallVector<AllocaInst *, 16> AllocaVec;
+ SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp;
+ SmallVector<Instruction *, 8> RetVec;
+ unsigned StackAlignment;
+
+ FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
+ AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
+ FunctionCallee AsanSetShadowFunc[0x100] = {};
+ FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc;
+ FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc;
+
+ // Stores a place and arguments of poisoning/unpoisoning call for alloca.
+ struct AllocaPoisonCall {
+ IntrinsicInst *InsBefore;
+ AllocaInst *AI;
+ uint64_t Size;
+ bool DoPoison;
+ };
+ SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec;
+ SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec;
+ bool HasUntracedLifetimeIntrinsic = false;
+
+ SmallVector<AllocaInst *, 1> DynamicAllocaVec;
+ SmallVector<IntrinsicInst *, 1> StackRestoreVec;
+ AllocaInst *DynamicAllocaLayout = nullptr;
+ IntrinsicInst *LocalEscapeCall = nullptr;
+
+ // Maps Value to an AllocaInst from which the Value is originated.
+ using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>;
+ AllocaForValueMapTy AllocaForValue;
+
+ bool HasNonEmptyInlineAsm = false;
+ bool HasReturnsTwiceCall = false;
+ std::unique_ptr<CallInst> EmptyInlineAsm;
+
+ FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
+ : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false),
+ C(ASan.C), IntptrTy(ASan.IntptrTy),
+ IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping),
+ StackAlignment(1 << Mapping.Scale),
+ EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {}
+
+ bool runOnFunction() {
+ if (!ClStack) return false;
+
+ if (ClRedzoneByvalArgs)
+ copyArgsPassedByValToAllocas();
+
+ // Collect alloca, ret, lifetime instructions etc.
+ for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
+
+ if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
+
+ initializeCallbacks(*F.getParent());
+
+ if (HasUntracedLifetimeIntrinsic) {
+ // If there are lifetime intrinsics which couldn't be traced back to an
+ // alloca, we may not know exactly when a variable enters scope, and
+ // therefore should "fail safe" by not poisoning them.
+ StaticAllocaPoisonCallVec.clear();
+ DynamicAllocaPoisonCallVec.clear();
+ }
+
+ processDynamicAllocas();
+ processStaticAllocas();
+
+ if (ClDebugStack) {
+ LLVM_DEBUG(dbgs() << F);
+ }
+ return true;
+ }
+
+ // Arguments marked with the "byval" attribute are implicitly copied without
+ // using an alloca instruction. To produce redzones for those arguments, we
+ // copy them a second time into memory allocated with an alloca instruction.
+ void copyArgsPassedByValToAllocas();
+
+ // Finds all Alloca instructions and puts
+ // poisoned red zones around all of them.
+ // Then unpoison everything back before the function returns.
+ void processStaticAllocas();
+ void processDynamicAllocas();
+
+ void createDynamicAllocasInitStorage();
+
+ // ----------------------- Visitors.
+ /// Collect all Ret instructions.
+ void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); }
+
+ /// Collect all Resume instructions.
+ void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); }
+
+ /// Collect all CatchReturnInst instructions.
+ void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); }
+
+ void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
+ Value *SavedStack) {
+ IRBuilder<> IRB(InstBefore);
+ Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
+ // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
+ // need to adjust extracted SP to compute the address of the most recent
+ // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
+ // this purpose.
+ if (!isa<ReturnInst>(InstBefore)) {
+ Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
+ InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
+ {IntptrTy});
+
+ Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});
+
+ DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
+ DynamicAreaOffset);
+ }
+
+ IRB.CreateCall(
+ AsanAllocasUnpoisonFunc,
+ {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr});
+ }
+
+ // Unpoison dynamic allocas redzones.
+ void unpoisonDynamicAllocas() {
+ for (auto &Ret : RetVec)
+ unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
+
+ for (auto &StackRestoreInst : StackRestoreVec)
+ unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
+ StackRestoreInst->getOperand(0));
+ }
+
+ // Deploy and poison redzones around dynamic alloca call. To do this, we
+ // should replace this call with another one with changed parameters and
+ // replace all its uses with new address, so
+ // addr = alloca type, old_size, align
+ // is replaced by
+ // new_size = (old_size + additional_size) * sizeof(type)
+ // tmp = alloca i8, new_size, max(align, 32)
+ // addr = tmp + 32 (first 32 bytes are for the left redzone).
+ // Additional_size is added to make new memory allocation contain not only
+ // requested memory, but also left, partial and right redzones.
+ void handleDynamicAllocaCall(AllocaInst *AI);
+
+ /// Collect Alloca instructions we want (and can) handle.
+ void visitAllocaInst(AllocaInst &AI) {
+ if (!ASan.isInterestingAlloca(AI)) {
+ if (AI.isStaticAlloca()) {
+ // Skip over allocas that are present *before* the first instrumented
+ // alloca, we don't want to move those around.
+ if (AllocaVec.empty())
+ return;
+
+ StaticAllocasToMoveUp.push_back(&AI);
+ }
+ return;
+ }
+
+ StackAlignment = std::max(StackAlignment, AI.getAlignment());
+ if (!AI.isStaticAlloca())
+ DynamicAllocaVec.push_back(&AI);
+ else
+ AllocaVec.push_back(&AI);
+ }
+
+ /// Collect lifetime intrinsic calls to check for use-after-scope
+ /// errors.
+ void visitIntrinsicInst(IntrinsicInst &II) {
+ Intrinsic::ID ID = II.getIntrinsicID();
+ if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
+ if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
+ if (!ASan.UseAfterScope)
+ return;
+ if (!II.isLifetimeStartOrEnd())
+ return;
+ // Found lifetime intrinsic, add ASan instrumentation if necessary.
+ auto *Size = cast<ConstantInt>(II.getArgOperand(0));
+ // If size argument is undefined, don't do anything.
+ if (Size->isMinusOne()) return;
+ // Check that size doesn't saturate uint64_t and can
+ // be stored in IntptrTy.
+ const uint64_t SizeValue = Size->getValue().getLimitedValue();
+ if (SizeValue == ~0ULL ||
+ !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
+ return;
+ // Find alloca instruction that corresponds to llvm.lifetime argument.
+ AllocaInst *AI =
+ llvm::findAllocaForValue(II.getArgOperand(1), AllocaForValue);
+ if (!AI) {
+ HasUntracedLifetimeIntrinsic = true;
+ return;
+ }
+ // We're interested only in allocas we can handle.
+ if (!ASan.isInterestingAlloca(*AI))
+ return;
+ bool DoPoison = (ID == Intrinsic::lifetime_end);
+ AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
+ if (AI->isStaticAlloca())
+ StaticAllocaPoisonCallVec.push_back(APC);
+ else if (ClInstrumentDynamicAllocas)
+ DynamicAllocaPoisonCallVec.push_back(APC);
+ }
+
+ void visitCallSite(CallSite CS) {
+ Instruction *I = CS.getInstruction();
+ if (CallInst *CI = dyn_cast<CallInst>(I)) {
+ HasNonEmptyInlineAsm |= CI->isInlineAsm() &&
+ !CI->isIdenticalTo(EmptyInlineAsm.get()) &&
+ I != ASan.LocalDynamicShadow;
+ HasReturnsTwiceCall |= CI->canReturnTwice();
+ }
+ }
+
+ // ---------------------- Helpers.
+ void initializeCallbacks(Module &M);
+
+ // Copies bytes from ShadowBytes into shadow memory for indexes where
+ // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
+ // ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
+ void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
+ IRBuilder<> &IRB, Value *ShadowBase);
+ void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
+ size_t Begin, size_t End, IRBuilder<> &IRB,
+ Value *ShadowBase);
+ void copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
+ ArrayRef<uint8_t> ShadowBytes, size_t Begin,
+ size_t End, IRBuilder<> &IRB, Value *ShadowBase);
+
+ void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
+
+ Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
+ bool Dynamic);
+ PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
+ Instruction *ThenTerm, Value *ValueIfFalse);
+};
+
+} // end anonymous namespace
+
+void LocationMetadata::parse(MDNode *MDN) {
+ assert(MDN->getNumOperands() == 3);
+ MDString *DIFilename = cast<MDString>(MDN->getOperand(0));
+ Filename = DIFilename->getString();
+ LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
+ ColumnNo =
+ mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
+}
+
+// FIXME: It would be cleaner to instead attach relevant metadata to the globals
+// we want to sanitize instead and reading this metadata on each pass over a
+// function instead of reading module level metadata at first.
+GlobalsMetadata::GlobalsMetadata(Module &M) {
+ NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
+ if (!Globals)
+ return;
+ for (auto MDN : Globals->operands()) {
+ // Metadata node contains the global and the fields of "Entry".
+ assert(MDN->getNumOperands() == 5);
+ auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0));
+ // The optimizer may optimize away a global entirely.
+ if (!V)
+ continue;
+ auto *StrippedV = V->stripPointerCasts();
+ auto *GV = dyn_cast<GlobalVariable>(StrippedV);
+ if (!GV)
+ continue;
+ // We can already have an entry for GV if it was merged with another
+ // global.
+ Entry &E = Entries[GV];
+ if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
+ E.SourceLoc.parse(Loc);
+ if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
+ E.Name = Name->getString();
+ ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3));
+ E.IsDynInit |= IsDynInit->isOne();
+ ConstantInt *IsBlacklisted =
+ mdconst::extract<ConstantInt>(MDN->getOperand(4));
+ E.IsBlacklisted |= IsBlacklisted->isOne();
+ }
+}
+
+AnalysisKey ASanGlobalsMetadataAnalysis::Key;
+
+GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M,
+ ModuleAnalysisManager &AM) {
+ return GlobalsMetadata(M);
+}
+
+AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel, bool Recover,
+ bool UseAfterScope)
+ : CompileKernel(CompileKernel), Recover(Recover),
+ UseAfterScope(UseAfterScope) {}
+
+PreservedAnalyses AddressSanitizerPass::run(Function &F,
+ AnalysisManager<Function> &AM) {
+ auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
+ auto &MAM = MAMProxy.getManager();
+ Module &M = *F.getParent();
+ if (auto *R = MAM.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) {
+ const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
+ AddressSanitizer Sanitizer(M, R, CompileKernel, Recover, UseAfterScope);
+ if (Sanitizer.instrumentFunction(F, TLI))
+ return PreservedAnalyses::none();
+ return PreservedAnalyses::all();
+ }
+
+ report_fatal_error(
+ "The ASanGlobalsMetadataAnalysis is required to run before "
+ "AddressSanitizer can run");
+ return PreservedAnalyses::all();
+}
+
+ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(bool CompileKernel,
+ bool Recover,
+ bool UseGlobalGC,
+ bool UseOdrIndicator)
+ : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC),
+ UseOdrIndicator(UseOdrIndicator) {}
+
+PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M,
+ AnalysisManager<Module> &AM) {
+ GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M);
+ ModuleAddressSanitizer Sanitizer(M, &GlobalsMD, CompileKernel, Recover,
+ UseGlobalGC, UseOdrIndicator);
+ if (Sanitizer.instrumentModule(M))
+ return PreservedAnalyses::none();
+ return PreservedAnalyses::all();
+}
+
+INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md",
+ "Read metadata to mark which globals should be instrumented "
+ "when running ASan.",
+ false, true)
+
+char AddressSanitizerLegacyPass::ID = 0;
+
+INITIALIZE_PASS_BEGIN(
+ AddressSanitizerLegacyPass, "asan",
+ "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
+ false)
+INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_END(
+ AddressSanitizerLegacyPass, "asan",
+ "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
+ false)
+
+FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel,
+ bool Recover,
+ bool UseAfterScope) {
+ assert(!CompileKernel || Recover);
+ return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope);
+}
+
+char ModuleAddressSanitizerLegacyPass::ID = 0;
+
+INITIALIZE_PASS(
+ ModuleAddressSanitizerLegacyPass, "asan-module",
+ "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
+ "ModulePass",
+ false, false)
+
+ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass(
+ bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator) {
+ assert(!CompileKernel || Recover);
+ return new ModuleAddressSanitizerLegacyPass(CompileKernel, Recover,
+ UseGlobalsGC, UseOdrIndicator);
+}
+
+static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
+ size_t Res = countTrailingZeros(TypeSize / 8);
+ assert(Res < kNumberOfAccessSizes);
+ return Res;
+}
+
+/// Create a global describing a source location.
+static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
+ LocationMetadata MD) {
+ Constant *LocData[] = {
+ createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix),
+ ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
+ ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
+ };
+ auto LocStruct = ConstantStruct::getAnon(LocData);
+ auto GV = new GlobalVariable(M, LocStruct->getType(), true,
+ GlobalValue::PrivateLinkage, LocStruct,
+ kAsanGenPrefix);
+ GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
+ return GV;
+}
+
+/// Check if \p G has been created by a trusted compiler pass.
+static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) {
+ // Do not instrument @llvm.global_ctors, @llvm.used, etc.
+ if (G->getName().startswith("llvm."))
+ return true;
+
+ // Do not instrument asan globals.
+ if (G->getName().startswith(kAsanGenPrefix) ||
+ G->getName().startswith(kSanCovGenPrefix) ||
+ G->getName().startswith(kODRGenPrefix))
+ return true;
+
+ // Do not instrument gcov counter arrays.
+ if (G->getName() == "__llvm_gcov_ctr")
+ return true;
+
+ return false;
+}
+
+Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
+ // Shadow >> scale
+ Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
+ if (Mapping.Offset == 0) return Shadow;
+ // (Shadow >> scale) | offset
+ Value *ShadowBase;
+ if (LocalDynamicShadow)
+ ShadowBase = LocalDynamicShadow;
+ else
+ ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset);
+ if (Mapping.OrShadowOffset)
+ return IRB.CreateOr(Shadow, ShadowBase);
+ else
+ return IRB.CreateAdd(Shadow, ShadowBase);
+}
+
+// Instrument memset/memmove/memcpy
+void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
+ IRBuilder<> IRB(MI);
+ if (isa<MemTransferInst>(MI)) {
+ IRB.CreateCall(
+ isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
+ {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
+ IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
+ IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
+ } else if (isa<MemSetInst>(MI)) {
+ IRB.CreateCall(
+ AsanMemset,
+ {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
+ IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
+ IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
+ }
+ MI->eraseFromParent();
+}
+
+/// Check if we want (and can) handle this alloca.
+bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
+ auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
+
+ if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
+ return PreviouslySeenAllocaInfo->getSecond();
+
+ bool IsInteresting =
+ (AI.getAllocatedType()->isSized() &&
+ // alloca() may be called with 0 size, ignore it.
+ ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) &&
+ // We are only interested in allocas not promotable to registers.
+ // Promotable allocas are common under -O0.
+ (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
+ // inalloca allocas are not treated as static, and we don't want
+ // dynamic alloca instrumentation for them as well.
+ !AI.isUsedWithInAlloca() &&
+ // swifterror allocas are register promoted by ISel
+ !AI.isSwiftError());
+
+ ProcessedAllocas[&AI] = IsInteresting;
+ return IsInteresting;
+}
+
+Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I,
+ bool *IsWrite,
+ uint64_t *TypeSize,
+ unsigned *Alignment,
+ Value **MaybeMask) {
+ // Skip memory accesses inserted by another instrumentation.
+ if (I->hasMetadata("nosanitize")) return nullptr;
+
+ // Do not instrument the load fetching the dynamic shadow address.
+ if (LocalDynamicShadow == I)
+ return nullptr;
+
+ Value *PtrOperand = nullptr;
+ const DataLayout &DL = I->getModule()->getDataLayout();
+ if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+ if (!ClInstrumentReads) return nullptr;
+ *IsWrite = false;
+ *TypeSize = DL.getTypeStoreSizeInBits(LI->getType());
+ *Alignment = LI->getAlignment();
+ PtrOperand = LI->getPointerOperand();
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
+ if (!ClInstrumentWrites) return nullptr;
+ *IsWrite = true;
+ *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType());
+ *Alignment = SI->getAlignment();
+ PtrOperand = SI->getPointerOperand();
+ } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
+ if (!ClInstrumentAtomics) return nullptr;
+ *IsWrite = true;
+ *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType());
+ *Alignment = 0;
+ PtrOperand = RMW->getPointerOperand();
+ } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
+ if (!ClInstrumentAtomics) return nullptr;
+ *IsWrite = true;
+ *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType());
+ *Alignment = 0;
+ PtrOperand = XCHG->getPointerOperand();
+ } else if (auto CI = dyn_cast<CallInst>(I)) {
+ auto *F = dyn_cast<Function>(CI->getCalledValue());
+ if (F && (F->getName().startswith("llvm.masked.load.") ||
+ F->getName().startswith("llvm.masked.store."))) {
+ unsigned OpOffset = 0;
+ if (F->getName().startswith("llvm.masked.store.")) {
+ if (!ClInstrumentWrites)
+ return nullptr;
+ // Masked store has an initial operand for the value.
+ OpOffset = 1;
+ *IsWrite = true;
+ } else {
+ if (!ClInstrumentReads)
+ return nullptr;
+ *IsWrite = false;
+ }
+
+ auto BasePtr = CI->getOperand(0 + OpOffset);
+ auto Ty = cast<PointerType>(BasePtr->getType())->getElementType();
+ *TypeSize = DL.getTypeStoreSizeInBits(Ty);
+ if (auto AlignmentConstant =
+ dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
+ *Alignment = (unsigned)AlignmentConstant->getZExtValue();
+ else
+ *Alignment = 1; // No alignment guarantees. We probably got Undef
+ if (MaybeMask)
+ *MaybeMask = CI->getOperand(2 + OpOffset);
+ PtrOperand = BasePtr;
+ }
+ }
+
+ if (PtrOperand) {
+ // Do not instrument acesses from different address spaces; we cannot deal
+ // with them.
+ Type *PtrTy = cast<PointerType>(PtrOperand->getType()->getScalarType());
+ if (PtrTy->getPointerAddressSpace() != 0)
+ return nullptr;
+
+ // Ignore swifterror addresses.
+ // swifterror memory addresses are mem2reg promoted by instruction
+ // selection. As such they cannot have regular uses like an instrumentation
+ // function and it makes no sense to track them as memory.
+ if (PtrOperand->isSwiftError())
+ return nullptr;
+ }
+
+ // Treat memory accesses to promotable allocas as non-interesting since they
+ // will not cause memory violations. This greatly speeds up the instrumented
+ // executable at -O0.
+ if (ClSkipPromotableAllocas)
+ if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand))
+ return isInterestingAlloca(*AI) ? AI : nullptr;
+
+ return PtrOperand;
+}
+
+static bool isPointerOperand(Value *V) {
+ return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
+}
+
+// This is a rough heuristic; it may cause both false positives and
+// false negatives. The proper implementation requires cooperation with
+// the frontend.
+static bool isInterestingPointerComparison(Instruction *I) {
+ if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
+ if (!Cmp->isRelational())
+ return false;
+ } else {
+ return false;
+ }
+ return isPointerOperand(I->getOperand(0)) &&
+ isPointerOperand(I->getOperand(1));
+}
+
+// This is a rough heuristic; it may cause both false positives and
+// false negatives. The proper implementation requires cooperation with
+// the frontend.
+static bool isInterestingPointerSubtraction(Instruction *I) {
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
+ if (BO->getOpcode() != Instruction::Sub)
+ return false;
+ } else {
+ return false;
+ }
+ return isPointerOperand(I->getOperand(0)) &&
+ isPointerOperand(I->getOperand(1));
+}
+
+bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
+ // If a global variable does not have dynamic initialization we don't
+ // have to instrument it. However, if a global does not have initializer
+ // at all, we assume it has dynamic initializer (in other TU).
+ //
+ // FIXME: Metadata should be attched directly to the global directly instead
+ // of being added to llvm.asan.globals.
+ return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
+}
+
+void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
+ Instruction *I) {
+ IRBuilder<> IRB(I);
+ FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
+ Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
+ for (Value *&i : Param) {
+ if (i->getType()->isPointerTy())
+ i = IRB.CreatePointerCast(i, IntptrTy);
+ }
+ IRB.CreateCall(F, Param);
+}
+
+static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I,
+ Instruction *InsertBefore, Value *Addr,
+ unsigned Alignment, unsigned Granularity,
+ uint32_t TypeSize, bool IsWrite,
+ Value *SizeArgument, bool UseCalls,
+ uint32_t Exp) {
+ // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
+ // if the data is properly aligned.
+ if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
+ TypeSize == 128) &&
+ (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8))
+ return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite,
+ nullptr, UseCalls, Exp);
+ Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize,
+ IsWrite, nullptr, UseCalls, Exp);
+}
+
+static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass,
+ const DataLayout &DL, Type *IntptrTy,
+ Value *Mask, Instruction *I,
+ Value *Addr, unsigned Alignment,
+ unsigned Granularity, uint32_t TypeSize,
+ bool IsWrite, Value *SizeArgument,
+ bool UseCalls, uint32_t Exp) {
+ auto *VTy = cast<PointerType>(Addr->getType())->getElementType();
+ uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
+ unsigned Num = VTy->getVectorNumElements();
+ auto Zero = ConstantInt::get(IntptrTy, 0);
+ for (unsigned Idx = 0; Idx < Num; ++Idx) {
+ Value *InstrumentedAddress = nullptr;
+ Instruction *InsertBefore = I;
+ if (auto *Vector = dyn_cast<ConstantVector>(Mask)) {
+ // dyn_cast as we might get UndefValue
+ if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) {
+ if (Masked->isZero())
+ // Mask is constant false, so no instrumentation needed.
+ continue;
+ // If we have a true or undef value, fall through to doInstrumentAddress
+ // with InsertBefore == I
+ }
+ } else {
+ IRBuilder<> IRB(I);
+ Value *MaskElem = IRB.CreateExtractElement(Mask, Idx);
+ Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false);
+ InsertBefore = ThenTerm;
+ }
+
+ IRBuilder<> IRB(InsertBefore);
+ InstrumentedAddress =
+ IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)});
+ doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment,
+ Granularity, ElemTypeSize, IsWrite, SizeArgument,
+ UseCalls, Exp);
+ }
+}
+
+void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
+ Instruction *I, bool UseCalls,
+ const DataLayout &DL) {
+ bool IsWrite = false;
+ unsigned Alignment = 0;
+ uint64_t TypeSize = 0;
+ Value *MaybeMask = nullptr;
+ Value *Addr =
+ isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment, &MaybeMask);
+ assert(Addr);
+
+ // Optimization experiments.
+ // The experiments can be used to evaluate potential optimizations that remove
+ // instrumentation (assess false negatives). Instead of completely removing
+ // some instrumentation, you set Exp to a non-zero value (mask of optimization
+ // experiments that want to remove instrumentation of this instruction).
+ // If Exp is non-zero, this pass will emit special calls into runtime
+ // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
+ // make runtime terminate the program in a special way (with a different
+ // exit status). Then you run the new compiler on a buggy corpus, collect
+ // the special terminations (ideally, you don't see them at all -- no false
+ // negatives) and make the decision on the optimization.
+ uint32_t Exp = ClForceExperiment;
+
+ if (ClOpt && ClOptGlobals) {
+ // If initialization order checking is disabled, a simple access to a
+ // dynamically initialized global is always valid.
+ GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL));
+ if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
+ isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
+ NumOptimizedAccessesToGlobalVar++;
+ return;
+ }
+ }
+
+ if (ClOpt && ClOptStack) {
+ // A direct inbounds access to a stack variable is always valid.
+ if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
+ isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
+ NumOptimizedAccessesToStackVar++;
+ return;
+ }
+ }
+
+ if (IsWrite)
+ NumInstrumentedWrites++;
+ else
+ NumInstrumentedReads++;
+
+ unsigned Granularity = 1 << Mapping.Scale;
+ if (MaybeMask) {
+ instrumentMaskedLoadOrStore(this, DL, IntptrTy, MaybeMask, I, Addr,
+ Alignment, Granularity, TypeSize, IsWrite,
+ nullptr, UseCalls, Exp);
+ } else {
+ doInstrumentAddress(this, I, I, Addr, Alignment, Granularity, TypeSize,
+ IsWrite, nullptr, UseCalls, Exp);
+ }
+}
+
+Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
+ Value *Addr, bool IsWrite,
+ size_t AccessSizeIndex,
+ Value *SizeArgument,
+ uint32_t Exp) {
+ IRBuilder<> IRB(InsertBefore);
+ Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
+ CallInst *Call = nullptr;
+ if (SizeArgument) {
+ if (Exp == 0)
+ Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0],
+ {Addr, SizeArgument});
+ else
+ Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1],
+ {Addr, SizeArgument, ExpVal});
+ } else {
+ if (Exp == 0)
+ Call =
+ IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
+ else
+ Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
+ {Addr, ExpVal});
+ }
+
+ // We don't do Call->setDoesNotReturn() because the BB already has
+ // UnreachableInst at the end.
+ // This EmptyAsm is required to avoid callback merge.
+ IRB.CreateCall(EmptyAsm, {});
+ return Call;
+}
+
+Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
+ Value *ShadowValue,
+ uint32_t TypeSize) {
+ size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
+ // Addr & (Granularity - 1)
+ Value *LastAccessedByte =
+ IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
+ // (Addr & (Granularity - 1)) + size - 1
+ if (TypeSize / 8 > 1)
+ LastAccessedByte = IRB.CreateAdd(
+ LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
+ // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
+ LastAccessedByte =
+ IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
+ // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
+ return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
+}
+
+void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
+ Instruction *InsertBefore, Value *Addr,
+ uint32_t TypeSize, bool IsWrite,
+ Value *SizeArgument, bool UseCalls,
+ uint32_t Exp) {
+ bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad;
+
+ IRBuilder<> IRB(InsertBefore);
+ Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
+ size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
+
+ if (UseCalls) {
+ if (Exp == 0)
+ IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
+ AddrLong);
+ else
+ IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
+ {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
+ return;
+ }
+
+ if (IsMyriad) {
+ // Strip the cache bit and do range check.
+ // AddrLong &= ~kMyriadCacheBitMask32
+ AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32);
+ // Tag = AddrLong >> kMyriadTagShift
+ Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift);
+ // Tag == kMyriadDDRTag
+ Value *TagCheck =
+ IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag));
+
+ Instruction *TagCheckTerm =
+ SplitBlockAndInsertIfThen(TagCheck, InsertBefore, false,
+ MDBuilder(*C).createBranchWeights(1, 100000));
+ assert(cast<BranchInst>(TagCheckTerm)->isUnconditional());
+ IRB.SetInsertPoint(TagCheckTerm);
+ InsertBefore = TagCheckTerm;
+ }
+
+ Type *ShadowTy =
+ IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale));
+ Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
+ Value *ShadowPtr = memToShadow(AddrLong, IRB);
+ Value *CmpVal = Constant::getNullValue(ShadowTy);
+ Value *ShadowValue =
+ IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
+
+ Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
+ size_t Granularity = 1ULL << Mapping.Scale;
+ Instruction *CrashTerm = nullptr;
+
+ if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
+ // We use branch weights for the slow path check, to indicate that the slow
+ // path is rarely taken. This seems to be the case for SPEC benchmarks.
+ Instruction *CheckTerm = SplitBlockAndInsertIfThen(
+ Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
+ assert(cast<BranchInst>(CheckTerm)->isUnconditional());
+ BasicBlock *NextBB = CheckTerm->getSuccessor(0);
+ IRB.SetInsertPoint(CheckTerm);
+ Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
+ if (Recover) {
+ CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
+ } else {
+ BasicBlock *CrashBlock =
+ BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
+ CrashTerm = new UnreachableInst(*C, CrashBlock);
+ BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
+ ReplaceInstWithInst(CheckTerm, NewTerm);
+ }
+ } else {
+ CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
+ }
+
+ Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
+ AccessSizeIndex, SizeArgument, Exp);
+ Crash->setDebugLoc(OrigIns->getDebugLoc());
+}
+
+// Instrument unusual size or unusual alignment.
+// We can not do it with a single check, so we do 1-byte check for the first
+// and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
+// to report the actual access size.
+void AddressSanitizer::instrumentUnusualSizeOrAlignment(
+ Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize,
+ bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) {
+ IRBuilder<> IRB(InsertBefore);
+ Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
+ Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
+ if (UseCalls) {
+ if (Exp == 0)
+ IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0],
+ {AddrLong, Size});
+ else
+ IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1],
+ {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
+ } else {
+ Value *LastByte = IRB.CreateIntToPtr(
+ IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
+ Addr->getType());
+ instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp);
+ instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp);
+ }
+}
+
+void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit,
+ GlobalValue *ModuleName) {
+ // Set up the arguments to our poison/unpoison functions.
+ IRBuilder<> IRB(&GlobalInit.front(),
+ GlobalInit.front().getFirstInsertionPt());
+
+ // Add a call to poison all external globals before the given function starts.
+ Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
+ IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
+
+ // Add calls to unpoison all globals before each return instruction.
+ for (auto &BB : GlobalInit.getBasicBlockList())
+ if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
+ CallInst::Create(AsanUnpoisonGlobals, "", RI);
+}
+
+void ModuleAddressSanitizer::createInitializerPoisonCalls(
+ Module &M, GlobalValue *ModuleName) {
+ GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
+ if (!GV)
+ return;
+
+ ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer());
+ if (!CA)
+ return;
+
+ for (Use &OP : CA->operands()) {
+ if (isa<ConstantAggregateZero>(OP)) continue;
+ ConstantStruct *CS = cast<ConstantStruct>(OP);
+
+ // Must have a function or null ptr.
+ if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
+ if (F->getName() == kAsanModuleCtorName) continue;
+ auto *Priority = cast<ConstantInt>(CS->getOperand(0));
+ // Don't instrument CTORs that will run before asan.module_ctor.
+ if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple))
+ continue;
+ poisonOneInitializer(*F, ModuleName);
+ }
+ }
+}
+
+bool ModuleAddressSanitizer::ShouldInstrumentGlobal(GlobalVariable *G) {
+ Type *Ty = G->getValueType();
+ LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
+
+ // FIXME: Metadata should be attched directly to the global directly instead
+ // of being added to llvm.asan.globals.
+ if (GlobalsMD.get(G).IsBlacklisted) return false;
+ if (!Ty->isSized()) return false;
+ if (!G->hasInitializer()) return false;
+ if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
+ // Two problems with thread-locals:
+ // - The address of the main thread's copy can't be computed at link-time.
+ // - Need to poison all copies, not just the main thread's one.
+ if (G->isThreadLocal()) return false;
+ // For now, just ignore this Global if the alignment is large.
+ if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false;
+
+ // For non-COFF targets, only instrument globals known to be defined by this
+ // TU.
+ // FIXME: We can instrument comdat globals on ELF if we are using the
+ // GC-friendly metadata scheme.
+ if (!TargetTriple.isOSBinFormatCOFF()) {
+ if (!G->hasExactDefinition() || G->hasComdat())
+ return false;
+ } else {
+ // On COFF, don't instrument non-ODR linkages.
+ if (G->isInterposable())
+ return false;
+ }
+
+ // If a comdat is present, it must have a selection kind that implies ODR
+ // semantics: no duplicates, any, or exact match.
+ if (Comdat *C = G->getComdat()) {
+ switch (C->getSelectionKind()) {
+ case Comdat::Any:
+ case Comdat::ExactMatch:
+ case Comdat::NoDuplicates:
+ break;
+ case Comdat::Largest:
+ case Comdat::SameSize:
+ return false;
+ }
+ }
+
+ if (G->hasSection()) {
+ StringRef Section = G->getSection();
+
+ // Globals from llvm.metadata aren't emitted, do not instrument them.
+ if (Section == "llvm.metadata") return false;
+ // Do not instrument globals from special LLVM sections.
+ if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false;
+
+ // Do not instrument function pointers to initialization and termination
+ // routines: dynamic linker will not properly handle redzones.
+ if (Section.startswith(".preinit_array") ||
+ Section.startswith(".init_array") ||
+ Section.startswith(".fini_array")) {
+ return false;
+ }
+
+ // On COFF, if the section name contains '$', it is highly likely that the
+ // user is using section sorting to create an array of globals similar to
+ // the way initialization callbacks are registered in .init_array and
+ // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones
+ // to such globals is counterproductive, because the intent is that they
+ // will form an array, and out-of-bounds accesses are expected.
+ // See https://github.com/google/sanitizers/issues/305
+ // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
+ if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) {
+ LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "
+ << *G << "\n");
+ return false;
+ }
+
+ if (TargetTriple.isOSBinFormatMachO()) {
+ StringRef ParsedSegment, ParsedSection;
+ unsigned TAA = 0, StubSize = 0;
+ bool TAAParsed;
+ std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier(
+ Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize);
+ assert(ErrorCode.empty() && "Invalid section specifier.");
+
+ // Ignore the globals from the __OBJC section. The ObjC runtime assumes
+ // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
+ // them.
+ if (ParsedSegment == "__OBJC" ||
+ (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
+ LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
+ return false;
+ }
+ // See https://github.com/google/sanitizers/issues/32
+ // Constant CFString instances are compiled in the following way:
+ // -- the string buffer is emitted into
+ // __TEXT,__cstring,cstring_literals
+ // -- the constant NSConstantString structure referencing that buffer
+ // is placed into __DATA,__cfstring
+ // Therefore there's no point in placing redzones into __DATA,__cfstring.
+ // Moreover, it causes the linker to crash on OS X 10.7
+ if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
+ LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
+ return false;
+ }
+ // The linker merges the contents of cstring_literals and removes the
+ // trailing zeroes.
+ if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
+ LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+// On Mach-O platforms, we emit global metadata in a separate section of the
+// binary in order to allow the linker to properly dead strip. This is only
+// supported on recent versions of ld64.
+bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const {
+ if (!TargetTriple.isOSBinFormatMachO())
+ return false;
+
+ if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
+ return true;
+ if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
+ return true;
+ if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
+ return true;
+
+ return false;
+}
+
+StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const {
+ switch (TargetTriple.getObjectFormat()) {
+ case Triple::COFF: return ".ASAN$GL";
+ case Triple::ELF: return "asan_globals";
+ case Triple::MachO: return "__DATA,__asan_globals,regular";
+ case Triple::Wasm:
+ case Triple::XCOFF:
+ report_fatal_error(
+ "ModuleAddressSanitizer not implemented for object file format.");
+ case Triple::UnknownObjectFormat:
+ break;
+ }
+ llvm_unreachable("unsupported object format");
+}
+
+void ModuleAddressSanitizer::initializeCallbacks(Module &M) {
+ IRBuilder<> IRB(*C);
+
+ // Declare our poisoning and unpoisoning functions.
+ AsanPoisonGlobals =
+ M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy);
+ AsanUnpoisonGlobals =
+ M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy());
+
+ // Declare functions that register/unregister globals.
+ AsanRegisterGlobals = M.getOrInsertFunction(
+ kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
+ AsanUnregisterGlobals = M.getOrInsertFunction(
+ kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
+
+ // Declare the functions that find globals in a shared object and then invoke
+ // the (un)register function on them.
+ AsanRegisterImageGlobals = M.getOrInsertFunction(
+ kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
+ AsanUnregisterImageGlobals = M.getOrInsertFunction(
+ kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
+
+ AsanRegisterElfGlobals =
+ M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(),
+ IntptrTy, IntptrTy, IntptrTy);
+ AsanUnregisterElfGlobals =
+ M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(),
+ IntptrTy, IntptrTy, IntptrTy);
+}
+
+// Put the metadata and the instrumented global in the same group. This ensures
+// that the metadata is discarded if the instrumented global is discarded.
+void ModuleAddressSanitizer::SetComdatForGlobalMetadata(
+ GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) {
+ Module &M = *G->getParent();
+ Comdat *C = G->getComdat();
+ if (!C) {
+ if (!G->hasName()) {
+ // If G is unnamed, it must be internal. Give it an artificial name
+ // so we can put it in a comdat.
+ assert(G->hasLocalLinkage());
+ G->setName(Twine(kAsanGenPrefix) + "_anon_global");
+ }
+
+ if (!InternalSuffix.empty() && G->hasLocalLinkage()) {
+ std::string Name = G->getName();
+ Name += InternalSuffix;
+ C = M.getOrInsertComdat(Name);
+ } else {
+ C = M.getOrInsertComdat(G->getName());
+ }
+
+ // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private
+ // linkage to internal linkage so that a symbol table entry is emitted. This
+ // is necessary in order to create the comdat group.
+ if (TargetTriple.isOSBinFormatCOFF()) {
+ C->setSelectionKind(Comdat::NoDuplicates);
+ if (G->hasPrivateLinkage())
+ G->setLinkage(GlobalValue::InternalLinkage);
+ }
+ G->setComdat(C);
+ }
+
+ assert(G->hasComdat());
+ Metadata->setComdat(G->getComdat());
+}
+
+// Create a separate metadata global and put it in the appropriate ASan
+// global registration section.
+GlobalVariable *
+ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer,
+ StringRef OriginalName) {
+ auto Linkage = TargetTriple.isOSBinFormatMachO()
+ ? GlobalVariable::InternalLinkage
+ : GlobalVariable::PrivateLinkage;
+ GlobalVariable *Metadata = new GlobalVariable(
+ M, Initializer->getType(), false, Linkage, Initializer,
+ Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName));
+ Metadata->setSection(getGlobalMetadataSection());
+ return Metadata;
+}
+
+IRBuilder<> ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) {
+ AsanDtorFunction =
+ Function::Create(FunctionType::get(Type::getVoidTy(*C), false),
+ GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
+ BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
+
+ return IRBuilder<>(ReturnInst::Create(*C, AsanDtorBB));
+}
+
+void ModuleAddressSanitizer::InstrumentGlobalsCOFF(
+ IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
+ ArrayRef<Constant *> MetadataInitializers) {
+ assert(ExtendedGlobals.size() == MetadataInitializers.size());
+ auto &DL = M.getDataLayout();
+
+ for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
+ Constant *Initializer = MetadataInitializers[i];
+ GlobalVariable *G = ExtendedGlobals[i];
+ GlobalVariable *Metadata =
+ CreateMetadataGlobal(M, Initializer, G->getName());
+
+ // The MSVC linker always inserts padding when linking incrementally. We
+ // cope with that by aligning each struct to its size, which must be a power
+ // of two.
+ unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType());
+ assert(isPowerOf2_32(SizeOfGlobalStruct) &&
+ "global metadata will not be padded appropriately");
+ Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct));
+
+ SetComdatForGlobalMetadata(G, Metadata, "");
+ }
+}
+
+void ModuleAddressSanitizer::InstrumentGlobalsELF(
+ IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
+ ArrayRef<Constant *> MetadataInitializers,
+ const std::string &UniqueModuleId) {
+ assert(ExtendedGlobals.size() == MetadataInitializers.size());
+
+ SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
+ for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
+ GlobalVariable *G = ExtendedGlobals[i];
+ GlobalVariable *Metadata =
+ CreateMetadataGlobal(M, MetadataInitializers[i], G->getName());
+ MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
+ Metadata->setMetadata(LLVMContext::MD_associated, MD);
+ MetadataGlobals[i] = Metadata;
+
+ SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId);
+ }
+
+ // Update llvm.compiler.used, adding the new metadata globals. This is
+ // needed so that during LTO these variables stay alive.
+ if (!MetadataGlobals.empty())
+ appendToCompilerUsed(M, MetadataGlobals);
+
+ // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
+ // to look up the loaded image that contains it. Second, we can store in it
+ // whether registration has already occurred, to prevent duplicate
+ // registration.
+ //
+ // Common linkage ensures that there is only one global per shared library.
+ GlobalVariable *RegisteredFlag = new GlobalVariable(
+ M, IntptrTy, false, GlobalVariable::CommonLinkage,
+ ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
+ RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
+
+ // Create start and stop symbols.
+ GlobalVariable *StartELFMetadata = new GlobalVariable(
+ M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
+ "__start_" + getGlobalMetadataSection());
+ StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
+ GlobalVariable *StopELFMetadata = new GlobalVariable(
+ M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
+ "__stop_" + getGlobalMetadataSection());
+ StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
+
+ // Create a call to register the globals with the runtime.
+ IRB.CreateCall(AsanRegisterElfGlobals,
+ {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
+ IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
+ IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
+
+ // We also need to unregister globals at the end, e.g., when a shared library
+ // gets closed.
+ IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M);
+ IRB_Dtor.CreateCall(AsanUnregisterElfGlobals,
+ {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
+ IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
+ IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
+}
+
+void ModuleAddressSanitizer::InstrumentGlobalsMachO(
+ IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
+ ArrayRef<Constant *> MetadataInitializers) {
+ assert(ExtendedGlobals.size() == MetadataInitializers.size());
+
+ // On recent Mach-O platforms, use a structure which binds the liveness of
+ // the global variable to the metadata struct. Keep the list of "Liveness" GV
+ // created to be added to llvm.compiler.used
+ StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy);
+ SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size());
+
+ for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
+ Constant *Initializer = MetadataInitializers[i];
+ GlobalVariable *G = ExtendedGlobals[i];
+ GlobalVariable *Metadata =
+ CreateMetadataGlobal(M, Initializer, G->getName());
+
+ // On recent Mach-O platforms, we emit the global metadata in a way that
+ // allows the linker to properly strip dead globals.
+ auto LivenessBinder =
+ ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u),
+ ConstantExpr::getPointerCast(Metadata, IntptrTy));
+ GlobalVariable *Liveness = new GlobalVariable(
+ M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder,
+ Twine("__asan_binder_") + G->getName());
+ Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
+ LivenessGlobals[i] = Liveness;
+ }
+
+ // Update llvm.compiler.used, adding the new liveness globals. This is
+ // needed so that during LTO these variables stay alive. The alternative
+ // would be to have the linker handling the LTO symbols, but libLTO
+ // current API does not expose access to the section for each symbol.
+ if (!LivenessGlobals.empty())
+ appendToCompilerUsed(M, LivenessGlobals);
+
+ // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
+ // to look up the loaded image that contains it. Second, we can store in it
+ // whether registration has already occurred, to prevent duplicate
+ // registration.
+ //
+ // common linkage ensures that there is only one global per shared library.
+ GlobalVariable *RegisteredFlag = new GlobalVariable(
+ M, IntptrTy, false, GlobalVariable::CommonLinkage,
+ ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
+ RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
+
+ IRB.CreateCall(AsanRegisterImageGlobals,
+ {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
+
+ // We also need to unregister globals at the end, e.g., when a shared library
+ // gets closed.
+ IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M);
+ IRB_Dtor.CreateCall(AsanUnregisterImageGlobals,
+ {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
+}
+
+void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray(
+ IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
+ ArrayRef<Constant *> MetadataInitializers) {
+ assert(ExtendedGlobals.size() == MetadataInitializers.size());
+ unsigned N = ExtendedGlobals.size();
+ assert(N > 0);
+
+ // On platforms that don't have a custom metadata section, we emit an array
+ // of global metadata structures.
+ ArrayType *ArrayOfGlobalStructTy =
+ ArrayType::get(MetadataInitializers[0]->getType(), N);
+ auto AllGlobals = new GlobalVariable(
+ M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
+ ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), "");
+ if (Mapping.Scale > 3)
+ AllGlobals->setAlignment(Align(1ULL << Mapping.Scale));
+
+ IRB.CreateCall(AsanRegisterGlobals,
+ {IRB.CreatePointerCast(AllGlobals, IntptrTy),
+ ConstantInt::get(IntptrTy, N)});
+
+ // We also need to unregister globals at the end, e.g., when a shared library
+ // gets closed.
+ IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M);
+ IRB_Dtor.CreateCall(AsanUnregisterGlobals,
+ {IRB.CreatePointerCast(AllGlobals, IntptrTy),
+ ConstantInt::get(IntptrTy, N)});
+}
+
+// This function replaces all global variables with new variables that have
+// trailing redzones. It also creates a function that poisons
+// redzones and inserts this function into llvm.global_ctors.
+// Sets *CtorComdat to true if the global registration code emitted into the
+// asan constructor is comdat-compatible.
+bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M,
+ bool *CtorComdat) {
+ *CtorComdat = false;
+
+ SmallVector<GlobalVariable *, 16> GlobalsToChange;
+
+ for (auto &G : M.globals()) {
+ if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G);
+ }
+
+ size_t n = GlobalsToChange.size();
+ if (n == 0) {
+ *CtorComdat = true;
+ return false;
+ }
+
+ auto &DL = M.getDataLayout();
+
+ // A global is described by a structure
+ // size_t beg;
+ // size_t size;
+ // size_t size_with_redzone;
+ // const char *name;
+ // const char *module_name;
+ // size_t has_dynamic_init;
+ // void *source_location;
+ // size_t odr_indicator;
+ // We initialize an array of such structures and pass it to a run-time call.
+ StructType *GlobalStructTy =
+ StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
+ IntptrTy, IntptrTy, IntptrTy);
+ SmallVector<GlobalVariable *, 16> NewGlobals(n);
+ SmallVector<Constant *, 16> Initializers(n);
+
+ bool HasDynamicallyInitializedGlobals = false;
+
+ // We shouldn't merge same module names, as this string serves as unique
+ // module ID in runtime.
+ GlobalVariable *ModuleName = createPrivateGlobalForString(
+ M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix);
+
+ for (size_t i = 0; i < n; i++) {
+ static const uint64_t kMaxGlobalRedzone = 1 << 18;
+ GlobalVariable *G = GlobalsToChange[i];
+
+ // FIXME: Metadata should be attched directly to the global directly instead
+ // of being added to llvm.asan.globals.
+ auto MD = GlobalsMD.get(G);
+ StringRef NameForGlobal = G->getName();
+ // Create string holding the global name (use global name from metadata
+ // if it's available, otherwise just write the name of global variable).
+ GlobalVariable *Name = createPrivateGlobalForString(
+ M, MD.Name.empty() ? NameForGlobal : MD.Name,
+ /*AllowMerging*/ true, kAsanGenPrefix);
+
+ Type *Ty = G->getValueType();
+ uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
+ uint64_t MinRZ = MinRedzoneSizeForGlobal();
+ // MinRZ <= RZ <= kMaxGlobalRedzone
+ // and trying to make RZ to be ~ 1/4 of SizeInBytes.
+ uint64_t RZ = std::max(
+ MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ));
+ uint64_t RightRedzoneSize = RZ;
+ // Round up to MinRZ
+ if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ);
+ assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0);
+ Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
+
+ StructType *NewTy = StructType::get(Ty, RightRedZoneTy);
+ Constant *NewInitializer = ConstantStruct::get(
+ NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy));
+
+ // Create a new global variable with enough space for a redzone.
+ GlobalValue::LinkageTypes Linkage = G->getLinkage();
+ if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
+ Linkage = GlobalValue::InternalLinkage;
+ GlobalVariable *NewGlobal =
+ new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer,
+ "", G, G->getThreadLocalMode());
+ NewGlobal->copyAttributesFrom(G);
+ NewGlobal->setComdat(G->getComdat());
+ NewGlobal->setAlignment(MaybeAlign(MinRZ));
+ // Don't fold globals with redzones. ODR violation detector and redzone
+ // poisoning implicitly creates a dependence on the global's address, so it
+ // is no longer valid for it to be marked unnamed_addr.
+ NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None);
+
+ // Move null-terminated C strings to "__asan_cstring" section on Darwin.
+ if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() &&
+ G->isConstant()) {
+ auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer());
+ if (Seq && Seq->isCString())
+ NewGlobal->setSection("__TEXT,__asan_cstring,regular");
+ }
+
+ // Transfer the debug info. The payload starts at offset zero so we can
+ // copy the debug info over as is.
+ SmallVector<DIGlobalVariableExpression *, 1> GVs;
+ G->getDebugInfo(GVs);
+ for (auto *GV : GVs)
+ NewGlobal->addDebugInfo(GV);
+
+ Value *Indices2[2];
+ Indices2[0] = IRB.getInt32(0);
+ Indices2[1] = IRB.getInt32(0);
+
+ G->replaceAllUsesWith(
+ ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
+ NewGlobal->takeName(G);
+ G->eraseFromParent();
+ NewGlobals[i] = NewGlobal;
+
+ Constant *SourceLoc;
+ if (!MD.SourceLoc.empty()) {
+ auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
+ SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
+ } else {
+ SourceLoc = ConstantInt::get(IntptrTy, 0);
+ }
+
+ Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy());
+ GlobalValue *InstrumentedGlobal = NewGlobal;
+
+ bool CanUsePrivateAliases =
+ TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() ||
+ TargetTriple.isOSBinFormatWasm();
+ if (CanUsePrivateAliases && UsePrivateAlias) {
+ // Create local alias for NewGlobal to avoid crash on ODR between
+ // instrumented and non-instrumented libraries.
+ InstrumentedGlobal =
+ GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal);
+ }
+
+ // ODR should not happen for local linkage.
+ if (NewGlobal->hasLocalLinkage()) {
+ ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1),
+ IRB.getInt8PtrTy());
+ } else if (UseOdrIndicator) {
+ // With local aliases, we need to provide another externally visible
+ // symbol __odr_asan_XXX to detect ODR violation.
+ auto *ODRIndicatorSym =
+ new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
+ Constant::getNullValue(IRB.getInt8Ty()),
+ kODRGenPrefix + NameForGlobal, nullptr,
+ NewGlobal->getThreadLocalMode());
+
+ // Set meaningful attributes for indicator symbol.
+ ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
+ ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
+ ODRIndicatorSym->setAlignment(Align::None());
+ ODRIndicator = ODRIndicatorSym;
+ }
+
+ Constant *Initializer = ConstantStruct::get(
+ GlobalStructTy,
+ ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
+ ConstantInt::get(IntptrTy, SizeInBytes),
+ ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
+ ConstantExpr::getPointerCast(Name, IntptrTy),
+ ConstantExpr::getPointerCast(ModuleName, IntptrTy),
+ ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc,
+ ConstantExpr::getPointerCast(ODRIndicator, IntptrTy));
+
+ if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true;
+
+ LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
+
+ Initializers[i] = Initializer;
+ }
+
+ // Add instrumented globals to llvm.compiler.used list to avoid LTO from
+ // ConstantMerge'ing them.
+ SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList;
+ for (size_t i = 0; i < n; i++) {
+ GlobalVariable *G = NewGlobals[i];
+ if (G->getName().empty()) continue;
+ GlobalsToAddToUsedList.push_back(G);
+ }
+ appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList));
+
+ std::string ELFUniqueModuleId =
+ (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M)
+ : "";
+
+ if (!ELFUniqueModuleId.empty()) {
+ InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId);
+ *CtorComdat = true;
+ } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) {
+ InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers);
+ } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) {
+ InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers);
+ } else {
+ InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers);
+ }
+
+ // Create calls for poisoning before initializers run and unpoisoning after.
+ if (HasDynamicallyInitializedGlobals)
+ createInitializerPoisonCalls(M, ModuleName);
+
+ LLVM_DEBUG(dbgs() << M);
+ return true;
+}
+
+int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const {
+ int LongSize = M.getDataLayout().getPointerSizeInBits();
+ bool isAndroid = Triple(M.getTargetTriple()).isAndroid();
+ int Version = 8;
+ // 32-bit Android is one version ahead because of the switch to dynamic
+ // shadow.
+ Version += (LongSize == 32 && isAndroid);
+ return Version;
+}
+
+bool ModuleAddressSanitizer::instrumentModule(Module &M) {
+ initializeCallbacks(M);
+
+ if (CompileKernel)
+ return false;
+
+ // Create a module constructor. A destructor is created lazily because not all
+ // platforms, and not all modules need it.
+ std::string AsanVersion = std::to_string(GetAsanVersion(M));
+ std::string VersionCheckName =
+ ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : "";
+ std::tie(AsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions(
+ M, kAsanModuleCtorName, kAsanInitName, /*InitArgTypes=*/{},
+ /*InitArgs=*/{}, VersionCheckName);
+
+ bool CtorComdat = true;
+ // TODO(glider): temporarily disabled globals instrumentation for KASan.
+ if (ClGlobals) {
+ IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator());
+ InstrumentGlobals(IRB, M, &CtorComdat);
+ }
+
+ const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple);
+
+ // Put the constructor and destructor in comdat if both
+ // (1) global instrumentation is not TU-specific
+ // (2) target is ELF.
+ if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) {
+ AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName));
+ appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction);
+ if (AsanDtorFunction) {
+ AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName));
+ appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction);
+ }
+ } else {
+ appendToGlobalCtors(M, AsanCtorFunction, Priority);
+ if (AsanDtorFunction)
+ appendToGlobalDtors(M, AsanDtorFunction, Priority);
+ }
+
+ return true;
+}
+
+void AddressSanitizer::initializeCallbacks(Module &M) {
+ IRBuilder<> IRB(*C);
+ // Create __asan_report* callbacks.
+ // IsWrite, TypeSize and Exp are encoded in the function name.
+ for (int Exp = 0; Exp < 2; Exp++) {
+ for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
+ const std::string TypeStr = AccessIsWrite ? "store" : "load";
+ const std::string ExpStr = Exp ? "exp_" : "";
+ const std::string EndingStr = Recover ? "_noabort" : "";
+
+ SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy};
+ SmallVector<Type *, 2> Args1{1, IntptrTy};
+ if (Exp) {
+ Type *ExpType = Type::getInt32Ty(*C);
+ Args2.push_back(ExpType);
+ Args1.push_back(ExpType);
+ }
+ AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
+ kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr,
+ FunctionType::get(IRB.getVoidTy(), Args2, false));
+
+ AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
+ ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
+ FunctionType::get(IRB.getVoidTy(), Args2, false));
+
+ for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
+ AccessSizeIndex++) {
+ const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
+ AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
+ M.getOrInsertFunction(
+ kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
+ FunctionType::get(IRB.getVoidTy(), Args1, false));
+
+ AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
+ M.getOrInsertFunction(
+ ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
+ FunctionType::get(IRB.getVoidTy(), Args1, false));
+ }
+ }
+ }
+
+ const std::string MemIntrinCallbackPrefix =
+ CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
+ AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove",
+ IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
+ IRB.getInt8PtrTy(), IntptrTy);
+ AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy",
+ IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
+ IRB.getInt8PtrTy(), IntptrTy);
+ AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset",
+ IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
+ IRB.getInt32Ty(), IntptrTy);
+
+ AsanHandleNoReturnFunc =
+ M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy());
+
+ AsanPtrCmpFunction =
+ M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy);
+ AsanPtrSubFunction =
+ M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy);
+ // We insert an empty inline asm after __asan_report* to avoid callback merge.
+ EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
+ StringRef(""), StringRef(""),
+ /*hasSideEffects=*/true);
+ if (Mapping.InGlobal)
+ AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow",
+ ArrayType::get(IRB.getInt8Ty(), 0));
+}
+
+bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
+ // For each NSObject descendant having a +load method, this method is invoked
+ // by the ObjC runtime before any of the static constructors is called.
+ // Therefore we need to instrument such methods with a call to __asan_init
+ // at the beginning in order to initialize our runtime before any access to
+ // the shadow memory.
+ // We cannot just ignore these methods, because they may call other
+ // instrumented functions.
+ if (F.getName().find(" load]") != std::string::npos) {
+ FunctionCallee AsanInitFunction =
+ declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {});
+ IRBuilder<> IRB(&F.front(), F.front().begin());
+ IRB.CreateCall(AsanInitFunction, {});
+ return true;
+ }
+ return false;
+}
+
+void AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) {
+ // Generate code only when dynamic addressing is needed.
+ if (Mapping.Offset != kDynamicShadowSentinel)
+ return;
+
+ IRBuilder<> IRB(&F.front().front());
+ if (Mapping.InGlobal) {
+ if (ClWithIfuncSuppressRemat) {
+ // An empty inline asm with input reg == output reg.
+ // An opaque pointer-to-int cast, basically.
+ InlineAsm *Asm = InlineAsm::get(
+ FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false),
+ StringRef(""), StringRef("=r,0"),
+ /*hasSideEffects=*/false);
+ LocalDynamicShadow =
+ IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow");
+ } else {
+ LocalDynamicShadow =
+ IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow");
+ }
+ } else {
+ Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
+ kAsanShadowMemoryDynamicAddress, IntptrTy);
+ LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress);
+ }
+}
+
+void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
+ // Find the one possible call to llvm.localescape and pre-mark allocas passed
+ // to it as uninteresting. This assumes we haven't started processing allocas
+ // yet. This check is done up front because iterating the use list in
+ // isInterestingAlloca would be algorithmically slower.
+ assert(ProcessedAllocas.empty() && "must process localescape before allocas");
+
+ // Try to get the declaration of llvm.localescape. If it's not in the module,
+ // we can exit early.
+ if (!F.getParent()->getFunction("llvm.localescape")) return;
+
+ // Look for a call to llvm.localescape call in the entry block. It can't be in
+ // any other block.
+ for (Instruction &I : F.getEntryBlock()) {
+ IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
+ if (II && II->getIntrinsicID() == Intrinsic::localescape) {
+ // We found a call. Mark all the allocas passed in as uninteresting.
+ for (Value *Arg : II->arg_operands()) {
+ AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
+ assert(AI && AI->isStaticAlloca() &&
+ "non-static alloca arg to localescape");
+ ProcessedAllocas[AI] = false;
+ }
+ break;
+ }
+ }
+}
+
+bool AddressSanitizer::instrumentFunction(Function &F,
+ const TargetLibraryInfo *TLI) {
+ if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
+ if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false;
+ if (F.getName().startswith("__asan_")) return false;
+
+ bool FunctionModified = false;
+
+ // If needed, insert __asan_init before checking for SanitizeAddress attr.
+ // This function needs to be called even if the function body is not
+ // instrumented.
+ if (maybeInsertAsanInitAtFunctionEntry(F))
+ FunctionModified = true;
+
+ // Leave if the function doesn't need instrumentation.
+ if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified;
+
+ LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
+
+ initializeCallbacks(*F.getParent());
+
+ FunctionStateRAII CleanupObj(this);
+
+ maybeInsertDynamicShadowAtFunctionEntry(F);
+
+ // We can't instrument allocas used with llvm.localescape. Only static allocas
+ // can be passed to that intrinsic.
+ markEscapedLocalAllocas(F);
+
+ // We want to instrument every address only once per basic block (unless there
+ // are calls between uses).
+ SmallPtrSet<Value *, 16> TempsToInstrument;
+ SmallVector<Instruction *, 16> ToInstrument;
+ SmallVector<Instruction *, 8> NoReturnCalls;
+ SmallVector<BasicBlock *, 16> AllBlocks;
+ SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
+ int NumAllocas = 0;
+ bool IsWrite;
+ unsigned Alignment;
+ uint64_t TypeSize;
+
+ // Fill the set of memory operations to instrument.
+ for (auto &BB : F) {
+ AllBlocks.push_back(&BB);
+ TempsToInstrument.clear();
+ int NumInsnsPerBB = 0;
+ for (auto &Inst : BB) {
+ if (LooksLikeCodeInBug11395(&Inst)) return false;
+ Value *MaybeMask = nullptr;
+ if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize,
+ &Alignment, &MaybeMask)) {
+ if (ClOpt && ClOptSameTemp) {
+ // If we have a mask, skip instrumentation if we've already
+ // instrumented the full object. But don't add to TempsToInstrument
+ // because we might get another load/store with a different mask.
+ if (MaybeMask) {
+ if (TempsToInstrument.count(Addr))
+ continue; // We've seen this (whole) temp in the current BB.
+ } else {
+ if (!TempsToInstrument.insert(Addr).second)
+ continue; // We've seen this temp in the current BB.
+ }
+ }
+ } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) &&
+ isInterestingPointerComparison(&Inst)) ||
+ ((ClInvalidPointerPairs || ClInvalidPointerSub) &&
+ isInterestingPointerSubtraction(&Inst))) {
+ PointerComparisonsOrSubtracts.push_back(&Inst);
+ continue;
+ } else if (isa<MemIntrinsic>(Inst)) {
+ // ok, take it.
+ } else {
+ if (isa<AllocaInst>(Inst)) NumAllocas++;
+ CallSite CS(&Inst);
+ if (CS) {
+ // A call inside BB.
+ TempsToInstrument.clear();
+ if (CS.doesNotReturn() && !CS->hasMetadata("nosanitize"))
+ NoReturnCalls.push_back(CS.getInstruction());
+ }
+ if (CallInst *CI = dyn_cast<CallInst>(&Inst))
+ maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
+ continue;
+ }
+ ToInstrument.push_back(&Inst);
+ NumInsnsPerBB++;
+ if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
+ }
+ }
+
+ bool UseCalls =
+ (ClInstrumentationWithCallsThreshold >= 0 &&
+ ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold);
+ const DataLayout &DL = F.getParent()->getDataLayout();
+ ObjectSizeOpts ObjSizeOpts;
+ ObjSizeOpts.RoundToAlign = true;
+ ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts);
+
+ // Instrument.
+ int NumInstrumented = 0;
+ for (auto Inst : ToInstrument) {
+ if (ClDebugMin < 0 || ClDebugMax < 0 ||
+ (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
+ if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment))
+ instrumentMop(ObjSizeVis, Inst, UseCalls,
+ F.getParent()->getDataLayout());
+ else
+ instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
+ }
+ NumInstrumented++;
+ }
+
+ FunctionStackPoisoner FSP(F, *this);
+ bool ChangedStack = FSP.runOnFunction();
+
+ // We must unpoison the stack before NoReturn calls (throw, _exit, etc).
+ // See e.g. https://github.com/google/sanitizers/issues/37
+ for (auto CI : NoReturnCalls) {
+ IRBuilder<> IRB(CI);
+ IRB.CreateCall(AsanHandleNoReturnFunc, {});
+ }
+
+ for (auto Inst : PointerComparisonsOrSubtracts) {
+ instrumentPointerComparisonOrSubtraction(Inst);
+ NumInstrumented++;
+ }
+
+ if (NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty())
+ FunctionModified = true;
+
+ LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " "
+ << F << "\n");
+
+ return FunctionModified;
+}
+
+// Workaround for bug 11395: we don't want to instrument stack in functions
+// with large assembly blobs (32-bit only), otherwise reg alloc may crash.
+// FIXME: remove once the bug 11395 is fixed.
+bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
+ if (LongSize != 32) return false;
+ CallInst *CI = dyn_cast<CallInst>(I);
+ if (!CI || !CI->isInlineAsm()) return false;
+ if (CI->getNumArgOperands() <= 5) return false;
+ // We have inline assembly with quite a few arguments.
+ return true;
+}
+
+void FunctionStackPoisoner::initializeCallbacks(Module &M) {
+ IRBuilder<> IRB(*C);
+ for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) {
+ std::string Suffix = itostr(i);
+ AsanStackMallocFunc[i] = M.getOrInsertFunction(
+ kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy);
+ AsanStackFreeFunc[i] =
+ M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
+ IRB.getVoidTy(), IntptrTy, IntptrTy);
+ }
+ if (ASan.UseAfterScope) {
+ AsanPoisonStackMemoryFunc = M.getOrInsertFunction(
+ kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
+ AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction(
+ kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
+ }
+
+ for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) {
+ std::ostringstream Name;
+ Name << kAsanSetShadowPrefix;
+ Name << std::setw(2) << std::setfill('0') << std::hex << Val;
+ AsanSetShadowFunc[Val] =
+ M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy);
+ }
+
+ AsanAllocaPoisonFunc = M.getOrInsertFunction(
+ kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
+ AsanAllocasUnpoisonFunc = M.getOrInsertFunction(
+ kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
+}
+
+void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
+ ArrayRef<uint8_t> ShadowBytes,
+ size_t Begin, size_t End,
+ IRBuilder<> &IRB,
+ Value *ShadowBase) {
+ if (Begin >= End)
+ return;
+
+ const size_t LargestStoreSizeInBytes =
+ std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8);
+
+ const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian();
+
+ // Poison given range in shadow using larges store size with out leading and
+ // trailing zeros in ShadowMask. Zeros never change, so they need neither
+ // poisoning nor up-poisoning. Still we don't mind if some of them get into a
+ // middle of a store.
+ for (size_t i = Begin; i < End;) {
+ if (!ShadowMask[i]) {
+ assert(!ShadowBytes[i]);
+ ++i;
+ continue;
+ }
+
+ size_t StoreSizeInBytes = LargestStoreSizeInBytes;
+ // Fit store size into the range.
+ while (StoreSizeInBytes > End - i)
+ StoreSizeInBytes /= 2;
+
+ // Minimize store size by trimming trailing zeros.
+ for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) {
+ while (j <= StoreSizeInBytes / 2)
+ StoreSizeInBytes /= 2;
+ }
+
+ uint64_t Val = 0;
+ for (size_t j = 0; j < StoreSizeInBytes; j++) {
+ if (IsLittleEndian)
+ Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
+ else
+ Val = (Val << 8) | ShadowBytes[i + j];
+ }
+
+ Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
+ Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val);
+ IRB.CreateAlignedStore(
+ Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 1);
+
+ i += StoreSizeInBytes;
+ }
+}
+
+void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
+ ArrayRef<uint8_t> ShadowBytes,
+ IRBuilder<> &IRB, Value *ShadowBase) {
+ copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase);
+}
+
+void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
+ ArrayRef<uint8_t> ShadowBytes,
+ size_t Begin, size_t End,
+ IRBuilder<> &IRB, Value *ShadowBase) {
+ assert(ShadowMask.size() == ShadowBytes.size());
+ size_t Done = Begin;
+ for (size_t i = Begin, j = Begin + 1; i < End; i = j++) {
+ if (!ShadowMask[i]) {
+ assert(!ShadowBytes[i]);
+ continue;
+ }
+ uint8_t Val = ShadowBytes[i];
+ if (!AsanSetShadowFunc[Val])
+ continue;
+
+ // Skip same values.
+ for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) {
+ }
+
+ if (j - i >= ClMaxInlinePoisoningSize) {
+ copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase);
+ IRB.CreateCall(AsanSetShadowFunc[Val],
+ {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)),
+ ConstantInt::get(IntptrTy, j - i)});
+ Done = j;
+ }
+ }
+
+ copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase);
+}
+
+// Fake stack allocator (asan_fake_stack.h) has 11 size classes
+// for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
+static int StackMallocSizeClass(uint64_t LocalStackSize) {
+ assert(LocalStackSize <= kMaxStackMallocSize);
+ uint64_t MaxSize = kMinStackMallocSize;
+ for (int i = 0;; i++, MaxSize *= 2)
+ if (LocalStackSize <= MaxSize) return i;
+ llvm_unreachable("impossible LocalStackSize");
+}
+
+void FunctionStackPoisoner::copyArgsPassedByValToAllocas() {
+ Instruction *CopyInsertPoint = &F.front().front();
+ if (CopyInsertPoint == ASan.LocalDynamicShadow) {
+ // Insert after the dynamic shadow location is determined
+ CopyInsertPoint = CopyInsertPoint->getNextNode();
+ assert(CopyInsertPoint);
+ }
+ IRBuilder<> IRB(CopyInsertPoint);
+ const DataLayout &DL = F.getParent()->getDataLayout();
+ for (Argument &Arg : F.args()) {
+ if (Arg.hasByValAttr()) {
+ Type *Ty = Arg.getType()->getPointerElementType();
+ unsigned Alignment = Arg.getParamAlignment();
+ if (Alignment == 0)
+ Alignment = DL.getABITypeAlignment(Ty);
+
+ AllocaInst *AI = IRB.CreateAlloca(
+ Ty, nullptr,
+ (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) +
+ ".byval");
+ AI->setAlignment(Align(Alignment));
+ Arg.replaceAllUsesWith(AI);
+
+ uint64_t AllocSize = DL.getTypeAllocSize(Ty);
+ IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize);
+ }
+ }
+}
+
+PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
+ Value *ValueIfTrue,
+ Instruction *ThenTerm,
+ Value *ValueIfFalse) {
+ PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
+ BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
+ PHI->addIncoming(ValueIfFalse, CondBlock);
+ BasicBlock *ThenBlock = ThenTerm->getParent();
+ PHI->addIncoming(ValueIfTrue, ThenBlock);
+ return PHI;
+}
+
+Value *FunctionStackPoisoner::createAllocaForLayout(
+ IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
+ AllocaInst *Alloca;
+ if (Dynamic) {
+ Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
+ ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
+ "MyAlloca");
+ } else {
+ Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
+ nullptr, "MyAlloca");
+ assert(Alloca->isStaticAlloca());
+ }
+ assert((ClRealignStack & (ClRealignStack - 1)) == 0);
+ size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
+ Alloca->setAlignment(MaybeAlign(FrameAlignment));
+ return IRB.CreatePointerCast(Alloca, IntptrTy);
+}
+
+void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
+ BasicBlock &FirstBB = *F.begin();
+ IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
+ DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
+ IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
+ DynamicAllocaLayout->setAlignment(Align(32));
+}
+
+void FunctionStackPoisoner::processDynamicAllocas() {
+ if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) {
+ assert(DynamicAllocaPoisonCallVec.empty());
+ return;
+ }
+
+ // Insert poison calls for lifetime intrinsics for dynamic allocas.
+ for (const auto &APC : DynamicAllocaPoisonCallVec) {
+ assert(APC.InsBefore);
+ assert(APC.AI);
+ assert(ASan.isInterestingAlloca(*APC.AI));
+ assert(!APC.AI->isStaticAlloca());
+
+ IRBuilder<> IRB(APC.InsBefore);
+ poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
+ // Dynamic allocas will be unpoisoned unconditionally below in
+ // unpoisonDynamicAllocas.
+ // Flag that we need unpoison static allocas.
+ }
+
+ // Handle dynamic allocas.
+ createDynamicAllocasInitStorage();
+ for (auto &AI : DynamicAllocaVec)
+ handleDynamicAllocaCall(AI);
+ unpoisonDynamicAllocas();
+}
+
+void FunctionStackPoisoner::processStaticAllocas() {
+ if (AllocaVec.empty()) {
+ assert(StaticAllocaPoisonCallVec.empty());
+ return;
+ }
+
+ int StackMallocIdx = -1;
+ DebugLoc EntryDebugLocation;
+ if (auto SP = F.getSubprogram())
+ EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP);
+
+ Instruction *InsBefore = AllocaVec[0];
+ IRBuilder<> IRB(InsBefore);
+ IRB.SetCurrentDebugLocation(EntryDebugLocation);
+
+ // Make sure non-instrumented allocas stay in the entry block. Otherwise,
+ // debug info is broken, because only entry-block allocas are treated as
+ // regular stack slots.
+ auto InsBeforeB = InsBefore->getParent();
+ assert(InsBeforeB == &F.getEntryBlock());
+ for (auto *AI : StaticAllocasToMoveUp)
+ if (AI->getParent() == InsBeforeB)
+ AI->moveBefore(InsBefore);
+
+ // If we have a call to llvm.localescape, keep it in the entry block.
+ if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
+
+ SmallVector<ASanStackVariableDescription, 16> SVD;
+ SVD.reserve(AllocaVec.size());
+ for (AllocaInst *AI : AllocaVec) {
+ ASanStackVariableDescription D = {AI->getName().data(),
+ ASan.getAllocaSizeInBytes(*AI),
+ 0,
+ AI->getAlignment(),
+ AI,
+ 0,
+ 0};
+ SVD.push_back(D);
+ }
+
+ // Minimal header size (left redzone) is 4 pointers,
+ // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
+ size_t Granularity = 1ULL << Mapping.Scale;
+ size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity);
+ const ASanStackFrameLayout &L =
+ ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize);
+
+ // Build AllocaToSVDMap for ASanStackVariableDescription lookup.
+ DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap;
+ for (auto &Desc : SVD)
+ AllocaToSVDMap[Desc.AI] = &Desc;
+
+ // Update SVD with information from lifetime intrinsics.
+ for (const auto &APC : StaticAllocaPoisonCallVec) {
+ assert(APC.InsBefore);
+ assert(APC.AI);
+ assert(ASan.isInterestingAlloca(*APC.AI));
+ assert(APC.AI->isStaticAlloca());
+
+ ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
+ Desc.LifetimeSize = Desc.Size;
+ if (const DILocation *FnLoc = EntryDebugLocation.get()) {
+ if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) {
+ if (LifetimeLoc->getFile() == FnLoc->getFile())
+ if (unsigned Line = LifetimeLoc->getLine())
+ Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line);
+ }
+ }
+ }
+
+ auto DescriptionString = ComputeASanStackFrameDescription(SVD);
+ LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n");
+ uint64_t LocalStackSize = L.FrameSize;
+ bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel &&
+ LocalStackSize <= kMaxStackMallocSize;
+ bool DoDynamicAlloca = ClDynamicAllocaStack;
+ // Don't do dynamic alloca or stack malloc if:
+ // 1) There is inline asm: too often it makes assumptions on which registers
+ // are available.
+ // 2) There is a returns_twice call (typically setjmp), which is
+ // optimization-hostile, and doesn't play well with introduced indirect
+ // register-relative calculation of local variable addresses.
+ DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
+ DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
+
+ Value *StaticAlloca =
+ DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
+
+ Value *FakeStack;
+ Value *LocalStackBase;
+ Value *LocalStackBaseAlloca;
+ uint8_t DIExprFlags = DIExpression::ApplyOffset;
+
+ if (DoStackMalloc) {
+ LocalStackBaseAlloca =
+ IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base");
+ // void *FakeStack = __asan_option_detect_stack_use_after_return
+ // ? __asan_stack_malloc_N(LocalStackSize)
+ // : nullptr;
+ // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize);
+ Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
+ kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty());
+ Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE(
+ IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn),
+ Constant::getNullValue(IRB.getInt32Ty()));
+ Instruction *Term =
+ SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
+ IRBuilder<> IRBIf(Term);
+ IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
+ StackMallocIdx = StackMallocSizeClass(LocalStackSize);
+ assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
+ Value *FakeStackValue =
+ IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
+ ConstantInt::get(IntptrTy, LocalStackSize));
+ IRB.SetInsertPoint(InsBefore);
+ IRB.SetCurrentDebugLocation(EntryDebugLocation);
+ FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
+ ConstantInt::get(IntptrTy, 0));
+
+ Value *NoFakeStack =
+ IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
+ Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
+ IRBIf.SetInsertPoint(Term);
+ IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
+ Value *AllocaValue =
+ DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
+
+ IRB.SetInsertPoint(InsBefore);
+ IRB.SetCurrentDebugLocation(EntryDebugLocation);
+ LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
+ IRB.SetCurrentDebugLocation(EntryDebugLocation);
+ IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca);
+ DIExprFlags |= DIExpression::DerefBefore;
+ } else {
+ // void *FakeStack = nullptr;
+ // void *LocalStackBase = alloca(LocalStackSize);
+ FakeStack = ConstantInt::get(IntptrTy, 0);
+ LocalStackBase =
+ DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
+ LocalStackBaseAlloca = LocalStackBase;
+ }
+
+ // Replace Alloca instructions with base+offset.
+ for (const auto &Desc : SVD) {
+ AllocaInst *AI = Desc.AI;
+ replaceDbgDeclareForAlloca(AI, LocalStackBaseAlloca, DIB, DIExprFlags,
+ Desc.Offset);
+ Value *NewAllocaPtr = IRB.CreateIntToPtr(
+ IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
+ AI->getType());
+ AI->replaceAllUsesWith(NewAllocaPtr);
+ }
+
+ // The left-most redzone has enough space for at least 4 pointers.
+ // Write the Magic value to redzone[0].
+ Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
+ IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
+ BasePlus0);
+ // Write the frame description constant to redzone[1].
+ Value *BasePlus1 = IRB.CreateIntToPtr(
+ IRB.CreateAdd(LocalStackBase,
+ ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
+ IntptrPtrTy);
+ GlobalVariable *StackDescriptionGlobal =
+ createPrivateGlobalForString(*F.getParent(), DescriptionString,
+ /*AllowMerging*/ true, kAsanGenPrefix);
+ Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
+ IRB.CreateStore(Description, BasePlus1);
+ // Write the PC to redzone[2].
+ Value *BasePlus2 = IRB.CreateIntToPtr(
+ IRB.CreateAdd(LocalStackBase,
+ ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
+ IntptrPtrTy);
+ IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
+
+ const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L);
+
+ // Poison the stack red zones at the entry.
+ Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
+ // As mask we must use most poisoned case: red zones and after scope.
+ // As bytes we can use either the same or just red zones only.
+ copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase);
+
+ if (!StaticAllocaPoisonCallVec.empty()) {
+ const auto &ShadowInScope = GetShadowBytes(SVD, L);
+
+ // Poison static allocas near lifetime intrinsics.
+ for (const auto &APC : StaticAllocaPoisonCallVec) {
+ const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
+ assert(Desc.Offset % L.Granularity == 0);
+ size_t Begin = Desc.Offset / L.Granularity;
+ size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity;
+
+ IRBuilder<> IRB(APC.InsBefore);
+ copyToShadow(ShadowAfterScope,
+ APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End,
+ IRB, ShadowBase);
+ }
+ }
+
+ SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0);
+ SmallVector<uint8_t, 64> ShadowAfterReturn;
+
+ // (Un)poison the stack before all ret instructions.
+ for (auto Ret : RetVec) {
+ IRBuilder<> IRBRet(Ret);
+ // Mark the current frame as retired.
+ IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
+ BasePlus0);
+ if (DoStackMalloc) {
+ assert(StackMallocIdx >= 0);
+ // if FakeStack != 0 // LocalStackBase == FakeStack
+ // // In use-after-return mode, poison the whole stack frame.
+ // if StackMallocIdx <= 4
+ // // For small sizes inline the whole thing:
+ // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
+ // **SavedFlagPtr(FakeStack) = 0
+ // else
+ // __asan_stack_free_N(FakeStack, LocalStackSize)
+ // else
+ // <This is not a fake stack; unpoison the redzones>
+ Value *Cmp =
+ IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
+ Instruction *ThenTerm, *ElseTerm;
+ SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
+
+ IRBuilder<> IRBPoison(ThenTerm);
+ if (StackMallocIdx <= 4) {
+ int ClassSize = kMinStackMallocSize << StackMallocIdx;
+ ShadowAfterReturn.resize(ClassSize / L.Granularity,
+ kAsanStackUseAfterReturnMagic);
+ copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison,
+ ShadowBase);
+ Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
+ FakeStack,
+ ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
+ Value *SavedFlagPtr = IRBPoison.CreateLoad(
+ IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
+ IRBPoison.CreateStore(
+ Constant::getNullValue(IRBPoison.getInt8Ty()),
+ IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
+ } else {
+ // For larger frames call __asan_stack_free_*.
+ IRBPoison.CreateCall(
+ AsanStackFreeFunc[StackMallocIdx],
+ {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
+ }
+
+ IRBuilder<> IRBElse(ElseTerm);
+ copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase);
+ } else {
+ copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase);
+ }
+ }
+
+ // We are done. Remove the old unused alloca instructions.
+ for (auto AI : AllocaVec) AI->eraseFromParent();
+}
+
+void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
+ IRBuilder<> &IRB, bool DoPoison) {
+ // For now just insert the call to ASan runtime.
+ Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
+ Value *SizeArg = ConstantInt::get(IntptrTy, Size);
+ IRB.CreateCall(
+ DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
+ {AddrArg, SizeArg});
+}
+
+// Handling llvm.lifetime intrinsics for a given %alloca:
+// (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
+// (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
+// invalid accesses) and unpoison it for llvm.lifetime.start (the memory
+// could be poisoned by previous llvm.lifetime.end instruction, as the
+// variable may go in and out of scope several times, e.g. in loops).
+// (3) if we poisoned at least one %alloca in a function,
+// unpoison the whole stack frame at function exit.
+void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
+ IRBuilder<> IRB(AI);
+
+ const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment());
+ const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
+
+ Value *Zero = Constant::getNullValue(IntptrTy);
+ Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
+ Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
+
+ // Since we need to extend alloca with additional memory to locate
+ // redzones, and OldSize is number of allocated blocks with
+ // ElementSize size, get allocated memory size in bytes by
+ // OldSize * ElementSize.
+ const unsigned ElementSize =
+ F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
+ Value *OldSize =
+ IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
+ ConstantInt::get(IntptrTy, ElementSize));
+
+ // PartialSize = OldSize % 32
+ Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
+
+ // Misalign = kAllocaRzSize - PartialSize;
+ Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
+
+ // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
+ Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
+ Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
+
+ // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize
+ // Align is added to locate left redzone, PartialPadding for possible
+ // partial redzone and kAllocaRzSize for right redzone respectively.
+ Value *AdditionalChunkSize = IRB.CreateAdd(
+ ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding);
+
+ Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
+
+ // Insert new alloca with new NewSize and Align params.
+ AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
+ NewAlloca->setAlignment(MaybeAlign(Align));
+
+ // NewAddress = Address + Align
+ Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
+ ConstantInt::get(IntptrTy, Align));
+
+ // Insert __asan_alloca_poison call for new created alloca.
+ IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize});
+
+ // Store the last alloca's address to DynamicAllocaLayout. We'll need this
+ // for unpoisoning stuff.
+ IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
+
+ Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
+
+ // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
+ AI->replaceAllUsesWith(NewAddressPtr);
+
+ // We are done. Erase old alloca from parent.
+ AI->eraseFromParent();
+}
+
+// isSafeAccess returns true if Addr is always inbounds with respect to its
+// base object. For example, it is a field access or an array access with
+// constant inbounds index.
+bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
+ Value *Addr, uint64_t TypeSize) const {
+ SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr);
+ if (!ObjSizeVis.bothKnown(SizeOffset)) return false;
+ uint64_t Size = SizeOffset.first.getZExtValue();
+ int64_t Offset = SizeOffset.second.getSExtValue();
+ // Three checks are required to ensure safety:
+ // . Offset >= 0 (since the offset is given from the base ptr)
+ // . Size >= Offset (unsigned)
+ // . Size - Offset >= NeededSize (unsigned)
+ return Offset >= 0 && Size >= uint64_t(Offset) &&
+ Size - uint64_t(Offset) >= TypeSize / 8;
+}