summaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp')
-rw-r--r--llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp1778
1 files changed, 1778 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp b/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp
new file mode 100644
index 000000000000..c0353cba0b2f
--- /dev/null
+++ b/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp
@@ -0,0 +1,1778 @@
+//===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// This file is a part of DataFlowSanitizer, a generalised dynamic data flow
+/// analysis.
+///
+/// Unlike other Sanitizer tools, this tool is not designed to detect a specific
+/// class of bugs on its own. Instead, it provides a generic dynamic data flow
+/// analysis framework to be used by clients to help detect application-specific
+/// issues within their own code.
+///
+/// The analysis is based on automatic propagation of data flow labels (also
+/// known as taint labels) through a program as it performs computation. Each
+/// byte of application memory is backed by two bytes of shadow memory which
+/// hold the label. On Linux/x86_64, memory is laid out as follows:
+///
+/// +--------------------+ 0x800000000000 (top of memory)
+/// | application memory |
+/// +--------------------+ 0x700000008000 (kAppAddr)
+/// | |
+/// | unused |
+/// | |
+/// +--------------------+ 0x200200000000 (kUnusedAddr)
+/// | union table |
+/// +--------------------+ 0x200000000000 (kUnionTableAddr)
+/// | shadow memory |
+/// +--------------------+ 0x000000010000 (kShadowAddr)
+/// | reserved by kernel |
+/// +--------------------+ 0x000000000000
+///
+/// To derive a shadow memory address from an application memory address,
+/// bits 44-46 are cleared to bring the address into the range
+/// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to
+/// account for the double byte representation of shadow labels and move the
+/// address into the shadow memory range. See the function
+/// DataFlowSanitizer::getShadowAddress below.
+///
+/// For more information, please refer to the design document:
+/// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/InstVisitor.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/SpecialCaseList.h"
+#include "llvm/Transforms/Instrumentation.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <iterator>
+#include <memory>
+#include <set>
+#include <string>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+// External symbol to be used when generating the shadow address for
+// architectures with multiple VMAs. Instead of using a constant integer
+// the runtime will set the external mask based on the VMA range.
+static const char *const kDFSanExternShadowPtrMask = "__dfsan_shadow_ptr_mask";
+
+// The -dfsan-preserve-alignment flag controls whether this pass assumes that
+// alignment requirements provided by the input IR are correct. For example,
+// if the input IR contains a load with alignment 8, this flag will cause
+// the shadow load to have alignment 16. This flag is disabled by default as
+// we have unfortunately encountered too much code (including Clang itself;
+// see PR14291) which performs misaligned access.
+static cl::opt<bool> ClPreserveAlignment(
+ "dfsan-preserve-alignment",
+ cl::desc("respect alignment requirements provided by input IR"), cl::Hidden,
+ cl::init(false));
+
+// The ABI list files control how shadow parameters are passed. The pass treats
+// every function labelled "uninstrumented" in the ABI list file as conforming
+// to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains
+// additional annotations for those functions, a call to one of those functions
+// will produce a warning message, as the labelling behaviour of the function is
+// unknown. The other supported annotations are "functional" and "discard",
+// which are described below under DataFlowSanitizer::WrapperKind.
+static cl::list<std::string> ClABIListFiles(
+ "dfsan-abilist",
+ cl::desc("File listing native ABI functions and how the pass treats them"),
+ cl::Hidden);
+
+// Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented
+// functions (see DataFlowSanitizer::InstrumentedABI below).
+static cl::opt<bool> ClArgsABI(
+ "dfsan-args-abi",
+ cl::desc("Use the argument ABI rather than the TLS ABI"),
+ cl::Hidden);
+
+// Controls whether the pass includes or ignores the labels of pointers in load
+// instructions.
+static cl::opt<bool> ClCombinePointerLabelsOnLoad(
+ "dfsan-combine-pointer-labels-on-load",
+ cl::desc("Combine the label of the pointer with the label of the data when "
+ "loading from memory."),
+ cl::Hidden, cl::init(true));
+
+// Controls whether the pass includes or ignores the labels of pointers in
+// stores instructions.
+static cl::opt<bool> ClCombinePointerLabelsOnStore(
+ "dfsan-combine-pointer-labels-on-store",
+ cl::desc("Combine the label of the pointer with the label of the data when "
+ "storing in memory."),
+ cl::Hidden, cl::init(false));
+
+static cl::opt<bool> ClDebugNonzeroLabels(
+ "dfsan-debug-nonzero-labels",
+ cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, "
+ "load or return with a nonzero label"),
+ cl::Hidden);
+
+static StringRef GetGlobalTypeString(const GlobalValue &G) {
+ // Types of GlobalVariables are always pointer types.
+ Type *GType = G.getValueType();
+ // For now we support blacklisting struct types only.
+ if (StructType *SGType = dyn_cast<StructType>(GType)) {
+ if (!SGType->isLiteral())
+ return SGType->getName();
+ }
+ return "<unknown type>";
+}
+
+namespace {
+
+class DFSanABIList {
+ std::unique_ptr<SpecialCaseList> SCL;
+
+ public:
+ DFSanABIList() = default;
+
+ void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); }
+
+ /// Returns whether either this function or its source file are listed in the
+ /// given category.
+ bool isIn(const Function &F, StringRef Category) const {
+ return isIn(*F.getParent(), Category) ||
+ SCL->inSection("dataflow", "fun", F.getName(), Category);
+ }
+
+ /// Returns whether this global alias is listed in the given category.
+ ///
+ /// If GA aliases a function, the alias's name is matched as a function name
+ /// would be. Similarly, aliases of globals are matched like globals.
+ bool isIn(const GlobalAlias &GA, StringRef Category) const {
+ if (isIn(*GA.getParent(), Category))
+ return true;
+
+ if (isa<FunctionType>(GA.getValueType()))
+ return SCL->inSection("dataflow", "fun", GA.getName(), Category);
+
+ return SCL->inSection("dataflow", "global", GA.getName(), Category) ||
+ SCL->inSection("dataflow", "type", GetGlobalTypeString(GA),
+ Category);
+ }
+
+ /// Returns whether this module is listed in the given category.
+ bool isIn(const Module &M, StringRef Category) const {
+ return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category);
+ }
+};
+
+/// TransformedFunction is used to express the result of transforming one
+/// function type into another. This struct is immutable. It holds metadata
+/// useful for updating calls of the old function to the new type.
+struct TransformedFunction {
+ TransformedFunction(FunctionType* OriginalType,
+ FunctionType* TransformedType,
+ std::vector<unsigned> ArgumentIndexMapping)
+ : OriginalType(OriginalType),
+ TransformedType(TransformedType),
+ ArgumentIndexMapping(ArgumentIndexMapping) {}
+
+ // Disallow copies.
+ TransformedFunction(const TransformedFunction&) = delete;
+ TransformedFunction& operator=(const TransformedFunction&) = delete;
+
+ // Allow moves.
+ TransformedFunction(TransformedFunction&&) = default;
+ TransformedFunction& operator=(TransformedFunction&&) = default;
+
+ /// Type of the function before the transformation.
+ FunctionType *OriginalType;
+
+ /// Type of the function after the transformation.
+ FunctionType *TransformedType;
+
+ /// Transforming a function may change the position of arguments. This
+ /// member records the mapping from each argument's old position to its new
+ /// position. Argument positions are zero-indexed. If the transformation
+ /// from F to F' made the first argument of F into the third argument of F',
+ /// then ArgumentIndexMapping[0] will equal 2.
+ std::vector<unsigned> ArgumentIndexMapping;
+};
+
+/// Given function attributes from a call site for the original function,
+/// return function attributes appropriate for a call to the transformed
+/// function.
+AttributeList TransformFunctionAttributes(
+ const TransformedFunction& TransformedFunction,
+ LLVMContext& Ctx, AttributeList CallSiteAttrs) {
+
+ // Construct a vector of AttributeSet for each function argument.
+ std::vector<llvm::AttributeSet> ArgumentAttributes(
+ TransformedFunction.TransformedType->getNumParams());
+
+ // Copy attributes from the parameter of the original function to the
+ // transformed version. 'ArgumentIndexMapping' holds the mapping from
+ // old argument position to new.
+ for (unsigned i=0, ie = TransformedFunction.ArgumentIndexMapping.size();
+ i < ie; ++i) {
+ unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[i];
+ ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(i);
+ }
+
+ // Copy annotations on varargs arguments.
+ for (unsigned i = TransformedFunction.OriginalType->getNumParams(),
+ ie = CallSiteAttrs.getNumAttrSets(); i<ie; ++i) {
+ ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(i));
+ }
+
+ return AttributeList::get(
+ Ctx,
+ CallSiteAttrs.getFnAttributes(),
+ CallSiteAttrs.getRetAttributes(),
+ llvm::makeArrayRef(ArgumentAttributes));
+}
+
+class DataFlowSanitizer : public ModulePass {
+ friend struct DFSanFunction;
+ friend class DFSanVisitor;
+
+ enum {
+ ShadowWidth = 16
+ };
+
+ /// Which ABI should be used for instrumented functions?
+ enum InstrumentedABI {
+ /// Argument and return value labels are passed through additional
+ /// arguments and by modifying the return type.
+ IA_Args,
+
+ /// Argument and return value labels are passed through TLS variables
+ /// __dfsan_arg_tls and __dfsan_retval_tls.
+ IA_TLS
+ };
+
+ /// How should calls to uninstrumented functions be handled?
+ enum WrapperKind {
+ /// This function is present in an uninstrumented form but we don't know
+ /// how it should be handled. Print a warning and call the function anyway.
+ /// Don't label the return value.
+ WK_Warning,
+
+ /// This function does not write to (user-accessible) memory, and its return
+ /// value is unlabelled.
+ WK_Discard,
+
+ /// This function does not write to (user-accessible) memory, and the label
+ /// of its return value is the union of the label of its arguments.
+ WK_Functional,
+
+ /// Instead of calling the function, a custom wrapper __dfsw_F is called,
+ /// where F is the name of the function. This function may wrap the
+ /// original function or provide its own implementation. This is similar to
+ /// the IA_Args ABI, except that IA_Args uses a struct return type to
+ /// pass the return value shadow in a register, while WK_Custom uses an
+ /// extra pointer argument to return the shadow. This allows the wrapped
+ /// form of the function type to be expressed in C.
+ WK_Custom
+ };
+
+ Module *Mod;
+ LLVMContext *Ctx;
+ IntegerType *ShadowTy;
+ PointerType *ShadowPtrTy;
+ IntegerType *IntptrTy;
+ ConstantInt *ZeroShadow;
+ ConstantInt *ShadowPtrMask;
+ ConstantInt *ShadowPtrMul;
+ Constant *ArgTLS;
+ Constant *RetvalTLS;
+ void *(*GetArgTLSPtr)();
+ void *(*GetRetvalTLSPtr)();
+ FunctionType *GetArgTLSTy;
+ FunctionType *GetRetvalTLSTy;
+ Constant *GetArgTLS;
+ Constant *GetRetvalTLS;
+ Constant *ExternalShadowMask;
+ FunctionType *DFSanUnionFnTy;
+ FunctionType *DFSanUnionLoadFnTy;
+ FunctionType *DFSanUnimplementedFnTy;
+ FunctionType *DFSanSetLabelFnTy;
+ FunctionType *DFSanNonzeroLabelFnTy;
+ FunctionType *DFSanVarargWrapperFnTy;
+ FunctionCallee DFSanUnionFn;
+ FunctionCallee DFSanCheckedUnionFn;
+ FunctionCallee DFSanUnionLoadFn;
+ FunctionCallee DFSanUnimplementedFn;
+ FunctionCallee DFSanSetLabelFn;
+ FunctionCallee DFSanNonzeroLabelFn;
+ FunctionCallee DFSanVarargWrapperFn;
+ MDNode *ColdCallWeights;
+ DFSanABIList ABIList;
+ DenseMap<Value *, Function *> UnwrappedFnMap;
+ AttrBuilder ReadOnlyNoneAttrs;
+ bool DFSanRuntimeShadowMask = false;
+
+ Value *getShadowAddress(Value *Addr, Instruction *Pos);
+ bool isInstrumented(const Function *F);
+ bool isInstrumented(const GlobalAlias *GA);
+ FunctionType *getArgsFunctionType(FunctionType *T);
+ FunctionType *getTrampolineFunctionType(FunctionType *T);
+ TransformedFunction getCustomFunctionType(FunctionType *T);
+ InstrumentedABI getInstrumentedABI();
+ WrapperKind getWrapperKind(Function *F);
+ void addGlobalNamePrefix(GlobalValue *GV);
+ Function *buildWrapperFunction(Function *F, StringRef NewFName,
+ GlobalValue::LinkageTypes NewFLink,
+ FunctionType *NewFT);
+ Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName);
+
+public:
+ static char ID;
+
+ DataFlowSanitizer(
+ const std::vector<std::string> &ABIListFiles = std::vector<std::string>(),
+ void *(*getArgTLS)() = nullptr, void *(*getRetValTLS)() = nullptr);
+
+ bool doInitialization(Module &M) override;
+ bool runOnModule(Module &M) override;
+};
+
+struct DFSanFunction {
+ DataFlowSanitizer &DFS;
+ Function *F;
+ DominatorTree DT;
+ DataFlowSanitizer::InstrumentedABI IA;
+ bool IsNativeABI;
+ Value *ArgTLSPtr = nullptr;
+ Value *RetvalTLSPtr = nullptr;
+ AllocaInst *LabelReturnAlloca = nullptr;
+ DenseMap<Value *, Value *> ValShadowMap;
+ DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
+ std::vector<std::pair<PHINode *, PHINode *>> PHIFixups;
+ DenseSet<Instruction *> SkipInsts;
+ std::vector<Value *> NonZeroChecks;
+ bool AvoidNewBlocks;
+
+ struct CachedCombinedShadow {
+ BasicBlock *Block;
+ Value *Shadow;
+ };
+ DenseMap<std::pair<Value *, Value *>, CachedCombinedShadow>
+ CachedCombinedShadows;
+ DenseMap<Value *, std::set<Value *>> ShadowElements;
+
+ DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI)
+ : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) {
+ DT.recalculate(*F);
+ // FIXME: Need to track down the register allocator issue which causes poor
+ // performance in pathological cases with large numbers of basic blocks.
+ AvoidNewBlocks = F->size() > 1000;
+ }
+
+ Value *getArgTLSPtr();
+ Value *getArgTLS(unsigned Index, Instruction *Pos);
+ Value *getRetvalTLS();
+ Value *getShadow(Value *V);
+ void setShadow(Instruction *I, Value *Shadow);
+ Value *combineShadows(Value *V1, Value *V2, Instruction *Pos);
+ Value *combineOperandShadows(Instruction *Inst);
+ Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align,
+ Instruction *Pos);
+ void storeShadow(Value *Addr, uint64_t Size, uint64_t Align, Value *Shadow,
+ Instruction *Pos);
+};
+
+class DFSanVisitor : public InstVisitor<DFSanVisitor> {
+public:
+ DFSanFunction &DFSF;
+
+ DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {}
+
+ const DataLayout &getDataLayout() const {
+ return DFSF.F->getParent()->getDataLayout();
+ }
+
+ void visitOperandShadowInst(Instruction &I);
+ void visitUnaryOperator(UnaryOperator &UO);
+ void visitBinaryOperator(BinaryOperator &BO);
+ void visitCastInst(CastInst &CI);
+ void visitCmpInst(CmpInst &CI);
+ void visitGetElementPtrInst(GetElementPtrInst &GEPI);
+ void visitLoadInst(LoadInst &LI);
+ void visitStoreInst(StoreInst &SI);
+ void visitReturnInst(ReturnInst &RI);
+ void visitCallSite(CallSite CS);
+ void visitPHINode(PHINode &PN);
+ void visitExtractElementInst(ExtractElementInst &I);
+ void visitInsertElementInst(InsertElementInst &I);
+ void visitShuffleVectorInst(ShuffleVectorInst &I);
+ void visitExtractValueInst(ExtractValueInst &I);
+ void visitInsertValueInst(InsertValueInst &I);
+ void visitAllocaInst(AllocaInst &I);
+ void visitSelectInst(SelectInst &I);
+ void visitMemSetInst(MemSetInst &I);
+ void visitMemTransferInst(MemTransferInst &I);
+};
+
+} // end anonymous namespace
+
+char DataFlowSanitizer::ID;
+
+INITIALIZE_PASS(DataFlowSanitizer, "dfsan",
+ "DataFlowSanitizer: dynamic data flow analysis.", false, false)
+
+ModulePass *
+llvm::createDataFlowSanitizerPass(const std::vector<std::string> &ABIListFiles,
+ void *(*getArgTLS)(),
+ void *(*getRetValTLS)()) {
+ return new DataFlowSanitizer(ABIListFiles, getArgTLS, getRetValTLS);
+}
+
+DataFlowSanitizer::DataFlowSanitizer(
+ const std::vector<std::string> &ABIListFiles, void *(*getArgTLS)(),
+ void *(*getRetValTLS)())
+ : ModulePass(ID), GetArgTLSPtr(getArgTLS), GetRetvalTLSPtr(getRetValTLS) {
+ std::vector<std::string> AllABIListFiles(std::move(ABIListFiles));
+ AllABIListFiles.insert(AllABIListFiles.end(), ClABIListFiles.begin(),
+ ClABIListFiles.end());
+ ABIList.set(SpecialCaseList::createOrDie(AllABIListFiles));
+}
+
+FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) {
+ SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end());
+ ArgTypes.append(T->getNumParams(), ShadowTy);
+ if (T->isVarArg())
+ ArgTypes.push_back(ShadowPtrTy);
+ Type *RetType = T->getReturnType();
+ if (!RetType->isVoidTy())
+ RetType = StructType::get(RetType, ShadowTy);
+ return FunctionType::get(RetType, ArgTypes, T->isVarArg());
+}
+
+FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) {
+ assert(!T->isVarArg());
+ SmallVector<Type *, 4> ArgTypes;
+ ArgTypes.push_back(T->getPointerTo());
+ ArgTypes.append(T->param_begin(), T->param_end());
+ ArgTypes.append(T->getNumParams(), ShadowTy);
+ Type *RetType = T->getReturnType();
+ if (!RetType->isVoidTy())
+ ArgTypes.push_back(ShadowPtrTy);
+ return FunctionType::get(T->getReturnType(), ArgTypes, false);
+}
+
+TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
+ SmallVector<Type *, 4> ArgTypes;
+
+ // Some parameters of the custom function being constructed are
+ // parameters of T. Record the mapping from parameters of T to
+ // parameters of the custom function, so that parameter attributes
+ // at call sites can be updated.
+ std::vector<unsigned> ArgumentIndexMapping;
+ for (unsigned i = 0, ie = T->getNumParams(); i != ie; ++i) {
+ Type* param_type = T->getParamType(i);
+ FunctionType *FT;
+ if (isa<PointerType>(param_type) && (FT = dyn_cast<FunctionType>(
+ cast<PointerType>(param_type)->getElementType()))) {
+ ArgumentIndexMapping.push_back(ArgTypes.size());
+ ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo());
+ ArgTypes.push_back(Type::getInt8PtrTy(*Ctx));
+ } else {
+ ArgumentIndexMapping.push_back(ArgTypes.size());
+ ArgTypes.push_back(param_type);
+ }
+ }
+ for (unsigned i = 0, e = T->getNumParams(); i != e; ++i)
+ ArgTypes.push_back(ShadowTy);
+ if (T->isVarArg())
+ ArgTypes.push_back(ShadowPtrTy);
+ Type *RetType = T->getReturnType();
+ if (!RetType->isVoidTy())
+ ArgTypes.push_back(ShadowPtrTy);
+ return TransformedFunction(
+ T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()),
+ ArgumentIndexMapping);
+}
+
+bool DataFlowSanitizer::doInitialization(Module &M) {
+ Triple TargetTriple(M.getTargetTriple());
+ bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
+ bool IsMIPS64 = TargetTriple.isMIPS64();
+ bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 ||
+ TargetTriple.getArch() == Triple::aarch64_be;
+
+ const DataLayout &DL = M.getDataLayout();
+
+ Mod = &M;
+ Ctx = &M.getContext();
+ ShadowTy = IntegerType::get(*Ctx, ShadowWidth);
+ ShadowPtrTy = PointerType::getUnqual(ShadowTy);
+ IntptrTy = DL.getIntPtrType(*Ctx);
+ ZeroShadow = ConstantInt::getSigned(ShadowTy, 0);
+ ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidth / 8);
+ if (IsX86_64)
+ ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL);
+ else if (IsMIPS64)
+ ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL);
+ // AArch64 supports multiple VMAs and the shadow mask is set at runtime.
+ else if (IsAArch64)
+ DFSanRuntimeShadowMask = true;
+ else
+ report_fatal_error("unsupported triple");
+
+ Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy };
+ DFSanUnionFnTy =
+ FunctionType::get(ShadowTy, DFSanUnionArgs, /*isVarArg=*/ false);
+ Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy };
+ DFSanUnionLoadFnTy =
+ FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false);
+ DFSanUnimplementedFnTy = FunctionType::get(
+ Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
+ Type *DFSanSetLabelArgs[3] = { ShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy };
+ DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx),
+ DFSanSetLabelArgs, /*isVarArg=*/false);
+ DFSanNonzeroLabelFnTy = FunctionType::get(
+ Type::getVoidTy(*Ctx), None, /*isVarArg=*/false);
+ DFSanVarargWrapperFnTy = FunctionType::get(
+ Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
+
+ if (GetArgTLSPtr) {
+ Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
+ ArgTLS = nullptr;
+ GetArgTLSTy = FunctionType::get(PointerType::getUnqual(ArgTLSTy), false);
+ GetArgTLS = ConstantExpr::getIntToPtr(
+ ConstantInt::get(IntptrTy, uintptr_t(GetArgTLSPtr)),
+ PointerType::getUnqual(GetArgTLSTy));
+ }
+ if (GetRetvalTLSPtr) {
+ RetvalTLS = nullptr;
+ GetRetvalTLSTy = FunctionType::get(PointerType::getUnqual(ShadowTy), false);
+ GetRetvalTLS = ConstantExpr::getIntToPtr(
+ ConstantInt::get(IntptrTy, uintptr_t(GetRetvalTLSPtr)),
+ PointerType::getUnqual(GetRetvalTLSTy));
+ }
+
+ ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
+ return true;
+}
+
+bool DataFlowSanitizer::isInstrumented(const Function *F) {
+ return !ABIList.isIn(*F, "uninstrumented");
+}
+
+bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) {
+ return !ABIList.isIn(*GA, "uninstrumented");
+}
+
+DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() {
+ return ClArgsABI ? IA_Args : IA_TLS;
+}
+
+DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) {
+ if (ABIList.isIn(*F, "functional"))
+ return WK_Functional;
+ if (ABIList.isIn(*F, "discard"))
+ return WK_Discard;
+ if (ABIList.isIn(*F, "custom"))
+ return WK_Custom;
+
+ return WK_Warning;
+}
+
+void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) {
+ std::string GVName = GV->getName(), Prefix = "dfs$";
+ GV->setName(Prefix + GVName);
+
+ // Try to change the name of the function in module inline asm. We only do
+ // this for specific asm directives, currently only ".symver", to try to avoid
+ // corrupting asm which happens to contain the symbol name as a substring.
+ // Note that the substitution for .symver assumes that the versioned symbol
+ // also has an instrumented name.
+ std::string Asm = GV->getParent()->getModuleInlineAsm();
+ std::string SearchStr = ".symver " + GVName + ",";
+ size_t Pos = Asm.find(SearchStr);
+ if (Pos != std::string::npos) {
+ Asm.replace(Pos, SearchStr.size(),
+ ".symver " + Prefix + GVName + "," + Prefix);
+ GV->getParent()->setModuleInlineAsm(Asm);
+ }
+}
+
+Function *
+DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName,
+ GlobalValue::LinkageTypes NewFLink,
+ FunctionType *NewFT) {
+ FunctionType *FT = F->getFunctionType();
+ Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(),
+ NewFName, F->getParent());
+ NewF->copyAttributesFrom(F);
+ NewF->removeAttributes(
+ AttributeList::ReturnIndex,
+ AttributeFuncs::typeIncompatible(NewFT->getReturnType()));
+
+ BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
+ if (F->isVarArg()) {
+ NewF->removeAttributes(AttributeList::FunctionIndex,
+ AttrBuilder().addAttribute("split-stack"));
+ CallInst::Create(DFSanVarargWrapperFn,
+ IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "",
+ BB);
+ new UnreachableInst(*Ctx, BB);
+ } else {
+ std::vector<Value *> Args;
+ unsigned n = FT->getNumParams();
+ for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n)
+ Args.push_back(&*ai);
+ CallInst *CI = CallInst::Create(F, Args, "", BB);
+ if (FT->getReturnType()->isVoidTy())
+ ReturnInst::Create(*Ctx, BB);
+ else
+ ReturnInst::Create(*Ctx, CI, BB);
+ }
+
+ return NewF;
+}
+
+Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT,
+ StringRef FName) {
+ FunctionType *FTT = getTrampolineFunctionType(FT);
+ FunctionCallee C = Mod->getOrInsertFunction(FName, FTT);
+ Function *F = dyn_cast<Function>(C.getCallee());
+ if (F && F->isDeclaration()) {
+ F->setLinkage(GlobalValue::LinkOnceODRLinkage);
+ BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F);
+ std::vector<Value *> Args;
+ Function::arg_iterator AI = F->arg_begin(); ++AI;
+ for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N)
+ Args.push_back(&*AI);
+ CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB);
+ ReturnInst *RI;
+ if (FT->getReturnType()->isVoidTy())
+ RI = ReturnInst::Create(*Ctx, BB);
+ else
+ RI = ReturnInst::Create(*Ctx, CI, BB);
+
+ DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true);
+ Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI;
+ for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N)
+ DFSF.ValShadowMap[&*ValAI] = &*ShadowAI;
+ DFSanVisitor(DFSF).visitCallInst(*CI);
+ if (!FT->getReturnType()->isVoidTy())
+ new StoreInst(DFSF.getShadow(RI->getReturnValue()),
+ &*std::prev(F->arg_end()), RI);
+ }
+
+ return cast<Constant>(C.getCallee());
+}
+
+bool DataFlowSanitizer::runOnModule(Module &M) {
+ if (ABIList.isIn(M, "skip"))
+ return false;
+
+ if (!GetArgTLSPtr) {
+ Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
+ ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy);
+ if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS))
+ G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
+ }
+ if (!GetRetvalTLSPtr) {
+ RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", ShadowTy);
+ if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS))
+ G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
+ }
+
+ ExternalShadowMask =
+ Mod->getOrInsertGlobal(kDFSanExternShadowPtrMask, IntptrTy);
+
+ {
+ AttributeList AL;
+ AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
+ Attribute::NoUnwind);
+ AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
+ Attribute::ReadNone);
+ AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
+ Attribute::ZExt);
+ AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
+ AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
+ DFSanUnionFn =
+ Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy, AL);
+ }
+
+ {
+ AttributeList AL;
+ AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
+ Attribute::NoUnwind);
+ AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
+ Attribute::ReadNone);
+ AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
+ Attribute::ZExt);
+ AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
+ AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
+ DFSanCheckedUnionFn =
+ Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy, AL);
+ }
+ {
+ AttributeList AL;
+ AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
+ Attribute::NoUnwind);
+ AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
+ Attribute::ReadOnly);
+ AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
+ Attribute::ZExt);
+ DFSanUnionLoadFn =
+ Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL);
+ }
+ DFSanUnimplementedFn =
+ Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy);
+ {
+ AttributeList AL;
+ AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
+ DFSanSetLabelFn =
+ Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL);
+ }
+ DFSanNonzeroLabelFn =
+ Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy);
+ DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper",
+ DFSanVarargWrapperFnTy);
+
+ std::vector<Function *> FnsToInstrument;
+ SmallPtrSet<Function *, 2> FnsWithNativeABI;
+ for (Function &i : M) {
+ if (!i.isIntrinsic() &&
+ &i != DFSanUnionFn.getCallee()->stripPointerCasts() &&
+ &i != DFSanCheckedUnionFn.getCallee()->stripPointerCasts() &&
+ &i != DFSanUnionLoadFn.getCallee()->stripPointerCasts() &&
+ &i != DFSanUnimplementedFn.getCallee()->stripPointerCasts() &&
+ &i != DFSanSetLabelFn.getCallee()->stripPointerCasts() &&
+ &i != DFSanNonzeroLabelFn.getCallee()->stripPointerCasts() &&
+ &i != DFSanVarargWrapperFn.getCallee()->stripPointerCasts())
+ FnsToInstrument.push_back(&i);
+ }
+
+ // Give function aliases prefixes when necessary, and build wrappers where the
+ // instrumentedness is inconsistent.
+ for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) {
+ GlobalAlias *GA = &*i;
+ ++i;
+ // Don't stop on weak. We assume people aren't playing games with the
+ // instrumentedness of overridden weak aliases.
+ if (auto F = dyn_cast<Function>(GA->getBaseObject())) {
+ bool GAInst = isInstrumented(GA), FInst = isInstrumented(F);
+ if (GAInst && FInst) {
+ addGlobalNamePrefix(GA);
+ } else if (GAInst != FInst) {
+ // Non-instrumented alias of an instrumented function, or vice versa.
+ // Replace the alias with a native-ABI wrapper of the aliasee. The pass
+ // below will take care of instrumenting it.
+ Function *NewF =
+ buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType());
+ GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType()));
+ NewF->takeName(GA);
+ GA->eraseFromParent();
+ FnsToInstrument.push_back(NewF);
+ }
+ }
+ }
+
+ ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly)
+ .addAttribute(Attribute::ReadNone);
+
+ // First, change the ABI of every function in the module. ABI-listed
+ // functions keep their original ABI and get a wrapper function.
+ for (std::vector<Function *>::iterator i = FnsToInstrument.begin(),
+ e = FnsToInstrument.end();
+ i != e; ++i) {
+ Function &F = **i;
+ FunctionType *FT = F.getFunctionType();
+
+ bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() &&
+ FT->getReturnType()->isVoidTy());
+
+ if (isInstrumented(&F)) {
+ // Instrumented functions get a 'dfs$' prefix. This allows us to more
+ // easily identify cases of mismatching ABIs.
+ if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) {
+ FunctionType *NewFT = getArgsFunctionType(FT);
+ Function *NewF = Function::Create(NewFT, F.getLinkage(),
+ F.getAddressSpace(), "", &M);
+ NewF->copyAttributesFrom(&F);
+ NewF->removeAttributes(
+ AttributeList::ReturnIndex,
+ AttributeFuncs::typeIncompatible(NewFT->getReturnType()));
+ for (Function::arg_iterator FArg = F.arg_begin(),
+ NewFArg = NewF->arg_begin(),
+ FArgEnd = F.arg_end();
+ FArg != FArgEnd; ++FArg, ++NewFArg) {
+ FArg->replaceAllUsesWith(&*NewFArg);
+ }
+ NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList());
+
+ for (Function::user_iterator UI = F.user_begin(), UE = F.user_end();
+ UI != UE;) {
+ BlockAddress *BA = dyn_cast<BlockAddress>(*UI);
+ ++UI;
+ if (BA) {
+ BA->replaceAllUsesWith(
+ BlockAddress::get(NewF, BA->getBasicBlock()));
+ delete BA;
+ }
+ }
+ F.replaceAllUsesWith(
+ ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)));
+ NewF->takeName(&F);
+ F.eraseFromParent();
+ *i = NewF;
+ addGlobalNamePrefix(NewF);
+ } else {
+ addGlobalNamePrefix(&F);
+ }
+ } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) {
+ // Build a wrapper function for F. The wrapper simply calls F, and is
+ // added to FnsToInstrument so that any instrumentation according to its
+ // WrapperKind is done in the second pass below.
+ FunctionType *NewFT = getInstrumentedABI() == IA_Args
+ ? getArgsFunctionType(FT)
+ : FT;
+
+ // If the function being wrapped has local linkage, then preserve the
+ // function's linkage in the wrapper function.
+ GlobalValue::LinkageTypes wrapperLinkage =
+ F.hasLocalLinkage()
+ ? F.getLinkage()
+ : GlobalValue::LinkOnceODRLinkage;
+
+ Function *NewF = buildWrapperFunction(
+ &F, std::string("dfsw$") + std::string(F.getName()),
+ wrapperLinkage, NewFT);
+ if (getInstrumentedABI() == IA_TLS)
+ NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs);
+
+ Value *WrappedFnCst =
+ ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT));
+ F.replaceAllUsesWith(WrappedFnCst);
+
+ UnwrappedFnMap[WrappedFnCst] = &F;
+ *i = NewF;
+
+ if (!F.isDeclaration()) {
+ // This function is probably defining an interposition of an
+ // uninstrumented function and hence needs to keep the original ABI.
+ // But any functions it may call need to use the instrumented ABI, so
+ // we instrument it in a mode which preserves the original ABI.
+ FnsWithNativeABI.insert(&F);
+
+ // This code needs to rebuild the iterators, as they may be invalidated
+ // by the push_back, taking care that the new range does not include
+ // any functions added by this code.
+ size_t N = i - FnsToInstrument.begin(),
+ Count = e - FnsToInstrument.begin();
+ FnsToInstrument.push_back(&F);
+ i = FnsToInstrument.begin() + N;
+ e = FnsToInstrument.begin() + Count;
+ }
+ // Hopefully, nobody will try to indirectly call a vararg
+ // function... yet.
+ } else if (FT->isVarArg()) {
+ UnwrappedFnMap[&F] = &F;
+ *i = nullptr;
+ }
+ }
+
+ for (Function *i : FnsToInstrument) {
+ if (!i || i->isDeclaration())
+ continue;
+
+ removeUnreachableBlocks(*i);
+
+ DFSanFunction DFSF(*this, i, FnsWithNativeABI.count(i));
+
+ // DFSanVisitor may create new basic blocks, which confuses df_iterator.
+ // Build a copy of the list before iterating over it.
+ SmallVector<BasicBlock *, 4> BBList(depth_first(&i->getEntryBlock()));
+
+ for (BasicBlock *i : BBList) {
+ Instruction *Inst = &i->front();
+ while (true) {
+ // DFSanVisitor may split the current basic block, changing the current
+ // instruction's next pointer and moving the next instruction to the
+ // tail block from which we should continue.
+ Instruction *Next = Inst->getNextNode();
+ // DFSanVisitor may delete Inst, so keep track of whether it was a
+ // terminator.
+ bool IsTerminator = Inst->isTerminator();
+ if (!DFSF.SkipInsts.count(Inst))
+ DFSanVisitor(DFSF).visit(Inst);
+ if (IsTerminator)
+ break;
+ Inst = Next;
+ }
+ }
+
+ // We will not necessarily be able to compute the shadow for every phi node
+ // until we have visited every block. Therefore, the code that handles phi
+ // nodes adds them to the PHIFixups list so that they can be properly
+ // handled here.
+ for (std::vector<std::pair<PHINode *, PHINode *>>::iterator
+ i = DFSF.PHIFixups.begin(),
+ e = DFSF.PHIFixups.end();
+ i != e; ++i) {
+ for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n;
+ ++val) {
+ i->second->setIncomingValue(
+ val, DFSF.getShadow(i->first->getIncomingValue(val)));
+ }
+ }
+
+ // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy
+ // places (i.e. instructions in basic blocks we haven't even begun visiting
+ // yet). To make our life easier, do this work in a pass after the main
+ // instrumentation.
+ if (ClDebugNonzeroLabels) {
+ for (Value *V : DFSF.NonZeroChecks) {
+ Instruction *Pos;
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ Pos = I->getNextNode();
+ else
+ Pos = &DFSF.F->getEntryBlock().front();
+ while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos))
+ Pos = Pos->getNextNode();
+ IRBuilder<> IRB(Pos);
+ Value *Ne = IRB.CreateICmpNE(V, DFSF.DFS.ZeroShadow);
+ BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
+ Ne, Pos, /*Unreachable=*/false, ColdCallWeights));
+ IRBuilder<> ThenIRB(BI);
+ ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {});
+ }
+ }
+ }
+
+ return false;
+}
+
+Value *DFSanFunction::getArgTLSPtr() {
+ if (ArgTLSPtr)
+ return ArgTLSPtr;
+ if (DFS.ArgTLS)
+ return ArgTLSPtr = DFS.ArgTLS;
+
+ IRBuilder<> IRB(&F->getEntryBlock().front());
+ return ArgTLSPtr = IRB.CreateCall(DFS.GetArgTLSTy, DFS.GetArgTLS, {});
+}
+
+Value *DFSanFunction::getRetvalTLS() {
+ if (RetvalTLSPtr)
+ return RetvalTLSPtr;
+ if (DFS.RetvalTLS)
+ return RetvalTLSPtr = DFS.RetvalTLS;
+
+ IRBuilder<> IRB(&F->getEntryBlock().front());
+ return RetvalTLSPtr =
+ IRB.CreateCall(DFS.GetRetvalTLSTy, DFS.GetRetvalTLS, {});
+}
+
+Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) {
+ IRBuilder<> IRB(Pos);
+ return IRB.CreateConstGEP2_64(ArrayType::get(DFS.ShadowTy, 64),
+ getArgTLSPtr(), 0, Idx);
+}
+
+Value *DFSanFunction::getShadow(Value *V) {
+ if (!isa<Argument>(V) && !isa<Instruction>(V))
+ return DFS.ZeroShadow;
+ Value *&Shadow = ValShadowMap[V];
+ if (!Shadow) {
+ if (Argument *A = dyn_cast<Argument>(V)) {
+ if (IsNativeABI)
+ return DFS.ZeroShadow;
+ switch (IA) {
+ case DataFlowSanitizer::IA_TLS: {
+ Value *ArgTLSPtr = getArgTLSPtr();
+ Instruction *ArgTLSPos =
+ DFS.ArgTLS ? &*F->getEntryBlock().begin()
+ : cast<Instruction>(ArgTLSPtr)->getNextNode();
+ IRBuilder<> IRB(ArgTLSPos);
+ Shadow =
+ IRB.CreateLoad(DFS.ShadowTy, getArgTLS(A->getArgNo(), ArgTLSPos));
+ break;
+ }
+ case DataFlowSanitizer::IA_Args: {
+ unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2;
+ Function::arg_iterator i = F->arg_begin();
+ while (ArgIdx--)
+ ++i;
+ Shadow = &*i;
+ assert(Shadow->getType() == DFS.ShadowTy);
+ break;
+ }
+ }
+ NonZeroChecks.push_back(Shadow);
+ } else {
+ Shadow = DFS.ZeroShadow;
+ }
+ }
+ return Shadow;
+}
+
+void DFSanFunction::setShadow(Instruction *I, Value *Shadow) {
+ assert(!ValShadowMap.count(I));
+ assert(Shadow->getType() == DFS.ShadowTy);
+ ValShadowMap[I] = Shadow;
+}
+
+Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) {
+ assert(Addr != RetvalTLS && "Reinstrumenting?");
+ IRBuilder<> IRB(Pos);
+ Value *ShadowPtrMaskValue;
+ if (DFSanRuntimeShadowMask)
+ ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask);
+ else
+ ShadowPtrMaskValue = ShadowPtrMask;
+ return IRB.CreateIntToPtr(
+ IRB.CreateMul(
+ IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy),
+ IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)),
+ ShadowPtrMul),
+ ShadowPtrTy);
+}
+
+// Generates IR to compute the union of the two given shadows, inserting it
+// before Pos. Returns the computed union Value.
+Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) {
+ if (V1 == DFS.ZeroShadow)
+ return V2;
+ if (V2 == DFS.ZeroShadow)
+ return V1;
+ if (V1 == V2)
+ return V1;
+
+ auto V1Elems = ShadowElements.find(V1);
+ auto V2Elems = ShadowElements.find(V2);
+ if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) {
+ if (std::includes(V1Elems->second.begin(), V1Elems->second.end(),
+ V2Elems->second.begin(), V2Elems->second.end())) {
+ return V1;
+ } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(),
+ V1Elems->second.begin(), V1Elems->second.end())) {
+ return V2;
+ }
+ } else if (V1Elems != ShadowElements.end()) {
+ if (V1Elems->second.count(V2))
+ return V1;
+ } else if (V2Elems != ShadowElements.end()) {
+ if (V2Elems->second.count(V1))
+ return V2;
+ }
+
+ auto Key = std::make_pair(V1, V2);
+ if (V1 > V2)
+ std::swap(Key.first, Key.second);
+ CachedCombinedShadow &CCS = CachedCombinedShadows[Key];
+ if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent()))
+ return CCS.Shadow;
+
+ IRBuilder<> IRB(Pos);
+ if (AvoidNewBlocks) {
+ CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {V1, V2});
+ Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
+ Call->addParamAttr(0, Attribute::ZExt);
+ Call->addParamAttr(1, Attribute::ZExt);
+
+ CCS.Block = Pos->getParent();
+ CCS.Shadow = Call;
+ } else {
+ BasicBlock *Head = Pos->getParent();
+ Value *Ne = IRB.CreateICmpNE(V1, V2);
+ BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
+ Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT));
+ IRBuilder<> ThenIRB(BI);
+ CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {V1, V2});
+ Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
+ Call->addParamAttr(0, Attribute::ZExt);
+ Call->addParamAttr(1, Attribute::ZExt);
+
+ BasicBlock *Tail = BI->getSuccessor(0);
+ PHINode *Phi = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front());
+ Phi->addIncoming(Call, Call->getParent());
+ Phi->addIncoming(V1, Head);
+
+ CCS.Block = Tail;
+ CCS.Shadow = Phi;
+ }
+
+ std::set<Value *> UnionElems;
+ if (V1Elems != ShadowElements.end()) {
+ UnionElems = V1Elems->second;
+ } else {
+ UnionElems.insert(V1);
+ }
+ if (V2Elems != ShadowElements.end()) {
+ UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end());
+ } else {
+ UnionElems.insert(V2);
+ }
+ ShadowElements[CCS.Shadow] = std::move(UnionElems);
+
+ return CCS.Shadow;
+}
+
+// A convenience function which folds the shadows of each of the operands
+// of the provided instruction Inst, inserting the IR before Inst. Returns
+// the computed union Value.
+Value *DFSanFunction::combineOperandShadows(Instruction *Inst) {
+ if (Inst->getNumOperands() == 0)
+ return DFS.ZeroShadow;
+
+ Value *Shadow = getShadow(Inst->getOperand(0));
+ for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) {
+ Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst);
+ }
+ return Shadow;
+}
+
+void DFSanVisitor::visitOperandShadowInst(Instruction &I) {
+ Value *CombinedShadow = DFSF.combineOperandShadows(&I);
+ DFSF.setShadow(&I, CombinedShadow);
+}
+
+// Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where
+// Addr has alignment Align, and take the union of each of those shadows.
+Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align,
+ Instruction *Pos) {
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
+ const auto i = AllocaShadowMap.find(AI);
+ if (i != AllocaShadowMap.end()) {
+ IRBuilder<> IRB(Pos);
+ return IRB.CreateLoad(DFS.ShadowTy, i->second);
+ }
+ }
+
+ uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8;
+ SmallVector<const Value *, 2> Objs;
+ GetUnderlyingObjects(Addr, Objs, Pos->getModule()->getDataLayout());
+ bool AllConstants = true;
+ for (const Value *Obj : Objs) {
+ if (isa<Function>(Obj) || isa<BlockAddress>(Obj))
+ continue;
+ if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant())
+ continue;
+
+ AllConstants = false;
+ break;
+ }
+ if (AllConstants)
+ return DFS.ZeroShadow;
+
+ Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
+ switch (Size) {
+ case 0:
+ return DFS.ZeroShadow;
+ case 1: {
+ LoadInst *LI = new LoadInst(DFS.ShadowTy, ShadowAddr, "", Pos);
+ LI->setAlignment(MaybeAlign(ShadowAlign));
+ return LI;
+ }
+ case 2: {
+ IRBuilder<> IRB(Pos);
+ Value *ShadowAddr1 = IRB.CreateGEP(DFS.ShadowTy, ShadowAddr,
+ ConstantInt::get(DFS.IntptrTy, 1));
+ return combineShadows(
+ IRB.CreateAlignedLoad(DFS.ShadowTy, ShadowAddr, ShadowAlign),
+ IRB.CreateAlignedLoad(DFS.ShadowTy, ShadowAddr1, ShadowAlign), Pos);
+ }
+ }
+ if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidth) == 0) {
+ // Fast path for the common case where each byte has identical shadow: load
+ // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any
+ // shadow is non-equal.
+ BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F);
+ IRBuilder<> FallbackIRB(FallbackBB);
+ CallInst *FallbackCall = FallbackIRB.CreateCall(
+ DFS.DFSanUnionLoadFn,
+ {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
+ FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
+
+ // Compare each of the shadows stored in the loaded 64 bits to each other,
+ // by computing (WideShadow rotl ShadowWidth) == WideShadow.
+ IRBuilder<> IRB(Pos);
+ Value *WideAddr =
+ IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx));
+ Value *WideShadow =
+ IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign);
+ Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.ShadowTy);
+ Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidth);
+ Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidth);
+ Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow);
+ Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow);
+
+ BasicBlock *Head = Pos->getParent();
+ BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator());
+
+ if (DomTreeNode *OldNode = DT.getNode(Head)) {
+ std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
+
+ DomTreeNode *NewNode = DT.addNewBlock(Tail, Head);
+ for (auto Child : Children)
+ DT.changeImmediateDominator(Child, NewNode);
+ }
+
+ // In the following code LastBr will refer to the previous basic block's
+ // conditional branch instruction, whose true successor is fixed up to point
+ // to the next block during the loop below or to the tail after the final
+ // iteration.
+ BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq);
+ ReplaceInstWithInst(Head->getTerminator(), LastBr);
+ DT.addNewBlock(FallbackBB, Head);
+
+ for (uint64_t Ofs = 64 / DFS.ShadowWidth; Ofs != Size;
+ Ofs += 64 / DFS.ShadowWidth) {
+ BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F);
+ DT.addNewBlock(NextBB, LastBr->getParent());
+ IRBuilder<> NextIRB(NextBB);
+ WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr,
+ ConstantInt::get(DFS.IntptrTy, 1));
+ Value *NextWideShadow = NextIRB.CreateAlignedLoad(NextIRB.getInt64Ty(),
+ WideAddr, ShadowAlign);
+ ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow);
+ LastBr->setSuccessor(0, NextBB);
+ LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB);
+ }
+
+ LastBr->setSuccessor(0, Tail);
+ FallbackIRB.CreateBr(Tail);
+ PHINode *Shadow = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front());
+ Shadow->addIncoming(FallbackCall, FallbackBB);
+ Shadow->addIncoming(TruncShadow, LastBr->getParent());
+ return Shadow;
+ }
+
+ IRBuilder<> IRB(Pos);
+ CallInst *FallbackCall = IRB.CreateCall(
+ DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
+ FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
+ return FallbackCall;
+}
+
+void DFSanVisitor::visitLoadInst(LoadInst &LI) {
+ auto &DL = LI.getModule()->getDataLayout();
+ uint64_t Size = DL.getTypeStoreSize(LI.getType());
+ if (Size == 0) {
+ DFSF.setShadow(&LI, DFSF.DFS.ZeroShadow);
+ return;
+ }
+
+ uint64_t Align;
+ if (ClPreserveAlignment) {
+ Align = LI.getAlignment();
+ if (Align == 0)
+ Align = DL.getABITypeAlignment(LI.getType());
+ } else {
+ Align = 1;
+ }
+ IRBuilder<> IRB(&LI);
+ Value *Shadow = DFSF.loadShadow(LI.getPointerOperand(), Size, Align, &LI);
+ if (ClCombinePointerLabelsOnLoad) {
+ Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
+ Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI);
+ }
+ if (Shadow != DFSF.DFS.ZeroShadow)
+ DFSF.NonZeroChecks.push_back(Shadow);
+
+ DFSF.setShadow(&LI, Shadow);
+}
+
+void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, uint64_t Align,
+ Value *Shadow, Instruction *Pos) {
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
+ const auto i = AllocaShadowMap.find(AI);
+ if (i != AllocaShadowMap.end()) {
+ IRBuilder<> IRB(Pos);
+ IRB.CreateStore(Shadow, i->second);
+ return;
+ }
+ }
+
+ uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8;
+ IRBuilder<> IRB(Pos);
+ Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
+ if (Shadow == DFS.ZeroShadow) {
+ IntegerType *ShadowTy = IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidth);
+ Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0);
+ Value *ExtShadowAddr =
+ IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy));
+ IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign);
+ return;
+ }
+
+ const unsigned ShadowVecSize = 128 / DFS.ShadowWidth;
+ uint64_t Offset = 0;
+ if (Size >= ShadowVecSize) {
+ VectorType *ShadowVecTy = VectorType::get(DFS.ShadowTy, ShadowVecSize);
+ Value *ShadowVec = UndefValue::get(ShadowVecTy);
+ for (unsigned i = 0; i != ShadowVecSize; ++i) {
+ ShadowVec = IRB.CreateInsertElement(
+ ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i));
+ }
+ Value *ShadowVecAddr =
+ IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy));
+ do {
+ Value *CurShadowVecAddr =
+ IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset);
+ IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign);
+ Size -= ShadowVecSize;
+ ++Offset;
+ } while (Size >= ShadowVecSize);
+ Offset *= ShadowVecSize;
+ }
+ while (Size > 0) {
+ Value *CurShadowAddr =
+ IRB.CreateConstGEP1_32(DFS.ShadowTy, ShadowAddr, Offset);
+ IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign);
+ --Size;
+ ++Offset;
+ }
+}
+
+void DFSanVisitor::visitStoreInst(StoreInst &SI) {
+ auto &DL = SI.getModule()->getDataLayout();
+ uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType());
+ if (Size == 0)
+ return;
+
+ uint64_t Align;
+ if (ClPreserveAlignment) {
+ Align = SI.getAlignment();
+ if (Align == 0)
+ Align = DL.getABITypeAlignment(SI.getValueOperand()->getType());
+ } else {
+ Align = 1;
+ }
+
+ Value* Shadow = DFSF.getShadow(SI.getValueOperand());
+ if (ClCombinePointerLabelsOnStore) {
+ Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand());
+ Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI);
+ }
+ DFSF.storeShadow(SI.getPointerOperand(), Size, Align, Shadow, &SI);
+}
+
+void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) {
+ visitOperandShadowInst(UO);
+}
+
+void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) {
+ visitOperandShadowInst(BO);
+}
+
+void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); }
+
+void DFSanVisitor::visitCmpInst(CmpInst &CI) { visitOperandShadowInst(CI); }
+
+void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
+ visitOperandShadowInst(GEPI);
+}
+
+void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) {
+ visitOperandShadowInst(I);
+}
+
+void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) {
+ visitOperandShadowInst(I);
+}
+
+void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) {
+ visitOperandShadowInst(I);
+}
+
+void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) {
+ visitOperandShadowInst(I);
+}
+
+void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) {
+ visitOperandShadowInst(I);
+}
+
+void DFSanVisitor::visitAllocaInst(AllocaInst &I) {
+ bool AllLoadsStores = true;
+ for (User *U : I.users()) {
+ if (isa<LoadInst>(U))
+ continue;
+
+ if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
+ if (SI->getPointerOperand() == &I)
+ continue;
+ }
+
+ AllLoadsStores = false;
+ break;
+ }
+ if (AllLoadsStores) {
+ IRBuilder<> IRB(&I);
+ DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.ShadowTy);
+ }
+ DFSF.setShadow(&I, DFSF.DFS.ZeroShadow);
+}
+
+void DFSanVisitor::visitSelectInst(SelectInst &I) {
+ Value *CondShadow = DFSF.getShadow(I.getCondition());
+ Value *TrueShadow = DFSF.getShadow(I.getTrueValue());
+ Value *FalseShadow = DFSF.getShadow(I.getFalseValue());
+
+ if (isa<VectorType>(I.getCondition()->getType())) {
+ DFSF.setShadow(
+ &I,
+ DFSF.combineShadows(
+ CondShadow, DFSF.combineShadows(TrueShadow, FalseShadow, &I), &I));
+ } else {
+ Value *ShadowSel;
+ if (TrueShadow == FalseShadow) {
+ ShadowSel = TrueShadow;
+ } else {
+ ShadowSel =
+ SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I);
+ }
+ DFSF.setShadow(&I, DFSF.combineShadows(CondShadow, ShadowSel, &I));
+ }
+}
+
+void DFSanVisitor::visitMemSetInst(MemSetInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *ValShadow = DFSF.getShadow(I.getValue());
+ IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn,
+ {ValShadow, IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(
+ *DFSF.DFS.Ctx)),
+ IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
+}
+
+void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *DestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I);
+ Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I);
+ Value *LenShadow = IRB.CreateMul(
+ I.getLength(),
+ ConstantInt::get(I.getLength()->getType(), DFSF.DFS.ShadowWidth / 8));
+ Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx);
+ DestShadow = IRB.CreateBitCast(DestShadow, Int8Ptr);
+ SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr);
+ auto *MTI = cast<MemTransferInst>(
+ IRB.CreateCall(I.getFunctionType(), I.getCalledValue(),
+ {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()}));
+ if (ClPreserveAlignment) {
+ MTI->setDestAlignment(I.getDestAlignment() * (DFSF.DFS.ShadowWidth / 8));
+ MTI->setSourceAlignment(I.getSourceAlignment() * (DFSF.DFS.ShadowWidth / 8));
+ } else {
+ MTI->setDestAlignment(DFSF.DFS.ShadowWidth / 8);
+ MTI->setSourceAlignment(DFSF.DFS.ShadowWidth / 8);
+ }
+}
+
+void DFSanVisitor::visitReturnInst(ReturnInst &RI) {
+ if (!DFSF.IsNativeABI && RI.getReturnValue()) {
+ switch (DFSF.IA) {
+ case DataFlowSanitizer::IA_TLS: {
+ Value *S = DFSF.getShadow(RI.getReturnValue());
+ IRBuilder<> IRB(&RI);
+ IRB.CreateStore(S, DFSF.getRetvalTLS());
+ break;
+ }
+ case DataFlowSanitizer::IA_Args: {
+ IRBuilder<> IRB(&RI);
+ Type *RT = DFSF.F->getFunctionType()->getReturnType();
+ Value *InsVal =
+ IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0);
+ Value *InsShadow =
+ IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1);
+ RI.setOperand(0, InsShadow);
+ break;
+ }
+ }
+ }
+}
+
+void DFSanVisitor::visitCallSite(CallSite CS) {
+ Function *F = CS.getCalledFunction();
+ if ((F && F->isIntrinsic()) || isa<InlineAsm>(CS.getCalledValue())) {
+ visitOperandShadowInst(*CS.getInstruction());
+ return;
+ }
+
+ // Calls to this function are synthesized in wrappers, and we shouldn't
+ // instrument them.
+ if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts())
+ return;
+
+ IRBuilder<> IRB(CS.getInstruction());
+
+ DenseMap<Value *, Function *>::iterator i =
+ DFSF.DFS.UnwrappedFnMap.find(CS.getCalledValue());
+ if (i != DFSF.DFS.UnwrappedFnMap.end()) {
+ Function *F = i->second;
+ switch (DFSF.DFS.getWrapperKind(F)) {
+ case DataFlowSanitizer::WK_Warning:
+ CS.setCalledFunction(F);
+ IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn,
+ IRB.CreateGlobalStringPtr(F->getName()));
+ DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
+ return;
+ case DataFlowSanitizer::WK_Discard:
+ CS.setCalledFunction(F);
+ DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
+ return;
+ case DataFlowSanitizer::WK_Functional:
+ CS.setCalledFunction(F);
+ visitOperandShadowInst(*CS.getInstruction());
+ return;
+ case DataFlowSanitizer::WK_Custom:
+ // Don't try to handle invokes of custom functions, it's too complicated.
+ // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_
+ // wrapper.
+ if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
+ FunctionType *FT = F->getFunctionType();
+ TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT);
+ std::string CustomFName = "__dfsw_";
+ CustomFName += F->getName();
+ FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction(
+ CustomFName, CustomFn.TransformedType);
+ if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) {
+ CustomFn->copyAttributesFrom(F);
+
+ // Custom functions returning non-void will write to the return label.
+ if (!FT->getReturnType()->isVoidTy()) {
+ CustomFn->removeAttributes(AttributeList::FunctionIndex,
+ DFSF.DFS.ReadOnlyNoneAttrs);
+ }
+ }
+
+ std::vector<Value *> Args;
+
+ CallSite::arg_iterator i = CS.arg_begin();
+ for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) {
+ Type *T = (*i)->getType();
+ FunctionType *ParamFT;
+ if (isa<PointerType>(T) &&
+ (ParamFT = dyn_cast<FunctionType>(
+ cast<PointerType>(T)->getElementType()))) {
+ std::string TName = "dfst";
+ TName += utostr(FT->getNumParams() - n);
+ TName += "$";
+ TName += F->getName();
+ Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName);
+ Args.push_back(T);
+ Args.push_back(
+ IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx)));
+ } else {
+ Args.push_back(*i);
+ }
+ }
+
+ i = CS.arg_begin();
+ const unsigned ShadowArgStart = Args.size();
+ for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
+ Args.push_back(DFSF.getShadow(*i));
+
+ if (FT->isVarArg()) {
+ auto *LabelVATy = ArrayType::get(DFSF.DFS.ShadowTy,
+ CS.arg_size() - FT->getNumParams());
+ auto *LabelVAAlloca = new AllocaInst(
+ LabelVATy, getDataLayout().getAllocaAddrSpace(),
+ "labelva", &DFSF.F->getEntryBlock().front());
+
+ for (unsigned n = 0; i != CS.arg_end(); ++i, ++n) {
+ auto LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, n);
+ IRB.CreateStore(DFSF.getShadow(*i), LabelVAPtr);
+ }
+
+ Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0));
+ }
+
+ if (!FT->getReturnType()->isVoidTy()) {
+ if (!DFSF.LabelReturnAlloca) {
+ DFSF.LabelReturnAlloca =
+ new AllocaInst(DFSF.DFS.ShadowTy,
+ getDataLayout().getAllocaAddrSpace(),
+ "labelreturn", &DFSF.F->getEntryBlock().front());
+ }
+ Args.push_back(DFSF.LabelReturnAlloca);
+ }
+
+ for (i = CS.arg_begin() + FT->getNumParams(); i != CS.arg_end(); ++i)
+ Args.push_back(*i);
+
+ CallInst *CustomCI = IRB.CreateCall(CustomF, Args);
+ CustomCI->setCallingConv(CI->getCallingConv());
+ CustomCI->setAttributes(TransformFunctionAttributes(CustomFn,
+ CI->getContext(), CI->getAttributes()));
+
+ // Update the parameter attributes of the custom call instruction to
+ // zero extend the shadow parameters. This is required for targets
+ // which consider ShadowTy an illegal type.
+ for (unsigned n = 0; n < FT->getNumParams(); n++) {
+ const unsigned ArgNo = ShadowArgStart + n;
+ if (CustomCI->getArgOperand(ArgNo)->getType() == DFSF.DFS.ShadowTy)
+ CustomCI->addParamAttr(ArgNo, Attribute::ZExt);
+ }
+
+ if (!FT->getReturnType()->isVoidTy()) {
+ LoadInst *LabelLoad =
+ IRB.CreateLoad(DFSF.DFS.ShadowTy, DFSF.LabelReturnAlloca);
+ DFSF.setShadow(CustomCI, LabelLoad);
+ }
+
+ CI->replaceAllUsesWith(CustomCI);
+ CI->eraseFromParent();
+ return;
+ }
+ break;
+ }
+ }
+
+ FunctionType *FT = cast<FunctionType>(
+ CS.getCalledValue()->getType()->getPointerElementType());
+ if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
+ for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) {
+ IRB.CreateStore(DFSF.getShadow(CS.getArgument(i)),
+ DFSF.getArgTLS(i, CS.getInstruction()));
+ }
+ }
+
+ Instruction *Next = nullptr;
+ if (!CS.getType()->isVoidTy()) {
+ if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
+ if (II->getNormalDest()->getSinglePredecessor()) {
+ Next = &II->getNormalDest()->front();
+ } else {
+ BasicBlock *NewBB =
+ SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT);
+ Next = &NewBB->front();
+ }
+ } else {
+ assert(CS->getIterator() != CS->getParent()->end());
+ Next = CS->getNextNode();
+ }
+
+ if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
+ IRBuilder<> NextIRB(Next);
+ LoadInst *LI = NextIRB.CreateLoad(DFSF.DFS.ShadowTy, DFSF.getRetvalTLS());
+ DFSF.SkipInsts.insert(LI);
+ DFSF.setShadow(CS.getInstruction(), LI);
+ DFSF.NonZeroChecks.push_back(LI);
+ }
+ }
+
+ // Do all instrumentation for IA_Args down here to defer tampering with the
+ // CFG in a way that SplitEdge may be able to detect.
+ if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) {
+ FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT);
+ Value *Func =
+ IRB.CreateBitCast(CS.getCalledValue(), PointerType::getUnqual(NewFT));
+ std::vector<Value *> Args;
+
+ CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
+ for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
+ Args.push_back(*i);
+
+ i = CS.arg_begin();
+ for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
+ Args.push_back(DFSF.getShadow(*i));
+
+ if (FT->isVarArg()) {
+ unsigned VarArgSize = CS.arg_size() - FT->getNumParams();
+ ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.ShadowTy, VarArgSize);
+ AllocaInst *VarArgShadow =
+ new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(),
+ "", &DFSF.F->getEntryBlock().front());
+ Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0));
+ for (unsigned n = 0; i != e; ++i, ++n) {
+ IRB.CreateStore(
+ DFSF.getShadow(*i),
+ IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n));
+ Args.push_back(*i);
+ }
+ }
+
+ CallSite NewCS;
+ if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
+ NewCS = IRB.CreateInvoke(NewFT, Func, II->getNormalDest(),
+ II->getUnwindDest(), Args);
+ } else {
+ NewCS = IRB.CreateCall(NewFT, Func, Args);
+ }
+ NewCS.setCallingConv(CS.getCallingConv());
+ NewCS.setAttributes(CS.getAttributes().removeAttributes(
+ *DFSF.DFS.Ctx, AttributeList::ReturnIndex,
+ AttributeFuncs::typeIncompatible(NewCS.getInstruction()->getType())));
+
+ if (Next) {
+ ExtractValueInst *ExVal =
+ ExtractValueInst::Create(NewCS.getInstruction(), 0, "", Next);
+ DFSF.SkipInsts.insert(ExVal);
+ ExtractValueInst *ExShadow =
+ ExtractValueInst::Create(NewCS.getInstruction(), 1, "", Next);
+ DFSF.SkipInsts.insert(ExShadow);
+ DFSF.setShadow(ExVal, ExShadow);
+ DFSF.NonZeroChecks.push_back(ExShadow);
+
+ CS.getInstruction()->replaceAllUsesWith(ExVal);
+ }
+
+ CS.getInstruction()->eraseFromParent();
+ }
+}
+
+void DFSanVisitor::visitPHINode(PHINode &PN) {
+ PHINode *ShadowPN =
+ PHINode::Create(DFSF.DFS.ShadowTy, PN.getNumIncomingValues(), "", &PN);
+
+ // Give the shadow phi node valid predecessors to fool SplitEdge into working.
+ Value *UndefShadow = UndefValue::get(DFSF.DFS.ShadowTy);
+ for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e;
+ ++i) {
+ ShadowPN->addIncoming(UndefShadow, *i);
+ }
+
+ DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN));
+ DFSF.setShadow(&PN, ShadowPN);
+}