diff options
Diffstat (limited to 'llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp')
| -rw-r--r-- | llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp | 1778 | 
1 files changed, 1778 insertions, 0 deletions
| diff --git a/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp b/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp new file mode 100644 index 000000000000..c0353cba0b2f --- /dev/null +++ b/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp @@ -0,0 +1,1778 @@ +//===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +/// \file +/// This file is a part of DataFlowSanitizer, a generalised dynamic data flow +/// analysis. +/// +/// Unlike other Sanitizer tools, this tool is not designed to detect a specific +/// class of bugs on its own.  Instead, it provides a generic dynamic data flow +/// analysis framework to be used by clients to help detect application-specific +/// issues within their own code. +/// +/// The analysis is based on automatic propagation of data flow labels (also +/// known as taint labels) through a program as it performs computation.  Each +/// byte of application memory is backed by two bytes of shadow memory which +/// hold the label.  On Linux/x86_64, memory is laid out as follows: +/// +/// +--------------------+ 0x800000000000 (top of memory) +/// | application memory | +/// +--------------------+ 0x700000008000 (kAppAddr) +/// |                    | +/// |       unused       | +/// |                    | +/// +--------------------+ 0x200200000000 (kUnusedAddr) +/// |    union table     | +/// +--------------------+ 0x200000000000 (kUnionTableAddr) +/// |   shadow memory    | +/// +--------------------+ 0x000000010000 (kShadowAddr) +/// | reserved by kernel | +/// +--------------------+ 0x000000000000 +/// +/// To derive a shadow memory address from an application memory address, +/// bits 44-46 are cleared to bring the address into the range +/// [0x000000008000,0x100000000000).  Then the address is shifted left by 1 to +/// account for the double byte representation of shadow labels and move the +/// address into the shadow memory range.  See the function +/// DataFlowSanitizer::getShadowAddress below. +/// +/// For more information, please refer to the design document: +/// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/Triple.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/Argument.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/InstVisitor.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/SpecialCaseList.h" +#include "llvm/Transforms/Instrumentation.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <iterator> +#include <memory> +#include <set> +#include <string> +#include <utility> +#include <vector> + +using namespace llvm; + +// External symbol to be used when generating the shadow address for +// architectures with multiple VMAs. Instead of using a constant integer +// the runtime will set the external mask based on the VMA range. +static const char *const kDFSanExternShadowPtrMask = "__dfsan_shadow_ptr_mask"; + +// The -dfsan-preserve-alignment flag controls whether this pass assumes that +// alignment requirements provided by the input IR are correct.  For example, +// if the input IR contains a load with alignment 8, this flag will cause +// the shadow load to have alignment 16.  This flag is disabled by default as +// we have unfortunately encountered too much code (including Clang itself; +// see PR14291) which performs misaligned access. +static cl::opt<bool> ClPreserveAlignment( +    "dfsan-preserve-alignment", +    cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, +    cl::init(false)); + +// The ABI list files control how shadow parameters are passed. The pass treats +// every function labelled "uninstrumented" in the ABI list file as conforming +// to the "native" (i.e. unsanitized) ABI.  Unless the ABI list contains +// additional annotations for those functions, a call to one of those functions +// will produce a warning message, as the labelling behaviour of the function is +// unknown.  The other supported annotations are "functional" and "discard", +// which are described below under DataFlowSanitizer::WrapperKind. +static cl::list<std::string> ClABIListFiles( +    "dfsan-abilist", +    cl::desc("File listing native ABI functions and how the pass treats them"), +    cl::Hidden); + +// Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented +// functions (see DataFlowSanitizer::InstrumentedABI below). +static cl::opt<bool> ClArgsABI( +    "dfsan-args-abi", +    cl::desc("Use the argument ABI rather than the TLS ABI"), +    cl::Hidden); + +// Controls whether the pass includes or ignores the labels of pointers in load +// instructions. +static cl::opt<bool> ClCombinePointerLabelsOnLoad( +    "dfsan-combine-pointer-labels-on-load", +    cl::desc("Combine the label of the pointer with the label of the data when " +             "loading from memory."), +    cl::Hidden, cl::init(true)); + +// Controls whether the pass includes or ignores the labels of pointers in +// stores instructions. +static cl::opt<bool> ClCombinePointerLabelsOnStore( +    "dfsan-combine-pointer-labels-on-store", +    cl::desc("Combine the label of the pointer with the label of the data when " +             "storing in memory."), +    cl::Hidden, cl::init(false)); + +static cl::opt<bool> ClDebugNonzeroLabels( +    "dfsan-debug-nonzero-labels", +    cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " +             "load or return with a nonzero label"), +    cl::Hidden); + +static StringRef GetGlobalTypeString(const GlobalValue &G) { +  // Types of GlobalVariables are always pointer types. +  Type *GType = G.getValueType(); +  // For now we support blacklisting struct types only. +  if (StructType *SGType = dyn_cast<StructType>(GType)) { +    if (!SGType->isLiteral()) +      return SGType->getName(); +  } +  return "<unknown type>"; +} + +namespace { + +class DFSanABIList { +  std::unique_ptr<SpecialCaseList> SCL; + + public: +  DFSanABIList() = default; + +  void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } + +  /// Returns whether either this function or its source file are listed in the +  /// given category. +  bool isIn(const Function &F, StringRef Category) const { +    return isIn(*F.getParent(), Category) || +           SCL->inSection("dataflow", "fun", F.getName(), Category); +  } + +  /// Returns whether this global alias is listed in the given category. +  /// +  /// If GA aliases a function, the alias's name is matched as a function name +  /// would be.  Similarly, aliases of globals are matched like globals. +  bool isIn(const GlobalAlias &GA, StringRef Category) const { +    if (isIn(*GA.getParent(), Category)) +      return true; + +    if (isa<FunctionType>(GA.getValueType())) +      return SCL->inSection("dataflow", "fun", GA.getName(), Category); + +    return SCL->inSection("dataflow", "global", GA.getName(), Category) || +           SCL->inSection("dataflow", "type", GetGlobalTypeString(GA), +                          Category); +  } + +  /// Returns whether this module is listed in the given category. +  bool isIn(const Module &M, StringRef Category) const { +    return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); +  } +}; + +/// TransformedFunction is used to express the result of transforming one +/// function type into another.  This struct is immutable.  It holds metadata +/// useful for updating calls of the old function to the new type. +struct TransformedFunction { +  TransformedFunction(FunctionType* OriginalType, +                      FunctionType* TransformedType, +                      std::vector<unsigned> ArgumentIndexMapping) +      : OriginalType(OriginalType), +        TransformedType(TransformedType), +        ArgumentIndexMapping(ArgumentIndexMapping) {} + +  // Disallow copies. +  TransformedFunction(const TransformedFunction&) = delete; +  TransformedFunction& operator=(const TransformedFunction&) = delete; + +  // Allow moves. +  TransformedFunction(TransformedFunction&&) = default; +  TransformedFunction& operator=(TransformedFunction&&) = default; + +  /// Type of the function before the transformation. +  FunctionType *OriginalType; + +  /// Type of the function after the transformation. +  FunctionType *TransformedType; + +  /// Transforming a function may change the position of arguments.  This +  /// member records the mapping from each argument's old position to its new +  /// position.  Argument positions are zero-indexed.  If the transformation +  /// from F to F' made the first argument of F into the third argument of F', +  /// then ArgumentIndexMapping[0] will equal 2. +  std::vector<unsigned> ArgumentIndexMapping; +}; + +/// Given function attributes from a call site for the original function, +/// return function attributes appropriate for a call to the transformed +/// function. +AttributeList TransformFunctionAttributes( +    const TransformedFunction& TransformedFunction, +    LLVMContext& Ctx, AttributeList CallSiteAttrs) { + +  // Construct a vector of AttributeSet for each function argument. +  std::vector<llvm::AttributeSet> ArgumentAttributes( +      TransformedFunction.TransformedType->getNumParams()); + +  // Copy attributes from the parameter of the original function to the +  // transformed version.  'ArgumentIndexMapping' holds the mapping from +  // old argument position to new. +  for (unsigned i=0, ie = TransformedFunction.ArgumentIndexMapping.size(); +       i < ie; ++i) { +    unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[i]; +    ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(i); +  } + +  // Copy annotations on varargs arguments. +  for (unsigned i = TransformedFunction.OriginalType->getNumParams(), +       ie = CallSiteAttrs.getNumAttrSets(); i<ie; ++i) { +    ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(i)); +  } + +  return AttributeList::get( +      Ctx, +      CallSiteAttrs.getFnAttributes(), +      CallSiteAttrs.getRetAttributes(), +      llvm::makeArrayRef(ArgumentAttributes)); +} + +class DataFlowSanitizer : public ModulePass { +  friend struct DFSanFunction; +  friend class DFSanVisitor; + +  enum { +    ShadowWidth = 16 +  }; + +  /// Which ABI should be used for instrumented functions? +  enum InstrumentedABI { +    /// Argument and return value labels are passed through additional +    /// arguments and by modifying the return type. +    IA_Args, + +    /// Argument and return value labels are passed through TLS variables +    /// __dfsan_arg_tls and __dfsan_retval_tls. +    IA_TLS +  }; + +  /// How should calls to uninstrumented functions be handled? +  enum WrapperKind { +    /// This function is present in an uninstrumented form but we don't know +    /// how it should be handled.  Print a warning and call the function anyway. +    /// Don't label the return value. +    WK_Warning, + +    /// This function does not write to (user-accessible) memory, and its return +    /// value is unlabelled. +    WK_Discard, + +    /// This function does not write to (user-accessible) memory, and the label +    /// of its return value is the union of the label of its arguments. +    WK_Functional, + +    /// Instead of calling the function, a custom wrapper __dfsw_F is called, +    /// where F is the name of the function.  This function may wrap the +    /// original function or provide its own implementation.  This is similar to +    /// the IA_Args ABI, except that IA_Args uses a struct return type to +    /// pass the return value shadow in a register, while WK_Custom uses an +    /// extra pointer argument to return the shadow.  This allows the wrapped +    /// form of the function type to be expressed in C. +    WK_Custom +  }; + +  Module *Mod; +  LLVMContext *Ctx; +  IntegerType *ShadowTy; +  PointerType *ShadowPtrTy; +  IntegerType *IntptrTy; +  ConstantInt *ZeroShadow; +  ConstantInt *ShadowPtrMask; +  ConstantInt *ShadowPtrMul; +  Constant *ArgTLS; +  Constant *RetvalTLS; +  void *(*GetArgTLSPtr)(); +  void *(*GetRetvalTLSPtr)(); +  FunctionType *GetArgTLSTy; +  FunctionType *GetRetvalTLSTy; +  Constant *GetArgTLS; +  Constant *GetRetvalTLS; +  Constant *ExternalShadowMask; +  FunctionType *DFSanUnionFnTy; +  FunctionType *DFSanUnionLoadFnTy; +  FunctionType *DFSanUnimplementedFnTy; +  FunctionType *DFSanSetLabelFnTy; +  FunctionType *DFSanNonzeroLabelFnTy; +  FunctionType *DFSanVarargWrapperFnTy; +  FunctionCallee DFSanUnionFn; +  FunctionCallee DFSanCheckedUnionFn; +  FunctionCallee DFSanUnionLoadFn; +  FunctionCallee DFSanUnimplementedFn; +  FunctionCallee DFSanSetLabelFn; +  FunctionCallee DFSanNonzeroLabelFn; +  FunctionCallee DFSanVarargWrapperFn; +  MDNode *ColdCallWeights; +  DFSanABIList ABIList; +  DenseMap<Value *, Function *> UnwrappedFnMap; +  AttrBuilder ReadOnlyNoneAttrs; +  bool DFSanRuntimeShadowMask = false; + +  Value *getShadowAddress(Value *Addr, Instruction *Pos); +  bool isInstrumented(const Function *F); +  bool isInstrumented(const GlobalAlias *GA); +  FunctionType *getArgsFunctionType(FunctionType *T); +  FunctionType *getTrampolineFunctionType(FunctionType *T); +  TransformedFunction getCustomFunctionType(FunctionType *T); +  InstrumentedABI getInstrumentedABI(); +  WrapperKind getWrapperKind(Function *F); +  void addGlobalNamePrefix(GlobalValue *GV); +  Function *buildWrapperFunction(Function *F, StringRef NewFName, +                                 GlobalValue::LinkageTypes NewFLink, +                                 FunctionType *NewFT); +  Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); + +public: +  static char ID; + +  DataFlowSanitizer( +      const std::vector<std::string> &ABIListFiles = std::vector<std::string>(), +      void *(*getArgTLS)() = nullptr, void *(*getRetValTLS)() = nullptr); + +  bool doInitialization(Module &M) override; +  bool runOnModule(Module &M) override; +}; + +struct DFSanFunction { +  DataFlowSanitizer &DFS; +  Function *F; +  DominatorTree DT; +  DataFlowSanitizer::InstrumentedABI IA; +  bool IsNativeABI; +  Value *ArgTLSPtr = nullptr; +  Value *RetvalTLSPtr = nullptr; +  AllocaInst *LabelReturnAlloca = nullptr; +  DenseMap<Value *, Value *> ValShadowMap; +  DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; +  std::vector<std::pair<PHINode *, PHINode *>> PHIFixups; +  DenseSet<Instruction *> SkipInsts; +  std::vector<Value *> NonZeroChecks; +  bool AvoidNewBlocks; + +  struct CachedCombinedShadow { +    BasicBlock *Block; +    Value *Shadow; +  }; +  DenseMap<std::pair<Value *, Value *>, CachedCombinedShadow> +      CachedCombinedShadows; +  DenseMap<Value *, std::set<Value *>> ShadowElements; + +  DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI) +      : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) { +    DT.recalculate(*F); +    // FIXME: Need to track down the register allocator issue which causes poor +    // performance in pathological cases with large numbers of basic blocks. +    AvoidNewBlocks = F->size() > 1000; +  } + +  Value *getArgTLSPtr(); +  Value *getArgTLS(unsigned Index, Instruction *Pos); +  Value *getRetvalTLS(); +  Value *getShadow(Value *V); +  void setShadow(Instruction *I, Value *Shadow); +  Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); +  Value *combineOperandShadows(Instruction *Inst); +  Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align, +                    Instruction *Pos); +  void storeShadow(Value *Addr, uint64_t Size, uint64_t Align, Value *Shadow, +                   Instruction *Pos); +}; + +class DFSanVisitor : public InstVisitor<DFSanVisitor> { +public: +  DFSanFunction &DFSF; + +  DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} + +  const DataLayout &getDataLayout() const { +    return DFSF.F->getParent()->getDataLayout(); +  } + +  void visitOperandShadowInst(Instruction &I); +  void visitUnaryOperator(UnaryOperator &UO); +  void visitBinaryOperator(BinaryOperator &BO); +  void visitCastInst(CastInst &CI); +  void visitCmpInst(CmpInst &CI); +  void visitGetElementPtrInst(GetElementPtrInst &GEPI); +  void visitLoadInst(LoadInst &LI); +  void visitStoreInst(StoreInst &SI); +  void visitReturnInst(ReturnInst &RI); +  void visitCallSite(CallSite CS); +  void visitPHINode(PHINode &PN); +  void visitExtractElementInst(ExtractElementInst &I); +  void visitInsertElementInst(InsertElementInst &I); +  void visitShuffleVectorInst(ShuffleVectorInst &I); +  void visitExtractValueInst(ExtractValueInst &I); +  void visitInsertValueInst(InsertValueInst &I); +  void visitAllocaInst(AllocaInst &I); +  void visitSelectInst(SelectInst &I); +  void visitMemSetInst(MemSetInst &I); +  void visitMemTransferInst(MemTransferInst &I); +}; + +} // end anonymous namespace + +char DataFlowSanitizer::ID; + +INITIALIZE_PASS(DataFlowSanitizer, "dfsan", +                "DataFlowSanitizer: dynamic data flow analysis.", false, false) + +ModulePass * +llvm::createDataFlowSanitizerPass(const std::vector<std::string> &ABIListFiles, +                                  void *(*getArgTLS)(), +                                  void *(*getRetValTLS)()) { +  return new DataFlowSanitizer(ABIListFiles, getArgTLS, getRetValTLS); +} + +DataFlowSanitizer::DataFlowSanitizer( +    const std::vector<std::string> &ABIListFiles, void *(*getArgTLS)(), +    void *(*getRetValTLS)()) +    : ModulePass(ID), GetArgTLSPtr(getArgTLS), GetRetvalTLSPtr(getRetValTLS) { +  std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); +  AllABIListFiles.insert(AllABIListFiles.end(), ClABIListFiles.begin(), +                         ClABIListFiles.end()); +  ABIList.set(SpecialCaseList::createOrDie(AllABIListFiles)); +} + +FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) { +  SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end()); +  ArgTypes.append(T->getNumParams(), ShadowTy); +  if (T->isVarArg()) +    ArgTypes.push_back(ShadowPtrTy); +  Type *RetType = T->getReturnType(); +  if (!RetType->isVoidTy()) +    RetType = StructType::get(RetType, ShadowTy); +  return FunctionType::get(RetType, ArgTypes, T->isVarArg()); +} + +FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { +  assert(!T->isVarArg()); +  SmallVector<Type *, 4> ArgTypes; +  ArgTypes.push_back(T->getPointerTo()); +  ArgTypes.append(T->param_begin(), T->param_end()); +  ArgTypes.append(T->getNumParams(), ShadowTy); +  Type *RetType = T->getReturnType(); +  if (!RetType->isVoidTy()) +    ArgTypes.push_back(ShadowPtrTy); +  return FunctionType::get(T->getReturnType(), ArgTypes, false); +} + +TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { +  SmallVector<Type *, 4> ArgTypes; + +  // Some parameters of the custom function being constructed are +  // parameters of T.  Record the mapping from parameters of T to +  // parameters of the custom function, so that parameter attributes +  // at call sites can be updated. +  std::vector<unsigned> ArgumentIndexMapping; +  for (unsigned i = 0, ie = T->getNumParams(); i != ie; ++i) { +    Type* param_type = T->getParamType(i); +    FunctionType *FT; +    if (isa<PointerType>(param_type) && (FT = dyn_cast<FunctionType>( +            cast<PointerType>(param_type)->getElementType()))) { +      ArgumentIndexMapping.push_back(ArgTypes.size()); +      ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); +      ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); +    } else { +      ArgumentIndexMapping.push_back(ArgTypes.size()); +      ArgTypes.push_back(param_type); +    } +  } +  for (unsigned i = 0, e = T->getNumParams(); i != e; ++i) +    ArgTypes.push_back(ShadowTy); +  if (T->isVarArg()) +    ArgTypes.push_back(ShadowPtrTy); +  Type *RetType = T->getReturnType(); +  if (!RetType->isVoidTy()) +    ArgTypes.push_back(ShadowPtrTy); +  return TransformedFunction( +      T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), +      ArgumentIndexMapping); +} + +bool DataFlowSanitizer::doInitialization(Module &M) { +  Triple TargetTriple(M.getTargetTriple()); +  bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; +  bool IsMIPS64 = TargetTriple.isMIPS64(); +  bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 || +                   TargetTriple.getArch() == Triple::aarch64_be; + +  const DataLayout &DL = M.getDataLayout(); + +  Mod = &M; +  Ctx = &M.getContext(); +  ShadowTy = IntegerType::get(*Ctx, ShadowWidth); +  ShadowPtrTy = PointerType::getUnqual(ShadowTy); +  IntptrTy = DL.getIntPtrType(*Ctx); +  ZeroShadow = ConstantInt::getSigned(ShadowTy, 0); +  ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidth / 8); +  if (IsX86_64) +    ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL); +  else if (IsMIPS64) +    ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL); +  // AArch64 supports multiple VMAs and the shadow mask is set at runtime. +  else if (IsAArch64) +    DFSanRuntimeShadowMask = true; +  else +    report_fatal_error("unsupported triple"); + +  Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy }; +  DFSanUnionFnTy = +      FunctionType::get(ShadowTy, DFSanUnionArgs, /*isVarArg=*/ false); +  Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy }; +  DFSanUnionLoadFnTy = +      FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false); +  DFSanUnimplementedFnTy = FunctionType::get( +      Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); +  Type *DFSanSetLabelArgs[3] = { ShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy }; +  DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), +                                        DFSanSetLabelArgs, /*isVarArg=*/false); +  DFSanNonzeroLabelFnTy = FunctionType::get( +      Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); +  DFSanVarargWrapperFnTy = FunctionType::get( +      Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); + +  if (GetArgTLSPtr) { +    Type *ArgTLSTy = ArrayType::get(ShadowTy, 64); +    ArgTLS = nullptr; +    GetArgTLSTy = FunctionType::get(PointerType::getUnqual(ArgTLSTy), false); +    GetArgTLS = ConstantExpr::getIntToPtr( +        ConstantInt::get(IntptrTy, uintptr_t(GetArgTLSPtr)), +        PointerType::getUnqual(GetArgTLSTy)); +  } +  if (GetRetvalTLSPtr) { +    RetvalTLS = nullptr; +    GetRetvalTLSTy = FunctionType::get(PointerType::getUnqual(ShadowTy), false); +    GetRetvalTLS = ConstantExpr::getIntToPtr( +        ConstantInt::get(IntptrTy, uintptr_t(GetRetvalTLSPtr)), +        PointerType::getUnqual(GetRetvalTLSTy)); +  } + +  ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); +  return true; +} + +bool DataFlowSanitizer::isInstrumented(const Function *F) { +  return !ABIList.isIn(*F, "uninstrumented"); +} + +bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { +  return !ABIList.isIn(*GA, "uninstrumented"); +} + +DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() { +  return ClArgsABI ? IA_Args : IA_TLS; +} + +DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { +  if (ABIList.isIn(*F, "functional")) +    return WK_Functional; +  if (ABIList.isIn(*F, "discard")) +    return WK_Discard; +  if (ABIList.isIn(*F, "custom")) +    return WK_Custom; + +  return WK_Warning; +} + +void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) { +  std::string GVName = GV->getName(), Prefix = "dfs$"; +  GV->setName(Prefix + GVName); + +  // Try to change the name of the function in module inline asm.  We only do +  // this for specific asm directives, currently only ".symver", to try to avoid +  // corrupting asm which happens to contain the symbol name as a substring. +  // Note that the substitution for .symver assumes that the versioned symbol +  // also has an instrumented name. +  std::string Asm = GV->getParent()->getModuleInlineAsm(); +  std::string SearchStr = ".symver " + GVName + ","; +  size_t Pos = Asm.find(SearchStr); +  if (Pos != std::string::npos) { +    Asm.replace(Pos, SearchStr.size(), +                ".symver " + Prefix + GVName + "," + Prefix); +    GV->getParent()->setModuleInlineAsm(Asm); +  } +} + +Function * +DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, +                                        GlobalValue::LinkageTypes NewFLink, +                                        FunctionType *NewFT) { +  FunctionType *FT = F->getFunctionType(); +  Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), +                                    NewFName, F->getParent()); +  NewF->copyAttributesFrom(F); +  NewF->removeAttributes( +      AttributeList::ReturnIndex, +      AttributeFuncs::typeIncompatible(NewFT->getReturnType())); + +  BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); +  if (F->isVarArg()) { +    NewF->removeAttributes(AttributeList::FunctionIndex, +                           AttrBuilder().addAttribute("split-stack")); +    CallInst::Create(DFSanVarargWrapperFn, +                     IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", +                     BB); +    new UnreachableInst(*Ctx, BB); +  } else { +    std::vector<Value *> Args; +    unsigned n = FT->getNumParams(); +    for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n) +      Args.push_back(&*ai); +    CallInst *CI = CallInst::Create(F, Args, "", BB); +    if (FT->getReturnType()->isVoidTy()) +      ReturnInst::Create(*Ctx, BB); +    else +      ReturnInst::Create(*Ctx, CI, BB); +  } + +  return NewF; +} + +Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, +                                                          StringRef FName) { +  FunctionType *FTT = getTrampolineFunctionType(FT); +  FunctionCallee C = Mod->getOrInsertFunction(FName, FTT); +  Function *F = dyn_cast<Function>(C.getCallee()); +  if (F && F->isDeclaration()) { +    F->setLinkage(GlobalValue::LinkOnceODRLinkage); +    BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); +    std::vector<Value *> Args; +    Function::arg_iterator AI = F->arg_begin(); ++AI; +    for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) +      Args.push_back(&*AI); +    CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB); +    ReturnInst *RI; +    if (FT->getReturnType()->isVoidTy()) +      RI = ReturnInst::Create(*Ctx, BB); +    else +      RI = ReturnInst::Create(*Ctx, CI, BB); + +    DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true); +    Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI; +    for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) +      DFSF.ValShadowMap[&*ValAI] = &*ShadowAI; +    DFSanVisitor(DFSF).visitCallInst(*CI); +    if (!FT->getReturnType()->isVoidTy()) +      new StoreInst(DFSF.getShadow(RI->getReturnValue()), +                    &*std::prev(F->arg_end()), RI); +  } + +  return cast<Constant>(C.getCallee()); +} + +bool DataFlowSanitizer::runOnModule(Module &M) { +  if (ABIList.isIn(M, "skip")) +    return false; + +  if (!GetArgTLSPtr) { +    Type *ArgTLSTy = ArrayType::get(ShadowTy, 64); +    ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy); +    if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS)) +      G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); +  } +  if (!GetRetvalTLSPtr) { +    RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", ShadowTy); +    if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS)) +      G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); +  } + +  ExternalShadowMask = +      Mod->getOrInsertGlobal(kDFSanExternShadowPtrMask, IntptrTy); + +  { +    AttributeList AL; +    AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, +                         Attribute::NoUnwind); +    AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, +                         Attribute::ReadNone); +    AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, +                         Attribute::ZExt); +    AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); +    AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); +    DFSanUnionFn = +        Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy, AL); +  } + +  { +    AttributeList AL; +    AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, +                         Attribute::NoUnwind); +    AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, +                         Attribute::ReadNone); +    AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, +                         Attribute::ZExt); +    AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); +    AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); +    DFSanCheckedUnionFn = +        Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy, AL); +  } +  { +    AttributeList AL; +    AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, +                         Attribute::NoUnwind); +    AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, +                         Attribute::ReadOnly); +    AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, +                         Attribute::ZExt); +    DFSanUnionLoadFn = +        Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL); +  } +  DFSanUnimplementedFn = +      Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); +  { +    AttributeList AL; +    AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); +    DFSanSetLabelFn = +        Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL); +  } +  DFSanNonzeroLabelFn = +      Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); +  DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", +                                                  DFSanVarargWrapperFnTy); + +  std::vector<Function *> FnsToInstrument; +  SmallPtrSet<Function *, 2> FnsWithNativeABI; +  for (Function &i : M) { +    if (!i.isIntrinsic() && +        &i != DFSanUnionFn.getCallee()->stripPointerCasts() && +        &i != DFSanCheckedUnionFn.getCallee()->stripPointerCasts() && +        &i != DFSanUnionLoadFn.getCallee()->stripPointerCasts() && +        &i != DFSanUnimplementedFn.getCallee()->stripPointerCasts() && +        &i != DFSanSetLabelFn.getCallee()->stripPointerCasts() && +        &i != DFSanNonzeroLabelFn.getCallee()->stripPointerCasts() && +        &i != DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) +      FnsToInstrument.push_back(&i); +  } + +  // Give function aliases prefixes when necessary, and build wrappers where the +  // instrumentedness is inconsistent. +  for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) { +    GlobalAlias *GA = &*i; +    ++i; +    // Don't stop on weak.  We assume people aren't playing games with the +    // instrumentedness of overridden weak aliases. +    if (auto F = dyn_cast<Function>(GA->getBaseObject())) { +      bool GAInst = isInstrumented(GA), FInst = isInstrumented(F); +      if (GAInst && FInst) { +        addGlobalNamePrefix(GA); +      } else if (GAInst != FInst) { +        // Non-instrumented alias of an instrumented function, or vice versa. +        // Replace the alias with a native-ABI wrapper of the aliasee.  The pass +        // below will take care of instrumenting it. +        Function *NewF = +            buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType()); +        GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType())); +        NewF->takeName(GA); +        GA->eraseFromParent(); +        FnsToInstrument.push_back(NewF); +      } +    } +  } + +  ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly) +      .addAttribute(Attribute::ReadNone); + +  // First, change the ABI of every function in the module.  ABI-listed +  // functions keep their original ABI and get a wrapper function. +  for (std::vector<Function *>::iterator i = FnsToInstrument.begin(), +                                         e = FnsToInstrument.end(); +       i != e; ++i) { +    Function &F = **i; +    FunctionType *FT = F.getFunctionType(); + +    bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && +                              FT->getReturnType()->isVoidTy()); + +    if (isInstrumented(&F)) { +      // Instrumented functions get a 'dfs$' prefix.  This allows us to more +      // easily identify cases of mismatching ABIs. +      if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) { +        FunctionType *NewFT = getArgsFunctionType(FT); +        Function *NewF = Function::Create(NewFT, F.getLinkage(), +                                          F.getAddressSpace(), "", &M); +        NewF->copyAttributesFrom(&F); +        NewF->removeAttributes( +            AttributeList::ReturnIndex, +            AttributeFuncs::typeIncompatible(NewFT->getReturnType())); +        for (Function::arg_iterator FArg = F.arg_begin(), +                                    NewFArg = NewF->arg_begin(), +                                    FArgEnd = F.arg_end(); +             FArg != FArgEnd; ++FArg, ++NewFArg) { +          FArg->replaceAllUsesWith(&*NewFArg); +        } +        NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList()); + +        for (Function::user_iterator UI = F.user_begin(), UE = F.user_end(); +             UI != UE;) { +          BlockAddress *BA = dyn_cast<BlockAddress>(*UI); +          ++UI; +          if (BA) { +            BA->replaceAllUsesWith( +                BlockAddress::get(NewF, BA->getBasicBlock())); +            delete BA; +          } +        } +        F.replaceAllUsesWith( +            ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT))); +        NewF->takeName(&F); +        F.eraseFromParent(); +        *i = NewF; +        addGlobalNamePrefix(NewF); +      } else { +        addGlobalNamePrefix(&F); +      } +    } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { +      // Build a wrapper function for F.  The wrapper simply calls F, and is +      // added to FnsToInstrument so that any instrumentation according to its +      // WrapperKind is done in the second pass below. +      FunctionType *NewFT = getInstrumentedABI() == IA_Args +                                ? getArgsFunctionType(FT) +                                : FT; + +      // If the function being wrapped has local linkage, then preserve the +      // function's linkage in the wrapper function. +      GlobalValue::LinkageTypes wrapperLinkage = +          F.hasLocalLinkage() +              ? F.getLinkage() +              : GlobalValue::LinkOnceODRLinkage; + +      Function *NewF = buildWrapperFunction( +          &F, std::string("dfsw$") + std::string(F.getName()), +          wrapperLinkage, NewFT); +      if (getInstrumentedABI() == IA_TLS) +        NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs); + +      Value *WrappedFnCst = +          ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); +      F.replaceAllUsesWith(WrappedFnCst); + +      UnwrappedFnMap[WrappedFnCst] = &F; +      *i = NewF; + +      if (!F.isDeclaration()) { +        // This function is probably defining an interposition of an +        // uninstrumented function and hence needs to keep the original ABI. +        // But any functions it may call need to use the instrumented ABI, so +        // we instrument it in a mode which preserves the original ABI. +        FnsWithNativeABI.insert(&F); + +        // This code needs to rebuild the iterators, as they may be invalidated +        // by the push_back, taking care that the new range does not include +        // any functions added by this code. +        size_t N = i - FnsToInstrument.begin(), +               Count = e - FnsToInstrument.begin(); +        FnsToInstrument.push_back(&F); +        i = FnsToInstrument.begin() + N; +        e = FnsToInstrument.begin() + Count; +      } +               // Hopefully, nobody will try to indirectly call a vararg +               // function... yet. +    } else if (FT->isVarArg()) { +      UnwrappedFnMap[&F] = &F; +      *i = nullptr; +    } +  } + +  for (Function *i : FnsToInstrument) { +    if (!i || i->isDeclaration()) +      continue; + +    removeUnreachableBlocks(*i); + +    DFSanFunction DFSF(*this, i, FnsWithNativeABI.count(i)); + +    // DFSanVisitor may create new basic blocks, which confuses df_iterator. +    // Build a copy of the list before iterating over it. +    SmallVector<BasicBlock *, 4> BBList(depth_first(&i->getEntryBlock())); + +    for (BasicBlock *i : BBList) { +      Instruction *Inst = &i->front(); +      while (true) { +        // DFSanVisitor may split the current basic block, changing the current +        // instruction's next pointer and moving the next instruction to the +        // tail block from which we should continue. +        Instruction *Next = Inst->getNextNode(); +        // DFSanVisitor may delete Inst, so keep track of whether it was a +        // terminator. +        bool IsTerminator = Inst->isTerminator(); +        if (!DFSF.SkipInsts.count(Inst)) +          DFSanVisitor(DFSF).visit(Inst); +        if (IsTerminator) +          break; +        Inst = Next; +      } +    } + +    // We will not necessarily be able to compute the shadow for every phi node +    // until we have visited every block.  Therefore, the code that handles phi +    // nodes adds them to the PHIFixups list so that they can be properly +    // handled here. +    for (std::vector<std::pair<PHINode *, PHINode *>>::iterator +             i = DFSF.PHIFixups.begin(), +             e = DFSF.PHIFixups.end(); +         i != e; ++i) { +      for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n; +           ++val) { +        i->second->setIncomingValue( +            val, DFSF.getShadow(i->first->getIncomingValue(val))); +      } +    } + +    // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy +    // places (i.e. instructions in basic blocks we haven't even begun visiting +    // yet).  To make our life easier, do this work in a pass after the main +    // instrumentation. +    if (ClDebugNonzeroLabels) { +      for (Value *V : DFSF.NonZeroChecks) { +        Instruction *Pos; +        if (Instruction *I = dyn_cast<Instruction>(V)) +          Pos = I->getNextNode(); +        else +          Pos = &DFSF.F->getEntryBlock().front(); +        while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) +          Pos = Pos->getNextNode(); +        IRBuilder<> IRB(Pos); +        Value *Ne = IRB.CreateICmpNE(V, DFSF.DFS.ZeroShadow); +        BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( +            Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); +        IRBuilder<> ThenIRB(BI); +        ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); +      } +    } +  } + +  return false; +} + +Value *DFSanFunction::getArgTLSPtr() { +  if (ArgTLSPtr) +    return ArgTLSPtr; +  if (DFS.ArgTLS) +    return ArgTLSPtr = DFS.ArgTLS; + +  IRBuilder<> IRB(&F->getEntryBlock().front()); +  return ArgTLSPtr = IRB.CreateCall(DFS.GetArgTLSTy, DFS.GetArgTLS, {}); +} + +Value *DFSanFunction::getRetvalTLS() { +  if (RetvalTLSPtr) +    return RetvalTLSPtr; +  if (DFS.RetvalTLS) +    return RetvalTLSPtr = DFS.RetvalTLS; + +  IRBuilder<> IRB(&F->getEntryBlock().front()); +  return RetvalTLSPtr = +             IRB.CreateCall(DFS.GetRetvalTLSTy, DFS.GetRetvalTLS, {}); +} + +Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) { +  IRBuilder<> IRB(Pos); +  return IRB.CreateConstGEP2_64(ArrayType::get(DFS.ShadowTy, 64), +                                getArgTLSPtr(), 0, Idx); +} + +Value *DFSanFunction::getShadow(Value *V) { +  if (!isa<Argument>(V) && !isa<Instruction>(V)) +    return DFS.ZeroShadow; +  Value *&Shadow = ValShadowMap[V]; +  if (!Shadow) { +    if (Argument *A = dyn_cast<Argument>(V)) { +      if (IsNativeABI) +        return DFS.ZeroShadow; +      switch (IA) { +      case DataFlowSanitizer::IA_TLS: { +        Value *ArgTLSPtr = getArgTLSPtr(); +        Instruction *ArgTLSPos = +            DFS.ArgTLS ? &*F->getEntryBlock().begin() +                       : cast<Instruction>(ArgTLSPtr)->getNextNode(); +        IRBuilder<> IRB(ArgTLSPos); +        Shadow = +            IRB.CreateLoad(DFS.ShadowTy, getArgTLS(A->getArgNo(), ArgTLSPos)); +        break; +      } +      case DataFlowSanitizer::IA_Args: { +        unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2; +        Function::arg_iterator i = F->arg_begin(); +        while (ArgIdx--) +          ++i; +        Shadow = &*i; +        assert(Shadow->getType() == DFS.ShadowTy); +        break; +      } +      } +      NonZeroChecks.push_back(Shadow); +    } else { +      Shadow = DFS.ZeroShadow; +    } +  } +  return Shadow; +} + +void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { +  assert(!ValShadowMap.count(I)); +  assert(Shadow->getType() == DFS.ShadowTy); +  ValShadowMap[I] = Shadow; +} + +Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { +  assert(Addr != RetvalTLS && "Reinstrumenting?"); +  IRBuilder<> IRB(Pos); +  Value *ShadowPtrMaskValue; +  if (DFSanRuntimeShadowMask) +    ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask); +  else +    ShadowPtrMaskValue = ShadowPtrMask; +  return IRB.CreateIntToPtr( +      IRB.CreateMul( +          IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), +                        IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)), +          ShadowPtrMul), +      ShadowPtrTy); +} + +// Generates IR to compute the union of the two given shadows, inserting it +// before Pos.  Returns the computed union Value. +Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { +  if (V1 == DFS.ZeroShadow) +    return V2; +  if (V2 == DFS.ZeroShadow) +    return V1; +  if (V1 == V2) +    return V1; + +  auto V1Elems = ShadowElements.find(V1); +  auto V2Elems = ShadowElements.find(V2); +  if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { +    if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), +                      V2Elems->second.begin(), V2Elems->second.end())) { +      return V1; +    } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), +                             V1Elems->second.begin(), V1Elems->second.end())) { +      return V2; +    } +  } else if (V1Elems != ShadowElements.end()) { +    if (V1Elems->second.count(V2)) +      return V1; +  } else if (V2Elems != ShadowElements.end()) { +    if (V2Elems->second.count(V1)) +      return V2; +  } + +  auto Key = std::make_pair(V1, V2); +  if (V1 > V2) +    std::swap(Key.first, Key.second); +  CachedCombinedShadow &CCS = CachedCombinedShadows[Key]; +  if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) +    return CCS.Shadow; + +  IRBuilder<> IRB(Pos); +  if (AvoidNewBlocks) { +    CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {V1, V2}); +    Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); +    Call->addParamAttr(0, Attribute::ZExt); +    Call->addParamAttr(1, Attribute::ZExt); + +    CCS.Block = Pos->getParent(); +    CCS.Shadow = Call; +  } else { +    BasicBlock *Head = Pos->getParent(); +    Value *Ne = IRB.CreateICmpNE(V1, V2); +    BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( +        Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT)); +    IRBuilder<> ThenIRB(BI); +    CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {V1, V2}); +    Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); +    Call->addParamAttr(0, Attribute::ZExt); +    Call->addParamAttr(1, Attribute::ZExt); + +    BasicBlock *Tail = BI->getSuccessor(0); +    PHINode *Phi = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front()); +    Phi->addIncoming(Call, Call->getParent()); +    Phi->addIncoming(V1, Head); + +    CCS.Block = Tail; +    CCS.Shadow = Phi; +  } + +  std::set<Value *> UnionElems; +  if (V1Elems != ShadowElements.end()) { +    UnionElems = V1Elems->second; +  } else { +    UnionElems.insert(V1); +  } +  if (V2Elems != ShadowElements.end()) { +    UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); +  } else { +    UnionElems.insert(V2); +  } +  ShadowElements[CCS.Shadow] = std::move(UnionElems); + +  return CCS.Shadow; +} + +// A convenience function which folds the shadows of each of the operands +// of the provided instruction Inst, inserting the IR before Inst.  Returns +// the computed union Value. +Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { +  if (Inst->getNumOperands() == 0) +    return DFS.ZeroShadow; + +  Value *Shadow = getShadow(Inst->getOperand(0)); +  for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) { +    Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst); +  } +  return Shadow; +} + +void DFSanVisitor::visitOperandShadowInst(Instruction &I) { +  Value *CombinedShadow = DFSF.combineOperandShadows(&I); +  DFSF.setShadow(&I, CombinedShadow); +} + +// Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where +// Addr has alignment Align, and take the union of each of those shadows. +Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align, +                                 Instruction *Pos) { +  if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { +    const auto i = AllocaShadowMap.find(AI); +    if (i != AllocaShadowMap.end()) { +      IRBuilder<> IRB(Pos); +      return IRB.CreateLoad(DFS.ShadowTy, i->second); +    } +  } + +  uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8; +  SmallVector<const Value *, 2> Objs; +  GetUnderlyingObjects(Addr, Objs, Pos->getModule()->getDataLayout()); +  bool AllConstants = true; +  for (const Value *Obj : Objs) { +    if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) +      continue; +    if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) +      continue; + +    AllConstants = false; +    break; +  } +  if (AllConstants) +    return DFS.ZeroShadow; + +  Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); +  switch (Size) { +  case 0: +    return DFS.ZeroShadow; +  case 1: { +    LoadInst *LI = new LoadInst(DFS.ShadowTy, ShadowAddr, "", Pos); +    LI->setAlignment(MaybeAlign(ShadowAlign)); +    return LI; +  } +  case 2: { +    IRBuilder<> IRB(Pos); +    Value *ShadowAddr1 = IRB.CreateGEP(DFS.ShadowTy, ShadowAddr, +                                       ConstantInt::get(DFS.IntptrTy, 1)); +    return combineShadows( +        IRB.CreateAlignedLoad(DFS.ShadowTy, ShadowAddr, ShadowAlign), +        IRB.CreateAlignedLoad(DFS.ShadowTy, ShadowAddr1, ShadowAlign), Pos); +  } +  } +  if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidth) == 0) { +    // Fast path for the common case where each byte has identical shadow: load +    // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any +    // shadow is non-equal. +    BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F); +    IRBuilder<> FallbackIRB(FallbackBB); +    CallInst *FallbackCall = FallbackIRB.CreateCall( +        DFS.DFSanUnionLoadFn, +        {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); +    FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); + +    // Compare each of the shadows stored in the loaded 64 bits to each other, +    // by computing (WideShadow rotl ShadowWidth) == WideShadow. +    IRBuilder<> IRB(Pos); +    Value *WideAddr = +        IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); +    Value *WideShadow = +        IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); +    Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.ShadowTy); +    Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidth); +    Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidth); +    Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow); +    Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow); + +    BasicBlock *Head = Pos->getParent(); +    BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator()); + +    if (DomTreeNode *OldNode = DT.getNode(Head)) { +      std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); + +      DomTreeNode *NewNode = DT.addNewBlock(Tail, Head); +      for (auto Child : Children) +        DT.changeImmediateDominator(Child, NewNode); +    } + +    // In the following code LastBr will refer to the previous basic block's +    // conditional branch instruction, whose true successor is fixed up to point +    // to the next block during the loop below or to the tail after the final +    // iteration. +    BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq); +    ReplaceInstWithInst(Head->getTerminator(), LastBr); +    DT.addNewBlock(FallbackBB, Head); + +    for (uint64_t Ofs = 64 / DFS.ShadowWidth; Ofs != Size; +         Ofs += 64 / DFS.ShadowWidth) { +      BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F); +      DT.addNewBlock(NextBB, LastBr->getParent()); +      IRBuilder<> NextIRB(NextBB); +      WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr, +                                   ConstantInt::get(DFS.IntptrTy, 1)); +      Value *NextWideShadow = NextIRB.CreateAlignedLoad(NextIRB.getInt64Ty(), +                                                        WideAddr, ShadowAlign); +      ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow); +      LastBr->setSuccessor(0, NextBB); +      LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB); +    } + +    LastBr->setSuccessor(0, Tail); +    FallbackIRB.CreateBr(Tail); +    PHINode *Shadow = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front()); +    Shadow->addIncoming(FallbackCall, FallbackBB); +    Shadow->addIncoming(TruncShadow, LastBr->getParent()); +    return Shadow; +  } + +  IRBuilder<> IRB(Pos); +  CallInst *FallbackCall = IRB.CreateCall( +      DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); +  FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); +  return FallbackCall; +} + +void DFSanVisitor::visitLoadInst(LoadInst &LI) { +  auto &DL = LI.getModule()->getDataLayout(); +  uint64_t Size = DL.getTypeStoreSize(LI.getType()); +  if (Size == 0) { +    DFSF.setShadow(&LI, DFSF.DFS.ZeroShadow); +    return; +  } + +  uint64_t Align; +  if (ClPreserveAlignment) { +    Align = LI.getAlignment(); +    if (Align == 0) +      Align = DL.getABITypeAlignment(LI.getType()); +  } else { +    Align = 1; +  } +  IRBuilder<> IRB(&LI); +  Value *Shadow = DFSF.loadShadow(LI.getPointerOperand(), Size, Align, &LI); +  if (ClCombinePointerLabelsOnLoad) { +    Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); +    Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI); +  } +  if (Shadow != DFSF.DFS.ZeroShadow) +    DFSF.NonZeroChecks.push_back(Shadow); + +  DFSF.setShadow(&LI, Shadow); +} + +void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, uint64_t Align, +                                Value *Shadow, Instruction *Pos) { +  if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { +    const auto i = AllocaShadowMap.find(AI); +    if (i != AllocaShadowMap.end()) { +      IRBuilder<> IRB(Pos); +      IRB.CreateStore(Shadow, i->second); +      return; +    } +  } + +  uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8; +  IRBuilder<> IRB(Pos); +  Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); +  if (Shadow == DFS.ZeroShadow) { +    IntegerType *ShadowTy = IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidth); +    Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); +    Value *ExtShadowAddr = +        IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); +    IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); +    return; +  } + +  const unsigned ShadowVecSize = 128 / DFS.ShadowWidth; +  uint64_t Offset = 0; +  if (Size >= ShadowVecSize) { +    VectorType *ShadowVecTy = VectorType::get(DFS.ShadowTy, ShadowVecSize); +    Value *ShadowVec = UndefValue::get(ShadowVecTy); +    for (unsigned i = 0; i != ShadowVecSize; ++i) { +      ShadowVec = IRB.CreateInsertElement( +          ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i)); +    } +    Value *ShadowVecAddr = +        IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); +    do { +      Value *CurShadowVecAddr = +          IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset); +      IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); +      Size -= ShadowVecSize; +      ++Offset; +    } while (Size >= ShadowVecSize); +    Offset *= ShadowVecSize; +  } +  while (Size > 0) { +    Value *CurShadowAddr = +        IRB.CreateConstGEP1_32(DFS.ShadowTy, ShadowAddr, Offset); +    IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign); +    --Size; +    ++Offset; +  } +} + +void DFSanVisitor::visitStoreInst(StoreInst &SI) { +  auto &DL = SI.getModule()->getDataLayout(); +  uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType()); +  if (Size == 0) +    return; + +  uint64_t Align; +  if (ClPreserveAlignment) { +    Align = SI.getAlignment(); +    if (Align == 0) +      Align = DL.getABITypeAlignment(SI.getValueOperand()->getType()); +  } else { +    Align = 1; +  } + +  Value* Shadow = DFSF.getShadow(SI.getValueOperand()); +  if (ClCombinePointerLabelsOnStore) { +    Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); +    Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); +  } +  DFSF.storeShadow(SI.getPointerOperand(), Size, Align, Shadow, &SI); +} + +void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) { +  visitOperandShadowInst(UO); +} + +void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { +  visitOperandShadowInst(BO); +} + +void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); } + +void DFSanVisitor::visitCmpInst(CmpInst &CI) { visitOperandShadowInst(CI); } + +void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { +  visitOperandShadowInst(GEPI); +} + +void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { +  visitOperandShadowInst(I); +} + +void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { +  visitOperandShadowInst(I); +} + +void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { +  visitOperandShadowInst(I); +} + +void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { +  visitOperandShadowInst(I); +} + +void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { +  visitOperandShadowInst(I); +} + +void DFSanVisitor::visitAllocaInst(AllocaInst &I) { +  bool AllLoadsStores = true; +  for (User *U : I.users()) { +    if (isa<LoadInst>(U)) +      continue; + +    if (StoreInst *SI = dyn_cast<StoreInst>(U)) { +      if (SI->getPointerOperand() == &I) +        continue; +    } + +    AllLoadsStores = false; +    break; +  } +  if (AllLoadsStores) { +    IRBuilder<> IRB(&I); +    DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.ShadowTy); +  } +  DFSF.setShadow(&I, DFSF.DFS.ZeroShadow); +} + +void DFSanVisitor::visitSelectInst(SelectInst &I) { +  Value *CondShadow = DFSF.getShadow(I.getCondition()); +  Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); +  Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); + +  if (isa<VectorType>(I.getCondition()->getType())) { +    DFSF.setShadow( +        &I, +        DFSF.combineShadows( +            CondShadow, DFSF.combineShadows(TrueShadow, FalseShadow, &I), &I)); +  } else { +    Value *ShadowSel; +    if (TrueShadow == FalseShadow) { +      ShadowSel = TrueShadow; +    } else { +      ShadowSel = +          SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); +    } +    DFSF.setShadow(&I, DFSF.combineShadows(CondShadow, ShadowSel, &I)); +  } +} + +void DFSanVisitor::visitMemSetInst(MemSetInst &I) { +  IRBuilder<> IRB(&I); +  Value *ValShadow = DFSF.getShadow(I.getValue()); +  IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn, +                 {ValShadow, IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy( +                                                                *DFSF.DFS.Ctx)), +                  IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); +} + +void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { +  IRBuilder<> IRB(&I); +  Value *DestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); +  Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); +  Value *LenShadow = IRB.CreateMul( +      I.getLength(), +      ConstantInt::get(I.getLength()->getType(), DFSF.DFS.ShadowWidth / 8)); +  Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); +  DestShadow = IRB.CreateBitCast(DestShadow, Int8Ptr); +  SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); +  auto *MTI = cast<MemTransferInst>( +      IRB.CreateCall(I.getFunctionType(), I.getCalledValue(), +                     {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); +  if (ClPreserveAlignment) { +    MTI->setDestAlignment(I.getDestAlignment() * (DFSF.DFS.ShadowWidth / 8)); +    MTI->setSourceAlignment(I.getSourceAlignment() * (DFSF.DFS.ShadowWidth / 8)); +  } else { +    MTI->setDestAlignment(DFSF.DFS.ShadowWidth / 8); +    MTI->setSourceAlignment(DFSF.DFS.ShadowWidth / 8); +  } +} + +void DFSanVisitor::visitReturnInst(ReturnInst &RI) { +  if (!DFSF.IsNativeABI && RI.getReturnValue()) { +    switch (DFSF.IA) { +    case DataFlowSanitizer::IA_TLS: { +      Value *S = DFSF.getShadow(RI.getReturnValue()); +      IRBuilder<> IRB(&RI); +      IRB.CreateStore(S, DFSF.getRetvalTLS()); +      break; +    } +    case DataFlowSanitizer::IA_Args: { +      IRBuilder<> IRB(&RI); +      Type *RT = DFSF.F->getFunctionType()->getReturnType(); +      Value *InsVal = +          IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0); +      Value *InsShadow = +          IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1); +      RI.setOperand(0, InsShadow); +      break; +    } +    } +  } +} + +void DFSanVisitor::visitCallSite(CallSite CS) { +  Function *F = CS.getCalledFunction(); +  if ((F && F->isIntrinsic()) || isa<InlineAsm>(CS.getCalledValue())) { +    visitOperandShadowInst(*CS.getInstruction()); +    return; +  } + +  // Calls to this function are synthesized in wrappers, and we shouldn't +  // instrument them. +  if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) +    return; + +  IRBuilder<> IRB(CS.getInstruction()); + +  DenseMap<Value *, Function *>::iterator i = +      DFSF.DFS.UnwrappedFnMap.find(CS.getCalledValue()); +  if (i != DFSF.DFS.UnwrappedFnMap.end()) { +    Function *F = i->second; +    switch (DFSF.DFS.getWrapperKind(F)) { +    case DataFlowSanitizer::WK_Warning: +      CS.setCalledFunction(F); +      IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, +                     IRB.CreateGlobalStringPtr(F->getName())); +      DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow); +      return; +    case DataFlowSanitizer::WK_Discard: +      CS.setCalledFunction(F); +      DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow); +      return; +    case DataFlowSanitizer::WK_Functional: +      CS.setCalledFunction(F); +      visitOperandShadowInst(*CS.getInstruction()); +      return; +    case DataFlowSanitizer::WK_Custom: +      // Don't try to handle invokes of custom functions, it's too complicated. +      // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ +      // wrapper. +      if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) { +        FunctionType *FT = F->getFunctionType(); +        TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); +        std::string CustomFName = "__dfsw_"; +        CustomFName += F->getName(); +        FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction( +            CustomFName, CustomFn.TransformedType); +        if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) { +          CustomFn->copyAttributesFrom(F); + +          // Custom functions returning non-void will write to the return label. +          if (!FT->getReturnType()->isVoidTy()) { +            CustomFn->removeAttributes(AttributeList::FunctionIndex, +                                       DFSF.DFS.ReadOnlyNoneAttrs); +          } +        } + +        std::vector<Value *> Args; + +        CallSite::arg_iterator i = CS.arg_begin(); +        for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) { +          Type *T = (*i)->getType(); +          FunctionType *ParamFT; +          if (isa<PointerType>(T) && +              (ParamFT = dyn_cast<FunctionType>( +                   cast<PointerType>(T)->getElementType()))) { +            std::string TName = "dfst"; +            TName += utostr(FT->getNumParams() - n); +            TName += "$"; +            TName += F->getName(); +            Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); +            Args.push_back(T); +            Args.push_back( +                IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); +          } else { +            Args.push_back(*i); +          } +        } + +        i = CS.arg_begin(); +        const unsigned ShadowArgStart = Args.size(); +        for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) +          Args.push_back(DFSF.getShadow(*i)); + +        if (FT->isVarArg()) { +          auto *LabelVATy = ArrayType::get(DFSF.DFS.ShadowTy, +                                           CS.arg_size() - FT->getNumParams()); +          auto *LabelVAAlloca = new AllocaInst( +              LabelVATy, getDataLayout().getAllocaAddrSpace(), +              "labelva", &DFSF.F->getEntryBlock().front()); + +          for (unsigned n = 0; i != CS.arg_end(); ++i, ++n) { +            auto LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, n); +            IRB.CreateStore(DFSF.getShadow(*i), LabelVAPtr); +          } + +          Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); +        } + +        if (!FT->getReturnType()->isVoidTy()) { +          if (!DFSF.LabelReturnAlloca) { +            DFSF.LabelReturnAlloca = +              new AllocaInst(DFSF.DFS.ShadowTy, +                             getDataLayout().getAllocaAddrSpace(), +                             "labelreturn", &DFSF.F->getEntryBlock().front()); +          } +          Args.push_back(DFSF.LabelReturnAlloca); +        } + +        for (i = CS.arg_begin() + FT->getNumParams(); i != CS.arg_end(); ++i) +          Args.push_back(*i); + +        CallInst *CustomCI = IRB.CreateCall(CustomF, Args); +        CustomCI->setCallingConv(CI->getCallingConv()); +        CustomCI->setAttributes(TransformFunctionAttributes(CustomFn, +            CI->getContext(), CI->getAttributes())); + +        // Update the parameter attributes of the custom call instruction to +        // zero extend the shadow parameters. This is required for targets +        // which consider ShadowTy an illegal type. +        for (unsigned n = 0; n < FT->getNumParams(); n++) { +          const unsigned ArgNo = ShadowArgStart + n; +          if (CustomCI->getArgOperand(ArgNo)->getType() == DFSF.DFS.ShadowTy) +            CustomCI->addParamAttr(ArgNo, Attribute::ZExt); +        } + +        if (!FT->getReturnType()->isVoidTy()) { +          LoadInst *LabelLoad = +              IRB.CreateLoad(DFSF.DFS.ShadowTy, DFSF.LabelReturnAlloca); +          DFSF.setShadow(CustomCI, LabelLoad); +        } + +        CI->replaceAllUsesWith(CustomCI); +        CI->eraseFromParent(); +        return; +      } +      break; +    } +  } + +  FunctionType *FT = cast<FunctionType>( +      CS.getCalledValue()->getType()->getPointerElementType()); +  if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { +    for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) { +      IRB.CreateStore(DFSF.getShadow(CS.getArgument(i)), +                      DFSF.getArgTLS(i, CS.getInstruction())); +    } +  } + +  Instruction *Next = nullptr; +  if (!CS.getType()->isVoidTy()) { +    if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { +      if (II->getNormalDest()->getSinglePredecessor()) { +        Next = &II->getNormalDest()->front(); +      } else { +        BasicBlock *NewBB = +            SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); +        Next = &NewBB->front(); +      } +    } else { +      assert(CS->getIterator() != CS->getParent()->end()); +      Next = CS->getNextNode(); +    } + +    if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { +      IRBuilder<> NextIRB(Next); +      LoadInst *LI = NextIRB.CreateLoad(DFSF.DFS.ShadowTy, DFSF.getRetvalTLS()); +      DFSF.SkipInsts.insert(LI); +      DFSF.setShadow(CS.getInstruction(), LI); +      DFSF.NonZeroChecks.push_back(LI); +    } +  } + +  // Do all instrumentation for IA_Args down here to defer tampering with the +  // CFG in a way that SplitEdge may be able to detect. +  if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) { +    FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT); +    Value *Func = +        IRB.CreateBitCast(CS.getCalledValue(), PointerType::getUnqual(NewFT)); +    std::vector<Value *> Args; + +    CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); +    for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) +      Args.push_back(*i); + +    i = CS.arg_begin(); +    for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) +      Args.push_back(DFSF.getShadow(*i)); + +    if (FT->isVarArg()) { +      unsigned VarArgSize = CS.arg_size() - FT->getNumParams(); +      ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.ShadowTy, VarArgSize); +      AllocaInst *VarArgShadow = +        new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(), +                       "", &DFSF.F->getEntryBlock().front()); +      Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0)); +      for (unsigned n = 0; i != e; ++i, ++n) { +        IRB.CreateStore( +            DFSF.getShadow(*i), +            IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n)); +        Args.push_back(*i); +      } +    } + +    CallSite NewCS; +    if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { +      NewCS = IRB.CreateInvoke(NewFT, Func, II->getNormalDest(), +                               II->getUnwindDest(), Args); +    } else { +      NewCS = IRB.CreateCall(NewFT, Func, Args); +    } +    NewCS.setCallingConv(CS.getCallingConv()); +    NewCS.setAttributes(CS.getAttributes().removeAttributes( +        *DFSF.DFS.Ctx, AttributeList::ReturnIndex, +        AttributeFuncs::typeIncompatible(NewCS.getInstruction()->getType()))); + +    if (Next) { +      ExtractValueInst *ExVal = +          ExtractValueInst::Create(NewCS.getInstruction(), 0, "", Next); +      DFSF.SkipInsts.insert(ExVal); +      ExtractValueInst *ExShadow = +          ExtractValueInst::Create(NewCS.getInstruction(), 1, "", Next); +      DFSF.SkipInsts.insert(ExShadow); +      DFSF.setShadow(ExVal, ExShadow); +      DFSF.NonZeroChecks.push_back(ExShadow); + +      CS.getInstruction()->replaceAllUsesWith(ExVal); +    } + +    CS.getInstruction()->eraseFromParent(); +  } +} + +void DFSanVisitor::visitPHINode(PHINode &PN) { +  PHINode *ShadowPN = +      PHINode::Create(DFSF.DFS.ShadowTy, PN.getNumIncomingValues(), "", &PN); + +  // Give the shadow phi node valid predecessors to fool SplitEdge into working. +  Value *UndefShadow = UndefValue::get(DFSF.DFS.ShadowTy); +  for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e; +       ++i) { +    ShadowPN->addIncoming(UndefShadow, *i); +  } + +  DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN)); +  DFSF.setShadow(&PN, ShadowPN); +} | 
