summaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp')
-rw-r--r--llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp4602
1 files changed, 4602 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp b/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
new file mode 100644
index 000000000000..69c9020e060b
--- /dev/null
+++ b/llvm/lib/Transforms/Instrumentation/MemorySanitizer.cpp
@@ -0,0 +1,4602 @@
+//===- MemorySanitizer.cpp - detector of uninitialized reads --------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// This file is a part of MemorySanitizer, a detector of uninitialized
+/// reads.
+///
+/// The algorithm of the tool is similar to Memcheck
+/// (http://goo.gl/QKbem). We associate a few shadow bits with every
+/// byte of the application memory, poison the shadow of the malloc-ed
+/// or alloca-ed memory, load the shadow bits on every memory read,
+/// propagate the shadow bits through some of the arithmetic
+/// instruction (including MOV), store the shadow bits on every memory
+/// write, report a bug on some other instructions (e.g. JMP) if the
+/// associated shadow is poisoned.
+///
+/// But there are differences too. The first and the major one:
+/// compiler instrumentation instead of binary instrumentation. This
+/// gives us much better register allocation, possible compiler
+/// optimizations and a fast start-up. But this brings the major issue
+/// as well: msan needs to see all program events, including system
+/// calls and reads/writes in system libraries, so we either need to
+/// compile *everything* with msan or use a binary translation
+/// component (e.g. DynamoRIO) to instrument pre-built libraries.
+/// Another difference from Memcheck is that we use 8 shadow bits per
+/// byte of application memory and use a direct shadow mapping. This
+/// greatly simplifies the instrumentation code and avoids races on
+/// shadow updates (Memcheck is single-threaded so races are not a
+/// concern there. Memcheck uses 2 shadow bits per byte with a slow
+/// path storage that uses 8 bits per byte).
+///
+/// The default value of shadow is 0, which means "clean" (not poisoned).
+///
+/// Every module initializer should call __msan_init to ensure that the
+/// shadow memory is ready. On error, __msan_warning is called. Since
+/// parameters and return values may be passed via registers, we have a
+/// specialized thread-local shadow for return values
+/// (__msan_retval_tls) and parameters (__msan_param_tls).
+///
+/// Origin tracking.
+///
+/// MemorySanitizer can track origins (allocation points) of all uninitialized
+/// values. This behavior is controlled with a flag (msan-track-origins) and is
+/// disabled by default.
+///
+/// Origins are 4-byte values created and interpreted by the runtime library.
+/// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
+/// of application memory. Propagation of origins is basically a bunch of
+/// "select" instructions that pick the origin of a dirty argument, if an
+/// instruction has one.
+///
+/// Every 4 aligned, consecutive bytes of application memory have one origin
+/// value associated with them. If these bytes contain uninitialized data
+/// coming from 2 different allocations, the last store wins. Because of this,
+/// MemorySanitizer reports can show unrelated origins, but this is unlikely in
+/// practice.
+///
+/// Origins are meaningless for fully initialized values, so MemorySanitizer
+/// avoids storing origin to memory when a fully initialized value is stored.
+/// This way it avoids needless overwritting origin of the 4-byte region on
+/// a short (i.e. 1 byte) clean store, and it is also good for performance.
+///
+/// Atomic handling.
+///
+/// Ideally, every atomic store of application value should update the
+/// corresponding shadow location in an atomic way. Unfortunately, atomic store
+/// of two disjoint locations can not be done without severe slowdown.
+///
+/// Therefore, we implement an approximation that may err on the safe side.
+/// In this implementation, every atomically accessed location in the program
+/// may only change from (partially) uninitialized to fully initialized, but
+/// not the other way around. We load the shadow _after_ the application load,
+/// and we store the shadow _before_ the app store. Also, we always store clean
+/// shadow (if the application store is atomic). This way, if the store-load
+/// pair constitutes a happens-before arc, shadow store and load are correctly
+/// ordered such that the load will get either the value that was stored, or
+/// some later value (which is always clean).
+///
+/// This does not work very well with Compare-And-Swap (CAS) and
+/// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
+/// must store the new shadow before the app operation, and load the shadow
+/// after the app operation. Computers don't work this way. Current
+/// implementation ignores the load aspect of CAS/RMW, always returning a clean
+/// value. It implements the store part as a simple atomic store by storing a
+/// clean shadow.
+///
+/// Instrumenting inline assembly.
+///
+/// For inline assembly code LLVM has little idea about which memory locations
+/// become initialized depending on the arguments. It can be possible to figure
+/// out which arguments are meant to point to inputs and outputs, but the
+/// actual semantics can be only visible at runtime. In the Linux kernel it's
+/// also possible that the arguments only indicate the offset for a base taken
+/// from a segment register, so it's dangerous to treat any asm() arguments as
+/// pointers. We take a conservative approach generating calls to
+/// __msan_instrument_asm_store(ptr, size)
+/// , which defer the memory unpoisoning to the runtime library.
+/// The latter can perform more complex address checks to figure out whether
+/// it's safe to touch the shadow memory.
+/// Like with atomic operations, we call __msan_instrument_asm_store() before
+/// the assembly call, so that changes to the shadow memory will be seen by
+/// other threads together with main memory initialization.
+///
+/// KernelMemorySanitizer (KMSAN) implementation.
+///
+/// The major differences between KMSAN and MSan instrumentation are:
+/// - KMSAN always tracks the origins and implies msan-keep-going=true;
+/// - KMSAN allocates shadow and origin memory for each page separately, so
+/// there are no explicit accesses to shadow and origin in the
+/// instrumentation.
+/// Shadow and origin values for a particular X-byte memory location
+/// (X=1,2,4,8) are accessed through pointers obtained via the
+/// __msan_metadata_ptr_for_load_X(ptr)
+/// __msan_metadata_ptr_for_store_X(ptr)
+/// functions. The corresponding functions check that the X-byte accesses
+/// are possible and returns the pointers to shadow and origin memory.
+/// Arbitrary sized accesses are handled with:
+/// __msan_metadata_ptr_for_load_n(ptr, size)
+/// __msan_metadata_ptr_for_store_n(ptr, size);
+/// - TLS variables are stored in a single per-task struct. A call to a
+/// function __msan_get_context_state() returning a pointer to that struct
+/// is inserted into every instrumented function before the entry block;
+/// - __msan_warning() takes a 32-bit origin parameter;
+/// - local variables are poisoned with __msan_poison_alloca() upon function
+/// entry and unpoisoned with __msan_unpoison_alloca() before leaving the
+/// function;
+/// - the pass doesn't declare any global variables or add global constructors
+/// to the translation unit.
+///
+/// Also, KMSAN currently ignores uninitialized memory passed into inline asm
+/// calls, making sure we're on the safe side wrt. possible false positives.
+///
+/// KernelMemorySanitizer only supports X86_64 at the moment.
+///
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Instrumentation/MemorySanitizer.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/InstVisitor.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
+#include "llvm/IR/ValueMap.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/AtomicOrdering.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Instrumentation.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/ModuleUtils.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <memory>
+#include <string>
+#include <tuple>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "msan"
+
+static const unsigned kOriginSize = 4;
+static const unsigned kMinOriginAlignment = 4;
+static const unsigned kShadowTLSAlignment = 8;
+
+// These constants must be kept in sync with the ones in msan.h.
+static const unsigned kParamTLSSize = 800;
+static const unsigned kRetvalTLSSize = 800;
+
+// Accesses sizes are powers of two: 1, 2, 4, 8.
+static const size_t kNumberOfAccessSizes = 4;
+
+/// Track origins of uninitialized values.
+///
+/// Adds a section to MemorySanitizer report that points to the allocation
+/// (stack or heap) the uninitialized bits came from originally.
+static cl::opt<int> ClTrackOrigins("msan-track-origins",
+ cl::desc("Track origins (allocation sites) of poisoned memory"),
+ cl::Hidden, cl::init(0));
+
+static cl::opt<bool> ClKeepGoing("msan-keep-going",
+ cl::desc("keep going after reporting a UMR"),
+ cl::Hidden, cl::init(false));
+
+static cl::opt<bool> ClPoisonStack("msan-poison-stack",
+ cl::desc("poison uninitialized stack variables"),
+ cl::Hidden, cl::init(true));
+
+static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
+ cl::desc("poison uninitialized stack variables with a call"),
+ cl::Hidden, cl::init(false));
+
+static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
+ cl::desc("poison uninitialized stack variables with the given pattern"),
+ cl::Hidden, cl::init(0xff));
+
+static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
+ cl::desc("poison undef temps"),
+ cl::Hidden, cl::init(true));
+
+static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
+ cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
+ cl::Hidden, cl::init(true));
+
+static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
+ cl::desc("exact handling of relational integer ICmp"),
+ cl::Hidden, cl::init(false));
+
+static cl::opt<bool> ClHandleLifetimeIntrinsics(
+ "msan-handle-lifetime-intrinsics",
+ cl::desc(
+ "when possible, poison scoped variables at the beginning of the scope "
+ "(slower, but more precise)"),
+ cl::Hidden, cl::init(true));
+
+// When compiling the Linux kernel, we sometimes see false positives related to
+// MSan being unable to understand that inline assembly calls may initialize
+// local variables.
+// This flag makes the compiler conservatively unpoison every memory location
+// passed into an assembly call. Note that this may cause false positives.
+// Because it's impossible to figure out the array sizes, we can only unpoison
+// the first sizeof(type) bytes for each type* pointer.
+// The instrumentation is only enabled in KMSAN builds, and only if
+// -msan-handle-asm-conservative is on. This is done because we may want to
+// quickly disable assembly instrumentation when it breaks.
+static cl::opt<bool> ClHandleAsmConservative(
+ "msan-handle-asm-conservative",
+ cl::desc("conservative handling of inline assembly"), cl::Hidden,
+ cl::init(true));
+
+// This flag controls whether we check the shadow of the address
+// operand of load or store. Such bugs are very rare, since load from
+// a garbage address typically results in SEGV, but still happen
+// (e.g. only lower bits of address are garbage, or the access happens
+// early at program startup where malloc-ed memory is more likely to
+// be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
+static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
+ cl::desc("report accesses through a pointer which has poisoned shadow"),
+ cl::Hidden, cl::init(true));
+
+static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
+ cl::desc("print out instructions with default strict semantics"),
+ cl::Hidden, cl::init(false));
+
+static cl::opt<int> ClInstrumentationWithCallThreshold(
+ "msan-instrumentation-with-call-threshold",
+ cl::desc(
+ "If the function being instrumented requires more than "
+ "this number of checks and origin stores, use callbacks instead of "
+ "inline checks (-1 means never use callbacks)."),
+ cl::Hidden, cl::init(3500));
+
+static cl::opt<bool>
+ ClEnableKmsan("msan-kernel",
+ cl::desc("Enable KernelMemorySanitizer instrumentation"),
+ cl::Hidden, cl::init(false));
+
+// This is an experiment to enable handling of cases where shadow is a non-zero
+// compile-time constant. For some unexplainable reason they were silently
+// ignored in the instrumentation.
+static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow",
+ cl::desc("Insert checks for constant shadow values"),
+ cl::Hidden, cl::init(false));
+
+// This is off by default because of a bug in gold:
+// https://sourceware.org/bugzilla/show_bug.cgi?id=19002
+static cl::opt<bool> ClWithComdat("msan-with-comdat",
+ cl::desc("Place MSan constructors in comdat sections"),
+ cl::Hidden, cl::init(false));
+
+// These options allow to specify custom memory map parameters
+// See MemoryMapParams for details.
+static cl::opt<uint64_t> ClAndMask("msan-and-mask",
+ cl::desc("Define custom MSan AndMask"),
+ cl::Hidden, cl::init(0));
+
+static cl::opt<uint64_t> ClXorMask("msan-xor-mask",
+ cl::desc("Define custom MSan XorMask"),
+ cl::Hidden, cl::init(0));
+
+static cl::opt<uint64_t> ClShadowBase("msan-shadow-base",
+ cl::desc("Define custom MSan ShadowBase"),
+ cl::Hidden, cl::init(0));
+
+static cl::opt<uint64_t> ClOriginBase("msan-origin-base",
+ cl::desc("Define custom MSan OriginBase"),
+ cl::Hidden, cl::init(0));
+
+static const char *const kMsanModuleCtorName = "msan.module_ctor";
+static const char *const kMsanInitName = "__msan_init";
+
+namespace {
+
+// Memory map parameters used in application-to-shadow address calculation.
+// Offset = (Addr & ~AndMask) ^ XorMask
+// Shadow = ShadowBase + Offset
+// Origin = OriginBase + Offset
+struct MemoryMapParams {
+ uint64_t AndMask;
+ uint64_t XorMask;
+ uint64_t ShadowBase;
+ uint64_t OriginBase;
+};
+
+struct PlatformMemoryMapParams {
+ const MemoryMapParams *bits32;
+ const MemoryMapParams *bits64;
+};
+
+} // end anonymous namespace
+
+// i386 Linux
+static const MemoryMapParams Linux_I386_MemoryMapParams = {
+ 0x000080000000, // AndMask
+ 0, // XorMask (not used)
+ 0, // ShadowBase (not used)
+ 0x000040000000, // OriginBase
+};
+
+// x86_64 Linux
+static const MemoryMapParams Linux_X86_64_MemoryMapParams = {
+#ifdef MSAN_LINUX_X86_64_OLD_MAPPING
+ 0x400000000000, // AndMask
+ 0, // XorMask (not used)
+ 0, // ShadowBase (not used)
+ 0x200000000000, // OriginBase
+#else
+ 0, // AndMask (not used)
+ 0x500000000000, // XorMask
+ 0, // ShadowBase (not used)
+ 0x100000000000, // OriginBase
+#endif
+};
+
+// mips64 Linux
+static const MemoryMapParams Linux_MIPS64_MemoryMapParams = {
+ 0, // AndMask (not used)
+ 0x008000000000, // XorMask
+ 0, // ShadowBase (not used)
+ 0x002000000000, // OriginBase
+};
+
+// ppc64 Linux
+static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = {
+ 0xE00000000000, // AndMask
+ 0x100000000000, // XorMask
+ 0x080000000000, // ShadowBase
+ 0x1C0000000000, // OriginBase
+};
+
+// aarch64 Linux
+static const MemoryMapParams Linux_AArch64_MemoryMapParams = {
+ 0, // AndMask (not used)
+ 0x06000000000, // XorMask
+ 0, // ShadowBase (not used)
+ 0x01000000000, // OriginBase
+};
+
+// i386 FreeBSD
+static const MemoryMapParams FreeBSD_I386_MemoryMapParams = {
+ 0x000180000000, // AndMask
+ 0x000040000000, // XorMask
+ 0x000020000000, // ShadowBase
+ 0x000700000000, // OriginBase
+};
+
+// x86_64 FreeBSD
+static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = {
+ 0xc00000000000, // AndMask
+ 0x200000000000, // XorMask
+ 0x100000000000, // ShadowBase
+ 0x380000000000, // OriginBase
+};
+
+// x86_64 NetBSD
+static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = {
+ 0, // AndMask
+ 0x500000000000, // XorMask
+ 0, // ShadowBase
+ 0x100000000000, // OriginBase
+};
+
+static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = {
+ &Linux_I386_MemoryMapParams,
+ &Linux_X86_64_MemoryMapParams,
+};
+
+static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = {
+ nullptr,
+ &Linux_MIPS64_MemoryMapParams,
+};
+
+static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = {
+ nullptr,
+ &Linux_PowerPC64_MemoryMapParams,
+};
+
+static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = {
+ nullptr,
+ &Linux_AArch64_MemoryMapParams,
+};
+
+static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = {
+ &FreeBSD_I386_MemoryMapParams,
+ &FreeBSD_X86_64_MemoryMapParams,
+};
+
+static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = {
+ nullptr,
+ &NetBSD_X86_64_MemoryMapParams,
+};
+
+namespace {
+
+/// Instrument functions of a module to detect uninitialized reads.
+///
+/// Instantiating MemorySanitizer inserts the msan runtime library API function
+/// declarations into the module if they don't exist already. Instantiating
+/// ensures the __msan_init function is in the list of global constructors for
+/// the module.
+class MemorySanitizer {
+public:
+ MemorySanitizer(Module &M, MemorySanitizerOptions Options)
+ : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins),
+ Recover(Options.Recover) {
+ initializeModule(M);
+ }
+
+ // MSan cannot be moved or copied because of MapParams.
+ MemorySanitizer(MemorySanitizer &&) = delete;
+ MemorySanitizer &operator=(MemorySanitizer &&) = delete;
+ MemorySanitizer(const MemorySanitizer &) = delete;
+ MemorySanitizer &operator=(const MemorySanitizer &) = delete;
+
+ bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI);
+
+private:
+ friend struct MemorySanitizerVisitor;
+ friend struct VarArgAMD64Helper;
+ friend struct VarArgMIPS64Helper;
+ friend struct VarArgAArch64Helper;
+ friend struct VarArgPowerPC64Helper;
+
+ void initializeModule(Module &M);
+ void initializeCallbacks(Module &M);
+ void createKernelApi(Module &M);
+ void createUserspaceApi(Module &M);
+
+ /// True if we're compiling the Linux kernel.
+ bool CompileKernel;
+ /// Track origins (allocation points) of uninitialized values.
+ int TrackOrigins;
+ bool Recover;
+
+ LLVMContext *C;
+ Type *IntptrTy;
+ Type *OriginTy;
+
+ // XxxTLS variables represent the per-thread state in MSan and per-task state
+ // in KMSAN.
+ // For the userspace these point to thread-local globals. In the kernel land
+ // they point to the members of a per-task struct obtained via a call to
+ // __msan_get_context_state().
+
+ /// Thread-local shadow storage for function parameters.
+ Value *ParamTLS;
+
+ /// Thread-local origin storage for function parameters.
+ Value *ParamOriginTLS;
+
+ /// Thread-local shadow storage for function return value.
+ Value *RetvalTLS;
+
+ /// Thread-local origin storage for function return value.
+ Value *RetvalOriginTLS;
+
+ /// Thread-local shadow storage for in-register va_arg function
+ /// parameters (x86_64-specific).
+ Value *VAArgTLS;
+
+ /// Thread-local shadow storage for in-register va_arg function
+ /// parameters (x86_64-specific).
+ Value *VAArgOriginTLS;
+
+ /// Thread-local shadow storage for va_arg overflow area
+ /// (x86_64-specific).
+ Value *VAArgOverflowSizeTLS;
+
+ /// Thread-local space used to pass origin value to the UMR reporting
+ /// function.
+ Value *OriginTLS;
+
+ /// Are the instrumentation callbacks set up?
+ bool CallbacksInitialized = false;
+
+ /// The run-time callback to print a warning.
+ FunctionCallee WarningFn;
+
+ // These arrays are indexed by log2(AccessSize).
+ FunctionCallee MaybeWarningFn[kNumberOfAccessSizes];
+ FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes];
+
+ /// Run-time helper that generates a new origin value for a stack
+ /// allocation.
+ FunctionCallee MsanSetAllocaOrigin4Fn;
+
+ /// Run-time helper that poisons stack on function entry.
+ FunctionCallee MsanPoisonStackFn;
+
+ /// Run-time helper that records a store (or any event) of an
+ /// uninitialized value and returns an updated origin id encoding this info.
+ FunctionCallee MsanChainOriginFn;
+
+ /// MSan runtime replacements for memmove, memcpy and memset.
+ FunctionCallee MemmoveFn, MemcpyFn, MemsetFn;
+
+ /// KMSAN callback for task-local function argument shadow.
+ StructType *MsanContextStateTy;
+ FunctionCallee MsanGetContextStateFn;
+
+ /// Functions for poisoning/unpoisoning local variables
+ FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn;
+
+ /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin
+ /// pointers.
+ FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN;
+ FunctionCallee MsanMetadataPtrForLoad_1_8[4];
+ FunctionCallee MsanMetadataPtrForStore_1_8[4];
+ FunctionCallee MsanInstrumentAsmStoreFn;
+
+ /// Helper to choose between different MsanMetadataPtrXxx().
+ FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size);
+
+ /// Memory map parameters used in application-to-shadow calculation.
+ const MemoryMapParams *MapParams;
+
+ /// Custom memory map parameters used when -msan-shadow-base or
+ // -msan-origin-base is provided.
+ MemoryMapParams CustomMapParams;
+
+ MDNode *ColdCallWeights;
+
+ /// Branch weights for origin store.
+ MDNode *OriginStoreWeights;
+
+ /// An empty volatile inline asm that prevents callback merge.
+ InlineAsm *EmptyAsm;
+};
+
+void insertModuleCtor(Module &M) {
+ getOrCreateSanitizerCtorAndInitFunctions(
+ M, kMsanModuleCtorName, kMsanInitName,
+ /*InitArgTypes=*/{},
+ /*InitArgs=*/{},
+ // This callback is invoked when the functions are created the first
+ // time. Hook them into the global ctors list in that case:
+ [&](Function *Ctor, FunctionCallee) {
+ if (!ClWithComdat) {
+ appendToGlobalCtors(M, Ctor, 0);
+ return;
+ }
+ Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName);
+ Ctor->setComdat(MsanCtorComdat);
+ appendToGlobalCtors(M, Ctor, 0, Ctor);
+ });
+}
+
+/// A legacy function pass for msan instrumentation.
+///
+/// Instruments functions to detect unitialized reads.
+struct MemorySanitizerLegacyPass : public FunctionPass {
+ // Pass identification, replacement for typeid.
+ static char ID;
+
+ MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {})
+ : FunctionPass(ID), Options(Options) {}
+ StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+ }
+
+ bool runOnFunction(Function &F) override {
+ return MSan->sanitizeFunction(
+ F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F));
+ }
+ bool doInitialization(Module &M) override;
+
+ Optional<MemorySanitizer> MSan;
+ MemorySanitizerOptions Options;
+};
+
+template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) {
+ return (Opt.getNumOccurrences() > 0) ? Opt : Default;
+}
+
+} // end anonymous namespace
+
+MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K)
+ : Kernel(getOptOrDefault(ClEnableKmsan, K)),
+ TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)),
+ Recover(getOptOrDefault(ClKeepGoing, Kernel || R)) {}
+
+PreservedAnalyses MemorySanitizerPass::run(Function &F,
+ FunctionAnalysisManager &FAM) {
+ MemorySanitizer Msan(*F.getParent(), Options);
+ if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F)))
+ return PreservedAnalyses::none();
+ return PreservedAnalyses::all();
+}
+
+PreservedAnalyses MemorySanitizerPass::run(Module &M,
+ ModuleAnalysisManager &AM) {
+ if (Options.Kernel)
+ return PreservedAnalyses::all();
+ insertModuleCtor(M);
+ return PreservedAnalyses::none();
+}
+
+char MemorySanitizerLegacyPass::ID = 0;
+
+INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan",
+ "MemorySanitizer: detects uninitialized reads.", false,
+ false)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan",
+ "MemorySanitizer: detects uninitialized reads.", false,
+ false)
+
+FunctionPass *
+llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) {
+ return new MemorySanitizerLegacyPass(Options);
+}
+
+/// Create a non-const global initialized with the given string.
+///
+/// Creates a writable global for Str so that we can pass it to the
+/// run-time lib. Runtime uses first 4 bytes of the string to store the
+/// frame ID, so the string needs to be mutable.
+static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
+ StringRef Str) {
+ Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
+ return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
+ GlobalValue::PrivateLinkage, StrConst, "");
+}
+
+/// Create KMSAN API callbacks.
+void MemorySanitizer::createKernelApi(Module &M) {
+ IRBuilder<> IRB(*C);
+
+ // These will be initialized in insertKmsanPrologue().
+ RetvalTLS = nullptr;
+ RetvalOriginTLS = nullptr;
+ ParamTLS = nullptr;
+ ParamOriginTLS = nullptr;
+ VAArgTLS = nullptr;
+ VAArgOriginTLS = nullptr;
+ VAArgOverflowSizeTLS = nullptr;
+ // OriginTLS is unused in the kernel.
+ OriginTLS = nullptr;
+
+ // __msan_warning() in the kernel takes an origin.
+ WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(),
+ IRB.getInt32Ty());
+ // Requests the per-task context state (kmsan_context_state*) from the
+ // runtime library.
+ MsanContextStateTy = StructType::get(
+ ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8),
+ ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8),
+ ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8),
+ ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */
+ IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy,
+ OriginTy);
+ MsanGetContextStateFn = M.getOrInsertFunction(
+ "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0));
+
+ Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0),
+ PointerType::get(IRB.getInt32Ty(), 0));
+
+ for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) {
+ std::string name_load =
+ "__msan_metadata_ptr_for_load_" + std::to_string(size);
+ std::string name_store =
+ "__msan_metadata_ptr_for_store_" + std::to_string(size);
+ MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction(
+ name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0));
+ MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction(
+ name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0));
+ }
+
+ MsanMetadataPtrForLoadN = M.getOrInsertFunction(
+ "__msan_metadata_ptr_for_load_n", RetTy,
+ PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty());
+ MsanMetadataPtrForStoreN = M.getOrInsertFunction(
+ "__msan_metadata_ptr_for_store_n", RetTy,
+ PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty());
+
+ // Functions for poisoning and unpoisoning memory.
+ MsanPoisonAllocaFn =
+ M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(),
+ IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy());
+ MsanUnpoisonAllocaFn = M.getOrInsertFunction(
+ "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy);
+}
+
+static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) {
+ return M.getOrInsertGlobal(Name, Ty, [&] {
+ return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage,
+ nullptr, Name, nullptr,
+ GlobalVariable::InitialExecTLSModel);
+ });
+}
+
+/// Insert declarations for userspace-specific functions and globals.
+void MemorySanitizer::createUserspaceApi(Module &M) {
+ IRBuilder<> IRB(*C);
+ // Create the callback.
+ // FIXME: this function should have "Cold" calling conv,
+ // which is not yet implemented.
+ StringRef WarningFnName = Recover ? "__msan_warning"
+ : "__msan_warning_noreturn";
+ WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy());
+
+ // Create the global TLS variables.
+ RetvalTLS =
+ getOrInsertGlobal(M, "__msan_retval_tls",
+ ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8));
+
+ RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy);
+
+ ParamTLS =
+ getOrInsertGlobal(M, "__msan_param_tls",
+ ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8));
+
+ ParamOriginTLS =
+ getOrInsertGlobal(M, "__msan_param_origin_tls",
+ ArrayType::get(OriginTy, kParamTLSSize / 4));
+
+ VAArgTLS =
+ getOrInsertGlobal(M, "__msan_va_arg_tls",
+ ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8));
+
+ VAArgOriginTLS =
+ getOrInsertGlobal(M, "__msan_va_arg_origin_tls",
+ ArrayType::get(OriginTy, kParamTLSSize / 4));
+
+ VAArgOverflowSizeTLS =
+ getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty());
+ OriginTLS = getOrInsertGlobal(M, "__msan_origin_tls", IRB.getInt32Ty());
+
+ for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
+ AccessSizeIndex++) {
+ unsigned AccessSize = 1 << AccessSizeIndex;
+ std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize);
+ MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction(
+ FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
+ IRB.getInt32Ty());
+
+ FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize);
+ MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction(
+ FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
+ IRB.getInt8PtrTy(), IRB.getInt32Ty());
+ }
+
+ MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
+ "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
+ IRB.getInt8PtrTy(), IntptrTy);
+ MsanPoisonStackFn =
+ M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(),
+ IRB.getInt8PtrTy(), IntptrTy);
+}
+
+/// Insert extern declaration of runtime-provided functions and globals.
+void MemorySanitizer::initializeCallbacks(Module &M) {
+ // Only do this once.
+ if (CallbacksInitialized)
+ return;
+
+ IRBuilder<> IRB(*C);
+ // Initialize callbacks that are common for kernel and userspace
+ // instrumentation.
+ MsanChainOriginFn = M.getOrInsertFunction(
+ "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty());
+ MemmoveFn = M.getOrInsertFunction(
+ "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
+ IRB.getInt8PtrTy(), IntptrTy);
+ MemcpyFn = M.getOrInsertFunction(
+ "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
+ IntptrTy);
+ MemsetFn = M.getOrInsertFunction(
+ "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
+ IntptrTy);
+ // We insert an empty inline asm after __msan_report* to avoid callback merge.
+ EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
+ StringRef(""), StringRef(""),
+ /*hasSideEffects=*/true);
+
+ MsanInstrumentAsmStoreFn =
+ M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(),
+ PointerType::get(IRB.getInt8Ty(), 0), IntptrTy);
+
+ if (CompileKernel) {
+ createKernelApi(M);
+ } else {
+ createUserspaceApi(M);
+ }
+ CallbacksInitialized = true;
+}
+
+FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore,
+ int size) {
+ FunctionCallee *Fns =
+ isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8;
+ switch (size) {
+ case 1:
+ return Fns[0];
+ case 2:
+ return Fns[1];
+ case 4:
+ return Fns[2];
+ case 8:
+ return Fns[3];
+ default:
+ return nullptr;
+ }
+}
+
+/// Module-level initialization.
+///
+/// inserts a call to __msan_init to the module's constructor list.
+void MemorySanitizer::initializeModule(Module &M) {
+ auto &DL = M.getDataLayout();
+
+ bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0;
+ bool OriginPassed = ClOriginBase.getNumOccurrences() > 0;
+ // Check the overrides first
+ if (ShadowPassed || OriginPassed) {
+ CustomMapParams.AndMask = ClAndMask;
+ CustomMapParams.XorMask = ClXorMask;
+ CustomMapParams.ShadowBase = ClShadowBase;
+ CustomMapParams.OriginBase = ClOriginBase;
+ MapParams = &CustomMapParams;
+ } else {
+ Triple TargetTriple(M.getTargetTriple());
+ switch (TargetTriple.getOS()) {
+ case Triple::FreeBSD:
+ switch (TargetTriple.getArch()) {
+ case Triple::x86_64:
+ MapParams = FreeBSD_X86_MemoryMapParams.bits64;
+ break;
+ case Triple::x86:
+ MapParams = FreeBSD_X86_MemoryMapParams.bits32;
+ break;
+ default:
+ report_fatal_error("unsupported architecture");
+ }
+ break;
+ case Triple::NetBSD:
+ switch (TargetTriple.getArch()) {
+ case Triple::x86_64:
+ MapParams = NetBSD_X86_MemoryMapParams.bits64;
+ break;
+ default:
+ report_fatal_error("unsupported architecture");
+ }
+ break;
+ case Triple::Linux:
+ switch (TargetTriple.getArch()) {
+ case Triple::x86_64:
+ MapParams = Linux_X86_MemoryMapParams.bits64;
+ break;
+ case Triple::x86:
+ MapParams = Linux_X86_MemoryMapParams.bits32;
+ break;
+ case Triple::mips64:
+ case Triple::mips64el:
+ MapParams = Linux_MIPS_MemoryMapParams.bits64;
+ break;
+ case Triple::ppc64:
+ case Triple::ppc64le:
+ MapParams = Linux_PowerPC_MemoryMapParams.bits64;
+ break;
+ case Triple::aarch64:
+ case Triple::aarch64_be:
+ MapParams = Linux_ARM_MemoryMapParams.bits64;
+ break;
+ default:
+ report_fatal_error("unsupported architecture");
+ }
+ break;
+ default:
+ report_fatal_error("unsupported operating system");
+ }
+ }
+
+ C = &(M.getContext());
+ IRBuilder<> IRB(*C);
+ IntptrTy = IRB.getIntPtrTy(DL);
+ OriginTy = IRB.getInt32Ty();
+
+ ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
+ OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
+
+ if (!CompileKernel) {
+ if (TrackOrigins)
+ M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] {
+ return new GlobalVariable(
+ M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
+ IRB.getInt32(TrackOrigins), "__msan_track_origins");
+ });
+
+ if (Recover)
+ M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] {
+ return new GlobalVariable(M, IRB.getInt32Ty(), true,
+ GlobalValue::WeakODRLinkage,
+ IRB.getInt32(Recover), "__msan_keep_going");
+ });
+}
+}
+
+bool MemorySanitizerLegacyPass::doInitialization(Module &M) {
+ if (!Options.Kernel)
+ insertModuleCtor(M);
+ MSan.emplace(M, Options);
+ return true;
+}
+
+namespace {
+
+/// A helper class that handles instrumentation of VarArg
+/// functions on a particular platform.
+///
+/// Implementations are expected to insert the instrumentation
+/// necessary to propagate argument shadow through VarArg function
+/// calls. Visit* methods are called during an InstVisitor pass over
+/// the function, and should avoid creating new basic blocks. A new
+/// instance of this class is created for each instrumented function.
+struct VarArgHelper {
+ virtual ~VarArgHelper() = default;
+
+ /// Visit a CallSite.
+ virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
+
+ /// Visit a va_start call.
+ virtual void visitVAStartInst(VAStartInst &I) = 0;
+
+ /// Visit a va_copy call.
+ virtual void visitVACopyInst(VACopyInst &I) = 0;
+
+ /// Finalize function instrumentation.
+ ///
+ /// This method is called after visiting all interesting (see above)
+ /// instructions in a function.
+ virtual void finalizeInstrumentation() = 0;
+};
+
+struct MemorySanitizerVisitor;
+
+} // end anonymous namespace
+
+static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
+ MemorySanitizerVisitor &Visitor);
+
+static unsigned TypeSizeToSizeIndex(unsigned TypeSize) {
+ if (TypeSize <= 8) return 0;
+ return Log2_32_Ceil((TypeSize + 7) / 8);
+}
+
+namespace {
+
+/// This class does all the work for a given function. Store and Load
+/// instructions store and load corresponding shadow and origin
+/// values. Most instructions propagate shadow from arguments to their
+/// return values. Certain instructions (most importantly, BranchInst)
+/// test their argument shadow and print reports (with a runtime call) if it's
+/// non-zero.
+struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
+ Function &F;
+ MemorySanitizer &MS;
+ SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
+ ValueMap<Value*, Value*> ShadowMap, OriginMap;
+ std::unique_ptr<VarArgHelper> VAHelper;
+ const TargetLibraryInfo *TLI;
+ BasicBlock *ActualFnStart;
+
+ // The following flags disable parts of MSan instrumentation based on
+ // blacklist contents and command-line options.
+ bool InsertChecks;
+ bool PropagateShadow;
+ bool PoisonStack;
+ bool PoisonUndef;
+ bool CheckReturnValue;
+
+ struct ShadowOriginAndInsertPoint {
+ Value *Shadow;
+ Value *Origin;
+ Instruction *OrigIns;
+
+ ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
+ : Shadow(S), Origin(O), OrigIns(I) {}
+ };
+ SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
+ bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics;
+ SmallSet<AllocaInst *, 16> AllocaSet;
+ SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList;
+ SmallVector<StoreInst *, 16> StoreList;
+
+ MemorySanitizerVisitor(Function &F, MemorySanitizer &MS,
+ const TargetLibraryInfo &TLI)
+ : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) {
+ bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory);
+ InsertChecks = SanitizeFunction;
+ PropagateShadow = SanitizeFunction;
+ PoisonStack = SanitizeFunction && ClPoisonStack;
+ PoisonUndef = SanitizeFunction && ClPoisonUndef;
+ // FIXME: Consider using SpecialCaseList to specify a list of functions that
+ // must always return fully initialized values. For now, we hardcode "main".
+ CheckReturnValue = SanitizeFunction && (F.getName() == "main");
+
+ MS.initializeCallbacks(*F.getParent());
+ if (MS.CompileKernel)
+ ActualFnStart = insertKmsanPrologue(F);
+ else
+ ActualFnStart = &F.getEntryBlock();
+
+ LLVM_DEBUG(if (!InsertChecks) dbgs()
+ << "MemorySanitizer is not inserting checks into '"
+ << F.getName() << "'\n");
+ }
+
+ Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
+ if (MS.TrackOrigins <= 1) return V;
+ return IRB.CreateCall(MS.MsanChainOriginFn, V);
+ }
+
+ Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) {
+ const DataLayout &DL = F.getParent()->getDataLayout();
+ unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
+ if (IntptrSize == kOriginSize) return Origin;
+ assert(IntptrSize == kOriginSize * 2);
+ Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false);
+ return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8));
+ }
+
+ /// Fill memory range with the given origin value.
+ void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr,
+ unsigned Size, unsigned Alignment) {
+ const DataLayout &DL = F.getParent()->getDataLayout();
+ unsigned IntptrAlignment = DL.getABITypeAlignment(MS.IntptrTy);
+ unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
+ assert(IntptrAlignment >= kMinOriginAlignment);
+ assert(IntptrSize >= kOriginSize);
+
+ unsigned Ofs = 0;
+ unsigned CurrentAlignment = Alignment;
+ if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) {
+ Value *IntptrOrigin = originToIntptr(IRB, Origin);
+ Value *IntptrOriginPtr =
+ IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0));
+ for (unsigned i = 0; i < Size / IntptrSize; ++i) {
+ Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i)
+ : IntptrOriginPtr;
+ IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
+ Ofs += IntptrSize / kOriginSize;
+ CurrentAlignment = IntptrAlignment;
+ }
+ }
+
+ for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) {
+ Value *GEP =
+ i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr;
+ IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
+ CurrentAlignment = kMinOriginAlignment;
+ }
+ }
+
+ void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
+ Value *OriginPtr, unsigned Alignment, bool AsCall) {
+ const DataLayout &DL = F.getParent()->getDataLayout();
+ unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
+ unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
+ if (Shadow->getType()->isAggregateType()) {
+ paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize,
+ OriginAlignment);
+ } else {
+ Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
+ Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow);
+ if (ConstantShadow) {
+ if (ClCheckConstantShadow && !ConstantShadow->isZeroValue())
+ paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize,
+ OriginAlignment);
+ return;
+ }
+
+ unsigned TypeSizeInBits =
+ DL.getTypeSizeInBits(ConvertedShadow->getType());
+ unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
+ if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) {
+ FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex];
+ Value *ConvertedShadow2 = IRB.CreateZExt(
+ ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
+ IRB.CreateCall(Fn, {ConvertedShadow2,
+ IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
+ Origin});
+ } else {
+ Value *Cmp = IRB.CreateICmpNE(
+ ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp");
+ Instruction *CheckTerm = SplitBlockAndInsertIfThen(
+ Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights);
+ IRBuilder<> IRBNew(CheckTerm);
+ paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize,
+ OriginAlignment);
+ }
+ }
+ }
+
+ void materializeStores(bool InstrumentWithCalls) {
+ for (StoreInst *SI : StoreList) {
+ IRBuilder<> IRB(SI);
+ Value *Val = SI->getValueOperand();
+ Value *Addr = SI->getPointerOperand();
+ Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val);
+ Value *ShadowPtr, *OriginPtr;
+ Type *ShadowTy = Shadow->getType();
+ unsigned Alignment = SI->getAlignment();
+ unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
+ std::tie(ShadowPtr, OriginPtr) =
+ getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true);
+
+ StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment);
+ LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n");
+ (void)NewSI;
+
+ if (SI->isAtomic())
+ SI->setOrdering(addReleaseOrdering(SI->getOrdering()));
+
+ if (MS.TrackOrigins && !SI->isAtomic())
+ storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr,
+ OriginAlignment, InstrumentWithCalls);
+ }
+ }
+
+ /// Helper function to insert a warning at IRB's current insert point.
+ void insertWarningFn(IRBuilder<> &IRB, Value *Origin) {
+ if (!Origin)
+ Origin = (Value *)IRB.getInt32(0);
+ if (MS.CompileKernel) {
+ IRB.CreateCall(MS.WarningFn, Origin);
+ } else {
+ if (MS.TrackOrigins) {
+ IRB.CreateStore(Origin, MS.OriginTLS);
+ }
+ IRB.CreateCall(MS.WarningFn, {});
+ }
+ IRB.CreateCall(MS.EmptyAsm, {});
+ // FIXME: Insert UnreachableInst if !MS.Recover?
+ // This may invalidate some of the following checks and needs to be done
+ // at the very end.
+ }
+
+ void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin,
+ bool AsCall) {
+ IRBuilder<> IRB(OrigIns);
+ LLVM_DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n");
+ Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
+ LLVM_DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n");
+
+ Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow);
+ if (ConstantShadow) {
+ if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) {
+ insertWarningFn(IRB, Origin);
+ }
+ return;
+ }
+
+ const DataLayout &DL = OrigIns->getModule()->getDataLayout();
+
+ unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
+ unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
+ if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) {
+ FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex];
+ Value *ConvertedShadow2 =
+ IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
+ IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin
+ ? Origin
+ : (Value *)IRB.getInt32(0)});
+ } else {
+ Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
+ getCleanShadow(ConvertedShadow), "_mscmp");
+ Instruction *CheckTerm = SplitBlockAndInsertIfThen(
+ Cmp, OrigIns,
+ /* Unreachable */ !MS.Recover, MS.ColdCallWeights);
+
+ IRB.SetInsertPoint(CheckTerm);
+ insertWarningFn(IRB, Origin);
+ LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n");
+ }
+ }
+
+ void materializeChecks(bool InstrumentWithCalls) {
+ for (const auto &ShadowData : InstrumentationList) {
+ Instruction *OrigIns = ShadowData.OrigIns;
+ Value *Shadow = ShadowData.Shadow;
+ Value *Origin = ShadowData.Origin;
+ materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls);
+ }
+ LLVM_DEBUG(dbgs() << "DONE:\n" << F);
+ }
+
+ BasicBlock *insertKmsanPrologue(Function &F) {
+ BasicBlock *ret =
+ SplitBlock(&F.getEntryBlock(), F.getEntryBlock().getFirstNonPHI());
+ IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
+ Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {});
+ Constant *Zero = IRB.getInt32(0);
+ MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
+ {Zero, IRB.getInt32(0)}, "param_shadow");
+ MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
+ {Zero, IRB.getInt32(1)}, "retval_shadow");
+ MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
+ {Zero, IRB.getInt32(2)}, "va_arg_shadow");
+ MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
+ {Zero, IRB.getInt32(3)}, "va_arg_origin");
+ MS.VAArgOverflowSizeTLS =
+ IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
+ {Zero, IRB.getInt32(4)}, "va_arg_overflow_size");
+ MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
+ {Zero, IRB.getInt32(5)}, "param_origin");
+ MS.RetvalOriginTLS =
+ IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
+ {Zero, IRB.getInt32(6)}, "retval_origin");
+ return ret;
+ }
+
+ /// Add MemorySanitizer instrumentation to a function.
+ bool runOnFunction() {
+ // In the presence of unreachable blocks, we may see Phi nodes with
+ // incoming nodes from such blocks. Since InstVisitor skips unreachable
+ // blocks, such nodes will not have any shadow value associated with them.
+ // It's easier to remove unreachable blocks than deal with missing shadow.
+ removeUnreachableBlocks(F);
+
+ // Iterate all BBs in depth-first order and create shadow instructions
+ // for all instructions (where applicable).
+ // For PHI nodes we create dummy shadow PHIs which will be finalized later.
+ for (BasicBlock *BB : depth_first(ActualFnStart))
+ visit(*BB);
+
+ // Finalize PHI nodes.
+ for (PHINode *PN : ShadowPHINodes) {
+ PHINode *PNS = cast<PHINode>(getShadow(PN));
+ PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr;
+ size_t NumValues = PN->getNumIncomingValues();
+ for (size_t v = 0; v < NumValues; v++) {
+ PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
+ if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
+ }
+ }
+
+ VAHelper->finalizeInstrumentation();
+
+ // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to
+ // instrumenting only allocas.
+ if (InstrumentLifetimeStart) {
+ for (auto Item : LifetimeStartList) {
+ instrumentAlloca(*Item.second, Item.first);
+ AllocaSet.erase(Item.second);
+ }
+ }
+ // Poison the allocas for which we didn't instrument the corresponding
+ // lifetime intrinsics.
+ for (AllocaInst *AI : AllocaSet)
+ instrumentAlloca(*AI);
+
+ bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 &&
+ InstrumentationList.size() + StoreList.size() >
+ (unsigned)ClInstrumentationWithCallThreshold;
+
+ // Insert shadow value checks.
+ materializeChecks(InstrumentWithCalls);
+
+ // Delayed instrumentation of StoreInst.
+ // This may not add new address checks.
+ materializeStores(InstrumentWithCalls);
+
+ return true;
+ }
+
+ /// Compute the shadow type that corresponds to a given Value.
+ Type *getShadowTy(Value *V) {
+ return getShadowTy(V->getType());
+ }
+
+ /// Compute the shadow type that corresponds to a given Type.
+ Type *getShadowTy(Type *OrigTy) {
+ if (!OrigTy->isSized()) {
+ return nullptr;
+ }
+ // For integer type, shadow is the same as the original type.
+ // This may return weird-sized types like i1.
+ if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
+ return IT;
+ const DataLayout &DL = F.getParent()->getDataLayout();
+ if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
+ uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType());
+ return VectorType::get(IntegerType::get(*MS.C, EltSize),
+ VT->getNumElements());
+ }
+ if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) {
+ return ArrayType::get(getShadowTy(AT->getElementType()),
+ AT->getNumElements());
+ }
+ if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
+ SmallVector<Type*, 4> Elements;
+ for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
+ Elements.push_back(getShadowTy(ST->getElementType(i)));
+ StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
+ LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
+ return Res;
+ }
+ uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy);
+ return IntegerType::get(*MS.C, TypeSize);
+ }
+
+ /// Flatten a vector type.
+ Type *getShadowTyNoVec(Type *ty) {
+ if (VectorType *vt = dyn_cast<VectorType>(ty))
+ return IntegerType::get(*MS.C, vt->getBitWidth());
+ return ty;
+ }
+
+ /// Convert a shadow value to it's flattened variant.
+ Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
+ Type *Ty = V->getType();
+ Type *NoVecTy = getShadowTyNoVec(Ty);
+ if (Ty == NoVecTy) return V;
+ return IRB.CreateBitCast(V, NoVecTy);
+ }
+
+ /// Compute the integer shadow offset that corresponds to a given
+ /// application address.
+ ///
+ /// Offset = (Addr & ~AndMask) ^ XorMask
+ Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) {
+ Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy);
+
+ uint64_t AndMask = MS.MapParams->AndMask;
+ if (AndMask)
+ OffsetLong =
+ IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask));
+
+ uint64_t XorMask = MS.MapParams->XorMask;
+ if (XorMask)
+ OffsetLong =
+ IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask));
+ return OffsetLong;
+ }
+
+ /// Compute the shadow and origin addresses corresponding to a given
+ /// application address.
+ ///
+ /// Shadow = ShadowBase + Offset
+ /// Origin = (OriginBase + Offset) & ~3ULL
+ std::pair<Value *, Value *> getShadowOriginPtrUserspace(Value *Addr,
+ IRBuilder<> &IRB,
+ Type *ShadowTy,
+ unsigned Alignment) {
+ Value *ShadowOffset = getShadowPtrOffset(Addr, IRB);
+ Value *ShadowLong = ShadowOffset;
+ uint64_t ShadowBase = MS.MapParams->ShadowBase;
+ if (ShadowBase != 0) {
+ ShadowLong =
+ IRB.CreateAdd(ShadowLong,
+ ConstantInt::get(MS.IntptrTy, ShadowBase));
+ }
+ Value *ShadowPtr =
+ IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
+ Value *OriginPtr = nullptr;
+ if (MS.TrackOrigins) {
+ Value *OriginLong = ShadowOffset;
+ uint64_t OriginBase = MS.MapParams->OriginBase;
+ if (OriginBase != 0)
+ OriginLong = IRB.CreateAdd(OriginLong,
+ ConstantInt::get(MS.IntptrTy, OriginBase));
+ if (Alignment < kMinOriginAlignment) {
+ uint64_t Mask = kMinOriginAlignment - 1;
+ OriginLong =
+ IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask));
+ }
+ OriginPtr =
+ IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0));
+ }
+ return std::make_pair(ShadowPtr, OriginPtr);
+ }
+
+ std::pair<Value *, Value *>
+ getShadowOriginPtrKernel(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy,
+ unsigned Alignment, bool isStore) {
+ Value *ShadowOriginPtrs;
+ const DataLayout &DL = F.getParent()->getDataLayout();
+ int Size = DL.getTypeStoreSize(ShadowTy);
+
+ FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size);
+ Value *AddrCast =
+ IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0));
+ if (Getter) {
+ ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast);
+ } else {
+ Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size);
+ ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN
+ : MS.MsanMetadataPtrForLoadN,
+ {AddrCast, SizeVal});
+ }
+ Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0);
+ ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0));
+ Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1);
+
+ return std::make_pair(ShadowPtr, OriginPtr);
+ }
+
+ std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB,
+ Type *ShadowTy,
+ unsigned Alignment,
+ bool isStore) {
+ std::pair<Value *, Value *> ret;
+ if (MS.CompileKernel)
+ ret = getShadowOriginPtrKernel(Addr, IRB, ShadowTy, Alignment, isStore);
+ else
+ ret = getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment);
+ return ret;
+ }
+
+ /// Compute the shadow address for a given function argument.
+ ///
+ /// Shadow = ParamTLS+ArgOffset.
+ Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
+ int ArgOffset) {
+ Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
+ if (ArgOffset)
+ Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
+ return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
+ "_msarg");
+ }
+
+ /// Compute the origin address for a given function argument.
+ Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
+ int ArgOffset) {
+ if (!MS.TrackOrigins)
+ return nullptr;
+ Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
+ if (ArgOffset)
+ Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
+ return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
+ "_msarg_o");
+ }
+
+ /// Compute the shadow address for a retval.
+ Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
+ return IRB.CreatePointerCast(MS.RetvalTLS,
+ PointerType::get(getShadowTy(A), 0),
+ "_msret");
+ }
+
+ /// Compute the origin address for a retval.
+ Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
+ // We keep a single origin for the entire retval. Might be too optimistic.
+ return MS.RetvalOriginTLS;
+ }
+
+ /// Set SV to be the shadow value for V.
+ void setShadow(Value *V, Value *SV) {
+ assert(!ShadowMap.count(V) && "Values may only have one shadow");
+ ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V);
+ }
+
+ /// Set Origin to be the origin value for V.
+ void setOrigin(Value *V, Value *Origin) {
+ if (!MS.TrackOrigins) return;
+ assert(!OriginMap.count(V) && "Values may only have one origin");
+ LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n");
+ OriginMap[V] = Origin;
+ }
+
+ Constant *getCleanShadow(Type *OrigTy) {
+ Type *ShadowTy = getShadowTy(OrigTy);
+ if (!ShadowTy)
+ return nullptr;
+ return Constant::getNullValue(ShadowTy);
+ }
+
+ /// Create a clean shadow value for a given value.
+ ///
+ /// Clean shadow (all zeroes) means all bits of the value are defined
+ /// (initialized).
+ Constant *getCleanShadow(Value *V) {
+ return getCleanShadow(V->getType());
+ }
+
+ /// Create a dirty shadow of a given shadow type.
+ Constant *getPoisonedShadow(Type *ShadowTy) {
+ assert(ShadowTy);
+ if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
+ return Constant::getAllOnesValue(ShadowTy);
+ if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) {
+ SmallVector<Constant *, 4> Vals(AT->getNumElements(),
+ getPoisonedShadow(AT->getElementType()));
+ return ConstantArray::get(AT, Vals);
+ }
+ if (StructType *ST = dyn_cast<StructType>(ShadowTy)) {
+ SmallVector<Constant *, 4> Vals;
+ for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
+ Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
+ return ConstantStruct::get(ST, Vals);
+ }
+ llvm_unreachable("Unexpected shadow type");
+ }
+
+ /// Create a dirty shadow for a given value.
+ Constant *getPoisonedShadow(Value *V) {
+ Type *ShadowTy = getShadowTy(V);
+ if (!ShadowTy)
+ return nullptr;
+ return getPoisonedShadow(ShadowTy);
+ }
+
+ /// Create a clean (zero) origin.
+ Value *getCleanOrigin() {
+ return Constant::getNullValue(MS.OriginTy);
+ }
+
+ /// Get the shadow value for a given Value.
+ ///
+ /// This function either returns the value set earlier with setShadow,
+ /// or extracts if from ParamTLS (for function arguments).
+ Value *getShadow(Value *V) {
+ if (!PropagateShadow) return getCleanShadow(V);
+ if (Instruction *I = dyn_cast<Instruction>(V)) {
+ if (I->getMetadata("nosanitize"))
+ return getCleanShadow(V);
+ // For instructions the shadow is already stored in the map.
+ Value *Shadow = ShadowMap[V];
+ if (!Shadow) {
+ LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
+ (void)I;
+ assert(Shadow && "No shadow for a value");
+ }
+ return Shadow;
+ }
+ if (UndefValue *U = dyn_cast<UndefValue>(V)) {
+ Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
+ LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
+ (void)U;
+ return AllOnes;
+ }
+ if (Argument *A = dyn_cast<Argument>(V)) {
+ // For arguments we compute the shadow on demand and store it in the map.
+ Value **ShadowPtr = &ShadowMap[V];
+ if (*ShadowPtr)
+ return *ShadowPtr;
+ Function *F = A->getParent();
+ IRBuilder<> EntryIRB(ActualFnStart->getFirstNonPHI());
+ unsigned ArgOffset = 0;
+ const DataLayout &DL = F->getParent()->getDataLayout();
+ for (auto &FArg : F->args()) {
+ if (!FArg.getType()->isSized()) {
+ LLVM_DEBUG(dbgs() << "Arg is not sized\n");
+ continue;
+ }
+ unsigned Size =
+ FArg.hasByValAttr()
+ ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType())
+ : DL.getTypeAllocSize(FArg.getType());
+ if (A == &FArg) {
+ bool Overflow = ArgOffset + Size > kParamTLSSize;
+ Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
+ if (FArg.hasByValAttr()) {
+ // ByVal pointer itself has clean shadow. We copy the actual
+ // argument shadow to the underlying memory.
+ // Figure out maximal valid memcpy alignment.
+ unsigned ArgAlign = FArg.getParamAlignment();
+ if (ArgAlign == 0) {
+ Type *EltType = A->getType()->getPointerElementType();
+ ArgAlign = DL.getABITypeAlignment(EltType);
+ }
+ Value *CpShadowPtr =
+ getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign,
+ /*isStore*/ true)
+ .first;
+ // TODO(glider): need to copy origins.
+ if (Overflow) {
+ // ParamTLS overflow.
+ EntryIRB.CreateMemSet(
+ CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()),
+ Size, ArgAlign);
+ } else {
+ unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
+ Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base,
+ CopyAlign, Size);
+ LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n");
+ (void)Cpy;
+ }
+ *ShadowPtr = getCleanShadow(V);
+ } else {
+ if (Overflow) {
+ // ParamTLS overflow.
+ *ShadowPtr = getCleanShadow(V);
+ } else {
+ *ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base,
+ kShadowTLSAlignment);
+ }
+ }
+ LLVM_DEBUG(dbgs()
+ << " ARG: " << FArg << " ==> " << **ShadowPtr << "\n");
+ if (MS.TrackOrigins && !Overflow) {
+ Value *OriginPtr =
+ getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset);
+ setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr));
+ } else {
+ setOrigin(A, getCleanOrigin());
+ }
+ }
+ ArgOffset += alignTo(Size, kShadowTLSAlignment);
+ }
+ assert(*ShadowPtr && "Could not find shadow for an argument");
+ return *ShadowPtr;
+ }
+ // For everything else the shadow is zero.
+ return getCleanShadow(V);
+ }
+
+ /// Get the shadow for i-th argument of the instruction I.
+ Value *getShadow(Instruction *I, int i) {
+ return getShadow(I->getOperand(i));
+ }
+
+ /// Get the origin for a value.
+ Value *getOrigin(Value *V) {
+ if (!MS.TrackOrigins) return nullptr;
+ if (!PropagateShadow) return getCleanOrigin();
+ if (isa<Constant>(V)) return getCleanOrigin();
+ assert((isa<Instruction>(V) || isa<Argument>(V)) &&
+ "Unexpected value type in getOrigin()");
+ if (Instruction *I = dyn_cast<Instruction>(V)) {
+ if (I->getMetadata("nosanitize"))
+ return getCleanOrigin();
+ }
+ Value *Origin = OriginMap[V];
+ assert(Origin && "Missing origin");
+ return Origin;
+ }
+
+ /// Get the origin for i-th argument of the instruction I.
+ Value *getOrigin(Instruction *I, int i) {
+ return getOrigin(I->getOperand(i));
+ }
+
+ /// Remember the place where a shadow check should be inserted.
+ ///
+ /// This location will be later instrumented with a check that will print a
+ /// UMR warning in runtime if the shadow value is not 0.
+ void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
+ assert(Shadow);
+ if (!InsertChecks) return;
+#ifndef NDEBUG
+ Type *ShadowTy = Shadow->getType();
+ assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
+ "Can only insert checks for integer and vector shadow types");
+#endif
+ InstrumentationList.push_back(
+ ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
+ }
+
+ /// Remember the place where a shadow check should be inserted.
+ ///
+ /// This location will be later instrumented with a check that will print a
+ /// UMR warning in runtime if the value is not fully defined.
+ void insertShadowCheck(Value *Val, Instruction *OrigIns) {
+ assert(Val);
+ Value *Shadow, *Origin;
+ if (ClCheckConstantShadow) {
+ Shadow = getShadow(Val);
+ if (!Shadow) return;
+ Origin = getOrigin(Val);
+ } else {
+ Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
+ if (!Shadow) return;
+ Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
+ }
+ insertShadowCheck(Shadow, Origin, OrigIns);
+ }
+
+ AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
+ switch (a) {
+ case AtomicOrdering::NotAtomic:
+ return AtomicOrdering::NotAtomic;
+ case AtomicOrdering::Unordered:
+ case AtomicOrdering::Monotonic:
+ case AtomicOrdering::Release:
+ return AtomicOrdering::Release;
+ case AtomicOrdering::Acquire:
+ case AtomicOrdering::AcquireRelease:
+ return AtomicOrdering::AcquireRelease;
+ case AtomicOrdering::SequentiallyConsistent:
+ return AtomicOrdering::SequentiallyConsistent;
+ }
+ llvm_unreachable("Unknown ordering");
+ }
+
+ AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
+ switch (a) {
+ case AtomicOrdering::NotAtomic:
+ return AtomicOrdering::NotAtomic;
+ case AtomicOrdering::Unordered:
+ case AtomicOrdering::Monotonic:
+ case AtomicOrdering::Acquire:
+ return AtomicOrdering::Acquire;
+ case AtomicOrdering::Release:
+ case AtomicOrdering::AcquireRelease:
+ return AtomicOrdering::AcquireRelease;
+ case AtomicOrdering::SequentiallyConsistent:
+ return AtomicOrdering::SequentiallyConsistent;
+ }
+ llvm_unreachable("Unknown ordering");
+ }
+
+ // ------------------- Visitors.
+ using InstVisitor<MemorySanitizerVisitor>::visit;
+ void visit(Instruction &I) {
+ if (!I.getMetadata("nosanitize"))
+ InstVisitor<MemorySanitizerVisitor>::visit(I);
+ }
+
+ /// Instrument LoadInst
+ ///
+ /// Loads the corresponding shadow and (optionally) origin.
+ /// Optionally, checks that the load address is fully defined.
+ void visitLoadInst(LoadInst &I) {
+ assert(I.getType()->isSized() && "Load type must have size");
+ assert(!I.getMetadata("nosanitize"));
+ IRBuilder<> IRB(I.getNextNode());
+ Type *ShadowTy = getShadowTy(&I);
+ Value *Addr = I.getPointerOperand();
+ Value *ShadowPtr, *OriginPtr;
+ unsigned Alignment = I.getAlignment();
+ if (PropagateShadow) {
+ std::tie(ShadowPtr, OriginPtr) =
+ getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
+ setShadow(&I,
+ IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld"));
+ } else {
+ setShadow(&I, getCleanShadow(&I));
+ }
+
+ if (ClCheckAccessAddress)
+ insertShadowCheck(I.getPointerOperand(), &I);
+
+ if (I.isAtomic())
+ I.setOrdering(addAcquireOrdering(I.getOrdering()));
+
+ if (MS.TrackOrigins) {
+ if (PropagateShadow) {
+ unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
+ setOrigin(
+ &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment));
+ } else {
+ setOrigin(&I, getCleanOrigin());
+ }
+ }
+ }
+
+ /// Instrument StoreInst
+ ///
+ /// Stores the corresponding shadow and (optionally) origin.
+ /// Optionally, checks that the store address is fully defined.
+ void visitStoreInst(StoreInst &I) {
+ StoreList.push_back(&I);
+ if (ClCheckAccessAddress)
+ insertShadowCheck(I.getPointerOperand(), &I);
+ }
+
+ void handleCASOrRMW(Instruction &I) {
+ assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
+
+ IRBuilder<> IRB(&I);
+ Value *Addr = I.getOperand(0);
+ Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, I.getType(),
+ /*Alignment*/ 1, /*isStore*/ true)
+ .first;
+
+ if (ClCheckAccessAddress)
+ insertShadowCheck(Addr, &I);
+
+ // Only test the conditional argument of cmpxchg instruction.
+ // The other argument can potentially be uninitialized, but we can not
+ // detect this situation reliably without possible false positives.
+ if (isa<AtomicCmpXchgInst>(I))
+ insertShadowCheck(I.getOperand(1), &I);
+
+ IRB.CreateStore(getCleanShadow(&I), ShadowPtr);
+
+ setShadow(&I, getCleanShadow(&I));
+ setOrigin(&I, getCleanOrigin());
+ }
+
+ void visitAtomicRMWInst(AtomicRMWInst &I) {
+ handleCASOrRMW(I);
+ I.setOrdering(addReleaseOrdering(I.getOrdering()));
+ }
+
+ void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
+ handleCASOrRMW(I);
+ I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
+ }
+
+ // Vector manipulation.
+ void visitExtractElementInst(ExtractElementInst &I) {
+ insertShadowCheck(I.getOperand(1), &I);
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
+ "_msprop"));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void visitInsertElementInst(InsertElementInst &I) {
+ insertShadowCheck(I.getOperand(2), &I);
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
+ I.getOperand(2), "_msprop"));
+ setOriginForNaryOp(I);
+ }
+
+ void visitShuffleVectorInst(ShuffleVectorInst &I) {
+ insertShadowCheck(I.getOperand(2), &I);
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
+ I.getOperand(2), "_msprop"));
+ setOriginForNaryOp(I);
+ }
+
+ // Casts.
+ void visitSExtInst(SExtInst &I) {
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void visitZExtInst(ZExtInst &I) {
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void visitTruncInst(TruncInst &I) {
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void visitBitCastInst(BitCastInst &I) {
+ // Special case: if this is the bitcast (there is exactly 1 allowed) between
+ // a musttail call and a ret, don't instrument. New instructions are not
+ // allowed after a musttail call.
+ if (auto *CI = dyn_cast<CallInst>(I.getOperand(0)))
+ if (CI->isMustTailCall())
+ return;
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void visitPtrToIntInst(PtrToIntInst &I) {
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
+ "_msprop_ptrtoint"));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void visitIntToPtrInst(IntToPtrInst &I) {
+ IRBuilder<> IRB(&I);
+ setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
+ "_msprop_inttoptr"));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
+ void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
+ void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
+ void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
+ void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
+ void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
+
+ /// Propagate shadow for bitwise AND.
+ ///
+ /// This code is exact, i.e. if, for example, a bit in the left argument
+ /// is defined and 0, then neither the value not definedness of the
+ /// corresponding bit in B don't affect the resulting shadow.
+ void visitAnd(BinaryOperator &I) {
+ IRBuilder<> IRB(&I);
+ // "And" of 0 and a poisoned value results in unpoisoned value.
+ // 1&1 => 1; 0&1 => 0; p&1 => p;
+ // 1&0 => 0; 0&0 => 0; p&0 => 0;
+ // 1&p => p; 0&p => 0; p&p => p;
+ // S = (S1 & S2) | (V1 & S2) | (S1 & V2)
+ Value *S1 = getShadow(&I, 0);
+ Value *S2 = getShadow(&I, 1);
+ Value *V1 = I.getOperand(0);
+ Value *V2 = I.getOperand(1);
+ if (V1->getType() != S1->getType()) {
+ V1 = IRB.CreateIntCast(V1, S1->getType(), false);
+ V2 = IRB.CreateIntCast(V2, S2->getType(), false);
+ }
+ Value *S1S2 = IRB.CreateAnd(S1, S2);
+ Value *V1S2 = IRB.CreateAnd(V1, S2);
+ Value *S1V2 = IRB.CreateAnd(S1, V2);
+ setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2}));
+ setOriginForNaryOp(I);
+ }
+
+ void visitOr(BinaryOperator &I) {
+ IRBuilder<> IRB(&I);
+ // "Or" of 1 and a poisoned value results in unpoisoned value.
+ // 1|1 => 1; 0|1 => 1; p|1 => 1;
+ // 1|0 => 1; 0|0 => 0; p|0 => p;
+ // 1|p => 1; 0|p => p; p|p => p;
+ // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
+ Value *S1 = getShadow(&I, 0);
+ Value *S2 = getShadow(&I, 1);
+ Value *V1 = IRB.CreateNot(I.getOperand(0));
+ Value *V2 = IRB.CreateNot(I.getOperand(1));
+ if (V1->getType() != S1->getType()) {
+ V1 = IRB.CreateIntCast(V1, S1->getType(), false);
+ V2 = IRB.CreateIntCast(V2, S2->getType(), false);
+ }
+ Value *S1S2 = IRB.CreateAnd(S1, S2);
+ Value *V1S2 = IRB.CreateAnd(V1, S2);
+ Value *S1V2 = IRB.CreateAnd(S1, V2);
+ setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2}));
+ setOriginForNaryOp(I);
+ }
+
+ /// Default propagation of shadow and/or origin.
+ ///
+ /// This class implements the general case of shadow propagation, used in all
+ /// cases where we don't know and/or don't care about what the operation
+ /// actually does. It converts all input shadow values to a common type
+ /// (extending or truncating as necessary), and bitwise OR's them.
+ ///
+ /// This is much cheaper than inserting checks (i.e. requiring inputs to be
+ /// fully initialized), and less prone to false positives.
+ ///
+ /// This class also implements the general case of origin propagation. For a
+ /// Nary operation, result origin is set to the origin of an argument that is
+ /// not entirely initialized. If there is more than one such arguments, the
+ /// rightmost of them is picked. It does not matter which one is picked if all
+ /// arguments are initialized.
+ template <bool CombineShadow>
+ class Combiner {
+ Value *Shadow = nullptr;
+ Value *Origin = nullptr;
+ IRBuilder<> &IRB;
+ MemorySanitizerVisitor *MSV;
+
+ public:
+ Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB)
+ : IRB(IRB), MSV(MSV) {}
+
+ /// Add a pair of shadow and origin values to the mix.
+ Combiner &Add(Value *OpShadow, Value *OpOrigin) {
+ if (CombineShadow) {
+ assert(OpShadow);
+ if (!Shadow)
+ Shadow = OpShadow;
+ else {
+ OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
+ Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
+ }
+ }
+
+ if (MSV->MS.TrackOrigins) {
+ assert(OpOrigin);
+ if (!Origin) {
+ Origin = OpOrigin;
+ } else {
+ Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin);
+ // No point in adding something that might result in 0 origin value.
+ if (!ConstOrigin || !ConstOrigin->isNullValue()) {
+ Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
+ Value *Cond =
+ IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow));
+ Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
+ }
+ }
+ }
+ return *this;
+ }
+
+ /// Add an application value to the mix.
+ Combiner &Add(Value *V) {
+ Value *OpShadow = MSV->getShadow(V);
+ Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr;
+ return Add(OpShadow, OpOrigin);
+ }
+
+ /// Set the current combined values as the given instruction's shadow
+ /// and origin.
+ void Done(Instruction *I) {
+ if (CombineShadow) {
+ assert(Shadow);
+ Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
+ MSV->setShadow(I, Shadow);
+ }
+ if (MSV->MS.TrackOrigins) {
+ assert(Origin);
+ MSV->setOrigin(I, Origin);
+ }
+ }
+ };
+
+ using ShadowAndOriginCombiner = Combiner<true>;
+ using OriginCombiner = Combiner<false>;
+
+ /// Propagate origin for arbitrary operation.
+ void setOriginForNaryOp(Instruction &I) {
+ if (!MS.TrackOrigins) return;
+ IRBuilder<> IRB(&I);
+ OriginCombiner OC(this, IRB);
+ for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
+ OC.Add(OI->get());
+ OC.Done(&I);
+ }
+
+ size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
+ assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
+ "Vector of pointers is not a valid shadow type");
+ return Ty->isVectorTy() ?
+ Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
+ Ty->getPrimitiveSizeInBits();
+ }
+
+ /// Cast between two shadow types, extending or truncating as
+ /// necessary.
+ Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
+ bool Signed = false) {
+ Type *srcTy = V->getType();
+ size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
+ size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
+ if (srcSizeInBits > 1 && dstSizeInBits == 1)
+ return IRB.CreateICmpNE(V, getCleanShadow(V));
+
+ if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
+ return IRB.CreateIntCast(V, dstTy, Signed);
+ if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
+ dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
+ return IRB.CreateIntCast(V, dstTy, Signed);
+ Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
+ Value *V2 =
+ IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
+ return IRB.CreateBitCast(V2, dstTy);
+ // TODO: handle struct types.
+ }
+
+ /// Cast an application value to the type of its own shadow.
+ Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) {
+ Type *ShadowTy = getShadowTy(V);
+ if (V->getType() == ShadowTy)
+ return V;
+ if (V->getType()->isPtrOrPtrVectorTy())
+ return IRB.CreatePtrToInt(V, ShadowTy);
+ else
+ return IRB.CreateBitCast(V, ShadowTy);
+ }
+
+ /// Propagate shadow for arbitrary operation.
+ void handleShadowOr(Instruction &I) {
+ IRBuilder<> IRB(&I);
+ ShadowAndOriginCombiner SC(this, IRB);
+ for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
+ SC.Add(OI->get());
+ SC.Done(&I);
+ }
+
+ void visitFNeg(UnaryOperator &I) { handleShadowOr(I); }
+
+ // Handle multiplication by constant.
+ //
+ // Handle a special case of multiplication by constant that may have one or
+ // more zeros in the lower bits. This makes corresponding number of lower bits
+ // of the result zero as well. We model it by shifting the other operand
+ // shadow left by the required number of bits. Effectively, we transform
+ // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B).
+ // We use multiplication by 2**N instead of shift to cover the case of
+ // multiplication by 0, which may occur in some elements of a vector operand.
+ void handleMulByConstant(BinaryOperator &I, Constant *ConstArg,
+ Value *OtherArg) {
+ Constant *ShadowMul;
+ Type *Ty = ConstArg->getType();
+ if (Ty->isVectorTy()) {
+ unsigned NumElements = Ty->getVectorNumElements();
+ Type *EltTy = Ty->getSequentialElementType();
+ SmallVector<Constant *, 16> Elements;
+ for (unsigned Idx = 0; Idx < NumElements; ++Idx) {
+ if (ConstantInt *Elt =
+ dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) {
+ const APInt &V = Elt->getValue();
+ APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
+ Elements.push_back(ConstantInt::get(EltTy, V2));
+ } else {
+ Elements.push_back(ConstantInt::get(EltTy, 1));
+ }
+ }
+ ShadowMul = ConstantVector::get(Elements);
+ } else {
+ if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) {
+ const APInt &V = Elt->getValue();
+ APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
+ ShadowMul = ConstantInt::get(Ty, V2);
+ } else {
+ ShadowMul = ConstantInt::get(Ty, 1);
+ }
+ }
+
+ IRBuilder<> IRB(&I);
+ setShadow(&I,
+ IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst"));
+ setOrigin(&I, getOrigin(OtherArg));
+ }
+
+ void visitMul(BinaryOperator &I) {
+ Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
+ Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
+ if (constOp0 && !constOp1)
+ handleMulByConstant(I, constOp0, I.getOperand(1));
+ else if (constOp1 && !constOp0)
+ handleMulByConstant(I, constOp1, I.getOperand(0));
+ else
+ handleShadowOr(I);
+ }
+
+ void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
+ void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
+ void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
+ void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
+ void visitSub(BinaryOperator &I) { handleShadowOr(I); }
+ void visitXor(BinaryOperator &I) { handleShadowOr(I); }
+
+ void handleIntegerDiv(Instruction &I) {
+ IRBuilder<> IRB(&I);
+ // Strict on the second argument.
+ insertShadowCheck(I.getOperand(1), &I);
+ setShadow(&I, getShadow(&I, 0));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); }
+ void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); }
+ void visitURem(BinaryOperator &I) { handleIntegerDiv(I); }
+ void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); }
+
+ // Floating point division is side-effect free. We can not require that the
+ // divisor is fully initialized and must propagate shadow. See PR37523.
+ void visitFDiv(BinaryOperator &I) { handleShadowOr(I); }
+ void visitFRem(BinaryOperator &I) { handleShadowOr(I); }
+
+ /// Instrument == and != comparisons.
+ ///
+ /// Sometimes the comparison result is known even if some of the bits of the
+ /// arguments are not.
+ void handleEqualityComparison(ICmpInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *A = I.getOperand(0);
+ Value *B = I.getOperand(1);
+ Value *Sa = getShadow(A);
+ Value *Sb = getShadow(B);
+
+ // Get rid of pointers and vectors of pointers.
+ // For ints (and vectors of ints), types of A and Sa match,
+ // and this is a no-op.
+ A = IRB.CreatePointerCast(A, Sa->getType());
+ B = IRB.CreatePointerCast(B, Sb->getType());
+
+ // A == B <==> (C = A^B) == 0
+ // A != B <==> (C = A^B) != 0
+ // Sc = Sa | Sb
+ Value *C = IRB.CreateXor(A, B);
+ Value *Sc = IRB.CreateOr(Sa, Sb);
+ // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
+ // Result is defined if one of the following is true
+ // * there is a defined 1 bit in C
+ // * C is fully defined
+ // Si = !(C & ~Sc) && Sc
+ Value *Zero = Constant::getNullValue(Sc->getType());
+ Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
+ Value *Si =
+ IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
+ IRB.CreateICmpEQ(
+ IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
+ Si->setName("_msprop_icmp");
+ setShadow(&I, Si);
+ setOriginForNaryOp(I);
+ }
+
+ /// Build the lowest possible value of V, taking into account V's
+ /// uninitialized bits.
+ Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
+ bool isSigned) {
+ if (isSigned) {
+ // Split shadow into sign bit and other bits.
+ Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
+ Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
+ // Maximise the undefined shadow bit, minimize other undefined bits.
+ return
+ IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
+ } else {
+ // Minimize undefined bits.
+ return IRB.CreateAnd(A, IRB.CreateNot(Sa));
+ }
+ }
+
+ /// Build the highest possible value of V, taking into account V's
+ /// uninitialized bits.
+ Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
+ bool isSigned) {
+ if (isSigned) {
+ // Split shadow into sign bit and other bits.
+ Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
+ Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
+ // Minimise the undefined shadow bit, maximise other undefined bits.
+ return
+ IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
+ } else {
+ // Maximize undefined bits.
+ return IRB.CreateOr(A, Sa);
+ }
+ }
+
+ /// Instrument relational comparisons.
+ ///
+ /// This function does exact shadow propagation for all relational
+ /// comparisons of integers, pointers and vectors of those.
+ /// FIXME: output seems suboptimal when one of the operands is a constant
+ void handleRelationalComparisonExact(ICmpInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *A = I.getOperand(0);
+ Value *B = I.getOperand(1);
+ Value *Sa = getShadow(A);
+ Value *Sb = getShadow(B);
+
+ // Get rid of pointers and vectors of pointers.
+ // For ints (and vectors of ints), types of A and Sa match,
+ // and this is a no-op.
+ A = IRB.CreatePointerCast(A, Sa->getType());
+ B = IRB.CreatePointerCast(B, Sb->getType());
+
+ // Let [a0, a1] be the interval of possible values of A, taking into account
+ // its undefined bits. Let [b0, b1] be the interval of possible values of B.
+ // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
+ bool IsSigned = I.isSigned();
+ Value *S1 = IRB.CreateICmp(I.getPredicate(),
+ getLowestPossibleValue(IRB, A, Sa, IsSigned),
+ getHighestPossibleValue(IRB, B, Sb, IsSigned));
+ Value *S2 = IRB.CreateICmp(I.getPredicate(),
+ getHighestPossibleValue(IRB, A, Sa, IsSigned),
+ getLowestPossibleValue(IRB, B, Sb, IsSigned));
+ Value *Si = IRB.CreateXor(S1, S2);
+ setShadow(&I, Si);
+ setOriginForNaryOp(I);
+ }
+
+ /// Instrument signed relational comparisons.
+ ///
+ /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest
+ /// bit of the shadow. Everything else is delegated to handleShadowOr().
+ void handleSignedRelationalComparison(ICmpInst &I) {
+ Constant *constOp;
+ Value *op = nullptr;
+ CmpInst::Predicate pre;
+ if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) {
+ op = I.getOperand(0);
+ pre = I.getPredicate();
+ } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) {
+ op = I.getOperand(1);
+ pre = I.getSwappedPredicate();
+ } else {
+ handleShadowOr(I);
+ return;
+ }
+
+ if ((constOp->isNullValue() &&
+ (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) ||
+ (constOp->isAllOnesValue() &&
+ (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) {
+ IRBuilder<> IRB(&I);
+ Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op),
+ "_msprop_icmp_s");
+ setShadow(&I, Shadow);
+ setOrigin(&I, getOrigin(op));
+ } else {
+ handleShadowOr(I);
+ }
+ }
+
+ void visitICmpInst(ICmpInst &I) {
+ if (!ClHandleICmp) {
+ handleShadowOr(I);
+ return;
+ }
+ if (I.isEquality()) {
+ handleEqualityComparison(I);
+ return;
+ }
+
+ assert(I.isRelational());
+ if (ClHandleICmpExact) {
+ handleRelationalComparisonExact(I);
+ return;
+ }
+ if (I.isSigned()) {
+ handleSignedRelationalComparison(I);
+ return;
+ }
+
+ assert(I.isUnsigned());
+ if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
+ handleRelationalComparisonExact(I);
+ return;
+ }
+
+ handleShadowOr(I);
+ }
+
+ void visitFCmpInst(FCmpInst &I) {
+ handleShadowOr(I);
+ }
+
+ void handleShift(BinaryOperator &I) {
+ IRBuilder<> IRB(&I);
+ // If any of the S2 bits are poisoned, the whole thing is poisoned.
+ // Otherwise perform the same shift on S1.
+ Value *S1 = getShadow(&I, 0);
+ Value *S2 = getShadow(&I, 1);
+ Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
+ S2->getType());
+ Value *V2 = I.getOperand(1);
+ Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
+ setShadow(&I, IRB.CreateOr(Shift, S2Conv));
+ setOriginForNaryOp(I);
+ }
+
+ void visitShl(BinaryOperator &I) { handleShift(I); }
+ void visitAShr(BinaryOperator &I) { handleShift(I); }
+ void visitLShr(BinaryOperator &I) { handleShift(I); }
+
+ /// Instrument llvm.memmove
+ ///
+ /// At this point we don't know if llvm.memmove will be inlined or not.
+ /// If we don't instrument it and it gets inlined,
+ /// our interceptor will not kick in and we will lose the memmove.
+ /// If we instrument the call here, but it does not get inlined,
+ /// we will memove the shadow twice: which is bad in case
+ /// of overlapping regions. So, we simply lower the intrinsic to a call.
+ ///
+ /// Similar situation exists for memcpy and memset.
+ void visitMemMoveInst(MemMoveInst &I) {
+ IRBuilder<> IRB(&I);
+ IRB.CreateCall(
+ MS.MemmoveFn,
+ {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
+ IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
+ IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
+ I.eraseFromParent();
+ }
+
+ // Similar to memmove: avoid copying shadow twice.
+ // This is somewhat unfortunate as it may slowdown small constant memcpys.
+ // FIXME: consider doing manual inline for small constant sizes and proper
+ // alignment.
+ void visitMemCpyInst(MemCpyInst &I) {
+ IRBuilder<> IRB(&I);
+ IRB.CreateCall(
+ MS.MemcpyFn,
+ {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
+ IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
+ IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
+ I.eraseFromParent();
+ }
+
+ // Same as memcpy.
+ void visitMemSetInst(MemSetInst &I) {
+ IRBuilder<> IRB(&I);
+ IRB.CreateCall(
+ MS.MemsetFn,
+ {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
+ IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
+ IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
+ I.eraseFromParent();
+ }
+
+ void visitVAStartInst(VAStartInst &I) {
+ VAHelper->visitVAStartInst(I);
+ }
+
+ void visitVACopyInst(VACopyInst &I) {
+ VAHelper->visitVACopyInst(I);
+ }
+
+ /// Handle vector store-like intrinsics.
+ ///
+ /// Instrument intrinsics that look like a simple SIMD store: writes memory,
+ /// has 1 pointer argument and 1 vector argument, returns void.
+ bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
+ IRBuilder<> IRB(&I);
+ Value* Addr = I.getArgOperand(0);
+ Value *Shadow = getShadow(&I, 1);
+ Value *ShadowPtr, *OriginPtr;
+
+ // We don't know the pointer alignment (could be unaligned SSE store!).
+ // Have to assume to worst case.
+ std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
+ Addr, IRB, Shadow->getType(), /*Alignment*/ 1, /*isStore*/ true);
+ IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
+
+ if (ClCheckAccessAddress)
+ insertShadowCheck(Addr, &I);
+
+ // FIXME: factor out common code from materializeStores
+ if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr);
+ return true;
+ }
+
+ /// Handle vector load-like intrinsics.
+ ///
+ /// Instrument intrinsics that look like a simple SIMD load: reads memory,
+ /// has 1 pointer argument, returns a vector.
+ bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *Addr = I.getArgOperand(0);
+
+ Type *ShadowTy = getShadowTy(&I);
+ Value *ShadowPtr, *OriginPtr;
+ if (PropagateShadow) {
+ // We don't know the pointer alignment (could be unaligned SSE load!).
+ // Have to assume to worst case.
+ unsigned Alignment = 1;
+ std::tie(ShadowPtr, OriginPtr) =
+ getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
+ setShadow(&I,
+ IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld"));
+ } else {
+ setShadow(&I, getCleanShadow(&I));
+ }
+
+ if (ClCheckAccessAddress)
+ insertShadowCheck(Addr, &I);
+
+ if (MS.TrackOrigins) {
+ if (PropagateShadow)
+ setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr));
+ else
+ setOrigin(&I, getCleanOrigin());
+ }
+ return true;
+ }
+
+ /// Handle (SIMD arithmetic)-like intrinsics.
+ ///
+ /// Instrument intrinsics with any number of arguments of the same type,
+ /// equal to the return type. The type should be simple (no aggregates or
+ /// pointers; vectors are fine).
+ /// Caller guarantees that this intrinsic does not access memory.
+ bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
+ Type *RetTy = I.getType();
+ if (!(RetTy->isIntOrIntVectorTy() ||
+ RetTy->isFPOrFPVectorTy() ||
+ RetTy->isX86_MMXTy()))
+ return false;
+
+ unsigned NumArgOperands = I.getNumArgOperands();
+
+ for (unsigned i = 0; i < NumArgOperands; ++i) {
+ Type *Ty = I.getArgOperand(i)->getType();
+ if (Ty != RetTy)
+ return false;
+ }
+
+ IRBuilder<> IRB(&I);
+ ShadowAndOriginCombiner SC(this, IRB);
+ for (unsigned i = 0; i < NumArgOperands; ++i)
+ SC.Add(I.getArgOperand(i));
+ SC.Done(&I);
+
+ return true;
+ }
+
+ /// Heuristically instrument unknown intrinsics.
+ ///
+ /// The main purpose of this code is to do something reasonable with all
+ /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
+ /// We recognize several classes of intrinsics by their argument types and
+ /// ModRefBehaviour and apply special intrumentation when we are reasonably
+ /// sure that we know what the intrinsic does.
+ ///
+ /// We special-case intrinsics where this approach fails. See llvm.bswap
+ /// handling as an example of that.
+ bool handleUnknownIntrinsic(IntrinsicInst &I) {
+ unsigned NumArgOperands = I.getNumArgOperands();
+ if (NumArgOperands == 0)
+ return false;
+
+ if (NumArgOperands == 2 &&
+ I.getArgOperand(0)->getType()->isPointerTy() &&
+ I.getArgOperand(1)->getType()->isVectorTy() &&
+ I.getType()->isVoidTy() &&
+ !I.onlyReadsMemory()) {
+ // This looks like a vector store.
+ return handleVectorStoreIntrinsic(I);
+ }
+
+ if (NumArgOperands == 1 &&
+ I.getArgOperand(0)->getType()->isPointerTy() &&
+ I.getType()->isVectorTy() &&
+ I.onlyReadsMemory()) {
+ // This looks like a vector load.
+ return handleVectorLoadIntrinsic(I);
+ }
+
+ if (I.doesNotAccessMemory())
+ if (maybeHandleSimpleNomemIntrinsic(I))
+ return true;
+
+ // FIXME: detect and handle SSE maskstore/maskload
+ return false;
+ }
+
+ void handleInvariantGroup(IntrinsicInst &I) {
+ setShadow(&I, getShadow(&I, 0));
+ setOrigin(&I, getOrigin(&I, 0));
+ }
+
+ void handleLifetimeStart(IntrinsicInst &I) {
+ if (!PoisonStack)
+ return;
+ DenseMap<Value *, AllocaInst *> AllocaForValue;
+ AllocaInst *AI =
+ llvm::findAllocaForValue(I.getArgOperand(1), AllocaForValue);
+ if (!AI)
+ InstrumentLifetimeStart = false;
+ LifetimeStartList.push_back(std::make_pair(&I, AI));
+ }
+
+ void handleBswap(IntrinsicInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *Op = I.getArgOperand(0);
+ Type *OpType = Op->getType();
+ Function *BswapFunc = Intrinsic::getDeclaration(
+ F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1));
+ setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
+ setOrigin(&I, getOrigin(Op));
+ }
+
+ // Instrument vector convert instrinsic.
+ //
+ // This function instruments intrinsics like cvtsi2ss:
+ // %Out = int_xxx_cvtyyy(%ConvertOp)
+ // or
+ // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
+ // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
+ // number \p Out elements, and (if has 2 arguments) copies the rest of the
+ // elements from \p CopyOp.
+ // In most cases conversion involves floating-point value which may trigger a
+ // hardware exception when not fully initialized. For this reason we require
+ // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
+ // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
+ // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
+ // return a fully initialized value.
+ void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) {
+ IRBuilder<> IRB(&I);
+ Value *CopyOp, *ConvertOp;
+
+ switch (I.getNumArgOperands()) {
+ case 3:
+ assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode");
+ LLVM_FALLTHROUGH;
+ case 2:
+ CopyOp = I.getArgOperand(0);
+ ConvertOp = I.getArgOperand(1);
+ break;
+ case 1:
+ ConvertOp = I.getArgOperand(0);
+ CopyOp = nullptr;
+ break;
+ default:
+ llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
+ }
+
+ // The first *NumUsedElements* elements of ConvertOp are converted to the
+ // same number of output elements. The rest of the output is copied from
+ // CopyOp, or (if not available) filled with zeroes.
+ // Combine shadow for elements of ConvertOp that are used in this operation,
+ // and insert a check.
+ // FIXME: consider propagating shadow of ConvertOp, at least in the case of
+ // int->any conversion.
+ Value *ConvertShadow = getShadow(ConvertOp);
+ Value *AggShadow = nullptr;
+ if (ConvertOp->getType()->isVectorTy()) {
+ AggShadow = IRB.CreateExtractElement(
+ ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
+ for (int i = 1; i < NumUsedElements; ++i) {
+ Value *MoreShadow = IRB.CreateExtractElement(
+ ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
+ AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
+ }
+ } else {
+ AggShadow = ConvertShadow;
+ }
+ assert(AggShadow->getType()->isIntegerTy());
+ insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
+
+ // Build result shadow by zero-filling parts of CopyOp shadow that come from
+ // ConvertOp.
+ if (CopyOp) {
+ assert(CopyOp->getType() == I.getType());
+ assert(CopyOp->getType()->isVectorTy());
+ Value *ResultShadow = getShadow(CopyOp);
+ Type *EltTy = ResultShadow->getType()->getVectorElementType();
+ for (int i = 0; i < NumUsedElements; ++i) {
+ ResultShadow = IRB.CreateInsertElement(
+ ResultShadow, ConstantInt::getNullValue(EltTy),
+ ConstantInt::get(IRB.getInt32Ty(), i));
+ }
+ setShadow(&I, ResultShadow);
+ setOrigin(&I, getOrigin(CopyOp));
+ } else {
+ setShadow(&I, getCleanShadow(&I));
+ setOrigin(&I, getCleanOrigin());
+ }
+ }
+
+ // Given a scalar or vector, extract lower 64 bits (or less), and return all
+ // zeroes if it is zero, and all ones otherwise.
+ Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
+ if (S->getType()->isVectorTy())
+ S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
+ assert(S->getType()->getPrimitiveSizeInBits() <= 64);
+ Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
+ return CreateShadowCast(IRB, S2, T, /* Signed */ true);
+ }
+
+ // Given a vector, extract its first element, and return all
+ // zeroes if it is zero, and all ones otherwise.
+ Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
+ Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0);
+ Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1));
+ return CreateShadowCast(IRB, S2, T, /* Signed */ true);
+ }
+
+ Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
+ Type *T = S->getType();
+ assert(T->isVectorTy());
+ Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
+ return IRB.CreateSExt(S2, T);
+ }
+
+ // Instrument vector shift instrinsic.
+ //
+ // This function instruments intrinsics like int_x86_avx2_psll_w.
+ // Intrinsic shifts %In by %ShiftSize bits.
+ // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
+ // size, and the rest is ignored. Behavior is defined even if shift size is
+ // greater than register (or field) width.
+ void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
+ assert(I.getNumArgOperands() == 2);
+ IRBuilder<> IRB(&I);
+ // If any of the S2 bits are poisoned, the whole thing is poisoned.
+ // Otherwise perform the same shift on S1.
+ Value *S1 = getShadow(&I, 0);
+ Value *S2 = getShadow(&I, 1);
+ Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
+ : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
+ Value *V1 = I.getOperand(0);
+ Value *V2 = I.getOperand(1);
+ Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledValue(),
+ {IRB.CreateBitCast(S1, V1->getType()), V2});
+ Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
+ setShadow(&I, IRB.CreateOr(Shift, S2Conv));
+ setOriginForNaryOp(I);
+ }
+
+ // Get an X86_MMX-sized vector type.
+ Type *getMMXVectorTy(unsigned EltSizeInBits) {
+ const unsigned X86_MMXSizeInBits = 64;
+ assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 &&
+ "Illegal MMX vector element size");
+ return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits),
+ X86_MMXSizeInBits / EltSizeInBits);
+ }
+
+ // Returns a signed counterpart for an (un)signed-saturate-and-pack
+ // intrinsic.
+ Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) {
+ switch (id) {
+ case Intrinsic::x86_sse2_packsswb_128:
+ case Intrinsic::x86_sse2_packuswb_128:
+ return Intrinsic::x86_sse2_packsswb_128;
+
+ case Intrinsic::x86_sse2_packssdw_128:
+ case Intrinsic::x86_sse41_packusdw:
+ return Intrinsic::x86_sse2_packssdw_128;
+
+ case Intrinsic::x86_avx2_packsswb:
+ case Intrinsic::x86_avx2_packuswb:
+ return Intrinsic::x86_avx2_packsswb;
+
+ case Intrinsic::x86_avx2_packssdw:
+ case Intrinsic::x86_avx2_packusdw:
+ return Intrinsic::x86_avx2_packssdw;
+
+ case Intrinsic::x86_mmx_packsswb:
+ case Intrinsic::x86_mmx_packuswb:
+ return Intrinsic::x86_mmx_packsswb;
+
+ case Intrinsic::x86_mmx_packssdw:
+ return Intrinsic::x86_mmx_packssdw;
+ default:
+ llvm_unreachable("unexpected intrinsic id");
+ }
+ }
+
+ // Instrument vector pack instrinsic.
+ //
+ // This function instruments intrinsics like x86_mmx_packsswb, that
+ // packs elements of 2 input vectors into half as many bits with saturation.
+ // Shadow is propagated with the signed variant of the same intrinsic applied
+ // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer).
+ // EltSizeInBits is used only for x86mmx arguments.
+ void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) {
+ assert(I.getNumArgOperands() == 2);
+ bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
+ IRBuilder<> IRB(&I);
+ Value *S1 = getShadow(&I, 0);
+ Value *S2 = getShadow(&I, 1);
+ assert(isX86_MMX || S1->getType()->isVectorTy());
+
+ // SExt and ICmpNE below must apply to individual elements of input vectors.
+ // In case of x86mmx arguments, cast them to appropriate vector types and
+ // back.
+ Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType();
+ if (isX86_MMX) {
+ S1 = IRB.CreateBitCast(S1, T);
+ S2 = IRB.CreateBitCast(S2, T);
+ }
+ Value *S1_ext = IRB.CreateSExt(
+ IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T);
+ Value *S2_ext = IRB.CreateSExt(
+ IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T);
+ if (isX86_MMX) {
+ Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C);
+ S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy);
+ S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy);
+ }
+
+ Function *ShadowFn = Intrinsic::getDeclaration(
+ F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID()));
+
+ Value *S =
+ IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack");
+ if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I));
+ setShadow(&I, S);
+ setOriginForNaryOp(I);
+ }
+
+ // Instrument sum-of-absolute-differencies intrinsic.
+ void handleVectorSadIntrinsic(IntrinsicInst &I) {
+ const unsigned SignificantBitsPerResultElement = 16;
+ bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
+ Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType();
+ unsigned ZeroBitsPerResultElement =
+ ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement;
+
+ IRBuilder<> IRB(&I);
+ Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
+ S = IRB.CreateBitCast(S, ResTy);
+ S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
+ ResTy);
+ S = IRB.CreateLShr(S, ZeroBitsPerResultElement);
+ S = IRB.CreateBitCast(S, getShadowTy(&I));
+ setShadow(&I, S);
+ setOriginForNaryOp(I);
+ }
+
+ // Instrument multiply-add intrinsic.
+ void handleVectorPmaddIntrinsic(IntrinsicInst &I,
+ unsigned EltSizeInBits = 0) {
+ bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
+ Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType();
+ IRBuilder<> IRB(&I);
+ Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
+ S = IRB.CreateBitCast(S, ResTy);
+ S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
+ ResTy);
+ S = IRB.CreateBitCast(S, getShadowTy(&I));
+ setShadow(&I, S);
+ setOriginForNaryOp(I);
+ }
+
+ // Instrument compare-packed intrinsic.
+ // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or
+ // all-ones shadow.
+ void handleVectorComparePackedIntrinsic(IntrinsicInst &I) {
+ IRBuilder<> IRB(&I);
+ Type *ResTy = getShadowTy(&I);
+ Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
+ Value *S = IRB.CreateSExt(
+ IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy);
+ setShadow(&I, S);
+ setOriginForNaryOp(I);
+ }
+
+ // Instrument compare-scalar intrinsic.
+ // This handles both cmp* intrinsics which return the result in the first
+ // element of a vector, and comi* which return the result as i32.
+ void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
+ Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I));
+ setShadow(&I, S);
+ setOriginForNaryOp(I);
+ }
+
+ void handleStmxcsr(IntrinsicInst &I) {
+ IRBuilder<> IRB(&I);
+ Value* Addr = I.getArgOperand(0);
+ Type *Ty = IRB.getInt32Ty();
+ Value *ShadowPtr =
+ getShadowOriginPtr(Addr, IRB, Ty, /*Alignment*/ 1, /*isStore*/ true)
+ .first;
+
+ IRB.CreateStore(getCleanShadow(Ty),
+ IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo()));
+
+ if (ClCheckAccessAddress)
+ insertShadowCheck(Addr, &I);
+ }
+
+ void handleLdmxcsr(IntrinsicInst &I) {
+ if (!InsertChecks) return;
+
+ IRBuilder<> IRB(&I);
+ Value *Addr = I.getArgOperand(0);
+ Type *Ty = IRB.getInt32Ty();
+ unsigned Alignment = 1;
+ Value *ShadowPtr, *OriginPtr;
+ std::tie(ShadowPtr, OriginPtr) =
+ getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false);
+
+ if (ClCheckAccessAddress)
+ insertShadowCheck(Addr, &I);
+
+ Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr");
+ Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr)
+ : getCleanOrigin();
+ insertShadowCheck(Shadow, Origin, &I);
+ }
+
+ void handleMaskedStore(IntrinsicInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *V = I.getArgOperand(0);
+ Value *Addr = I.getArgOperand(1);
+ unsigned Align = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
+ Value *Mask = I.getArgOperand(3);
+ Value *Shadow = getShadow(V);
+
+ Value *ShadowPtr;
+ Value *OriginPtr;
+ std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
+ Addr, IRB, Shadow->getType(), Align, /*isStore*/ true);
+
+ if (ClCheckAccessAddress) {
+ insertShadowCheck(Addr, &I);
+ // Uninitialized mask is kind of like uninitialized address, but not as
+ // scary.
+ insertShadowCheck(Mask, &I);
+ }
+
+ IRB.CreateMaskedStore(Shadow, ShadowPtr, Align, Mask);
+
+ if (MS.TrackOrigins) {
+ auto &DL = F.getParent()->getDataLayout();
+ paintOrigin(IRB, getOrigin(V), OriginPtr,
+ DL.getTypeStoreSize(Shadow->getType()),
+ std::max(Align, kMinOriginAlignment));
+ }
+ }
+
+ bool handleMaskedLoad(IntrinsicInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *Addr = I.getArgOperand(0);
+ unsigned Align = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
+ Value *Mask = I.getArgOperand(2);
+ Value *PassThru = I.getArgOperand(3);
+
+ Type *ShadowTy = getShadowTy(&I);
+ Value *ShadowPtr, *OriginPtr;
+ if (PropagateShadow) {
+ std::tie(ShadowPtr, OriginPtr) =
+ getShadowOriginPtr(Addr, IRB, ShadowTy, Align, /*isStore*/ false);
+ setShadow(&I, IRB.CreateMaskedLoad(ShadowPtr, Align, Mask,
+ getShadow(PassThru), "_msmaskedld"));
+ } else {
+ setShadow(&I, getCleanShadow(&I));
+ }
+
+ if (ClCheckAccessAddress) {
+ insertShadowCheck(Addr, &I);
+ insertShadowCheck(Mask, &I);
+ }
+
+ if (MS.TrackOrigins) {
+ if (PropagateShadow) {
+ // Choose between PassThru's and the loaded value's origins.
+ Value *MaskedPassThruShadow = IRB.CreateAnd(
+ getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy));
+
+ Value *Acc = IRB.CreateExtractElement(
+ MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
+ for (int i = 1, N = PassThru->getType()->getVectorNumElements(); i < N;
+ ++i) {
+ Value *More = IRB.CreateExtractElement(
+ MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i));
+ Acc = IRB.CreateOr(Acc, More);
+ }
+
+ Value *Origin = IRB.CreateSelect(
+ IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())),
+ getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr));
+
+ setOrigin(&I, Origin);
+ } else {
+ setOrigin(&I, getCleanOrigin());
+ }
+ }
+ return true;
+ }
+
+ // Instrument BMI / BMI2 intrinsics.
+ // All of these intrinsics are Z = I(X, Y)
+ // where the types of all operands and the result match, and are either i32 or i64.
+ // The following instrumentation happens to work for all of them:
+ // Sz = I(Sx, Y) | (sext (Sy != 0))
+ void handleBmiIntrinsic(IntrinsicInst &I) {
+ IRBuilder<> IRB(&I);
+ Type *ShadowTy = getShadowTy(&I);
+
+ // If any bit of the mask operand is poisoned, then the whole thing is.
+ Value *SMask = getShadow(&I, 1);
+ SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)),
+ ShadowTy);
+ // Apply the same intrinsic to the shadow of the first operand.
+ Value *S = IRB.CreateCall(I.getCalledFunction(),
+ {getShadow(&I, 0), I.getOperand(1)});
+ S = IRB.CreateOr(SMask, S);
+ setShadow(&I, S);
+ setOriginForNaryOp(I);
+ }
+
+ void visitIntrinsicInst(IntrinsicInst &I) {
+ switch (I.getIntrinsicID()) {
+ case Intrinsic::lifetime_start:
+ handleLifetimeStart(I);
+ break;
+ case Intrinsic::launder_invariant_group:
+ case Intrinsic::strip_invariant_group:
+ handleInvariantGroup(I);
+ break;
+ case Intrinsic::bswap:
+ handleBswap(I);
+ break;
+ case Intrinsic::masked_store:
+ handleMaskedStore(I);
+ break;
+ case Intrinsic::masked_load:
+ handleMaskedLoad(I);
+ break;
+ case Intrinsic::x86_sse_stmxcsr:
+ handleStmxcsr(I);
+ break;
+ case Intrinsic::x86_sse_ldmxcsr:
+ handleLdmxcsr(I);
+ break;
+ case Intrinsic::x86_avx512_vcvtsd2usi64:
+ case Intrinsic::x86_avx512_vcvtsd2usi32:
+ case Intrinsic::x86_avx512_vcvtss2usi64:
+ case Intrinsic::x86_avx512_vcvtss2usi32:
+ case Intrinsic::x86_avx512_cvttss2usi64:
+ case Intrinsic::x86_avx512_cvttss2usi:
+ case Intrinsic::x86_avx512_cvttsd2usi64:
+ case Intrinsic::x86_avx512_cvttsd2usi:
+ case Intrinsic::x86_avx512_cvtusi2ss:
+ case Intrinsic::x86_avx512_cvtusi642sd:
+ case Intrinsic::x86_avx512_cvtusi642ss:
+ case Intrinsic::x86_sse2_cvtsd2si64:
+ case Intrinsic::x86_sse2_cvtsd2si:
+ case Intrinsic::x86_sse2_cvtsd2ss:
+ case Intrinsic::x86_sse2_cvttsd2si64:
+ case Intrinsic::x86_sse2_cvttsd2si:
+ case Intrinsic::x86_sse_cvtss2si64:
+ case Intrinsic::x86_sse_cvtss2si:
+ case Intrinsic::x86_sse_cvttss2si64:
+ case Intrinsic::x86_sse_cvttss2si:
+ handleVectorConvertIntrinsic(I, 1);
+ break;
+ case Intrinsic::x86_sse_cvtps2pi:
+ case Intrinsic::x86_sse_cvttps2pi:
+ handleVectorConvertIntrinsic(I, 2);
+ break;
+
+ case Intrinsic::x86_avx512_psll_w_512:
+ case Intrinsic::x86_avx512_psll_d_512:
+ case Intrinsic::x86_avx512_psll_q_512:
+ case Intrinsic::x86_avx512_pslli_w_512:
+ case Intrinsic::x86_avx512_pslli_d_512:
+ case Intrinsic::x86_avx512_pslli_q_512:
+ case Intrinsic::x86_avx512_psrl_w_512:
+ case Intrinsic::x86_avx512_psrl_d_512:
+ case Intrinsic::x86_avx512_psrl_q_512:
+ case Intrinsic::x86_avx512_psra_w_512:
+ case Intrinsic::x86_avx512_psra_d_512:
+ case Intrinsic::x86_avx512_psra_q_512:
+ case Intrinsic::x86_avx512_psrli_w_512:
+ case Intrinsic::x86_avx512_psrli_d_512:
+ case Intrinsic::x86_avx512_psrli_q_512:
+ case Intrinsic::x86_avx512_psrai_w_512:
+ case Intrinsic::x86_avx512_psrai_d_512:
+ case Intrinsic::x86_avx512_psrai_q_512:
+ case Intrinsic::x86_avx512_psra_q_256:
+ case Intrinsic::x86_avx512_psra_q_128:
+ case Intrinsic::x86_avx512_psrai_q_256:
+ case Intrinsic::x86_avx512_psrai_q_128:
+ case Intrinsic::x86_avx2_psll_w:
+ case Intrinsic::x86_avx2_psll_d:
+ case Intrinsic::x86_avx2_psll_q:
+ case Intrinsic::x86_avx2_pslli_w:
+ case Intrinsic::x86_avx2_pslli_d:
+ case Intrinsic::x86_avx2_pslli_q:
+ case Intrinsic::x86_avx2_psrl_w:
+ case Intrinsic::x86_avx2_psrl_d:
+ case Intrinsic::x86_avx2_psrl_q:
+ case Intrinsic::x86_avx2_psra_w:
+ case Intrinsic::x86_avx2_psra_d:
+ case Intrinsic::x86_avx2_psrli_w:
+ case Intrinsic::x86_avx2_psrli_d:
+ case Intrinsic::x86_avx2_psrli_q:
+ case Intrinsic::x86_avx2_psrai_w:
+ case Intrinsic::x86_avx2_psrai_d:
+ case Intrinsic::x86_sse2_psll_w:
+ case Intrinsic::x86_sse2_psll_d:
+ case Intrinsic::x86_sse2_psll_q:
+ case Intrinsic::x86_sse2_pslli_w:
+ case Intrinsic::x86_sse2_pslli_d:
+ case Intrinsic::x86_sse2_pslli_q:
+ case Intrinsic::x86_sse2_psrl_w:
+ case Intrinsic::x86_sse2_psrl_d:
+ case Intrinsic::x86_sse2_psrl_q:
+ case Intrinsic::x86_sse2_psra_w:
+ case Intrinsic::x86_sse2_psra_d:
+ case Intrinsic::x86_sse2_psrli_w:
+ case Intrinsic::x86_sse2_psrli_d:
+ case Intrinsic::x86_sse2_psrli_q:
+ case Intrinsic::x86_sse2_psrai_w:
+ case Intrinsic::x86_sse2_psrai_d:
+ case Intrinsic::x86_mmx_psll_w:
+ case Intrinsic::x86_mmx_psll_d:
+ case Intrinsic::x86_mmx_psll_q:
+ case Intrinsic::x86_mmx_pslli_w:
+ case Intrinsic::x86_mmx_pslli_d:
+ case Intrinsic::x86_mmx_pslli_q:
+ case Intrinsic::x86_mmx_psrl_w:
+ case Intrinsic::x86_mmx_psrl_d:
+ case Intrinsic::x86_mmx_psrl_q:
+ case Intrinsic::x86_mmx_psra_w:
+ case Intrinsic::x86_mmx_psra_d:
+ case Intrinsic::x86_mmx_psrli_w:
+ case Intrinsic::x86_mmx_psrli_d:
+ case Intrinsic::x86_mmx_psrli_q:
+ case Intrinsic::x86_mmx_psrai_w:
+ case Intrinsic::x86_mmx_psrai_d:
+ handleVectorShiftIntrinsic(I, /* Variable */ false);
+ break;
+ case Intrinsic::x86_avx2_psllv_d:
+ case Intrinsic::x86_avx2_psllv_d_256:
+ case Intrinsic::x86_avx512_psllv_d_512:
+ case Intrinsic::x86_avx2_psllv_q:
+ case Intrinsic::x86_avx2_psllv_q_256:
+ case Intrinsic::x86_avx512_psllv_q_512:
+ case Intrinsic::x86_avx2_psrlv_d:
+ case Intrinsic::x86_avx2_psrlv_d_256:
+ case Intrinsic::x86_avx512_psrlv_d_512:
+ case Intrinsic::x86_avx2_psrlv_q:
+ case Intrinsic::x86_avx2_psrlv_q_256:
+ case Intrinsic::x86_avx512_psrlv_q_512:
+ case Intrinsic::x86_avx2_psrav_d:
+ case Intrinsic::x86_avx2_psrav_d_256:
+ case Intrinsic::x86_avx512_psrav_d_512:
+ case Intrinsic::x86_avx512_psrav_q_128:
+ case Intrinsic::x86_avx512_psrav_q_256:
+ case Intrinsic::x86_avx512_psrav_q_512:
+ handleVectorShiftIntrinsic(I, /* Variable */ true);
+ break;
+
+ case Intrinsic::x86_sse2_packsswb_128:
+ case Intrinsic::x86_sse2_packssdw_128:
+ case Intrinsic::x86_sse2_packuswb_128:
+ case Intrinsic::x86_sse41_packusdw:
+ case Intrinsic::x86_avx2_packsswb:
+ case Intrinsic::x86_avx2_packssdw:
+ case Intrinsic::x86_avx2_packuswb:
+ case Intrinsic::x86_avx2_packusdw:
+ handleVectorPackIntrinsic(I);
+ break;
+
+ case Intrinsic::x86_mmx_packsswb:
+ case Intrinsic::x86_mmx_packuswb:
+ handleVectorPackIntrinsic(I, 16);
+ break;
+
+ case Intrinsic::x86_mmx_packssdw:
+ handleVectorPackIntrinsic(I, 32);
+ break;
+
+ case Intrinsic::x86_mmx_psad_bw:
+ case Intrinsic::x86_sse2_psad_bw:
+ case Intrinsic::x86_avx2_psad_bw:
+ handleVectorSadIntrinsic(I);
+ break;
+
+ case Intrinsic::x86_sse2_pmadd_wd:
+ case Intrinsic::x86_avx2_pmadd_wd:
+ case Intrinsic::x86_ssse3_pmadd_ub_sw_128:
+ case Intrinsic::x86_avx2_pmadd_ub_sw:
+ handleVectorPmaddIntrinsic(I);
+ break;
+
+ case Intrinsic::x86_ssse3_pmadd_ub_sw:
+ handleVectorPmaddIntrinsic(I, 8);
+ break;
+
+ case Intrinsic::x86_mmx_pmadd_wd:
+ handleVectorPmaddIntrinsic(I, 16);
+ break;
+
+ case Intrinsic::x86_sse_cmp_ss:
+ case Intrinsic::x86_sse2_cmp_sd:
+ case Intrinsic::x86_sse_comieq_ss:
+ case Intrinsic::x86_sse_comilt_ss:
+ case Intrinsic::x86_sse_comile_ss:
+ case Intrinsic::x86_sse_comigt_ss:
+ case Intrinsic::x86_sse_comige_ss:
+ case Intrinsic::x86_sse_comineq_ss:
+ case Intrinsic::x86_sse_ucomieq_ss:
+ case Intrinsic::x86_sse_ucomilt_ss:
+ case Intrinsic::x86_sse_ucomile_ss:
+ case Intrinsic::x86_sse_ucomigt_ss:
+ case Intrinsic::x86_sse_ucomige_ss:
+ case Intrinsic::x86_sse_ucomineq_ss:
+ case Intrinsic::x86_sse2_comieq_sd:
+ case Intrinsic::x86_sse2_comilt_sd:
+ case Intrinsic::x86_sse2_comile_sd:
+ case Intrinsic::x86_sse2_comigt_sd:
+ case Intrinsic::x86_sse2_comige_sd:
+ case Intrinsic::x86_sse2_comineq_sd:
+ case Intrinsic::x86_sse2_ucomieq_sd:
+ case Intrinsic::x86_sse2_ucomilt_sd:
+ case Intrinsic::x86_sse2_ucomile_sd:
+ case Intrinsic::x86_sse2_ucomigt_sd:
+ case Intrinsic::x86_sse2_ucomige_sd:
+ case Intrinsic::x86_sse2_ucomineq_sd:
+ handleVectorCompareScalarIntrinsic(I);
+ break;
+
+ case Intrinsic::x86_sse_cmp_ps:
+ case Intrinsic::x86_sse2_cmp_pd:
+ // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function
+ // generates reasonably looking IR that fails in the backend with "Do not
+ // know how to split the result of this operator!".
+ handleVectorComparePackedIntrinsic(I);
+ break;
+
+ case Intrinsic::x86_bmi_bextr_32:
+ case Intrinsic::x86_bmi_bextr_64:
+ case Intrinsic::x86_bmi_bzhi_32:
+ case Intrinsic::x86_bmi_bzhi_64:
+ case Intrinsic::x86_bmi_pdep_32:
+ case Intrinsic::x86_bmi_pdep_64:
+ case Intrinsic::x86_bmi_pext_32:
+ case Intrinsic::x86_bmi_pext_64:
+ handleBmiIntrinsic(I);
+ break;
+
+ case Intrinsic::is_constant:
+ // The result of llvm.is.constant() is always defined.
+ setShadow(&I, getCleanShadow(&I));
+ setOrigin(&I, getCleanOrigin());
+ break;
+
+ default:
+ if (!handleUnknownIntrinsic(I))
+ visitInstruction(I);
+ break;
+ }
+ }
+
+ void visitCallSite(CallSite CS) {
+ Instruction &I = *CS.getInstruction();
+ assert(!I.getMetadata("nosanitize"));
+ assert((CS.isCall() || CS.isInvoke() || CS.isCallBr()) &&
+ "Unknown type of CallSite");
+ if (CS.isCallBr() || (CS.isCall() && cast<CallInst>(&I)->isInlineAsm())) {
+ // For inline asm (either a call to asm function, or callbr instruction),
+ // do the usual thing: check argument shadow and mark all outputs as
+ // clean. Note that any side effects of the inline asm that are not
+ // immediately visible in its constraints are not handled.
+ if (ClHandleAsmConservative && MS.CompileKernel)
+ visitAsmInstruction(I);
+ else
+ visitInstruction(I);
+ return;
+ }
+ if (CS.isCall()) {
+ CallInst *Call = cast<CallInst>(&I);
+ assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
+
+ // We are going to insert code that relies on the fact that the callee
+ // will become a non-readonly function after it is instrumented by us. To
+ // prevent this code from being optimized out, mark that function
+ // non-readonly in advance.
+ if (Function *Func = Call->getCalledFunction()) {
+ // Clear out readonly/readnone attributes.
+ AttrBuilder B;
+ B.addAttribute(Attribute::ReadOnly)
+ .addAttribute(Attribute::ReadNone);
+ Func->removeAttributes(AttributeList::FunctionIndex, B);
+ }
+
+ maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI);
+ }
+ IRBuilder<> IRB(&I);
+
+ unsigned ArgOffset = 0;
+ LLVM_DEBUG(dbgs() << " CallSite: " << I << "\n");
+ for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
+ ArgIt != End; ++ArgIt) {
+ Value *A = *ArgIt;
+ unsigned i = ArgIt - CS.arg_begin();
+ if (!A->getType()->isSized()) {
+ LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
+ continue;
+ }
+ unsigned Size = 0;
+ Value *Store = nullptr;
+ // Compute the Shadow for arg even if it is ByVal, because
+ // in that case getShadow() will copy the actual arg shadow to
+ // __msan_param_tls.
+ Value *ArgShadow = getShadow(A);
+ Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
+ LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A
+ << " Shadow: " << *ArgShadow << "\n");
+ bool ArgIsInitialized = false;
+ const DataLayout &DL = F.getParent()->getDataLayout();
+ if (CS.paramHasAttr(i, Attribute::ByVal)) {
+ assert(A->getType()->isPointerTy() &&
+ "ByVal argument is not a pointer!");
+ Size = DL.getTypeAllocSize(A->getType()->getPointerElementType());
+ if (ArgOffset + Size > kParamTLSSize) break;
+ unsigned ParamAlignment = CS.getParamAlignment(i);
+ unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment);
+ Value *AShadowPtr =
+ getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment,
+ /*isStore*/ false)
+ .first;
+
+ Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr,
+ Alignment, Size);
+ // TODO(glider): need to copy origins.
+ } else {
+ Size = DL.getTypeAllocSize(A->getType());
+ if (ArgOffset + Size > kParamTLSSize) break;
+ Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
+ kShadowTLSAlignment);
+ Constant *Cst = dyn_cast<Constant>(ArgShadow);
+ if (Cst && Cst->isNullValue()) ArgIsInitialized = true;
+ }
+ if (MS.TrackOrigins && !ArgIsInitialized)
+ IRB.CreateStore(getOrigin(A),
+ getOriginPtrForArgument(A, IRB, ArgOffset));
+ (void)Store;
+ assert(Size != 0 && Store != nullptr);
+ LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n");
+ ArgOffset += alignTo(Size, 8);
+ }
+ LLVM_DEBUG(dbgs() << " done with call args\n");
+
+ FunctionType *FT = CS.getFunctionType();
+ if (FT->isVarArg()) {
+ VAHelper->visitCallSite(CS, IRB);
+ }
+
+ // Now, get the shadow for the RetVal.
+ if (!I.getType()->isSized()) return;
+ // Don't emit the epilogue for musttail call returns.
+ if (CS.isCall() && cast<CallInst>(&I)->isMustTailCall()) return;
+ IRBuilder<> IRBBefore(&I);
+ // Until we have full dynamic coverage, make sure the retval shadow is 0.
+ Value *Base = getShadowPtrForRetval(&I, IRBBefore);
+ IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
+ BasicBlock::iterator NextInsn;
+ if (CS.isCall()) {
+ NextInsn = ++I.getIterator();
+ assert(NextInsn != I.getParent()->end());
+ } else {
+ BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
+ if (!NormalDest->getSinglePredecessor()) {
+ // FIXME: this case is tricky, so we are just conservative here.
+ // Perhaps we need to split the edge between this BB and NormalDest,
+ // but a naive attempt to use SplitEdge leads to a crash.
+ setShadow(&I, getCleanShadow(&I));
+ setOrigin(&I, getCleanOrigin());
+ return;
+ }
+ // FIXME: NextInsn is likely in a basic block that has not been visited yet.
+ // Anything inserted there will be instrumented by MSan later!
+ NextInsn = NormalDest->getFirstInsertionPt();
+ assert(NextInsn != NormalDest->end() &&
+ "Could not find insertion point for retval shadow load");
+ }
+ IRBuilder<> IRBAfter(&*NextInsn);
+ Value *RetvalShadow = IRBAfter.CreateAlignedLoad(
+ getShadowTy(&I), getShadowPtrForRetval(&I, IRBAfter),
+ kShadowTLSAlignment, "_msret");
+ setShadow(&I, RetvalShadow);
+ if (MS.TrackOrigins)
+ setOrigin(&I, IRBAfter.CreateLoad(MS.OriginTy,
+ getOriginPtrForRetval(IRBAfter)));
+ }
+
+ bool isAMustTailRetVal(Value *RetVal) {
+ if (auto *I = dyn_cast<BitCastInst>(RetVal)) {
+ RetVal = I->getOperand(0);
+ }
+ if (auto *I = dyn_cast<CallInst>(RetVal)) {
+ return I->isMustTailCall();
+ }
+ return false;
+ }
+
+ void visitReturnInst(ReturnInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *RetVal = I.getReturnValue();
+ if (!RetVal) return;
+ // Don't emit the epilogue for musttail call returns.
+ if (isAMustTailRetVal(RetVal)) return;
+ Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
+ if (CheckReturnValue) {
+ insertShadowCheck(RetVal, &I);
+ Value *Shadow = getCleanShadow(RetVal);
+ IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
+ } else {
+ Value *Shadow = getShadow(RetVal);
+ IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
+ if (MS.TrackOrigins)
+ IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
+ }
+ }
+
+ void visitPHINode(PHINode &I) {
+ IRBuilder<> IRB(&I);
+ if (!PropagateShadow) {
+ setShadow(&I, getCleanShadow(&I));
+ setOrigin(&I, getCleanOrigin());
+ return;
+ }
+
+ ShadowPHINodes.push_back(&I);
+ setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
+ "_msphi_s"));
+ if (MS.TrackOrigins)
+ setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
+ "_msphi_o"));
+ }
+
+ Value *getLocalVarDescription(AllocaInst &I) {
+ SmallString<2048> StackDescriptionStorage;
+ raw_svector_ostream StackDescription(StackDescriptionStorage);
+ // We create a string with a description of the stack allocation and
+ // pass it into __msan_set_alloca_origin.
+ // It will be printed by the run-time if stack-originated UMR is found.
+ // The first 4 bytes of the string are set to '----' and will be replaced
+ // by __msan_va_arg_overflow_size_tls at the first call.
+ StackDescription << "----" << I.getName() << "@" << F.getName();
+ return createPrivateNonConstGlobalForString(*F.getParent(),
+ StackDescription.str());
+ }
+
+ void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) {
+ if (PoisonStack && ClPoisonStackWithCall) {
+ IRB.CreateCall(MS.MsanPoisonStackFn,
+ {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len});
+ } else {
+ Value *ShadowBase, *OriginBase;
+ std::tie(ShadowBase, OriginBase) =
+ getShadowOriginPtr(&I, IRB, IRB.getInt8Ty(), 1, /*isStore*/ true);
+
+ Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
+ IRB.CreateMemSet(ShadowBase, PoisonValue, Len, I.getAlignment());
+ }
+
+ if (PoisonStack && MS.TrackOrigins) {
+ Value *Descr = getLocalVarDescription(I);
+ IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn,
+ {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len,
+ IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
+ IRB.CreatePointerCast(&F, MS.IntptrTy)});
+ }
+ }
+
+ void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) {
+ Value *Descr = getLocalVarDescription(I);
+ if (PoisonStack) {
+ IRB.CreateCall(MS.MsanPoisonAllocaFn,
+ {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len,
+ IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())});
+ } else {
+ IRB.CreateCall(MS.MsanUnpoisonAllocaFn,
+ {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len});
+ }
+ }
+
+ void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) {
+ if (!InsPoint)
+ InsPoint = &I;
+ IRBuilder<> IRB(InsPoint->getNextNode());
+ const DataLayout &DL = F.getParent()->getDataLayout();
+ uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType());
+ Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize);
+ if (I.isArrayAllocation())
+ Len = IRB.CreateMul(Len, I.getArraySize());
+
+ if (MS.CompileKernel)
+ poisonAllocaKmsan(I, IRB, Len);
+ else
+ poisonAllocaUserspace(I, IRB, Len);
+ }
+
+ void visitAllocaInst(AllocaInst &I) {
+ setShadow(&I, getCleanShadow(&I));
+ setOrigin(&I, getCleanOrigin());
+ // We'll get to this alloca later unless it's poisoned at the corresponding
+ // llvm.lifetime.start.
+ AllocaSet.insert(&I);
+ }
+
+ void visitSelectInst(SelectInst& I) {
+ IRBuilder<> IRB(&I);
+ // a = select b, c, d
+ Value *B = I.getCondition();
+ Value *C = I.getTrueValue();
+ Value *D = I.getFalseValue();
+ Value *Sb = getShadow(B);
+ Value *Sc = getShadow(C);
+ Value *Sd = getShadow(D);
+
+ // Result shadow if condition shadow is 0.
+ Value *Sa0 = IRB.CreateSelect(B, Sc, Sd);
+ Value *Sa1;
+ if (I.getType()->isAggregateType()) {
+ // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
+ // an extra "select". This results in much more compact IR.
+ // Sa = select Sb, poisoned, (select b, Sc, Sd)
+ Sa1 = getPoisonedShadow(getShadowTy(I.getType()));
+ } else {
+ // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ]
+ // If Sb (condition is poisoned), look for bits in c and d that are equal
+ // and both unpoisoned.
+ // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd.
+
+ // Cast arguments to shadow-compatible type.
+ C = CreateAppToShadowCast(IRB, C);
+ D = CreateAppToShadowCast(IRB, D);
+
+ // Result shadow if condition shadow is 1.
+ Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd});
+ }
+ Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select");
+ setShadow(&I, Sa);
+ if (MS.TrackOrigins) {
+ // Origins are always i32, so any vector conditions must be flattened.
+ // FIXME: consider tracking vector origins for app vectors?
+ if (B->getType()->isVectorTy()) {
+ Type *FlatTy = getShadowTyNoVec(B->getType());
+ B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy),
+ ConstantInt::getNullValue(FlatTy));
+ Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy),
+ ConstantInt::getNullValue(FlatTy));
+ }
+ // a = select b, c, d
+ // Oa = Sb ? Ob : (b ? Oc : Od)
+ setOrigin(
+ &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()),
+ IRB.CreateSelect(B, getOrigin(I.getTrueValue()),
+ getOrigin(I.getFalseValue()))));
+ }
+ }
+
+ void visitLandingPadInst(LandingPadInst &I) {
+ // Do nothing.
+ // See https://github.com/google/sanitizers/issues/504
+ setShadow(&I, getCleanShadow(&I));
+ setOrigin(&I, getCleanOrigin());
+ }
+
+ void visitCatchSwitchInst(CatchSwitchInst &I) {
+ setShadow(&I, getCleanShadow(&I));
+ setOrigin(&I, getCleanOrigin());
+ }
+
+ void visitFuncletPadInst(FuncletPadInst &I) {
+ setShadow(&I, getCleanShadow(&I));
+ setOrigin(&I, getCleanOrigin());
+ }
+
+ void visitGetElementPtrInst(GetElementPtrInst &I) {
+ handleShadowOr(I);
+ }
+
+ void visitExtractValueInst(ExtractValueInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *Agg = I.getAggregateOperand();
+ LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n");
+ Value *AggShadow = getShadow(Agg);
+ LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
+ Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
+ LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n");
+ setShadow(&I, ResShadow);
+ setOriginForNaryOp(I);
+ }
+
+ void visitInsertValueInst(InsertValueInst &I) {
+ IRBuilder<> IRB(&I);
+ LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n");
+ Value *AggShadow = getShadow(I.getAggregateOperand());
+ Value *InsShadow = getShadow(I.getInsertedValueOperand());
+ LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
+ LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n");
+ Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
+ LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n");
+ setShadow(&I, Res);
+ setOriginForNaryOp(I);
+ }
+
+ void dumpInst(Instruction &I) {
+ if (CallInst *CI = dyn_cast<CallInst>(&I)) {
+ errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
+ } else {
+ errs() << "ZZZ " << I.getOpcodeName() << "\n";
+ }
+ errs() << "QQQ " << I << "\n";
+ }
+
+ void visitResumeInst(ResumeInst &I) {
+ LLVM_DEBUG(dbgs() << "Resume: " << I << "\n");
+ // Nothing to do here.
+ }
+
+ void visitCleanupReturnInst(CleanupReturnInst &CRI) {
+ LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n");
+ // Nothing to do here.
+ }
+
+ void visitCatchReturnInst(CatchReturnInst &CRI) {
+ LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n");
+ // Nothing to do here.
+ }
+
+ void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB,
+ const DataLayout &DL, bool isOutput) {
+ // For each assembly argument, we check its value for being initialized.
+ // If the argument is a pointer, we assume it points to a single element
+ // of the corresponding type (or to a 8-byte word, if the type is unsized).
+ // Each such pointer is instrumented with a call to the runtime library.
+ Type *OpType = Operand->getType();
+ // Check the operand value itself.
+ insertShadowCheck(Operand, &I);
+ if (!OpType->isPointerTy() || !isOutput) {
+ assert(!isOutput);
+ return;
+ }
+ Type *ElType = OpType->getPointerElementType();
+ if (!ElType->isSized())
+ return;
+ int Size = DL.getTypeStoreSize(ElType);
+ Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy());
+ Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size);
+ IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal});
+ }
+
+ /// Get the number of output arguments returned by pointers.
+ int getNumOutputArgs(InlineAsm *IA, CallBase *CB) {
+ int NumRetOutputs = 0;
+ int NumOutputs = 0;
+ Type *RetTy = cast<Value>(CB)->getType();
+ if (!RetTy->isVoidTy()) {
+ // Register outputs are returned via the CallInst return value.
+ auto *ST = dyn_cast<StructType>(RetTy);
+ if (ST)
+ NumRetOutputs = ST->getNumElements();
+ else
+ NumRetOutputs = 1;
+ }
+ InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
+ for (size_t i = 0, n = Constraints.size(); i < n; i++) {
+ InlineAsm::ConstraintInfo Info = Constraints[i];
+ switch (Info.Type) {
+ case InlineAsm::isOutput:
+ NumOutputs++;
+ break;
+ default:
+ break;
+ }
+ }
+ return NumOutputs - NumRetOutputs;
+ }
+
+ void visitAsmInstruction(Instruction &I) {
+ // Conservative inline assembly handling: check for poisoned shadow of
+ // asm() arguments, then unpoison the result and all the memory locations
+ // pointed to by those arguments.
+ // An inline asm() statement in C++ contains lists of input and output
+ // arguments used by the assembly code. These are mapped to operands of the
+ // CallInst as follows:
+ // - nR register outputs ("=r) are returned by value in a single structure
+ // (SSA value of the CallInst);
+ // - nO other outputs ("=m" and others) are returned by pointer as first
+ // nO operands of the CallInst;
+ // - nI inputs ("r", "m" and others) are passed to CallInst as the
+ // remaining nI operands.
+ // The total number of asm() arguments in the source is nR+nO+nI, and the
+ // corresponding CallInst has nO+nI+1 operands (the last operand is the
+ // function to be called).
+ const DataLayout &DL = F.getParent()->getDataLayout();
+ CallBase *CB = cast<CallBase>(&I);
+ IRBuilder<> IRB(&I);
+ InlineAsm *IA = cast<InlineAsm>(CB->getCalledValue());
+ int OutputArgs = getNumOutputArgs(IA, CB);
+ // The last operand of a CallInst is the function itself.
+ int NumOperands = CB->getNumOperands() - 1;
+
+ // Check input arguments. Doing so before unpoisoning output arguments, so
+ // that we won't overwrite uninit values before checking them.
+ for (int i = OutputArgs; i < NumOperands; i++) {
+ Value *Operand = CB->getOperand(i);
+ instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false);
+ }
+ // Unpoison output arguments. This must happen before the actual InlineAsm
+ // call, so that the shadow for memory published in the asm() statement
+ // remains valid.
+ for (int i = 0; i < OutputArgs; i++) {
+ Value *Operand = CB->getOperand(i);
+ instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true);
+ }
+
+ setShadow(&I, getCleanShadow(&I));
+ setOrigin(&I, getCleanOrigin());
+ }
+
+ void visitInstruction(Instruction &I) {
+ // Everything else: stop propagating and check for poisoned shadow.
+ if (ClDumpStrictInstructions)
+ dumpInst(I);
+ LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n");
+ for (size_t i = 0, n = I.getNumOperands(); i < n; i++) {
+ Value *Operand = I.getOperand(i);
+ if (Operand->getType()->isSized())
+ insertShadowCheck(Operand, &I);
+ }
+ setShadow(&I, getCleanShadow(&I));
+ setOrigin(&I, getCleanOrigin());
+ }
+};
+
+/// AMD64-specific implementation of VarArgHelper.
+struct VarArgAMD64Helper : public VarArgHelper {
+ // An unfortunate workaround for asymmetric lowering of va_arg stuff.
+ // See a comment in visitCallSite for more details.
+ static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
+ static const unsigned AMD64FpEndOffsetSSE = 176;
+ // If SSE is disabled, fp_offset in va_list is zero.
+ static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset;
+
+ unsigned AMD64FpEndOffset;
+ Function &F;
+ MemorySanitizer &MS;
+ MemorySanitizerVisitor &MSV;
+ Value *VAArgTLSCopy = nullptr;
+ Value *VAArgTLSOriginCopy = nullptr;
+ Value *VAArgOverflowSize = nullptr;
+
+ SmallVector<CallInst*, 16> VAStartInstrumentationList;
+
+ enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
+
+ VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
+ MemorySanitizerVisitor &MSV)
+ : F(F), MS(MS), MSV(MSV) {
+ AMD64FpEndOffset = AMD64FpEndOffsetSSE;
+ for (const auto &Attr : F.getAttributes().getFnAttributes()) {
+ if (Attr.isStringAttribute() &&
+ (Attr.getKindAsString() == "target-features")) {
+ if (Attr.getValueAsString().contains("-sse"))
+ AMD64FpEndOffset = AMD64FpEndOffsetNoSSE;
+ break;
+ }
+ }
+ }
+
+ ArgKind classifyArgument(Value* arg) {
+ // A very rough approximation of X86_64 argument classification rules.
+ Type *T = arg->getType();
+ if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
+ return AK_FloatingPoint;
+ if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
+ return AK_GeneralPurpose;
+ if (T->isPointerTy())
+ return AK_GeneralPurpose;
+ return AK_Memory;
+ }
+
+ // For VarArg functions, store the argument shadow in an ABI-specific format
+ // that corresponds to va_list layout.
+ // We do this because Clang lowers va_arg in the frontend, and this pass
+ // only sees the low level code that deals with va_list internals.
+ // A much easier alternative (provided that Clang emits va_arg instructions)
+ // would have been to associate each live instance of va_list with a copy of
+ // MSanParamTLS, and extract shadow on va_arg() call in the argument list
+ // order.
+ void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
+ unsigned GpOffset = 0;
+ unsigned FpOffset = AMD64GpEndOffset;
+ unsigned OverflowOffset = AMD64FpEndOffset;
+ const DataLayout &DL = F.getParent()->getDataLayout();
+ for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
+ ArgIt != End; ++ArgIt) {
+ Value *A = *ArgIt;
+ unsigned ArgNo = CS.getArgumentNo(ArgIt);
+ bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams();
+ bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal);
+ if (IsByVal) {
+ // ByVal arguments always go to the overflow area.
+ // Fixed arguments passed through the overflow area will be stepped
+ // over by va_start, so don't count them towards the offset.
+ if (IsFixed)
+ continue;
+ assert(A->getType()->isPointerTy());
+ Type *RealTy = A->getType()->getPointerElementType();
+ uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
+ Value *ShadowBase = getShadowPtrForVAArgument(
+ RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8));
+ Value *OriginBase = nullptr;
+ if (MS.TrackOrigins)
+ OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset);
+ OverflowOffset += alignTo(ArgSize, 8);
+ if (!ShadowBase)
+ continue;
+ Value *ShadowPtr, *OriginPtr;
+ std::tie(ShadowPtr, OriginPtr) =
+ MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment,
+ /*isStore*/ false);
+
+ IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr,
+ kShadowTLSAlignment, ArgSize);
+ if (MS.TrackOrigins)
+ IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr,
+ kShadowTLSAlignment, ArgSize);
+ } else {
+ ArgKind AK = classifyArgument(A);
+ if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
+ AK = AK_Memory;
+ if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
+ AK = AK_Memory;
+ Value *ShadowBase, *OriginBase = nullptr;
+ switch (AK) {
+ case AK_GeneralPurpose:
+ ShadowBase =
+ getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8);
+ if (MS.TrackOrigins)
+ OriginBase =
+ getOriginPtrForVAArgument(A->getType(), IRB, GpOffset);
+ GpOffset += 8;
+ break;
+ case AK_FloatingPoint:
+ ShadowBase =
+ getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16);
+ if (MS.TrackOrigins)
+ OriginBase =
+ getOriginPtrForVAArgument(A->getType(), IRB, FpOffset);
+ FpOffset += 16;
+ break;
+ case AK_Memory:
+ if (IsFixed)
+ continue;
+ uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
+ ShadowBase =
+ getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8);
+ if (MS.TrackOrigins)
+ OriginBase =
+ getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset);
+ OverflowOffset += alignTo(ArgSize, 8);
+ }
+ // Take fixed arguments into account for GpOffset and FpOffset,
+ // but don't actually store shadows for them.
+ // TODO(glider): don't call get*PtrForVAArgument() for them.
+ if (IsFixed)
+ continue;
+ if (!ShadowBase)
+ continue;
+ Value *Shadow = MSV.getShadow(A);
+ IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment);
+ if (MS.TrackOrigins) {
+ Value *Origin = MSV.getOrigin(A);
+ unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
+ MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize,
+ std::max(kShadowTLSAlignment, kMinOriginAlignment));
+ }
+ }
+ }
+ Constant *OverflowSize =
+ ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
+ IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
+ }
+
+ /// Compute the shadow address for a given va_arg.
+ Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
+ unsigned ArgOffset, unsigned ArgSize) {
+ // Make sure we don't overflow __msan_va_arg_tls.
+ if (ArgOffset + ArgSize > kParamTLSSize)
+ return nullptr;
+ Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
+ Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
+ return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
+ "_msarg_va_s");
+ }
+
+ /// Compute the origin address for a given va_arg.
+ Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) {
+ Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy);
+ // getOriginPtrForVAArgument() is always called after
+ // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never
+ // overflow.
+ Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
+ return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
+ "_msarg_va_o");
+ }
+
+ void unpoisonVAListTagForInst(IntrinsicInst &I) {
+ IRBuilder<> IRB(&I);
+ Value *VAListTag = I.getArgOperand(0);
+ Value *ShadowPtr, *OriginPtr;
+ unsigned Alignment = 8;
+ std::tie(ShadowPtr, OriginPtr) =
+ MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment,
+ /*isStore*/ true);
+
+ // Unpoison the whole __va_list_tag.
+ // FIXME: magic ABI constants.
+ IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
+ /* size */ 24, Alignment, false);
+ // We shouldn't need to zero out the origins, as they're only checked for
+ // nonzero shadow.
+ }
+
+ void visitVAStartInst(VAStartInst &I) override {
+ if (F.getCallingConv() == CallingConv::Win64)
+ return;
+ VAStartInstrumentationList.push_back(&I);
+ unpoisonVAListTagForInst(I);
+ }
+
+ void visitVACopyInst(VACopyInst &I) override {
+ if (F.getCallingConv() == CallingConv::Win64) return;
+ unpoisonVAListTagForInst(I);
+ }
+
+ void finalizeInstrumentation() override {
+ assert(!VAArgOverflowSize && !VAArgTLSCopy &&
+ "finalizeInstrumentation called twice");
+ if (!VAStartInstrumentationList.empty()) {
+ // If there is a va_start in this function, make a backup copy of
+ // va_arg_tls somewhere in the function entry block.
+ IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI());
+ VAArgOverflowSize =
+ IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
+ Value *CopySize =
+ IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
+ VAArgOverflowSize);
+ VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
+ IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize);
+ if (MS.TrackOrigins) {
+ VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
+ IRB.CreateMemCpy(VAArgTLSOriginCopy, 8, MS.VAArgOriginTLS, 8, CopySize);
+ }
+ }
+
+ // Instrument va_start.
+ // Copy va_list shadow from the backup copy of the TLS contents.
+ for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
+ CallInst *OrigInst = VAStartInstrumentationList[i];
+ IRBuilder<> IRB(OrigInst->getNextNode());
+ Value *VAListTag = OrigInst->getArgOperand(0);
+
+ Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
+ Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr(
+ IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
+ ConstantInt::get(MS.IntptrTy, 16)),
+ PointerType::get(RegSaveAreaPtrTy, 0));
+ Value *RegSaveAreaPtr =
+ IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
+ Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
+ unsigned Alignment = 16;
+ std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
+ MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
+ Alignment, /*isStore*/ true);
+ IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
+ AMD64FpEndOffset);
+ if (MS.TrackOrigins)
+ IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy,
+ Alignment, AMD64FpEndOffset);
+ Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C);
+ Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr(
+ IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
+ ConstantInt::get(MS.IntptrTy, 8)),
+ PointerType::get(OverflowArgAreaPtrTy, 0));
+ Value *OverflowArgAreaPtr =
+ IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr);
+ Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr;
+ std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) =
+ MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(),
+ Alignment, /*isStore*/ true);
+ Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy,
+ AMD64FpEndOffset);
+ IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment,
+ VAArgOverflowSize);
+ if (MS.TrackOrigins) {
+ SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy,
+ AMD64FpEndOffset);
+ IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment,
+ VAArgOverflowSize);
+ }
+ }
+ }
+};
+
+/// MIPS64-specific implementation of VarArgHelper.
+struct VarArgMIPS64Helper : public VarArgHelper {
+ Function &F;
+ MemorySanitizer &MS;
+ MemorySanitizerVisitor &MSV;
+ Value *VAArgTLSCopy = nullptr;
+ Value *VAArgSize = nullptr;
+
+ SmallVector<CallInst*, 16> VAStartInstrumentationList;
+
+ VarArgMIPS64Helper(Function &F, MemorySanitizer &MS,
+ MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
+
+ void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
+ unsigned VAArgOffset = 0;
+ const DataLayout &DL = F.getParent()->getDataLayout();
+ for (CallSite::arg_iterator ArgIt = CS.arg_begin() +
+ CS.getFunctionType()->getNumParams(), End = CS.arg_end();
+ ArgIt != End; ++ArgIt) {
+ Triple TargetTriple(F.getParent()->getTargetTriple());
+ Value *A = *ArgIt;
+ Value *Base;
+ uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
+ if (TargetTriple.getArch() == Triple::mips64) {
+ // Adjusting the shadow for argument with size < 8 to match the placement
+ // of bits in big endian system
+ if (ArgSize < 8)
+ VAArgOffset += (8 - ArgSize);
+ }
+ Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize);
+ VAArgOffset += ArgSize;
+ VAArgOffset = alignTo(VAArgOffset, 8);
+ if (!Base)
+ continue;
+ IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
+ }
+
+ Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset);
+ // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
+ // a new class member i.e. it is the total size of all VarArgs.
+ IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
+ }
+
+ /// Compute the shadow address for a given va_arg.
+ Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
+ unsigned ArgOffset, unsigned ArgSize) {
+ // Make sure we don't overflow __msan_va_arg_tls.
+ if (ArgOffset + ArgSize > kParamTLSSize)
+ return nullptr;
+ Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
+ Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
+ return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
+ "_msarg");
+ }
+
+ void visitVAStartInst(VAStartInst &I) override {
+ IRBuilder<> IRB(&I);
+ VAStartInstrumentationList.push_back(&I);
+ Value *VAListTag = I.getArgOperand(0);
+ Value *ShadowPtr, *OriginPtr;
+ unsigned Alignment = 8;
+ std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
+ VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
+ IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
+ /* size */ 8, Alignment, false);
+ }
+
+ void visitVACopyInst(VACopyInst &I) override {
+ IRBuilder<> IRB(&I);
+ VAStartInstrumentationList.push_back(&I);
+ Value *VAListTag = I.getArgOperand(0);
+ Value *ShadowPtr, *OriginPtr;
+ unsigned Alignment = 8;
+ std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
+ VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
+ IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
+ /* size */ 8, Alignment, false);
+ }
+
+ void finalizeInstrumentation() override {
+ assert(!VAArgSize && !VAArgTLSCopy &&
+ "finalizeInstrumentation called twice");
+ IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI());
+ VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
+ Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
+ VAArgSize);
+
+ if (!VAStartInstrumentationList.empty()) {
+ // If there is a va_start in this function, make a backup copy of
+ // va_arg_tls somewhere in the function entry block.
+ VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
+ IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize);
+ }
+
+ // Instrument va_start.
+ // Copy va_list shadow from the backup copy of the TLS contents.
+ for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
+ CallInst *OrigInst = VAStartInstrumentationList[i];
+ IRBuilder<> IRB(OrigInst->getNextNode());
+ Value *VAListTag = OrigInst->getArgOperand(0);
+ Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
+ Value *RegSaveAreaPtrPtr =
+ IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
+ PointerType::get(RegSaveAreaPtrTy, 0));
+ Value *RegSaveAreaPtr =
+ IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
+ Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
+ unsigned Alignment = 8;
+ std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
+ MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
+ Alignment, /*isStore*/ true);
+ IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
+ CopySize);
+ }
+ }
+};
+
+/// AArch64-specific implementation of VarArgHelper.
+struct VarArgAArch64Helper : public VarArgHelper {
+ static const unsigned kAArch64GrArgSize = 64;
+ static const unsigned kAArch64VrArgSize = 128;
+
+ static const unsigned AArch64GrBegOffset = 0;
+ static const unsigned AArch64GrEndOffset = kAArch64GrArgSize;
+ // Make VR space aligned to 16 bytes.
+ static const unsigned AArch64VrBegOffset = AArch64GrEndOffset;
+ static const unsigned AArch64VrEndOffset = AArch64VrBegOffset
+ + kAArch64VrArgSize;
+ static const unsigned AArch64VAEndOffset = AArch64VrEndOffset;
+
+ Function &F;
+ MemorySanitizer &MS;
+ MemorySanitizerVisitor &MSV;
+ Value *VAArgTLSCopy = nullptr;
+ Value *VAArgOverflowSize = nullptr;
+
+ SmallVector<CallInst*, 16> VAStartInstrumentationList;
+
+ enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
+
+ VarArgAArch64Helper(Function &F, MemorySanitizer &MS,
+ MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
+
+ ArgKind classifyArgument(Value* arg) {
+ Type *T = arg->getType();
+ if (T->isFPOrFPVectorTy())
+ return AK_FloatingPoint;
+ if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
+ || (T->isPointerTy()))
+ return AK_GeneralPurpose;
+ return AK_Memory;
+ }
+
+ // The instrumentation stores the argument shadow in a non ABI-specific
+ // format because it does not know which argument is named (since Clang,
+ // like x86_64 case, lowers the va_args in the frontend and this pass only
+ // sees the low level code that deals with va_list internals).
+ // The first seven GR registers are saved in the first 56 bytes of the
+ // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then
+ // the remaining arguments.
+ // Using constant offset within the va_arg TLS array allows fast copy
+ // in the finalize instrumentation.
+ void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
+ unsigned GrOffset = AArch64GrBegOffset;
+ unsigned VrOffset = AArch64VrBegOffset;
+ unsigned OverflowOffset = AArch64VAEndOffset;
+
+ const DataLayout &DL = F.getParent()->getDataLayout();
+ for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
+ ArgIt != End; ++ArgIt) {
+ Value *A = *ArgIt;
+ unsigned ArgNo = CS.getArgumentNo(ArgIt);
+ bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams();
+ ArgKind AK = classifyArgument(A);
+ if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset)
+ AK = AK_Memory;
+ if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset)
+ AK = AK_Memory;
+ Value *Base;
+ switch (AK) {
+ case AK_GeneralPurpose:
+ Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8);
+ GrOffset += 8;
+ break;
+ case AK_FloatingPoint:
+ Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8);
+ VrOffset += 16;
+ break;
+ case AK_Memory:
+ // Don't count fixed arguments in the overflow area - va_start will
+ // skip right over them.
+ if (IsFixed)
+ continue;
+ uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
+ Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset,
+ alignTo(ArgSize, 8));
+ OverflowOffset += alignTo(ArgSize, 8);
+ break;
+ }
+ // Count Gp/Vr fixed arguments to their respective offsets, but don't
+ // bother to actually store a shadow.
+ if (IsFixed)
+ continue;
+ if (!Base)
+ continue;
+ IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
+ }
+ Constant *OverflowSize =
+ ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset);
+ IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
+ }
+
+ /// Compute the shadow address for a given va_arg.
+ Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
+ unsigned ArgOffset, unsigned ArgSize) {
+ // Make sure we don't overflow __msan_va_arg_tls.
+ if (ArgOffset + ArgSize > kParamTLSSize)
+ return nullptr;
+ Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
+ Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
+ return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
+ "_msarg");
+ }
+
+ void visitVAStartInst(VAStartInst &I) override {
+ IRBuilder<> IRB(&I);
+ VAStartInstrumentationList.push_back(&I);
+ Value *VAListTag = I.getArgOperand(0);
+ Value *ShadowPtr, *OriginPtr;
+ unsigned Alignment = 8;
+ std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
+ VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
+ IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
+ /* size */ 32, Alignment, false);
+ }
+
+ void visitVACopyInst(VACopyInst &I) override {
+ IRBuilder<> IRB(&I);
+ VAStartInstrumentationList.push_back(&I);
+ Value *VAListTag = I.getArgOperand(0);
+ Value *ShadowPtr, *OriginPtr;
+ unsigned Alignment = 8;
+ std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
+ VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
+ IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
+ /* size */ 32, Alignment, false);
+ }
+
+ // Retrieve a va_list field of 'void*' size.
+ Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) {
+ Value *SaveAreaPtrPtr =
+ IRB.CreateIntToPtr(
+ IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
+ ConstantInt::get(MS.IntptrTy, offset)),
+ Type::getInt64PtrTy(*MS.C));
+ return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr);
+ }
+
+ // Retrieve a va_list field of 'int' size.
+ Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) {
+ Value *SaveAreaPtr =
+ IRB.CreateIntToPtr(
+ IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
+ ConstantInt::get(MS.IntptrTy, offset)),
+ Type::getInt32PtrTy(*MS.C));
+ Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr);
+ return IRB.CreateSExt(SaveArea32, MS.IntptrTy);
+ }
+
+ void finalizeInstrumentation() override {
+ assert(!VAArgOverflowSize && !VAArgTLSCopy &&
+ "finalizeInstrumentation called twice");
+ if (!VAStartInstrumentationList.empty()) {
+ // If there is a va_start in this function, make a backup copy of
+ // va_arg_tls somewhere in the function entry block.
+ IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI());
+ VAArgOverflowSize =
+ IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
+ Value *CopySize =
+ IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset),
+ VAArgOverflowSize);
+ VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
+ IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize);
+ }
+
+ Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize);
+ Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize);
+
+ // Instrument va_start, copy va_list shadow from the backup copy of
+ // the TLS contents.
+ for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
+ CallInst *OrigInst = VAStartInstrumentationList[i];
+ IRBuilder<> IRB(OrigInst->getNextNode());
+
+ Value *VAListTag = OrigInst->getArgOperand(0);
+
+ // The variadic ABI for AArch64 creates two areas to save the incoming
+ // argument registers (one for 64-bit general register xn-x7 and another
+ // for 128-bit FP/SIMD vn-v7).
+ // We need then to propagate the shadow arguments on both regions
+ // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'.
+ // The remaning arguments are saved on shadow for 'va::stack'.
+ // One caveat is it requires only to propagate the non-named arguments,
+ // however on the call site instrumentation 'all' the arguments are
+ // saved. So to copy the shadow values from the va_arg TLS array
+ // we need to adjust the offset for both GR and VR fields based on
+ // the __{gr,vr}_offs value (since they are stores based on incoming
+ // named arguments).
+
+ // Read the stack pointer from the va_list.
+ Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0);
+
+ // Read both the __gr_top and __gr_off and add them up.
+ Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8);
+ Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24);
+
+ Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea);
+
+ // Read both the __vr_top and __vr_off and add them up.
+ Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16);
+ Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28);
+
+ Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea);
+
+ // It does not know how many named arguments is being used and, on the
+ // callsite all the arguments were saved. Since __gr_off is defined as
+ // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic
+ // argument by ignoring the bytes of shadow from named arguments.
+ Value *GrRegSaveAreaShadowPtrOff =
+ IRB.CreateAdd(GrArgSize, GrOffSaveArea);
+
+ Value *GrRegSaveAreaShadowPtr =
+ MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(),
+ /*Alignment*/ 8, /*isStore*/ true)
+ .first;
+
+ Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
+ GrRegSaveAreaShadowPtrOff);
+ Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff);
+
+ IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, 8, GrSrcPtr, 8, GrCopySize);
+
+ // Again, but for FP/SIMD values.
+ Value *VrRegSaveAreaShadowPtrOff =
+ IRB.CreateAdd(VrArgSize, VrOffSaveArea);
+
+ Value *VrRegSaveAreaShadowPtr =
+ MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(),
+ /*Alignment*/ 8, /*isStore*/ true)
+ .first;
+
+ Value *VrSrcPtr = IRB.CreateInBoundsGEP(
+ IRB.getInt8Ty(),
+ IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
+ IRB.getInt32(AArch64VrBegOffset)),
+ VrRegSaveAreaShadowPtrOff);
+ Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff);
+
+ IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, 8, VrSrcPtr, 8, VrCopySize);
+
+ // And finally for remaining arguments.
+ Value *StackSaveAreaShadowPtr =
+ MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(),
+ /*Alignment*/ 16, /*isStore*/ true)
+ .first;
+
+ Value *StackSrcPtr =
+ IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
+ IRB.getInt32(AArch64VAEndOffset));
+
+ IRB.CreateMemCpy(StackSaveAreaShadowPtr, 16, StackSrcPtr, 16,
+ VAArgOverflowSize);
+ }
+ }
+};
+
+/// PowerPC64-specific implementation of VarArgHelper.
+struct VarArgPowerPC64Helper : public VarArgHelper {
+ Function &F;
+ MemorySanitizer &MS;
+ MemorySanitizerVisitor &MSV;
+ Value *VAArgTLSCopy = nullptr;
+ Value *VAArgSize = nullptr;
+
+ SmallVector<CallInst*, 16> VAStartInstrumentationList;
+
+ VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS,
+ MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
+
+ void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
+ // For PowerPC, we need to deal with alignment of stack arguments -
+ // they are mostly aligned to 8 bytes, but vectors and i128 arrays
+ // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes,
+ // and QPX vectors are aligned to 32 bytes. For that reason, we
+ // compute current offset from stack pointer (which is always properly
+ // aligned), and offset for the first vararg, then subtract them.
+ unsigned VAArgBase;
+ Triple TargetTriple(F.getParent()->getTargetTriple());
+ // Parameter save area starts at 48 bytes from frame pointer for ABIv1,
+ // and 32 bytes for ABIv2. This is usually determined by target
+ // endianness, but in theory could be overriden by function attribute.
+ // For simplicity, we ignore it here (it'd only matter for QPX vectors).
+ if (TargetTriple.getArch() == Triple::ppc64)
+ VAArgBase = 48;
+ else
+ VAArgBase = 32;
+ unsigned VAArgOffset = VAArgBase;
+ const DataLayout &DL = F.getParent()->getDataLayout();
+ for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
+ ArgIt != End; ++ArgIt) {
+ Value *A = *ArgIt;
+ unsigned ArgNo = CS.getArgumentNo(ArgIt);
+ bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams();
+ bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal);
+ if (IsByVal) {
+ assert(A->getType()->isPointerTy());
+ Type *RealTy = A->getType()->getPointerElementType();
+ uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
+ uint64_t ArgAlign = CS.getParamAlignment(ArgNo);
+ if (ArgAlign < 8)
+ ArgAlign = 8;
+ VAArgOffset = alignTo(VAArgOffset, ArgAlign);
+ if (!IsFixed) {
+ Value *Base = getShadowPtrForVAArgument(
+ RealTy, IRB, VAArgOffset - VAArgBase, ArgSize);
+ if (Base) {
+ Value *AShadowPtr, *AOriginPtr;
+ std::tie(AShadowPtr, AOriginPtr) =
+ MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(),
+ kShadowTLSAlignment, /*isStore*/ false);
+
+ IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr,
+ kShadowTLSAlignment, ArgSize);
+ }
+ }
+ VAArgOffset += alignTo(ArgSize, 8);
+ } else {
+ Value *Base;
+ uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
+ uint64_t ArgAlign = 8;
+ if (A->getType()->isArrayTy()) {
+ // Arrays are aligned to element size, except for long double
+ // arrays, which are aligned to 8 bytes.
+ Type *ElementTy = A->getType()->getArrayElementType();
+ if (!ElementTy->isPPC_FP128Ty())
+ ArgAlign = DL.getTypeAllocSize(ElementTy);
+ } else if (A->getType()->isVectorTy()) {
+ // Vectors are naturally aligned.
+ ArgAlign = DL.getTypeAllocSize(A->getType());
+ }
+ if (ArgAlign < 8)
+ ArgAlign = 8;
+ VAArgOffset = alignTo(VAArgOffset, ArgAlign);
+ if (DL.isBigEndian()) {
+ // Adjusting the shadow for argument with size < 8 to match the placement
+ // of bits in big endian system
+ if (ArgSize < 8)
+ VAArgOffset += (8 - ArgSize);
+ }
+ if (!IsFixed) {
+ Base = getShadowPtrForVAArgument(A->getType(), IRB,
+ VAArgOffset - VAArgBase, ArgSize);
+ if (Base)
+ IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
+ }
+ VAArgOffset += ArgSize;
+ VAArgOffset = alignTo(VAArgOffset, 8);
+ }
+ if (IsFixed)
+ VAArgBase = VAArgOffset;
+ }
+
+ Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(),
+ VAArgOffset - VAArgBase);
+ // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
+ // a new class member i.e. it is the total size of all VarArgs.
+ IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
+ }
+
+ /// Compute the shadow address for a given va_arg.
+ Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
+ unsigned ArgOffset, unsigned ArgSize) {
+ // Make sure we don't overflow __msan_va_arg_tls.
+ if (ArgOffset + ArgSize > kParamTLSSize)
+ return nullptr;
+ Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
+ Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
+ return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
+ "_msarg");
+ }
+
+ void visitVAStartInst(VAStartInst &I) override {
+ IRBuilder<> IRB(&I);
+ VAStartInstrumentationList.push_back(&I);
+ Value *VAListTag = I.getArgOperand(0);
+ Value *ShadowPtr, *OriginPtr;
+ unsigned Alignment = 8;
+ std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
+ VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
+ IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
+ /* size */ 8, Alignment, false);
+ }
+
+ void visitVACopyInst(VACopyInst &I) override {
+ IRBuilder<> IRB(&I);
+ Value *VAListTag = I.getArgOperand(0);
+ Value *ShadowPtr, *OriginPtr;
+ unsigned Alignment = 8;
+ std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
+ VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
+ // Unpoison the whole __va_list_tag.
+ // FIXME: magic ABI constants.
+ IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
+ /* size */ 8, Alignment, false);
+ }
+
+ void finalizeInstrumentation() override {
+ assert(!VAArgSize && !VAArgTLSCopy &&
+ "finalizeInstrumentation called twice");
+ IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI());
+ VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
+ Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
+ VAArgSize);
+
+ if (!VAStartInstrumentationList.empty()) {
+ // If there is a va_start in this function, make a backup copy of
+ // va_arg_tls somewhere in the function entry block.
+ VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
+ IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize);
+ }
+
+ // Instrument va_start.
+ // Copy va_list shadow from the backup copy of the TLS contents.
+ for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
+ CallInst *OrigInst = VAStartInstrumentationList[i];
+ IRBuilder<> IRB(OrigInst->getNextNode());
+ Value *VAListTag = OrigInst->getArgOperand(0);
+ Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
+ Value *RegSaveAreaPtrPtr =
+ IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
+ PointerType::get(RegSaveAreaPtrTy, 0));
+ Value *RegSaveAreaPtr =
+ IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
+ Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
+ unsigned Alignment = 8;
+ std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
+ MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
+ Alignment, /*isStore*/ true);
+ IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
+ CopySize);
+ }
+ }
+};
+
+/// A no-op implementation of VarArgHelper.
+struct VarArgNoOpHelper : public VarArgHelper {
+ VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
+ MemorySanitizerVisitor &MSV) {}
+
+ void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {}
+
+ void visitVAStartInst(VAStartInst &I) override {}
+
+ void visitVACopyInst(VACopyInst &I) override {}
+
+ void finalizeInstrumentation() override {}
+};
+
+} // end anonymous namespace
+
+static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
+ MemorySanitizerVisitor &Visitor) {
+ // VarArg handling is only implemented on AMD64. False positives are possible
+ // on other platforms.
+ Triple TargetTriple(Func.getParent()->getTargetTriple());
+ if (TargetTriple.getArch() == Triple::x86_64)
+ return new VarArgAMD64Helper(Func, Msan, Visitor);
+ else if (TargetTriple.isMIPS64())
+ return new VarArgMIPS64Helper(Func, Msan, Visitor);
+ else if (TargetTriple.getArch() == Triple::aarch64)
+ return new VarArgAArch64Helper(Func, Msan, Visitor);
+ else if (TargetTriple.getArch() == Triple::ppc64 ||
+ TargetTriple.getArch() == Triple::ppc64le)
+ return new VarArgPowerPC64Helper(Func, Msan, Visitor);
+ else
+ return new VarArgNoOpHelper(Func, Msan, Visitor);
+}
+
+bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) {
+ if (!CompileKernel && F.getName() == kMsanModuleCtorName)
+ return false;
+
+ MemorySanitizerVisitor Visitor(F, *this, TLI);
+
+ // Clear out readonly/readnone attributes.
+ AttrBuilder B;
+ B.addAttribute(Attribute::ReadOnly)
+ .addAttribute(Attribute::ReadNone);
+ F.removeAttributes(AttributeList::FunctionIndex, B);
+
+ return Visitor.runOnFunction();
+}