summaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Scalar/ConstantHoisting.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/Scalar/ConstantHoisting.cpp')
-rw-r--r--llvm/lib/Transforms/Scalar/ConstantHoisting.cpp979
1 files changed, 979 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Scalar/ConstantHoisting.cpp b/llvm/lib/Transforms/Scalar/ConstantHoisting.cpp
new file mode 100644
index 000000000000..9f340afbf7c2
--- /dev/null
+++ b/llvm/lib/Transforms/Scalar/ConstantHoisting.cpp
@@ -0,0 +1,979 @@
+//===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass identifies expensive constants to hoist and coalesces them to
+// better prepare it for SelectionDAG-based code generation. This works around
+// the limitations of the basic-block-at-a-time approach.
+//
+// First it scans all instructions for integer constants and calculates its
+// cost. If the constant can be folded into the instruction (the cost is
+// TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
+// consider it expensive and leave it alone. This is the default behavior and
+// the default implementation of getIntImmCost will always return TCC_Free.
+//
+// If the cost is more than TCC_BASIC, then the integer constant can't be folded
+// into the instruction and it might be beneficial to hoist the constant.
+// Similar constants are coalesced to reduce register pressure and
+// materialization code.
+//
+// When a constant is hoisted, it is also hidden behind a bitcast to force it to
+// be live-out of the basic block. Otherwise the constant would be just
+// duplicated and each basic block would have its own copy in the SelectionDAG.
+// The SelectionDAG recognizes such constants as opaque and doesn't perform
+// certain transformations on them, which would create a new expensive constant.
+//
+// This optimization is only applied to integer constants in instructions and
+// simple (this means not nested) constant cast expressions. For example:
+// %0 = load i64* inttoptr (i64 big_constant to i64*)
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar/ConstantHoisting.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/BlockFrequencyInfo.h"
+#include "llvm/Analysis/ProfileSummaryInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/BlockFrequency.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/SizeOpts.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <iterator>
+#include <tuple>
+#include <utility>
+
+using namespace llvm;
+using namespace consthoist;
+
+#define DEBUG_TYPE "consthoist"
+
+STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
+STATISTIC(NumConstantsRebased, "Number of constants rebased");
+
+static cl::opt<bool> ConstHoistWithBlockFrequency(
+ "consthoist-with-block-frequency", cl::init(true), cl::Hidden,
+ cl::desc("Enable the use of the block frequency analysis to reduce the "
+ "chance to execute const materialization more frequently than "
+ "without hoisting."));
+
+static cl::opt<bool> ConstHoistGEP(
+ "consthoist-gep", cl::init(false), cl::Hidden,
+ cl::desc("Try hoisting constant gep expressions"));
+
+static cl::opt<unsigned>
+MinNumOfDependentToRebase("consthoist-min-num-to-rebase",
+ cl::desc("Do not rebase if number of dependent constants of a Base is less "
+ "than this number."),
+ cl::init(0), cl::Hidden);
+
+namespace {
+
+/// The constant hoisting pass.
+class ConstantHoistingLegacyPass : public FunctionPass {
+public:
+ static char ID; // Pass identification, replacement for typeid
+
+ ConstantHoistingLegacyPass() : FunctionPass(ID) {
+ initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &Fn) override;
+
+ StringRef getPassName() const override { return "Constant Hoisting"; }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ if (ConstHoistWithBlockFrequency)
+ AU.addRequired<BlockFrequencyInfoWrapperPass>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<ProfileSummaryInfoWrapperPass>();
+ AU.addRequired<TargetTransformInfoWrapperPass>();
+ }
+
+private:
+ ConstantHoistingPass Impl;
+};
+
+} // end anonymous namespace
+
+char ConstantHoistingLegacyPass::ID = 0;
+
+INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist",
+ "Constant Hoisting", false, false)
+INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
+INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist",
+ "Constant Hoisting", false, false)
+
+FunctionPass *llvm::createConstantHoistingPass() {
+ return new ConstantHoistingLegacyPass();
+}
+
+/// Perform the constant hoisting optimization for the given function.
+bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) {
+ if (skipFunction(Fn))
+ return false;
+
+ LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
+ LLVM_DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n');
+
+ bool MadeChange =
+ Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn),
+ getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
+ ConstHoistWithBlockFrequency
+ ? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI()
+ : nullptr,
+ Fn.getEntryBlock(),
+ &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());
+
+ if (MadeChange) {
+ LLVM_DEBUG(dbgs() << "********** Function after Constant Hoisting: "
+ << Fn.getName() << '\n');
+ LLVM_DEBUG(dbgs() << Fn);
+ }
+ LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
+
+ return MadeChange;
+}
+
+/// Find the constant materialization insertion point.
+Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst,
+ unsigned Idx) const {
+ // If the operand is a cast instruction, then we have to materialize the
+ // constant before the cast instruction.
+ if (Idx != ~0U) {
+ Value *Opnd = Inst->getOperand(Idx);
+ if (auto CastInst = dyn_cast<Instruction>(Opnd))
+ if (CastInst->isCast())
+ return CastInst;
+ }
+
+ // The simple and common case. This also includes constant expressions.
+ if (!isa<PHINode>(Inst) && !Inst->isEHPad())
+ return Inst;
+
+ // We can't insert directly before a phi node or an eh pad. Insert before
+ // the terminator of the incoming or dominating block.
+ assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!");
+ if (Idx != ~0U && isa<PHINode>(Inst))
+ return cast<PHINode>(Inst)->getIncomingBlock(Idx)->getTerminator();
+
+ // This must be an EH pad. Iterate over immediate dominators until we find a
+ // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads
+ // and terminators.
+ auto IDom = DT->getNode(Inst->getParent())->getIDom();
+ while (IDom->getBlock()->isEHPad()) {
+ assert(Entry != IDom->getBlock() && "eh pad in entry block");
+ IDom = IDom->getIDom();
+ }
+
+ return IDom->getBlock()->getTerminator();
+}
+
+/// Given \p BBs as input, find another set of BBs which collectively
+/// dominates \p BBs and have the minimal sum of frequencies. Return the BB
+/// set found in \p BBs.
+static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI,
+ BasicBlock *Entry,
+ SetVector<BasicBlock *> &BBs) {
+ assert(!BBs.count(Entry) && "Assume Entry is not in BBs");
+ // Nodes on the current path to the root.
+ SmallPtrSet<BasicBlock *, 8> Path;
+ // Candidates includes any block 'BB' in set 'BBs' that is not strictly
+ // dominated by any other blocks in set 'BBs', and all nodes in the path
+ // in the dominator tree from Entry to 'BB'.
+ SmallPtrSet<BasicBlock *, 16> Candidates;
+ for (auto BB : BBs) {
+ // Ignore unreachable basic blocks.
+ if (!DT.isReachableFromEntry(BB))
+ continue;
+ Path.clear();
+ // Walk up the dominator tree until Entry or another BB in BBs
+ // is reached. Insert the nodes on the way to the Path.
+ BasicBlock *Node = BB;
+ // The "Path" is a candidate path to be added into Candidates set.
+ bool isCandidate = false;
+ do {
+ Path.insert(Node);
+ if (Node == Entry || Candidates.count(Node)) {
+ isCandidate = true;
+ break;
+ }
+ assert(DT.getNode(Node)->getIDom() &&
+ "Entry doens't dominate current Node");
+ Node = DT.getNode(Node)->getIDom()->getBlock();
+ } while (!BBs.count(Node));
+
+ // If isCandidate is false, Node is another Block in BBs dominating
+ // current 'BB'. Drop the nodes on the Path.
+ if (!isCandidate)
+ continue;
+
+ // Add nodes on the Path into Candidates.
+ Candidates.insert(Path.begin(), Path.end());
+ }
+
+ // Sort the nodes in Candidates in top-down order and save the nodes
+ // in Orders.
+ unsigned Idx = 0;
+ SmallVector<BasicBlock *, 16> Orders;
+ Orders.push_back(Entry);
+ while (Idx != Orders.size()) {
+ BasicBlock *Node = Orders[Idx++];
+ for (auto ChildDomNode : DT.getNode(Node)->getChildren()) {
+ if (Candidates.count(ChildDomNode->getBlock()))
+ Orders.push_back(ChildDomNode->getBlock());
+ }
+ }
+
+ // Visit Orders in bottom-up order.
+ using InsertPtsCostPair =
+ std::pair<SetVector<BasicBlock *>, BlockFrequency>;
+
+ // InsertPtsMap is a map from a BB to the best insertion points for the
+ // subtree of BB (subtree not including the BB itself).
+ DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap;
+ InsertPtsMap.reserve(Orders.size() + 1);
+ for (auto RIt = Orders.rbegin(); RIt != Orders.rend(); RIt++) {
+ BasicBlock *Node = *RIt;
+ bool NodeInBBs = BBs.count(Node);
+ auto &InsertPts = InsertPtsMap[Node].first;
+ BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second;
+
+ // Return the optimal insert points in BBs.
+ if (Node == Entry) {
+ BBs.clear();
+ if (InsertPtsFreq > BFI.getBlockFreq(Node) ||
+ (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1))
+ BBs.insert(Entry);
+ else
+ BBs.insert(InsertPts.begin(), InsertPts.end());
+ break;
+ }
+
+ BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock();
+ // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child
+ // will update its parent's ParentInsertPts and ParentPtsFreq.
+ auto &ParentInsertPts = InsertPtsMap[Parent].first;
+ BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second;
+ // Choose to insert in Node or in subtree of Node.
+ // Don't hoist to EHPad because we may not find a proper place to insert
+ // in EHPad.
+ // If the total frequency of InsertPts is the same as the frequency of the
+ // target Node, and InsertPts contains more than one nodes, choose hoisting
+ // to reduce code size.
+ if (NodeInBBs ||
+ (!Node->isEHPad() &&
+ (InsertPtsFreq > BFI.getBlockFreq(Node) ||
+ (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) {
+ ParentInsertPts.insert(Node);
+ ParentPtsFreq += BFI.getBlockFreq(Node);
+ } else {
+ ParentInsertPts.insert(InsertPts.begin(), InsertPts.end());
+ ParentPtsFreq += InsertPtsFreq;
+ }
+ }
+}
+
+/// Find an insertion point that dominates all uses.
+SetVector<Instruction *> ConstantHoistingPass::findConstantInsertionPoint(
+ const ConstantInfo &ConstInfo) const {
+ assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
+ // Collect all basic blocks.
+ SetVector<BasicBlock *> BBs;
+ SetVector<Instruction *> InsertPts;
+ for (auto const &RCI : ConstInfo.RebasedConstants)
+ for (auto const &U : RCI.Uses)
+ BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent());
+
+ if (BBs.count(Entry)) {
+ InsertPts.insert(&Entry->front());
+ return InsertPts;
+ }
+
+ if (BFI) {
+ findBestInsertionSet(*DT, *BFI, Entry, BBs);
+ for (auto BB : BBs) {
+ BasicBlock::iterator InsertPt = BB->begin();
+ for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
+ ;
+ InsertPts.insert(&*InsertPt);
+ }
+ return InsertPts;
+ }
+
+ while (BBs.size() >= 2) {
+ BasicBlock *BB, *BB1, *BB2;
+ BB1 = BBs.pop_back_val();
+ BB2 = BBs.pop_back_val();
+ BB = DT->findNearestCommonDominator(BB1, BB2);
+ if (BB == Entry) {
+ InsertPts.insert(&Entry->front());
+ return InsertPts;
+ }
+ BBs.insert(BB);
+ }
+ assert((BBs.size() == 1) && "Expected only one element.");
+ Instruction &FirstInst = (*BBs.begin())->front();
+ InsertPts.insert(findMatInsertPt(&FirstInst));
+ return InsertPts;
+}
+
+/// Record constant integer ConstInt for instruction Inst at operand
+/// index Idx.
+///
+/// The operand at index Idx is not necessarily the constant integer itself. It
+/// could also be a cast instruction or a constant expression that uses the
+/// constant integer.
+void ConstantHoistingPass::collectConstantCandidates(
+ ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
+ ConstantInt *ConstInt) {
+ unsigned Cost;
+ // Ask the target about the cost of materializing the constant for the given
+ // instruction and operand index.
+ if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst))
+ Cost = TTI->getIntImmCost(IntrInst->getIntrinsicID(), Idx,
+ ConstInt->getValue(), ConstInt->getType());
+ else
+ Cost = TTI->getIntImmCost(Inst->getOpcode(), Idx, ConstInt->getValue(),
+ ConstInt->getType());
+
+ // Ignore cheap integer constants.
+ if (Cost > TargetTransformInfo::TCC_Basic) {
+ ConstCandMapType::iterator Itr;
+ bool Inserted;
+ ConstPtrUnionType Cand = ConstInt;
+ std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
+ if (Inserted) {
+ ConstIntCandVec.push_back(ConstantCandidate(ConstInt));
+ Itr->second = ConstIntCandVec.size() - 1;
+ }
+ ConstIntCandVec[Itr->second].addUser(Inst, Idx, Cost);
+ LLVM_DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx))) dbgs()
+ << "Collect constant " << *ConstInt << " from " << *Inst
+ << " with cost " << Cost << '\n';
+ else dbgs() << "Collect constant " << *ConstInt
+ << " indirectly from " << *Inst << " via "
+ << *Inst->getOperand(Idx) << " with cost " << Cost
+ << '\n';);
+ }
+}
+
+/// Record constant GEP expression for instruction Inst at operand index Idx.
+void ConstantHoistingPass::collectConstantCandidates(
+ ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
+ ConstantExpr *ConstExpr) {
+ // TODO: Handle vector GEPs
+ if (ConstExpr->getType()->isVectorTy())
+ return;
+
+ GlobalVariable *BaseGV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
+ if (!BaseGV)
+ return;
+
+ // Get offset from the base GV.
+ PointerType *GVPtrTy = cast<PointerType>(BaseGV->getType());
+ IntegerType *PtrIntTy = DL->getIntPtrType(*Ctx, GVPtrTy->getAddressSpace());
+ APInt Offset(DL->getTypeSizeInBits(PtrIntTy), /*val*/0, /*isSigned*/true);
+ auto *GEPO = cast<GEPOperator>(ConstExpr);
+ if (!GEPO->accumulateConstantOffset(*DL, Offset))
+ return;
+
+ if (!Offset.isIntN(32))
+ return;
+
+ // A constant GEP expression that has a GlobalVariable as base pointer is
+ // usually lowered to a load from constant pool. Such operation is unlikely
+ // to be cheaper than compute it by <Base + Offset>, which can be lowered to
+ // an ADD instruction or folded into Load/Store instruction.
+ int Cost = TTI->getIntImmCost(Instruction::Add, 1, Offset, PtrIntTy);
+ ConstCandVecType &ExprCandVec = ConstGEPCandMap[BaseGV];
+ ConstCandMapType::iterator Itr;
+ bool Inserted;
+ ConstPtrUnionType Cand = ConstExpr;
+ std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
+ if (Inserted) {
+ ExprCandVec.push_back(ConstantCandidate(
+ ConstantInt::get(Type::getInt32Ty(*Ctx), Offset.getLimitedValue()),
+ ConstExpr));
+ Itr->second = ExprCandVec.size() - 1;
+ }
+ ExprCandVec[Itr->second].addUser(Inst, Idx, Cost);
+}
+
+/// Check the operand for instruction Inst at index Idx.
+void ConstantHoistingPass::collectConstantCandidates(
+ ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) {
+ Value *Opnd = Inst->getOperand(Idx);
+
+ // Visit constant integers.
+ if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) {
+ collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
+ return;
+ }
+
+ // Visit cast instructions that have constant integers.
+ if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
+ // Only visit cast instructions, which have been skipped. All other
+ // instructions should have already been visited.
+ if (!CastInst->isCast())
+ return;
+
+ if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) {
+ // Pretend the constant is directly used by the instruction and ignore
+ // the cast instruction.
+ collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
+ return;
+ }
+ }
+
+ // Visit constant expressions that have constant integers.
+ if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
+ // Handle constant gep expressions.
+ if (ConstHoistGEP && ConstExpr->isGEPWithNoNotionalOverIndexing())
+ collectConstantCandidates(ConstCandMap, Inst, Idx, ConstExpr);
+
+ // Only visit constant cast expressions.
+ if (!ConstExpr->isCast())
+ return;
+
+ if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) {
+ // Pretend the constant is directly used by the instruction and ignore
+ // the constant expression.
+ collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
+ return;
+ }
+ }
+}
+
+/// Scan the instruction for expensive integer constants and record them
+/// in the constant candidate vector.
+void ConstantHoistingPass::collectConstantCandidates(
+ ConstCandMapType &ConstCandMap, Instruction *Inst) {
+ // Skip all cast instructions. They are visited indirectly later on.
+ if (Inst->isCast())
+ return;
+
+ // Scan all operands.
+ for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) {
+ // The cost of materializing the constants (defined in
+ // `TargetTransformInfo::getIntImmCost`) for instructions which only take
+ // constant variables is lower than `TargetTransformInfo::TCC_Basic`. So
+ // it's safe for us to collect constant candidates from all IntrinsicInsts.
+ if (canReplaceOperandWithVariable(Inst, Idx) || isa<IntrinsicInst>(Inst)) {
+ collectConstantCandidates(ConstCandMap, Inst, Idx);
+ }
+ } // end of for all operands
+}
+
+/// Collect all integer constants in the function that cannot be folded
+/// into an instruction itself.
+void ConstantHoistingPass::collectConstantCandidates(Function &Fn) {
+ ConstCandMapType ConstCandMap;
+ for (BasicBlock &BB : Fn)
+ for (Instruction &Inst : BB)
+ collectConstantCandidates(ConstCandMap, &Inst);
+}
+
+// This helper function is necessary to deal with values that have different
+// bit widths (APInt Operator- does not like that). If the value cannot be
+// represented in uint64 we return an "empty" APInt. This is then interpreted
+// as the value is not in range.
+static Optional<APInt> calculateOffsetDiff(const APInt &V1, const APInt &V2) {
+ Optional<APInt> Res = None;
+ unsigned BW = V1.getBitWidth() > V2.getBitWidth() ?
+ V1.getBitWidth() : V2.getBitWidth();
+ uint64_t LimVal1 = V1.getLimitedValue();
+ uint64_t LimVal2 = V2.getLimitedValue();
+
+ if (LimVal1 == ~0ULL || LimVal2 == ~0ULL)
+ return Res;
+
+ uint64_t Diff = LimVal1 - LimVal2;
+ return APInt(BW, Diff, true);
+}
+
+// From a list of constants, one needs to picked as the base and the other
+// constants will be transformed into an offset from that base constant. The
+// question is which we can pick best? For example, consider these constants
+// and their number of uses:
+//
+// Constants| 2 | 4 | 12 | 42 |
+// NumUses | 3 | 2 | 8 | 7 |
+//
+// Selecting constant 12 because it has the most uses will generate negative
+// offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative
+// offsets lead to less optimal code generation, then there might be better
+// solutions. Suppose immediates in the range of 0..35 are most optimally
+// supported by the architecture, then selecting constant 2 is most optimal
+// because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in
+// range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would
+// have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in
+// selecting the base constant the range of the offsets is a very important
+// factor too that we take into account here. This algorithm calculates a total
+// costs for selecting a constant as the base and substract the costs if
+// immediates are out of range. It has quadratic complexity, so we call this
+// function only when we're optimising for size and there are less than 100
+// constants, we fall back to the straightforward algorithm otherwise
+// which does not do all the offset calculations.
+unsigned
+ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S,
+ ConstCandVecType::iterator E,
+ ConstCandVecType::iterator &MaxCostItr) {
+ unsigned NumUses = 0;
+
+ bool OptForSize = Entry->getParent()->hasOptSize() ||
+ llvm::shouldOptimizeForSize(Entry->getParent(), PSI, BFI);
+ if (!OptForSize || std::distance(S,E) > 100) {
+ for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
+ NumUses += ConstCand->Uses.size();
+ if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost)
+ MaxCostItr = ConstCand;
+ }
+ return NumUses;
+ }
+
+ LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n");
+ int MaxCost = -1;
+ for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
+ auto Value = ConstCand->ConstInt->getValue();
+ Type *Ty = ConstCand->ConstInt->getType();
+ int Cost = 0;
+ NumUses += ConstCand->Uses.size();
+ LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue()
+ << "\n");
+
+ for (auto User : ConstCand->Uses) {
+ unsigned Opcode = User.Inst->getOpcode();
+ unsigned OpndIdx = User.OpndIdx;
+ Cost += TTI->getIntImmCost(Opcode, OpndIdx, Value, Ty);
+ LLVM_DEBUG(dbgs() << "Cost: " << Cost << "\n");
+
+ for (auto C2 = S; C2 != E; ++C2) {
+ Optional<APInt> Diff = calculateOffsetDiff(
+ C2->ConstInt->getValue(),
+ ConstCand->ConstInt->getValue());
+ if (Diff) {
+ const int ImmCosts =
+ TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, Diff.getValue(), Ty);
+ Cost -= ImmCosts;
+ LLVM_DEBUG(dbgs() << "Offset " << Diff.getValue() << " "
+ << "has penalty: " << ImmCosts << "\n"
+ << "Adjusted cost: " << Cost << "\n");
+ }
+ }
+ }
+ LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n");
+ if (Cost > MaxCost) {
+ MaxCost = Cost;
+ MaxCostItr = ConstCand;
+ LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue()
+ << "\n");
+ }
+ }
+ return NumUses;
+}
+
+/// Find the base constant within the given range and rebase all other
+/// constants with respect to the base constant.
+void ConstantHoistingPass::findAndMakeBaseConstant(
+ ConstCandVecType::iterator S, ConstCandVecType::iterator E,
+ SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec) {
+ auto MaxCostItr = S;
+ unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr);
+
+ // Don't hoist constants that have only one use.
+ if (NumUses <= 1)
+ return;
+
+ ConstantInt *ConstInt = MaxCostItr->ConstInt;
+ ConstantExpr *ConstExpr = MaxCostItr->ConstExpr;
+ ConstantInfo ConstInfo;
+ ConstInfo.BaseInt = ConstInt;
+ ConstInfo.BaseExpr = ConstExpr;
+ Type *Ty = ConstInt->getType();
+
+ // Rebase the constants with respect to the base constant.
+ for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
+ APInt Diff = ConstCand->ConstInt->getValue() - ConstInt->getValue();
+ Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff);
+ Type *ConstTy =
+ ConstCand->ConstExpr ? ConstCand->ConstExpr->getType() : nullptr;
+ ConstInfo.RebasedConstants.push_back(
+ RebasedConstantInfo(std::move(ConstCand->Uses), Offset, ConstTy));
+ }
+ ConstInfoVec.push_back(std::move(ConstInfo));
+}
+
+/// Finds and combines constant candidates that can be easily
+/// rematerialized with an add from a common base constant.
+void ConstantHoistingPass::findBaseConstants(GlobalVariable *BaseGV) {
+ // If BaseGV is nullptr, find base among candidate constant integers;
+ // Otherwise find base among constant GEPs that share the same BaseGV.
+ ConstCandVecType &ConstCandVec = BaseGV ?
+ ConstGEPCandMap[BaseGV] : ConstIntCandVec;
+ ConstInfoVecType &ConstInfoVec = BaseGV ?
+ ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
+
+ // Sort the constants by value and type. This invalidates the mapping!
+ llvm::stable_sort(ConstCandVec, [](const ConstantCandidate &LHS,
+ const ConstantCandidate &RHS) {
+ if (LHS.ConstInt->getType() != RHS.ConstInt->getType())
+ return LHS.ConstInt->getType()->getBitWidth() <
+ RHS.ConstInt->getType()->getBitWidth();
+ return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue());
+ });
+
+ // Simple linear scan through the sorted constant candidate vector for viable
+ // merge candidates.
+ auto MinValItr = ConstCandVec.begin();
+ for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end();
+ CC != E; ++CC) {
+ if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) {
+ Type *MemUseValTy = nullptr;
+ for (auto &U : CC->Uses) {
+ auto *UI = U.Inst;
+ if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
+ MemUseValTy = LI->getType();
+ break;
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
+ // Make sure the constant is used as pointer operand of the StoreInst.
+ if (SI->getPointerOperand() == SI->getOperand(U.OpndIdx)) {
+ MemUseValTy = SI->getValueOperand()->getType();
+ break;
+ }
+ }
+ }
+
+ // Check if the constant is in range of an add with immediate.
+ APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue();
+ if ((Diff.getBitWidth() <= 64) &&
+ TTI->isLegalAddImmediate(Diff.getSExtValue()) &&
+ // Check if Diff can be used as offset in addressing mode of the user
+ // memory instruction.
+ (!MemUseValTy || TTI->isLegalAddressingMode(MemUseValTy,
+ /*BaseGV*/nullptr, /*BaseOffset*/Diff.getSExtValue(),
+ /*HasBaseReg*/true, /*Scale*/0)))
+ continue;
+ }
+ // We either have now a different constant type or the constant is not in
+ // range of an add with immediate anymore.
+ findAndMakeBaseConstant(MinValItr, CC, ConstInfoVec);
+ // Start a new base constant search.
+ MinValItr = CC;
+ }
+ // Finalize the last base constant search.
+ findAndMakeBaseConstant(MinValItr, ConstCandVec.end(), ConstInfoVec);
+}
+
+/// Updates the operand at Idx in instruction Inst with the result of
+/// instruction Mat. If the instruction is a PHI node then special
+/// handling for duplicate values form the same incoming basic block is
+/// required.
+/// \return The update will always succeed, but the return value indicated if
+/// Mat was used for the update or not.
+static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) {
+ if (auto PHI = dyn_cast<PHINode>(Inst)) {
+ // Check if any previous operand of the PHI node has the same incoming basic
+ // block. This is a very odd case that happens when the incoming basic block
+ // has a switch statement. In this case use the same value as the previous
+ // operand(s), otherwise we will fail verification due to different values.
+ // The values are actually the same, but the variable names are different
+ // and the verifier doesn't like that.
+ BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx);
+ for (unsigned i = 0; i < Idx; ++i) {
+ if (PHI->getIncomingBlock(i) == IncomingBB) {
+ Value *IncomingVal = PHI->getIncomingValue(i);
+ Inst->setOperand(Idx, IncomingVal);
+ return false;
+ }
+ }
+ }
+
+ Inst->setOperand(Idx, Mat);
+ return true;
+}
+
+/// Emit materialization code for all rebased constants and update their
+/// users.
+void ConstantHoistingPass::emitBaseConstants(Instruction *Base,
+ Constant *Offset,
+ Type *Ty,
+ const ConstantUser &ConstUser) {
+ Instruction *Mat = Base;
+
+ // The same offset can be dereferenced to different types in nested struct.
+ if (!Offset && Ty && Ty != Base->getType())
+ Offset = ConstantInt::get(Type::getInt32Ty(*Ctx), 0);
+
+ if (Offset) {
+ Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst,
+ ConstUser.OpndIdx);
+ if (Ty) {
+ // Constant being rebased is a ConstantExpr.
+ PointerType *Int8PtrTy = Type::getInt8PtrTy(*Ctx,
+ cast<PointerType>(Ty)->getAddressSpace());
+ Base = new BitCastInst(Base, Int8PtrTy, "base_bitcast", InsertionPt);
+ Mat = GetElementPtrInst::Create(Int8PtrTy->getElementType(), Base,
+ Offset, "mat_gep", InsertionPt);
+ Mat = new BitCastInst(Mat, Ty, "mat_bitcast", InsertionPt);
+ } else
+ // Constant being rebased is a ConstantInt.
+ Mat = BinaryOperator::Create(Instruction::Add, Base, Offset,
+ "const_mat", InsertionPt);
+
+ LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
+ << " + " << *Offset << ") in BB "
+ << Mat->getParent()->getName() << '\n'
+ << *Mat << '\n');
+ Mat->setDebugLoc(ConstUser.Inst->getDebugLoc());
+ }
+ Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx);
+
+ // Visit constant integer.
+ if (isa<ConstantInt>(Opnd)) {
+ LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
+ if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset)
+ Mat->eraseFromParent();
+ LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n');
+ return;
+ }
+
+ // Visit cast instruction.
+ if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
+ assert(CastInst->isCast() && "Expected an cast instruction!");
+ // Check if we already have visited this cast instruction before to avoid
+ // unnecessary cloning.
+ Instruction *&ClonedCastInst = ClonedCastMap[CastInst];
+ if (!ClonedCastInst) {
+ ClonedCastInst = CastInst->clone();
+ ClonedCastInst->setOperand(0, Mat);
+ ClonedCastInst->insertAfter(CastInst);
+ // Use the same debug location as the original cast instruction.
+ ClonedCastInst->setDebugLoc(CastInst->getDebugLoc());
+ LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n'
+ << "To : " << *ClonedCastInst << '\n');
+ }
+
+ LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
+ updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst);
+ LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n');
+ return;
+ }
+
+ // Visit constant expression.
+ if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
+ if (ConstExpr->isGEPWithNoNotionalOverIndexing()) {
+ // Operand is a ConstantGEP, replace it.
+ updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat);
+ return;
+ }
+
+ // Aside from constant GEPs, only constant cast expressions are collected.
+ assert(ConstExpr->isCast() && "ConstExpr should be a cast");
+ Instruction *ConstExprInst = ConstExpr->getAsInstruction();
+ ConstExprInst->setOperand(0, Mat);
+ ConstExprInst->insertBefore(findMatInsertPt(ConstUser.Inst,
+ ConstUser.OpndIdx));
+
+ // Use the same debug location as the instruction we are about to update.
+ ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc());
+
+ LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n'
+ << "From : " << *ConstExpr << '\n');
+ LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
+ if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) {
+ ConstExprInst->eraseFromParent();
+ if (Offset)
+ Mat->eraseFromParent();
+ }
+ LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n');
+ return;
+ }
+}
+
+/// Hoist and hide the base constant behind a bitcast and emit
+/// materialization code for derived constants.
+bool ConstantHoistingPass::emitBaseConstants(GlobalVariable *BaseGV) {
+ bool MadeChange = false;
+ SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec =
+ BaseGV ? ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
+ for (auto const &ConstInfo : ConstInfoVec) {
+ SetVector<Instruction *> IPSet = findConstantInsertionPoint(ConstInfo);
+ // We can have an empty set if the function contains unreachable blocks.
+ if (IPSet.empty())
+ continue;
+
+ unsigned UsesNum = 0;
+ unsigned ReBasesNum = 0;
+ unsigned NotRebasedNum = 0;
+ for (Instruction *IP : IPSet) {
+ // First, collect constants depending on this IP of the base.
+ unsigned Uses = 0;
+ using RebasedUse = std::tuple<Constant *, Type *, ConstantUser>;
+ SmallVector<RebasedUse, 4> ToBeRebased;
+ for (auto const &RCI : ConstInfo.RebasedConstants) {
+ for (auto const &U : RCI.Uses) {
+ Uses++;
+ BasicBlock *OrigMatInsertBB =
+ findMatInsertPt(U.Inst, U.OpndIdx)->getParent();
+ // If Base constant is to be inserted in multiple places,
+ // generate rebase for U using the Base dominating U.
+ if (IPSet.size() == 1 ||
+ DT->dominates(IP->getParent(), OrigMatInsertBB))
+ ToBeRebased.push_back(RebasedUse(RCI.Offset, RCI.Ty, U));
+ }
+ }
+ UsesNum = Uses;
+
+ // If only few constants depend on this IP of base, skip rebasing,
+ // assuming the base and the rebased have the same materialization cost.
+ if (ToBeRebased.size() < MinNumOfDependentToRebase) {
+ NotRebasedNum += ToBeRebased.size();
+ continue;
+ }
+
+ // Emit an instance of the base at this IP.
+ Instruction *Base = nullptr;
+ // Hoist and hide the base constant behind a bitcast.
+ if (ConstInfo.BaseExpr) {
+ assert(BaseGV && "A base constant expression must have an base GV");
+ Type *Ty = ConstInfo.BaseExpr->getType();
+ Base = new BitCastInst(ConstInfo.BaseExpr, Ty, "const", IP);
+ } else {
+ IntegerType *Ty = ConstInfo.BaseInt->getType();
+ Base = new BitCastInst(ConstInfo.BaseInt, Ty, "const", IP);
+ }
+
+ Base->setDebugLoc(IP->getDebugLoc());
+
+ LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseInt
+ << ") to BB " << IP->getParent()->getName() << '\n'
+ << *Base << '\n');
+
+ // Emit materialization code for rebased constants depending on this IP.
+ for (auto const &R : ToBeRebased) {
+ Constant *Off = std::get<0>(R);
+ Type *Ty = std::get<1>(R);
+ ConstantUser U = std::get<2>(R);
+ emitBaseConstants(Base, Off, Ty, U);
+ ReBasesNum++;
+ // Use the same debug location as the last user of the constant.
+ Base->setDebugLoc(DILocation::getMergedLocation(
+ Base->getDebugLoc(), U.Inst->getDebugLoc()));
+ }
+ assert(!Base->use_empty() && "The use list is empty!?");
+ assert(isa<Instruction>(Base->user_back()) &&
+ "All uses should be instructions.");
+ }
+ (void)UsesNum;
+ (void)ReBasesNum;
+ (void)NotRebasedNum;
+ // Expect all uses are rebased after rebase is done.
+ assert(UsesNum == (ReBasesNum + NotRebasedNum) &&
+ "Not all uses are rebased");
+
+ NumConstantsHoisted++;
+
+ // Base constant is also included in ConstInfo.RebasedConstants, so
+ // deduct 1 from ConstInfo.RebasedConstants.size().
+ NumConstantsRebased += ConstInfo.RebasedConstants.size() - 1;
+
+ MadeChange = true;
+ }
+ return MadeChange;
+}
+
+/// Check all cast instructions we made a copy of and remove them if they
+/// have no more users.
+void ConstantHoistingPass::deleteDeadCastInst() const {
+ for (auto const &I : ClonedCastMap)
+ if (I.first->use_empty())
+ I.first->eraseFromParent();
+}
+
+/// Optimize expensive integer constants in the given function.
+bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI,
+ DominatorTree &DT, BlockFrequencyInfo *BFI,
+ BasicBlock &Entry, ProfileSummaryInfo *PSI) {
+ this->TTI = &TTI;
+ this->DT = &DT;
+ this->BFI = BFI;
+ this->DL = &Fn.getParent()->getDataLayout();
+ this->Ctx = &Fn.getContext();
+ this->Entry = &Entry;
+ this->PSI = PSI;
+ // Collect all constant candidates.
+ collectConstantCandidates(Fn);
+
+ // Combine constants that can be easily materialized with an add from a common
+ // base constant.
+ if (!ConstIntCandVec.empty())
+ findBaseConstants(nullptr);
+ for (auto &MapEntry : ConstGEPCandMap)
+ if (!MapEntry.second.empty())
+ findBaseConstants(MapEntry.first);
+
+ // Finally hoist the base constant and emit materialization code for dependent
+ // constants.
+ bool MadeChange = false;
+ if (!ConstIntInfoVec.empty())
+ MadeChange = emitBaseConstants(nullptr);
+ for (auto MapEntry : ConstGEPInfoMap)
+ if (!MapEntry.second.empty())
+ MadeChange |= emitBaseConstants(MapEntry.first);
+
+
+ // Cleanup dead instructions.
+ deleteDeadCastInst();
+
+ cleanup();
+
+ return MadeChange;
+}
+
+PreservedAnalyses ConstantHoistingPass::run(Function &F,
+ FunctionAnalysisManager &AM) {
+ auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
+ auto &TTI = AM.getResult<TargetIRAnalysis>(F);
+ auto BFI = ConstHoistWithBlockFrequency
+ ? &AM.getResult<BlockFrequencyAnalysis>(F)
+ : nullptr;
+ auto &MAM = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
+ auto *PSI = MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
+ if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock(), PSI))
+ return PreservedAnalyses::all();
+
+ PreservedAnalyses PA;
+ PA.preserveSet<CFGAnalyses>();
+ return PA;
+}