diff options
Diffstat (limited to 'llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp')
| -rw-r--r-- | llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp | 1398 |
1 files changed, 1398 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp b/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp new file mode 100644 index 000000000000..685de82810ed --- /dev/null +++ b/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp @@ -0,0 +1,1398 @@ +//===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements a trivial dead store elimination that only considers +// basic-block local redundant stores. +// +// FIXME: This should eventually be extended to be a post-dominator tree +// traversal. Doing so would be pretty trivial. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Scalar/DeadStoreElimination.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/CaptureTracking.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/MemoryBuiltins.h" +#include "llvm/Analysis/MemoryDependenceAnalysis.h" +#include "llvm/Analysis/MemoryLocation.h" +#include "llvm/Analysis/OrderedBasicBlock.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/Argument.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/PassManager.h" +#include "llvm/IR/Value.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils/Local.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <iterator> +#include <map> +#include <utility> + +using namespace llvm; + +#define DEBUG_TYPE "dse" + +STATISTIC(NumRedundantStores, "Number of redundant stores deleted"); +STATISTIC(NumFastStores, "Number of stores deleted"); +STATISTIC(NumFastOther, "Number of other instrs removed"); +STATISTIC(NumCompletePartials, "Number of stores dead by later partials"); +STATISTIC(NumModifiedStores, "Number of stores modified"); + +static cl::opt<bool> +EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking", + cl::init(true), cl::Hidden, + cl::desc("Enable partial-overwrite tracking in DSE")); + +static cl::opt<bool> +EnablePartialStoreMerging("enable-dse-partial-store-merging", + cl::init(true), cl::Hidden, + cl::desc("Enable partial store merging in DSE")); + +//===----------------------------------------------------------------------===// +// Helper functions +//===----------------------------------------------------------------------===// +using OverlapIntervalsTy = std::map<int64_t, int64_t>; +using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>; + +/// Delete this instruction. Before we do, go through and zero out all the +/// operands of this instruction. If any of them become dead, delete them and +/// the computation tree that feeds them. +/// If ValueSet is non-null, remove any deleted instructions from it as well. +static void +deleteDeadInstruction(Instruction *I, BasicBlock::iterator *BBI, + MemoryDependenceResults &MD, const TargetLibraryInfo &TLI, + InstOverlapIntervalsTy &IOL, OrderedBasicBlock &OBB, + SmallSetVector<const Value *, 16> *ValueSet = nullptr) { + SmallVector<Instruction*, 32> NowDeadInsts; + + NowDeadInsts.push_back(I); + --NumFastOther; + + // Keeping the iterator straight is a pain, so we let this routine tell the + // caller what the next instruction is after we're done mucking about. + BasicBlock::iterator NewIter = *BBI; + + // Before we touch this instruction, remove it from memdep! + do { + Instruction *DeadInst = NowDeadInsts.pop_back_val(); + ++NumFastOther; + + // Try to preserve debug information attached to the dead instruction. + salvageDebugInfo(*DeadInst); + + // This instruction is dead, zap it, in stages. Start by removing it from + // MemDep, which needs to know the operands and needs it to be in the + // function. + MD.removeInstruction(DeadInst); + + for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) { + Value *Op = DeadInst->getOperand(op); + DeadInst->setOperand(op, nullptr); + + // If this operand just became dead, add it to the NowDeadInsts list. + if (!Op->use_empty()) continue; + + if (Instruction *OpI = dyn_cast<Instruction>(Op)) + if (isInstructionTriviallyDead(OpI, &TLI)) + NowDeadInsts.push_back(OpI); + } + + if (ValueSet) ValueSet->remove(DeadInst); + IOL.erase(DeadInst); + OBB.eraseInstruction(DeadInst); + + if (NewIter == DeadInst->getIterator()) + NewIter = DeadInst->eraseFromParent(); + else + DeadInst->eraseFromParent(); + } while (!NowDeadInsts.empty()); + *BBI = NewIter; +} + +/// Does this instruction write some memory? This only returns true for things +/// that we can analyze with other helpers below. +static bool hasAnalyzableMemoryWrite(Instruction *I, + const TargetLibraryInfo &TLI) { + if (isa<StoreInst>(I)) + return true; + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { + switch (II->getIntrinsicID()) { + default: + return false; + case Intrinsic::memset: + case Intrinsic::memmove: + case Intrinsic::memcpy: + case Intrinsic::memcpy_element_unordered_atomic: + case Intrinsic::memmove_element_unordered_atomic: + case Intrinsic::memset_element_unordered_atomic: + case Intrinsic::init_trampoline: + case Intrinsic::lifetime_end: + return true; + } + } + if (auto CS = CallSite(I)) { + if (Function *F = CS.getCalledFunction()) { + StringRef FnName = F->getName(); + if (TLI.has(LibFunc_strcpy) && FnName == TLI.getName(LibFunc_strcpy)) + return true; + if (TLI.has(LibFunc_strncpy) && FnName == TLI.getName(LibFunc_strncpy)) + return true; + if (TLI.has(LibFunc_strcat) && FnName == TLI.getName(LibFunc_strcat)) + return true; + if (TLI.has(LibFunc_strncat) && FnName == TLI.getName(LibFunc_strncat)) + return true; + } + } + return false; +} + +/// Return a Location stored to by the specified instruction. If isRemovable +/// returns true, this function and getLocForRead completely describe the memory +/// operations for this instruction. +static MemoryLocation getLocForWrite(Instruction *Inst) { + + if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) + return MemoryLocation::get(SI); + + if (auto *MI = dyn_cast<AnyMemIntrinsic>(Inst)) { + // memcpy/memmove/memset. + MemoryLocation Loc = MemoryLocation::getForDest(MI); + return Loc; + } + + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { + switch (II->getIntrinsicID()) { + default: + return MemoryLocation(); // Unhandled intrinsic. + case Intrinsic::init_trampoline: + return MemoryLocation(II->getArgOperand(0)); + case Intrinsic::lifetime_end: { + uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(); + return MemoryLocation(II->getArgOperand(1), Len); + } + } + } + if (auto CS = CallSite(Inst)) + // All the supported TLI functions so far happen to have dest as their + // first argument. + return MemoryLocation(CS.getArgument(0)); + return MemoryLocation(); +} + +/// Return the location read by the specified "hasAnalyzableMemoryWrite" +/// instruction if any. +static MemoryLocation getLocForRead(Instruction *Inst, + const TargetLibraryInfo &TLI) { + assert(hasAnalyzableMemoryWrite(Inst, TLI) && "Unknown instruction case"); + + // The only instructions that both read and write are the mem transfer + // instructions (memcpy/memmove). + if (auto *MTI = dyn_cast<AnyMemTransferInst>(Inst)) + return MemoryLocation::getForSource(MTI); + return MemoryLocation(); +} + +/// If the value of this instruction and the memory it writes to is unused, may +/// we delete this instruction? +static bool isRemovable(Instruction *I) { + // Don't remove volatile/atomic stores. + if (StoreInst *SI = dyn_cast<StoreInst>(I)) + return SI->isUnordered(); + + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { + switch (II->getIntrinsicID()) { + default: llvm_unreachable("doesn't pass 'hasAnalyzableMemoryWrite' predicate"); + case Intrinsic::lifetime_end: + // Never remove dead lifetime_end's, e.g. because it is followed by a + // free. + return false; + case Intrinsic::init_trampoline: + // Always safe to remove init_trampoline. + return true; + case Intrinsic::memset: + case Intrinsic::memmove: + case Intrinsic::memcpy: + // Don't remove volatile memory intrinsics. + return !cast<MemIntrinsic>(II)->isVolatile(); + case Intrinsic::memcpy_element_unordered_atomic: + case Intrinsic::memmove_element_unordered_atomic: + case Intrinsic::memset_element_unordered_atomic: + return true; + } + } + + // note: only get here for calls with analyzable writes - i.e. libcalls + if (auto CS = CallSite(I)) + return CS.getInstruction()->use_empty(); + + return false; +} + +/// Returns true if the end of this instruction can be safely shortened in +/// length. +static bool isShortenableAtTheEnd(Instruction *I) { + // Don't shorten stores for now + if (isa<StoreInst>(I)) + return false; + + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { + switch (II->getIntrinsicID()) { + default: return false; + case Intrinsic::memset: + case Intrinsic::memcpy: + case Intrinsic::memcpy_element_unordered_atomic: + case Intrinsic::memset_element_unordered_atomic: + // Do shorten memory intrinsics. + // FIXME: Add memmove if it's also safe to transform. + return true; + } + } + + // Don't shorten libcalls calls for now. + + return false; +} + +/// Returns true if the beginning of this instruction can be safely shortened +/// in length. +static bool isShortenableAtTheBeginning(Instruction *I) { + // FIXME: Handle only memset for now. Supporting memcpy/memmove should be + // easily done by offsetting the source address. + return isa<AnyMemSetInst>(I); +} + +/// Return the pointer that is being written to. +static Value *getStoredPointerOperand(Instruction *I) { + //TODO: factor this to reuse getLocForWrite + MemoryLocation Loc = getLocForWrite(I); + assert(Loc.Ptr && + "unable to find pointer written for analyzable instruction?"); + // TODO: most APIs don't expect const Value * + return const_cast<Value*>(Loc.Ptr); +} + +static uint64_t getPointerSize(const Value *V, const DataLayout &DL, + const TargetLibraryInfo &TLI, + const Function *F) { + uint64_t Size; + ObjectSizeOpts Opts; + Opts.NullIsUnknownSize = NullPointerIsDefined(F); + + if (getObjectSize(V, Size, DL, &TLI, Opts)) + return Size; + return MemoryLocation::UnknownSize; +} + +namespace { + +enum OverwriteResult { + OW_Begin, + OW_Complete, + OW_End, + OW_PartialEarlierWithFullLater, + OW_Unknown +}; + +} // end anonymous namespace + +/// Return 'OW_Complete' if a store to the 'Later' location completely +/// overwrites a store to the 'Earlier' location, 'OW_End' if the end of the +/// 'Earlier' location is completely overwritten by 'Later', 'OW_Begin' if the +/// beginning of the 'Earlier' location is overwritten by 'Later'. +/// 'OW_PartialEarlierWithFullLater' means that an earlier (big) store was +/// overwritten by a latter (smaller) store which doesn't write outside the big +/// store's memory locations. Returns 'OW_Unknown' if nothing can be determined. +static OverwriteResult isOverwrite(const MemoryLocation &Later, + const MemoryLocation &Earlier, + const DataLayout &DL, + const TargetLibraryInfo &TLI, + int64_t &EarlierOff, int64_t &LaterOff, + Instruction *DepWrite, + InstOverlapIntervalsTy &IOL, + AliasAnalysis &AA, + const Function *F) { + // FIXME: Vet that this works for size upper-bounds. Seems unlikely that we'll + // get imprecise values here, though (except for unknown sizes). + if (!Later.Size.isPrecise() || !Earlier.Size.isPrecise()) + return OW_Unknown; + + const uint64_t LaterSize = Later.Size.getValue(); + const uint64_t EarlierSize = Earlier.Size.getValue(); + + const Value *P1 = Earlier.Ptr->stripPointerCasts(); + const Value *P2 = Later.Ptr->stripPointerCasts(); + + // If the start pointers are the same, we just have to compare sizes to see if + // the later store was larger than the earlier store. + if (P1 == P2 || AA.isMustAlias(P1, P2)) { + // Make sure that the Later size is >= the Earlier size. + if (LaterSize >= EarlierSize) + return OW_Complete; + } + + // Check to see if the later store is to the entire object (either a global, + // an alloca, or a byval/inalloca argument). If so, then it clearly + // overwrites any other store to the same object. + const Value *UO1 = GetUnderlyingObject(P1, DL), + *UO2 = GetUnderlyingObject(P2, DL); + + // If we can't resolve the same pointers to the same object, then we can't + // analyze them at all. + if (UO1 != UO2) + return OW_Unknown; + + // If the "Later" store is to a recognizable object, get its size. + uint64_t ObjectSize = getPointerSize(UO2, DL, TLI, F); + if (ObjectSize != MemoryLocation::UnknownSize) + if (ObjectSize == LaterSize && ObjectSize >= EarlierSize) + return OW_Complete; + + // Okay, we have stores to two completely different pointers. Try to + // decompose the pointer into a "base + constant_offset" form. If the base + // pointers are equal, then we can reason about the two stores. + EarlierOff = 0; + LaterOff = 0; + const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, DL); + const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, DL); + + // If the base pointers still differ, we have two completely different stores. + if (BP1 != BP2) + return OW_Unknown; + + // The later store completely overlaps the earlier store if: + // + // 1. Both start at the same offset and the later one's size is greater than + // or equal to the earlier one's, or + // + // |--earlier--| + // |-- later --| + // + // 2. The earlier store has an offset greater than the later offset, but which + // still lies completely within the later store. + // + // |--earlier--| + // |----- later ------| + // + // We have to be careful here as *Off is signed while *.Size is unsigned. + if (EarlierOff >= LaterOff && + LaterSize >= EarlierSize && + uint64_t(EarlierOff - LaterOff) + EarlierSize <= LaterSize) + return OW_Complete; + + // We may now overlap, although the overlap is not complete. There might also + // be other incomplete overlaps, and together, they might cover the complete + // earlier write. + // Note: The correctness of this logic depends on the fact that this function + // is not even called providing DepWrite when there are any intervening reads. + if (EnablePartialOverwriteTracking && + LaterOff < int64_t(EarlierOff + EarlierSize) && + int64_t(LaterOff + LaterSize) >= EarlierOff) { + + // Insert our part of the overlap into the map. + auto &IM = IOL[DepWrite]; + LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: Earlier [" << EarlierOff + << ", " << int64_t(EarlierOff + EarlierSize) + << ") Later [" << LaterOff << ", " + << int64_t(LaterOff + LaterSize) << ")\n"); + + // Make sure that we only insert non-overlapping intervals and combine + // adjacent intervals. The intervals are stored in the map with the ending + // offset as the key (in the half-open sense) and the starting offset as + // the value. + int64_t LaterIntStart = LaterOff, LaterIntEnd = LaterOff + LaterSize; + + // Find any intervals ending at, or after, LaterIntStart which start + // before LaterIntEnd. + auto ILI = IM.lower_bound(LaterIntStart); + if (ILI != IM.end() && ILI->second <= LaterIntEnd) { + // This existing interval is overlapped with the current store somewhere + // in [LaterIntStart, LaterIntEnd]. Merge them by erasing the existing + // intervals and adjusting our start and end. + LaterIntStart = std::min(LaterIntStart, ILI->second); + LaterIntEnd = std::max(LaterIntEnd, ILI->first); + ILI = IM.erase(ILI); + + // Continue erasing and adjusting our end in case other previous + // intervals are also overlapped with the current store. + // + // |--- ealier 1 ---| |--- ealier 2 ---| + // |------- later---------| + // + while (ILI != IM.end() && ILI->second <= LaterIntEnd) { + assert(ILI->second > LaterIntStart && "Unexpected interval"); + LaterIntEnd = std::max(LaterIntEnd, ILI->first); + ILI = IM.erase(ILI); + } + } + + IM[LaterIntEnd] = LaterIntStart; + + ILI = IM.begin(); + if (ILI->second <= EarlierOff && + ILI->first >= int64_t(EarlierOff + EarlierSize)) { + LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: Earlier [" + << EarlierOff << ", " + << int64_t(EarlierOff + EarlierSize) + << ") Composite Later [" << ILI->second << ", " + << ILI->first << ")\n"); + ++NumCompletePartials; + return OW_Complete; + } + } + + // Check for an earlier store which writes to all the memory locations that + // the later store writes to. + if (EnablePartialStoreMerging && LaterOff >= EarlierOff && + int64_t(EarlierOff + EarlierSize) > LaterOff && + uint64_t(LaterOff - EarlierOff) + LaterSize <= EarlierSize) { + LLVM_DEBUG(dbgs() << "DSE: Partial overwrite an earlier load [" + << EarlierOff << ", " + << int64_t(EarlierOff + EarlierSize) + << ") by a later store [" << LaterOff << ", " + << int64_t(LaterOff + LaterSize) << ")\n"); + // TODO: Maybe come up with a better name? + return OW_PartialEarlierWithFullLater; + } + + // Another interesting case is if the later store overwrites the end of the + // earlier store. + // + // |--earlier--| + // |-- later --| + // + // In this case we may want to trim the size of earlier to avoid generating + // writes to addresses which will definitely be overwritten later + if (!EnablePartialOverwriteTracking && + (LaterOff > EarlierOff && LaterOff < int64_t(EarlierOff + EarlierSize) && + int64_t(LaterOff + LaterSize) >= int64_t(EarlierOff + EarlierSize))) + return OW_End; + + // Finally, we also need to check if the later store overwrites the beginning + // of the earlier store. + // + // |--earlier--| + // |-- later --| + // + // In this case we may want to move the destination address and trim the size + // of earlier to avoid generating writes to addresses which will definitely + // be overwritten later. + if (!EnablePartialOverwriteTracking && + (LaterOff <= EarlierOff && int64_t(LaterOff + LaterSize) > EarlierOff)) { + assert(int64_t(LaterOff + LaterSize) < int64_t(EarlierOff + EarlierSize) && + "Expect to be handled as OW_Complete"); + return OW_Begin; + } + // Otherwise, they don't completely overlap. + return OW_Unknown; +} + +/// If 'Inst' might be a self read (i.e. a noop copy of a +/// memory region into an identical pointer) then it doesn't actually make its +/// input dead in the traditional sense. Consider this case: +/// +/// memmove(A <- B) +/// memmove(A <- A) +/// +/// In this case, the second store to A does not make the first store to A dead. +/// The usual situation isn't an explicit A<-A store like this (which can be +/// trivially removed) but a case where two pointers may alias. +/// +/// This function detects when it is unsafe to remove a dependent instruction +/// because the DSE inducing instruction may be a self-read. +static bool isPossibleSelfRead(Instruction *Inst, + const MemoryLocation &InstStoreLoc, + Instruction *DepWrite, + const TargetLibraryInfo &TLI, + AliasAnalysis &AA) { + // Self reads can only happen for instructions that read memory. Get the + // location read. + MemoryLocation InstReadLoc = getLocForRead(Inst, TLI); + if (!InstReadLoc.Ptr) + return false; // Not a reading instruction. + + // If the read and written loc obviously don't alias, it isn't a read. + if (AA.isNoAlias(InstReadLoc, InstStoreLoc)) + return false; + + if (isa<AnyMemCpyInst>(Inst)) { + // LLVM's memcpy overlap semantics are not fully fleshed out (see PR11763) + // but in practice memcpy(A <- B) either means that A and B are disjoint or + // are equal (i.e. there are not partial overlaps). Given that, if we have: + // + // memcpy/memmove(A <- B) // DepWrite + // memcpy(A <- B) // Inst + // + // with Inst reading/writing a >= size than DepWrite, we can reason as + // follows: + // + // - If A == B then both the copies are no-ops, so the DepWrite can be + // removed. + // - If A != B then A and B are disjoint locations in Inst. Since + // Inst.size >= DepWrite.size A and B are disjoint in DepWrite too. + // Therefore DepWrite can be removed. + MemoryLocation DepReadLoc = getLocForRead(DepWrite, TLI); + + if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr)) + return false; + } + + // If DepWrite doesn't read memory or if we can't prove it is a must alias, + // then it can't be considered dead. + return true; +} + +/// Returns true if the memory which is accessed by the second instruction is not +/// modified between the first and the second instruction. +/// Precondition: Second instruction must be dominated by the first +/// instruction. +static bool memoryIsNotModifiedBetween(Instruction *FirstI, + Instruction *SecondI, + AliasAnalysis *AA) { + SmallVector<BasicBlock *, 16> WorkList; + SmallPtrSet<BasicBlock *, 8> Visited; + BasicBlock::iterator FirstBBI(FirstI); + ++FirstBBI; + BasicBlock::iterator SecondBBI(SecondI); + BasicBlock *FirstBB = FirstI->getParent(); + BasicBlock *SecondBB = SecondI->getParent(); + MemoryLocation MemLoc = MemoryLocation::get(SecondI); + + // Start checking the store-block. + WorkList.push_back(SecondBB); + bool isFirstBlock = true; + + // Check all blocks going backward until we reach the load-block. + while (!WorkList.empty()) { + BasicBlock *B = WorkList.pop_back_val(); + + // Ignore instructions before LI if this is the FirstBB. + BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin()); + + BasicBlock::iterator EI; + if (isFirstBlock) { + // Ignore instructions after SI if this is the first visit of SecondBB. + assert(B == SecondBB && "first block is not the store block"); + EI = SecondBBI; + isFirstBlock = false; + } else { + // It's not SecondBB or (in case of a loop) the second visit of SecondBB. + // In this case we also have to look at instructions after SI. + EI = B->end(); + } + for (; BI != EI; ++BI) { + Instruction *I = &*BI; + if (I->mayWriteToMemory() && I != SecondI) + if (isModSet(AA->getModRefInfo(I, MemLoc))) + return false; + } + if (B != FirstBB) { + assert(B != &FirstBB->getParent()->getEntryBlock() && + "Should not hit the entry block because SI must be dominated by LI"); + for (auto PredI = pred_begin(B), PE = pred_end(B); PredI != PE; ++PredI) { + if (!Visited.insert(*PredI).second) + continue; + WorkList.push_back(*PredI); + } + } + } + return true; +} + +/// Find all blocks that will unconditionally lead to the block BB and append +/// them to F. +static void findUnconditionalPreds(SmallVectorImpl<BasicBlock *> &Blocks, + BasicBlock *BB, DominatorTree *DT) { + for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { + BasicBlock *Pred = *I; + if (Pred == BB) continue; + Instruction *PredTI = Pred->getTerminator(); + if (PredTI->getNumSuccessors() != 1) + continue; + + if (DT->isReachableFromEntry(Pred)) + Blocks.push_back(Pred); + } +} + +/// Handle frees of entire structures whose dependency is a store +/// to a field of that structure. +static bool handleFree(CallInst *F, AliasAnalysis *AA, + MemoryDependenceResults *MD, DominatorTree *DT, + const TargetLibraryInfo *TLI, + InstOverlapIntervalsTy &IOL, OrderedBasicBlock &OBB) { + bool MadeChange = false; + + MemoryLocation Loc = MemoryLocation(F->getOperand(0)); + SmallVector<BasicBlock *, 16> Blocks; + Blocks.push_back(F->getParent()); + const DataLayout &DL = F->getModule()->getDataLayout(); + + while (!Blocks.empty()) { + BasicBlock *BB = Blocks.pop_back_val(); + Instruction *InstPt = BB->getTerminator(); + if (BB == F->getParent()) InstPt = F; + + MemDepResult Dep = + MD->getPointerDependencyFrom(Loc, false, InstPt->getIterator(), BB); + while (Dep.isDef() || Dep.isClobber()) { + Instruction *Dependency = Dep.getInst(); + if (!hasAnalyzableMemoryWrite(Dependency, *TLI) || + !isRemovable(Dependency)) + break; + + Value *DepPointer = + GetUnderlyingObject(getStoredPointerOperand(Dependency), DL); + + // Check for aliasing. + if (!AA->isMustAlias(F->getArgOperand(0), DepPointer)) + break; + + LLVM_DEBUG( + dbgs() << "DSE: Dead Store to soon to be freed memory:\n DEAD: " + << *Dependency << '\n'); + + // DCE instructions only used to calculate that store. + BasicBlock::iterator BBI(Dependency); + deleteDeadInstruction(Dependency, &BBI, *MD, *TLI, IOL, OBB); + ++NumFastStores; + MadeChange = true; + + // Inst's old Dependency is now deleted. Compute the next dependency, + // which may also be dead, as in + // s[0] = 0; + // s[1] = 0; // This has just been deleted. + // free(s); + Dep = MD->getPointerDependencyFrom(Loc, false, BBI, BB); + } + + if (Dep.isNonLocal()) + findUnconditionalPreds(Blocks, BB, DT); + } + + return MadeChange; +} + +/// Check to see if the specified location may alias any of the stack objects in +/// the DeadStackObjects set. If so, they become live because the location is +/// being loaded. +static void removeAccessedObjects(const MemoryLocation &LoadedLoc, + SmallSetVector<const Value *, 16> &DeadStackObjects, + const DataLayout &DL, AliasAnalysis *AA, + const TargetLibraryInfo *TLI, + const Function *F) { + const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr, DL); + + // A constant can't be in the dead pointer set. + if (isa<Constant>(UnderlyingPointer)) + return; + + // If the kill pointer can be easily reduced to an alloca, don't bother doing + // extraneous AA queries. + if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) { + DeadStackObjects.remove(UnderlyingPointer); + return; + } + + // Remove objects that could alias LoadedLoc. + DeadStackObjects.remove_if([&](const Value *I) { + // See if the loaded location could alias the stack location. + MemoryLocation StackLoc(I, getPointerSize(I, DL, *TLI, F)); + return !AA->isNoAlias(StackLoc, LoadedLoc); + }); +} + +/// Remove dead stores to stack-allocated locations in the function end block. +/// Ex: +/// %A = alloca i32 +/// ... +/// store i32 1, i32* %A +/// ret void +static bool handleEndBlock(BasicBlock &BB, AliasAnalysis *AA, + MemoryDependenceResults *MD, + const TargetLibraryInfo *TLI, + InstOverlapIntervalsTy &IOL, + OrderedBasicBlock &OBB) { + bool MadeChange = false; + + // Keep track of all of the stack objects that are dead at the end of the + // function. + SmallSetVector<const Value*, 16> DeadStackObjects; + + // Find all of the alloca'd pointers in the entry block. + BasicBlock &Entry = BB.getParent()->front(); + for (Instruction &I : Entry) { + if (isa<AllocaInst>(&I)) + DeadStackObjects.insert(&I); + + // Okay, so these are dead heap objects, but if the pointer never escapes + // then it's leaked by this function anyways. + else if (isAllocLikeFn(&I, TLI) && !PointerMayBeCaptured(&I, true, true)) + DeadStackObjects.insert(&I); + } + + // Treat byval or inalloca arguments the same, stores to them are dead at the + // end of the function. + for (Argument &AI : BB.getParent()->args()) + if (AI.hasByValOrInAllocaAttr()) + DeadStackObjects.insert(&AI); + + const DataLayout &DL = BB.getModule()->getDataLayout(); + + // Scan the basic block backwards + for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){ + --BBI; + + // If we find a store, check to see if it points into a dead stack value. + if (hasAnalyzableMemoryWrite(&*BBI, *TLI) && isRemovable(&*BBI)) { + // See through pointer-to-pointer bitcasts + SmallVector<const Value *, 4> Pointers; + GetUnderlyingObjects(getStoredPointerOperand(&*BBI), Pointers, DL); + + // Stores to stack values are valid candidates for removal. + bool AllDead = true; + for (const Value *Pointer : Pointers) + if (!DeadStackObjects.count(Pointer)) { + AllDead = false; + break; + } + + if (AllDead) { + Instruction *Dead = &*BBI; + + LLVM_DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n DEAD: " + << *Dead << "\n Objects: "; + for (SmallVectorImpl<const Value *>::iterator I = + Pointers.begin(), + E = Pointers.end(); + I != E; ++I) { + dbgs() << **I; + if (std::next(I) != E) + dbgs() << ", "; + } dbgs() + << '\n'); + + // DCE instructions only used to calculate that store. + deleteDeadInstruction(Dead, &BBI, *MD, *TLI, IOL, OBB, + &DeadStackObjects); + ++NumFastStores; + MadeChange = true; + continue; + } + } + + // Remove any dead non-memory-mutating instructions. + if (isInstructionTriviallyDead(&*BBI, TLI)) { + LLVM_DEBUG(dbgs() << "DSE: Removing trivially dead instruction:\n DEAD: " + << *&*BBI << '\n'); + deleteDeadInstruction(&*BBI, &BBI, *MD, *TLI, IOL, OBB, + &DeadStackObjects); + ++NumFastOther; + MadeChange = true; + continue; + } + + if (isa<AllocaInst>(BBI)) { + // Remove allocas from the list of dead stack objects; there can't be + // any references before the definition. + DeadStackObjects.remove(&*BBI); + continue; + } + + if (auto *Call = dyn_cast<CallBase>(&*BBI)) { + // Remove allocation function calls from the list of dead stack objects; + // there can't be any references before the definition. + if (isAllocLikeFn(&*BBI, TLI)) + DeadStackObjects.remove(&*BBI); + + // If this call does not access memory, it can't be loading any of our + // pointers. + if (AA->doesNotAccessMemory(Call)) + continue; + + // If the call might load from any of our allocas, then any store above + // the call is live. + DeadStackObjects.remove_if([&](const Value *I) { + // See if the call site touches the value. + return isRefSet(AA->getModRefInfo( + Call, I, getPointerSize(I, DL, *TLI, BB.getParent()))); + }); + + // If all of the allocas were clobbered by the call then we're not going + // to find anything else to process. + if (DeadStackObjects.empty()) + break; + + continue; + } + + // We can remove the dead stores, irrespective of the fence and its ordering + // (release/acquire/seq_cst). Fences only constraints the ordering of + // already visible stores, it does not make a store visible to other + // threads. So, skipping over a fence does not change a store from being + // dead. + if (isa<FenceInst>(*BBI)) + continue; + + MemoryLocation LoadedLoc; + + // If we encounter a use of the pointer, it is no longer considered dead + if (LoadInst *L = dyn_cast<LoadInst>(BBI)) { + if (!L->isUnordered()) // Be conservative with atomic/volatile load + break; + LoadedLoc = MemoryLocation::get(L); + } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) { + LoadedLoc = MemoryLocation::get(V); + } else if (!BBI->mayReadFromMemory()) { + // Instruction doesn't read memory. Note that stores that weren't removed + // above will hit this case. + continue; + } else { + // Unknown inst; assume it clobbers everything. + break; + } + + // Remove any allocas from the DeadPointer set that are loaded, as this + // makes any stores above the access live. + removeAccessedObjects(LoadedLoc, DeadStackObjects, DL, AA, TLI, BB.getParent()); + + // If all of the allocas were clobbered by the access then we're not going + // to find anything else to process. + if (DeadStackObjects.empty()) + break; + } + + return MadeChange; +} + +static bool tryToShorten(Instruction *EarlierWrite, int64_t &EarlierOffset, + int64_t &EarlierSize, int64_t LaterOffset, + int64_t LaterSize, bool IsOverwriteEnd) { + // TODO: base this on the target vector size so that if the earlier + // store was too small to get vector writes anyway then its likely + // a good idea to shorten it + // Power of 2 vector writes are probably always a bad idea to optimize + // as any store/memset/memcpy is likely using vector instructions so + // shortening it to not vector size is likely to be slower + auto *EarlierIntrinsic = cast<AnyMemIntrinsic>(EarlierWrite); + unsigned EarlierWriteAlign = EarlierIntrinsic->getDestAlignment(); + if (!IsOverwriteEnd) + LaterOffset = int64_t(LaterOffset + LaterSize); + + if (!(isPowerOf2_64(LaterOffset) && EarlierWriteAlign <= LaterOffset) && + !((EarlierWriteAlign != 0) && LaterOffset % EarlierWriteAlign == 0)) + return false; + + int64_t NewLength = IsOverwriteEnd + ? LaterOffset - EarlierOffset + : EarlierSize - (LaterOffset - EarlierOffset); + + if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(EarlierWrite)) { + // When shortening an atomic memory intrinsic, the newly shortened + // length must remain an integer multiple of the element size. + const uint32_t ElementSize = AMI->getElementSizeInBytes(); + if (0 != NewLength % ElementSize) + return false; + } + + LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n OW " + << (IsOverwriteEnd ? "END" : "BEGIN") << ": " + << *EarlierWrite << "\n KILLER (offset " << LaterOffset + << ", " << EarlierSize << ")\n"); + + Value *EarlierWriteLength = EarlierIntrinsic->getLength(); + Value *TrimmedLength = + ConstantInt::get(EarlierWriteLength->getType(), NewLength); + EarlierIntrinsic->setLength(TrimmedLength); + + EarlierSize = NewLength; + if (!IsOverwriteEnd) { + int64_t OffsetMoved = (LaterOffset - EarlierOffset); + Value *Indices[1] = { + ConstantInt::get(EarlierWriteLength->getType(), OffsetMoved)}; + GetElementPtrInst *NewDestGEP = GetElementPtrInst::CreateInBounds( + EarlierIntrinsic->getRawDest()->getType()->getPointerElementType(), + EarlierIntrinsic->getRawDest(), Indices, "", EarlierWrite); + NewDestGEP->setDebugLoc(EarlierIntrinsic->getDebugLoc()); + EarlierIntrinsic->setDest(NewDestGEP); + EarlierOffset = EarlierOffset + OffsetMoved; + } + return true; +} + +static bool tryToShortenEnd(Instruction *EarlierWrite, + OverlapIntervalsTy &IntervalMap, + int64_t &EarlierStart, int64_t &EarlierSize) { + if (IntervalMap.empty() || !isShortenableAtTheEnd(EarlierWrite)) + return false; + + OverlapIntervalsTy::iterator OII = --IntervalMap.end(); + int64_t LaterStart = OII->second; + int64_t LaterSize = OII->first - LaterStart; + + if (LaterStart > EarlierStart && LaterStart < EarlierStart + EarlierSize && + LaterStart + LaterSize >= EarlierStart + EarlierSize) { + if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart, + LaterSize, true)) { + IntervalMap.erase(OII); + return true; + } + } + return false; +} + +static bool tryToShortenBegin(Instruction *EarlierWrite, + OverlapIntervalsTy &IntervalMap, + int64_t &EarlierStart, int64_t &EarlierSize) { + if (IntervalMap.empty() || !isShortenableAtTheBeginning(EarlierWrite)) + return false; + + OverlapIntervalsTy::iterator OII = IntervalMap.begin(); + int64_t LaterStart = OII->second; + int64_t LaterSize = OII->first - LaterStart; + + if (LaterStart <= EarlierStart && LaterStart + LaterSize > EarlierStart) { + assert(LaterStart + LaterSize < EarlierStart + EarlierSize && + "Should have been handled as OW_Complete"); + if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart, + LaterSize, false)) { + IntervalMap.erase(OII); + return true; + } + } + return false; +} + +static bool removePartiallyOverlappedStores(AliasAnalysis *AA, + const DataLayout &DL, + InstOverlapIntervalsTy &IOL) { + bool Changed = false; + for (auto OI : IOL) { + Instruction *EarlierWrite = OI.first; + MemoryLocation Loc = getLocForWrite(EarlierWrite); + assert(isRemovable(EarlierWrite) && "Expect only removable instruction"); + + const Value *Ptr = Loc.Ptr->stripPointerCasts(); + int64_t EarlierStart = 0; + int64_t EarlierSize = int64_t(Loc.Size.getValue()); + GetPointerBaseWithConstantOffset(Ptr, EarlierStart, DL); + OverlapIntervalsTy &IntervalMap = OI.second; + Changed |= + tryToShortenEnd(EarlierWrite, IntervalMap, EarlierStart, EarlierSize); + if (IntervalMap.empty()) + continue; + Changed |= + tryToShortenBegin(EarlierWrite, IntervalMap, EarlierStart, EarlierSize); + } + return Changed; +} + +static bool eliminateNoopStore(Instruction *Inst, BasicBlock::iterator &BBI, + AliasAnalysis *AA, MemoryDependenceResults *MD, + const DataLayout &DL, + const TargetLibraryInfo *TLI, + InstOverlapIntervalsTy &IOL, + OrderedBasicBlock &OBB) { + // Must be a store instruction. + StoreInst *SI = dyn_cast<StoreInst>(Inst); + if (!SI) + return false; + + // If we're storing the same value back to a pointer that we just loaded from, + // then the store can be removed. + if (LoadInst *DepLoad = dyn_cast<LoadInst>(SI->getValueOperand())) { + if (SI->getPointerOperand() == DepLoad->getPointerOperand() && + isRemovable(SI) && memoryIsNotModifiedBetween(DepLoad, SI, AA)) { + + LLVM_DEBUG( + dbgs() << "DSE: Remove Store Of Load from same pointer:\n LOAD: " + << *DepLoad << "\n STORE: " << *SI << '\n'); + + deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, OBB); + ++NumRedundantStores; + return true; + } + } + + // Remove null stores into the calloc'ed objects + Constant *StoredConstant = dyn_cast<Constant>(SI->getValueOperand()); + if (StoredConstant && StoredConstant->isNullValue() && isRemovable(SI)) { + Instruction *UnderlyingPointer = + dyn_cast<Instruction>(GetUnderlyingObject(SI->getPointerOperand(), DL)); + + if (UnderlyingPointer && isCallocLikeFn(UnderlyingPointer, TLI) && + memoryIsNotModifiedBetween(UnderlyingPointer, SI, AA)) { + LLVM_DEBUG( + dbgs() << "DSE: Remove null store to the calloc'ed object:\n DEAD: " + << *Inst << "\n OBJECT: " << *UnderlyingPointer << '\n'); + + deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, OBB); + ++NumRedundantStores; + return true; + } + } + return false; +} + +static bool eliminateDeadStores(BasicBlock &BB, AliasAnalysis *AA, + MemoryDependenceResults *MD, DominatorTree *DT, + const TargetLibraryInfo *TLI) { + const DataLayout &DL = BB.getModule()->getDataLayout(); + bool MadeChange = false; + + OrderedBasicBlock OBB(&BB); + Instruction *LastThrowing = nullptr; + + // A map of interval maps representing partially-overwritten value parts. + InstOverlapIntervalsTy IOL; + + // Do a top-down walk on the BB. + for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) { + // Handle 'free' calls specially. + if (CallInst *F = isFreeCall(&*BBI, TLI)) { + MadeChange |= handleFree(F, AA, MD, DT, TLI, IOL, OBB); + // Increment BBI after handleFree has potentially deleted instructions. + // This ensures we maintain a valid iterator. + ++BBI; + continue; + } + + Instruction *Inst = &*BBI++; + + if (Inst->mayThrow()) { + LastThrowing = Inst; + continue; + } + + // Check to see if Inst writes to memory. If not, continue. + if (!hasAnalyzableMemoryWrite(Inst, *TLI)) + continue; + + // eliminateNoopStore will update in iterator, if necessary. + if (eliminateNoopStore(Inst, BBI, AA, MD, DL, TLI, IOL, OBB)) { + MadeChange = true; + continue; + } + + // If we find something that writes memory, get its memory dependence. + MemDepResult InstDep = MD->getDependency(Inst, &OBB); + + // Ignore any store where we can't find a local dependence. + // FIXME: cross-block DSE would be fun. :) + if (!InstDep.isDef() && !InstDep.isClobber()) + continue; + + // Figure out what location is being stored to. + MemoryLocation Loc = getLocForWrite(Inst); + + // If we didn't get a useful location, fail. + if (!Loc.Ptr) + continue; + + // Loop until we find a store we can eliminate or a load that + // invalidates the analysis. Without an upper bound on the number of + // instructions examined, this analysis can become very time-consuming. + // However, the potential gain diminishes as we process more instructions + // without eliminating any of them. Therefore, we limit the number of + // instructions we look at. + auto Limit = MD->getDefaultBlockScanLimit(); + while (InstDep.isDef() || InstDep.isClobber()) { + // Get the memory clobbered by the instruction we depend on. MemDep will + // skip any instructions that 'Loc' clearly doesn't interact with. If we + // end up depending on a may- or must-aliased load, then we can't optimize + // away the store and we bail out. However, if we depend on something + // that overwrites the memory location we *can* potentially optimize it. + // + // Find out what memory location the dependent instruction stores. + Instruction *DepWrite = InstDep.getInst(); + if (!hasAnalyzableMemoryWrite(DepWrite, *TLI)) + break; + MemoryLocation DepLoc = getLocForWrite(DepWrite); + // If we didn't get a useful location, or if it isn't a size, bail out. + if (!DepLoc.Ptr) + break; + + // Make sure we don't look past a call which might throw. This is an + // issue because MemoryDependenceAnalysis works in the wrong direction: + // it finds instructions which dominate the current instruction, rather than + // instructions which are post-dominated by the current instruction. + // + // If the underlying object is a non-escaping memory allocation, any store + // to it is dead along the unwind edge. Otherwise, we need to preserve + // the store. + if (LastThrowing && OBB.dominates(DepWrite, LastThrowing)) { + const Value* Underlying = GetUnderlyingObject(DepLoc.Ptr, DL); + bool IsStoreDeadOnUnwind = isa<AllocaInst>(Underlying); + if (!IsStoreDeadOnUnwind) { + // We're looking for a call to an allocation function + // where the allocation doesn't escape before the last + // throwing instruction; PointerMayBeCaptured + // reasonably fast approximation. + IsStoreDeadOnUnwind = isAllocLikeFn(Underlying, TLI) && + !PointerMayBeCaptured(Underlying, false, true); + } + if (!IsStoreDeadOnUnwind) + break; + } + + // If we find a write that is a) removable (i.e., non-volatile), b) is + // completely obliterated by the store to 'Loc', and c) which we know that + // 'Inst' doesn't load from, then we can remove it. + // Also try to merge two stores if a later one only touches memory written + // to by the earlier one. + if (isRemovable(DepWrite) && + !isPossibleSelfRead(Inst, Loc, DepWrite, *TLI, *AA)) { + int64_t InstWriteOffset, DepWriteOffset; + OverwriteResult OR = isOverwrite(Loc, DepLoc, DL, *TLI, DepWriteOffset, + InstWriteOffset, DepWrite, IOL, *AA, + BB.getParent()); + if (OR == OW_Complete) { + LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *DepWrite + << "\n KILLER: " << *Inst << '\n'); + + // Delete the store and now-dead instructions that feed it. + deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL, OBB); + ++NumFastStores; + MadeChange = true; + + // We erased DepWrite; start over. + InstDep = MD->getDependency(Inst, &OBB); + continue; + } else if ((OR == OW_End && isShortenableAtTheEnd(DepWrite)) || + ((OR == OW_Begin && + isShortenableAtTheBeginning(DepWrite)))) { + assert(!EnablePartialOverwriteTracking && "Do not expect to perform " + "when partial-overwrite " + "tracking is enabled"); + // The overwrite result is known, so these must be known, too. + int64_t EarlierSize = DepLoc.Size.getValue(); + int64_t LaterSize = Loc.Size.getValue(); + bool IsOverwriteEnd = (OR == OW_End); + MadeChange |= tryToShorten(DepWrite, DepWriteOffset, EarlierSize, + InstWriteOffset, LaterSize, IsOverwriteEnd); + } else if (EnablePartialStoreMerging && + OR == OW_PartialEarlierWithFullLater) { + auto *Earlier = dyn_cast<StoreInst>(DepWrite); + auto *Later = dyn_cast<StoreInst>(Inst); + if (Earlier && isa<ConstantInt>(Earlier->getValueOperand()) && + DL.typeSizeEqualsStoreSize( + Earlier->getValueOperand()->getType()) && + Later && isa<ConstantInt>(Later->getValueOperand()) && + DL.typeSizeEqualsStoreSize( + Later->getValueOperand()->getType()) && + memoryIsNotModifiedBetween(Earlier, Later, AA)) { + // If the store we find is: + // a) partially overwritten by the store to 'Loc' + // b) the later store is fully contained in the earlier one and + // c) they both have a constant value + // d) none of the two stores need padding + // Merge the two stores, replacing the earlier store's value with a + // merge of both values. + // TODO: Deal with other constant types (vectors, etc), and probably + // some mem intrinsics (if needed) + + APInt EarlierValue = + cast<ConstantInt>(Earlier->getValueOperand())->getValue(); + APInt LaterValue = + cast<ConstantInt>(Later->getValueOperand())->getValue(); + unsigned LaterBits = LaterValue.getBitWidth(); + assert(EarlierValue.getBitWidth() > LaterValue.getBitWidth()); + LaterValue = LaterValue.zext(EarlierValue.getBitWidth()); + + // Offset of the smaller store inside the larger store + unsigned BitOffsetDiff = (InstWriteOffset - DepWriteOffset) * 8; + unsigned LShiftAmount = + DL.isBigEndian() + ? EarlierValue.getBitWidth() - BitOffsetDiff - LaterBits + : BitOffsetDiff; + APInt Mask = + APInt::getBitsSet(EarlierValue.getBitWidth(), LShiftAmount, + LShiftAmount + LaterBits); + // Clear the bits we'll be replacing, then OR with the smaller + // store, shifted appropriately. + APInt Merged = + (EarlierValue & ~Mask) | (LaterValue << LShiftAmount); + LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n Earlier: " << *DepWrite + << "\n Later: " << *Inst + << "\n Merged Value: " << Merged << '\n'); + + auto *SI = new StoreInst( + ConstantInt::get(Earlier->getValueOperand()->getType(), Merged), + Earlier->getPointerOperand(), false, + MaybeAlign(Earlier->getAlignment()), Earlier->getOrdering(), + Earlier->getSyncScopeID(), DepWrite); + + unsigned MDToKeep[] = {LLVMContext::MD_dbg, LLVMContext::MD_tbaa, + LLVMContext::MD_alias_scope, + LLVMContext::MD_noalias, + LLVMContext::MD_nontemporal}; + SI->copyMetadata(*DepWrite, MDToKeep); + ++NumModifiedStores; + + // Remove earlier, wider, store + OBB.replaceInstruction(DepWrite, SI); + + // Delete the old stores and now-dead instructions that feed them. + deleteDeadInstruction(Inst, &BBI, *MD, *TLI, IOL, OBB); + deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL, OBB); + MadeChange = true; + + // We erased DepWrite and Inst (Loc); start over. + break; + } + } + } + + // If this is a may-aliased store that is clobbering the store value, we + // can keep searching past it for another must-aliased pointer that stores + // to the same location. For example, in: + // store -> P + // store -> Q + // store -> P + // we can remove the first store to P even though we don't know if P and Q + // alias. + if (DepWrite == &BB.front()) break; + + // Can't look past this instruction if it might read 'Loc'. + if (isRefSet(AA->getModRefInfo(DepWrite, Loc))) + break; + + InstDep = MD->getPointerDependencyFrom(Loc, /*isLoad=*/ false, + DepWrite->getIterator(), &BB, + /*QueryInst=*/ nullptr, &Limit); + } + } + + if (EnablePartialOverwriteTracking) + MadeChange |= removePartiallyOverlappedStores(AA, DL, IOL); + + // If this block ends in a return, unwind, or unreachable, all allocas are + // dead at its end, which means stores to them are also dead. + if (BB.getTerminator()->getNumSuccessors() == 0) + MadeChange |= handleEndBlock(BB, AA, MD, TLI, IOL, OBB); + + return MadeChange; +} + +static bool eliminateDeadStores(Function &F, AliasAnalysis *AA, + MemoryDependenceResults *MD, DominatorTree *DT, + const TargetLibraryInfo *TLI) { + bool MadeChange = false; + for (BasicBlock &BB : F) + // Only check non-dead blocks. Dead blocks may have strange pointer + // cycles that will confuse alias analysis. + if (DT->isReachableFromEntry(&BB)) + MadeChange |= eliminateDeadStores(BB, AA, MD, DT, TLI); + + return MadeChange; +} + +//===----------------------------------------------------------------------===// +// DSE Pass +//===----------------------------------------------------------------------===// +PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) { + AliasAnalysis *AA = &AM.getResult<AAManager>(F); + DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F); + MemoryDependenceResults *MD = &AM.getResult<MemoryDependenceAnalysis>(F); + const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F); + + if (!eliminateDeadStores(F, AA, MD, DT, TLI)) + return PreservedAnalyses::all(); + + PreservedAnalyses PA; + PA.preserveSet<CFGAnalyses>(); + PA.preserve<GlobalsAA>(); + PA.preserve<MemoryDependenceAnalysis>(); + return PA; +} + +namespace { + +/// A legacy pass for the legacy pass manager that wraps \c DSEPass. +class DSELegacyPass : public FunctionPass { +public: + static char ID; // Pass identification, replacement for typeid + + DSELegacyPass() : FunctionPass(ID) { + initializeDSELegacyPassPass(*PassRegistry::getPassRegistry()); + } + + bool runOnFunction(Function &F) override { + if (skipFunction(F)) + return false; + + DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); + MemoryDependenceResults *MD = + &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(); + const TargetLibraryInfo *TLI = + &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); + + return eliminateDeadStores(F, AA, MD, DT, TLI); + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesCFG(); + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addRequired<AAResultsWrapperPass>(); + AU.addRequired<MemoryDependenceWrapperPass>(); + AU.addRequired<TargetLibraryInfoWrapperPass>(); + AU.addPreserved<DominatorTreeWrapperPass>(); + AU.addPreserved<GlobalsAAWrapperPass>(); + AU.addPreserved<MemoryDependenceWrapperPass>(); + } +}; + +} // end anonymous namespace + +char DSELegacyPass::ID = 0; + +INITIALIZE_PASS_BEGIN(DSELegacyPass, "dse", "Dead Store Elimination", false, + false) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_END(DSELegacyPass, "dse", "Dead Store Elimination", false, + false) + +FunctionPass *llvm::createDeadStoreEliminationPass() { + return new DSELegacyPass(); +} |
