summaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp')
-rw-r--r--llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp1398
1 files changed, 1398 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp b/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp
new file mode 100644
index 000000000000..685de82810ed
--- /dev/null
+++ b/llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp
@@ -0,0 +1,1398 @@
+//===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a trivial dead store elimination that only considers
+// basic-block local redundant stores.
+//
+// FIXME: This should eventually be extended to be a post-dominator tree
+// traversal. Doing so would be pretty trivial.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar/DeadStoreElimination.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/CaptureTracking.h"
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Analysis/MemoryDependenceAnalysis.h"
+#include "llvm/Analysis/MemoryLocation.h"
+#include "llvm/Analysis/OrderedBasicBlock.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <iterator>
+#include <map>
+#include <utility>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "dse"
+
+STATISTIC(NumRedundantStores, "Number of redundant stores deleted");
+STATISTIC(NumFastStores, "Number of stores deleted");
+STATISTIC(NumFastOther, "Number of other instrs removed");
+STATISTIC(NumCompletePartials, "Number of stores dead by later partials");
+STATISTIC(NumModifiedStores, "Number of stores modified");
+
+static cl::opt<bool>
+EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking",
+ cl::init(true), cl::Hidden,
+ cl::desc("Enable partial-overwrite tracking in DSE"));
+
+static cl::opt<bool>
+EnablePartialStoreMerging("enable-dse-partial-store-merging",
+ cl::init(true), cl::Hidden,
+ cl::desc("Enable partial store merging in DSE"));
+
+//===----------------------------------------------------------------------===//
+// Helper functions
+//===----------------------------------------------------------------------===//
+using OverlapIntervalsTy = std::map<int64_t, int64_t>;
+using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>;
+
+/// Delete this instruction. Before we do, go through and zero out all the
+/// operands of this instruction. If any of them become dead, delete them and
+/// the computation tree that feeds them.
+/// If ValueSet is non-null, remove any deleted instructions from it as well.
+static void
+deleteDeadInstruction(Instruction *I, BasicBlock::iterator *BBI,
+ MemoryDependenceResults &MD, const TargetLibraryInfo &TLI,
+ InstOverlapIntervalsTy &IOL, OrderedBasicBlock &OBB,
+ SmallSetVector<const Value *, 16> *ValueSet = nullptr) {
+ SmallVector<Instruction*, 32> NowDeadInsts;
+
+ NowDeadInsts.push_back(I);
+ --NumFastOther;
+
+ // Keeping the iterator straight is a pain, so we let this routine tell the
+ // caller what the next instruction is after we're done mucking about.
+ BasicBlock::iterator NewIter = *BBI;
+
+ // Before we touch this instruction, remove it from memdep!
+ do {
+ Instruction *DeadInst = NowDeadInsts.pop_back_val();
+ ++NumFastOther;
+
+ // Try to preserve debug information attached to the dead instruction.
+ salvageDebugInfo(*DeadInst);
+
+ // This instruction is dead, zap it, in stages. Start by removing it from
+ // MemDep, which needs to know the operands and needs it to be in the
+ // function.
+ MD.removeInstruction(DeadInst);
+
+ for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
+ Value *Op = DeadInst->getOperand(op);
+ DeadInst->setOperand(op, nullptr);
+
+ // If this operand just became dead, add it to the NowDeadInsts list.
+ if (!Op->use_empty()) continue;
+
+ if (Instruction *OpI = dyn_cast<Instruction>(Op))
+ if (isInstructionTriviallyDead(OpI, &TLI))
+ NowDeadInsts.push_back(OpI);
+ }
+
+ if (ValueSet) ValueSet->remove(DeadInst);
+ IOL.erase(DeadInst);
+ OBB.eraseInstruction(DeadInst);
+
+ if (NewIter == DeadInst->getIterator())
+ NewIter = DeadInst->eraseFromParent();
+ else
+ DeadInst->eraseFromParent();
+ } while (!NowDeadInsts.empty());
+ *BBI = NewIter;
+}
+
+/// Does this instruction write some memory? This only returns true for things
+/// that we can analyze with other helpers below.
+static bool hasAnalyzableMemoryWrite(Instruction *I,
+ const TargetLibraryInfo &TLI) {
+ if (isa<StoreInst>(I))
+ return true;
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
+ switch (II->getIntrinsicID()) {
+ default:
+ return false;
+ case Intrinsic::memset:
+ case Intrinsic::memmove:
+ case Intrinsic::memcpy:
+ case Intrinsic::memcpy_element_unordered_atomic:
+ case Intrinsic::memmove_element_unordered_atomic:
+ case Intrinsic::memset_element_unordered_atomic:
+ case Intrinsic::init_trampoline:
+ case Intrinsic::lifetime_end:
+ return true;
+ }
+ }
+ if (auto CS = CallSite(I)) {
+ if (Function *F = CS.getCalledFunction()) {
+ StringRef FnName = F->getName();
+ if (TLI.has(LibFunc_strcpy) && FnName == TLI.getName(LibFunc_strcpy))
+ return true;
+ if (TLI.has(LibFunc_strncpy) && FnName == TLI.getName(LibFunc_strncpy))
+ return true;
+ if (TLI.has(LibFunc_strcat) && FnName == TLI.getName(LibFunc_strcat))
+ return true;
+ if (TLI.has(LibFunc_strncat) && FnName == TLI.getName(LibFunc_strncat))
+ return true;
+ }
+ }
+ return false;
+}
+
+/// Return a Location stored to by the specified instruction. If isRemovable
+/// returns true, this function and getLocForRead completely describe the memory
+/// operations for this instruction.
+static MemoryLocation getLocForWrite(Instruction *Inst) {
+
+ if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
+ return MemoryLocation::get(SI);
+
+ if (auto *MI = dyn_cast<AnyMemIntrinsic>(Inst)) {
+ // memcpy/memmove/memset.
+ MemoryLocation Loc = MemoryLocation::getForDest(MI);
+ return Loc;
+ }
+
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
+ switch (II->getIntrinsicID()) {
+ default:
+ return MemoryLocation(); // Unhandled intrinsic.
+ case Intrinsic::init_trampoline:
+ return MemoryLocation(II->getArgOperand(0));
+ case Intrinsic::lifetime_end: {
+ uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
+ return MemoryLocation(II->getArgOperand(1), Len);
+ }
+ }
+ }
+ if (auto CS = CallSite(Inst))
+ // All the supported TLI functions so far happen to have dest as their
+ // first argument.
+ return MemoryLocation(CS.getArgument(0));
+ return MemoryLocation();
+}
+
+/// Return the location read by the specified "hasAnalyzableMemoryWrite"
+/// instruction if any.
+static MemoryLocation getLocForRead(Instruction *Inst,
+ const TargetLibraryInfo &TLI) {
+ assert(hasAnalyzableMemoryWrite(Inst, TLI) && "Unknown instruction case");
+
+ // The only instructions that both read and write are the mem transfer
+ // instructions (memcpy/memmove).
+ if (auto *MTI = dyn_cast<AnyMemTransferInst>(Inst))
+ return MemoryLocation::getForSource(MTI);
+ return MemoryLocation();
+}
+
+/// If the value of this instruction and the memory it writes to is unused, may
+/// we delete this instruction?
+static bool isRemovable(Instruction *I) {
+ // Don't remove volatile/atomic stores.
+ if (StoreInst *SI = dyn_cast<StoreInst>(I))
+ return SI->isUnordered();
+
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
+ switch (II->getIntrinsicID()) {
+ default: llvm_unreachable("doesn't pass 'hasAnalyzableMemoryWrite' predicate");
+ case Intrinsic::lifetime_end:
+ // Never remove dead lifetime_end's, e.g. because it is followed by a
+ // free.
+ return false;
+ case Intrinsic::init_trampoline:
+ // Always safe to remove init_trampoline.
+ return true;
+ case Intrinsic::memset:
+ case Intrinsic::memmove:
+ case Intrinsic::memcpy:
+ // Don't remove volatile memory intrinsics.
+ return !cast<MemIntrinsic>(II)->isVolatile();
+ case Intrinsic::memcpy_element_unordered_atomic:
+ case Intrinsic::memmove_element_unordered_atomic:
+ case Intrinsic::memset_element_unordered_atomic:
+ return true;
+ }
+ }
+
+ // note: only get here for calls with analyzable writes - i.e. libcalls
+ if (auto CS = CallSite(I))
+ return CS.getInstruction()->use_empty();
+
+ return false;
+}
+
+/// Returns true if the end of this instruction can be safely shortened in
+/// length.
+static bool isShortenableAtTheEnd(Instruction *I) {
+ // Don't shorten stores for now
+ if (isa<StoreInst>(I))
+ return false;
+
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
+ switch (II->getIntrinsicID()) {
+ default: return false;
+ case Intrinsic::memset:
+ case Intrinsic::memcpy:
+ case Intrinsic::memcpy_element_unordered_atomic:
+ case Intrinsic::memset_element_unordered_atomic:
+ // Do shorten memory intrinsics.
+ // FIXME: Add memmove if it's also safe to transform.
+ return true;
+ }
+ }
+
+ // Don't shorten libcalls calls for now.
+
+ return false;
+}
+
+/// Returns true if the beginning of this instruction can be safely shortened
+/// in length.
+static bool isShortenableAtTheBeginning(Instruction *I) {
+ // FIXME: Handle only memset for now. Supporting memcpy/memmove should be
+ // easily done by offsetting the source address.
+ return isa<AnyMemSetInst>(I);
+}
+
+/// Return the pointer that is being written to.
+static Value *getStoredPointerOperand(Instruction *I) {
+ //TODO: factor this to reuse getLocForWrite
+ MemoryLocation Loc = getLocForWrite(I);
+ assert(Loc.Ptr &&
+ "unable to find pointer written for analyzable instruction?");
+ // TODO: most APIs don't expect const Value *
+ return const_cast<Value*>(Loc.Ptr);
+}
+
+static uint64_t getPointerSize(const Value *V, const DataLayout &DL,
+ const TargetLibraryInfo &TLI,
+ const Function *F) {
+ uint64_t Size;
+ ObjectSizeOpts Opts;
+ Opts.NullIsUnknownSize = NullPointerIsDefined(F);
+
+ if (getObjectSize(V, Size, DL, &TLI, Opts))
+ return Size;
+ return MemoryLocation::UnknownSize;
+}
+
+namespace {
+
+enum OverwriteResult {
+ OW_Begin,
+ OW_Complete,
+ OW_End,
+ OW_PartialEarlierWithFullLater,
+ OW_Unknown
+};
+
+} // end anonymous namespace
+
+/// Return 'OW_Complete' if a store to the 'Later' location completely
+/// overwrites a store to the 'Earlier' location, 'OW_End' if the end of the
+/// 'Earlier' location is completely overwritten by 'Later', 'OW_Begin' if the
+/// beginning of the 'Earlier' location is overwritten by 'Later'.
+/// 'OW_PartialEarlierWithFullLater' means that an earlier (big) store was
+/// overwritten by a latter (smaller) store which doesn't write outside the big
+/// store's memory locations. Returns 'OW_Unknown' if nothing can be determined.
+static OverwriteResult isOverwrite(const MemoryLocation &Later,
+ const MemoryLocation &Earlier,
+ const DataLayout &DL,
+ const TargetLibraryInfo &TLI,
+ int64_t &EarlierOff, int64_t &LaterOff,
+ Instruction *DepWrite,
+ InstOverlapIntervalsTy &IOL,
+ AliasAnalysis &AA,
+ const Function *F) {
+ // FIXME: Vet that this works for size upper-bounds. Seems unlikely that we'll
+ // get imprecise values here, though (except for unknown sizes).
+ if (!Later.Size.isPrecise() || !Earlier.Size.isPrecise())
+ return OW_Unknown;
+
+ const uint64_t LaterSize = Later.Size.getValue();
+ const uint64_t EarlierSize = Earlier.Size.getValue();
+
+ const Value *P1 = Earlier.Ptr->stripPointerCasts();
+ const Value *P2 = Later.Ptr->stripPointerCasts();
+
+ // If the start pointers are the same, we just have to compare sizes to see if
+ // the later store was larger than the earlier store.
+ if (P1 == P2 || AA.isMustAlias(P1, P2)) {
+ // Make sure that the Later size is >= the Earlier size.
+ if (LaterSize >= EarlierSize)
+ return OW_Complete;
+ }
+
+ // Check to see if the later store is to the entire object (either a global,
+ // an alloca, or a byval/inalloca argument). If so, then it clearly
+ // overwrites any other store to the same object.
+ const Value *UO1 = GetUnderlyingObject(P1, DL),
+ *UO2 = GetUnderlyingObject(P2, DL);
+
+ // If we can't resolve the same pointers to the same object, then we can't
+ // analyze them at all.
+ if (UO1 != UO2)
+ return OW_Unknown;
+
+ // If the "Later" store is to a recognizable object, get its size.
+ uint64_t ObjectSize = getPointerSize(UO2, DL, TLI, F);
+ if (ObjectSize != MemoryLocation::UnknownSize)
+ if (ObjectSize == LaterSize && ObjectSize >= EarlierSize)
+ return OW_Complete;
+
+ // Okay, we have stores to two completely different pointers. Try to
+ // decompose the pointer into a "base + constant_offset" form. If the base
+ // pointers are equal, then we can reason about the two stores.
+ EarlierOff = 0;
+ LaterOff = 0;
+ const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, DL);
+ const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, DL);
+
+ // If the base pointers still differ, we have two completely different stores.
+ if (BP1 != BP2)
+ return OW_Unknown;
+
+ // The later store completely overlaps the earlier store if:
+ //
+ // 1. Both start at the same offset and the later one's size is greater than
+ // or equal to the earlier one's, or
+ //
+ // |--earlier--|
+ // |-- later --|
+ //
+ // 2. The earlier store has an offset greater than the later offset, but which
+ // still lies completely within the later store.
+ //
+ // |--earlier--|
+ // |----- later ------|
+ //
+ // We have to be careful here as *Off is signed while *.Size is unsigned.
+ if (EarlierOff >= LaterOff &&
+ LaterSize >= EarlierSize &&
+ uint64_t(EarlierOff - LaterOff) + EarlierSize <= LaterSize)
+ return OW_Complete;
+
+ // We may now overlap, although the overlap is not complete. There might also
+ // be other incomplete overlaps, and together, they might cover the complete
+ // earlier write.
+ // Note: The correctness of this logic depends on the fact that this function
+ // is not even called providing DepWrite when there are any intervening reads.
+ if (EnablePartialOverwriteTracking &&
+ LaterOff < int64_t(EarlierOff + EarlierSize) &&
+ int64_t(LaterOff + LaterSize) >= EarlierOff) {
+
+ // Insert our part of the overlap into the map.
+ auto &IM = IOL[DepWrite];
+ LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: Earlier [" << EarlierOff
+ << ", " << int64_t(EarlierOff + EarlierSize)
+ << ") Later [" << LaterOff << ", "
+ << int64_t(LaterOff + LaterSize) << ")\n");
+
+ // Make sure that we only insert non-overlapping intervals and combine
+ // adjacent intervals. The intervals are stored in the map with the ending
+ // offset as the key (in the half-open sense) and the starting offset as
+ // the value.
+ int64_t LaterIntStart = LaterOff, LaterIntEnd = LaterOff + LaterSize;
+
+ // Find any intervals ending at, or after, LaterIntStart which start
+ // before LaterIntEnd.
+ auto ILI = IM.lower_bound(LaterIntStart);
+ if (ILI != IM.end() && ILI->second <= LaterIntEnd) {
+ // This existing interval is overlapped with the current store somewhere
+ // in [LaterIntStart, LaterIntEnd]. Merge them by erasing the existing
+ // intervals and adjusting our start and end.
+ LaterIntStart = std::min(LaterIntStart, ILI->second);
+ LaterIntEnd = std::max(LaterIntEnd, ILI->first);
+ ILI = IM.erase(ILI);
+
+ // Continue erasing and adjusting our end in case other previous
+ // intervals are also overlapped with the current store.
+ //
+ // |--- ealier 1 ---| |--- ealier 2 ---|
+ // |------- later---------|
+ //
+ while (ILI != IM.end() && ILI->second <= LaterIntEnd) {
+ assert(ILI->second > LaterIntStart && "Unexpected interval");
+ LaterIntEnd = std::max(LaterIntEnd, ILI->first);
+ ILI = IM.erase(ILI);
+ }
+ }
+
+ IM[LaterIntEnd] = LaterIntStart;
+
+ ILI = IM.begin();
+ if (ILI->second <= EarlierOff &&
+ ILI->first >= int64_t(EarlierOff + EarlierSize)) {
+ LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: Earlier ["
+ << EarlierOff << ", "
+ << int64_t(EarlierOff + EarlierSize)
+ << ") Composite Later [" << ILI->second << ", "
+ << ILI->first << ")\n");
+ ++NumCompletePartials;
+ return OW_Complete;
+ }
+ }
+
+ // Check for an earlier store which writes to all the memory locations that
+ // the later store writes to.
+ if (EnablePartialStoreMerging && LaterOff >= EarlierOff &&
+ int64_t(EarlierOff + EarlierSize) > LaterOff &&
+ uint64_t(LaterOff - EarlierOff) + LaterSize <= EarlierSize) {
+ LLVM_DEBUG(dbgs() << "DSE: Partial overwrite an earlier load ["
+ << EarlierOff << ", "
+ << int64_t(EarlierOff + EarlierSize)
+ << ") by a later store [" << LaterOff << ", "
+ << int64_t(LaterOff + LaterSize) << ")\n");
+ // TODO: Maybe come up with a better name?
+ return OW_PartialEarlierWithFullLater;
+ }
+
+ // Another interesting case is if the later store overwrites the end of the
+ // earlier store.
+ //
+ // |--earlier--|
+ // |-- later --|
+ //
+ // In this case we may want to trim the size of earlier to avoid generating
+ // writes to addresses which will definitely be overwritten later
+ if (!EnablePartialOverwriteTracking &&
+ (LaterOff > EarlierOff && LaterOff < int64_t(EarlierOff + EarlierSize) &&
+ int64_t(LaterOff + LaterSize) >= int64_t(EarlierOff + EarlierSize)))
+ return OW_End;
+
+ // Finally, we also need to check if the later store overwrites the beginning
+ // of the earlier store.
+ //
+ // |--earlier--|
+ // |-- later --|
+ //
+ // In this case we may want to move the destination address and trim the size
+ // of earlier to avoid generating writes to addresses which will definitely
+ // be overwritten later.
+ if (!EnablePartialOverwriteTracking &&
+ (LaterOff <= EarlierOff && int64_t(LaterOff + LaterSize) > EarlierOff)) {
+ assert(int64_t(LaterOff + LaterSize) < int64_t(EarlierOff + EarlierSize) &&
+ "Expect to be handled as OW_Complete");
+ return OW_Begin;
+ }
+ // Otherwise, they don't completely overlap.
+ return OW_Unknown;
+}
+
+/// If 'Inst' might be a self read (i.e. a noop copy of a
+/// memory region into an identical pointer) then it doesn't actually make its
+/// input dead in the traditional sense. Consider this case:
+///
+/// memmove(A <- B)
+/// memmove(A <- A)
+///
+/// In this case, the second store to A does not make the first store to A dead.
+/// The usual situation isn't an explicit A<-A store like this (which can be
+/// trivially removed) but a case where two pointers may alias.
+///
+/// This function detects when it is unsafe to remove a dependent instruction
+/// because the DSE inducing instruction may be a self-read.
+static bool isPossibleSelfRead(Instruction *Inst,
+ const MemoryLocation &InstStoreLoc,
+ Instruction *DepWrite,
+ const TargetLibraryInfo &TLI,
+ AliasAnalysis &AA) {
+ // Self reads can only happen for instructions that read memory. Get the
+ // location read.
+ MemoryLocation InstReadLoc = getLocForRead(Inst, TLI);
+ if (!InstReadLoc.Ptr)
+ return false; // Not a reading instruction.
+
+ // If the read and written loc obviously don't alias, it isn't a read.
+ if (AA.isNoAlias(InstReadLoc, InstStoreLoc))
+ return false;
+
+ if (isa<AnyMemCpyInst>(Inst)) {
+ // LLVM's memcpy overlap semantics are not fully fleshed out (see PR11763)
+ // but in practice memcpy(A <- B) either means that A and B are disjoint or
+ // are equal (i.e. there are not partial overlaps). Given that, if we have:
+ //
+ // memcpy/memmove(A <- B) // DepWrite
+ // memcpy(A <- B) // Inst
+ //
+ // with Inst reading/writing a >= size than DepWrite, we can reason as
+ // follows:
+ //
+ // - If A == B then both the copies are no-ops, so the DepWrite can be
+ // removed.
+ // - If A != B then A and B are disjoint locations in Inst. Since
+ // Inst.size >= DepWrite.size A and B are disjoint in DepWrite too.
+ // Therefore DepWrite can be removed.
+ MemoryLocation DepReadLoc = getLocForRead(DepWrite, TLI);
+
+ if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
+ return false;
+ }
+
+ // If DepWrite doesn't read memory or if we can't prove it is a must alias,
+ // then it can't be considered dead.
+ return true;
+}
+
+/// Returns true if the memory which is accessed by the second instruction is not
+/// modified between the first and the second instruction.
+/// Precondition: Second instruction must be dominated by the first
+/// instruction.
+static bool memoryIsNotModifiedBetween(Instruction *FirstI,
+ Instruction *SecondI,
+ AliasAnalysis *AA) {
+ SmallVector<BasicBlock *, 16> WorkList;
+ SmallPtrSet<BasicBlock *, 8> Visited;
+ BasicBlock::iterator FirstBBI(FirstI);
+ ++FirstBBI;
+ BasicBlock::iterator SecondBBI(SecondI);
+ BasicBlock *FirstBB = FirstI->getParent();
+ BasicBlock *SecondBB = SecondI->getParent();
+ MemoryLocation MemLoc = MemoryLocation::get(SecondI);
+
+ // Start checking the store-block.
+ WorkList.push_back(SecondBB);
+ bool isFirstBlock = true;
+
+ // Check all blocks going backward until we reach the load-block.
+ while (!WorkList.empty()) {
+ BasicBlock *B = WorkList.pop_back_val();
+
+ // Ignore instructions before LI if this is the FirstBB.
+ BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin());
+
+ BasicBlock::iterator EI;
+ if (isFirstBlock) {
+ // Ignore instructions after SI if this is the first visit of SecondBB.
+ assert(B == SecondBB && "first block is not the store block");
+ EI = SecondBBI;
+ isFirstBlock = false;
+ } else {
+ // It's not SecondBB or (in case of a loop) the second visit of SecondBB.
+ // In this case we also have to look at instructions after SI.
+ EI = B->end();
+ }
+ for (; BI != EI; ++BI) {
+ Instruction *I = &*BI;
+ if (I->mayWriteToMemory() && I != SecondI)
+ if (isModSet(AA->getModRefInfo(I, MemLoc)))
+ return false;
+ }
+ if (B != FirstBB) {
+ assert(B != &FirstBB->getParent()->getEntryBlock() &&
+ "Should not hit the entry block because SI must be dominated by LI");
+ for (auto PredI = pred_begin(B), PE = pred_end(B); PredI != PE; ++PredI) {
+ if (!Visited.insert(*PredI).second)
+ continue;
+ WorkList.push_back(*PredI);
+ }
+ }
+ }
+ return true;
+}
+
+/// Find all blocks that will unconditionally lead to the block BB and append
+/// them to F.
+static void findUnconditionalPreds(SmallVectorImpl<BasicBlock *> &Blocks,
+ BasicBlock *BB, DominatorTree *DT) {
+ for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
+ BasicBlock *Pred = *I;
+ if (Pred == BB) continue;
+ Instruction *PredTI = Pred->getTerminator();
+ if (PredTI->getNumSuccessors() != 1)
+ continue;
+
+ if (DT->isReachableFromEntry(Pred))
+ Blocks.push_back(Pred);
+ }
+}
+
+/// Handle frees of entire structures whose dependency is a store
+/// to a field of that structure.
+static bool handleFree(CallInst *F, AliasAnalysis *AA,
+ MemoryDependenceResults *MD, DominatorTree *DT,
+ const TargetLibraryInfo *TLI,
+ InstOverlapIntervalsTy &IOL, OrderedBasicBlock &OBB) {
+ bool MadeChange = false;
+
+ MemoryLocation Loc = MemoryLocation(F->getOperand(0));
+ SmallVector<BasicBlock *, 16> Blocks;
+ Blocks.push_back(F->getParent());
+ const DataLayout &DL = F->getModule()->getDataLayout();
+
+ while (!Blocks.empty()) {
+ BasicBlock *BB = Blocks.pop_back_val();
+ Instruction *InstPt = BB->getTerminator();
+ if (BB == F->getParent()) InstPt = F;
+
+ MemDepResult Dep =
+ MD->getPointerDependencyFrom(Loc, false, InstPt->getIterator(), BB);
+ while (Dep.isDef() || Dep.isClobber()) {
+ Instruction *Dependency = Dep.getInst();
+ if (!hasAnalyzableMemoryWrite(Dependency, *TLI) ||
+ !isRemovable(Dependency))
+ break;
+
+ Value *DepPointer =
+ GetUnderlyingObject(getStoredPointerOperand(Dependency), DL);
+
+ // Check for aliasing.
+ if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
+ break;
+
+ LLVM_DEBUG(
+ dbgs() << "DSE: Dead Store to soon to be freed memory:\n DEAD: "
+ << *Dependency << '\n');
+
+ // DCE instructions only used to calculate that store.
+ BasicBlock::iterator BBI(Dependency);
+ deleteDeadInstruction(Dependency, &BBI, *MD, *TLI, IOL, OBB);
+ ++NumFastStores;
+ MadeChange = true;
+
+ // Inst's old Dependency is now deleted. Compute the next dependency,
+ // which may also be dead, as in
+ // s[0] = 0;
+ // s[1] = 0; // This has just been deleted.
+ // free(s);
+ Dep = MD->getPointerDependencyFrom(Loc, false, BBI, BB);
+ }
+
+ if (Dep.isNonLocal())
+ findUnconditionalPreds(Blocks, BB, DT);
+ }
+
+ return MadeChange;
+}
+
+/// Check to see if the specified location may alias any of the stack objects in
+/// the DeadStackObjects set. If so, they become live because the location is
+/// being loaded.
+static void removeAccessedObjects(const MemoryLocation &LoadedLoc,
+ SmallSetVector<const Value *, 16> &DeadStackObjects,
+ const DataLayout &DL, AliasAnalysis *AA,
+ const TargetLibraryInfo *TLI,
+ const Function *F) {
+ const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr, DL);
+
+ // A constant can't be in the dead pointer set.
+ if (isa<Constant>(UnderlyingPointer))
+ return;
+
+ // If the kill pointer can be easily reduced to an alloca, don't bother doing
+ // extraneous AA queries.
+ if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
+ DeadStackObjects.remove(UnderlyingPointer);
+ return;
+ }
+
+ // Remove objects that could alias LoadedLoc.
+ DeadStackObjects.remove_if([&](const Value *I) {
+ // See if the loaded location could alias the stack location.
+ MemoryLocation StackLoc(I, getPointerSize(I, DL, *TLI, F));
+ return !AA->isNoAlias(StackLoc, LoadedLoc);
+ });
+}
+
+/// Remove dead stores to stack-allocated locations in the function end block.
+/// Ex:
+/// %A = alloca i32
+/// ...
+/// store i32 1, i32* %A
+/// ret void
+static bool handleEndBlock(BasicBlock &BB, AliasAnalysis *AA,
+ MemoryDependenceResults *MD,
+ const TargetLibraryInfo *TLI,
+ InstOverlapIntervalsTy &IOL,
+ OrderedBasicBlock &OBB) {
+ bool MadeChange = false;
+
+ // Keep track of all of the stack objects that are dead at the end of the
+ // function.
+ SmallSetVector<const Value*, 16> DeadStackObjects;
+
+ // Find all of the alloca'd pointers in the entry block.
+ BasicBlock &Entry = BB.getParent()->front();
+ for (Instruction &I : Entry) {
+ if (isa<AllocaInst>(&I))
+ DeadStackObjects.insert(&I);
+
+ // Okay, so these are dead heap objects, but if the pointer never escapes
+ // then it's leaked by this function anyways.
+ else if (isAllocLikeFn(&I, TLI) && !PointerMayBeCaptured(&I, true, true))
+ DeadStackObjects.insert(&I);
+ }
+
+ // Treat byval or inalloca arguments the same, stores to them are dead at the
+ // end of the function.
+ for (Argument &AI : BB.getParent()->args())
+ if (AI.hasByValOrInAllocaAttr())
+ DeadStackObjects.insert(&AI);
+
+ const DataLayout &DL = BB.getModule()->getDataLayout();
+
+ // Scan the basic block backwards
+ for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
+ --BBI;
+
+ // If we find a store, check to see if it points into a dead stack value.
+ if (hasAnalyzableMemoryWrite(&*BBI, *TLI) && isRemovable(&*BBI)) {
+ // See through pointer-to-pointer bitcasts
+ SmallVector<const Value *, 4> Pointers;
+ GetUnderlyingObjects(getStoredPointerOperand(&*BBI), Pointers, DL);
+
+ // Stores to stack values are valid candidates for removal.
+ bool AllDead = true;
+ for (const Value *Pointer : Pointers)
+ if (!DeadStackObjects.count(Pointer)) {
+ AllDead = false;
+ break;
+ }
+
+ if (AllDead) {
+ Instruction *Dead = &*BBI;
+
+ LLVM_DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n DEAD: "
+ << *Dead << "\n Objects: ";
+ for (SmallVectorImpl<const Value *>::iterator I =
+ Pointers.begin(),
+ E = Pointers.end();
+ I != E; ++I) {
+ dbgs() << **I;
+ if (std::next(I) != E)
+ dbgs() << ", ";
+ } dbgs()
+ << '\n');
+
+ // DCE instructions only used to calculate that store.
+ deleteDeadInstruction(Dead, &BBI, *MD, *TLI, IOL, OBB,
+ &DeadStackObjects);
+ ++NumFastStores;
+ MadeChange = true;
+ continue;
+ }
+ }
+
+ // Remove any dead non-memory-mutating instructions.
+ if (isInstructionTriviallyDead(&*BBI, TLI)) {
+ LLVM_DEBUG(dbgs() << "DSE: Removing trivially dead instruction:\n DEAD: "
+ << *&*BBI << '\n');
+ deleteDeadInstruction(&*BBI, &BBI, *MD, *TLI, IOL, OBB,
+ &DeadStackObjects);
+ ++NumFastOther;
+ MadeChange = true;
+ continue;
+ }
+
+ if (isa<AllocaInst>(BBI)) {
+ // Remove allocas from the list of dead stack objects; there can't be
+ // any references before the definition.
+ DeadStackObjects.remove(&*BBI);
+ continue;
+ }
+
+ if (auto *Call = dyn_cast<CallBase>(&*BBI)) {
+ // Remove allocation function calls from the list of dead stack objects;
+ // there can't be any references before the definition.
+ if (isAllocLikeFn(&*BBI, TLI))
+ DeadStackObjects.remove(&*BBI);
+
+ // If this call does not access memory, it can't be loading any of our
+ // pointers.
+ if (AA->doesNotAccessMemory(Call))
+ continue;
+
+ // If the call might load from any of our allocas, then any store above
+ // the call is live.
+ DeadStackObjects.remove_if([&](const Value *I) {
+ // See if the call site touches the value.
+ return isRefSet(AA->getModRefInfo(
+ Call, I, getPointerSize(I, DL, *TLI, BB.getParent())));
+ });
+
+ // If all of the allocas were clobbered by the call then we're not going
+ // to find anything else to process.
+ if (DeadStackObjects.empty())
+ break;
+
+ continue;
+ }
+
+ // We can remove the dead stores, irrespective of the fence and its ordering
+ // (release/acquire/seq_cst). Fences only constraints the ordering of
+ // already visible stores, it does not make a store visible to other
+ // threads. So, skipping over a fence does not change a store from being
+ // dead.
+ if (isa<FenceInst>(*BBI))
+ continue;
+
+ MemoryLocation LoadedLoc;
+
+ // If we encounter a use of the pointer, it is no longer considered dead
+ if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
+ if (!L->isUnordered()) // Be conservative with atomic/volatile load
+ break;
+ LoadedLoc = MemoryLocation::get(L);
+ } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
+ LoadedLoc = MemoryLocation::get(V);
+ } else if (!BBI->mayReadFromMemory()) {
+ // Instruction doesn't read memory. Note that stores that weren't removed
+ // above will hit this case.
+ continue;
+ } else {
+ // Unknown inst; assume it clobbers everything.
+ break;
+ }
+
+ // Remove any allocas from the DeadPointer set that are loaded, as this
+ // makes any stores above the access live.
+ removeAccessedObjects(LoadedLoc, DeadStackObjects, DL, AA, TLI, BB.getParent());
+
+ // If all of the allocas were clobbered by the access then we're not going
+ // to find anything else to process.
+ if (DeadStackObjects.empty())
+ break;
+ }
+
+ return MadeChange;
+}
+
+static bool tryToShorten(Instruction *EarlierWrite, int64_t &EarlierOffset,
+ int64_t &EarlierSize, int64_t LaterOffset,
+ int64_t LaterSize, bool IsOverwriteEnd) {
+ // TODO: base this on the target vector size so that if the earlier
+ // store was too small to get vector writes anyway then its likely
+ // a good idea to shorten it
+ // Power of 2 vector writes are probably always a bad idea to optimize
+ // as any store/memset/memcpy is likely using vector instructions so
+ // shortening it to not vector size is likely to be slower
+ auto *EarlierIntrinsic = cast<AnyMemIntrinsic>(EarlierWrite);
+ unsigned EarlierWriteAlign = EarlierIntrinsic->getDestAlignment();
+ if (!IsOverwriteEnd)
+ LaterOffset = int64_t(LaterOffset + LaterSize);
+
+ if (!(isPowerOf2_64(LaterOffset) && EarlierWriteAlign <= LaterOffset) &&
+ !((EarlierWriteAlign != 0) && LaterOffset % EarlierWriteAlign == 0))
+ return false;
+
+ int64_t NewLength = IsOverwriteEnd
+ ? LaterOffset - EarlierOffset
+ : EarlierSize - (LaterOffset - EarlierOffset);
+
+ if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(EarlierWrite)) {
+ // When shortening an atomic memory intrinsic, the newly shortened
+ // length must remain an integer multiple of the element size.
+ const uint32_t ElementSize = AMI->getElementSizeInBytes();
+ if (0 != NewLength % ElementSize)
+ return false;
+ }
+
+ LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n OW "
+ << (IsOverwriteEnd ? "END" : "BEGIN") << ": "
+ << *EarlierWrite << "\n KILLER (offset " << LaterOffset
+ << ", " << EarlierSize << ")\n");
+
+ Value *EarlierWriteLength = EarlierIntrinsic->getLength();
+ Value *TrimmedLength =
+ ConstantInt::get(EarlierWriteLength->getType(), NewLength);
+ EarlierIntrinsic->setLength(TrimmedLength);
+
+ EarlierSize = NewLength;
+ if (!IsOverwriteEnd) {
+ int64_t OffsetMoved = (LaterOffset - EarlierOffset);
+ Value *Indices[1] = {
+ ConstantInt::get(EarlierWriteLength->getType(), OffsetMoved)};
+ GetElementPtrInst *NewDestGEP = GetElementPtrInst::CreateInBounds(
+ EarlierIntrinsic->getRawDest()->getType()->getPointerElementType(),
+ EarlierIntrinsic->getRawDest(), Indices, "", EarlierWrite);
+ NewDestGEP->setDebugLoc(EarlierIntrinsic->getDebugLoc());
+ EarlierIntrinsic->setDest(NewDestGEP);
+ EarlierOffset = EarlierOffset + OffsetMoved;
+ }
+ return true;
+}
+
+static bool tryToShortenEnd(Instruction *EarlierWrite,
+ OverlapIntervalsTy &IntervalMap,
+ int64_t &EarlierStart, int64_t &EarlierSize) {
+ if (IntervalMap.empty() || !isShortenableAtTheEnd(EarlierWrite))
+ return false;
+
+ OverlapIntervalsTy::iterator OII = --IntervalMap.end();
+ int64_t LaterStart = OII->second;
+ int64_t LaterSize = OII->first - LaterStart;
+
+ if (LaterStart > EarlierStart && LaterStart < EarlierStart + EarlierSize &&
+ LaterStart + LaterSize >= EarlierStart + EarlierSize) {
+ if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart,
+ LaterSize, true)) {
+ IntervalMap.erase(OII);
+ return true;
+ }
+ }
+ return false;
+}
+
+static bool tryToShortenBegin(Instruction *EarlierWrite,
+ OverlapIntervalsTy &IntervalMap,
+ int64_t &EarlierStart, int64_t &EarlierSize) {
+ if (IntervalMap.empty() || !isShortenableAtTheBeginning(EarlierWrite))
+ return false;
+
+ OverlapIntervalsTy::iterator OII = IntervalMap.begin();
+ int64_t LaterStart = OII->second;
+ int64_t LaterSize = OII->first - LaterStart;
+
+ if (LaterStart <= EarlierStart && LaterStart + LaterSize > EarlierStart) {
+ assert(LaterStart + LaterSize < EarlierStart + EarlierSize &&
+ "Should have been handled as OW_Complete");
+ if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart,
+ LaterSize, false)) {
+ IntervalMap.erase(OII);
+ return true;
+ }
+ }
+ return false;
+}
+
+static bool removePartiallyOverlappedStores(AliasAnalysis *AA,
+ const DataLayout &DL,
+ InstOverlapIntervalsTy &IOL) {
+ bool Changed = false;
+ for (auto OI : IOL) {
+ Instruction *EarlierWrite = OI.first;
+ MemoryLocation Loc = getLocForWrite(EarlierWrite);
+ assert(isRemovable(EarlierWrite) && "Expect only removable instruction");
+
+ const Value *Ptr = Loc.Ptr->stripPointerCasts();
+ int64_t EarlierStart = 0;
+ int64_t EarlierSize = int64_t(Loc.Size.getValue());
+ GetPointerBaseWithConstantOffset(Ptr, EarlierStart, DL);
+ OverlapIntervalsTy &IntervalMap = OI.second;
+ Changed |=
+ tryToShortenEnd(EarlierWrite, IntervalMap, EarlierStart, EarlierSize);
+ if (IntervalMap.empty())
+ continue;
+ Changed |=
+ tryToShortenBegin(EarlierWrite, IntervalMap, EarlierStart, EarlierSize);
+ }
+ return Changed;
+}
+
+static bool eliminateNoopStore(Instruction *Inst, BasicBlock::iterator &BBI,
+ AliasAnalysis *AA, MemoryDependenceResults *MD,
+ const DataLayout &DL,
+ const TargetLibraryInfo *TLI,
+ InstOverlapIntervalsTy &IOL,
+ OrderedBasicBlock &OBB) {
+ // Must be a store instruction.
+ StoreInst *SI = dyn_cast<StoreInst>(Inst);
+ if (!SI)
+ return false;
+
+ // If we're storing the same value back to a pointer that we just loaded from,
+ // then the store can be removed.
+ if (LoadInst *DepLoad = dyn_cast<LoadInst>(SI->getValueOperand())) {
+ if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
+ isRemovable(SI) && memoryIsNotModifiedBetween(DepLoad, SI, AA)) {
+
+ LLVM_DEBUG(
+ dbgs() << "DSE: Remove Store Of Load from same pointer:\n LOAD: "
+ << *DepLoad << "\n STORE: " << *SI << '\n');
+
+ deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, OBB);
+ ++NumRedundantStores;
+ return true;
+ }
+ }
+
+ // Remove null stores into the calloc'ed objects
+ Constant *StoredConstant = dyn_cast<Constant>(SI->getValueOperand());
+ if (StoredConstant && StoredConstant->isNullValue() && isRemovable(SI)) {
+ Instruction *UnderlyingPointer =
+ dyn_cast<Instruction>(GetUnderlyingObject(SI->getPointerOperand(), DL));
+
+ if (UnderlyingPointer && isCallocLikeFn(UnderlyingPointer, TLI) &&
+ memoryIsNotModifiedBetween(UnderlyingPointer, SI, AA)) {
+ LLVM_DEBUG(
+ dbgs() << "DSE: Remove null store to the calloc'ed object:\n DEAD: "
+ << *Inst << "\n OBJECT: " << *UnderlyingPointer << '\n');
+
+ deleteDeadInstruction(SI, &BBI, *MD, *TLI, IOL, OBB);
+ ++NumRedundantStores;
+ return true;
+ }
+ }
+ return false;
+}
+
+static bool eliminateDeadStores(BasicBlock &BB, AliasAnalysis *AA,
+ MemoryDependenceResults *MD, DominatorTree *DT,
+ const TargetLibraryInfo *TLI) {
+ const DataLayout &DL = BB.getModule()->getDataLayout();
+ bool MadeChange = false;
+
+ OrderedBasicBlock OBB(&BB);
+ Instruction *LastThrowing = nullptr;
+
+ // A map of interval maps representing partially-overwritten value parts.
+ InstOverlapIntervalsTy IOL;
+
+ // Do a top-down walk on the BB.
+ for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
+ // Handle 'free' calls specially.
+ if (CallInst *F = isFreeCall(&*BBI, TLI)) {
+ MadeChange |= handleFree(F, AA, MD, DT, TLI, IOL, OBB);
+ // Increment BBI after handleFree has potentially deleted instructions.
+ // This ensures we maintain a valid iterator.
+ ++BBI;
+ continue;
+ }
+
+ Instruction *Inst = &*BBI++;
+
+ if (Inst->mayThrow()) {
+ LastThrowing = Inst;
+ continue;
+ }
+
+ // Check to see if Inst writes to memory. If not, continue.
+ if (!hasAnalyzableMemoryWrite(Inst, *TLI))
+ continue;
+
+ // eliminateNoopStore will update in iterator, if necessary.
+ if (eliminateNoopStore(Inst, BBI, AA, MD, DL, TLI, IOL, OBB)) {
+ MadeChange = true;
+ continue;
+ }
+
+ // If we find something that writes memory, get its memory dependence.
+ MemDepResult InstDep = MD->getDependency(Inst, &OBB);
+
+ // Ignore any store where we can't find a local dependence.
+ // FIXME: cross-block DSE would be fun. :)
+ if (!InstDep.isDef() && !InstDep.isClobber())
+ continue;
+
+ // Figure out what location is being stored to.
+ MemoryLocation Loc = getLocForWrite(Inst);
+
+ // If we didn't get a useful location, fail.
+ if (!Loc.Ptr)
+ continue;
+
+ // Loop until we find a store we can eliminate or a load that
+ // invalidates the analysis. Without an upper bound on the number of
+ // instructions examined, this analysis can become very time-consuming.
+ // However, the potential gain diminishes as we process more instructions
+ // without eliminating any of them. Therefore, we limit the number of
+ // instructions we look at.
+ auto Limit = MD->getDefaultBlockScanLimit();
+ while (InstDep.isDef() || InstDep.isClobber()) {
+ // Get the memory clobbered by the instruction we depend on. MemDep will
+ // skip any instructions that 'Loc' clearly doesn't interact with. If we
+ // end up depending on a may- or must-aliased load, then we can't optimize
+ // away the store and we bail out. However, if we depend on something
+ // that overwrites the memory location we *can* potentially optimize it.
+ //
+ // Find out what memory location the dependent instruction stores.
+ Instruction *DepWrite = InstDep.getInst();
+ if (!hasAnalyzableMemoryWrite(DepWrite, *TLI))
+ break;
+ MemoryLocation DepLoc = getLocForWrite(DepWrite);
+ // If we didn't get a useful location, or if it isn't a size, bail out.
+ if (!DepLoc.Ptr)
+ break;
+
+ // Make sure we don't look past a call which might throw. This is an
+ // issue because MemoryDependenceAnalysis works in the wrong direction:
+ // it finds instructions which dominate the current instruction, rather than
+ // instructions which are post-dominated by the current instruction.
+ //
+ // If the underlying object is a non-escaping memory allocation, any store
+ // to it is dead along the unwind edge. Otherwise, we need to preserve
+ // the store.
+ if (LastThrowing && OBB.dominates(DepWrite, LastThrowing)) {
+ const Value* Underlying = GetUnderlyingObject(DepLoc.Ptr, DL);
+ bool IsStoreDeadOnUnwind = isa<AllocaInst>(Underlying);
+ if (!IsStoreDeadOnUnwind) {
+ // We're looking for a call to an allocation function
+ // where the allocation doesn't escape before the last
+ // throwing instruction; PointerMayBeCaptured
+ // reasonably fast approximation.
+ IsStoreDeadOnUnwind = isAllocLikeFn(Underlying, TLI) &&
+ !PointerMayBeCaptured(Underlying, false, true);
+ }
+ if (!IsStoreDeadOnUnwind)
+ break;
+ }
+
+ // If we find a write that is a) removable (i.e., non-volatile), b) is
+ // completely obliterated by the store to 'Loc', and c) which we know that
+ // 'Inst' doesn't load from, then we can remove it.
+ // Also try to merge two stores if a later one only touches memory written
+ // to by the earlier one.
+ if (isRemovable(DepWrite) &&
+ !isPossibleSelfRead(Inst, Loc, DepWrite, *TLI, *AA)) {
+ int64_t InstWriteOffset, DepWriteOffset;
+ OverwriteResult OR = isOverwrite(Loc, DepLoc, DL, *TLI, DepWriteOffset,
+ InstWriteOffset, DepWrite, IOL, *AA,
+ BB.getParent());
+ if (OR == OW_Complete) {
+ LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *DepWrite
+ << "\n KILLER: " << *Inst << '\n');
+
+ // Delete the store and now-dead instructions that feed it.
+ deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL, OBB);
+ ++NumFastStores;
+ MadeChange = true;
+
+ // We erased DepWrite; start over.
+ InstDep = MD->getDependency(Inst, &OBB);
+ continue;
+ } else if ((OR == OW_End && isShortenableAtTheEnd(DepWrite)) ||
+ ((OR == OW_Begin &&
+ isShortenableAtTheBeginning(DepWrite)))) {
+ assert(!EnablePartialOverwriteTracking && "Do not expect to perform "
+ "when partial-overwrite "
+ "tracking is enabled");
+ // The overwrite result is known, so these must be known, too.
+ int64_t EarlierSize = DepLoc.Size.getValue();
+ int64_t LaterSize = Loc.Size.getValue();
+ bool IsOverwriteEnd = (OR == OW_End);
+ MadeChange |= tryToShorten(DepWrite, DepWriteOffset, EarlierSize,
+ InstWriteOffset, LaterSize, IsOverwriteEnd);
+ } else if (EnablePartialStoreMerging &&
+ OR == OW_PartialEarlierWithFullLater) {
+ auto *Earlier = dyn_cast<StoreInst>(DepWrite);
+ auto *Later = dyn_cast<StoreInst>(Inst);
+ if (Earlier && isa<ConstantInt>(Earlier->getValueOperand()) &&
+ DL.typeSizeEqualsStoreSize(
+ Earlier->getValueOperand()->getType()) &&
+ Later && isa<ConstantInt>(Later->getValueOperand()) &&
+ DL.typeSizeEqualsStoreSize(
+ Later->getValueOperand()->getType()) &&
+ memoryIsNotModifiedBetween(Earlier, Later, AA)) {
+ // If the store we find is:
+ // a) partially overwritten by the store to 'Loc'
+ // b) the later store is fully contained in the earlier one and
+ // c) they both have a constant value
+ // d) none of the two stores need padding
+ // Merge the two stores, replacing the earlier store's value with a
+ // merge of both values.
+ // TODO: Deal with other constant types (vectors, etc), and probably
+ // some mem intrinsics (if needed)
+
+ APInt EarlierValue =
+ cast<ConstantInt>(Earlier->getValueOperand())->getValue();
+ APInt LaterValue =
+ cast<ConstantInt>(Later->getValueOperand())->getValue();
+ unsigned LaterBits = LaterValue.getBitWidth();
+ assert(EarlierValue.getBitWidth() > LaterValue.getBitWidth());
+ LaterValue = LaterValue.zext(EarlierValue.getBitWidth());
+
+ // Offset of the smaller store inside the larger store
+ unsigned BitOffsetDiff = (InstWriteOffset - DepWriteOffset) * 8;
+ unsigned LShiftAmount =
+ DL.isBigEndian()
+ ? EarlierValue.getBitWidth() - BitOffsetDiff - LaterBits
+ : BitOffsetDiff;
+ APInt Mask =
+ APInt::getBitsSet(EarlierValue.getBitWidth(), LShiftAmount,
+ LShiftAmount + LaterBits);
+ // Clear the bits we'll be replacing, then OR with the smaller
+ // store, shifted appropriately.
+ APInt Merged =
+ (EarlierValue & ~Mask) | (LaterValue << LShiftAmount);
+ LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n Earlier: " << *DepWrite
+ << "\n Later: " << *Inst
+ << "\n Merged Value: " << Merged << '\n');
+
+ auto *SI = new StoreInst(
+ ConstantInt::get(Earlier->getValueOperand()->getType(), Merged),
+ Earlier->getPointerOperand(), false,
+ MaybeAlign(Earlier->getAlignment()), Earlier->getOrdering(),
+ Earlier->getSyncScopeID(), DepWrite);
+
+ unsigned MDToKeep[] = {LLVMContext::MD_dbg, LLVMContext::MD_tbaa,
+ LLVMContext::MD_alias_scope,
+ LLVMContext::MD_noalias,
+ LLVMContext::MD_nontemporal};
+ SI->copyMetadata(*DepWrite, MDToKeep);
+ ++NumModifiedStores;
+
+ // Remove earlier, wider, store
+ OBB.replaceInstruction(DepWrite, SI);
+
+ // Delete the old stores and now-dead instructions that feed them.
+ deleteDeadInstruction(Inst, &BBI, *MD, *TLI, IOL, OBB);
+ deleteDeadInstruction(DepWrite, &BBI, *MD, *TLI, IOL, OBB);
+ MadeChange = true;
+
+ // We erased DepWrite and Inst (Loc); start over.
+ break;
+ }
+ }
+ }
+
+ // If this is a may-aliased store that is clobbering the store value, we
+ // can keep searching past it for another must-aliased pointer that stores
+ // to the same location. For example, in:
+ // store -> P
+ // store -> Q
+ // store -> P
+ // we can remove the first store to P even though we don't know if P and Q
+ // alias.
+ if (DepWrite == &BB.front()) break;
+
+ // Can't look past this instruction if it might read 'Loc'.
+ if (isRefSet(AA->getModRefInfo(DepWrite, Loc)))
+ break;
+
+ InstDep = MD->getPointerDependencyFrom(Loc, /*isLoad=*/ false,
+ DepWrite->getIterator(), &BB,
+ /*QueryInst=*/ nullptr, &Limit);
+ }
+ }
+
+ if (EnablePartialOverwriteTracking)
+ MadeChange |= removePartiallyOverlappedStores(AA, DL, IOL);
+
+ // If this block ends in a return, unwind, or unreachable, all allocas are
+ // dead at its end, which means stores to them are also dead.
+ if (BB.getTerminator()->getNumSuccessors() == 0)
+ MadeChange |= handleEndBlock(BB, AA, MD, TLI, IOL, OBB);
+
+ return MadeChange;
+}
+
+static bool eliminateDeadStores(Function &F, AliasAnalysis *AA,
+ MemoryDependenceResults *MD, DominatorTree *DT,
+ const TargetLibraryInfo *TLI) {
+ bool MadeChange = false;
+ for (BasicBlock &BB : F)
+ // Only check non-dead blocks. Dead blocks may have strange pointer
+ // cycles that will confuse alias analysis.
+ if (DT->isReachableFromEntry(&BB))
+ MadeChange |= eliminateDeadStores(BB, AA, MD, DT, TLI);
+
+ return MadeChange;
+}
+
+//===----------------------------------------------------------------------===//
+// DSE Pass
+//===----------------------------------------------------------------------===//
+PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) {
+ AliasAnalysis *AA = &AM.getResult<AAManager>(F);
+ DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
+ MemoryDependenceResults *MD = &AM.getResult<MemoryDependenceAnalysis>(F);
+ const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
+
+ if (!eliminateDeadStores(F, AA, MD, DT, TLI))
+ return PreservedAnalyses::all();
+
+ PreservedAnalyses PA;
+ PA.preserveSet<CFGAnalyses>();
+ PA.preserve<GlobalsAA>();
+ PA.preserve<MemoryDependenceAnalysis>();
+ return PA;
+}
+
+namespace {
+
+/// A legacy pass for the legacy pass manager that wraps \c DSEPass.
+class DSELegacyPass : public FunctionPass {
+public:
+ static char ID; // Pass identification, replacement for typeid
+
+ DSELegacyPass() : FunctionPass(ID) {
+ initializeDSELegacyPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &F) override {
+ if (skipFunction(F))
+ return false;
+
+ DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
+ MemoryDependenceResults *MD =
+ &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
+ const TargetLibraryInfo *TLI =
+ &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
+
+ return eliminateDeadStores(F, AA, MD, DT, TLI);
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<AAResultsWrapperPass>();
+ AU.addRequired<MemoryDependenceWrapperPass>();
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ AU.addPreserved<GlobalsAAWrapperPass>();
+ AU.addPreserved<MemoryDependenceWrapperPass>();
+ }
+};
+
+} // end anonymous namespace
+
+char DSELegacyPass::ID = 0;
+
+INITIALIZE_PASS_BEGIN(DSELegacyPass, "dse", "Dead Store Elimination", false,
+ false)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_END(DSELegacyPass, "dse", "Dead Store Elimination", false,
+ false)
+
+FunctionPass *llvm::createDeadStoreEliminationPass() {
+ return new DSELegacyPass();
+}