summaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Scalar/DivRemPairs.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/Scalar/DivRemPairs.cpp')
-rw-r--r--llvm/lib/Transforms/Scalar/DivRemPairs.cpp371
1 files changed, 371 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Scalar/DivRemPairs.cpp b/llvm/lib/Transforms/Scalar/DivRemPairs.cpp
new file mode 100644
index 000000000000..934853507478
--- /dev/null
+++ b/llvm/lib/Transforms/Scalar/DivRemPairs.cpp
@@ -0,0 +1,371 @@
+//===- DivRemPairs.cpp - Hoist/[dr]ecompose division and remainder --------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass hoists and/or decomposes/recomposes integer division and remainder
+// instructions to enable CFG improvements and better codegen.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar/DivRemPairs.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/DebugCounter.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/BypassSlowDivision.h"
+
+using namespace llvm;
+using namespace llvm::PatternMatch;
+
+#define DEBUG_TYPE "div-rem-pairs"
+STATISTIC(NumPairs, "Number of div/rem pairs");
+STATISTIC(NumRecomposed, "Number of instructions recomposed");
+STATISTIC(NumHoisted, "Number of instructions hoisted");
+STATISTIC(NumDecomposed, "Number of instructions decomposed");
+DEBUG_COUNTER(DRPCounter, "div-rem-pairs-transform",
+ "Controls transformations in div-rem-pairs pass");
+
+namespace {
+struct ExpandedMatch {
+ DivRemMapKey Key;
+ Instruction *Value;
+};
+} // namespace
+
+/// See if we can match: (which is the form we expand into)
+/// X - ((X ?/ Y) * Y)
+/// which is equivalent to:
+/// X ?% Y
+static llvm::Optional<ExpandedMatch> matchExpandedRem(Instruction &I) {
+ Value *Dividend, *XroundedDownToMultipleOfY;
+ if (!match(&I, m_Sub(m_Value(Dividend), m_Value(XroundedDownToMultipleOfY))))
+ return llvm::None;
+
+ Value *Divisor;
+ Instruction *Div;
+ // Look for ((X / Y) * Y)
+ if (!match(
+ XroundedDownToMultipleOfY,
+ m_c_Mul(m_CombineAnd(m_IDiv(m_Specific(Dividend), m_Value(Divisor)),
+ m_Instruction(Div)),
+ m_Deferred(Divisor))))
+ return llvm::None;
+
+ ExpandedMatch M;
+ M.Key.SignedOp = Div->getOpcode() == Instruction::SDiv;
+ M.Key.Dividend = Dividend;
+ M.Key.Divisor = Divisor;
+ M.Value = &I;
+ return M;
+}
+
+/// A thin wrapper to store two values that we matched as div-rem pair.
+/// We want this extra indirection to avoid dealing with RAUW'ing the map keys.
+struct DivRemPairWorklistEntry {
+ /// The actual udiv/sdiv instruction. Source of truth.
+ AssertingVH<Instruction> DivInst;
+
+ /// The instruction that we have matched as a remainder instruction.
+ /// Should only be used as Value, don't introspect it.
+ AssertingVH<Instruction> RemInst;
+
+ DivRemPairWorklistEntry(Instruction *DivInst_, Instruction *RemInst_)
+ : DivInst(DivInst_), RemInst(RemInst_) {
+ assert((DivInst->getOpcode() == Instruction::UDiv ||
+ DivInst->getOpcode() == Instruction::SDiv) &&
+ "Not a division.");
+ assert(DivInst->getType() == RemInst->getType() && "Types should match.");
+ // We can't check anything else about remainder instruction,
+ // it's not strictly required to be a urem/srem.
+ }
+
+ /// The type for this pair, identical for both the div and rem.
+ Type *getType() const { return DivInst->getType(); }
+
+ /// Is this pair signed or unsigned?
+ bool isSigned() const { return DivInst->getOpcode() == Instruction::SDiv; }
+
+ /// In this pair, what are the divident and divisor?
+ Value *getDividend() const { return DivInst->getOperand(0); }
+ Value *getDivisor() const { return DivInst->getOperand(1); }
+
+ bool isRemExpanded() const {
+ switch (RemInst->getOpcode()) {
+ case Instruction::SRem:
+ case Instruction::URem:
+ return false; // single 'rem' instruction - unexpanded form.
+ default:
+ return true; // anything else means we have remainder in expanded form.
+ }
+ }
+};
+using DivRemWorklistTy = SmallVector<DivRemPairWorklistEntry, 4>;
+
+/// Find matching pairs of integer div/rem ops (they have the same numerator,
+/// denominator, and signedness). Place those pairs into a worklist for further
+/// processing. This indirection is needed because we have to use TrackingVH<>
+/// because we will be doing RAUW, and if one of the rem instructions we change
+/// happens to be an input to another div/rem in the maps, we'd have problems.
+static DivRemWorklistTy getWorklist(Function &F) {
+ // Insert all divide and remainder instructions into maps keyed by their
+ // operands and opcode (signed or unsigned).
+ DenseMap<DivRemMapKey, Instruction *> DivMap;
+ // Use a MapVector for RemMap so that instructions are moved/inserted in a
+ // deterministic order.
+ MapVector<DivRemMapKey, Instruction *> RemMap;
+ for (auto &BB : F) {
+ for (auto &I : BB) {
+ if (I.getOpcode() == Instruction::SDiv)
+ DivMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I;
+ else if (I.getOpcode() == Instruction::UDiv)
+ DivMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I;
+ else if (I.getOpcode() == Instruction::SRem)
+ RemMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I;
+ else if (I.getOpcode() == Instruction::URem)
+ RemMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I;
+ else if (auto Match = matchExpandedRem(I))
+ RemMap[Match->Key] = Match->Value;
+ }
+ }
+
+ // We'll accumulate the matching pairs of div-rem instructions here.
+ DivRemWorklistTy Worklist;
+
+ // We can iterate over either map because we are only looking for matched
+ // pairs. Choose remainders for efficiency because they are usually even more
+ // rare than division.
+ for (auto &RemPair : RemMap) {
+ // Find the matching division instruction from the division map.
+ Instruction *DivInst = DivMap[RemPair.first];
+ if (!DivInst)
+ continue;
+
+ // We have a matching pair of div/rem instructions.
+ NumPairs++;
+ Instruction *RemInst = RemPair.second;
+
+ // Place it in the worklist.
+ Worklist.emplace_back(DivInst, RemInst);
+ }
+
+ return Worklist;
+}
+
+/// Find matching pairs of integer div/rem ops (they have the same numerator,
+/// denominator, and signedness). If they exist in different basic blocks, bring
+/// them together by hoisting or replace the common division operation that is
+/// implicit in the remainder:
+/// X % Y <--> X - ((X / Y) * Y).
+///
+/// We can largely ignore the normal safety and cost constraints on speculation
+/// of these ops when we find a matching pair. This is because we are already
+/// guaranteed that any exceptions and most cost are already incurred by the
+/// first member of the pair.
+///
+/// Note: This transform could be an oddball enhancement to EarlyCSE, GVN, or
+/// SimplifyCFG, but it's split off on its own because it's different enough
+/// that it doesn't quite match the stated objectives of those passes.
+static bool optimizeDivRem(Function &F, const TargetTransformInfo &TTI,
+ const DominatorTree &DT) {
+ bool Changed = false;
+
+ // Get the matching pairs of div-rem instructions. We want this extra
+ // indirection to avoid dealing with having to RAUW the keys of the maps.
+ DivRemWorklistTy Worklist = getWorklist(F);
+
+ // Process each entry in the worklist.
+ for (DivRemPairWorklistEntry &E : Worklist) {
+ if (!DebugCounter::shouldExecute(DRPCounter))
+ continue;
+
+ bool HasDivRemOp = TTI.hasDivRemOp(E.getType(), E.isSigned());
+
+ auto &DivInst = E.DivInst;
+ auto &RemInst = E.RemInst;
+
+ const bool RemOriginallyWasInExpandedForm = E.isRemExpanded();
+ (void)RemOriginallyWasInExpandedForm; // suppress unused variable warning
+
+ if (HasDivRemOp && E.isRemExpanded()) {
+ // The target supports div+rem but the rem is expanded.
+ // We should recompose it first.
+ Value *X = E.getDividend();
+ Value *Y = E.getDivisor();
+ Instruction *RealRem = E.isSigned() ? BinaryOperator::CreateSRem(X, Y)
+ : BinaryOperator::CreateURem(X, Y);
+ // Note that we place it right next to the original expanded instruction,
+ // and letting further handling to move it if needed.
+ RealRem->setName(RemInst->getName() + ".recomposed");
+ RealRem->insertAfter(RemInst);
+ Instruction *OrigRemInst = RemInst;
+ // Update AssertingVH<> with new instruction so it doesn't assert.
+ RemInst = RealRem;
+ // And replace the original instruction with the new one.
+ OrigRemInst->replaceAllUsesWith(RealRem);
+ OrigRemInst->eraseFromParent();
+ NumRecomposed++;
+ // Note that we have left ((X / Y) * Y) around.
+ // If it had other uses we could rewrite it as X - X % Y
+ }
+
+ assert((!E.isRemExpanded() || !HasDivRemOp) &&
+ "*If* the target supports div-rem, then by now the RemInst *is* "
+ "Instruction::[US]Rem.");
+
+ // If the target supports div+rem and the instructions are in the same block
+ // already, there's nothing to do. The backend should handle this. If the
+ // target does not support div+rem, then we will decompose the rem.
+ if (HasDivRemOp && RemInst->getParent() == DivInst->getParent())
+ continue;
+
+ bool DivDominates = DT.dominates(DivInst, RemInst);
+ if (!DivDominates && !DT.dominates(RemInst, DivInst)) {
+ // We have matching div-rem pair, but they are in two different blocks,
+ // neither of which dominates one another.
+ // FIXME: We could hoist both ops to the common predecessor block?
+ continue;
+ }
+
+ // The target does not have a single div/rem operation,
+ // and the rem is already in expanded form. Nothing to do.
+ if (!HasDivRemOp && E.isRemExpanded())
+ continue;
+
+ if (HasDivRemOp) {
+ // The target has a single div/rem operation. Hoist the lower instruction
+ // to make the matched pair visible to the backend.
+ if (DivDominates)
+ RemInst->moveAfter(DivInst);
+ else
+ DivInst->moveAfter(RemInst);
+ NumHoisted++;
+ } else {
+ // The target does not have a single div/rem operation,
+ // and the rem is *not* in a already-expanded form.
+ // Decompose the remainder calculation as:
+ // X % Y --> X - ((X / Y) * Y).
+
+ assert(!RemOriginallyWasInExpandedForm &&
+ "We should not be expanding if the rem was in expanded form to "
+ "begin with.");
+
+ Value *X = E.getDividend();
+ Value *Y = E.getDivisor();
+ Instruction *Mul = BinaryOperator::CreateMul(DivInst, Y);
+ Instruction *Sub = BinaryOperator::CreateSub(X, Mul);
+
+ // If the remainder dominates, then hoist the division up to that block:
+ //
+ // bb1:
+ // %rem = srem %x, %y
+ // bb2:
+ // %div = sdiv %x, %y
+ // -->
+ // bb1:
+ // %div = sdiv %x, %y
+ // %mul = mul %div, %y
+ // %rem = sub %x, %mul
+ //
+ // If the division dominates, it's already in the right place. The mul+sub
+ // will be in a different block because we don't assume that they are
+ // cheap to speculatively execute:
+ //
+ // bb1:
+ // %div = sdiv %x, %y
+ // bb2:
+ // %rem = srem %x, %y
+ // -->
+ // bb1:
+ // %div = sdiv %x, %y
+ // bb2:
+ // %mul = mul %div, %y
+ // %rem = sub %x, %mul
+ //
+ // If the div and rem are in the same block, we do the same transform,
+ // but any code movement would be within the same block.
+
+ if (!DivDominates)
+ DivInst->moveBefore(RemInst);
+ Mul->insertAfter(RemInst);
+ Sub->insertAfter(Mul);
+
+ // Now kill the explicit remainder. We have replaced it with:
+ // (sub X, (mul (div X, Y), Y)
+ Sub->setName(RemInst->getName() + ".decomposed");
+ Instruction *OrigRemInst = RemInst;
+ // Update AssertingVH<> with new instruction so it doesn't assert.
+ RemInst = Sub;
+ // And replace the original instruction with the new one.
+ OrigRemInst->replaceAllUsesWith(Sub);
+ OrigRemInst->eraseFromParent();
+ NumDecomposed++;
+ }
+ Changed = true;
+ }
+
+ return Changed;
+}
+
+// Pass manager boilerplate below here.
+
+namespace {
+struct DivRemPairsLegacyPass : public FunctionPass {
+ static char ID;
+ DivRemPairsLegacyPass() : FunctionPass(ID) {
+ initializeDivRemPairsLegacyPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<TargetTransformInfoWrapperPass>();
+ AU.setPreservesCFG();
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ AU.addPreserved<GlobalsAAWrapperPass>();
+ FunctionPass::getAnalysisUsage(AU);
+ }
+
+ bool runOnFunction(Function &F) override {
+ if (skipFunction(F))
+ return false;
+ auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
+ auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ return optimizeDivRem(F, TTI, DT);
+ }
+};
+} // namespace
+
+char DivRemPairsLegacyPass::ID = 0;
+INITIALIZE_PASS_BEGIN(DivRemPairsLegacyPass, "div-rem-pairs",
+ "Hoist/decompose integer division and remainder", false,
+ false)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_END(DivRemPairsLegacyPass, "div-rem-pairs",
+ "Hoist/decompose integer division and remainder", false,
+ false)
+FunctionPass *llvm::createDivRemPairsPass() {
+ return new DivRemPairsLegacyPass();
+}
+
+PreservedAnalyses DivRemPairsPass::run(Function &F,
+ FunctionAnalysisManager &FAM) {
+ TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
+ DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
+ if (!optimizeDivRem(F, TTI, DT))
+ return PreservedAnalyses::all();
+ // TODO: This pass just hoists/replaces math ops - all analyses are preserved?
+ PreservedAnalyses PA;
+ PA.preserveSet<CFGAnalyses>();
+ PA.preserve<GlobalsAA>();
+ return PA;
+}