diff options
Diffstat (limited to 'llvm/lib/Transforms/Scalar/DivRemPairs.cpp')
| -rw-r--r-- | llvm/lib/Transforms/Scalar/DivRemPairs.cpp | 371 |
1 files changed, 371 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Scalar/DivRemPairs.cpp b/llvm/lib/Transforms/Scalar/DivRemPairs.cpp new file mode 100644 index 000000000000..934853507478 --- /dev/null +++ b/llvm/lib/Transforms/Scalar/DivRemPairs.cpp @@ -0,0 +1,371 @@ +//===- DivRemPairs.cpp - Hoist/[dr]ecompose division and remainder --------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This pass hoists and/or decomposes/recomposes integer division and remainder +// instructions to enable CFG improvements and better codegen. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Scalar/DivRemPairs.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/MapVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/Pass.h" +#include "llvm/Support/DebugCounter.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils/BypassSlowDivision.h" + +using namespace llvm; +using namespace llvm::PatternMatch; + +#define DEBUG_TYPE "div-rem-pairs" +STATISTIC(NumPairs, "Number of div/rem pairs"); +STATISTIC(NumRecomposed, "Number of instructions recomposed"); +STATISTIC(NumHoisted, "Number of instructions hoisted"); +STATISTIC(NumDecomposed, "Number of instructions decomposed"); +DEBUG_COUNTER(DRPCounter, "div-rem-pairs-transform", + "Controls transformations in div-rem-pairs pass"); + +namespace { +struct ExpandedMatch { + DivRemMapKey Key; + Instruction *Value; +}; +} // namespace + +/// See if we can match: (which is the form we expand into) +/// X - ((X ?/ Y) * Y) +/// which is equivalent to: +/// X ?% Y +static llvm::Optional<ExpandedMatch> matchExpandedRem(Instruction &I) { + Value *Dividend, *XroundedDownToMultipleOfY; + if (!match(&I, m_Sub(m_Value(Dividend), m_Value(XroundedDownToMultipleOfY)))) + return llvm::None; + + Value *Divisor; + Instruction *Div; + // Look for ((X / Y) * Y) + if (!match( + XroundedDownToMultipleOfY, + m_c_Mul(m_CombineAnd(m_IDiv(m_Specific(Dividend), m_Value(Divisor)), + m_Instruction(Div)), + m_Deferred(Divisor)))) + return llvm::None; + + ExpandedMatch M; + M.Key.SignedOp = Div->getOpcode() == Instruction::SDiv; + M.Key.Dividend = Dividend; + M.Key.Divisor = Divisor; + M.Value = &I; + return M; +} + +/// A thin wrapper to store two values that we matched as div-rem pair. +/// We want this extra indirection to avoid dealing with RAUW'ing the map keys. +struct DivRemPairWorklistEntry { + /// The actual udiv/sdiv instruction. Source of truth. + AssertingVH<Instruction> DivInst; + + /// The instruction that we have matched as a remainder instruction. + /// Should only be used as Value, don't introspect it. + AssertingVH<Instruction> RemInst; + + DivRemPairWorklistEntry(Instruction *DivInst_, Instruction *RemInst_) + : DivInst(DivInst_), RemInst(RemInst_) { + assert((DivInst->getOpcode() == Instruction::UDiv || + DivInst->getOpcode() == Instruction::SDiv) && + "Not a division."); + assert(DivInst->getType() == RemInst->getType() && "Types should match."); + // We can't check anything else about remainder instruction, + // it's not strictly required to be a urem/srem. + } + + /// The type for this pair, identical for both the div and rem. + Type *getType() const { return DivInst->getType(); } + + /// Is this pair signed or unsigned? + bool isSigned() const { return DivInst->getOpcode() == Instruction::SDiv; } + + /// In this pair, what are the divident and divisor? + Value *getDividend() const { return DivInst->getOperand(0); } + Value *getDivisor() const { return DivInst->getOperand(1); } + + bool isRemExpanded() const { + switch (RemInst->getOpcode()) { + case Instruction::SRem: + case Instruction::URem: + return false; // single 'rem' instruction - unexpanded form. + default: + return true; // anything else means we have remainder in expanded form. + } + } +}; +using DivRemWorklistTy = SmallVector<DivRemPairWorklistEntry, 4>; + +/// Find matching pairs of integer div/rem ops (they have the same numerator, +/// denominator, and signedness). Place those pairs into a worklist for further +/// processing. This indirection is needed because we have to use TrackingVH<> +/// because we will be doing RAUW, and if one of the rem instructions we change +/// happens to be an input to another div/rem in the maps, we'd have problems. +static DivRemWorklistTy getWorklist(Function &F) { + // Insert all divide and remainder instructions into maps keyed by their + // operands and opcode (signed or unsigned). + DenseMap<DivRemMapKey, Instruction *> DivMap; + // Use a MapVector for RemMap so that instructions are moved/inserted in a + // deterministic order. + MapVector<DivRemMapKey, Instruction *> RemMap; + for (auto &BB : F) { + for (auto &I : BB) { + if (I.getOpcode() == Instruction::SDiv) + DivMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I; + else if (I.getOpcode() == Instruction::UDiv) + DivMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I; + else if (I.getOpcode() == Instruction::SRem) + RemMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I; + else if (I.getOpcode() == Instruction::URem) + RemMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I; + else if (auto Match = matchExpandedRem(I)) + RemMap[Match->Key] = Match->Value; + } + } + + // We'll accumulate the matching pairs of div-rem instructions here. + DivRemWorklistTy Worklist; + + // We can iterate over either map because we are only looking for matched + // pairs. Choose remainders for efficiency because they are usually even more + // rare than division. + for (auto &RemPair : RemMap) { + // Find the matching division instruction from the division map. + Instruction *DivInst = DivMap[RemPair.first]; + if (!DivInst) + continue; + + // We have a matching pair of div/rem instructions. + NumPairs++; + Instruction *RemInst = RemPair.second; + + // Place it in the worklist. + Worklist.emplace_back(DivInst, RemInst); + } + + return Worklist; +} + +/// Find matching pairs of integer div/rem ops (they have the same numerator, +/// denominator, and signedness). If they exist in different basic blocks, bring +/// them together by hoisting or replace the common division operation that is +/// implicit in the remainder: +/// X % Y <--> X - ((X / Y) * Y). +/// +/// We can largely ignore the normal safety and cost constraints on speculation +/// of these ops when we find a matching pair. This is because we are already +/// guaranteed that any exceptions and most cost are already incurred by the +/// first member of the pair. +/// +/// Note: This transform could be an oddball enhancement to EarlyCSE, GVN, or +/// SimplifyCFG, but it's split off on its own because it's different enough +/// that it doesn't quite match the stated objectives of those passes. +static bool optimizeDivRem(Function &F, const TargetTransformInfo &TTI, + const DominatorTree &DT) { + bool Changed = false; + + // Get the matching pairs of div-rem instructions. We want this extra + // indirection to avoid dealing with having to RAUW the keys of the maps. + DivRemWorklistTy Worklist = getWorklist(F); + + // Process each entry in the worklist. + for (DivRemPairWorklistEntry &E : Worklist) { + if (!DebugCounter::shouldExecute(DRPCounter)) + continue; + + bool HasDivRemOp = TTI.hasDivRemOp(E.getType(), E.isSigned()); + + auto &DivInst = E.DivInst; + auto &RemInst = E.RemInst; + + const bool RemOriginallyWasInExpandedForm = E.isRemExpanded(); + (void)RemOriginallyWasInExpandedForm; // suppress unused variable warning + + if (HasDivRemOp && E.isRemExpanded()) { + // The target supports div+rem but the rem is expanded. + // We should recompose it first. + Value *X = E.getDividend(); + Value *Y = E.getDivisor(); + Instruction *RealRem = E.isSigned() ? BinaryOperator::CreateSRem(X, Y) + : BinaryOperator::CreateURem(X, Y); + // Note that we place it right next to the original expanded instruction, + // and letting further handling to move it if needed. + RealRem->setName(RemInst->getName() + ".recomposed"); + RealRem->insertAfter(RemInst); + Instruction *OrigRemInst = RemInst; + // Update AssertingVH<> with new instruction so it doesn't assert. + RemInst = RealRem; + // And replace the original instruction with the new one. + OrigRemInst->replaceAllUsesWith(RealRem); + OrigRemInst->eraseFromParent(); + NumRecomposed++; + // Note that we have left ((X / Y) * Y) around. + // If it had other uses we could rewrite it as X - X % Y + } + + assert((!E.isRemExpanded() || !HasDivRemOp) && + "*If* the target supports div-rem, then by now the RemInst *is* " + "Instruction::[US]Rem."); + + // If the target supports div+rem and the instructions are in the same block + // already, there's nothing to do. The backend should handle this. If the + // target does not support div+rem, then we will decompose the rem. + if (HasDivRemOp && RemInst->getParent() == DivInst->getParent()) + continue; + + bool DivDominates = DT.dominates(DivInst, RemInst); + if (!DivDominates && !DT.dominates(RemInst, DivInst)) { + // We have matching div-rem pair, but they are in two different blocks, + // neither of which dominates one another. + // FIXME: We could hoist both ops to the common predecessor block? + continue; + } + + // The target does not have a single div/rem operation, + // and the rem is already in expanded form. Nothing to do. + if (!HasDivRemOp && E.isRemExpanded()) + continue; + + if (HasDivRemOp) { + // The target has a single div/rem operation. Hoist the lower instruction + // to make the matched pair visible to the backend. + if (DivDominates) + RemInst->moveAfter(DivInst); + else + DivInst->moveAfter(RemInst); + NumHoisted++; + } else { + // The target does not have a single div/rem operation, + // and the rem is *not* in a already-expanded form. + // Decompose the remainder calculation as: + // X % Y --> X - ((X / Y) * Y). + + assert(!RemOriginallyWasInExpandedForm && + "We should not be expanding if the rem was in expanded form to " + "begin with."); + + Value *X = E.getDividend(); + Value *Y = E.getDivisor(); + Instruction *Mul = BinaryOperator::CreateMul(DivInst, Y); + Instruction *Sub = BinaryOperator::CreateSub(X, Mul); + + // If the remainder dominates, then hoist the division up to that block: + // + // bb1: + // %rem = srem %x, %y + // bb2: + // %div = sdiv %x, %y + // --> + // bb1: + // %div = sdiv %x, %y + // %mul = mul %div, %y + // %rem = sub %x, %mul + // + // If the division dominates, it's already in the right place. The mul+sub + // will be in a different block because we don't assume that they are + // cheap to speculatively execute: + // + // bb1: + // %div = sdiv %x, %y + // bb2: + // %rem = srem %x, %y + // --> + // bb1: + // %div = sdiv %x, %y + // bb2: + // %mul = mul %div, %y + // %rem = sub %x, %mul + // + // If the div and rem are in the same block, we do the same transform, + // but any code movement would be within the same block. + + if (!DivDominates) + DivInst->moveBefore(RemInst); + Mul->insertAfter(RemInst); + Sub->insertAfter(Mul); + + // Now kill the explicit remainder. We have replaced it with: + // (sub X, (mul (div X, Y), Y) + Sub->setName(RemInst->getName() + ".decomposed"); + Instruction *OrigRemInst = RemInst; + // Update AssertingVH<> with new instruction so it doesn't assert. + RemInst = Sub; + // And replace the original instruction with the new one. + OrigRemInst->replaceAllUsesWith(Sub); + OrigRemInst->eraseFromParent(); + NumDecomposed++; + } + Changed = true; + } + + return Changed; +} + +// Pass manager boilerplate below here. + +namespace { +struct DivRemPairsLegacyPass : public FunctionPass { + static char ID; + DivRemPairsLegacyPass() : FunctionPass(ID) { + initializeDivRemPairsLegacyPassPass(*PassRegistry::getPassRegistry()); + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addRequired<TargetTransformInfoWrapperPass>(); + AU.setPreservesCFG(); + AU.addPreserved<DominatorTreeWrapperPass>(); + AU.addPreserved<GlobalsAAWrapperPass>(); + FunctionPass::getAnalysisUsage(AU); + } + + bool runOnFunction(Function &F) override { + if (skipFunction(F)) + return false; + auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); + auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + return optimizeDivRem(F, TTI, DT); + } +}; +} // namespace + +char DivRemPairsLegacyPass::ID = 0; +INITIALIZE_PASS_BEGIN(DivRemPairsLegacyPass, "div-rem-pairs", + "Hoist/decompose integer division and remainder", false, + false) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_END(DivRemPairsLegacyPass, "div-rem-pairs", + "Hoist/decompose integer division and remainder", false, + false) +FunctionPass *llvm::createDivRemPairsPass() { + return new DivRemPairsLegacyPass(); +} + +PreservedAnalyses DivRemPairsPass::run(Function &F, + FunctionAnalysisManager &FAM) { + TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); + DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); + if (!optimizeDivRem(F, TTI, DT)) + return PreservedAnalyses::all(); + // TODO: This pass just hoists/replaces math ops - all analyses are preserved? + PreservedAnalyses PA; + PA.preserveSet<CFGAnalyses>(); + PA.preserve<GlobalsAA>(); + return PA; +} |
