summaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Scalar/GVN.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/Scalar/GVN.cpp')
-rw-r--r--llvm/lib/Transforms/Scalar/GVN.cpp2714
1 files changed, 2714 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Scalar/GVN.cpp b/llvm/lib/Transforms/Scalar/GVN.cpp
new file mode 100644
index 000000000000..743353eaea22
--- /dev/null
+++ b/llvm/lib/Transforms/Scalar/GVN.cpp
@@ -0,0 +1,2714 @@
+//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass performs global value numbering to eliminate fully redundant
+// instructions. It also performs simple dead load elimination.
+//
+// Note that this pass does the value numbering itself; it does not use the
+// ValueNumbering analysis passes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar/GVN.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/Hashing.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/PointerIntPair.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/CFG.h"
+#include "llvm/Analysis/DomTreeUpdater.h"
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Analysis/MemoryDependenceAnalysis.h"
+#include "llvm/Analysis/OptimizationRemarkEmitter.h"
+#include "llvm/Analysis/PHITransAddr.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Use.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/SSAUpdater.h"
+#include "llvm/Transforms/Utils/VNCoercion.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+using namespace llvm::gvn;
+using namespace llvm::VNCoercion;
+using namespace PatternMatch;
+
+#define DEBUG_TYPE "gvn"
+
+STATISTIC(NumGVNInstr, "Number of instructions deleted");
+STATISTIC(NumGVNLoad, "Number of loads deleted");
+STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
+STATISTIC(NumGVNBlocks, "Number of blocks merged");
+STATISTIC(NumGVNSimpl, "Number of instructions simplified");
+STATISTIC(NumGVNEqProp, "Number of equalities propagated");
+STATISTIC(NumPRELoad, "Number of loads PRE'd");
+
+static cl::opt<bool> EnablePRE("enable-pre",
+ cl::init(true), cl::Hidden);
+static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
+static cl::opt<bool> EnableMemDep("enable-gvn-memdep", cl::init(true));
+
+// Maximum allowed recursion depth.
+static cl::opt<uint32_t>
+MaxRecurseDepth("gvn-max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
+ cl::desc("Max recurse depth in GVN (default = 1000)"));
+
+static cl::opt<uint32_t> MaxNumDeps(
+ "gvn-max-num-deps", cl::Hidden, cl::init(100), cl::ZeroOrMore,
+ cl::desc("Max number of dependences to attempt Load PRE (default = 100)"));
+
+struct llvm::GVN::Expression {
+ uint32_t opcode;
+ Type *type;
+ bool commutative = false;
+ SmallVector<uint32_t, 4> varargs;
+
+ Expression(uint32_t o = ~2U) : opcode(o) {}
+
+ bool operator==(const Expression &other) const {
+ if (opcode != other.opcode)
+ return false;
+ if (opcode == ~0U || opcode == ~1U)
+ return true;
+ if (type != other.type)
+ return false;
+ if (varargs != other.varargs)
+ return false;
+ return true;
+ }
+
+ friend hash_code hash_value(const Expression &Value) {
+ return hash_combine(
+ Value.opcode, Value.type,
+ hash_combine_range(Value.varargs.begin(), Value.varargs.end()));
+ }
+};
+
+namespace llvm {
+
+template <> struct DenseMapInfo<GVN::Expression> {
+ static inline GVN::Expression getEmptyKey() { return ~0U; }
+ static inline GVN::Expression getTombstoneKey() { return ~1U; }
+
+ static unsigned getHashValue(const GVN::Expression &e) {
+ using llvm::hash_value;
+
+ return static_cast<unsigned>(hash_value(e));
+ }
+
+ static bool isEqual(const GVN::Expression &LHS, const GVN::Expression &RHS) {
+ return LHS == RHS;
+ }
+};
+
+} // end namespace llvm
+
+/// Represents a particular available value that we know how to materialize.
+/// Materialization of an AvailableValue never fails. An AvailableValue is
+/// implicitly associated with a rematerialization point which is the
+/// location of the instruction from which it was formed.
+struct llvm::gvn::AvailableValue {
+ enum ValType {
+ SimpleVal, // A simple offsetted value that is accessed.
+ LoadVal, // A value produced by a load.
+ MemIntrin, // A memory intrinsic which is loaded from.
+ UndefVal // A UndefValue representing a value from dead block (which
+ // is not yet physically removed from the CFG).
+ };
+
+ /// V - The value that is live out of the block.
+ PointerIntPair<Value *, 2, ValType> Val;
+
+ /// Offset - The byte offset in Val that is interesting for the load query.
+ unsigned Offset;
+
+ static AvailableValue get(Value *V, unsigned Offset = 0) {
+ AvailableValue Res;
+ Res.Val.setPointer(V);
+ Res.Val.setInt(SimpleVal);
+ Res.Offset = Offset;
+ return Res;
+ }
+
+ static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) {
+ AvailableValue Res;
+ Res.Val.setPointer(MI);
+ Res.Val.setInt(MemIntrin);
+ Res.Offset = Offset;
+ return Res;
+ }
+
+ static AvailableValue getLoad(LoadInst *LI, unsigned Offset = 0) {
+ AvailableValue Res;
+ Res.Val.setPointer(LI);
+ Res.Val.setInt(LoadVal);
+ Res.Offset = Offset;
+ return Res;
+ }
+
+ static AvailableValue getUndef() {
+ AvailableValue Res;
+ Res.Val.setPointer(nullptr);
+ Res.Val.setInt(UndefVal);
+ Res.Offset = 0;
+ return Res;
+ }
+
+ bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
+ bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
+ bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
+ bool isUndefValue() const { return Val.getInt() == UndefVal; }
+
+ Value *getSimpleValue() const {
+ assert(isSimpleValue() && "Wrong accessor");
+ return Val.getPointer();
+ }
+
+ LoadInst *getCoercedLoadValue() const {
+ assert(isCoercedLoadValue() && "Wrong accessor");
+ return cast<LoadInst>(Val.getPointer());
+ }
+
+ MemIntrinsic *getMemIntrinValue() const {
+ assert(isMemIntrinValue() && "Wrong accessor");
+ return cast<MemIntrinsic>(Val.getPointer());
+ }
+
+ /// Emit code at the specified insertion point to adjust the value defined
+ /// here to the specified type. This handles various coercion cases.
+ Value *MaterializeAdjustedValue(LoadInst *LI, Instruction *InsertPt,
+ GVN &gvn) const;
+};
+
+/// Represents an AvailableValue which can be rematerialized at the end of
+/// the associated BasicBlock.
+struct llvm::gvn::AvailableValueInBlock {
+ /// BB - The basic block in question.
+ BasicBlock *BB;
+
+ /// AV - The actual available value
+ AvailableValue AV;
+
+ static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) {
+ AvailableValueInBlock Res;
+ Res.BB = BB;
+ Res.AV = std::move(AV);
+ return Res;
+ }
+
+ static AvailableValueInBlock get(BasicBlock *BB, Value *V,
+ unsigned Offset = 0) {
+ return get(BB, AvailableValue::get(V, Offset));
+ }
+
+ static AvailableValueInBlock getUndef(BasicBlock *BB) {
+ return get(BB, AvailableValue::getUndef());
+ }
+
+ /// Emit code at the end of this block to adjust the value defined here to
+ /// the specified type. This handles various coercion cases.
+ Value *MaterializeAdjustedValue(LoadInst *LI, GVN &gvn) const {
+ return AV.MaterializeAdjustedValue(LI, BB->getTerminator(), gvn);
+ }
+};
+
+//===----------------------------------------------------------------------===//
+// ValueTable Internal Functions
+//===----------------------------------------------------------------------===//
+
+GVN::Expression GVN::ValueTable::createExpr(Instruction *I) {
+ Expression e;
+ e.type = I->getType();
+ e.opcode = I->getOpcode();
+ for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
+ OI != OE; ++OI)
+ e.varargs.push_back(lookupOrAdd(*OI));
+ if (I->isCommutative()) {
+ // Ensure that commutative instructions that only differ by a permutation
+ // of their operands get the same value number by sorting the operand value
+ // numbers. Since all commutative instructions have two operands it is more
+ // efficient to sort by hand rather than using, say, std::sort.
+ assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
+ if (e.varargs[0] > e.varargs[1])
+ std::swap(e.varargs[0], e.varargs[1]);
+ e.commutative = true;
+ }
+
+ if (CmpInst *C = dyn_cast<CmpInst>(I)) {
+ // Sort the operand value numbers so x<y and y>x get the same value number.
+ CmpInst::Predicate Predicate = C->getPredicate();
+ if (e.varargs[0] > e.varargs[1]) {
+ std::swap(e.varargs[0], e.varargs[1]);
+ Predicate = CmpInst::getSwappedPredicate(Predicate);
+ }
+ e.opcode = (C->getOpcode() << 8) | Predicate;
+ e.commutative = true;
+ } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
+ for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
+ II != IE; ++II)
+ e.varargs.push_back(*II);
+ }
+
+ return e;
+}
+
+GVN::Expression GVN::ValueTable::createCmpExpr(unsigned Opcode,
+ CmpInst::Predicate Predicate,
+ Value *LHS, Value *RHS) {
+ assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
+ "Not a comparison!");
+ Expression e;
+ e.type = CmpInst::makeCmpResultType(LHS->getType());
+ e.varargs.push_back(lookupOrAdd(LHS));
+ e.varargs.push_back(lookupOrAdd(RHS));
+
+ // Sort the operand value numbers so x<y and y>x get the same value number.
+ if (e.varargs[0] > e.varargs[1]) {
+ std::swap(e.varargs[0], e.varargs[1]);
+ Predicate = CmpInst::getSwappedPredicate(Predicate);
+ }
+ e.opcode = (Opcode << 8) | Predicate;
+ e.commutative = true;
+ return e;
+}
+
+GVN::Expression GVN::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) {
+ assert(EI && "Not an ExtractValueInst?");
+ Expression e;
+ e.type = EI->getType();
+ e.opcode = 0;
+
+ WithOverflowInst *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
+ if (WO != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) {
+ // EI is an extract from one of our with.overflow intrinsics. Synthesize
+ // a semantically equivalent expression instead of an extract value
+ // expression.
+ e.opcode = WO->getBinaryOp();
+ e.varargs.push_back(lookupOrAdd(WO->getLHS()));
+ e.varargs.push_back(lookupOrAdd(WO->getRHS()));
+ return e;
+ }
+
+ // Not a recognised intrinsic. Fall back to producing an extract value
+ // expression.
+ e.opcode = EI->getOpcode();
+ for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
+ OI != OE; ++OI)
+ e.varargs.push_back(lookupOrAdd(*OI));
+
+ for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
+ II != IE; ++II)
+ e.varargs.push_back(*II);
+
+ return e;
+}
+
+//===----------------------------------------------------------------------===//
+// ValueTable External Functions
+//===----------------------------------------------------------------------===//
+
+GVN::ValueTable::ValueTable() = default;
+GVN::ValueTable::ValueTable(const ValueTable &) = default;
+GVN::ValueTable::ValueTable(ValueTable &&) = default;
+GVN::ValueTable::~ValueTable() = default;
+
+/// add - Insert a value into the table with a specified value number.
+void GVN::ValueTable::add(Value *V, uint32_t num) {
+ valueNumbering.insert(std::make_pair(V, num));
+ if (PHINode *PN = dyn_cast<PHINode>(V))
+ NumberingPhi[num] = PN;
+}
+
+uint32_t GVN::ValueTable::lookupOrAddCall(CallInst *C) {
+ if (AA->doesNotAccessMemory(C)) {
+ Expression exp = createExpr(C);
+ uint32_t e = assignExpNewValueNum(exp).first;
+ valueNumbering[C] = e;
+ return e;
+ } else if (MD && AA->onlyReadsMemory(C)) {
+ Expression exp = createExpr(C);
+ auto ValNum = assignExpNewValueNum(exp);
+ if (ValNum.second) {
+ valueNumbering[C] = ValNum.first;
+ return ValNum.first;
+ }
+
+ MemDepResult local_dep = MD->getDependency(C);
+
+ if (!local_dep.isDef() && !local_dep.isNonLocal()) {
+ valueNumbering[C] = nextValueNumber;
+ return nextValueNumber++;
+ }
+
+ if (local_dep.isDef()) {
+ CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
+
+ if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
+ valueNumbering[C] = nextValueNumber;
+ return nextValueNumber++;
+ }
+
+ for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
+ uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
+ uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i));
+ if (c_vn != cd_vn) {
+ valueNumbering[C] = nextValueNumber;
+ return nextValueNumber++;
+ }
+ }
+
+ uint32_t v = lookupOrAdd(local_cdep);
+ valueNumbering[C] = v;
+ return v;
+ }
+
+ // Non-local case.
+ const MemoryDependenceResults::NonLocalDepInfo &deps =
+ MD->getNonLocalCallDependency(C);
+ // FIXME: Move the checking logic to MemDep!
+ CallInst* cdep = nullptr;
+
+ // Check to see if we have a single dominating call instruction that is
+ // identical to C.
+ for (unsigned i = 0, e = deps.size(); i != e; ++i) {
+ const NonLocalDepEntry *I = &deps[i];
+ if (I->getResult().isNonLocal())
+ continue;
+
+ // We don't handle non-definitions. If we already have a call, reject
+ // instruction dependencies.
+ if (!I->getResult().isDef() || cdep != nullptr) {
+ cdep = nullptr;
+ break;
+ }
+
+ CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
+ // FIXME: All duplicated with non-local case.
+ if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
+ cdep = NonLocalDepCall;
+ continue;
+ }
+
+ cdep = nullptr;
+ break;
+ }
+
+ if (!cdep) {
+ valueNumbering[C] = nextValueNumber;
+ return nextValueNumber++;
+ }
+
+ if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
+ valueNumbering[C] = nextValueNumber;
+ return nextValueNumber++;
+ }
+ for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
+ uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
+ uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i));
+ if (c_vn != cd_vn) {
+ valueNumbering[C] = nextValueNumber;
+ return nextValueNumber++;
+ }
+ }
+
+ uint32_t v = lookupOrAdd(cdep);
+ valueNumbering[C] = v;
+ return v;
+ } else {
+ valueNumbering[C] = nextValueNumber;
+ return nextValueNumber++;
+ }
+}
+
+/// Returns true if a value number exists for the specified value.
+bool GVN::ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; }
+
+/// lookup_or_add - Returns the value number for the specified value, assigning
+/// it a new number if it did not have one before.
+uint32_t GVN::ValueTable::lookupOrAdd(Value *V) {
+ DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
+ if (VI != valueNumbering.end())
+ return VI->second;
+
+ if (!isa<Instruction>(V)) {
+ valueNumbering[V] = nextValueNumber;
+ return nextValueNumber++;
+ }
+
+ Instruction* I = cast<Instruction>(V);
+ Expression exp;
+ switch (I->getOpcode()) {
+ case Instruction::Call:
+ return lookupOrAddCall(cast<CallInst>(I));
+ case Instruction::FNeg:
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::UIToFP:
+ case Instruction::SIToFP:
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::AddrSpaceCast:
+ case Instruction::BitCast:
+ case Instruction::Select:
+ case Instruction::ExtractElement:
+ case Instruction::InsertElement:
+ case Instruction::ShuffleVector:
+ case Instruction::InsertValue:
+ case Instruction::GetElementPtr:
+ exp = createExpr(I);
+ break;
+ case Instruction::ExtractValue:
+ exp = createExtractvalueExpr(cast<ExtractValueInst>(I));
+ break;
+ case Instruction::PHI:
+ valueNumbering[V] = nextValueNumber;
+ NumberingPhi[nextValueNumber] = cast<PHINode>(V);
+ return nextValueNumber++;
+ default:
+ valueNumbering[V] = nextValueNumber;
+ return nextValueNumber++;
+ }
+
+ uint32_t e = assignExpNewValueNum(exp).first;
+ valueNumbering[V] = e;
+ return e;
+}
+
+/// Returns the value number of the specified value. Fails if
+/// the value has not yet been numbered.
+uint32_t GVN::ValueTable::lookup(Value *V, bool Verify) const {
+ DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
+ if (Verify) {
+ assert(VI != valueNumbering.end() && "Value not numbered?");
+ return VI->second;
+ }
+ return (VI != valueNumbering.end()) ? VI->second : 0;
+}
+
+/// Returns the value number of the given comparison,
+/// assigning it a new number if it did not have one before. Useful when
+/// we deduced the result of a comparison, but don't immediately have an
+/// instruction realizing that comparison to hand.
+uint32_t GVN::ValueTable::lookupOrAddCmp(unsigned Opcode,
+ CmpInst::Predicate Predicate,
+ Value *LHS, Value *RHS) {
+ Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS);
+ return assignExpNewValueNum(exp).first;
+}
+
+/// Remove all entries from the ValueTable.
+void GVN::ValueTable::clear() {
+ valueNumbering.clear();
+ expressionNumbering.clear();
+ NumberingPhi.clear();
+ PhiTranslateTable.clear();
+ nextValueNumber = 1;
+ Expressions.clear();
+ ExprIdx.clear();
+ nextExprNumber = 0;
+}
+
+/// Remove a value from the value numbering.
+void GVN::ValueTable::erase(Value *V) {
+ uint32_t Num = valueNumbering.lookup(V);
+ valueNumbering.erase(V);
+ // If V is PHINode, V <--> value number is an one-to-one mapping.
+ if (isa<PHINode>(V))
+ NumberingPhi.erase(Num);
+}
+
+/// verifyRemoved - Verify that the value is removed from all internal data
+/// structures.
+void GVN::ValueTable::verifyRemoved(const Value *V) const {
+ for (DenseMap<Value*, uint32_t>::const_iterator
+ I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
+ assert(I->first != V && "Inst still occurs in value numbering map!");
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// GVN Pass
+//===----------------------------------------------------------------------===//
+
+PreservedAnalyses GVN::run(Function &F, FunctionAnalysisManager &AM) {
+ // FIXME: The order of evaluation of these 'getResult' calls is very
+ // significant! Re-ordering these variables will cause GVN when run alone to
+ // be less effective! We should fix memdep and basic-aa to not exhibit this
+ // behavior, but until then don't change the order here.
+ auto &AC = AM.getResult<AssumptionAnalysis>(F);
+ auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
+ auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
+ auto &AA = AM.getResult<AAManager>(F);
+ auto &MemDep = AM.getResult<MemoryDependenceAnalysis>(F);
+ auto *LI = AM.getCachedResult<LoopAnalysis>(F);
+ auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
+ bool Changed = runImpl(F, AC, DT, TLI, AA, &MemDep, LI, &ORE);
+ if (!Changed)
+ return PreservedAnalyses::all();
+ PreservedAnalyses PA;
+ PA.preserve<DominatorTreeAnalysis>();
+ PA.preserve<GlobalsAA>();
+ PA.preserve<TargetLibraryAnalysis>();
+ if (LI)
+ PA.preserve<LoopAnalysis>();
+ return PA;
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void GVN::dump(DenseMap<uint32_t, Value*>& d) const {
+ errs() << "{\n";
+ for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
+ E = d.end(); I != E; ++I) {
+ errs() << I->first << "\n";
+ I->second->dump();
+ }
+ errs() << "}\n";
+}
+#endif
+
+/// Return true if we can prove that the value
+/// we're analyzing is fully available in the specified block. As we go, keep
+/// track of which blocks we know are fully alive in FullyAvailableBlocks. This
+/// map is actually a tri-state map with the following values:
+/// 0) we know the block *is not* fully available.
+/// 1) we know the block *is* fully available.
+/// 2) we do not know whether the block is fully available or not, but we are
+/// currently speculating that it will be.
+/// 3) we are speculating for this block and have used that to speculate for
+/// other blocks.
+static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
+ DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
+ uint32_t RecurseDepth) {
+ if (RecurseDepth > MaxRecurseDepth)
+ return false;
+
+ // Optimistically assume that the block is fully available and check to see
+ // if we already know about this block in one lookup.
+ std::pair<DenseMap<BasicBlock*, char>::iterator, bool> IV =
+ FullyAvailableBlocks.insert(std::make_pair(BB, 2));
+
+ // If the entry already existed for this block, return the precomputed value.
+ if (!IV.second) {
+ // If this is a speculative "available" value, mark it as being used for
+ // speculation of other blocks.
+ if (IV.first->second == 2)
+ IV.first->second = 3;
+ return IV.first->second != 0;
+ }
+
+ // Otherwise, see if it is fully available in all predecessors.
+ pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
+
+ // If this block has no predecessors, it isn't live-in here.
+ if (PI == PE)
+ goto SpeculationFailure;
+
+ for (; PI != PE; ++PI)
+ // If the value isn't fully available in one of our predecessors, then it
+ // isn't fully available in this block either. Undo our previous
+ // optimistic assumption and bail out.
+ if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
+ goto SpeculationFailure;
+
+ return true;
+
+// If we get here, we found out that this is not, after
+// all, a fully-available block. We have a problem if we speculated on this and
+// used the speculation to mark other blocks as available.
+SpeculationFailure:
+ char &BBVal = FullyAvailableBlocks[BB];
+
+ // If we didn't speculate on this, just return with it set to false.
+ if (BBVal == 2) {
+ BBVal = 0;
+ return false;
+ }
+
+ // If we did speculate on this value, we could have blocks set to 1 that are
+ // incorrect. Walk the (transitive) successors of this block and mark them as
+ // 0 if set to one.
+ SmallVector<BasicBlock*, 32> BBWorklist;
+ BBWorklist.push_back(BB);
+
+ do {
+ BasicBlock *Entry = BBWorklist.pop_back_val();
+ // Note that this sets blocks to 0 (unavailable) if they happen to not
+ // already be in FullyAvailableBlocks. This is safe.
+ char &EntryVal = FullyAvailableBlocks[Entry];
+ if (EntryVal == 0) continue; // Already unavailable.
+
+ // Mark as unavailable.
+ EntryVal = 0;
+
+ BBWorklist.append(succ_begin(Entry), succ_end(Entry));
+ } while (!BBWorklist.empty());
+
+ return false;
+}
+
+/// Given a set of loads specified by ValuesPerBlock,
+/// construct SSA form, allowing us to eliminate LI. This returns the value
+/// that should be used at LI's definition site.
+static Value *ConstructSSAForLoadSet(LoadInst *LI,
+ SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
+ GVN &gvn) {
+ // Check for the fully redundant, dominating load case. In this case, we can
+ // just use the dominating value directly.
+ if (ValuesPerBlock.size() == 1 &&
+ gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
+ LI->getParent())) {
+ assert(!ValuesPerBlock[0].AV.isUndefValue() &&
+ "Dead BB dominate this block");
+ return ValuesPerBlock[0].MaterializeAdjustedValue(LI, gvn);
+ }
+
+ // Otherwise, we have to construct SSA form.
+ SmallVector<PHINode*, 8> NewPHIs;
+ SSAUpdater SSAUpdate(&NewPHIs);
+ SSAUpdate.Initialize(LI->getType(), LI->getName());
+
+ for (const AvailableValueInBlock &AV : ValuesPerBlock) {
+ BasicBlock *BB = AV.BB;
+
+ if (SSAUpdate.HasValueForBlock(BB))
+ continue;
+
+ // If the value is the load that we will be eliminating, and the block it's
+ // available in is the block that the load is in, then don't add it as
+ // SSAUpdater will resolve the value to the relevant phi which may let it
+ // avoid phi construction entirely if there's actually only one value.
+ if (BB == LI->getParent() &&
+ ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == LI) ||
+ (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == LI)))
+ continue;
+
+ SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LI, gvn));
+ }
+
+ // Perform PHI construction.
+ return SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
+}
+
+Value *AvailableValue::MaterializeAdjustedValue(LoadInst *LI,
+ Instruction *InsertPt,
+ GVN &gvn) const {
+ Value *Res;
+ Type *LoadTy = LI->getType();
+ const DataLayout &DL = LI->getModule()->getDataLayout();
+ if (isSimpleValue()) {
+ Res = getSimpleValue();
+ if (Res->getType() != LoadTy) {
+ Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL);
+
+ LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset
+ << " " << *getSimpleValue() << '\n'
+ << *Res << '\n'
+ << "\n\n\n");
+ }
+ } else if (isCoercedLoadValue()) {
+ LoadInst *Load = getCoercedLoadValue();
+ if (Load->getType() == LoadTy && Offset == 0) {
+ Res = Load;
+ } else {
+ Res = getLoadValueForLoad(Load, Offset, LoadTy, InsertPt, DL);
+ // We would like to use gvn.markInstructionForDeletion here, but we can't
+ // because the load is already memoized into the leader map table that GVN
+ // tracks. It is potentially possible to remove the load from the table,
+ // but then there all of the operations based on it would need to be
+ // rehashed. Just leave the dead load around.
+ gvn.getMemDep().removeInstruction(Load);
+ LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset
+ << " " << *getCoercedLoadValue() << '\n'
+ << *Res << '\n'
+ << "\n\n\n");
+ }
+ } else if (isMemIntrinValue()) {
+ Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
+ InsertPt, DL);
+ LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
+ << " " << *getMemIntrinValue() << '\n'
+ << *Res << '\n'
+ << "\n\n\n");
+ } else {
+ assert(isUndefValue() && "Should be UndefVal");
+ LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";);
+ return UndefValue::get(LoadTy);
+ }
+ assert(Res && "failed to materialize?");
+ return Res;
+}
+
+static bool isLifetimeStart(const Instruction *Inst) {
+ if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
+ return II->getIntrinsicID() == Intrinsic::lifetime_start;
+ return false;
+}
+
+/// Try to locate the three instruction involved in a missed
+/// load-elimination case that is due to an intervening store.
+static void reportMayClobberedLoad(LoadInst *LI, MemDepResult DepInfo,
+ DominatorTree *DT,
+ OptimizationRemarkEmitter *ORE) {
+ using namespace ore;
+
+ User *OtherAccess = nullptr;
+
+ OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", LI);
+ R << "load of type " << NV("Type", LI->getType()) << " not eliminated"
+ << setExtraArgs();
+
+ for (auto *U : LI->getPointerOperand()->users())
+ if (U != LI && (isa<LoadInst>(U) || isa<StoreInst>(U)) &&
+ DT->dominates(cast<Instruction>(U), LI)) {
+ // FIXME: for now give up if there are multiple memory accesses that
+ // dominate the load. We need further analysis to decide which one is
+ // that we're forwarding from.
+ if (OtherAccess)
+ OtherAccess = nullptr;
+ else
+ OtherAccess = U;
+ }
+
+ if (OtherAccess)
+ R << " in favor of " << NV("OtherAccess", OtherAccess);
+
+ R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst());
+
+ ORE->emit(R);
+}
+
+bool GVN::AnalyzeLoadAvailability(LoadInst *LI, MemDepResult DepInfo,
+ Value *Address, AvailableValue &Res) {
+ assert((DepInfo.isDef() || DepInfo.isClobber()) &&
+ "expected a local dependence");
+ assert(LI->isUnordered() && "rules below are incorrect for ordered access");
+
+ const DataLayout &DL = LI->getModule()->getDataLayout();
+
+ Instruction *DepInst = DepInfo.getInst();
+ if (DepInfo.isClobber()) {
+ // If the dependence is to a store that writes to a superset of the bits
+ // read by the load, we can extract the bits we need for the load from the
+ // stored value.
+ if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
+ // Can't forward from non-atomic to atomic without violating memory model.
+ if (Address && LI->isAtomic() <= DepSI->isAtomic()) {
+ int Offset =
+ analyzeLoadFromClobberingStore(LI->getType(), Address, DepSI, DL);
+ if (Offset != -1) {
+ Res = AvailableValue::get(DepSI->getValueOperand(), Offset);
+ return true;
+ }
+ }
+ }
+
+ // Check to see if we have something like this:
+ // load i32* P
+ // load i8* (P+1)
+ // if we have this, replace the later with an extraction from the former.
+ if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
+ // If this is a clobber and L is the first instruction in its block, then
+ // we have the first instruction in the entry block.
+ // Can't forward from non-atomic to atomic without violating memory model.
+ if (DepLI != LI && Address && LI->isAtomic() <= DepLI->isAtomic()) {
+ int Offset =
+ analyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL);
+
+ if (Offset != -1) {
+ Res = AvailableValue::getLoad(DepLI, Offset);
+ return true;
+ }
+ }
+ }
+
+ // If the clobbering value is a memset/memcpy/memmove, see if we can
+ // forward a value on from it.
+ if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
+ if (Address && !LI->isAtomic()) {
+ int Offset = analyzeLoadFromClobberingMemInst(LI->getType(), Address,
+ DepMI, DL);
+ if (Offset != -1) {
+ Res = AvailableValue::getMI(DepMI, Offset);
+ return true;
+ }
+ }
+ }
+ // Nothing known about this clobber, have to be conservative
+ LLVM_DEBUG(
+ // fast print dep, using operator<< on instruction is too slow.
+ dbgs() << "GVN: load "; LI->printAsOperand(dbgs());
+ dbgs() << " is clobbered by " << *DepInst << '\n';);
+ if (ORE->allowExtraAnalysis(DEBUG_TYPE))
+ reportMayClobberedLoad(LI, DepInfo, DT, ORE);
+
+ return false;
+ }
+ assert(DepInfo.isDef() && "follows from above");
+
+ // Loading the allocation -> undef.
+ if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
+ // Loading immediately after lifetime begin -> undef.
+ isLifetimeStart(DepInst)) {
+ Res = AvailableValue::get(UndefValue::get(LI->getType()));
+ return true;
+ }
+
+ // Loading from calloc (which zero initializes memory) -> zero
+ if (isCallocLikeFn(DepInst, TLI)) {
+ Res = AvailableValue::get(Constant::getNullValue(LI->getType()));
+ return true;
+ }
+
+ if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
+ // Reject loads and stores that are to the same address but are of
+ // different types if we have to. If the stored value is larger or equal to
+ // the loaded value, we can reuse it.
+ if (!canCoerceMustAliasedValueToLoad(S->getValueOperand(), LI->getType(),
+ DL))
+ return false;
+
+ // Can't forward from non-atomic to atomic without violating memory model.
+ if (S->isAtomic() < LI->isAtomic())
+ return false;
+
+ Res = AvailableValue::get(S->getValueOperand());
+ return true;
+ }
+
+ if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
+ // If the types mismatch and we can't handle it, reject reuse of the load.
+ // If the stored value is larger or equal to the loaded value, we can reuse
+ // it.
+ if (!canCoerceMustAliasedValueToLoad(LD, LI->getType(), DL))
+ return false;
+
+ // Can't forward from non-atomic to atomic without violating memory model.
+ if (LD->isAtomic() < LI->isAtomic())
+ return false;
+
+ Res = AvailableValue::getLoad(LD);
+ return true;
+ }
+
+ // Unknown def - must be conservative
+ LLVM_DEBUG(
+ // fast print dep, using operator<< on instruction is too slow.
+ dbgs() << "GVN: load "; LI->printAsOperand(dbgs());
+ dbgs() << " has unknown def " << *DepInst << '\n';);
+ return false;
+}
+
+void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
+ AvailValInBlkVect &ValuesPerBlock,
+ UnavailBlkVect &UnavailableBlocks) {
+ // Filter out useless results (non-locals, etc). Keep track of the blocks
+ // where we have a value available in repl, also keep track of whether we see
+ // dependencies that produce an unknown value for the load (such as a call
+ // that could potentially clobber the load).
+ unsigned NumDeps = Deps.size();
+ for (unsigned i = 0, e = NumDeps; i != e; ++i) {
+ BasicBlock *DepBB = Deps[i].getBB();
+ MemDepResult DepInfo = Deps[i].getResult();
+
+ if (DeadBlocks.count(DepBB)) {
+ // Dead dependent mem-op disguise as a load evaluating the same value
+ // as the load in question.
+ ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
+ continue;
+ }
+
+ if (!DepInfo.isDef() && !DepInfo.isClobber()) {
+ UnavailableBlocks.push_back(DepBB);
+ continue;
+ }
+
+ // The address being loaded in this non-local block may not be the same as
+ // the pointer operand of the load if PHI translation occurs. Make sure
+ // to consider the right address.
+ Value *Address = Deps[i].getAddress();
+
+ AvailableValue AV;
+ if (AnalyzeLoadAvailability(LI, DepInfo, Address, AV)) {
+ // subtlety: because we know this was a non-local dependency, we know
+ // it's safe to materialize anywhere between the instruction within
+ // DepInfo and the end of it's block.
+ ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
+ std::move(AV)));
+ } else {
+ UnavailableBlocks.push_back(DepBB);
+ }
+ }
+
+ assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() &&
+ "post condition violation");
+}
+
+bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
+ UnavailBlkVect &UnavailableBlocks) {
+ // Okay, we have *some* definitions of the value. This means that the value
+ // is available in some of our (transitive) predecessors. Lets think about
+ // doing PRE of this load. This will involve inserting a new load into the
+ // predecessor when it's not available. We could do this in general, but
+ // prefer to not increase code size. As such, we only do this when we know
+ // that we only have to insert *one* load (which means we're basically moving
+ // the load, not inserting a new one).
+
+ SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(),
+ UnavailableBlocks.end());
+
+ // Let's find the first basic block with more than one predecessor. Walk
+ // backwards through predecessors if needed.
+ BasicBlock *LoadBB = LI->getParent();
+ BasicBlock *TmpBB = LoadBB;
+ bool IsSafeToSpeculativelyExecute = isSafeToSpeculativelyExecute(LI);
+
+ // Check that there is no implicit control flow instructions above our load in
+ // its block. If there is an instruction that doesn't always pass the
+ // execution to the following instruction, then moving through it may become
+ // invalid. For example:
+ //
+ // int arr[LEN];
+ // int index = ???;
+ // ...
+ // guard(0 <= index && index < LEN);
+ // use(arr[index]);
+ //
+ // It is illegal to move the array access to any point above the guard,
+ // because if the index is out of bounds we should deoptimize rather than
+ // access the array.
+ // Check that there is no guard in this block above our instruction.
+ if (!IsSafeToSpeculativelyExecute && ICF->isDominatedByICFIFromSameBlock(LI))
+ return false;
+ while (TmpBB->getSinglePredecessor()) {
+ TmpBB = TmpBB->getSinglePredecessor();
+ if (TmpBB == LoadBB) // Infinite (unreachable) loop.
+ return false;
+ if (Blockers.count(TmpBB))
+ return false;
+
+ // If any of these blocks has more than one successor (i.e. if the edge we
+ // just traversed was critical), then there are other paths through this
+ // block along which the load may not be anticipated. Hoisting the load
+ // above this block would be adding the load to execution paths along
+ // which it was not previously executed.
+ if (TmpBB->getTerminator()->getNumSuccessors() != 1)
+ return false;
+
+ // Check that there is no implicit control flow in a block above.
+ if (!IsSafeToSpeculativelyExecute && ICF->hasICF(TmpBB))
+ return false;
+ }
+
+ assert(TmpBB);
+ LoadBB = TmpBB;
+
+ // Check to see how many predecessors have the loaded value fully
+ // available.
+ MapVector<BasicBlock *, Value *> PredLoads;
+ DenseMap<BasicBlock*, char> FullyAvailableBlocks;
+ for (const AvailableValueInBlock &AV : ValuesPerBlock)
+ FullyAvailableBlocks[AV.BB] = true;
+ for (BasicBlock *UnavailableBB : UnavailableBlocks)
+ FullyAvailableBlocks[UnavailableBB] = false;
+
+ SmallVector<BasicBlock *, 4> CriticalEdgePred;
+ for (BasicBlock *Pred : predecessors(LoadBB)) {
+ // If any predecessor block is an EH pad that does not allow non-PHI
+ // instructions before the terminator, we can't PRE the load.
+ if (Pred->getTerminator()->isEHPad()) {
+ LLVM_DEBUG(
+ dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '"
+ << Pred->getName() << "': " << *LI << '\n');
+ return false;
+ }
+
+ if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
+ continue;
+ }
+
+ if (Pred->getTerminator()->getNumSuccessors() != 1) {
+ if (isa<IndirectBrInst>(Pred->getTerminator())) {
+ LLVM_DEBUG(
+ dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
+ << Pred->getName() << "': " << *LI << '\n');
+ return false;
+ }
+
+ // FIXME: Can we support the fallthrough edge?
+ if (isa<CallBrInst>(Pred->getTerminator())) {
+ LLVM_DEBUG(
+ dbgs() << "COULD NOT PRE LOAD BECAUSE OF CALLBR CRITICAL EDGE '"
+ << Pred->getName() << "': " << *LI << '\n');
+ return false;
+ }
+
+ if (LoadBB->isEHPad()) {
+ LLVM_DEBUG(
+ dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '"
+ << Pred->getName() << "': " << *LI << '\n');
+ return false;
+ }
+
+ CriticalEdgePred.push_back(Pred);
+ } else {
+ // Only add the predecessors that will not be split for now.
+ PredLoads[Pred] = nullptr;
+ }
+ }
+
+ // Decide whether PRE is profitable for this load.
+ unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size();
+ assert(NumUnavailablePreds != 0 &&
+ "Fully available value should already be eliminated!");
+
+ // If this load is unavailable in multiple predecessors, reject it.
+ // FIXME: If we could restructure the CFG, we could make a common pred with
+ // all the preds that don't have an available LI and insert a new load into
+ // that one block.
+ if (NumUnavailablePreds != 1)
+ return false;
+
+ // Split critical edges, and update the unavailable predecessors accordingly.
+ for (BasicBlock *OrigPred : CriticalEdgePred) {
+ BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
+ assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!");
+ PredLoads[NewPred] = nullptr;
+ LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
+ << LoadBB->getName() << '\n');
+ }
+
+ // Check if the load can safely be moved to all the unavailable predecessors.
+ bool CanDoPRE = true;
+ const DataLayout &DL = LI->getModule()->getDataLayout();
+ SmallVector<Instruction*, 8> NewInsts;
+ for (auto &PredLoad : PredLoads) {
+ BasicBlock *UnavailablePred = PredLoad.first;
+
+ // Do PHI translation to get its value in the predecessor if necessary. The
+ // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
+ // We do the translation for each edge we skipped by going from LI's block
+ // to LoadBB, otherwise we might miss pieces needing translation.
+
+ // If all preds have a single successor, then we know it is safe to insert
+ // the load on the pred (?!?), so we can insert code to materialize the
+ // pointer if it is not available.
+ Value *LoadPtr = LI->getPointerOperand();
+ BasicBlock *Cur = LI->getParent();
+ while (Cur != LoadBB) {
+ PHITransAddr Address(LoadPtr, DL, AC);
+ LoadPtr = Address.PHITranslateWithInsertion(
+ Cur, Cur->getSinglePredecessor(), *DT, NewInsts);
+ if (!LoadPtr) {
+ CanDoPRE = false;
+ break;
+ }
+ Cur = Cur->getSinglePredecessor();
+ }
+
+ if (LoadPtr) {
+ PHITransAddr Address(LoadPtr, DL, AC);
+ LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred, *DT,
+ NewInsts);
+ }
+ // If we couldn't find or insert a computation of this phi translated value,
+ // we fail PRE.
+ if (!LoadPtr) {
+ LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
+ << *LI->getPointerOperand() << "\n");
+ CanDoPRE = false;
+ break;
+ }
+
+ PredLoad.second = LoadPtr;
+ }
+
+ if (!CanDoPRE) {
+ while (!NewInsts.empty()) {
+ // Erase instructions generated by the failed PHI translation before
+ // trying to number them. PHI translation might insert instructions
+ // in basic blocks other than the current one, and we delete them
+ // directly, as markInstructionForDeletion only allows removing from the
+ // current basic block.
+ NewInsts.pop_back_val()->eraseFromParent();
+ }
+ // HINT: Don't revert the edge-splitting as following transformation may
+ // also need to split these critical edges.
+ return !CriticalEdgePred.empty();
+ }
+
+ // Okay, we can eliminate this load by inserting a reload in the predecessor
+ // and using PHI construction to get the value in the other predecessors, do
+ // it.
+ LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
+ LLVM_DEBUG(if (!NewInsts.empty()) dbgs()
+ << "INSERTED " << NewInsts.size() << " INSTS: " << *NewInsts.back()
+ << '\n');
+
+ // Assign value numbers to the new instructions.
+ for (Instruction *I : NewInsts) {
+ // Instructions that have been inserted in predecessor(s) to materialize
+ // the load address do not retain their original debug locations. Doing
+ // so could lead to confusing (but correct) source attributions.
+ if (const DebugLoc &DL = I->getDebugLoc())
+ I->setDebugLoc(DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));
+
+ // FIXME: We really _ought_ to insert these value numbers into their
+ // parent's availability map. However, in doing so, we risk getting into
+ // ordering issues. If a block hasn't been processed yet, we would be
+ // marking a value as AVAIL-IN, which isn't what we intend.
+ VN.lookupOrAdd(I);
+ }
+
+ for (const auto &PredLoad : PredLoads) {
+ BasicBlock *UnavailablePred = PredLoad.first;
+ Value *LoadPtr = PredLoad.second;
+
+ auto *NewLoad = new LoadInst(
+ LI->getType(), LoadPtr, LI->getName() + ".pre", LI->isVolatile(),
+ MaybeAlign(LI->getAlignment()), LI->getOrdering(), LI->getSyncScopeID(),
+ UnavailablePred->getTerminator());
+ NewLoad->setDebugLoc(LI->getDebugLoc());
+
+ // Transfer the old load's AA tags to the new load.
+ AAMDNodes Tags;
+ LI->getAAMetadata(Tags);
+ if (Tags)
+ NewLoad->setAAMetadata(Tags);
+
+ if (auto *MD = LI->getMetadata(LLVMContext::MD_invariant_load))
+ NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD);
+ if (auto *InvGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group))
+ NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD);
+ if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range))
+ NewLoad->setMetadata(LLVMContext::MD_range, RangeMD);
+
+ // We do not propagate the old load's debug location, because the new
+ // load now lives in a different BB, and we want to avoid a jumpy line
+ // table.
+ // FIXME: How do we retain source locations without causing poor debugging
+ // behavior?
+
+ // Add the newly created load.
+ ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
+ NewLoad));
+ MD->invalidateCachedPointerInfo(LoadPtr);
+ LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
+ }
+
+ // Perform PHI construction.
+ Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
+ LI->replaceAllUsesWith(V);
+ if (isa<PHINode>(V))
+ V->takeName(LI);
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ I->setDebugLoc(LI->getDebugLoc());
+ if (V->getType()->isPtrOrPtrVectorTy())
+ MD->invalidateCachedPointerInfo(V);
+ markInstructionForDeletion(LI);
+ ORE->emit([&]() {
+ return OptimizationRemark(DEBUG_TYPE, "LoadPRE", LI)
+ << "load eliminated by PRE";
+ });
+ ++NumPRELoad;
+ return true;
+}
+
+static void reportLoadElim(LoadInst *LI, Value *AvailableValue,
+ OptimizationRemarkEmitter *ORE) {
+ using namespace ore;
+
+ ORE->emit([&]() {
+ return OptimizationRemark(DEBUG_TYPE, "LoadElim", LI)
+ << "load of type " << NV("Type", LI->getType()) << " eliminated"
+ << setExtraArgs() << " in favor of "
+ << NV("InfavorOfValue", AvailableValue);
+ });
+}
+
+/// Attempt to eliminate a load whose dependencies are
+/// non-local by performing PHI construction.
+bool GVN::processNonLocalLoad(LoadInst *LI) {
+ // non-local speculations are not allowed under asan.
+ if (LI->getParent()->getParent()->hasFnAttribute(
+ Attribute::SanitizeAddress) ||
+ LI->getParent()->getParent()->hasFnAttribute(
+ Attribute::SanitizeHWAddress))
+ return false;
+
+ // Step 1: Find the non-local dependencies of the load.
+ LoadDepVect Deps;
+ MD->getNonLocalPointerDependency(LI, Deps);
+
+ // If we had to process more than one hundred blocks to find the
+ // dependencies, this load isn't worth worrying about. Optimizing
+ // it will be too expensive.
+ unsigned NumDeps = Deps.size();
+ if (NumDeps > MaxNumDeps)
+ return false;
+
+ // If we had a phi translation failure, we'll have a single entry which is a
+ // clobber in the current block. Reject this early.
+ if (NumDeps == 1 &&
+ !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
+ LLVM_DEBUG(dbgs() << "GVN: non-local load "; LI->printAsOperand(dbgs());
+ dbgs() << " has unknown dependencies\n";);
+ return false;
+ }
+
+ // If this load follows a GEP, see if we can PRE the indices before analyzing.
+ if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) {
+ for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(),
+ OE = GEP->idx_end();
+ OI != OE; ++OI)
+ if (Instruction *I = dyn_cast<Instruction>(OI->get()))
+ performScalarPRE(I);
+ }
+
+ // Step 2: Analyze the availability of the load
+ AvailValInBlkVect ValuesPerBlock;
+ UnavailBlkVect UnavailableBlocks;
+ AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks);
+
+ // If we have no predecessors that produce a known value for this load, exit
+ // early.
+ if (ValuesPerBlock.empty())
+ return false;
+
+ // Step 3: Eliminate fully redundancy.
+ //
+ // If all of the instructions we depend on produce a known value for this
+ // load, then it is fully redundant and we can use PHI insertion to compute
+ // its value. Insert PHIs and remove the fully redundant value now.
+ if (UnavailableBlocks.empty()) {
+ LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
+
+ // Perform PHI construction.
+ Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
+ LI->replaceAllUsesWith(V);
+
+ if (isa<PHINode>(V))
+ V->takeName(LI);
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ // If instruction I has debug info, then we should not update it.
+ // Also, if I has a null DebugLoc, then it is still potentially incorrect
+ // to propagate LI's DebugLoc because LI may not post-dominate I.
+ if (LI->getDebugLoc() && LI->getParent() == I->getParent())
+ I->setDebugLoc(LI->getDebugLoc());
+ if (V->getType()->isPtrOrPtrVectorTy())
+ MD->invalidateCachedPointerInfo(V);
+ markInstructionForDeletion(LI);
+ ++NumGVNLoad;
+ reportLoadElim(LI, V, ORE);
+ return true;
+ }
+
+ // Step 4: Eliminate partial redundancy.
+ if (!EnablePRE || !EnableLoadPRE)
+ return false;
+
+ return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks);
+}
+
+static bool hasUsersIn(Value *V, BasicBlock *BB) {
+ for (User *U : V->users())
+ if (isa<Instruction>(U) &&
+ cast<Instruction>(U)->getParent() == BB)
+ return true;
+ return false;
+}
+
+bool GVN::processAssumeIntrinsic(IntrinsicInst *IntrinsicI) {
+ assert(IntrinsicI->getIntrinsicID() == Intrinsic::assume &&
+ "This function can only be called with llvm.assume intrinsic");
+ Value *V = IntrinsicI->getArgOperand(0);
+
+ if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
+ if (Cond->isZero()) {
+ Type *Int8Ty = Type::getInt8Ty(V->getContext());
+ // Insert a new store to null instruction before the load to indicate that
+ // this code is not reachable. FIXME: We could insert unreachable
+ // instruction directly because we can modify the CFG.
+ new StoreInst(UndefValue::get(Int8Ty),
+ Constant::getNullValue(Int8Ty->getPointerTo()),
+ IntrinsicI);
+ }
+ markInstructionForDeletion(IntrinsicI);
+ return false;
+ } else if (isa<Constant>(V)) {
+ // If it's not false, and constant, it must evaluate to true. This means our
+ // assume is assume(true), and thus, pointless, and we don't want to do
+ // anything more here.
+ return false;
+ }
+
+ Constant *True = ConstantInt::getTrue(V->getContext());
+ bool Changed = false;
+
+ for (BasicBlock *Successor : successors(IntrinsicI->getParent())) {
+ BasicBlockEdge Edge(IntrinsicI->getParent(), Successor);
+
+ // This property is only true in dominated successors, propagateEquality
+ // will check dominance for us.
+ Changed |= propagateEquality(V, True, Edge, false);
+ }
+
+ // We can replace assume value with true, which covers cases like this:
+ // call void @llvm.assume(i1 %cmp)
+ // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true
+ ReplaceOperandsWithMap[V] = True;
+
+ // If we find an equality fact, canonicalize all dominated uses in this block
+ // to one of the two values. We heuristically choice the "oldest" of the
+ // two where age is determined by value number. (Note that propagateEquality
+ // above handles the cross block case.)
+ //
+ // Key case to cover are:
+ // 1)
+ // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen
+ // call void @llvm.assume(i1 %cmp)
+ // ret float %0 ; will change it to ret float 3.000000e+00
+ // 2)
+ // %load = load float, float* %addr
+ // %cmp = fcmp oeq float %load, %0
+ // call void @llvm.assume(i1 %cmp)
+ // ret float %load ; will change it to ret float %0
+ if (auto *CmpI = dyn_cast<CmpInst>(V)) {
+ if (CmpI->getPredicate() == CmpInst::Predicate::ICMP_EQ ||
+ CmpI->getPredicate() == CmpInst::Predicate::FCMP_OEQ ||
+ (CmpI->getPredicate() == CmpInst::Predicate::FCMP_UEQ &&
+ CmpI->getFastMathFlags().noNaNs())) {
+ Value *CmpLHS = CmpI->getOperand(0);
+ Value *CmpRHS = CmpI->getOperand(1);
+ // Heuristically pick the better replacement -- the choice of heuristic
+ // isn't terribly important here, but the fact we canonicalize on some
+ // replacement is for exposing other simplifications.
+ // TODO: pull this out as a helper function and reuse w/existing
+ // (slightly different) logic.
+ if (isa<Constant>(CmpLHS) && !isa<Constant>(CmpRHS))
+ std::swap(CmpLHS, CmpRHS);
+ if (!isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))
+ std::swap(CmpLHS, CmpRHS);
+ if ((isa<Argument>(CmpLHS) && isa<Argument>(CmpRHS)) ||
+ (isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))) {
+ // Move the 'oldest' value to the right-hand side, using the value
+ // number as a proxy for age.
+ uint32_t LVN = VN.lookupOrAdd(CmpLHS);
+ uint32_t RVN = VN.lookupOrAdd(CmpRHS);
+ if (LVN < RVN)
+ std::swap(CmpLHS, CmpRHS);
+ }
+
+ // Handle degenerate case where we either haven't pruned a dead path or a
+ // removed a trivial assume yet.
+ if (isa<Constant>(CmpLHS) && isa<Constant>(CmpRHS))
+ return Changed;
+
+ // +0.0 and -0.0 compare equal, but do not imply equivalence. Unless we
+ // can prove equivalence, bail.
+ if (CmpRHS->getType()->isFloatTy() &&
+ (!isa<ConstantFP>(CmpRHS) || cast<ConstantFP>(CmpRHS)->isZero()))
+ return Changed;
+
+ LLVM_DEBUG(dbgs() << "Replacing dominated uses of "
+ << *CmpLHS << " with "
+ << *CmpRHS << " in block "
+ << IntrinsicI->getParent()->getName() << "\n");
+
+
+ // Setup the replacement map - this handles uses within the same block
+ if (hasUsersIn(CmpLHS, IntrinsicI->getParent()))
+ ReplaceOperandsWithMap[CmpLHS] = CmpRHS;
+
+ // NOTE: The non-block local cases are handled by the call to
+ // propagateEquality above; this block is just about handling the block
+ // local cases. TODO: There's a bunch of logic in propagateEqualiy which
+ // isn't duplicated for the block local case, can we share it somehow?
+ }
+ }
+ return Changed;
+}
+
+static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
+ patchReplacementInstruction(I, Repl);
+ I->replaceAllUsesWith(Repl);
+}
+
+/// Attempt to eliminate a load, first by eliminating it
+/// locally, and then attempting non-local elimination if that fails.
+bool GVN::processLoad(LoadInst *L) {
+ if (!MD)
+ return false;
+
+ // This code hasn't been audited for ordered or volatile memory access
+ if (!L->isUnordered())
+ return false;
+
+ if (L->use_empty()) {
+ markInstructionForDeletion(L);
+ return true;
+ }
+
+ // ... to a pointer that has been loaded from before...
+ MemDepResult Dep = MD->getDependency(L);
+
+ // If it is defined in another block, try harder.
+ if (Dep.isNonLocal())
+ return processNonLocalLoad(L);
+
+ // Only handle the local case below
+ if (!Dep.isDef() && !Dep.isClobber()) {
+ // This might be a NonFuncLocal or an Unknown
+ LLVM_DEBUG(
+ // fast print dep, using operator<< on instruction is too slow.
+ dbgs() << "GVN: load "; L->printAsOperand(dbgs());
+ dbgs() << " has unknown dependence\n";);
+ return false;
+ }
+
+ AvailableValue AV;
+ if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) {
+ Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this);
+
+ // Replace the load!
+ patchAndReplaceAllUsesWith(L, AvailableValue);
+ markInstructionForDeletion(L);
+ ++NumGVNLoad;
+ reportLoadElim(L, AvailableValue, ORE);
+ // Tell MDA to rexamine the reused pointer since we might have more
+ // information after forwarding it.
+ if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy())
+ MD->invalidateCachedPointerInfo(AvailableValue);
+ return true;
+ }
+
+ return false;
+}
+
+/// Return a pair the first field showing the value number of \p Exp and the
+/// second field showing whether it is a value number newly created.
+std::pair<uint32_t, bool>
+GVN::ValueTable::assignExpNewValueNum(Expression &Exp) {
+ uint32_t &e = expressionNumbering[Exp];
+ bool CreateNewValNum = !e;
+ if (CreateNewValNum) {
+ Expressions.push_back(Exp);
+ if (ExprIdx.size() < nextValueNumber + 1)
+ ExprIdx.resize(nextValueNumber * 2);
+ e = nextValueNumber;
+ ExprIdx[nextValueNumber++] = nextExprNumber++;
+ }
+ return {e, CreateNewValNum};
+}
+
+/// Return whether all the values related with the same \p num are
+/// defined in \p BB.
+bool GVN::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB,
+ GVN &Gvn) {
+ LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
+ while (Vals && Vals->BB == BB)
+ Vals = Vals->Next;
+ return !Vals;
+}
+
+/// Wrap phiTranslateImpl to provide caching functionality.
+uint32_t GVN::ValueTable::phiTranslate(const BasicBlock *Pred,
+ const BasicBlock *PhiBlock, uint32_t Num,
+ GVN &Gvn) {
+ auto FindRes = PhiTranslateTable.find({Num, Pred});
+ if (FindRes != PhiTranslateTable.end())
+ return FindRes->second;
+ uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn);
+ PhiTranslateTable.insert({{Num, Pred}, NewNum});
+ return NewNum;
+}
+
+// Return true if the value number \p Num and NewNum have equal value.
+// Return false if the result is unknown.
+bool GVN::ValueTable::areCallValsEqual(uint32_t Num, uint32_t NewNum,
+ const BasicBlock *Pred,
+ const BasicBlock *PhiBlock, GVN &Gvn) {
+ CallInst *Call = nullptr;
+ LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
+ while (Vals) {
+ Call = dyn_cast<CallInst>(Vals->Val);
+ if (Call && Call->getParent() == PhiBlock)
+ break;
+ Vals = Vals->Next;
+ }
+
+ if (AA->doesNotAccessMemory(Call))
+ return true;
+
+ if (!MD || !AA->onlyReadsMemory(Call))
+ return false;
+
+ MemDepResult local_dep = MD->getDependency(Call);
+ if (!local_dep.isNonLocal())
+ return false;
+
+ const MemoryDependenceResults::NonLocalDepInfo &deps =
+ MD->getNonLocalCallDependency(Call);
+
+ // Check to see if the Call has no function local clobber.
+ for (unsigned i = 0; i < deps.size(); i++) {
+ if (deps[i].getResult().isNonFuncLocal())
+ return true;
+ }
+ return false;
+}
+
+/// Translate value number \p Num using phis, so that it has the values of
+/// the phis in BB.
+uint32_t GVN::ValueTable::phiTranslateImpl(const BasicBlock *Pred,
+ const BasicBlock *PhiBlock,
+ uint32_t Num, GVN &Gvn) {
+ if (PHINode *PN = NumberingPhi[Num]) {
+ for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
+ if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred)
+ if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false))
+ return TransVal;
+ }
+ return Num;
+ }
+
+ // If there is any value related with Num is defined in a BB other than
+ // PhiBlock, it cannot depend on a phi in PhiBlock without going through
+ // a backedge. We can do an early exit in that case to save compile time.
+ if (!areAllValsInBB(Num, PhiBlock, Gvn))
+ return Num;
+
+ if (Num >= ExprIdx.size() || ExprIdx[Num] == 0)
+ return Num;
+ Expression Exp = Expressions[ExprIdx[Num]];
+
+ for (unsigned i = 0; i < Exp.varargs.size(); i++) {
+ // For InsertValue and ExtractValue, some varargs are index numbers
+ // instead of value numbers. Those index numbers should not be
+ // translated.
+ if ((i > 1 && Exp.opcode == Instruction::InsertValue) ||
+ (i > 0 && Exp.opcode == Instruction::ExtractValue))
+ continue;
+ Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn);
+ }
+
+ if (Exp.commutative) {
+ assert(Exp.varargs.size() == 2 && "Unsupported commutative expression!");
+ if (Exp.varargs[0] > Exp.varargs[1]) {
+ std::swap(Exp.varargs[0], Exp.varargs[1]);
+ uint32_t Opcode = Exp.opcode >> 8;
+ if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)
+ Exp.opcode = (Opcode << 8) |
+ CmpInst::getSwappedPredicate(
+ static_cast<CmpInst::Predicate>(Exp.opcode & 255));
+ }
+ }
+
+ if (uint32_t NewNum = expressionNumbering[Exp]) {
+ if (Exp.opcode == Instruction::Call && NewNum != Num)
+ return areCallValsEqual(Num, NewNum, Pred, PhiBlock, Gvn) ? NewNum : Num;
+ return NewNum;
+ }
+ return Num;
+}
+
+/// Erase stale entry from phiTranslate cache so phiTranslate can be computed
+/// again.
+void GVN::ValueTable::eraseTranslateCacheEntry(uint32_t Num,
+ const BasicBlock &CurrBlock) {
+ for (const BasicBlock *Pred : predecessors(&CurrBlock)) {
+ auto FindRes = PhiTranslateTable.find({Num, Pred});
+ if (FindRes != PhiTranslateTable.end())
+ PhiTranslateTable.erase(FindRes);
+ }
+}
+
+// In order to find a leader for a given value number at a
+// specific basic block, we first obtain the list of all Values for that number,
+// and then scan the list to find one whose block dominates the block in
+// question. This is fast because dominator tree queries consist of only
+// a few comparisons of DFS numbers.
+Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
+ LeaderTableEntry Vals = LeaderTable[num];
+ if (!Vals.Val) return nullptr;
+
+ Value *Val = nullptr;
+ if (DT->dominates(Vals.BB, BB)) {
+ Val = Vals.Val;
+ if (isa<Constant>(Val)) return Val;
+ }
+
+ LeaderTableEntry* Next = Vals.Next;
+ while (Next) {
+ if (DT->dominates(Next->BB, BB)) {
+ if (isa<Constant>(Next->Val)) return Next->Val;
+ if (!Val) Val = Next->Val;
+ }
+
+ Next = Next->Next;
+ }
+
+ return Val;
+}
+
+/// There is an edge from 'Src' to 'Dst'. Return
+/// true if every path from the entry block to 'Dst' passes via this edge. In
+/// particular 'Dst' must not be reachable via another edge from 'Src'.
+static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
+ DominatorTree *DT) {
+ // While in theory it is interesting to consider the case in which Dst has
+ // more than one predecessor, because Dst might be part of a loop which is
+ // only reachable from Src, in practice it is pointless since at the time
+ // GVN runs all such loops have preheaders, which means that Dst will have
+ // been changed to have only one predecessor, namely Src.
+ const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
+ assert((!Pred || Pred == E.getStart()) &&
+ "No edge between these basic blocks!");
+ return Pred != nullptr;
+}
+
+void GVN::assignBlockRPONumber(Function &F) {
+ BlockRPONumber.clear();
+ uint32_t NextBlockNumber = 1;
+ ReversePostOrderTraversal<Function *> RPOT(&F);
+ for (BasicBlock *BB : RPOT)
+ BlockRPONumber[BB] = NextBlockNumber++;
+ InvalidBlockRPONumbers = false;
+}
+
+bool GVN::replaceOperandsForInBlockEquality(Instruction *Instr) const {
+ bool Changed = false;
+ for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) {
+ Value *Operand = Instr->getOperand(OpNum);
+ auto it = ReplaceOperandsWithMap.find(Operand);
+ if (it != ReplaceOperandsWithMap.end()) {
+ LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with "
+ << *it->second << " in instruction " << *Instr << '\n');
+ Instr->setOperand(OpNum, it->second);
+ Changed = true;
+ }
+ }
+ return Changed;
+}
+
+/// The given values are known to be equal in every block
+/// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with
+/// 'RHS' everywhere in the scope. Returns whether a change was made.
+/// If DominatesByEdge is false, then it means that we will propagate the RHS
+/// value starting from the end of Root.Start.
+bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root,
+ bool DominatesByEdge) {
+ SmallVector<std::pair<Value*, Value*>, 4> Worklist;
+ Worklist.push_back(std::make_pair(LHS, RHS));
+ bool Changed = false;
+ // For speed, compute a conservative fast approximation to
+ // DT->dominates(Root, Root.getEnd());
+ const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
+
+ while (!Worklist.empty()) {
+ std::pair<Value*, Value*> Item = Worklist.pop_back_val();
+ LHS = Item.first; RHS = Item.second;
+
+ if (LHS == RHS)
+ continue;
+ assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
+
+ // Don't try to propagate equalities between constants.
+ if (isa<Constant>(LHS) && isa<Constant>(RHS))
+ continue;
+
+ // Prefer a constant on the right-hand side, or an Argument if no constants.
+ if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
+ std::swap(LHS, RHS);
+ assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
+
+ // If there is no obvious reason to prefer the left-hand side over the
+ // right-hand side, ensure the longest lived term is on the right-hand side,
+ // so the shortest lived term will be replaced by the longest lived.
+ // This tends to expose more simplifications.
+ uint32_t LVN = VN.lookupOrAdd(LHS);
+ if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
+ (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
+ // Move the 'oldest' value to the right-hand side, using the value number
+ // as a proxy for age.
+ uint32_t RVN = VN.lookupOrAdd(RHS);
+ if (LVN < RVN) {
+ std::swap(LHS, RHS);
+ LVN = RVN;
+ }
+ }
+
+ // If value numbering later sees that an instruction in the scope is equal
+ // to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve
+ // the invariant that instructions only occur in the leader table for their
+ // own value number (this is used by removeFromLeaderTable), do not do this
+ // if RHS is an instruction (if an instruction in the scope is morphed into
+ // LHS then it will be turned into RHS by the next GVN iteration anyway, so
+ // using the leader table is about compiling faster, not optimizing better).
+ // The leader table only tracks basic blocks, not edges. Only add to if we
+ // have the simple case where the edge dominates the end.
+ if (RootDominatesEnd && !isa<Instruction>(RHS))
+ addToLeaderTable(LVN, RHS, Root.getEnd());
+
+ // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As
+ // LHS always has at least one use that is not dominated by Root, this will
+ // never do anything if LHS has only one use.
+ if (!LHS->hasOneUse()) {
+ unsigned NumReplacements =
+ DominatesByEdge
+ ? replaceDominatedUsesWith(LHS, RHS, *DT, Root)
+ : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart());
+
+ Changed |= NumReplacements > 0;
+ NumGVNEqProp += NumReplacements;
+ // Cached information for anything that uses LHS will be invalid.
+ if (MD)
+ MD->invalidateCachedPointerInfo(LHS);
+ }
+
+ // Now try to deduce additional equalities from this one. For example, if
+ // the known equality was "(A != B)" == "false" then it follows that A and B
+ // are equal in the scope. Only boolean equalities with an explicit true or
+ // false RHS are currently supported.
+ if (!RHS->getType()->isIntegerTy(1))
+ // Not a boolean equality - bail out.
+ continue;
+ ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
+ if (!CI)
+ // RHS neither 'true' nor 'false' - bail out.
+ continue;
+ // Whether RHS equals 'true'. Otherwise it equals 'false'.
+ bool isKnownTrue = CI->isMinusOne();
+ bool isKnownFalse = !isKnownTrue;
+
+ // If "A && B" is known true then both A and B are known true. If "A || B"
+ // is known false then both A and B are known false.
+ Value *A, *B;
+ if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
+ (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
+ Worklist.push_back(std::make_pair(A, RHS));
+ Worklist.push_back(std::make_pair(B, RHS));
+ continue;
+ }
+
+ // If we are propagating an equality like "(A == B)" == "true" then also
+ // propagate the equality A == B. When propagating a comparison such as
+ // "(A >= B)" == "true", replace all instances of "A < B" with "false".
+ if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
+ Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
+
+ // If "A == B" is known true, or "A != B" is known false, then replace
+ // A with B everywhere in the scope.
+ if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
+ (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
+ Worklist.push_back(std::make_pair(Op0, Op1));
+
+ // Handle the floating point versions of equality comparisons too.
+ if ((isKnownTrue && Cmp->getPredicate() == CmpInst::FCMP_OEQ) ||
+ (isKnownFalse && Cmp->getPredicate() == CmpInst::FCMP_UNE)) {
+
+ // Floating point -0.0 and 0.0 compare equal, so we can only
+ // propagate values if we know that we have a constant and that
+ // its value is non-zero.
+
+ // FIXME: We should do this optimization if 'no signed zeros' is
+ // applicable via an instruction-level fast-math-flag or some other
+ // indicator that relaxed FP semantics are being used.
+
+ if (isa<ConstantFP>(Op1) && !cast<ConstantFP>(Op1)->isZero())
+ Worklist.push_back(std::make_pair(Op0, Op1));
+ }
+
+ // If "A >= B" is known true, replace "A < B" with false everywhere.
+ CmpInst::Predicate NotPred = Cmp->getInversePredicate();
+ Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
+ // Since we don't have the instruction "A < B" immediately to hand, work
+ // out the value number that it would have and use that to find an
+ // appropriate instruction (if any).
+ uint32_t NextNum = VN.getNextUnusedValueNumber();
+ uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1);
+ // If the number we were assigned was brand new then there is no point in
+ // looking for an instruction realizing it: there cannot be one!
+ if (Num < NextNum) {
+ Value *NotCmp = findLeader(Root.getEnd(), Num);
+ if (NotCmp && isa<Instruction>(NotCmp)) {
+ unsigned NumReplacements =
+ DominatesByEdge
+ ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root)
+ : replaceDominatedUsesWith(NotCmp, NotVal, *DT,
+ Root.getStart());
+ Changed |= NumReplacements > 0;
+ NumGVNEqProp += NumReplacements;
+ // Cached information for anything that uses NotCmp will be invalid.
+ if (MD)
+ MD->invalidateCachedPointerInfo(NotCmp);
+ }
+ }
+ // Ensure that any instruction in scope that gets the "A < B" value number
+ // is replaced with false.
+ // The leader table only tracks basic blocks, not edges. Only add to if we
+ // have the simple case where the edge dominates the end.
+ if (RootDominatesEnd)
+ addToLeaderTable(Num, NotVal, Root.getEnd());
+
+ continue;
+ }
+ }
+
+ return Changed;
+}
+
+/// When calculating availability, handle an instruction
+/// by inserting it into the appropriate sets
+bool GVN::processInstruction(Instruction *I) {
+ // Ignore dbg info intrinsics.
+ if (isa<DbgInfoIntrinsic>(I))
+ return false;
+
+ // If the instruction can be easily simplified then do so now in preference
+ // to value numbering it. Value numbering often exposes redundancies, for
+ // example if it determines that %y is equal to %x then the instruction
+ // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
+ const DataLayout &DL = I->getModule()->getDataLayout();
+ if (Value *V = SimplifyInstruction(I, {DL, TLI, DT, AC})) {
+ bool Changed = false;
+ if (!I->use_empty()) {
+ I->replaceAllUsesWith(V);
+ Changed = true;
+ }
+ if (isInstructionTriviallyDead(I, TLI)) {
+ markInstructionForDeletion(I);
+ Changed = true;
+ }
+ if (Changed) {
+ if (MD && V->getType()->isPtrOrPtrVectorTy())
+ MD->invalidateCachedPointerInfo(V);
+ ++NumGVNSimpl;
+ return true;
+ }
+ }
+
+ if (IntrinsicInst *IntrinsicI = dyn_cast<IntrinsicInst>(I))
+ if (IntrinsicI->getIntrinsicID() == Intrinsic::assume)
+ return processAssumeIntrinsic(IntrinsicI);
+
+ if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+ if (processLoad(LI))
+ return true;
+
+ unsigned Num = VN.lookupOrAdd(LI);
+ addToLeaderTable(Num, LI, LI->getParent());
+ return false;
+ }
+
+ // For conditional branches, we can perform simple conditional propagation on
+ // the condition value itself.
+ if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
+ if (!BI->isConditional())
+ return false;
+
+ if (isa<Constant>(BI->getCondition()))
+ return processFoldableCondBr(BI);
+
+ Value *BranchCond = BI->getCondition();
+ BasicBlock *TrueSucc = BI->getSuccessor(0);
+ BasicBlock *FalseSucc = BI->getSuccessor(1);
+ // Avoid multiple edges early.
+ if (TrueSucc == FalseSucc)
+ return false;
+
+ BasicBlock *Parent = BI->getParent();
+ bool Changed = false;
+
+ Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
+ BasicBlockEdge TrueE(Parent, TrueSucc);
+ Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true);
+
+ Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
+ BasicBlockEdge FalseE(Parent, FalseSucc);
+ Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true);
+
+ return Changed;
+ }
+
+ // For switches, propagate the case values into the case destinations.
+ if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
+ Value *SwitchCond = SI->getCondition();
+ BasicBlock *Parent = SI->getParent();
+ bool Changed = false;
+
+ // Remember how many outgoing edges there are to every successor.
+ SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
+ for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
+ ++SwitchEdges[SI->getSuccessor(i)];
+
+ for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
+ i != e; ++i) {
+ BasicBlock *Dst = i->getCaseSuccessor();
+ // If there is only a single edge, propagate the case value into it.
+ if (SwitchEdges.lookup(Dst) == 1) {
+ BasicBlockEdge E(Parent, Dst);
+ Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true);
+ }
+ }
+ return Changed;
+ }
+
+ // Instructions with void type don't return a value, so there's
+ // no point in trying to find redundancies in them.
+ if (I->getType()->isVoidTy())
+ return false;
+
+ uint32_t NextNum = VN.getNextUnusedValueNumber();
+ unsigned Num = VN.lookupOrAdd(I);
+
+ // Allocations are always uniquely numbered, so we can save time and memory
+ // by fast failing them.
+ if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) {
+ addToLeaderTable(Num, I, I->getParent());
+ return false;
+ }
+
+ // If the number we were assigned was a brand new VN, then we don't
+ // need to do a lookup to see if the number already exists
+ // somewhere in the domtree: it can't!
+ if (Num >= NextNum) {
+ addToLeaderTable(Num, I, I->getParent());
+ return false;
+ }
+
+ // Perform fast-path value-number based elimination of values inherited from
+ // dominators.
+ Value *Repl = findLeader(I->getParent(), Num);
+ if (!Repl) {
+ // Failure, just remember this instance for future use.
+ addToLeaderTable(Num, I, I->getParent());
+ return false;
+ } else if (Repl == I) {
+ // If I was the result of a shortcut PRE, it might already be in the table
+ // and the best replacement for itself. Nothing to do.
+ return false;
+ }
+
+ // Remove it!
+ patchAndReplaceAllUsesWith(I, Repl);
+ if (MD && Repl->getType()->isPtrOrPtrVectorTy())
+ MD->invalidateCachedPointerInfo(Repl);
+ markInstructionForDeletion(I);
+ return true;
+}
+
+/// runOnFunction - This is the main transformation entry point for a function.
+bool GVN::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT,
+ const TargetLibraryInfo &RunTLI, AAResults &RunAA,
+ MemoryDependenceResults *RunMD, LoopInfo *LI,
+ OptimizationRemarkEmitter *RunORE) {
+ AC = &RunAC;
+ DT = &RunDT;
+ VN.setDomTree(DT);
+ TLI = &RunTLI;
+ VN.setAliasAnalysis(&RunAA);
+ MD = RunMD;
+ ImplicitControlFlowTracking ImplicitCFT(DT);
+ ICF = &ImplicitCFT;
+ this->LI = LI;
+ VN.setMemDep(MD);
+ ORE = RunORE;
+ InvalidBlockRPONumbers = true;
+
+ bool Changed = false;
+ bool ShouldContinue = true;
+
+ DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
+ // Merge unconditional branches, allowing PRE to catch more
+ // optimization opportunities.
+ for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
+ BasicBlock *BB = &*FI++;
+
+ bool removedBlock = MergeBlockIntoPredecessor(BB, &DTU, LI, nullptr, MD);
+ if (removedBlock)
+ ++NumGVNBlocks;
+
+ Changed |= removedBlock;
+ }
+
+ unsigned Iteration = 0;
+ while (ShouldContinue) {
+ LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
+ ShouldContinue = iterateOnFunction(F);
+ Changed |= ShouldContinue;
+ ++Iteration;
+ }
+
+ if (EnablePRE) {
+ // Fabricate val-num for dead-code in order to suppress assertion in
+ // performPRE().
+ assignValNumForDeadCode();
+ bool PREChanged = true;
+ while (PREChanged) {
+ PREChanged = performPRE(F);
+ Changed |= PREChanged;
+ }
+ }
+
+ // FIXME: Should perform GVN again after PRE does something. PRE can move
+ // computations into blocks where they become fully redundant. Note that
+ // we can't do this until PRE's critical edge splitting updates memdep.
+ // Actually, when this happens, we should just fully integrate PRE into GVN.
+
+ cleanupGlobalSets();
+ // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
+ // iteration.
+ DeadBlocks.clear();
+
+ return Changed;
+}
+
+bool GVN::processBlock(BasicBlock *BB) {
+ // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
+ // (and incrementing BI before processing an instruction).
+ assert(InstrsToErase.empty() &&
+ "We expect InstrsToErase to be empty across iterations");
+ if (DeadBlocks.count(BB))
+ return false;
+
+ // Clearing map before every BB because it can be used only for single BB.
+ ReplaceOperandsWithMap.clear();
+ bool ChangedFunction = false;
+
+ for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
+ BI != BE;) {
+ if (!ReplaceOperandsWithMap.empty())
+ ChangedFunction |= replaceOperandsForInBlockEquality(&*BI);
+ ChangedFunction |= processInstruction(&*BI);
+
+ if (InstrsToErase.empty()) {
+ ++BI;
+ continue;
+ }
+
+ // If we need some instructions deleted, do it now.
+ NumGVNInstr += InstrsToErase.size();
+
+ // Avoid iterator invalidation.
+ bool AtStart = BI == BB->begin();
+ if (!AtStart)
+ --BI;
+
+ for (auto *I : InstrsToErase) {
+ assert(I->getParent() == BB && "Removing instruction from wrong block?");
+ LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n');
+ salvageDebugInfo(*I);
+ if (MD) MD->removeInstruction(I);
+ LLVM_DEBUG(verifyRemoved(I));
+ ICF->removeInstruction(I);
+ I->eraseFromParent();
+ }
+ InstrsToErase.clear();
+
+ if (AtStart)
+ BI = BB->begin();
+ else
+ ++BI;
+ }
+
+ return ChangedFunction;
+}
+
+// Instantiate an expression in a predecessor that lacked it.
+bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
+ BasicBlock *Curr, unsigned int ValNo) {
+ // Because we are going top-down through the block, all value numbers
+ // will be available in the predecessor by the time we need them. Any
+ // that weren't originally present will have been instantiated earlier
+ // in this loop.
+ bool success = true;
+ for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) {
+ Value *Op = Instr->getOperand(i);
+ if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
+ continue;
+ // This could be a newly inserted instruction, in which case, we won't
+ // find a value number, and should give up before we hurt ourselves.
+ // FIXME: Rewrite the infrastructure to let it easier to value number
+ // and process newly inserted instructions.
+ if (!VN.exists(Op)) {
+ success = false;
+ break;
+ }
+ uint32_t TValNo =
+ VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this);
+ if (Value *V = findLeader(Pred, TValNo)) {
+ Instr->setOperand(i, V);
+ } else {
+ success = false;
+ break;
+ }
+ }
+
+ // Fail out if we encounter an operand that is not available in
+ // the PRE predecessor. This is typically because of loads which
+ // are not value numbered precisely.
+ if (!success)
+ return false;
+
+ Instr->insertBefore(Pred->getTerminator());
+ Instr->setName(Instr->getName() + ".pre");
+ Instr->setDebugLoc(Instr->getDebugLoc());
+
+ unsigned Num = VN.lookupOrAdd(Instr);
+ VN.add(Instr, Num);
+
+ // Update the availability map to include the new instruction.
+ addToLeaderTable(Num, Instr, Pred);
+ return true;
+}
+
+bool GVN::performScalarPRE(Instruction *CurInst) {
+ if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() ||
+ isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() ||
+ CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
+ isa<DbgInfoIntrinsic>(CurInst))
+ return false;
+
+ // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
+ // sinking the compare again, and it would force the code generator to
+ // move the i1 from processor flags or predicate registers into a general
+ // purpose register.
+ if (isa<CmpInst>(CurInst))
+ return false;
+
+ // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from
+ // sinking the addressing mode computation back to its uses. Extending the
+ // GEP's live range increases the register pressure, and therefore it can
+ // introduce unnecessary spills.
+ //
+ // This doesn't prevent Load PRE. PHI translation will make the GEP available
+ // to the load by moving it to the predecessor block if necessary.
+ if (isa<GetElementPtrInst>(CurInst))
+ return false;
+
+ // We don't currently value number ANY inline asm calls.
+ if (auto *CallB = dyn_cast<CallBase>(CurInst))
+ if (CallB->isInlineAsm())
+ return false;
+
+ uint32_t ValNo = VN.lookup(CurInst);
+
+ // Look for the predecessors for PRE opportunities. We're
+ // only trying to solve the basic diamond case, where
+ // a value is computed in the successor and one predecessor,
+ // but not the other. We also explicitly disallow cases
+ // where the successor is its own predecessor, because they're
+ // more complicated to get right.
+ unsigned NumWith = 0;
+ unsigned NumWithout = 0;
+ BasicBlock *PREPred = nullptr;
+ BasicBlock *CurrentBlock = CurInst->getParent();
+
+ // Update the RPO numbers for this function.
+ if (InvalidBlockRPONumbers)
+ assignBlockRPONumber(*CurrentBlock->getParent());
+
+ SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap;
+ for (BasicBlock *P : predecessors(CurrentBlock)) {
+ // We're not interested in PRE where blocks with predecessors that are
+ // not reachable.
+ if (!DT->isReachableFromEntry(P)) {
+ NumWithout = 2;
+ break;
+ }
+ // It is not safe to do PRE when P->CurrentBlock is a loop backedge, and
+ // when CurInst has operand defined in CurrentBlock (so it may be defined
+ // by phi in the loop header).
+ assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) &&
+ "Invalid BlockRPONumber map.");
+ if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock] &&
+ llvm::any_of(CurInst->operands(), [&](const Use &U) {
+ if (auto *Inst = dyn_cast<Instruction>(U.get()))
+ return Inst->getParent() == CurrentBlock;
+ return false;
+ })) {
+ NumWithout = 2;
+ break;
+ }
+
+ uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this);
+ Value *predV = findLeader(P, TValNo);
+ if (!predV) {
+ predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
+ PREPred = P;
+ ++NumWithout;
+ } else if (predV == CurInst) {
+ /* CurInst dominates this predecessor. */
+ NumWithout = 2;
+ break;
+ } else {
+ predMap.push_back(std::make_pair(predV, P));
+ ++NumWith;
+ }
+ }
+
+ // Don't do PRE when it might increase code size, i.e. when
+ // we would need to insert instructions in more than one pred.
+ if (NumWithout > 1 || NumWith == 0)
+ return false;
+
+ // We may have a case where all predecessors have the instruction,
+ // and we just need to insert a phi node. Otherwise, perform
+ // insertion.
+ Instruction *PREInstr = nullptr;
+
+ if (NumWithout != 0) {
+ if (!isSafeToSpeculativelyExecute(CurInst)) {
+ // It is only valid to insert a new instruction if the current instruction
+ // is always executed. An instruction with implicit control flow could
+ // prevent us from doing it. If we cannot speculate the execution, then
+ // PRE should be prohibited.
+ if (ICF->isDominatedByICFIFromSameBlock(CurInst))
+ return false;
+ }
+
+ // Don't do PRE across indirect branch.
+ if (isa<IndirectBrInst>(PREPred->getTerminator()))
+ return false;
+
+ // Don't do PRE across callbr.
+ // FIXME: Can we do this across the fallthrough edge?
+ if (isa<CallBrInst>(PREPred->getTerminator()))
+ return false;
+
+ // We can't do PRE safely on a critical edge, so instead we schedule
+ // the edge to be split and perform the PRE the next time we iterate
+ // on the function.
+ unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
+ if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
+ toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
+ return false;
+ }
+ // We need to insert somewhere, so let's give it a shot
+ PREInstr = CurInst->clone();
+ if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) {
+ // If we failed insertion, make sure we remove the instruction.
+ LLVM_DEBUG(verifyRemoved(PREInstr));
+ PREInstr->deleteValue();
+ return false;
+ }
+ }
+
+ // Either we should have filled in the PRE instruction, or we should
+ // not have needed insertions.
+ assert(PREInstr != nullptr || NumWithout == 0);
+
+ ++NumGVNPRE;
+
+ // Create a PHI to make the value available in this block.
+ PHINode *Phi =
+ PHINode::Create(CurInst->getType(), predMap.size(),
+ CurInst->getName() + ".pre-phi", &CurrentBlock->front());
+ for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
+ if (Value *V = predMap[i].first) {
+ // If we use an existing value in this phi, we have to patch the original
+ // value because the phi will be used to replace a later value.
+ patchReplacementInstruction(CurInst, V);
+ Phi->addIncoming(V, predMap[i].second);
+ } else
+ Phi->addIncoming(PREInstr, PREPred);
+ }
+
+ VN.add(Phi, ValNo);
+ // After creating a new PHI for ValNo, the phi translate result for ValNo will
+ // be changed, so erase the related stale entries in phi translate cache.
+ VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock);
+ addToLeaderTable(ValNo, Phi, CurrentBlock);
+ Phi->setDebugLoc(CurInst->getDebugLoc());
+ CurInst->replaceAllUsesWith(Phi);
+ if (MD && Phi->getType()->isPtrOrPtrVectorTy())
+ MD->invalidateCachedPointerInfo(Phi);
+ VN.erase(CurInst);
+ removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
+
+ LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
+ if (MD)
+ MD->removeInstruction(CurInst);
+ LLVM_DEBUG(verifyRemoved(CurInst));
+ // FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes
+ // some assertion failures.
+ ICF->removeInstruction(CurInst);
+ CurInst->eraseFromParent();
+ ++NumGVNInstr;
+
+ return true;
+}
+
+/// Perform a purely local form of PRE that looks for diamond
+/// control flow patterns and attempts to perform simple PRE at the join point.
+bool GVN::performPRE(Function &F) {
+ bool Changed = false;
+ for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
+ // Nothing to PRE in the entry block.
+ if (CurrentBlock == &F.getEntryBlock())
+ continue;
+
+ // Don't perform PRE on an EH pad.
+ if (CurrentBlock->isEHPad())
+ continue;
+
+ for (BasicBlock::iterator BI = CurrentBlock->begin(),
+ BE = CurrentBlock->end();
+ BI != BE;) {
+ Instruction *CurInst = &*BI++;
+ Changed |= performScalarPRE(CurInst);
+ }
+ }
+
+ if (splitCriticalEdges())
+ Changed = true;
+
+ return Changed;
+}
+
+/// Split the critical edge connecting the given two blocks, and return
+/// the block inserted to the critical edge.
+BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
+ BasicBlock *BB =
+ SplitCriticalEdge(Pred, Succ, CriticalEdgeSplittingOptions(DT, LI));
+ if (MD)
+ MD->invalidateCachedPredecessors();
+ InvalidBlockRPONumbers = true;
+ return BB;
+}
+
+/// Split critical edges found during the previous
+/// iteration that may enable further optimization.
+bool GVN::splitCriticalEdges() {
+ if (toSplit.empty())
+ return false;
+ do {
+ std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val();
+ SplitCriticalEdge(Edge.first, Edge.second,
+ CriticalEdgeSplittingOptions(DT, LI));
+ } while (!toSplit.empty());
+ if (MD) MD->invalidateCachedPredecessors();
+ InvalidBlockRPONumbers = true;
+ return true;
+}
+
+/// Executes one iteration of GVN
+bool GVN::iterateOnFunction(Function &F) {
+ cleanupGlobalSets();
+
+ // Top-down walk of the dominator tree
+ bool Changed = false;
+ // Needed for value numbering with phi construction to work.
+ // RPOT walks the graph in its constructor and will not be invalidated during
+ // processBlock.
+ ReversePostOrderTraversal<Function *> RPOT(&F);
+
+ for (BasicBlock *BB : RPOT)
+ Changed |= processBlock(BB);
+
+ return Changed;
+}
+
+void GVN::cleanupGlobalSets() {
+ VN.clear();
+ LeaderTable.clear();
+ BlockRPONumber.clear();
+ TableAllocator.Reset();
+ ICF->clear();
+ InvalidBlockRPONumbers = true;
+}
+
+/// Verify that the specified instruction does not occur in our
+/// internal data structures.
+void GVN::verifyRemoved(const Instruction *Inst) const {
+ VN.verifyRemoved(Inst);
+
+ // Walk through the value number scope to make sure the instruction isn't
+ // ferreted away in it.
+ for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
+ I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
+ const LeaderTableEntry *Node = &I->second;
+ assert(Node->Val != Inst && "Inst still in value numbering scope!");
+
+ while (Node->Next) {
+ Node = Node->Next;
+ assert(Node->Val != Inst && "Inst still in value numbering scope!");
+ }
+ }
+}
+
+/// BB is declared dead, which implied other blocks become dead as well. This
+/// function is to add all these blocks to "DeadBlocks". For the dead blocks'
+/// live successors, update their phi nodes by replacing the operands
+/// corresponding to dead blocks with UndefVal.
+void GVN::addDeadBlock(BasicBlock *BB) {
+ SmallVector<BasicBlock *, 4> NewDead;
+ SmallSetVector<BasicBlock *, 4> DF;
+
+ NewDead.push_back(BB);
+ while (!NewDead.empty()) {
+ BasicBlock *D = NewDead.pop_back_val();
+ if (DeadBlocks.count(D))
+ continue;
+
+ // All blocks dominated by D are dead.
+ SmallVector<BasicBlock *, 8> Dom;
+ DT->getDescendants(D, Dom);
+ DeadBlocks.insert(Dom.begin(), Dom.end());
+
+ // Figure out the dominance-frontier(D).
+ for (BasicBlock *B : Dom) {
+ for (BasicBlock *S : successors(B)) {
+ if (DeadBlocks.count(S))
+ continue;
+
+ bool AllPredDead = true;
+ for (BasicBlock *P : predecessors(S))
+ if (!DeadBlocks.count(P)) {
+ AllPredDead = false;
+ break;
+ }
+
+ if (!AllPredDead) {
+ // S could be proved dead later on. That is why we don't update phi
+ // operands at this moment.
+ DF.insert(S);
+ } else {
+ // While S is not dominated by D, it is dead by now. This could take
+ // place if S already have a dead predecessor before D is declared
+ // dead.
+ NewDead.push_back(S);
+ }
+ }
+ }
+ }
+
+ // For the dead blocks' live successors, update their phi nodes by replacing
+ // the operands corresponding to dead blocks with UndefVal.
+ for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end();
+ I != E; I++) {
+ BasicBlock *B = *I;
+ if (DeadBlocks.count(B))
+ continue;
+
+ // First, split the critical edges. This might also create additional blocks
+ // to preserve LoopSimplify form and adjust edges accordingly.
+ SmallVector<BasicBlock *, 4> Preds(pred_begin(B), pred_end(B));
+ for (BasicBlock *P : Preds) {
+ if (!DeadBlocks.count(P))
+ continue;
+
+ if (llvm::any_of(successors(P),
+ [B](BasicBlock *Succ) { return Succ == B; }) &&
+ isCriticalEdge(P->getTerminator(), B)) {
+ if (BasicBlock *S = splitCriticalEdges(P, B))
+ DeadBlocks.insert(P = S);
+ }
+ }
+
+ // Now undef the incoming values from the dead predecessors.
+ for (BasicBlock *P : predecessors(B)) {
+ if (!DeadBlocks.count(P))
+ continue;
+ for (PHINode &Phi : B->phis()) {
+ Phi.setIncomingValueForBlock(P, UndefValue::get(Phi.getType()));
+ if (MD)
+ MD->invalidateCachedPointerInfo(&Phi);
+ }
+ }
+ }
+}
+
+// If the given branch is recognized as a foldable branch (i.e. conditional
+// branch with constant condition), it will perform following analyses and
+// transformation.
+// 1) If the dead out-coming edge is a critical-edge, split it. Let
+// R be the target of the dead out-coming edge.
+// 1) Identify the set of dead blocks implied by the branch's dead outcoming
+// edge. The result of this step will be {X| X is dominated by R}
+// 2) Identify those blocks which haves at least one dead predecessor. The
+// result of this step will be dominance-frontier(R).
+// 3) Update the PHIs in DF(R) by replacing the operands corresponding to
+// dead blocks with "UndefVal" in an hope these PHIs will optimized away.
+//
+// Return true iff *NEW* dead code are found.
+bool GVN::processFoldableCondBr(BranchInst *BI) {
+ if (!BI || BI->isUnconditional())
+ return false;
+
+ // If a branch has two identical successors, we cannot declare either dead.
+ if (BI->getSuccessor(0) == BI->getSuccessor(1))
+ return false;
+
+ ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
+ if (!Cond)
+ return false;
+
+ BasicBlock *DeadRoot =
+ Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0);
+ if (DeadBlocks.count(DeadRoot))
+ return false;
+
+ if (!DeadRoot->getSinglePredecessor())
+ DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
+
+ addDeadBlock(DeadRoot);
+ return true;
+}
+
+// performPRE() will trigger assert if it comes across an instruction without
+// associated val-num. As it normally has far more live instructions than dead
+// instructions, it makes more sense just to "fabricate" a val-number for the
+// dead code than checking if instruction involved is dead or not.
+void GVN::assignValNumForDeadCode() {
+ for (BasicBlock *BB : DeadBlocks) {
+ for (Instruction &Inst : *BB) {
+ unsigned ValNum = VN.lookupOrAdd(&Inst);
+ addToLeaderTable(ValNum, &Inst, BB);
+ }
+ }
+}
+
+class llvm::gvn::GVNLegacyPass : public FunctionPass {
+public:
+ static char ID; // Pass identification, replacement for typeid
+
+ explicit GVNLegacyPass(bool NoMemDepAnalysis = !EnableMemDep)
+ : FunctionPass(ID), NoMemDepAnalysis(NoMemDepAnalysis) {
+ initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &F) override {
+ if (skipFunction(F))
+ return false;
+
+ auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
+
+ return Impl.runImpl(
+ F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
+ getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
+ getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
+ getAnalysis<AAResultsWrapperPass>().getAAResults(),
+ NoMemDepAnalysis
+ ? nullptr
+ : &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(),
+ LIWP ? &LIWP->getLoopInfo() : nullptr,
+ &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AssumptionCacheTracker>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+ AU.addRequired<LoopInfoWrapperPass>();
+ if (!NoMemDepAnalysis)
+ AU.addRequired<MemoryDependenceWrapperPass>();
+ AU.addRequired<AAResultsWrapperPass>();
+
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ AU.addPreserved<GlobalsAAWrapperPass>();
+ AU.addPreserved<TargetLibraryInfoWrapperPass>();
+ AU.addPreserved<LoopInfoWrapperPass>();
+ AU.addPreservedID(LoopSimplifyID);
+ AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
+ }
+
+private:
+ bool NoMemDepAnalysis;
+ GVN Impl;
+};
+
+char GVNLegacyPass::ID = 0;
+
+INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
+INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
+
+// The public interface to this file...
+FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) {
+ return new GVNLegacyPass(NoMemDepAnalysis);
+}