diff options
Diffstat (limited to 'llvm/lib/Transforms/Scalar/GVN.cpp')
| -rw-r--r-- | llvm/lib/Transforms/Scalar/GVN.cpp | 2714 | 
1 files changed, 2714 insertions, 0 deletions
| diff --git a/llvm/lib/Transforms/Scalar/GVN.cpp b/llvm/lib/Transforms/Scalar/GVN.cpp new file mode 100644 index 000000000000..743353eaea22 --- /dev/null +++ b/llvm/lib/Transforms/Scalar/GVN.cpp @@ -0,0 +1,2714 @@ +//===- GVN.cpp - Eliminate redundant values and loads ---------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This pass performs global value numbering to eliminate fully redundant +// instructions.  It also performs simple dead load elimination. +// +// Note that this pass does the value numbering itself; it does not use the +// ValueNumbering analysis passes. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Scalar/GVN.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/Hashing.h" +#include "llvm/ADT/MapVector.h" +#include "llvm/ADT/PointerIntPair.h" +#include "llvm/ADT/PostOrderIterator.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/CFG.h" +#include "llvm/Analysis/DomTreeUpdater.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/MemoryBuiltins.h" +#include "llvm/Analysis/MemoryDependenceAnalysis.h" +#include "llvm/Analysis/OptimizationRemarkEmitter.h" +#include "llvm/Analysis/PHITransAddr.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/PassManager.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Use.h" +#include "llvm/IR/Value.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Utils.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/SSAUpdater.h" +#include "llvm/Transforms/Utils/VNCoercion.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <utility> +#include <vector> + +using namespace llvm; +using namespace llvm::gvn; +using namespace llvm::VNCoercion; +using namespace PatternMatch; + +#define DEBUG_TYPE "gvn" + +STATISTIC(NumGVNInstr,  "Number of instructions deleted"); +STATISTIC(NumGVNLoad,   "Number of loads deleted"); +STATISTIC(NumGVNPRE,    "Number of instructions PRE'd"); +STATISTIC(NumGVNBlocks, "Number of blocks merged"); +STATISTIC(NumGVNSimpl,  "Number of instructions simplified"); +STATISTIC(NumGVNEqProp, "Number of equalities propagated"); +STATISTIC(NumPRELoad,   "Number of loads PRE'd"); + +static cl::opt<bool> EnablePRE("enable-pre", +                               cl::init(true), cl::Hidden); +static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true)); +static cl::opt<bool> EnableMemDep("enable-gvn-memdep", cl::init(true)); + +// Maximum allowed recursion depth. +static cl::opt<uint32_t> +MaxRecurseDepth("gvn-max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore, +                cl::desc("Max recurse depth in GVN (default = 1000)")); + +static cl::opt<uint32_t> MaxNumDeps( +    "gvn-max-num-deps", cl::Hidden, cl::init(100), cl::ZeroOrMore, +    cl::desc("Max number of dependences to attempt Load PRE (default = 100)")); + +struct llvm::GVN::Expression { +  uint32_t opcode; +  Type *type; +  bool commutative = false; +  SmallVector<uint32_t, 4> varargs; + +  Expression(uint32_t o = ~2U) : opcode(o) {} + +  bool operator==(const Expression &other) const { +    if (opcode != other.opcode) +      return false; +    if (opcode == ~0U || opcode == ~1U) +      return true; +    if (type != other.type) +      return false; +    if (varargs != other.varargs) +      return false; +    return true; +  } + +  friend hash_code hash_value(const Expression &Value) { +    return hash_combine( +        Value.opcode, Value.type, +        hash_combine_range(Value.varargs.begin(), Value.varargs.end())); +  } +}; + +namespace llvm { + +template <> struct DenseMapInfo<GVN::Expression> { +  static inline GVN::Expression getEmptyKey() { return ~0U; } +  static inline GVN::Expression getTombstoneKey() { return ~1U; } + +  static unsigned getHashValue(const GVN::Expression &e) { +    using llvm::hash_value; + +    return static_cast<unsigned>(hash_value(e)); +  } + +  static bool isEqual(const GVN::Expression &LHS, const GVN::Expression &RHS) { +    return LHS == RHS; +  } +}; + +} // end namespace llvm + +/// Represents a particular available value that we know how to materialize. +/// Materialization of an AvailableValue never fails.  An AvailableValue is +/// implicitly associated with a rematerialization point which is the +/// location of the instruction from which it was formed. +struct llvm::gvn::AvailableValue { +  enum ValType { +    SimpleVal, // A simple offsetted value that is accessed. +    LoadVal,   // A value produced by a load. +    MemIntrin, // A memory intrinsic which is loaded from. +    UndefVal   // A UndefValue representing a value from dead block (which +               // is not yet physically removed from the CFG). +  }; + +  /// V - The value that is live out of the block. +  PointerIntPair<Value *, 2, ValType> Val; + +  /// Offset - The byte offset in Val that is interesting for the load query. +  unsigned Offset; + +  static AvailableValue get(Value *V, unsigned Offset = 0) { +    AvailableValue Res; +    Res.Val.setPointer(V); +    Res.Val.setInt(SimpleVal); +    Res.Offset = Offset; +    return Res; +  } + +  static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) { +    AvailableValue Res; +    Res.Val.setPointer(MI); +    Res.Val.setInt(MemIntrin); +    Res.Offset = Offset; +    return Res; +  } + +  static AvailableValue getLoad(LoadInst *LI, unsigned Offset = 0) { +    AvailableValue Res; +    Res.Val.setPointer(LI); +    Res.Val.setInt(LoadVal); +    Res.Offset = Offset; +    return Res; +  } + +  static AvailableValue getUndef() { +    AvailableValue Res; +    Res.Val.setPointer(nullptr); +    Res.Val.setInt(UndefVal); +    Res.Offset = 0; +    return Res; +  } + +  bool isSimpleValue() const { return Val.getInt() == SimpleVal; } +  bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; } +  bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; } +  bool isUndefValue() const { return Val.getInt() == UndefVal; } + +  Value *getSimpleValue() const { +    assert(isSimpleValue() && "Wrong accessor"); +    return Val.getPointer(); +  } + +  LoadInst *getCoercedLoadValue() const { +    assert(isCoercedLoadValue() && "Wrong accessor"); +    return cast<LoadInst>(Val.getPointer()); +  } + +  MemIntrinsic *getMemIntrinValue() const { +    assert(isMemIntrinValue() && "Wrong accessor"); +    return cast<MemIntrinsic>(Val.getPointer()); +  } + +  /// Emit code at the specified insertion point to adjust the value defined +  /// here to the specified type. This handles various coercion cases. +  Value *MaterializeAdjustedValue(LoadInst *LI, Instruction *InsertPt, +                                  GVN &gvn) const; +}; + +/// Represents an AvailableValue which can be rematerialized at the end of +/// the associated BasicBlock. +struct llvm::gvn::AvailableValueInBlock { +  /// BB - The basic block in question. +  BasicBlock *BB; + +  /// AV - The actual available value +  AvailableValue AV; + +  static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) { +    AvailableValueInBlock Res; +    Res.BB = BB; +    Res.AV = std::move(AV); +    return Res; +  } + +  static AvailableValueInBlock get(BasicBlock *BB, Value *V, +                                   unsigned Offset = 0) { +    return get(BB, AvailableValue::get(V, Offset)); +  } + +  static AvailableValueInBlock getUndef(BasicBlock *BB) { +    return get(BB, AvailableValue::getUndef()); +  } + +  /// Emit code at the end of this block to adjust the value defined here to +  /// the specified type. This handles various coercion cases. +  Value *MaterializeAdjustedValue(LoadInst *LI, GVN &gvn) const { +    return AV.MaterializeAdjustedValue(LI, BB->getTerminator(), gvn); +  } +}; + +//===----------------------------------------------------------------------===// +//                     ValueTable Internal Functions +//===----------------------------------------------------------------------===// + +GVN::Expression GVN::ValueTable::createExpr(Instruction *I) { +  Expression e; +  e.type = I->getType(); +  e.opcode = I->getOpcode(); +  for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); +       OI != OE; ++OI) +    e.varargs.push_back(lookupOrAdd(*OI)); +  if (I->isCommutative()) { +    // Ensure that commutative instructions that only differ by a permutation +    // of their operands get the same value number by sorting the operand value +    // numbers.  Since all commutative instructions have two operands it is more +    // efficient to sort by hand rather than using, say, std::sort. +    assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!"); +    if (e.varargs[0] > e.varargs[1]) +      std::swap(e.varargs[0], e.varargs[1]); +    e.commutative = true; +  } + +  if (CmpInst *C = dyn_cast<CmpInst>(I)) { +    // Sort the operand value numbers so x<y and y>x get the same value number. +    CmpInst::Predicate Predicate = C->getPredicate(); +    if (e.varargs[0] > e.varargs[1]) { +      std::swap(e.varargs[0], e.varargs[1]); +      Predicate = CmpInst::getSwappedPredicate(Predicate); +    } +    e.opcode = (C->getOpcode() << 8) | Predicate; +    e.commutative = true; +  } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) { +    for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end(); +         II != IE; ++II) +      e.varargs.push_back(*II); +  } + +  return e; +} + +GVN::Expression GVN::ValueTable::createCmpExpr(unsigned Opcode, +                                               CmpInst::Predicate Predicate, +                                               Value *LHS, Value *RHS) { +  assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && +         "Not a comparison!"); +  Expression e; +  e.type = CmpInst::makeCmpResultType(LHS->getType()); +  e.varargs.push_back(lookupOrAdd(LHS)); +  e.varargs.push_back(lookupOrAdd(RHS)); + +  // Sort the operand value numbers so x<y and y>x get the same value number. +  if (e.varargs[0] > e.varargs[1]) { +    std::swap(e.varargs[0], e.varargs[1]); +    Predicate = CmpInst::getSwappedPredicate(Predicate); +  } +  e.opcode = (Opcode << 8) | Predicate; +  e.commutative = true; +  return e; +} + +GVN::Expression GVN::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) { +  assert(EI && "Not an ExtractValueInst?"); +  Expression e; +  e.type = EI->getType(); +  e.opcode = 0; + +  WithOverflowInst *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand()); +  if (WO != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) { +    // EI is an extract from one of our with.overflow intrinsics. Synthesize +    // a semantically equivalent expression instead of an extract value +    // expression. +    e.opcode = WO->getBinaryOp(); +    e.varargs.push_back(lookupOrAdd(WO->getLHS())); +    e.varargs.push_back(lookupOrAdd(WO->getRHS())); +    return e; +  } + +  // Not a recognised intrinsic. Fall back to producing an extract value +  // expression. +  e.opcode = EI->getOpcode(); +  for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end(); +       OI != OE; ++OI) +    e.varargs.push_back(lookupOrAdd(*OI)); + +  for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end(); +         II != IE; ++II) +    e.varargs.push_back(*II); + +  return e; +} + +//===----------------------------------------------------------------------===// +//                     ValueTable External Functions +//===----------------------------------------------------------------------===// + +GVN::ValueTable::ValueTable() = default; +GVN::ValueTable::ValueTable(const ValueTable &) = default; +GVN::ValueTable::ValueTable(ValueTable &&) = default; +GVN::ValueTable::~ValueTable() = default; + +/// add - Insert a value into the table with a specified value number. +void GVN::ValueTable::add(Value *V, uint32_t num) { +  valueNumbering.insert(std::make_pair(V, num)); +  if (PHINode *PN = dyn_cast<PHINode>(V)) +    NumberingPhi[num] = PN; +} + +uint32_t GVN::ValueTable::lookupOrAddCall(CallInst *C) { +  if (AA->doesNotAccessMemory(C)) { +    Expression exp = createExpr(C); +    uint32_t e = assignExpNewValueNum(exp).first; +    valueNumbering[C] = e; +    return e; +  } else if (MD && AA->onlyReadsMemory(C)) { +    Expression exp = createExpr(C); +    auto ValNum = assignExpNewValueNum(exp); +    if (ValNum.second) { +      valueNumbering[C] = ValNum.first; +      return ValNum.first; +    } + +    MemDepResult local_dep = MD->getDependency(C); + +    if (!local_dep.isDef() && !local_dep.isNonLocal()) { +      valueNumbering[C] =  nextValueNumber; +      return nextValueNumber++; +    } + +    if (local_dep.isDef()) { +      CallInst* local_cdep = cast<CallInst>(local_dep.getInst()); + +      if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) { +        valueNumbering[C] = nextValueNumber; +        return nextValueNumber++; +      } + +      for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) { +        uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); +        uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i)); +        if (c_vn != cd_vn) { +          valueNumbering[C] = nextValueNumber; +          return nextValueNumber++; +        } +      } + +      uint32_t v = lookupOrAdd(local_cdep); +      valueNumbering[C] = v; +      return v; +    } + +    // Non-local case. +    const MemoryDependenceResults::NonLocalDepInfo &deps = +        MD->getNonLocalCallDependency(C); +    // FIXME: Move the checking logic to MemDep! +    CallInst* cdep = nullptr; + +    // Check to see if we have a single dominating call instruction that is +    // identical to C. +    for (unsigned i = 0, e = deps.size(); i != e; ++i) { +      const NonLocalDepEntry *I = &deps[i]; +      if (I->getResult().isNonLocal()) +        continue; + +      // We don't handle non-definitions.  If we already have a call, reject +      // instruction dependencies. +      if (!I->getResult().isDef() || cdep != nullptr) { +        cdep = nullptr; +        break; +      } + +      CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst()); +      // FIXME: All duplicated with non-local case. +      if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){ +        cdep = NonLocalDepCall; +        continue; +      } + +      cdep = nullptr; +      break; +    } + +    if (!cdep) { +      valueNumbering[C] = nextValueNumber; +      return nextValueNumber++; +    } + +    if (cdep->getNumArgOperands() != C->getNumArgOperands()) { +      valueNumbering[C] = nextValueNumber; +      return nextValueNumber++; +    } +    for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) { +      uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); +      uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i)); +      if (c_vn != cd_vn) { +        valueNumbering[C] = nextValueNumber; +        return nextValueNumber++; +      } +    } + +    uint32_t v = lookupOrAdd(cdep); +    valueNumbering[C] = v; +    return v; +  } else { +    valueNumbering[C] = nextValueNumber; +    return nextValueNumber++; +  } +} + +/// Returns true if a value number exists for the specified value. +bool GVN::ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; } + +/// lookup_or_add - Returns the value number for the specified value, assigning +/// it a new number if it did not have one before. +uint32_t GVN::ValueTable::lookupOrAdd(Value *V) { +  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V); +  if (VI != valueNumbering.end()) +    return VI->second; + +  if (!isa<Instruction>(V)) { +    valueNumbering[V] = nextValueNumber; +    return nextValueNumber++; +  } + +  Instruction* I = cast<Instruction>(V); +  Expression exp; +  switch (I->getOpcode()) { +    case Instruction::Call: +      return lookupOrAddCall(cast<CallInst>(I)); +    case Instruction::FNeg: +    case Instruction::Add: +    case Instruction::FAdd: +    case Instruction::Sub: +    case Instruction::FSub: +    case Instruction::Mul: +    case Instruction::FMul: +    case Instruction::UDiv: +    case Instruction::SDiv: +    case Instruction::FDiv: +    case Instruction::URem: +    case Instruction::SRem: +    case Instruction::FRem: +    case Instruction::Shl: +    case Instruction::LShr: +    case Instruction::AShr: +    case Instruction::And: +    case Instruction::Or: +    case Instruction::Xor: +    case Instruction::ICmp: +    case Instruction::FCmp: +    case Instruction::Trunc: +    case Instruction::ZExt: +    case Instruction::SExt: +    case Instruction::FPToUI: +    case Instruction::FPToSI: +    case Instruction::UIToFP: +    case Instruction::SIToFP: +    case Instruction::FPTrunc: +    case Instruction::FPExt: +    case Instruction::PtrToInt: +    case Instruction::IntToPtr: +    case Instruction::AddrSpaceCast: +    case Instruction::BitCast: +    case Instruction::Select: +    case Instruction::ExtractElement: +    case Instruction::InsertElement: +    case Instruction::ShuffleVector: +    case Instruction::InsertValue: +    case Instruction::GetElementPtr: +      exp = createExpr(I); +      break; +    case Instruction::ExtractValue: +      exp = createExtractvalueExpr(cast<ExtractValueInst>(I)); +      break; +    case Instruction::PHI: +      valueNumbering[V] = nextValueNumber; +      NumberingPhi[nextValueNumber] = cast<PHINode>(V); +      return nextValueNumber++; +    default: +      valueNumbering[V] = nextValueNumber; +      return nextValueNumber++; +  } + +  uint32_t e = assignExpNewValueNum(exp).first; +  valueNumbering[V] = e; +  return e; +} + +/// Returns the value number of the specified value. Fails if +/// the value has not yet been numbered. +uint32_t GVN::ValueTable::lookup(Value *V, bool Verify) const { +  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V); +  if (Verify) { +    assert(VI != valueNumbering.end() && "Value not numbered?"); +    return VI->second; +  } +  return (VI != valueNumbering.end()) ? VI->second : 0; +} + +/// Returns the value number of the given comparison, +/// assigning it a new number if it did not have one before.  Useful when +/// we deduced the result of a comparison, but don't immediately have an +/// instruction realizing that comparison to hand. +uint32_t GVN::ValueTable::lookupOrAddCmp(unsigned Opcode, +                                         CmpInst::Predicate Predicate, +                                         Value *LHS, Value *RHS) { +  Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS); +  return assignExpNewValueNum(exp).first; +} + +/// Remove all entries from the ValueTable. +void GVN::ValueTable::clear() { +  valueNumbering.clear(); +  expressionNumbering.clear(); +  NumberingPhi.clear(); +  PhiTranslateTable.clear(); +  nextValueNumber = 1; +  Expressions.clear(); +  ExprIdx.clear(); +  nextExprNumber = 0; +} + +/// Remove a value from the value numbering. +void GVN::ValueTable::erase(Value *V) { +  uint32_t Num = valueNumbering.lookup(V); +  valueNumbering.erase(V); +  // If V is PHINode, V <--> value number is an one-to-one mapping. +  if (isa<PHINode>(V)) +    NumberingPhi.erase(Num); +} + +/// verifyRemoved - Verify that the value is removed from all internal data +/// structures. +void GVN::ValueTable::verifyRemoved(const Value *V) const { +  for (DenseMap<Value*, uint32_t>::const_iterator +         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) { +    assert(I->first != V && "Inst still occurs in value numbering map!"); +  } +} + +//===----------------------------------------------------------------------===// +//                                GVN Pass +//===----------------------------------------------------------------------===// + +PreservedAnalyses GVN::run(Function &F, FunctionAnalysisManager &AM) { +  // FIXME: The order of evaluation of these 'getResult' calls is very +  // significant! Re-ordering these variables will cause GVN when run alone to +  // be less effective! We should fix memdep and basic-aa to not exhibit this +  // behavior, but until then don't change the order here. +  auto &AC = AM.getResult<AssumptionAnalysis>(F); +  auto &DT = AM.getResult<DominatorTreeAnalysis>(F); +  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); +  auto &AA = AM.getResult<AAManager>(F); +  auto &MemDep = AM.getResult<MemoryDependenceAnalysis>(F); +  auto *LI = AM.getCachedResult<LoopAnalysis>(F); +  auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); +  bool Changed = runImpl(F, AC, DT, TLI, AA, &MemDep, LI, &ORE); +  if (!Changed) +    return PreservedAnalyses::all(); +  PreservedAnalyses PA; +  PA.preserve<DominatorTreeAnalysis>(); +  PA.preserve<GlobalsAA>(); +  PA.preserve<TargetLibraryAnalysis>(); +  if (LI) +    PA.preserve<LoopAnalysis>(); +  return PA; +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void GVN::dump(DenseMap<uint32_t, Value*>& d) const { +  errs() << "{\n"; +  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(), +       E = d.end(); I != E; ++I) { +      errs() << I->first << "\n"; +      I->second->dump(); +  } +  errs() << "}\n"; +} +#endif + +/// Return true if we can prove that the value +/// we're analyzing is fully available in the specified block.  As we go, keep +/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This +/// map is actually a tri-state map with the following values: +///   0) we know the block *is not* fully available. +///   1) we know the block *is* fully available. +///   2) we do not know whether the block is fully available or not, but we are +///      currently speculating that it will be. +///   3) we are speculating for this block and have used that to speculate for +///      other blocks. +static bool IsValueFullyAvailableInBlock(BasicBlock *BB, +                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks, +                            uint32_t RecurseDepth) { +  if (RecurseDepth > MaxRecurseDepth) +    return false; + +  // Optimistically assume that the block is fully available and check to see +  // if we already know about this block in one lookup. +  std::pair<DenseMap<BasicBlock*, char>::iterator, bool> IV = +    FullyAvailableBlocks.insert(std::make_pair(BB, 2)); + +  // If the entry already existed for this block, return the precomputed value. +  if (!IV.second) { +    // If this is a speculative "available" value, mark it as being used for +    // speculation of other blocks. +    if (IV.first->second == 2) +      IV.first->second = 3; +    return IV.first->second != 0; +  } + +  // Otherwise, see if it is fully available in all predecessors. +  pred_iterator PI = pred_begin(BB), PE = pred_end(BB); + +  // If this block has no predecessors, it isn't live-in here. +  if (PI == PE) +    goto SpeculationFailure; + +  for (; PI != PE; ++PI) +    // If the value isn't fully available in one of our predecessors, then it +    // isn't fully available in this block either.  Undo our previous +    // optimistic assumption and bail out. +    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1)) +      goto SpeculationFailure; + +  return true; + +// If we get here, we found out that this is not, after +// all, a fully-available block.  We have a problem if we speculated on this and +// used the speculation to mark other blocks as available. +SpeculationFailure: +  char &BBVal = FullyAvailableBlocks[BB]; + +  // If we didn't speculate on this, just return with it set to false. +  if (BBVal == 2) { +    BBVal = 0; +    return false; +  } + +  // If we did speculate on this value, we could have blocks set to 1 that are +  // incorrect.  Walk the (transitive) successors of this block and mark them as +  // 0 if set to one. +  SmallVector<BasicBlock*, 32> BBWorklist; +  BBWorklist.push_back(BB); + +  do { +    BasicBlock *Entry = BBWorklist.pop_back_val(); +    // Note that this sets blocks to 0 (unavailable) if they happen to not +    // already be in FullyAvailableBlocks.  This is safe. +    char &EntryVal = FullyAvailableBlocks[Entry]; +    if (EntryVal == 0) continue;  // Already unavailable. + +    // Mark as unavailable. +    EntryVal = 0; + +    BBWorklist.append(succ_begin(Entry), succ_end(Entry)); +  } while (!BBWorklist.empty()); + +  return false; +} + +/// Given a set of loads specified by ValuesPerBlock, +/// construct SSA form, allowing us to eliminate LI.  This returns the value +/// that should be used at LI's definition site. +static Value *ConstructSSAForLoadSet(LoadInst *LI, +                         SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock, +                                     GVN &gvn) { +  // Check for the fully redundant, dominating load case.  In this case, we can +  // just use the dominating value directly. +  if (ValuesPerBlock.size() == 1 && +      gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB, +                                               LI->getParent())) { +    assert(!ValuesPerBlock[0].AV.isUndefValue() && +           "Dead BB dominate this block"); +    return ValuesPerBlock[0].MaterializeAdjustedValue(LI, gvn); +  } + +  // Otherwise, we have to construct SSA form. +  SmallVector<PHINode*, 8> NewPHIs; +  SSAUpdater SSAUpdate(&NewPHIs); +  SSAUpdate.Initialize(LI->getType(), LI->getName()); + +  for (const AvailableValueInBlock &AV : ValuesPerBlock) { +    BasicBlock *BB = AV.BB; + +    if (SSAUpdate.HasValueForBlock(BB)) +      continue; + +    // If the value is the load that we will be eliminating, and the block it's +    // available in is the block that the load is in, then don't add it as +    // SSAUpdater will resolve the value to the relevant phi which may let it +    // avoid phi construction entirely if there's actually only one value. +    if (BB == LI->getParent() && +        ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == LI) || +         (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == LI))) +      continue; + +    SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LI, gvn)); +  } + +  // Perform PHI construction. +  return SSAUpdate.GetValueInMiddleOfBlock(LI->getParent()); +} + +Value *AvailableValue::MaterializeAdjustedValue(LoadInst *LI, +                                                Instruction *InsertPt, +                                                GVN &gvn) const { +  Value *Res; +  Type *LoadTy = LI->getType(); +  const DataLayout &DL = LI->getModule()->getDataLayout(); +  if (isSimpleValue()) { +    Res = getSimpleValue(); +    if (Res->getType() != LoadTy) { +      Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL); + +      LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset +                        << "  " << *getSimpleValue() << '\n' +                        << *Res << '\n' +                        << "\n\n\n"); +    } +  } else if (isCoercedLoadValue()) { +    LoadInst *Load = getCoercedLoadValue(); +    if (Load->getType() == LoadTy && Offset == 0) { +      Res = Load; +    } else { +      Res = getLoadValueForLoad(Load, Offset, LoadTy, InsertPt, DL); +      // We would like to use gvn.markInstructionForDeletion here, but we can't +      // because the load is already memoized into the leader map table that GVN +      // tracks.  It is potentially possible to remove the load from the table, +      // but then there all of the operations based on it would need to be +      // rehashed.  Just leave the dead load around. +      gvn.getMemDep().removeInstruction(Load); +      LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset +                        << "  " << *getCoercedLoadValue() << '\n' +                        << *Res << '\n' +                        << "\n\n\n"); +    } +  } else if (isMemIntrinValue()) { +    Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy, +                                 InsertPt, DL); +    LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset +                      << "  " << *getMemIntrinValue() << '\n' +                      << *Res << '\n' +                      << "\n\n\n"); +  } else { +    assert(isUndefValue() && "Should be UndefVal"); +    LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";); +    return UndefValue::get(LoadTy); +  } +  assert(Res && "failed to materialize?"); +  return Res; +} + +static bool isLifetimeStart(const Instruction *Inst) { +  if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst)) +    return II->getIntrinsicID() == Intrinsic::lifetime_start; +  return false; +} + +/// Try to locate the three instruction involved in a missed +/// load-elimination case that is due to an intervening store. +static void reportMayClobberedLoad(LoadInst *LI, MemDepResult DepInfo, +                                   DominatorTree *DT, +                                   OptimizationRemarkEmitter *ORE) { +  using namespace ore; + +  User *OtherAccess = nullptr; + +  OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", LI); +  R << "load of type " << NV("Type", LI->getType()) << " not eliminated" +    << setExtraArgs(); + +  for (auto *U : LI->getPointerOperand()->users()) +    if (U != LI && (isa<LoadInst>(U) || isa<StoreInst>(U)) && +        DT->dominates(cast<Instruction>(U), LI)) { +      // FIXME: for now give up if there are multiple memory accesses that +      // dominate the load.  We need further analysis to decide which one is +      // that we're forwarding from. +      if (OtherAccess) +        OtherAccess = nullptr; +      else +        OtherAccess = U; +    } + +  if (OtherAccess) +    R << " in favor of " << NV("OtherAccess", OtherAccess); + +  R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst()); + +  ORE->emit(R); +} + +bool GVN::AnalyzeLoadAvailability(LoadInst *LI, MemDepResult DepInfo, +                                  Value *Address, AvailableValue &Res) { +  assert((DepInfo.isDef() || DepInfo.isClobber()) && +         "expected a local dependence"); +  assert(LI->isUnordered() && "rules below are incorrect for ordered access"); + +  const DataLayout &DL = LI->getModule()->getDataLayout(); + +  Instruction *DepInst = DepInfo.getInst(); +  if (DepInfo.isClobber()) { +    // If the dependence is to a store that writes to a superset of the bits +    // read by the load, we can extract the bits we need for the load from the +    // stored value. +    if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) { +      // Can't forward from non-atomic to atomic without violating memory model. +      if (Address && LI->isAtomic() <= DepSI->isAtomic()) { +        int Offset = +          analyzeLoadFromClobberingStore(LI->getType(), Address, DepSI, DL); +        if (Offset != -1) { +          Res = AvailableValue::get(DepSI->getValueOperand(), Offset); +          return true; +        } +      } +    } + +    // Check to see if we have something like this: +    //    load i32* P +    //    load i8* (P+1) +    // if we have this, replace the later with an extraction from the former. +    if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) { +      // If this is a clobber and L is the first instruction in its block, then +      // we have the first instruction in the entry block. +      // Can't forward from non-atomic to atomic without violating memory model. +      if (DepLI != LI && Address && LI->isAtomic() <= DepLI->isAtomic()) { +        int Offset = +          analyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL); + +        if (Offset != -1) { +          Res = AvailableValue::getLoad(DepLI, Offset); +          return true; +        } +      } +    } + +    // If the clobbering value is a memset/memcpy/memmove, see if we can +    // forward a value on from it. +    if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) { +      if (Address && !LI->isAtomic()) { +        int Offset = analyzeLoadFromClobberingMemInst(LI->getType(), Address, +                                                      DepMI, DL); +        if (Offset != -1) { +          Res = AvailableValue::getMI(DepMI, Offset); +          return true; +        } +      } +    } +    // Nothing known about this clobber, have to be conservative +    LLVM_DEBUG( +        // fast print dep, using operator<< on instruction is too slow. +        dbgs() << "GVN: load "; LI->printAsOperand(dbgs()); +        dbgs() << " is clobbered by " << *DepInst << '\n';); +    if (ORE->allowExtraAnalysis(DEBUG_TYPE)) +      reportMayClobberedLoad(LI, DepInfo, DT, ORE); + +    return false; +  } +  assert(DepInfo.isDef() && "follows from above"); + +  // Loading the allocation -> undef. +  if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) || +      // Loading immediately after lifetime begin -> undef. +      isLifetimeStart(DepInst)) { +    Res = AvailableValue::get(UndefValue::get(LI->getType())); +    return true; +  } + +  // Loading from calloc (which zero initializes memory) -> zero +  if (isCallocLikeFn(DepInst, TLI)) { +    Res = AvailableValue::get(Constant::getNullValue(LI->getType())); +    return true; +  } + +  if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) { +    // Reject loads and stores that are to the same address but are of +    // different types if we have to. If the stored value is larger or equal to +    // the loaded value, we can reuse it. +    if (!canCoerceMustAliasedValueToLoad(S->getValueOperand(), LI->getType(), +                                         DL)) +      return false; + +    // Can't forward from non-atomic to atomic without violating memory model. +    if (S->isAtomic() < LI->isAtomic()) +      return false; + +    Res = AvailableValue::get(S->getValueOperand()); +    return true; +  } + +  if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) { +    // If the types mismatch and we can't handle it, reject reuse of the load. +    // If the stored value is larger or equal to the loaded value, we can reuse +    // it. +    if (!canCoerceMustAliasedValueToLoad(LD, LI->getType(), DL)) +      return false; + +    // Can't forward from non-atomic to atomic without violating memory model. +    if (LD->isAtomic() < LI->isAtomic()) +      return false; + +    Res = AvailableValue::getLoad(LD); +    return true; +  } + +  // Unknown def - must be conservative +  LLVM_DEBUG( +      // fast print dep, using operator<< on instruction is too slow. +      dbgs() << "GVN: load "; LI->printAsOperand(dbgs()); +      dbgs() << " has unknown def " << *DepInst << '\n';); +  return false; +} + +void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps, +                                  AvailValInBlkVect &ValuesPerBlock, +                                  UnavailBlkVect &UnavailableBlocks) { +  // Filter out useless results (non-locals, etc).  Keep track of the blocks +  // where we have a value available in repl, also keep track of whether we see +  // dependencies that produce an unknown value for the load (such as a call +  // that could potentially clobber the load). +  unsigned NumDeps = Deps.size(); +  for (unsigned i = 0, e = NumDeps; i != e; ++i) { +    BasicBlock *DepBB = Deps[i].getBB(); +    MemDepResult DepInfo = Deps[i].getResult(); + +    if (DeadBlocks.count(DepBB)) { +      // Dead dependent mem-op disguise as a load evaluating the same value +      // as the load in question. +      ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB)); +      continue; +    } + +    if (!DepInfo.isDef() && !DepInfo.isClobber()) { +      UnavailableBlocks.push_back(DepBB); +      continue; +    } + +    // The address being loaded in this non-local block may not be the same as +    // the pointer operand of the load if PHI translation occurs.  Make sure +    // to consider the right address. +    Value *Address = Deps[i].getAddress(); + +    AvailableValue AV; +    if (AnalyzeLoadAvailability(LI, DepInfo, Address, AV)) { +      // subtlety: because we know this was a non-local dependency, we know +      // it's safe to materialize anywhere between the instruction within +      // DepInfo and the end of it's block. +      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, +                                                          std::move(AV))); +    } else { +      UnavailableBlocks.push_back(DepBB); +    } +  } + +  assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() && +         "post condition violation"); +} + +bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock, +                         UnavailBlkVect &UnavailableBlocks) { +  // Okay, we have *some* definitions of the value.  This means that the value +  // is available in some of our (transitive) predecessors.  Lets think about +  // doing PRE of this load.  This will involve inserting a new load into the +  // predecessor when it's not available.  We could do this in general, but +  // prefer to not increase code size.  As such, we only do this when we know +  // that we only have to insert *one* load (which means we're basically moving +  // the load, not inserting a new one). + +  SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(), +                                        UnavailableBlocks.end()); + +  // Let's find the first basic block with more than one predecessor.  Walk +  // backwards through predecessors if needed. +  BasicBlock *LoadBB = LI->getParent(); +  BasicBlock *TmpBB = LoadBB; +  bool IsSafeToSpeculativelyExecute = isSafeToSpeculativelyExecute(LI); + +  // Check that there is no implicit control flow instructions above our load in +  // its block. If there is an instruction that doesn't always pass the +  // execution to the following instruction, then moving through it may become +  // invalid. For example: +  // +  // int arr[LEN]; +  // int index = ???; +  // ... +  // guard(0 <= index && index < LEN); +  // use(arr[index]); +  // +  // It is illegal to move the array access to any point above the guard, +  // because if the index is out of bounds we should deoptimize rather than +  // access the array. +  // Check that there is no guard in this block above our instruction. +  if (!IsSafeToSpeculativelyExecute && ICF->isDominatedByICFIFromSameBlock(LI)) +    return false; +  while (TmpBB->getSinglePredecessor()) { +    TmpBB = TmpBB->getSinglePredecessor(); +    if (TmpBB == LoadBB) // Infinite (unreachable) loop. +      return false; +    if (Blockers.count(TmpBB)) +      return false; + +    // If any of these blocks has more than one successor (i.e. if the edge we +    // just traversed was critical), then there are other paths through this +    // block along which the load may not be anticipated.  Hoisting the load +    // above this block would be adding the load to execution paths along +    // which it was not previously executed. +    if (TmpBB->getTerminator()->getNumSuccessors() != 1) +      return false; + +    // Check that there is no implicit control flow in a block above. +    if (!IsSafeToSpeculativelyExecute && ICF->hasICF(TmpBB)) +      return false; +  } + +  assert(TmpBB); +  LoadBB = TmpBB; + +  // Check to see how many predecessors have the loaded value fully +  // available. +  MapVector<BasicBlock *, Value *> PredLoads; +  DenseMap<BasicBlock*, char> FullyAvailableBlocks; +  for (const AvailableValueInBlock &AV : ValuesPerBlock) +    FullyAvailableBlocks[AV.BB] = true; +  for (BasicBlock *UnavailableBB : UnavailableBlocks) +    FullyAvailableBlocks[UnavailableBB] = false; + +  SmallVector<BasicBlock *, 4> CriticalEdgePred; +  for (BasicBlock *Pred : predecessors(LoadBB)) { +    // If any predecessor block is an EH pad that does not allow non-PHI +    // instructions before the terminator, we can't PRE the load. +    if (Pred->getTerminator()->isEHPad()) { +      LLVM_DEBUG( +          dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '" +                 << Pred->getName() << "': " << *LI << '\n'); +      return false; +    } + +    if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) { +      continue; +    } + +    if (Pred->getTerminator()->getNumSuccessors() != 1) { +      if (isa<IndirectBrInst>(Pred->getTerminator())) { +        LLVM_DEBUG( +            dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '" +                   << Pred->getName() << "': " << *LI << '\n'); +        return false; +      } + +      // FIXME: Can we support the fallthrough edge? +      if (isa<CallBrInst>(Pred->getTerminator())) { +        LLVM_DEBUG( +            dbgs() << "COULD NOT PRE LOAD BECAUSE OF CALLBR CRITICAL EDGE '" +                   << Pred->getName() << "': " << *LI << '\n'); +        return false; +      } + +      if (LoadBB->isEHPad()) { +        LLVM_DEBUG( +            dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '" +                   << Pred->getName() << "': " << *LI << '\n'); +        return false; +      } + +      CriticalEdgePred.push_back(Pred); +    } else { +      // Only add the predecessors that will not be split for now. +      PredLoads[Pred] = nullptr; +    } +  } + +  // Decide whether PRE is profitable for this load. +  unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size(); +  assert(NumUnavailablePreds != 0 && +         "Fully available value should already be eliminated!"); + +  // If this load is unavailable in multiple predecessors, reject it. +  // FIXME: If we could restructure the CFG, we could make a common pred with +  // all the preds that don't have an available LI and insert a new load into +  // that one block. +  if (NumUnavailablePreds != 1) +      return false; + +  // Split critical edges, and update the unavailable predecessors accordingly. +  for (BasicBlock *OrigPred : CriticalEdgePred) { +    BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB); +    assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!"); +    PredLoads[NewPred] = nullptr; +    LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->" +                      << LoadBB->getName() << '\n'); +  } + +  // Check if the load can safely be moved to all the unavailable predecessors. +  bool CanDoPRE = true; +  const DataLayout &DL = LI->getModule()->getDataLayout(); +  SmallVector<Instruction*, 8> NewInsts; +  for (auto &PredLoad : PredLoads) { +    BasicBlock *UnavailablePred = PredLoad.first; + +    // Do PHI translation to get its value in the predecessor if necessary.  The +    // returned pointer (if non-null) is guaranteed to dominate UnavailablePred. +    // We do the translation for each edge we skipped by going from LI's block +    // to LoadBB, otherwise we might miss pieces needing translation. + +    // If all preds have a single successor, then we know it is safe to insert +    // the load on the pred (?!?), so we can insert code to materialize the +    // pointer if it is not available. +    Value *LoadPtr = LI->getPointerOperand(); +    BasicBlock *Cur = LI->getParent(); +    while (Cur != LoadBB) { +      PHITransAddr Address(LoadPtr, DL, AC); +      LoadPtr = Address.PHITranslateWithInsertion( +          Cur, Cur->getSinglePredecessor(), *DT, NewInsts); +      if (!LoadPtr) { +        CanDoPRE = false; +        break; +      } +      Cur = Cur->getSinglePredecessor(); +    } + +    if (LoadPtr) { +      PHITransAddr Address(LoadPtr, DL, AC); +      LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred, *DT, +                                                  NewInsts); +    } +    // If we couldn't find or insert a computation of this phi translated value, +    // we fail PRE. +    if (!LoadPtr) { +      LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: " +                        << *LI->getPointerOperand() << "\n"); +      CanDoPRE = false; +      break; +    } + +    PredLoad.second = LoadPtr; +  } + +  if (!CanDoPRE) { +    while (!NewInsts.empty()) { +      // Erase instructions generated by the failed PHI translation before +      // trying to number them. PHI translation might insert instructions +      // in basic blocks other than the current one, and we delete them +      // directly, as markInstructionForDeletion only allows removing from the +      // current basic block. +      NewInsts.pop_back_val()->eraseFromParent(); +    } +    // HINT: Don't revert the edge-splitting as following transformation may +    // also need to split these critical edges. +    return !CriticalEdgePred.empty(); +  } + +  // Okay, we can eliminate this load by inserting a reload in the predecessor +  // and using PHI construction to get the value in the other predecessors, do +  // it. +  LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n'); +  LLVM_DEBUG(if (!NewInsts.empty()) dbgs() +             << "INSERTED " << NewInsts.size() << " INSTS: " << *NewInsts.back() +             << '\n'); + +  // Assign value numbers to the new instructions. +  for (Instruction *I : NewInsts) { +    // Instructions that have been inserted in predecessor(s) to materialize +    // the load address do not retain their original debug locations. Doing +    // so could lead to confusing (but correct) source attributions. +    if (const DebugLoc &DL = I->getDebugLoc()) +      I->setDebugLoc(DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt())); + +    // FIXME: We really _ought_ to insert these value numbers into their +    // parent's availability map.  However, in doing so, we risk getting into +    // ordering issues.  If a block hasn't been processed yet, we would be +    // marking a value as AVAIL-IN, which isn't what we intend. +    VN.lookupOrAdd(I); +  } + +  for (const auto &PredLoad : PredLoads) { +    BasicBlock *UnavailablePred = PredLoad.first; +    Value *LoadPtr = PredLoad.second; + +    auto *NewLoad = new LoadInst( +        LI->getType(), LoadPtr, LI->getName() + ".pre", LI->isVolatile(), +        MaybeAlign(LI->getAlignment()), LI->getOrdering(), LI->getSyncScopeID(), +        UnavailablePred->getTerminator()); +    NewLoad->setDebugLoc(LI->getDebugLoc()); + +    // Transfer the old load's AA tags to the new load. +    AAMDNodes Tags; +    LI->getAAMetadata(Tags); +    if (Tags) +      NewLoad->setAAMetadata(Tags); + +    if (auto *MD = LI->getMetadata(LLVMContext::MD_invariant_load)) +      NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD); +    if (auto *InvGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group)) +      NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD); +    if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) +      NewLoad->setMetadata(LLVMContext::MD_range, RangeMD); + +    // We do not propagate the old load's debug location, because the new +    // load now lives in a different BB, and we want to avoid a jumpy line +    // table. +    // FIXME: How do we retain source locations without causing poor debugging +    // behavior? + +    // Add the newly created load. +    ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred, +                                                        NewLoad)); +    MD->invalidateCachedPointerInfo(LoadPtr); +    LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n'); +  } + +  // Perform PHI construction. +  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this); +  LI->replaceAllUsesWith(V); +  if (isa<PHINode>(V)) +    V->takeName(LI); +  if (Instruction *I = dyn_cast<Instruction>(V)) +    I->setDebugLoc(LI->getDebugLoc()); +  if (V->getType()->isPtrOrPtrVectorTy()) +    MD->invalidateCachedPointerInfo(V); +  markInstructionForDeletion(LI); +  ORE->emit([&]() { +    return OptimizationRemark(DEBUG_TYPE, "LoadPRE", LI) +           << "load eliminated by PRE"; +  }); +  ++NumPRELoad; +  return true; +} + +static void reportLoadElim(LoadInst *LI, Value *AvailableValue, +                           OptimizationRemarkEmitter *ORE) { +  using namespace ore; + +  ORE->emit([&]() { +    return OptimizationRemark(DEBUG_TYPE, "LoadElim", LI) +           << "load of type " << NV("Type", LI->getType()) << " eliminated" +           << setExtraArgs() << " in favor of " +           << NV("InfavorOfValue", AvailableValue); +  }); +} + +/// Attempt to eliminate a load whose dependencies are +/// non-local by performing PHI construction. +bool GVN::processNonLocalLoad(LoadInst *LI) { +  // non-local speculations are not allowed under asan. +  if (LI->getParent()->getParent()->hasFnAttribute( +          Attribute::SanitizeAddress) || +      LI->getParent()->getParent()->hasFnAttribute( +          Attribute::SanitizeHWAddress)) +    return false; + +  // Step 1: Find the non-local dependencies of the load. +  LoadDepVect Deps; +  MD->getNonLocalPointerDependency(LI, Deps); + +  // If we had to process more than one hundred blocks to find the +  // dependencies, this load isn't worth worrying about.  Optimizing +  // it will be too expensive. +  unsigned NumDeps = Deps.size(); +  if (NumDeps > MaxNumDeps) +    return false; + +  // If we had a phi translation failure, we'll have a single entry which is a +  // clobber in the current block.  Reject this early. +  if (NumDeps == 1 && +      !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) { +    LLVM_DEBUG(dbgs() << "GVN: non-local load "; LI->printAsOperand(dbgs()); +               dbgs() << " has unknown dependencies\n";); +    return false; +  } + +  // If this load follows a GEP, see if we can PRE the indices before analyzing. +  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) { +    for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(), +                                        OE = GEP->idx_end(); +         OI != OE; ++OI) +      if (Instruction *I = dyn_cast<Instruction>(OI->get())) +        performScalarPRE(I); +  } + +  // Step 2: Analyze the availability of the load +  AvailValInBlkVect ValuesPerBlock; +  UnavailBlkVect UnavailableBlocks; +  AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks); + +  // If we have no predecessors that produce a known value for this load, exit +  // early. +  if (ValuesPerBlock.empty()) +    return false; + +  // Step 3: Eliminate fully redundancy. +  // +  // If all of the instructions we depend on produce a known value for this +  // load, then it is fully redundant and we can use PHI insertion to compute +  // its value.  Insert PHIs and remove the fully redundant value now. +  if (UnavailableBlocks.empty()) { +    LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n'); + +    // Perform PHI construction. +    Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this); +    LI->replaceAllUsesWith(V); + +    if (isa<PHINode>(V)) +      V->takeName(LI); +    if (Instruction *I = dyn_cast<Instruction>(V)) +      // If instruction I has debug info, then we should not update it. +      // Also, if I has a null DebugLoc, then it is still potentially incorrect +      // to propagate LI's DebugLoc because LI may not post-dominate I. +      if (LI->getDebugLoc() && LI->getParent() == I->getParent()) +        I->setDebugLoc(LI->getDebugLoc()); +    if (V->getType()->isPtrOrPtrVectorTy()) +      MD->invalidateCachedPointerInfo(V); +    markInstructionForDeletion(LI); +    ++NumGVNLoad; +    reportLoadElim(LI, V, ORE); +    return true; +  } + +  // Step 4: Eliminate partial redundancy. +  if (!EnablePRE || !EnableLoadPRE) +    return false; + +  return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks); +} + +static bool hasUsersIn(Value *V, BasicBlock *BB) { +  for (User *U : V->users()) +    if (isa<Instruction>(U) && +        cast<Instruction>(U)->getParent() == BB) +      return true; +  return false; +} + +bool GVN::processAssumeIntrinsic(IntrinsicInst *IntrinsicI) { +  assert(IntrinsicI->getIntrinsicID() == Intrinsic::assume && +         "This function can only be called with llvm.assume intrinsic"); +  Value *V = IntrinsicI->getArgOperand(0); + +  if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) { +    if (Cond->isZero()) { +      Type *Int8Ty = Type::getInt8Ty(V->getContext()); +      // Insert a new store to null instruction before the load to indicate that +      // this code is not reachable.  FIXME: We could insert unreachable +      // instruction directly because we can modify the CFG. +      new StoreInst(UndefValue::get(Int8Ty), +                    Constant::getNullValue(Int8Ty->getPointerTo()), +                    IntrinsicI); +    } +    markInstructionForDeletion(IntrinsicI); +    return false; +  } else if (isa<Constant>(V)) { +    // If it's not false, and constant, it must evaluate to true. This means our +    // assume is assume(true), and thus, pointless, and we don't want to do +    // anything more here. +    return false; +  } + +  Constant *True = ConstantInt::getTrue(V->getContext()); +  bool Changed = false; + +  for (BasicBlock *Successor : successors(IntrinsicI->getParent())) { +    BasicBlockEdge Edge(IntrinsicI->getParent(), Successor); + +    // This property is only true in dominated successors, propagateEquality +    // will check dominance for us. +    Changed |= propagateEquality(V, True, Edge, false); +  } + +  // We can replace assume value with true, which covers cases like this: +  // call void @llvm.assume(i1 %cmp) +  // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true +  ReplaceOperandsWithMap[V] = True; + +  // If we find an equality fact, canonicalize all dominated uses in this block +  // to one of the two values.  We heuristically choice the "oldest" of the +  // two where age is determined by value number. (Note that propagateEquality +  // above handles the cross block case.)  +  //  +  // Key case to cover are: +  // 1)  +  // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen +  // call void @llvm.assume(i1 %cmp) +  // ret float %0 ; will change it to ret float 3.000000e+00 +  // 2) +  // %load = load float, float* %addr +  // %cmp = fcmp oeq float %load, %0 +  // call void @llvm.assume(i1 %cmp) +  // ret float %load ; will change it to ret float %0 +  if (auto *CmpI = dyn_cast<CmpInst>(V)) { +    if (CmpI->getPredicate() == CmpInst::Predicate::ICMP_EQ || +        CmpI->getPredicate() == CmpInst::Predicate::FCMP_OEQ || +        (CmpI->getPredicate() == CmpInst::Predicate::FCMP_UEQ && +         CmpI->getFastMathFlags().noNaNs())) { +      Value *CmpLHS = CmpI->getOperand(0); +      Value *CmpRHS = CmpI->getOperand(1); +      // Heuristically pick the better replacement -- the choice of heuristic +      // isn't terribly important here, but the fact we canonicalize on some +      // replacement is for exposing other simplifications. +      // TODO: pull this out as a helper function and reuse w/existing +      // (slightly different) logic. +      if (isa<Constant>(CmpLHS) && !isa<Constant>(CmpRHS)) +        std::swap(CmpLHS, CmpRHS); +      if (!isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS)) +        std::swap(CmpLHS, CmpRHS); +      if ((isa<Argument>(CmpLHS) && isa<Argument>(CmpRHS)) || +          (isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))) { +        // Move the 'oldest' value to the right-hand side, using the value +        // number as a proxy for age. +        uint32_t LVN = VN.lookupOrAdd(CmpLHS); +        uint32_t RVN = VN.lookupOrAdd(CmpRHS); +        if (LVN < RVN) +          std::swap(CmpLHS, CmpRHS); +      } + +      // Handle degenerate case where we either haven't pruned a dead path or a +      // removed a trivial assume yet. +      if (isa<Constant>(CmpLHS) && isa<Constant>(CmpRHS)) +        return Changed; + +      // +0.0 and -0.0 compare equal, but do not imply equivalence.  Unless we +      // can prove equivalence, bail. +      if (CmpRHS->getType()->isFloatTy() && +          (!isa<ConstantFP>(CmpRHS) || cast<ConstantFP>(CmpRHS)->isZero())) +        return Changed; + +      LLVM_DEBUG(dbgs() << "Replacing dominated uses of " +                 << *CmpLHS << " with " +                 << *CmpRHS << " in block " +                 << IntrinsicI->getParent()->getName() << "\n"); +       + +      // Setup the replacement map - this handles uses within the same block +      if (hasUsersIn(CmpLHS, IntrinsicI->getParent())) +        ReplaceOperandsWithMap[CmpLHS] = CmpRHS; + +      // NOTE: The non-block local cases are handled by the call to +      // propagateEquality above; this block is just about handling the block +      // local cases.  TODO: There's a bunch of logic in propagateEqualiy which +      // isn't duplicated for the block local case, can we share it somehow? +    } +  } +  return Changed; +} + +static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) { +  patchReplacementInstruction(I, Repl); +  I->replaceAllUsesWith(Repl); +} + +/// Attempt to eliminate a load, first by eliminating it +/// locally, and then attempting non-local elimination if that fails. +bool GVN::processLoad(LoadInst *L) { +  if (!MD) +    return false; + +  // This code hasn't been audited for ordered or volatile memory access +  if (!L->isUnordered()) +    return false; + +  if (L->use_empty()) { +    markInstructionForDeletion(L); +    return true; +  } + +  // ... to a pointer that has been loaded from before... +  MemDepResult Dep = MD->getDependency(L); + +  // If it is defined in another block, try harder. +  if (Dep.isNonLocal()) +    return processNonLocalLoad(L); + +  // Only handle the local case below +  if (!Dep.isDef() && !Dep.isClobber()) { +    // This might be a NonFuncLocal or an Unknown +    LLVM_DEBUG( +        // fast print dep, using operator<< on instruction is too slow. +        dbgs() << "GVN: load "; L->printAsOperand(dbgs()); +        dbgs() << " has unknown dependence\n";); +    return false; +  } + +  AvailableValue AV; +  if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) { +    Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this); + +    // Replace the load! +    patchAndReplaceAllUsesWith(L, AvailableValue); +    markInstructionForDeletion(L); +    ++NumGVNLoad; +    reportLoadElim(L, AvailableValue, ORE); +    // Tell MDA to rexamine the reused pointer since we might have more +    // information after forwarding it. +    if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy()) +      MD->invalidateCachedPointerInfo(AvailableValue); +    return true; +  } + +  return false; +} + +/// Return a pair the first field showing the value number of \p Exp and the +/// second field showing whether it is a value number newly created. +std::pair<uint32_t, bool> +GVN::ValueTable::assignExpNewValueNum(Expression &Exp) { +  uint32_t &e = expressionNumbering[Exp]; +  bool CreateNewValNum = !e; +  if (CreateNewValNum) { +    Expressions.push_back(Exp); +    if (ExprIdx.size() < nextValueNumber + 1) +      ExprIdx.resize(nextValueNumber * 2); +    e = nextValueNumber; +    ExprIdx[nextValueNumber++] = nextExprNumber++; +  } +  return {e, CreateNewValNum}; +} + +/// Return whether all the values related with the same \p num are +/// defined in \p BB. +bool GVN::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB, +                                     GVN &Gvn) { +  LeaderTableEntry *Vals = &Gvn.LeaderTable[Num]; +  while (Vals && Vals->BB == BB) +    Vals = Vals->Next; +  return !Vals; +} + +/// Wrap phiTranslateImpl to provide caching functionality. +uint32_t GVN::ValueTable::phiTranslate(const BasicBlock *Pred, +                                       const BasicBlock *PhiBlock, uint32_t Num, +                                       GVN &Gvn) { +  auto FindRes = PhiTranslateTable.find({Num, Pred}); +  if (FindRes != PhiTranslateTable.end()) +    return FindRes->second; +  uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn); +  PhiTranslateTable.insert({{Num, Pred}, NewNum}); +  return NewNum; +} + +// Return true if the value number \p Num and NewNum have equal value. +// Return false if the result is unknown. +bool GVN::ValueTable::areCallValsEqual(uint32_t Num, uint32_t NewNum, +                                       const BasicBlock *Pred, +                                       const BasicBlock *PhiBlock, GVN &Gvn) { +  CallInst *Call = nullptr; +  LeaderTableEntry *Vals = &Gvn.LeaderTable[Num]; +  while (Vals) { +    Call = dyn_cast<CallInst>(Vals->Val); +    if (Call && Call->getParent() == PhiBlock) +      break; +    Vals = Vals->Next; +  } + +  if (AA->doesNotAccessMemory(Call)) +    return true; + +  if (!MD || !AA->onlyReadsMemory(Call)) +    return false; + +  MemDepResult local_dep = MD->getDependency(Call); +  if (!local_dep.isNonLocal()) +    return false; + +  const MemoryDependenceResults::NonLocalDepInfo &deps = +      MD->getNonLocalCallDependency(Call); + +  // Check to see if the Call has no function local clobber. +  for (unsigned i = 0; i < deps.size(); i++) { +    if (deps[i].getResult().isNonFuncLocal()) +      return true; +  } +  return false; +} + +/// Translate value number \p Num using phis, so that it has the values of +/// the phis in BB. +uint32_t GVN::ValueTable::phiTranslateImpl(const BasicBlock *Pred, +                                           const BasicBlock *PhiBlock, +                                           uint32_t Num, GVN &Gvn) { +  if (PHINode *PN = NumberingPhi[Num]) { +    for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { +      if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred) +        if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false)) +          return TransVal; +    } +    return Num; +  } + +  // If there is any value related with Num is defined in a BB other than +  // PhiBlock, it cannot depend on a phi in PhiBlock without going through +  // a backedge. We can do an early exit in that case to save compile time. +  if (!areAllValsInBB(Num, PhiBlock, Gvn)) +    return Num; + +  if (Num >= ExprIdx.size() || ExprIdx[Num] == 0) +    return Num; +  Expression Exp = Expressions[ExprIdx[Num]]; + +  for (unsigned i = 0; i < Exp.varargs.size(); i++) { +    // For InsertValue and ExtractValue, some varargs are index numbers +    // instead of value numbers. Those index numbers should not be +    // translated. +    if ((i > 1 && Exp.opcode == Instruction::InsertValue) || +        (i > 0 && Exp.opcode == Instruction::ExtractValue)) +      continue; +    Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn); +  } + +  if (Exp.commutative) { +    assert(Exp.varargs.size() == 2 && "Unsupported commutative expression!"); +    if (Exp.varargs[0] > Exp.varargs[1]) { +      std::swap(Exp.varargs[0], Exp.varargs[1]); +      uint32_t Opcode = Exp.opcode >> 8; +      if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) +        Exp.opcode = (Opcode << 8) | +                     CmpInst::getSwappedPredicate( +                         static_cast<CmpInst::Predicate>(Exp.opcode & 255)); +    } +  } + +  if (uint32_t NewNum = expressionNumbering[Exp]) { +    if (Exp.opcode == Instruction::Call && NewNum != Num) +      return areCallValsEqual(Num, NewNum, Pred, PhiBlock, Gvn) ? NewNum : Num; +    return NewNum; +  } +  return Num; +} + +/// Erase stale entry from phiTranslate cache so phiTranslate can be computed +/// again. +void GVN::ValueTable::eraseTranslateCacheEntry(uint32_t Num, +                                               const BasicBlock &CurrBlock) { +  for (const BasicBlock *Pred : predecessors(&CurrBlock)) { +    auto FindRes = PhiTranslateTable.find({Num, Pred}); +    if (FindRes != PhiTranslateTable.end()) +      PhiTranslateTable.erase(FindRes); +  } +} + +// In order to find a leader for a given value number at a +// specific basic block, we first obtain the list of all Values for that number, +// and then scan the list to find one whose block dominates the block in +// question.  This is fast because dominator tree queries consist of only +// a few comparisons of DFS numbers. +Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) { +  LeaderTableEntry Vals = LeaderTable[num]; +  if (!Vals.Val) return nullptr; + +  Value *Val = nullptr; +  if (DT->dominates(Vals.BB, BB)) { +    Val = Vals.Val; +    if (isa<Constant>(Val)) return Val; +  } + +  LeaderTableEntry* Next = Vals.Next; +  while (Next) { +    if (DT->dominates(Next->BB, BB)) { +      if (isa<Constant>(Next->Val)) return Next->Val; +      if (!Val) Val = Next->Val; +    } + +    Next = Next->Next; +  } + +  return Val; +} + +/// There is an edge from 'Src' to 'Dst'.  Return +/// true if every path from the entry block to 'Dst' passes via this edge.  In +/// particular 'Dst' must not be reachable via another edge from 'Src'. +static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E, +                                       DominatorTree *DT) { +  // While in theory it is interesting to consider the case in which Dst has +  // more than one predecessor, because Dst might be part of a loop which is +  // only reachable from Src, in practice it is pointless since at the time +  // GVN runs all such loops have preheaders, which means that Dst will have +  // been changed to have only one predecessor, namely Src. +  const BasicBlock *Pred = E.getEnd()->getSinglePredecessor(); +  assert((!Pred || Pred == E.getStart()) && +         "No edge between these basic blocks!"); +  return Pred != nullptr; +} + +void GVN::assignBlockRPONumber(Function &F) { +  BlockRPONumber.clear(); +  uint32_t NextBlockNumber = 1; +  ReversePostOrderTraversal<Function *> RPOT(&F); +  for (BasicBlock *BB : RPOT) +    BlockRPONumber[BB] = NextBlockNumber++; +  InvalidBlockRPONumbers = false; +} + +bool GVN::replaceOperandsForInBlockEquality(Instruction *Instr) const { +  bool Changed = false; +  for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) { +    Value *Operand = Instr->getOperand(OpNum);  +    auto it = ReplaceOperandsWithMap.find(Operand); +    if (it != ReplaceOperandsWithMap.end()) { +      LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with " +                        << *it->second << " in instruction " << *Instr << '\n'); +      Instr->setOperand(OpNum, it->second); +      Changed = true; +    } +  } +  return Changed; +} + +/// The given values are known to be equal in every block +/// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with +/// 'RHS' everywhere in the scope.  Returns whether a change was made. +/// If DominatesByEdge is false, then it means that we will propagate the RHS +/// value starting from the end of Root.Start. +bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root, +                            bool DominatesByEdge) { +  SmallVector<std::pair<Value*, Value*>, 4> Worklist; +  Worklist.push_back(std::make_pair(LHS, RHS)); +  bool Changed = false; +  // For speed, compute a conservative fast approximation to +  // DT->dominates(Root, Root.getEnd()); +  const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT); + +  while (!Worklist.empty()) { +    std::pair<Value*, Value*> Item = Worklist.pop_back_val(); +    LHS = Item.first; RHS = Item.second; + +    if (LHS == RHS) +      continue; +    assert(LHS->getType() == RHS->getType() && "Equality but unequal types!"); + +    // Don't try to propagate equalities between constants. +    if (isa<Constant>(LHS) && isa<Constant>(RHS)) +      continue; + +    // Prefer a constant on the right-hand side, or an Argument if no constants. +    if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS))) +      std::swap(LHS, RHS); +    assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!"); + +    // If there is no obvious reason to prefer the left-hand side over the +    // right-hand side, ensure the longest lived term is on the right-hand side, +    // so the shortest lived term will be replaced by the longest lived. +    // This tends to expose more simplifications. +    uint32_t LVN = VN.lookupOrAdd(LHS); +    if ((isa<Argument>(LHS) && isa<Argument>(RHS)) || +        (isa<Instruction>(LHS) && isa<Instruction>(RHS))) { +      // Move the 'oldest' value to the right-hand side, using the value number +      // as a proxy for age. +      uint32_t RVN = VN.lookupOrAdd(RHS); +      if (LVN < RVN) { +        std::swap(LHS, RHS); +        LVN = RVN; +      } +    } + +    // If value numbering later sees that an instruction in the scope is equal +    // to 'LHS' then ensure it will be turned into 'RHS'.  In order to preserve +    // the invariant that instructions only occur in the leader table for their +    // own value number (this is used by removeFromLeaderTable), do not do this +    // if RHS is an instruction (if an instruction in the scope is morphed into +    // LHS then it will be turned into RHS by the next GVN iteration anyway, so +    // using the leader table is about compiling faster, not optimizing better). +    // The leader table only tracks basic blocks, not edges. Only add to if we +    // have the simple case where the edge dominates the end. +    if (RootDominatesEnd && !isa<Instruction>(RHS)) +      addToLeaderTable(LVN, RHS, Root.getEnd()); + +    // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As +    // LHS always has at least one use that is not dominated by Root, this will +    // never do anything if LHS has only one use. +    if (!LHS->hasOneUse()) { +      unsigned NumReplacements = +          DominatesByEdge +              ? replaceDominatedUsesWith(LHS, RHS, *DT, Root) +              : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart()); + +      Changed |= NumReplacements > 0; +      NumGVNEqProp += NumReplacements; +      // Cached information for anything that uses LHS will be invalid. +      if (MD) +        MD->invalidateCachedPointerInfo(LHS); +    } + +    // Now try to deduce additional equalities from this one. For example, if +    // the known equality was "(A != B)" == "false" then it follows that A and B +    // are equal in the scope. Only boolean equalities with an explicit true or +    // false RHS are currently supported. +    if (!RHS->getType()->isIntegerTy(1)) +      // Not a boolean equality - bail out. +      continue; +    ConstantInt *CI = dyn_cast<ConstantInt>(RHS); +    if (!CI) +      // RHS neither 'true' nor 'false' - bail out. +      continue; +    // Whether RHS equals 'true'.  Otherwise it equals 'false'. +    bool isKnownTrue = CI->isMinusOne(); +    bool isKnownFalse = !isKnownTrue; + +    // If "A && B" is known true then both A and B are known true.  If "A || B" +    // is known false then both A and B are known false. +    Value *A, *B; +    if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) || +        (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) { +      Worklist.push_back(std::make_pair(A, RHS)); +      Worklist.push_back(std::make_pair(B, RHS)); +      continue; +    } + +    // If we are propagating an equality like "(A == B)" == "true" then also +    // propagate the equality A == B.  When propagating a comparison such as +    // "(A >= B)" == "true", replace all instances of "A < B" with "false". +    if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) { +      Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1); + +      // If "A == B" is known true, or "A != B" is known false, then replace +      // A with B everywhere in the scope. +      if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) || +          (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE)) +        Worklist.push_back(std::make_pair(Op0, Op1)); + +      // Handle the floating point versions of equality comparisons too. +      if ((isKnownTrue && Cmp->getPredicate() == CmpInst::FCMP_OEQ) || +          (isKnownFalse && Cmp->getPredicate() == CmpInst::FCMP_UNE)) { + +        // Floating point -0.0 and 0.0 compare equal, so we can only +        // propagate values if we know that we have a constant and that +        // its value is non-zero. + +        // FIXME: We should do this optimization if 'no signed zeros' is +        // applicable via an instruction-level fast-math-flag or some other +        // indicator that relaxed FP semantics are being used. + +        if (isa<ConstantFP>(Op1) && !cast<ConstantFP>(Op1)->isZero()) +          Worklist.push_back(std::make_pair(Op0, Op1)); +      } + +      // If "A >= B" is known true, replace "A < B" with false everywhere. +      CmpInst::Predicate NotPred = Cmp->getInversePredicate(); +      Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse); +      // Since we don't have the instruction "A < B" immediately to hand, work +      // out the value number that it would have and use that to find an +      // appropriate instruction (if any). +      uint32_t NextNum = VN.getNextUnusedValueNumber(); +      uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1); +      // If the number we were assigned was brand new then there is no point in +      // looking for an instruction realizing it: there cannot be one! +      if (Num < NextNum) { +        Value *NotCmp = findLeader(Root.getEnd(), Num); +        if (NotCmp && isa<Instruction>(NotCmp)) { +          unsigned NumReplacements = +              DominatesByEdge +                  ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root) +                  : replaceDominatedUsesWith(NotCmp, NotVal, *DT, +                                             Root.getStart()); +          Changed |= NumReplacements > 0; +          NumGVNEqProp += NumReplacements; +          // Cached information for anything that uses NotCmp will be invalid. +          if (MD) +            MD->invalidateCachedPointerInfo(NotCmp); +        } +      } +      // Ensure that any instruction in scope that gets the "A < B" value number +      // is replaced with false. +      // The leader table only tracks basic blocks, not edges. Only add to if we +      // have the simple case where the edge dominates the end. +      if (RootDominatesEnd) +        addToLeaderTable(Num, NotVal, Root.getEnd()); + +      continue; +    } +  } + +  return Changed; +} + +/// When calculating availability, handle an instruction +/// by inserting it into the appropriate sets +bool GVN::processInstruction(Instruction *I) { +  // Ignore dbg info intrinsics. +  if (isa<DbgInfoIntrinsic>(I)) +    return false; + +  // If the instruction can be easily simplified then do so now in preference +  // to value numbering it.  Value numbering often exposes redundancies, for +  // example if it determines that %y is equal to %x then the instruction +  // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify. +  const DataLayout &DL = I->getModule()->getDataLayout(); +  if (Value *V = SimplifyInstruction(I, {DL, TLI, DT, AC})) { +    bool Changed = false; +    if (!I->use_empty()) { +      I->replaceAllUsesWith(V); +      Changed = true; +    } +    if (isInstructionTriviallyDead(I, TLI)) { +      markInstructionForDeletion(I); +      Changed = true; +    } +    if (Changed) { +      if (MD && V->getType()->isPtrOrPtrVectorTy()) +        MD->invalidateCachedPointerInfo(V); +      ++NumGVNSimpl; +      return true; +    } +  } + +  if (IntrinsicInst *IntrinsicI = dyn_cast<IntrinsicInst>(I)) +    if (IntrinsicI->getIntrinsicID() == Intrinsic::assume) +      return processAssumeIntrinsic(IntrinsicI); + +  if (LoadInst *LI = dyn_cast<LoadInst>(I)) { +    if (processLoad(LI)) +      return true; + +    unsigned Num = VN.lookupOrAdd(LI); +    addToLeaderTable(Num, LI, LI->getParent()); +    return false; +  } + +  // For conditional branches, we can perform simple conditional propagation on +  // the condition value itself. +  if (BranchInst *BI = dyn_cast<BranchInst>(I)) { +    if (!BI->isConditional()) +      return false; + +    if (isa<Constant>(BI->getCondition())) +      return processFoldableCondBr(BI); + +    Value *BranchCond = BI->getCondition(); +    BasicBlock *TrueSucc = BI->getSuccessor(0); +    BasicBlock *FalseSucc = BI->getSuccessor(1); +    // Avoid multiple edges early. +    if (TrueSucc == FalseSucc) +      return false; + +    BasicBlock *Parent = BI->getParent(); +    bool Changed = false; + +    Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext()); +    BasicBlockEdge TrueE(Parent, TrueSucc); +    Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true); + +    Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext()); +    BasicBlockEdge FalseE(Parent, FalseSucc); +    Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true); + +    return Changed; +  } + +  // For switches, propagate the case values into the case destinations. +  if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { +    Value *SwitchCond = SI->getCondition(); +    BasicBlock *Parent = SI->getParent(); +    bool Changed = false; + +    // Remember how many outgoing edges there are to every successor. +    SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; +    for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i) +      ++SwitchEdges[SI->getSuccessor(i)]; + +    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); +         i != e; ++i) { +      BasicBlock *Dst = i->getCaseSuccessor(); +      // If there is only a single edge, propagate the case value into it. +      if (SwitchEdges.lookup(Dst) == 1) { +        BasicBlockEdge E(Parent, Dst); +        Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true); +      } +    } +    return Changed; +  } + +  // Instructions with void type don't return a value, so there's +  // no point in trying to find redundancies in them. +  if (I->getType()->isVoidTy()) +    return false; + +  uint32_t NextNum = VN.getNextUnusedValueNumber(); +  unsigned Num = VN.lookupOrAdd(I); + +  // Allocations are always uniquely numbered, so we can save time and memory +  // by fast failing them. +  if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) { +    addToLeaderTable(Num, I, I->getParent()); +    return false; +  } + +  // If the number we were assigned was a brand new VN, then we don't +  // need to do a lookup to see if the number already exists +  // somewhere in the domtree: it can't! +  if (Num >= NextNum) { +    addToLeaderTable(Num, I, I->getParent()); +    return false; +  } + +  // Perform fast-path value-number based elimination of values inherited from +  // dominators. +  Value *Repl = findLeader(I->getParent(), Num); +  if (!Repl) { +    // Failure, just remember this instance for future use. +    addToLeaderTable(Num, I, I->getParent()); +    return false; +  } else if (Repl == I) { +    // If I was the result of a shortcut PRE, it might already be in the table +    // and the best replacement for itself. Nothing to do. +    return false; +  } + +  // Remove it! +  patchAndReplaceAllUsesWith(I, Repl); +  if (MD && Repl->getType()->isPtrOrPtrVectorTy()) +    MD->invalidateCachedPointerInfo(Repl); +  markInstructionForDeletion(I); +  return true; +} + +/// runOnFunction - This is the main transformation entry point for a function. +bool GVN::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT, +                  const TargetLibraryInfo &RunTLI, AAResults &RunAA, +                  MemoryDependenceResults *RunMD, LoopInfo *LI, +                  OptimizationRemarkEmitter *RunORE) { +  AC = &RunAC; +  DT = &RunDT; +  VN.setDomTree(DT); +  TLI = &RunTLI; +  VN.setAliasAnalysis(&RunAA); +  MD = RunMD; +  ImplicitControlFlowTracking ImplicitCFT(DT); +  ICF = &ImplicitCFT; +  this->LI = LI; +  VN.setMemDep(MD); +  ORE = RunORE; +  InvalidBlockRPONumbers = true; + +  bool Changed = false; +  bool ShouldContinue = true; + +  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); +  // Merge unconditional branches, allowing PRE to catch more +  // optimization opportunities. +  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) { +    BasicBlock *BB = &*FI++; + +    bool removedBlock = MergeBlockIntoPredecessor(BB, &DTU, LI, nullptr, MD); +    if (removedBlock) +      ++NumGVNBlocks; + +    Changed |= removedBlock; +  } + +  unsigned Iteration = 0; +  while (ShouldContinue) { +    LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n"); +    ShouldContinue = iterateOnFunction(F); +    Changed |= ShouldContinue; +    ++Iteration; +  } + +  if (EnablePRE) { +    // Fabricate val-num for dead-code in order to suppress assertion in +    // performPRE(). +    assignValNumForDeadCode(); +    bool PREChanged = true; +    while (PREChanged) { +      PREChanged = performPRE(F); +      Changed |= PREChanged; +    } +  } + +  // FIXME: Should perform GVN again after PRE does something.  PRE can move +  // computations into blocks where they become fully redundant.  Note that +  // we can't do this until PRE's critical edge splitting updates memdep. +  // Actually, when this happens, we should just fully integrate PRE into GVN. + +  cleanupGlobalSets(); +  // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each +  // iteration. +  DeadBlocks.clear(); + +  return Changed; +} + +bool GVN::processBlock(BasicBlock *BB) { +  // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function +  // (and incrementing BI before processing an instruction). +  assert(InstrsToErase.empty() && +         "We expect InstrsToErase to be empty across iterations"); +  if (DeadBlocks.count(BB)) +    return false; + +  // Clearing map before every BB because it can be used only for single BB. +  ReplaceOperandsWithMap.clear(); +  bool ChangedFunction = false; + +  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); +       BI != BE;) { +    if (!ReplaceOperandsWithMap.empty()) +      ChangedFunction |= replaceOperandsForInBlockEquality(&*BI); +    ChangedFunction |= processInstruction(&*BI); + +    if (InstrsToErase.empty()) { +      ++BI; +      continue; +    } + +    // If we need some instructions deleted, do it now. +    NumGVNInstr += InstrsToErase.size(); + +    // Avoid iterator invalidation. +    bool AtStart = BI == BB->begin(); +    if (!AtStart) +      --BI; + +    for (auto *I : InstrsToErase) { +      assert(I->getParent() == BB && "Removing instruction from wrong block?"); +      LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n'); +      salvageDebugInfo(*I); +      if (MD) MD->removeInstruction(I); +      LLVM_DEBUG(verifyRemoved(I)); +      ICF->removeInstruction(I); +      I->eraseFromParent(); +    } +    InstrsToErase.clear(); + +    if (AtStart) +      BI = BB->begin(); +    else +      ++BI; +  } + +  return ChangedFunction; +} + +// Instantiate an expression in a predecessor that lacked it. +bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred, +                                    BasicBlock *Curr, unsigned int ValNo) { +  // Because we are going top-down through the block, all value numbers +  // will be available in the predecessor by the time we need them.  Any +  // that weren't originally present will have been instantiated earlier +  // in this loop. +  bool success = true; +  for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) { +    Value *Op = Instr->getOperand(i); +    if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op)) +      continue; +    // This could be a newly inserted instruction, in which case, we won't +    // find a value number, and should give up before we hurt ourselves. +    // FIXME: Rewrite the infrastructure to let it easier to value number +    // and process newly inserted instructions. +    if (!VN.exists(Op)) { +      success = false; +      break; +    } +    uint32_t TValNo = +        VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this); +    if (Value *V = findLeader(Pred, TValNo)) { +      Instr->setOperand(i, V); +    } else { +      success = false; +      break; +    } +  } + +  // Fail out if we encounter an operand that is not available in +  // the PRE predecessor.  This is typically because of loads which +  // are not value numbered precisely. +  if (!success) +    return false; + +  Instr->insertBefore(Pred->getTerminator()); +  Instr->setName(Instr->getName() + ".pre"); +  Instr->setDebugLoc(Instr->getDebugLoc()); + +  unsigned Num = VN.lookupOrAdd(Instr); +  VN.add(Instr, Num); + +  // Update the availability map to include the new instruction. +  addToLeaderTable(Num, Instr, Pred); +  return true; +} + +bool GVN::performScalarPRE(Instruction *CurInst) { +  if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() || +      isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() || +      CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() || +      isa<DbgInfoIntrinsic>(CurInst)) +    return false; + +  // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from +  // sinking the compare again, and it would force the code generator to +  // move the i1 from processor flags or predicate registers into a general +  // purpose register. +  if (isa<CmpInst>(CurInst)) +    return false; + +  // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from +  // sinking the addressing mode computation back to its uses. Extending the +  // GEP's live range increases the register pressure, and therefore it can +  // introduce unnecessary spills. +  // +  // This doesn't prevent Load PRE. PHI translation will make the GEP available +  // to the load by moving it to the predecessor block if necessary. +  if (isa<GetElementPtrInst>(CurInst)) +    return false; + +  // We don't currently value number ANY inline asm calls. +  if (auto *CallB = dyn_cast<CallBase>(CurInst)) +    if (CallB->isInlineAsm()) +      return false; + +  uint32_t ValNo = VN.lookup(CurInst); + +  // Look for the predecessors for PRE opportunities.  We're +  // only trying to solve the basic diamond case, where +  // a value is computed in the successor and one predecessor, +  // but not the other.  We also explicitly disallow cases +  // where the successor is its own predecessor, because they're +  // more complicated to get right. +  unsigned NumWith = 0; +  unsigned NumWithout = 0; +  BasicBlock *PREPred = nullptr; +  BasicBlock *CurrentBlock = CurInst->getParent(); + +  // Update the RPO numbers for this function. +  if (InvalidBlockRPONumbers) +    assignBlockRPONumber(*CurrentBlock->getParent()); + +  SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap; +  for (BasicBlock *P : predecessors(CurrentBlock)) { +    // We're not interested in PRE where blocks with predecessors that are +    // not reachable. +    if (!DT->isReachableFromEntry(P)) { +      NumWithout = 2; +      break; +    } +    // It is not safe to do PRE when P->CurrentBlock is a loop backedge, and +    // when CurInst has operand defined in CurrentBlock (so it may be defined +    // by phi in the loop header). +    assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) && +           "Invalid BlockRPONumber map."); +    if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock] && +        llvm::any_of(CurInst->operands(), [&](const Use &U) { +          if (auto *Inst = dyn_cast<Instruction>(U.get())) +            return Inst->getParent() == CurrentBlock; +          return false; +        })) { +      NumWithout = 2; +      break; +    } + +    uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this); +    Value *predV = findLeader(P, TValNo); +    if (!predV) { +      predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P)); +      PREPred = P; +      ++NumWithout; +    } else if (predV == CurInst) { +      /* CurInst dominates this predecessor. */ +      NumWithout = 2; +      break; +    } else { +      predMap.push_back(std::make_pair(predV, P)); +      ++NumWith; +    } +  } + +  // Don't do PRE when it might increase code size, i.e. when +  // we would need to insert instructions in more than one pred. +  if (NumWithout > 1 || NumWith == 0) +    return false; + +  // We may have a case where all predecessors have the instruction, +  // and we just need to insert a phi node. Otherwise, perform +  // insertion. +  Instruction *PREInstr = nullptr; + +  if (NumWithout != 0) { +    if (!isSafeToSpeculativelyExecute(CurInst)) { +      // It is only valid to insert a new instruction if the current instruction +      // is always executed. An instruction with implicit control flow could +      // prevent us from doing it. If we cannot speculate the execution, then +      // PRE should be prohibited. +      if (ICF->isDominatedByICFIFromSameBlock(CurInst)) +        return false; +    } + +    // Don't do PRE across indirect branch. +    if (isa<IndirectBrInst>(PREPred->getTerminator())) +      return false; + +    // Don't do PRE across callbr. +    // FIXME: Can we do this across the fallthrough edge? +    if (isa<CallBrInst>(PREPred->getTerminator())) +      return false; + +    // We can't do PRE safely on a critical edge, so instead we schedule +    // the edge to be split and perform the PRE the next time we iterate +    // on the function. +    unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock); +    if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) { +      toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum)); +      return false; +    } +    // We need to insert somewhere, so let's give it a shot +    PREInstr = CurInst->clone(); +    if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) { +      // If we failed insertion, make sure we remove the instruction. +      LLVM_DEBUG(verifyRemoved(PREInstr)); +      PREInstr->deleteValue(); +      return false; +    } +  } + +  // Either we should have filled in the PRE instruction, or we should +  // not have needed insertions. +  assert(PREInstr != nullptr || NumWithout == 0); + +  ++NumGVNPRE; + +  // Create a PHI to make the value available in this block. +  PHINode *Phi = +      PHINode::Create(CurInst->getType(), predMap.size(), +                      CurInst->getName() + ".pre-phi", &CurrentBlock->front()); +  for (unsigned i = 0, e = predMap.size(); i != e; ++i) { +    if (Value *V = predMap[i].first) { +      // If we use an existing value in this phi, we have to patch the original +      // value because the phi will be used to replace a later value. +      patchReplacementInstruction(CurInst, V); +      Phi->addIncoming(V, predMap[i].second); +    } else +      Phi->addIncoming(PREInstr, PREPred); +  } + +  VN.add(Phi, ValNo); +  // After creating a new PHI for ValNo, the phi translate result for ValNo will +  // be changed, so erase the related stale entries in phi translate cache. +  VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock); +  addToLeaderTable(ValNo, Phi, CurrentBlock); +  Phi->setDebugLoc(CurInst->getDebugLoc()); +  CurInst->replaceAllUsesWith(Phi); +  if (MD && Phi->getType()->isPtrOrPtrVectorTy()) +    MD->invalidateCachedPointerInfo(Phi); +  VN.erase(CurInst); +  removeFromLeaderTable(ValNo, CurInst, CurrentBlock); + +  LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n'); +  if (MD) +    MD->removeInstruction(CurInst); +  LLVM_DEBUG(verifyRemoved(CurInst)); +  // FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes +  // some assertion failures. +  ICF->removeInstruction(CurInst); +  CurInst->eraseFromParent(); +  ++NumGVNInstr; + +  return true; +} + +/// Perform a purely local form of PRE that looks for diamond +/// control flow patterns and attempts to perform simple PRE at the join point. +bool GVN::performPRE(Function &F) { +  bool Changed = false; +  for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) { +    // Nothing to PRE in the entry block. +    if (CurrentBlock == &F.getEntryBlock()) +      continue; + +    // Don't perform PRE on an EH pad. +    if (CurrentBlock->isEHPad()) +      continue; + +    for (BasicBlock::iterator BI = CurrentBlock->begin(), +                              BE = CurrentBlock->end(); +         BI != BE;) { +      Instruction *CurInst = &*BI++; +      Changed |= performScalarPRE(CurInst); +    } +  } + +  if (splitCriticalEdges()) +    Changed = true; + +  return Changed; +} + +/// Split the critical edge connecting the given two blocks, and return +/// the block inserted to the critical edge. +BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) { +  BasicBlock *BB = +      SplitCriticalEdge(Pred, Succ, CriticalEdgeSplittingOptions(DT, LI)); +  if (MD) +    MD->invalidateCachedPredecessors(); +  InvalidBlockRPONumbers = true; +  return BB; +} + +/// Split critical edges found during the previous +/// iteration that may enable further optimization. +bool GVN::splitCriticalEdges() { +  if (toSplit.empty()) +    return false; +  do { +    std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val(); +    SplitCriticalEdge(Edge.first, Edge.second, +                      CriticalEdgeSplittingOptions(DT, LI)); +  } while (!toSplit.empty()); +  if (MD) MD->invalidateCachedPredecessors(); +  InvalidBlockRPONumbers = true; +  return true; +} + +/// Executes one iteration of GVN +bool GVN::iterateOnFunction(Function &F) { +  cleanupGlobalSets(); + +  // Top-down walk of the dominator tree +  bool Changed = false; +  // Needed for value numbering with phi construction to work. +  // RPOT walks the graph in its constructor and will not be invalidated during +  // processBlock. +  ReversePostOrderTraversal<Function *> RPOT(&F); + +  for (BasicBlock *BB : RPOT) +    Changed |= processBlock(BB); + +  return Changed; +} + +void GVN::cleanupGlobalSets() { +  VN.clear(); +  LeaderTable.clear(); +  BlockRPONumber.clear(); +  TableAllocator.Reset(); +  ICF->clear(); +  InvalidBlockRPONumbers = true; +} + +/// Verify that the specified instruction does not occur in our +/// internal data structures. +void GVN::verifyRemoved(const Instruction *Inst) const { +  VN.verifyRemoved(Inst); + +  // Walk through the value number scope to make sure the instruction isn't +  // ferreted away in it. +  for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator +       I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) { +    const LeaderTableEntry *Node = &I->second; +    assert(Node->Val != Inst && "Inst still in value numbering scope!"); + +    while (Node->Next) { +      Node = Node->Next; +      assert(Node->Val != Inst && "Inst still in value numbering scope!"); +    } +  } +} + +/// BB is declared dead, which implied other blocks become dead as well. This +/// function is to add all these blocks to "DeadBlocks". For the dead blocks' +/// live successors, update their phi nodes by replacing the operands +/// corresponding to dead blocks with UndefVal. +void GVN::addDeadBlock(BasicBlock *BB) { +  SmallVector<BasicBlock *, 4> NewDead; +  SmallSetVector<BasicBlock *, 4> DF; + +  NewDead.push_back(BB); +  while (!NewDead.empty()) { +    BasicBlock *D = NewDead.pop_back_val(); +    if (DeadBlocks.count(D)) +      continue; + +    // All blocks dominated by D are dead. +    SmallVector<BasicBlock *, 8> Dom; +    DT->getDescendants(D, Dom); +    DeadBlocks.insert(Dom.begin(), Dom.end()); + +    // Figure out the dominance-frontier(D). +    for (BasicBlock *B : Dom) { +      for (BasicBlock *S : successors(B)) { +        if (DeadBlocks.count(S)) +          continue; + +        bool AllPredDead = true; +        for (BasicBlock *P : predecessors(S)) +          if (!DeadBlocks.count(P)) { +            AllPredDead = false; +            break; +          } + +        if (!AllPredDead) { +          // S could be proved dead later on. That is why we don't update phi +          // operands at this moment. +          DF.insert(S); +        } else { +          // While S is not dominated by D, it is dead by now. This could take +          // place if S already have a dead predecessor before D is declared +          // dead. +          NewDead.push_back(S); +        } +      } +    } +  } + +  // For the dead blocks' live successors, update their phi nodes by replacing +  // the operands corresponding to dead blocks with UndefVal. +  for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end(); +        I != E; I++) { +    BasicBlock *B = *I; +    if (DeadBlocks.count(B)) +      continue; + +    // First, split the critical edges. This might also create additional blocks +    // to preserve LoopSimplify form and adjust edges accordingly. +    SmallVector<BasicBlock *, 4> Preds(pred_begin(B), pred_end(B)); +    for (BasicBlock *P : Preds) { +      if (!DeadBlocks.count(P)) +        continue; + +      if (llvm::any_of(successors(P), +                       [B](BasicBlock *Succ) { return Succ == B; }) && +          isCriticalEdge(P->getTerminator(), B)) { +        if (BasicBlock *S = splitCriticalEdges(P, B)) +          DeadBlocks.insert(P = S); +      } +    } + +    // Now undef the incoming values from the dead predecessors. +    for (BasicBlock *P : predecessors(B)) { +      if (!DeadBlocks.count(P)) +        continue; +      for (PHINode &Phi : B->phis()) { +        Phi.setIncomingValueForBlock(P, UndefValue::get(Phi.getType())); +        if (MD) +          MD->invalidateCachedPointerInfo(&Phi); +      } +    } +  } +} + +// If the given branch is recognized as a foldable branch (i.e. conditional +// branch with constant condition), it will perform following analyses and +// transformation. +//  1) If the dead out-coming edge is a critical-edge, split it. Let +//     R be the target of the dead out-coming edge. +//  1) Identify the set of dead blocks implied by the branch's dead outcoming +//     edge. The result of this step will be {X| X is dominated by R} +//  2) Identify those blocks which haves at least one dead predecessor. The +//     result of this step will be dominance-frontier(R). +//  3) Update the PHIs in DF(R) by replacing the operands corresponding to +//     dead blocks with "UndefVal" in an hope these PHIs will optimized away. +// +// Return true iff *NEW* dead code are found. +bool GVN::processFoldableCondBr(BranchInst *BI) { +  if (!BI || BI->isUnconditional()) +    return false; + +  // If a branch has two identical successors, we cannot declare either dead. +  if (BI->getSuccessor(0) == BI->getSuccessor(1)) +    return false; + +  ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); +  if (!Cond) +    return false; + +  BasicBlock *DeadRoot = +      Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0); +  if (DeadBlocks.count(DeadRoot)) +    return false; + +  if (!DeadRoot->getSinglePredecessor()) +    DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot); + +  addDeadBlock(DeadRoot); +  return true; +} + +// performPRE() will trigger assert if it comes across an instruction without +// associated val-num. As it normally has far more live instructions than dead +// instructions, it makes more sense just to "fabricate" a val-number for the +// dead code than checking if instruction involved is dead or not. +void GVN::assignValNumForDeadCode() { +  for (BasicBlock *BB : DeadBlocks) { +    for (Instruction &Inst : *BB) { +      unsigned ValNum = VN.lookupOrAdd(&Inst); +      addToLeaderTable(ValNum, &Inst, BB); +    } +  } +} + +class llvm::gvn::GVNLegacyPass : public FunctionPass { +public: +  static char ID; // Pass identification, replacement for typeid + +  explicit GVNLegacyPass(bool NoMemDepAnalysis = !EnableMemDep) +      : FunctionPass(ID), NoMemDepAnalysis(NoMemDepAnalysis) { +    initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry()); +  } + +  bool runOnFunction(Function &F) override { +    if (skipFunction(F)) +      return false; + +    auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); + +    return Impl.runImpl( +        F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), +        getAnalysis<DominatorTreeWrapperPass>().getDomTree(), +        getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), +        getAnalysis<AAResultsWrapperPass>().getAAResults(), +        NoMemDepAnalysis +            ? nullptr +            : &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(), +        LIWP ? &LIWP->getLoopInfo() : nullptr, +        &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE()); +  } + +  void getAnalysisUsage(AnalysisUsage &AU) const override { +    AU.addRequired<AssumptionCacheTracker>(); +    AU.addRequired<DominatorTreeWrapperPass>(); +    AU.addRequired<TargetLibraryInfoWrapperPass>(); +    AU.addRequired<LoopInfoWrapperPass>(); +    if (!NoMemDepAnalysis) +      AU.addRequired<MemoryDependenceWrapperPass>(); +    AU.addRequired<AAResultsWrapperPass>(); + +    AU.addPreserved<DominatorTreeWrapperPass>(); +    AU.addPreserved<GlobalsAAWrapperPass>(); +    AU.addPreserved<TargetLibraryInfoWrapperPass>(); +    AU.addPreserved<LoopInfoWrapperPass>(); +    AU.addPreservedID(LoopSimplifyID); +    AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); +  } + +private: +  bool NoMemDepAnalysis; +  GVN Impl; +}; + +char GVNLegacyPass::ID = 0; + +INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) +INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) +INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) +INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) + +// The public interface to this file... +FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) { +  return new GVNLegacyPass(NoMemDepAnalysis); +} | 
